WorldWideScience

Sample records for creek basin colorado

  1. Comparability among four invertebrate sampling methods and two multimetric indexes, Fountain Creek Basin, Colorado, 2010–2012

    Science.gov (United States)

    Bruce, James F.; Roberts, James J.; Zuellig, Robert E.

    2018-05-24

    The U.S. Geological Survey (USGS), in cooperation with Colorado Springs City Engineering and Colorado Springs Utilities, analyzed previously collected invertebrate data to determine the comparability among four sampling methods and two versions (2010 and 2017) of the Colorado Benthic Macroinvertebrate Multimetric Index (MMI). For this study, annual macroinvertebrate samples were collected concurrently (in space and time) at 15 USGS surface-water gaging stations in the Fountain Creek Basin from 2010 to 2012 using four sampling methods. The USGS monitoring project in the basin uses two of the methods and the Colorado Department of Public Health and Environment recommends the other two. These methods belong to two distinct sample types, one that targets single habitats and one that targets multiple habitats. The study results indicate that there are significant differences in MMI values obtained from the single-habitat and multihabitat sample types but methods from each program within each sample type produced comparable values. This study also determined that MMI values calculated by different versions of the Colorado Benthic Macroinvertebrate MMI are indistinguishable. This indicates that the Colorado Department of Public Health and Environment methods are comparable with the USGS monitoring project methods for single-habitat and multihabitat sample types. This report discusses the direct application of the study results to inform the revision of the existing USGS monitoring project in the Fountain Creek Basin.

  2. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013

    Science.gov (United States)

    Wellman, Tristan P.; Rupert, Michael G.

    2016-03-03

    The Upper Black Squirrel Creek Basin is located about 25 kilometers east of Colorado Springs, Colorado. The primary aquifer is a productive section of unconsolidated deposits that overlies bedrock units of the Denver Basin and is a critical resource for local water needs, including irrigation, domestic, and commercial use. The primary aquifer also serves an important regional role by the export of water to nearby communities in the Colorado Springs area. Changes in land use and development over the last decade, which includes substantial growth of subdivisions in the Upper Black Squirrel Creek Basin, have led to uncertainty regarding the potential effects to water quality throughout the basin. In response, the U.S. Geological Survey, in cooperation with Cherokee Metropolitan District, El Paso County, Meridian Service Metropolitan District, Mountain View Electric Association, Upper Black Squirrel Creek Groundwater Management District, Woodmen Hills Metropolitan District, Colorado State Land Board, and Colorado Water Conservation Board, and the stakeholders represented in the Groundwater Quality Study Committee of El Paso County conducted an assessment of groundwater quality and groundwater age with an emphasis on characterizing nitrate in the groundwater.

  3. Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.

    2010-01-01

    In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental

  4. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    Science.gov (United States)

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic

  5. Geographic information system datasets of regolith-thickness data, regolith-thickness contours, raster-based regolith thickness, and aquifer-test and specific-capacity data for the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L. Rick

    2010-01-01

    These datasets were compiled in support of U.S. Geological Survey Scientific-Investigations Report 2010-5082-Hydrogeology and Steady-State Numerical Simulation of Groundwater Flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. The datasets were developed by the U.S. Geological Survey in cooperation with the Lost Creek Ground Water Management District and the Colorado Geological Survey. The four datasets are described as follows and methods used to develop the datasets are further described in Scientific-Investigations Report 2010-5082: (1) ds507_regolith_data: This point dataset contains geologic information concerning regolith (unconsolidated sediment) thickness and top-of-bedrock altitude at selected well and test-hole locations in and near the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Data were compiled from published reports, consultant reports, and from lithologic logs of wells and test holes on file with the U.S. Geological Survey Colorado Water Science Center and the Colorado Division of Water Resources. (2) ds507_regthick_contours: This dataset consists of contours showing generalized lines of equal regolith thickness overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness was contoured manually on the basis of information provided in the dataset ds507_regolith_data. (3) ds507_regthick_grid: This dataset consists of raster-based generalized thickness of regolith overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness in this dataset was derived from contours presented in the dataset ds507_regthick_contours. (4) ds507_welltest_data: This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water Basin, Weld, Adams, and

  6. Geochemical survey of stream sediments of the Piceance Creek Basin, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Ringrose, C.D.

    1977-01-01

    A stream sediment survey was conducted in the Piceance Creek Basin to study the spatial distribution of Zn, Mo, Hg, Cd and As for future baseline considerations. The pH and organic matter were also measured. From samples taken at the mouths (junctions) of most of the named creeks in the basin, it is concluded that none of the streams contained sediments with anomalous trace element concentrations with respect to the basin. But it is thought that Mo and possibly As could be potentially toxic because of their abundance and their mobility under the stream sediments' alkaline condition. From a different sampling plan, designed to describe the background variance of five streams (Roan, Black Sulfur, Parachute, Yellow and Piceance Creeks), it was found that most of the variance occurred at distances from 0-10 m within 2 km stream segments 10 km apart for Mo, Hg, Az, and organic matter. When the variance between the five streams was considered, it was found to dominate the variances of the other factors for Mo, Hg, and Zn. This variance between streams is actually thought to represent the variance between the major drainage system in the basin. When comparison is made between the two sampling design results, it is thought that the trace element concentrations of stream junction samples represented the best range of expected values for the entire basin. The expected ranges of the trace elements from the nested design are thought to be reasonable estimates of preliminary baselines for Parachute Creek, Roan Creek and Black Sulfur Creek within the restricted limits of the streams defined in the text. From the experience gained in pursuing this study, it is thought that composite sampling should be considered, where feasible, to reduce the analytical load and to reduce the small scale variance.

  7. Thermal history of the multi-well experiment (MWX) site, Piceance Creek Basin, Northwestern Colorado, derived from fission-track analysis

    International Nuclear Information System (INIS)

    Kelley, S.A.; Blackwell, D.D.

    1990-01-01

    Fission-track analysis of apatite and zircon from 19 depth intervals in two drill holes at the MWX site in the Piceance Creek Basin, Colorado, is used to determine the burial and subsequent cooling history of the Upper Cretaceous Mesaverde Group and the Paleocene Wasatch Formation. The fission-track data, as well as available temperature, vitrinite reflectance, and geological information, indicate that the sampled sediments attained maximum burial at approximately 10 Ma, with maximum temperatures in the 150-200 0 C range. After 10 Ma the sediments began to cool during erosion related to the downcutting of the Colorado River, which lies just to the north of the MWX site. The heat flow in this area has remained relatively constant for the past 10 Ma. (author)

  8. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    Science.gov (United States)

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium

  9. Burial and thermal history of the Paradox Basin, Utah and Colorado, and petroleum potential of the Middle Pennsylvanian Paradox Basin

    Science.gov (United States)

    Nuccio, Vito F.; Condon, Steven M.

    1996-01-01

    The Ismay?Desert Creek interval and Cane Creek cycle of the Alkali Gulch interval of the Middle Pennsylvanian Paradox Formation in the Paradox Basin of Utah and Colorado contain excellent organic-rich source rocks having total organic carbon contents ranging from 0.5 to 11.0 percent. The source rocks in both intervals contain types I, II, and III organic matter and are potential source rocks for both oil and gas. Organic matter in the Ismay?Desert Creek interval and Cane Creek cycle of the Alkali Gulch interval (hereinafter referred to in this report as the ?Cane Creek cycle?) probably is more terrestrial in origin in the eastern part of the basin and is interpreted to have contributed to some of the gas produced there. Thermal maturity increases from southwest to northeast for both the Ismay?Desert Creek interval and Cane Creek cycle, following structural and burial trends throughout the basin. In the northernmost part of the basin, the combination of a relatively thick Tertiary sedimentary sequence and high basinal heat flow has produced very high thermal maturities. Although general thermal maturity trends are similar for both the Ismay?Desert Creek interval and Cane Creek cycle, actual maturity levels are higher for the Cane Creek due to the additional thickness (as much as several thousand feet) of Middle Pennsylvanian section. Throughout most of the basin, the Ismay?Desert Creek interval is mature and in the petroleum-generation window (0.10 to 0.50 production index (PI)), and both oil and gas are produced; in the south-central to southwestern part of the basin, however, the interval is marginally mature (0.10 PI) in the central part of the basin and is overmature (past the petroleum-generation window (>0.50 PI)) throughout most of the eastern part of the basin. The Cane Creek cycle generally produces oil and associated gas throughout the western and central parts of the basin and thermogenic gas in the eastern part of the basin. Burial and thermal

  10. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Science.gov (United States)

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  11. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Thackston, J.W.; Mangarella, P.A.; Preslo, L.M.

    1986-05-01

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies

  12. Site evaluation for U.S. Bureau of Mines experimental oil-shale mine, Piceance Creek basin, Rio Blanco County, Colorado

    Science.gov (United States)

    Ege, John R.; Leavesley, G.H.; Steele, G.S.; Weeks, J.B.

    1978-01-01

    The U.S. Geological Survey is cooperating with the U.S. Bureau of Mines in the selection of a site for a shaft and experimental mine to be constructed in the Piceance Creek basin, Rio Blanco County, Colo. The Piceance Creek basin, an asymmetric, northwest-trending large structural downwarp, is located approximately 40 km (25 mi) west of the town of Meeker in Rio Blanco County, Colo. The oil-shale, dawsonite, nahcolite, and halite deposits of the Piceance Creek basin occur in the lacustrine Green River Formation of Eocene age. In the basin the Green River Formation comprises three members. In ascending order, they are the Douglas Creek, the Garden Gulch, and the Parachute Creek Members, Four sites are presented for consideration and evaluated on geology and hydrology with respect to shale-oil economics. Evaluated criteria include: (1) stratigraphy, (2) size of site, (3) oil-shale yield, (4) representative quantities of the saline minerals dawsonite and nahcolite, which must be present with a minimum amount of halite, (5) thickness of a 'leached' saline zone, (6) geologic structure, (7) engineering characteristics of rock, (8) representative surface and ground-water conditions, with emphasis on waste disposal and dewatering, and (9) environmental considerations. Serious construction and support problems are anticipated in sinking a deep shaft in the Piceance Creek basin. The two major concerns will be dealing with incompetent rock and large inflow of saline ground water, particularly in the leached zone. Engineering support problems will include stabilizing and hardening the rock from which a certain amount of ground water has been removed. The relative suitability of the four potential oil-shale experimental shaft sites in the Piceance Creek basin has been considered on the basis of all available geologic, hydrologic, and engineering data; site 2 is preferred to sites 1, 3, and 4, The units in this report are presented in the form: metric (English). Both units of

  13. Uranium deposits: northern Denver Julesburg basin, Colorado

    International Nuclear Information System (INIS)

    Reade, H.L.

    1978-01-01

    The Fox Hills Sandstone and the Laramie Formation (Upper Cretaceous) are the host rocks for uranium deposits in Weld County, northern Denver Julesburg basin, Colorado. The uranium deposits discovered in the Grover and Sand Creek areas occur in well-defined north--south trending channel sandstones of the Laramie Formation whereas the sandstone channel in the upper part of the Fox Hills Sandstone trends east--west. Mineralization was localized where the lithology was favorable for uranium accumulation. Exploration was guided by log interpretation methods similar to those proposed by Bruce Rubin for the Powder River basin, Wyoming, because alteration could not be readily identified in drilling samples. The uranium host rocks consist of medium- to fine-grained carbonaceous, feldspathic fluvial channel sandstones. The uranium deposits consist of simple to stacked roll fronts. Reserve estimates for the deposits are: (1) Grover 1,007,000 lbs with an average grade of 0.14 percent eU 3 O 8 ,2) Sand Creek 154,000 lbs with an average grade of 0.08 percent eU 3 O 8 , and 3) The Pawnee deposit 1,060,000 lbs with an average grade of 0.07 percent eU 3 O 8 . The configuration of the geochemical cells in the Grover and Sand Creek sandstones indicate that uraniferous fluids moved northward whereas in the Pawnee sandstone of the Fox Hills uraniferous fluids moved southward. Precipitation of uranium in the frontal zone probably was caused by downdip migration of oxygcnated groundwater high in uranium content moving through a favorable highly carbonaceous and pyritic host sandstone

  14. Hydrology of the Johnson Creek Basin, Oregon

    Science.gov (United States)

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  15. Use of cosmogenic 35S for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range

    Science.gov (United States)

    Sueker, J.K.; Turk, J.T.; Michel, R.L.

    1999-01-01

    High-elevation basins in Colorado are a major source of water for the central and western United States; however, acidic deposition may affect the quality of this water. Water that is retained in a basin for a longer period of time may be less impacted by acidic deposition. Sulfur-35 (35S), a short-lived isotope of sulfur (t( 1/2 ) = 87 days), is useful for studying short-time scale hydrologic processes in basins where biological influences and water/rock interactions are minimal. When sulfate response in a basin is conservative, the age of water may be assumed to be that of the dissolved sulfate in it. Three alpine-subalpine basins on granitic terrain in Colorado were investigated to determine the influence of basin morphology on the residence time of water in the basins. Fern and Spruce Creek basins are glaciated and accumulate deep snowpacks during the winter. These basins have hydrologic and chemical characteristics typical of systems with rapid hydrologic response times. The age of sulfate leaving these basins, determined from the activity of 35S, averages around 200 days. In contrast, Boulder Brook basin has broad, gentle slopes and an extensive cover of surficial debris. Its area above treeline, about one-half of the basin, is blown free of snow during the winter. Variations in flow and solute concentrations in Boulder Brook are quite small compared to Fern and Spruce Creeks. After peak snowmelt, sulfate in Boulder Brook is about 200 days older than sulfate in Fern and Spruce Creeks. This indicates a substantial source of older sulfate (lacking 35S) that is probably provided from water stored in pore spaces of surficial debris in Boulder Brook basin.

  16. Urban-Related Environmental Variables and Their Relation with Patterns in Biological Community Structure in the Fountain Creek Basin, Colorado, 2003-2005

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.; Evans, Erin E.; Stogner, Sr., Robert W.

    2007-01-01

    In 2003, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to evaluate the influence of urbanization on stream ecosystems. To accomplish this task, invertebrate, fish, stream discharge, habitat, water-chemistry, and land-use data were collected from 13 sites in the Fountain Creek basin from 2003 to 2005. The Hydrologic Index Tool was used to calculate hydrologic indices known to be related to urbanization. Response of stream hydrology to urbanization was evident among hydrologic variables that described stormflow. These indices included one measurement of high-flow magnitude, two measurements of high-flow frequency, and one measurement of stream flashiness. Habitat and selected nonstormflow water chemistry were characterized at each site. Land-use data were converted to estimates of impervious surface cover and used as the measure of urbanization annually. Correlation analysis (Spearman?s rho) was used to identify a suite of nonredundant streamflow, habitat, and water-chemistry variables that were strongly associated (rho > 0.6) with impervious surface cover but not strongly related to elevation (rho analysis (BIO-ENV, PRIMER ver 6.1, Plymouth, UK) was used to create subsets of eight urban-related environmental variables that described patterns in biological community structure. The strongest and most parsimonious subset of variables describing patterns in invertebrate community structure included high flood pulse count, lower bank capacity, and nutrients. Several other combinations of environmental variables resulted in competing subsets, but these subsets always included the three variables found in the most parsimonious list. This study found that patterns in invertebrate community structure from 2003 to 2005 in the Fountain Creek basin were associated with a variety of environmental characteristics influenced by urbanization. These patterns were explained by a combination of hydrologic, habitat, and water

  17. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  18. Demonstration of massive hydraulic fracturing Piceance Basin, Rio Blanco County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, J L; Medlin, W L; Strubhar, M K

    1979-08-01

    Demonstration of massive fracturing to provide gas production from tight gas sands in the Piceance Basin was the objective of this jointly funded Mobil DOE project. This effort has been at least partially successful. The uppermost interval fractured, the Ohio Creek formation at 7324 to 7476 ft, appears to be commercially viable. The remaining sequence to total depth of 10,800 ft may also be commercially attractive, depending on fractured well costs, gas prices and the risk of failure to achieve production capacity equal to, or greater than, that achieved in the present well. Prior work was performed by Mobil in the Brush Creek Unit, Mesa County, Colorado. One well, Brush Creek 1-25, was drilled to 10,330 ft and given two massive fracturing treatments before the well was plugged and abandoned as noncommercial. It was concluded that formation permeability was too low to justify additional work in the Brush Creek Unit. Piceance Creek well F31-13G was drilled to 10,800 ft. Nine zones were tested in the Mesaverde and Ohio Creek formations between 7324 to 10,680 ft. Six massive fracturing treatments were performed covering 7 of the 9 intervals. Average first-year flow potential of the well is estimated at 2.9 MMCF/day with 1.1 MMCF/day of this amount attributed to the uppermost zone.

  19. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  20. Hydrogeochemistry and simulated solute transport, Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Robson, S.G.; Saulnier, G.J.

    1981-01-01

    Oil-shale mining activities in Piceance basin in northwestern Colorado could adversely affect the ground- and surface-water quality in the basin. This study of the hydrology and geochemistry of the area used ground-water solute-transport-modeling techniques to investigate the possible impact of the mines on water quality. Maps of the extent and structure of the aquifer were prepared and show that a saturated thickness of 2,000 feet occurs in the northeast part of the basin. Ground-water recharge in the upland areas in the east, south, and west parts of the basin moves down into deeper zones in the aquifer and laterally to the discharge areas along Piceance and Yellow Creeks. The saline zone and the unsaturated zone provide the majority of the dissolved solids found in the ground water. Precipitation, ion-exchange, and oxidation-reduction reactions are also occuring in the aquifer. Model simulations of ground-water pumpage in tracts C-a and C-b indicate that the altered direction of ground-water movement near the pumped mines will cause an improvement in ground-water quality near the mines and a degradation of water quality downgradient from the tracts. Model simulations of mine leaching in tract C-a and C-b indicate that equal rates of mine leaching in the tracts will produce much different effects on the water quality in the basin. Tract C-a, by virtue of its remote location from perennial streams, will primarily degrade the ground-water quality over a large area to the northeast of the tract. Tract C-b, by contrast, will primarily degrade the surface-water quality in Piceance Creek, with only localized effects on the ground-water quality. (USGS)

  1. Water quality of the Swatara Creek Basin, PA

    Science.gov (United States)

    McCarren, Edward F.; Wark, J.W.; George, J.R.

    1964-01-01

    The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and

  2. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  3. Peak discharge, flood frequency, and peak stage of floods on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    Science.gov (United States)

    Kohn, Michael S.; Stevens, Michael R.; Mommandi, Amanullah; Khan, Aziz R.

    2017-12-14

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, determined the peak discharge, annual exceedance probability (flood frequency), and peak stage of two floods that took place on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado (hereafter referred to as “Big Cottonwood Creek site”), on August 23, 2016, and on Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado (hereafter referred to as “Fountain Creek site”), on August 29, 2016. A one-dimensional hydraulic model was used to estimate the peak discharge. To define the flood frequency of each flood, peak-streamflow regional-regression equations or statistical analyses of USGS streamgage records were used to estimate annual exceedance probability of the peak discharge. A survey of the high-water mark profile was used to determine the peak stage, and the limitations and accuracy of each component also are presented in this report. Collection and computation of flood data, such as peak discharge, annual exceedance probability, and peak stage at structures critical to Colorado’s infrastructure are an important addition to the flood data collected annually by the USGS.The peak discharge of the August 23, 2016, flood at the Big Cottonwood Creek site was 917 cubic feet per second (ft3/s) with a measurement quality of poor (uncertainty plus or minus 25 percent or greater). The peak discharge of the August 29, 2016, flood at the Fountain Creek site was 5,970 ft3/s with a measurement quality of poor (uncertainty plus or minus 25 percent or greater).The August 23, 2016, flood at the Big Cottonwood Creek site had an annual exceedance probability of less than 0.01 (return period greater than the 100-year flood) and had an annual exceedance probability of greater than 0.005 (return period less than the 200-year flood). The August 23, 2016, flood event was caused by a precipitation event having an annual exceedance probability of 1.0 (return

  4. Surface Hydrological Processes of Rock Glaciated Basins in the San Juan Mountains, Colorado

    Science.gov (United States)

    Mateo, E. I.

    2017-12-01

    Glaciers in the western United States have been examined in terms of their summer meltwater contributions to regional hydrological systems. In the San Juan Mountains of Colorado where glaciers do not and cannot exist due to a rising zero-degree isotherm, rock glaciers take the place of valley glaciers during the summer runoff period. Most of the rock glaciers in Colorado are located on a northerly slope aspect, however, there are multiple in the southwest region of the state that occur on different aspects. This study asked how slope aspect and rising air temperatures influenced the hydrological processes of streams below rock glaciers in the San Juan Mountains during the 2016 summer season. This project focused on three basins, Yankee Boy basin, Blue Lakes basin, and Mill Creek basin, which are adjacent to each other and share a common peak, Gilpin Peak. Findings of this one-season study showed that air temperature significantly influenced stream discharge below each rock glacier. Discharge and air temperature patterns indicate a possible air temperature threshold during late summer when rock glacier melt increased at a greater rate. The results also suggest that slope aspect of rock glacier basins influences stream discharge, but temperature and precipitation are likely larger components of the melt regimes. The continuation of data collection during the 2017 summer season has allowed for more detailed analysis of the relationship between air temperature and rock glacier melt. This continual expansion of the original dataset is crucial for understanding the hydrological processes of surface runoff below rock glaciers.

  5. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    International Nuclear Information System (INIS)

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.; Wolf, D.A.

    1981-01-01

    The purpose of the Date Creek Supplement is to characterize the chemistry of sediment samples representing stream basins in which the Anderson Mine (and related prospects) occur. Once characterized, the chemistry is then used to delineate other areas within the Date Creek Basin where stream sediment chemistry resembles that of the Anderson Mine area. This supplementary report examines more closely the data from sediment samples taken in 239 stream basins collected over a total area of approximately 900 km 2 (350 mi 2 ). Cluster and discriminant analyses are used to characterize the geochemistry of the stream sediment samples collected in the Date Creek Basin. Cluster and discriminant analysis plots are used to delineate areas having a potential for uranium mineralization similar to that of the Anderson Mine

  6. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  7. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004

    Science.gov (United States)

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick

    2011-01-01

    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated

  8. Colorado Basin Structure and Rifting, Argentine passive margin

    Science.gov (United States)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  9. Beyond Colorado's Front Range - A new look at Laramide basin subsidence, sedimentation, and deformation in north-central Colorado

    Science.gov (United States)

    Cole, James C.; Trexler, James H.; Cashman, Patricia H.; Miller, Ian M.; Shroba, Ralph R.; Cosca, Michael A.; Workman, Jeremiah B.

    2010-01-01

    This field trip highlights recent research into the Laramide uplift, erosion, and sedimentation on the western side of the northern Colorado Front Range. The Laramide history of the North Park?Middle Park basin (designated the Colorado Headwaters Basin in this paper) is distinctly different from that of the Denver basin on the eastern flank of the range. The Denver basin stratigraphy records the transition from Late Cretaceous marine shale to recessional shoreline sandstones to continental, fluvial, marsh, and coal mires environments, followed by orogenic sediments that span the K-T boundary. Upper Cretaceous and Paleogene strata in the Denver basin consist of two mega-fan complexes that are separated by a 9 million-year interval of erosion/non-deposition between about 63 and 54 Ma. In contrast, the marine shale unit on the western flank of the Front Range was deeply eroded over most of the area of the Colorado Headwaters Basin (approximately one km removed) prior to any orogenic sediment accumulation. New 40Ar-39Ar ages indicate the oldest sediments on the western flank of the Front Range were as young as about 61 Ma. They comprise the Windy Gap Volcanic Member of the Middle Park Formation, which consists of coarse, immature volcanic conglomerates derived from nearby alkalic-mafic volcanic edifices that were forming at about 65?61 Ma. Clasts of Proterozoic granite, pegmatite, and gneiss (eroded from the uplifted core of the Front Range) seem to arrive in the Colorado Headwaters Basin at different times in different places, but they become dominant in arkosic sandstones and conglomerates about one km above the base of the Colorado Headwaters Basin section. Paleocurrent trends suggest the southern end of the Colorado Headwaters Basin was structurally closed because all fluvial deposits show a northward component of transport. Lacustrine depositional environments are indicated by various sedimentological features in several sections within the >3 km of sediment

  10. Environmental Setting of the Sugar Creek and Leary Weber Ditch Basins, Indiana, 2002-04

    Science.gov (United States)

    Lathrop, Timothy R.

    2006-01-01

    The Leary Weber Ditch Basin is nested within the Sugar Creek Basin in central Indiana. These basins make up one of the five study sites in the Nation selected for the Agricultural Chemicals: Sources, Transport, and Fate topical study, a part of the U.S. Geological Survey’s National Water-Quality Assessment Program. In this topical study, identifying the natural factors and human influences affecting water quality in the Leary Weber Ditch and Sugar Creek Basins are the focus of the assessment. A detailed comparison between the environmental settings of these basins is presented. Specifics of the topical study design as implemented in the Leary Weber Ditch and Sugar Creek Basins are described.

  11. Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

    Science.gov (United States)

    Fulton, John W.; Risser, Dennis W.; Regan, R. Steve; Walker, John F.; Hunt, Randall J.; Niswonger, Richard G.; Hoffman, Scott A.; Markstrom, Steven

    2015-08-17

    This report describes the results of a study by the U.S. Geological Survey in cooperation with ClearWater Conservancy and the Pennsylvania Department of Environmental Protection to develop a hydrologic model to simulate a water budget and identify areas of greater than average recharge for the Spring Creek Basin in central Pennsylvania. The model was developed to help policy makers, natural resource managers, and the public better understand and manage the water resources in the region. The Groundwater and Surface-water FLOW model (GSFLOW), which is an integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-NWT), was used to simulate surface water and groundwater in the Spring Creek Basin for water years 2000–06. Because the groundwater and surface-water divides for the Spring Creek Basin do not coincide, the study area includes the Nittany Creek Basin and headwaters of the Spruce Creek Basin. The hydrologic model was developed by the use of a stepwise process: (1) develop and calibrate a PRMS model and steady-state MODFLOW-NWT model; (2) re-calibrate the steady-state MODFLOW-NWT model using potential recharge estimates simulated from the PRMS model, and (3) integrate the PRMS and MODFLOW-NWT models into GSFLOW. The individually calibrated PRMS and MODFLOW-NWT models were used as a starting point for the calibration of the fully coupled GSFLOW model. The GSFLOW model calibration was done by comparing observations and corresponding simulated values of streamflow from 11 streamgages and groundwater levels from 16 wells. The cumulative water budget and individual water budgets for water years 2000–06 were simulated by using GSFLOW. The largest source and sink terms are represented by precipitation and evapotranspiration, respectively. For the period simulated, a net surplus in the water budget was computed where inflows exceeded outflows by about 1.7 billion cubic feet (0.47 inches per year over the basin area

  12. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    Science.gov (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for

  13. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.; Reinhart, W.R.; Gardner, H.A.

    1981-06-01

    The Durango Quadrangle (2 0 ), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions of the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access

  14. Characterization of salinity loads and selenium loads in the Smith Fork Creek region of the Lower Gunnison River Basin, western Colorado, 2008-2009

    Science.gov (United States)

    Richards, Rodney J.; Linard, Joshua I.; Hobza, Christopher M.

    2014-01-01

    The lower Gunnison River Basin of the Colorado River Basin has elevated salinity and selenium levels. The Colorado River Basin Salinity Control Act of June 24, 1974 (Public Law 93–320, amended by Public Law 98–569), authorized investigation of the Lower Gunnison Basin Unit Salinity Control Project by the U.S. Department of the Interior. The Bureau of Reclamation (Reclamation) and the Natural Resources Conservation Service are responsible for assessing and implementing measures to reduce salinity and selenium loading in the Colorado River Basin. Cost-sharing programs help farmers, ranchers, and canal companies improve the efficiency of water delivery systems and irrigation practices. The delivery systems (irrigation canals) have been identified as potential sources of seepage, which can contribute to salinity loading. Reclamation wants to identify seepage from irrigation systems in order to maximize the effectiveness of the various salinity-control methods, such as polyacrylamide lining and piping of irrigation canals programs. The U.S. Geological Survey, in cooperation with Reclamation, developed a study to characterize the salinity and selenium loading of seven subbasins in the Smith Fork Creek region and identify where control efforts can be maximized to reduce salinity and selenium loading. Total salinity loads ranged from 27.9±19.1 tons per year (t/yr) to 87,500±80,500 t/yr. The four natural subbasins—BkKm, RCG1, RCG2, and SF1—had total salinity loads of 27.9±19.1 t/yr, 371±248 t/yr, 2,180±1,590 t/yr, and 4,200±2,720 t/yr, respectively. The agriculturally influenced sites had salinity loads that ranged from 7,580±6,900 t/yr to 87,500±80,500 t/yr. Salinity loads for the subbasins AL1, B1, CK1, SF2, and SF3 were 7,580±6,900 t/yr; 28,300±26,700 t/yr; 48,700±36,100 t/yr; 87,500±80,900 t/yr; and 52,200±31,800 t/yr, respectively. The agricultural salinity load was separated into three components: tail water, deep percolation, and canal seepage

  15. Analysis of Dissolved Selenium Loading for Selected Sites in the Lower Gunnison River Basin, Colorado, 1978-2005

    Science.gov (United States)

    Thomas, Judith C.; Leib, Kenneth J.; Mayo, John W.

    2008-01-01

    Elevated selenium concentrations in streams are a water-quality concern in western Colorado. The U.S. Geologic Survey, in cooperation with the Colorado Department of Public Health and Environment, summarized selenium loading in the Lower Gunnison River Basin to support the development of total maximum daily selenium loads at sites that represent the cumulative contribution to U.S. Environmental Protection Agency 303(d) list segments. Analysis of selenium loading included quantifying loads and determining the amount of load that would need to be reduced to bring the site into compliance, referred to as 'the load reduction,' with the State chronic aquatic-life standard for dissolved selenium [85th percentile selenium concentration not to exceed 4.6 ?g/L (micrograms per liter)], referred to as 'the water-quality standard.' Streamflow and selenium concentration data for 54 historical water-quality/water-quantity monitoring sites were compiled from U.S. Geological Survey and Colorado Department of Public Health and Environment data sources. Three methods were used for analysis of selenium concentration data to address the variable data density among sites. Mean annual selenium loads were determined for only 10 of the 54 sites due to data availability limitations. Twenty-two sites had 85th percentile selenium concentrations that exceeded the water-quality standard, 3 sites had 85th percentile selenium concentrations less than the State standard, and 29 sites could not be evaluated with respect to 85th percentile selenium concentration (sample count less than 5). To bring selenium concentrations into compliance with the water-quality standard, more than 80 percent of the mean annual selenium load would need to be reduced at Red Rock Canyon, Dry Cedar Creek, Cedar Creek, Loutzenhizer Arroyo, Sunflower Drain, and Whitewater Creek. More than 50 percent of the mean annual load would need to be reduced at Dry Creek to bring the site into compliance with the water

  16. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    Science.gov (United States)

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  17. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    Directory of Open Access Journals (Sweden)

    W. P. Miller

    2011-07-01

    Full Text Available The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month forecasts determined by the Colorado Basin River Forecast Center (CBRFC using the National Weather Service (NWS River Forecasting System (RFS hydrologic model. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force the NWS RFS utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates and contributes to a better understanding of how hydrologic processes change under varying climate conditions. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the NWS RFS is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands resulted in a 6 % to 13 % average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS provided by the CBRFC resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10 % to 15 % average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5 % to 8

  18. Colorado River basin sensitivity to disturbance impacts

    Science.gov (United States)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  19. Validation studies on indexed sequential modeling for the Colorado River Basin

    International Nuclear Information System (INIS)

    Labadie, J.W.; Fontane, D.G.; Salas, J.D.; Ouarda, T.

    1991-01-01

    This paper reports on a method called indexed sequential modeling (ISM) that has been developed by the Western Area Power Administration to estimate reliable levels of project dependable power capacity (PDC) and applied to several federal hydro systems in the Western U.S. The validity of ISM in relation to more commonly accepted stochastic modeling approaches is analyzed by applying it to the Colorado River Basin using the Colorado River Simulation System (CRSS) developed by the U.S. Bureau of Reclamation. Performance of ISM is compared with results from input of stochastically generated data using the LAST Applied Stochastic Techniques Package. Results indicate that output generated from ISM synthetically generated sequences display an acceptable correspondence with results obtained from final convergent stochastically generated hydrology for the Colorado River Basin

  20. Population trends of smallmouth bass in the upper Colorado River basin with an evaluation of removal effects

    Science.gov (United States)

    Breton, André R.; Winkelman, Dana L.; Hawkins, John A.; Bestgen, Kevin R.

    2014-01-01

    Smallmouth bass Micropterus dolomieu were rare in the upper Colorado River basin until the early 1990’s when their abundance dramatically increased in the Yampa River sub-basin. Increased abundance was due primarily to colonization from Elkhead Reservoir, which was rapidly drawn down twice, first to make improvements to the dam (1992) and a second time for reservoir expansion (2005), and allowed escapement of resident bass to the river through an unscreened outlet. Elkhead Reservoir is located on Elkhead Creek, a tributary of the Yampa River. The rapid Elkhead Reservoir drawdown in 1992 was followed by a period of drought years with low, early runoff in the Yampa River sub-basin that benefitted smallmouth bass reproduction. This combination of factors allowed smallmouth bass to establish a self-sustaining population in the Yampa River. Subsequently, successful recruitment allowed smallmouth bass to disperse upstream and downstream in the Yampa River and eventually move into the downstream Green River. Smallmouth bass were also likely introduced, by unknown means, into the upper Colorado River and have since dispersed in this sub-basin. The rapid increase of smallmouth bass in the upper Colorado River basin overlapped with significant reductions in native fish populations in some locations. The threat to these native fishes initiated intensive mechanical removal of smallmouth bass by the Upper Colorado River Endangered Fish Recovery Program.In general, three factors explain fluctuating patterns in smallmouth bass density in the upper Colorado River basin in the last decade: reductions due to electrofishing removal, bass recovery after exploitation due to recruitment and immigration, and changes due to environmental factors not related to electrofishing and other management actions. Our analyses indicated that smallmouth bass densities were substantially reduced in most years by 7 electrofishing removal efforts. Less often, but dramatically in some cases

  1. Feasibility Report and Environmental Statement for Water Resources Development, Cache Creek Basin, California

    Science.gov (United States)

    1979-02-01

    classified as Porno , Lake Miwok, and Patwin. Recent surveys within the Clear Lake-Cache Creek Basin have located 28 archeological sites, some of which...additional 8,400 acre-feet annually to the Lakeport area. Porno Reservoir on Kelsey Creek, being studied by Lake County, also would supplement M&l water...project on Scotts Creek could provide 9,100 acre- feet annually of irrigation water. Also, as previously discussed, Porno Reservoir would furnish

  2. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Science.gov (United States)

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  3. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    Science.gov (United States)

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  4. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  5. Harmonic analyses of stream temperatures in the Upper Colorado River Basin

    Science.gov (United States)

    Steele, T.D.

    1985-01-01

    Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)

  6. Spatiotemporal Assessment of Groundwater Resources in the South Platte Basin, Colorado

    Science.gov (United States)

    Ruybal, C. J.; McCray, J. E.; Hogue, T. S.

    2015-12-01

    The South Platte Basin is one of the most economically diverse and fastest growing basins in Colorado. Strong competition for water resources in an over-appropriated system brings challenges to meeting future water demands. Balancing the conjunctive use of surface water and groundwater from the South Platte alluvial aquifer and the Denver Basin aquifer system is critical for meeting future demands. Over the past decade, energy development in the basin has added to the competition for water resources, highlighting the need to advance our understanding of the availability and sustainability of groundwater resources. Current work includes evaluating groundwater storage changes and recharge regimes throughout the South Platte Basin under competing uses, e.g. agriculture, oil and gas, urban, recreational, and environmental. The Gravity Recovery and Climate Experiment satellites in conjunction with existing groundwater data is used to evaluate spatiotemporal variability in groundwater storage and identify areas of high water stress. Spatiotemporal data will also be utilized to develop a high resolution groundwater model of the region. Results will ultimately help stakeholders in the South Platte Basin better understand groundwater resource challenges and contribute to Colorado's strategic future water planning.

  7. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    Science.gov (United States)

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland

  8. Evaluation of some 90Sr sources in the White Oak Creek drainage basin

    International Nuclear Information System (INIS)

    Stueber, A.M.; Huff, D.D.; Farrow, N.D.; Jones, J.R.; Munro, I.L.

    1981-01-01

    The drainage basin was monitored to evaluate the relative importance of each source as a contributor to 90 Sr in White Oak Creek. The various sources fall into two general categories, those whose 90 Sr discharge is dependent upon rainfall and those relatively unaffected by the level of precipitation. The identification and ranking of existing non-point sources of 90 Sr in the White Oak Creek basin represents an important step in the ongoing comprehensive program at ORNL to provide a scientific basis for improved control measures and future disposal practices in solid waste disposal areas

  9. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-07-27

    ... factors that could be affected by the proposed Project were evaluated in detail in the EIS. These issues... DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek... Energy Facility project (Project) in Brookings and Deuel Counties, South Dakota. The Administrator of RUS...

  10. Hydrology of the Chicod Creek basin, North Carolina, prior to channel improvements

    Science.gov (United States)

    Simmons, Clyde E.; Aldridge, Mary C.

    1980-01-01

    Extensive modification and excavation of stream channels in the 6-square mile Chicod Creek basin began in mid-1979 to reduce flooding and improve stream runoff conditions. The effects of channel improvements on this Coastal Pain basin 's hydrology will be determined from data collected prior to, during, and for several years following channel alternations. This report summarizes the findings of data collected prior to these improvements. During the 3-year study period, flow data collected from four stream gaging stations in the basin show that streams are dry approximately 10 percent of the time. Chemical analyses of water samples from the streams and from eight shallow groundwater observation wells indicate that water discharge from the surficial aquifer is the primary source of streamflow during rainless periods. Concentrations of Kjeldahl nitrogen, total nitrogen, and total phosphorus were often 5 to 10 times greater at Chicod Creek sites than those at nearby baseline sites. It is probable that runoff from farming and livestock operations contributes significantly to these elevated concentrations in Chicod Creek. The only pesticides detected in stream water were low levels of DDT and dieldrin, which occurred during storm runoff. A much wider range of pesticides, however, are found associated with streambed materials. The ratio of fecal coliform counts to those of fecal streptococcus indicate that the streams receive fecal wastes from livestock and poultry operations.

  11. Swatara Creek basin of southeastern Pennsylvania--An evaluation of its hydrologic system

    Science.gov (United States)

    Stuart, Wilbur Tennant; Schneider, William J.; Crooks, James W.

    1967-01-01

    Local concentrations of population in the Swatara Creek basin of Pennsylvania find it necessary to store, transport, and treat water because local supplies are either deficient or have been contaminated by disposal of wastes in upstream areas. Water in the basin is available for the deficient areas and for dilution of the coal-mine drainage in the northern parts and the sewage wastes in the southern parts.

  12. Geologic map of the Alamosa 30’ × 60’ quadrangle, south-central Colorado

    Science.gov (United States)

    Thompson, Ren A.; Shroba, Ralph R.; Michael N. Machette,; Fridrich, Christopher J.; Brandt, Theodore R.; Cosca, Michael A.

    2015-10-15

    The Alamosa 30'× 60' quadrangle is located in the central San Luis Basin of southern Colorado and is bisected by the Rio Grande. The Rio Grande has headwaters in the San Juan Mountains of Colorado and ultimately discharges into the Gulf of Mexico 3,000 kilometers (km) downstream. Alluvial floodplains and associated deposits of the Rio Grande and east-draining tributaries, La Jara Creek and Conejos River, occupy the north-central and northwestern part of the map area. Alluvial deposits of west-draining Rio Grande tributaries, Culebra and Costilla Creeks, bound the Costilla Plain in the south-central part of the map area. The San Luis Hills, a northeast-trending series of flat-topped mesas and hills, dominate the landscape in the central and southwestern part of the map and preserve fault-bound Neogene basin surfaces and deposits. The Precambrian-cored Sangre de Cristo Mountains rise to an elevation of nearly 4,300 meters (m), almost 2,000 m above the valley floor, in the eastern part of the map area. In total, the map area contains deposits that record surficial, tectonic, sedimentary, volcanic, magmatic, and metamorphic processes over the past 1.7 billion years.

  13. Simulating the potential effects of climate change in two Colorado basins and at two Colorado ski areas

    Science.gov (United States)

    Battaglin, William; Hay, Lauren E.; Markstrom, Steve

    2011-01-01

    The mountainous areas of Colorado are used for tourism and recreation, and they provide water storage and supply for municipalities, industries, and agriculture. Recent studies suggest that water supply and tourist industries such as skiing are at risk from climate change. In this study, a distributed-parameter watershed model, the Precipitation-Runoff Modeling System (PRMS), is used to identify the potential effects of future climate on hydrologic conditions for two Colorado basins, the East River at Almont and the Yampa River at Steamboat Springs, and at the subbasin scale for two ski areas within those basins.Climate-change input files for PRMS were generated by modifying daily PRMS precipitation and temperature inputs with mean monthly climate-change fields of precipitation and temperature derived from five general circulation model (GCM) simulations using one current and three future carbon emission scenarios. All GCM simulations of mean daily minimum and maximum air temperature for the East and Yampa River basins indicate a relatively steady increase of up to several degrees Celsius from baseline conditions by 2094. GCM simulations of precipitation in the two basins indicate little change or trend in precipitation, but there is a large range associated with these projections. PRMS projections of basin mean daily streamflow vary by scenario but indicate a central tendency toward slight decreases, with a large range associated with these projections.Decreases in water content or changes in the spatial extent of snowpack in the East and Yampa River basins are important because of potential adverse effects on water supply and recreational activities. PRMS projections of each future scenario indicate a central tendency for decreases in basin mean snow-covered area and snowpack water equivalent, with the range in the projected decreases increasing with time. However, when examined on a monthly basis, the projected decreases are most dramatic during fall and spring

  14. Water quality, selected chemical characteristics, and toxicity of base flow and urban stormwater in the Pearson Creek and Wilsons Creek Basins, Greene County, Missouri, August 1999 to August 2000

    Science.gov (United States)

    Richards, Joseph M.; Johnson, Byron Thomas

    2002-01-01

    The chemistry and toxicity of base flow and urban stormwater were characterized to determine if urban stormwater was degrading the water quality of the Pearson Creek and Wilsons Creek Basins in and near the city of Springfield, Greene County, Missouri. Potentially toxic components of stormwater (nutrients, trace metals, and organic compounds) were identified to help resource managers identify and minimize the sources of toxicants. Nutrient loading to the James River from these two basins (especially the Wilsons Creek Basin) is of some concern because of the potential to degrade downstream water quality. Toxicity related to dissolved trace metal constituents in stormwater does not appear to be a great concern in these two basins. Increased heterotrophic activity, the result of large densities of fecal indicator bacteria introduced into the streams after storm events, could lead to associated dissolved oxygen stress of native biota. Analysis of stormwater samples detected a greater number of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) than were present in base-flow samples. The number and concentrations of pesticides detected in both the base-flow and stormwater samples were similar.Genotoxicity tests were performed to determine the bioavilability of chemical contaminants and determine the potential harmful effects on aquatic biota of Pearson Creek and Wilsons Creek. Genotoxicity was determined from dialysates from both long-term (approximately 30 days) and storm-event (3 to 5 days) semipermeable membrane device (SPMD) samples that were collected in each basin. Toxicity tests of SPMD samples indicated evidence of genotoxins in all SPMD samples. Hepatic activity assessment of one long-term SPMD sample indicated evidence of contaminant uptake in fish. Chemical analyses of the SPMD samples found that relatively few pesticides and pesticide metabolites had been sequestered in the lipid material of the SPMD; however, numerous PAHs and

  15. Effects of outcropping groundwater from the F- and H-Area seepage basins on the distribution of fish in Four Mile Creek

    International Nuclear Information System (INIS)

    Paller, M.H.; Storey, C.

    1990-10-01

    Four Mile Creek was electrofished during June 26--July 2, 1990 to assess the impacts of outcropping ground water form the F- and H-Area Seepage Basins on fish abundance and distribution. Number of fish species and total catch were comparable at sample stations upstream from and downstream from the outcropping zone in Four Mile Creek. Species number and composition downstream from the outcropping zone in Four Mile Creek were similar to species number and composition in unimpacted portions of Pen Branch, Steel Creek, and Meyers Branch. These findings indicate that seepage basin outcropping was not adversely affecting the Four Mile Creek fish community. 5 refs., 3 figs., 4 tabs

  16. Climate Change, the Energy-water-food Nexus, and the "New" Colorado River Basin

    Science.gov (United States)

    Middleton, R. S.; Bennett, K. E.; Solander, K.; Hopkins, E.

    2017-12-01

    Climate change, extremes, and climate-driven disturbances are anticipated to have substantial impacts on regional water resources, particularly in the western and southwestern United States. These unprecedented conditions—a no-analog future—will result in challenges to adaptation, mitigation, and resilience planning for the energy-water-food nexus. We have analyzed the impact of climate change on Colorado River flows for multiple climate and disturbance scenarios: 12 global climate models and two CO2 emission scenarios (RCP 4.5 and RCP 8.5) from the Intergovernmental Panel on Climate Change's Coupled Model Intercomparison Study, version 5, and multiple climate-driven forest disturbance scenarios including temperature-drought vegetation mortality and insect infestations. Results indicate a wide range of potential streamflow projections and the potential emergence of a "new" Colorado River basin. Overall, annual streamflow tends to increase under the majority of modeled scenarios due to projected increases in precipitation across the basin, though a significant number of scenarios indicate moderate and potentially substantial reductions in water availability. However, all scenarios indicate severe changes in seasonality of flows and strong variability across headwater systems. This leads to increased fall and winter streamflow, strong reductions in spring and summer flows, and a shift towards earlier snowmelt timing. These impacts are further exacerbated in headwater systems, which are key to driving Colorado River streamflow and hence water supply for both internal and external basin needs. These results shed a new and important slant on the Colorado River basin, where an emergent streamflow pattern may result in difficulties to adjust to these new regimes, resulting in increased stress to the energy-water-food nexus.

  17. Characteristics of streams and aquifers and processes affecting the salinity of water in the upper Colorado River basin, Texas

    Science.gov (United States)

    Slade, R.M.; Buszka, P.M.

    1994-01-01

    The upper Colorado River and some of its tributaries between Lake J.B. Thomas and O.H. Ivie Reservoir contain saline water (defined as water having dissolved-solids concentrations greater than 1,000 milligrams per liter). Dissolved-solids loads at nine streamflow water-quality stations increased from 1986 to 1988. The largest increases were in Beals Creek and in the Colorado River downstream from Beals Creek as a result of outflow of saline water from Natural Dam Salt Lake. The outflow contained 654,000 tons of dissolved solids and had a mean dissolved-solids concentration of 7,900 milligrams per liter. This amount represents about 51 percent of the dissolved-solids load to E.V. Spence Reservoir during 1986-88.

  18. Changes in biological communities of the Fountain Creek Basin, Colorado, 2003–2016, in relation to antecedent streamflow, water quality, and habitat

    Science.gov (United States)

    Roberts, James J.; Bruce, James F.; Zuellig, Robert E.

    2018-01-08

    The analysis described in this report is part of a longterm project monitoring the biological communities, habitat, and water quality of the Fountain Creek Basin. Biology, habitat, and water-quality data have been collected at 10 sites since 2003. These data include annual samples of aquatic invertebrate communities, fish communities, water quality, and quantitative riverine habitat. This report examines trends in biological communities from 2003 to 2016 and explores relationships between biological communities and abiotic variables (antecedent streamflow, physical habitat, and water quality). Six biological metrics (three invertebrate and three fish) and four individual fish species were used to examine trends in these data and how streamflow, habitat, and (or) water quality may explain these trends. The analysis of 79 trends shows that the majority of significant trends decreased over the trend period. Overall, 19 trends before adjustments for streamflow in the fish (12) and invertebrate (7) metrics were all decreasing except for the metric Invertebrate Species Richness at the most upstream site in Monument Creek. Seven of these trends were explained by streamflow and four trends were revealed that were originally masked by variability in antecedent streamflow. Only two sites (Jimmy Camp Creek at Fountain, CO and Fountain Creek near Pinon, CO) had no trends in the fish or invertebrate metrics. Ten of the streamflow-adjusted trends were explained by habitat, one was explained by water quality, and five were not explained by any of the variables that were tested. Overall, from 2003 to 2016, all the fish metric trends were decreasing with an average decline of 40 percent, and invertebrate metrics decreased on average by 9.5 percent. A potential peak streamflow threshold was identified above which there is severely limited production of age-0 flathead chub (Platygobio gracilis).

  19. Impact of energy development on water resources in the Upper Colorado River Basin. Completion report

    International Nuclear Information System (INIS)

    Flug, M.; Walker, W.R.; Skogerboe, G.V.; Smith, S.W.

    1977-08-01

    The Upper Colorado River Basin contains appreciable amounts of undeveloped coal, oil shale, and uranium resources, which are important in the national energy demand system. A mathematical model, which simulates the salt and water exchange phase of potential fuel conversions, has been developed, based on a subbasin analysis identifying available mineral and water resources. Potential energy developments are evaluated with respect to the resulting impacts upon both the quantity and salinity of the waters in the Colorado River. Model solutions are generated by use of a multilevel minimum cost linear programming algorithm, minimum cost referring to the cost of developing predetermined levels of energy output. Level one in the model analysis represents an aggregation of subbasins along state boundaries and thereby optimizes energy developments over the five states of the Upper Colorado River Basin. In each of the five second level problems, energy developments over a subbasin division within the respective states are optimized. Development policies which use high salinity waters of the Upper Colorado River enable a net salinity reduction to be realized in the Colorado River at Lee Ferry, Arizona

  20. Uranium in spring water and bryophytes at Basin Creek in central Idaho

    International Nuclear Information System (INIS)

    Shacklette, H.T.; Erdman, J.A.

    1982-01-01

    Arkosic sandstones and conglomerates of Tertiary age beneath the Challis Volcanics of Eocene age at Basin Creek, 10 km northeast of Stanley, Idaho, contain uranium-bearing vitrainized carbon fragments. The economic potential of these sandstones and conglomerates is currently being assessed. Water from 22 springs and associated bryophytes were sampled; two springs were found to contain apparently anomalous concentrations (normalized) of uranium. Water from a third spring contained slightly anomalous amounts of uranium, and two species of mosses at the spring contained anomalous uranium and high levels of both cadmium and lead. Water from a fourth spring was normal for uranium, but the moss from the water contained a moderate uranium level and highly anomalous concentrations of lead, germanium, and thallium. These results suggest that, in the Basin Creek area, moss sampling at springs may give a more reliable indication of uranium occurrence than would water sampling. (Auth.)

  1. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    Science.gov (United States)

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  2. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    Science.gov (United States)

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer

  3. Climate Projections and Drought: Verification for the Colorado River Basin

    Science.gov (United States)

    Santos, N. I.; Piechota, T. C.; Miller, W. P.; Ahmad, S.

    2017-12-01

    The Colorado River Basin has experienced the driest 17 year period (2000-2016) in over 100 years of historical record keeping. While the Colorado River reservoir system began the current drought at near 100% capacity, reservoir storage has fallen to just above 50% during the drought. Even though federal and state water agencies have worked together to mitigate the impact of the drought and have collaboratively sponsored conservation programs and drought contingency plans, the 17-years of observed data beg the question as to whether the most recent climate projections would have been able to project the current drought's severity. The objective of this study is to analyze observations and ensemble projections (e.g. temperature, precipitation, streamflow) from the CMIP3 and CMIP5 archive in the Colorado River Basin and compare metrics related to skill scores, the Palmer Drought Severity Index, and water supply sustainability index. Furthermore, a sub-ensemble of CMIP3/CMIP5 projections, developed using a teleconnection replication verification technique developed by the author, will also be compared to the observed record to assist in further validating the technique as a usable process to increase skill in climatological projections. In the end, this study will assist to better inform water resource managers about the ability of climate ensembles to project hydroclimatic variability and the appearance of decadal drought periods.

  4. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    Science.gov (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  5. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Science.gov (United States)

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  6. Forecasting contaminant concentrations: Spills in the White Oak Creek Basin

    International Nuclear Information System (INIS)

    Borders, D.M.; Hyndman, D.W.; Huff, D.D.

    1987-01-01

    The Streamflow Synthesis and Reservoir Regulation (SSARR) model has been installed and sufficiently calibrated for use in managing accidental release of contaminants in surface waters of the White Oak Creek (WOC) watershed at ORNL. The model employs existing watershed conditions, hydrologic parameters representing basin response to precipitation, and a Quantitative Precipitation Forecast (QPF) to predict variable flow conditions throughout the basin. Natural runoff from each of the hydrologically distinct subbasins is simulated and added to specified plant and process water discharges. The resulting flows are then routed through stream reaches and eventually to White Oak Lake (WOL), which is the outlet from the WOC drainage basin. In addition, the SSARR model is being used to simulate change in storage volumes and pool levels in WOL, and most recently, routing characteristics of contaminant spills through WOC and WOL. 10 figs

  7. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    Science.gov (United States)

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  8. Pathogenic bacteria and microbial-source tracking markers in Brandywine Creek Basin, Pennsylvania and Delaware, 2009-10

    Science.gov (United States)

    Duris, Joseph W.; Reif, Andrew G.; Olson, Leif E.; Johnson, Heather E.

    2011-01-01

    The City of Wilmington, Delaware, is in the downstream part of the Brandywine Creek Basin, on the main stem of Brandywine Creek. Wilmington uses this stream, which drains a mixed-land-use area upstream, for its main drinking-water supply. Because the stream is used for drinking water, Wilmington is in need of information about the occurrence and distribution of specific fecally derived pathogenic bacteria (disease-causing bacteria) and their relations to commonly measured fecal-indicator bacteria (FIB), as well as information regarding the potential sources of the fecal pollution and pathogens in the basin. This study focused on five routinely sampled sites within the basin, one each on the West Branch and the East Branch of Brandywine Creek and at three on the main stem below the confluence of the West and East Branches. These sites were sampled monthly for 1 year. Targeted event samples were collected on two occasions during high flow and two occasions during normal flow. On the basis of this study, high flows in the Brandywine Creek Basin were related to increases in FIB densities, and in the frequency of selected pathogen and source markers, in the West Branch and main stem of Brandywine Creek, but not in the East Branch. Water exceeding the moderate fullbody-contact single-sample recreational water-quality criteria (RWQC) for Escherichia coli (E. coli) was more likely to contain selected markers for pathogenic E. coli (eaeA,stx1, and rfbO157 gene markers) and bovine fecal sources (E. hirae and LTIIa gene markers), whereas samples exceeding the enterococci RWQC were more likely to contain the same pathogenic markers but also were more likely to carry a marker indicative of human source (esp gene marker). On four sample dates, during high flow between October and March, the West Branch was the only observed potential contributor of selected pathogen and bovine source markers to the main stem of Brandywine Creek. Indeed, the stx2 marker, which indicates a highly

  9. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  10. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    Science.gov (United States)

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy

  11. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    Science.gov (United States)

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  12. Reconnaissance-level application of physical habitat simulation in the evaluation of physical habitat limits in the Animas Basin, Colorado

    Science.gov (United States)

    Milhous, Robert T.

    2003-01-01

    The Animas River is in southwestern Colorado and flows mostly to the south to join the San Juan River at Farmington, New Mexico (Figure 1). The Upper Animas River watershed is in San Juan County, Colorado and is located in the San Juan Mountains. The lower river is in the Colorado Plateau country. The winters are cold with considerable snowfall and little snowmelt in the mountains in the upper part of the basin. The lower basin has less snow but the winters are still cold. The streamflows during the winter are low and reasonably stable.

  13. Development of a Precipitation-Runoff Model to Simulate Unregulated Streamflow in the Salmon Creek Basin, Okanogan County, Washington

    Science.gov (United States)

    van Heeswijk, Marijke

    2006-01-01

    Surface water has been diverted from the Salmon Creek Basin for irrigation purposes since the early 1900s, when the Bureau of Reclamation built the Okanogan Project. Spring snowmelt runoff is stored in two reservoirs, Conconully Reservoir and Salmon Lake Reservoir, and gradually released during the growing season. As a result of the out-of-basin streamflow diversions, the lower 4.3 miles of Salmon Creek typically has been a dry creek bed for almost 100 years, except during the spring snowmelt season during years of high runoff. To continue meeting the water needs of irrigators but also leave water in lower Salmon Creek for fish passage and to help restore the natural ecosystem, changes are being considered in how the Okanogan Project is operated. This report documents development of a precipitation-runoff model for the Salmon Creek Basin that can be used to simulate daily unregulated streamflows. The precipitation-runoff model is a component of a Decision Support System (DSS) that includes a water-operations model the Bureau of Reclamation plans to develop to study the water resources of the Salmon Creek Basin. The DSS will be similar to the DSS that the Bureau of Reclamation and the U.S. Geological Survey developed previously for the Yakima River Basin in central southern Washington. The precipitation-runoff model was calibrated for water years 1950-89 and tested for water years 1990-96. The model was used to simulate daily streamflows that were aggregated on a monthly basis and calibrated against historical monthly streamflows for Salmon Creek at Conconully Dam. Additional calibration data were provided by the snowpack water-equivalent record for a SNOTEL station in the basin. Model input time series of daily precipitation and minimum and maximum air temperatures were based on data from climate stations in the study area. Historical records of unregulated streamflow for Salmon Creek at Conconully Dam do not exist for water years 1950-96. Instead, estimates of

  14. Quantification of Linkages between Large-Scale Climate Patterns and Annual Precipitation for the Colorado River Basin

    Science.gov (United States)

    Kalra, A.; Ahmad, S.

    2010-12-01

    Precipitation is regarded as one of the key variables driving various hydrologic processes and the future precipitation information can be useful to better understand the long-term climate dynamics. In this paper, a simple, robust, and parsimonious precipitation forecast model, Support Vector Machine (SVM) is proposed which uses large-scale climate information and predict annual precipitation 1-year in advance. SVM’s are a novel class of neural networks (NNs) which are based on the statistical learning theory. The SVM’s has three main advantages over the traditional NNs: 1) better generalization ability, 2) the architecture and weights of SVM’s are guaranteed to be unique and globally optimum, and 3) SVM’s are trained more rapidly than the corresponding NN. With these advantages, an application of SVM incorporating large-scale climate information is developed and applied to seventeen climate divisions encompassing the Colorado River Basin in the western United States. Annual oceanic-atmospheric indices, comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Nino-Southern Oscillations (ENSO) for a period of 1900-2007 are used to generate annual precipitation estimates with 1-year lead time. The results from the present study indicate that long-term precipitation predictions for the Upper Colorado River Basin can be successfully obtained using a combination of NAO and ENSO indices whereas coupling PDO and AMO results in improved precipitation predictions for the Lower Colorado River Basin. Precipitation predictions from the SVM model are found to be better when compared with the predictions obtained from feed-forward back propagation Artificial Neural Network and Multivariate Linear Regression models. The overall results of this study revealed that the annual precipitation of the Colorado River Basin was significantly influenced by oceanic-atmospheric oscillations and the proposed SVM

  15. Subsurface stratigraphy and uranium--vanadium favorability of the Morrison Formation, Sage Plain Area, southeastern Utah and southwestern Colorado

    International Nuclear Information System (INIS)

    Girdley, W.A.; Flook, J.E.; Harris, R.E.

    1975-08-01

    The four members of the Morrison Formation that are recognizable in the area studied are, in ascending order, the Salt Wash, Recapture, Westwater Canyon, and Brushy Basin. The Salt Wash member has the highest uranium favorability of all the Morrison strata in the area studied. An especially favorable area, in which the Salt Wash interval is thick and contains several thick sandstones, is situated on either side of the Utah-Colorado state line between Monticello, Utah, and Dove Creek, Colorado. The upper Morrison strata (Westwater Canyon and Brushy Basin members) have low uranium favorability. The Westwater Canyon member contains adequate sandstones but lacks known uranium deposits in the project area. The Brushy Basin member, although rated as having low potential, nevertheless does possess some attributes that make it worthy of further attention. The Recapture member does not contain sufficient well-developed sandstones or uranium deposits to merit its being classed as favorable for potential uranium-vanadium resources. (LK)

  16. Hydrogeologic framework, groundwater and surface-water systems, land use, pumpage, and water budget of the Chamokane Creek basin, Stevens County, Washington

    Science.gov (United States)

    Kahle, Sue C.; Taylor, William A.; Lin, Sonja; Sumioka, Steven S.; Olsen, Theresa D.

    2010-01-01

    A study of the water resources of the unconsolidated groundwater system of the Chamokane Creek basin was conducted to determine the hydrogeologic framework, interactions of shallow and deep parts of the groundwater system with each other and the surface-water system, changes in land use and land cover, and water-use estimates. Chamokane Creek basin is a 179 mi2 area that borders and partially overlaps the Spokane Indian Reservation in southern Stevens County in northeastern Washington State. Aquifers within the Chamokane Creek basin are part of a sequence of glaciofluvial and glaciolacustrine sediment that may reach total thicknesses of about 600 ft. In 1979, most of the water rights in the Chamokane Creek basin were adjudicated by the United States District Court requiring regulation in favor of the Spokane Tribe of Indians' senior water right. The Spokane Tribe, the State of Washington, and the United States are concerned about the effects of additional groundwater development within the basin on Chamokane Creek. Information provided by this study will be used to evaluate the effects of potential increases in groundwater withdrawals on groundwater and surface-water resources within the basin. The hydrogeologic framework consists of six hydrogeologic units: The Upper outwash aquifer, the Landslide Unit, the Valley Confining Unit, the Lower Aquifer, the Basalt Unit, and the Bedrock Unit. The Upper outwash aquifer occurs along the valley floors of the study area and consists of sand, gravel, cobbles, boulders, with minor silt and (or) clay interbeds in places. The Lower aquifer is a confined aquifer consisting of sand and gravel that occurs at depth below the Valley confining unit. Median horizontal hydraulic conductivity values for the Upper outwash aquifer, Valley confining unit, Lower aquifer, and Basalt unit were estimated to be 540, 10, 19, and 3.7 ft/d, respectively. Many low-flow stream discharge measurements at sites on Chamokane Creek and its tributaries

  17. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES. Semi-annual Technical Report October 6, 2002 - April 5, 2003

    International Nuclear Information System (INIS)

    Eby, David E.; Chidsey, Thomas C. Jr.; McClure, Kevin; Morgan, Craig D.

    2003-01-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m 3 ) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m 3 ) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores

  18. Uranium guidebook for the Paradox Basin, Utah and Colorado

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Various data concerning uranium production and reserves of the Paradox Basin are compiled herein. Current production from 2 Utah mills and 1 Colorado mill is estimated at 5.4 million pounds of U 3 O 8 . An overview of uranium mining, geology, tectonics, and types of ore deposits is presented. Detailed description of the 11 mining districts and 21 mining areas are included. Detailed maps and exploration guides are included as assistance to evaluating and seeking new uranium deposits

  19. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

    2003-10-05

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the

  20. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    Science.gov (United States)

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  1. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18

  2. Postwildfire debris flows hazard assessment for the area burned by the 2011 Track Fire, northeastern New Mexico and southeastern Colorado

    Science.gov (United States)

    Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.

    2011-01-01

    In June 2011, the Track Fire burned 113 square kilometers in Colfax County, northeastern New Mexico, and Las Animas County, southeastern Colorado, including the upper watersheds of Chicorica and Raton Creeks. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from basins burned by the Track Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of post-fire debris flows following the fire. In response to a design storm of 38 millimeters of rain in 30 minutes (10-year recurrence-interval), the probability of debris flow estimated for basins burned by the Track fire ranged between 2 and 97 percent, with probabilities greater than 80 percent identified for the majority of the tributary basins to Raton Creek in Railroad Canyon; six basins that flow into Lake Maloya, including the Segerstrom Creek and Swachheim Creek basins; two tributary basins to Sugarite Canyon, and an unnamed basin on the eastern flank of the burned area. Estimated debris-flow volumes ranged from 30 cubic meters to greater than 100,000 cubic meters. The largest volumes (greater than 100,000 cubic meters) were estimated for Segerstrom Creek and Swachheim Creek basins, which drain into Lake Maloya. The Combined Relative Debris-Flow Hazard Ranking identifies the Segerstrom Creek and Swachheim Creek basins as having the highest probability of producing the largest debris flows. This finding indicates the greatest post-fire debris-flow impacts may be expected to Lake Maloya

  3. The present use of soil and water in the basin of the creek Piçarrão-Araguari-MG-Brazil

    Directory of Open Access Journals (Sweden)

    Elizabete Oliveira Melo

    2010-09-01

    Full Text Available The agricultural expansion in the basin of the creek Piçarrão during the period from 1970 to 2005 produced changes in the use of soil and water that heretofore had not been documented. A diagnosis of the present situation was carried out to evaluate the prospect of agricultural activity in the basin. The literature was reviewed, 16 rural producers were interviewed, and the creek and its tributaries were inspected. The results of the study are presented in form of maps and tables. The total area drained by the creek is 388 km2, nine pivots do the agricultural irrigation, and the creek’s flow rate varies between 1.5 and 80.0 m3 per second with an annual average of 8.0 m3 per second. The study identified water availability as main limiting factor of agricultural development in the basin.

  4. Evolution of the landscape along the Clear Creek Corridor, Colorado; urbanization, aggregate mining and reclamation

    Science.gov (United States)

    Arbogast, Belinda; Knepper, Daniel H.; Melick, Roger A.; Hickman, John

    2002-01-01

    Prime agricultural land along the Clear Creek floodplain, Colorado, attracted settlement in the 1850's but the demand for sand and gravel for 1900's construction initiated a sequence of events that exceeded previous interests and created the modified landscape and urban ecosystem that exists today. The Clear Creek valley corridor offers a landscape filled with a persistent visible and hidden reminder of it's past use. The map sheets illustrate the Clear Creek landscape as a series of compositions, both at the macro view (in the spatial context of urban structure and highways from aerial photographs) and micro view (from the civic scale where landscape features like trees, buildings, and sidewalks are included). The large-scale topographic features, such as mountains and terraces, appear 'changeless' (they do change over geologic time), while Clear Creek has changed from a wide braided stream to a narrow confined stream. Transportation networks (streets and highways) and spiraling population growth in adjacent cities (from approximately 38,000 people in 1880 to over a million in 1999) form two dominant landscape patterns. Mining and wetland/riparian occupy the smallest amount of land use acres compared to urban, transportation, or water reservoir activities in the Clear Creek aggregate reserve study area. Four types of reclaimed pits along Clear Creek were determined: water storage facilities, wildlife/greenbelt space, multiple-purpose reservoirs, and 'hidden scenery.' The latter involves infilling gravel pits (with earth backfill, concrete rubble, or sanitary landfill) and covering the site with light industry or residential housing making the landform hard to detect as a past mine site. Easier to recognize are the strong-edged, rectilinear water reservoirs, reclaimed from off-channel sand and gravel pits that reflect the land survey grid and property boundaries. The general public may not realize softly contoured linear wildlife corridors connecting urban

  5. Hydrologic data, Colorado River and major tributaries, Glen Canyon Dam to Diamond Creek, Arizona, water years 1990-95

    Science.gov (United States)

    Rote, John J.; Flynn, Marilyn E.; Bills, D.J.

    1997-01-01

    The U.S. Geological Survey collected hydrologic data at 12 continuous-record stations along the Colorado River and its major tributaries between Glen Canyon Dam and Diamond Creek. The data were collected from October 1989 through September 1995 as part of the Bureau of Reclamation's Glen Canyon Environmental Studies. The data include daily values for streamflow discharge, suspended-sediment discharge, temperature, specific conductance, pH, and dissolved-oxygen concentrations, and discrete values for physical properties and chemical constituents of water. All data are presented in tabular form.

  6. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are

  7. Geochemistry of mercury and other constituents in subsurface sediment—Analyses from 2011 and 2012 coring campaigns, Cache Creek Settling Basin, Yolo County, California

    Science.gov (United States)

    Arias, Michelle R.; Alpers, Charles N.; Marvin-DiPasquale, Mark C.; Fuller, Christopher C.; Agee, Jennifer L.; Sneed, Michelle; Morita, Andrew Y.; Salas, Antonia

    2017-10-31

    Cache Creek Settling Basin was constructed in 1937 to trap sediment from Cache Creek before delivery to the Yolo Bypass, a flood conveyance for the Sacramento River system that is tributary to the Sacramento–San Joaquin Delta. Sediment management options being considered by stakeholders in the Cache Creek Settling Basin include sediment excavation; however, that could expose sediments containing elevated mercury concentrations from historical mercury mining in the watershed. In cooperation with the California Department of Water Resources, the U.S. Geological Survey undertook sediment coring campaigns in 2011–12 (1) to describe lateral and vertical distributions of mercury concentrations in deposits of sediment in the Cache Creek Settling Basin and (2) to improve constraint of estimates of the rate of sediment deposition in the basin.Sediment cores were collected in the Cache Creek Settling Basin, Yolo County, California, during October 2011 at 10 locations and during August 2012 at 5 other locations. Total core depths ranged from approximately 4.6 to 13.7 meters (15 to 45 feet), with penetration to about 9.1 meters (30 feet) at most locations. Unsplit cores were logged for two geophysical parameters (gamma bulk density and magnetic susceptibility); then, selected cores were split lengthwise. One half of each core was then photographed and archived, and the other half was subsampled. Initial subsamples from the cores (20-centimeter composite samples from five predetermined depths in each profile) were analyzed for total mercury, methylmercury, total reduced sulfur, iron speciation, organic content (as the percentage of weight loss on ignition), and grain-size distribution. Detailed follow-up subsampling (3-centimeter intervals) was done at six locations along an east-west transect in the southern part of the Cache Creek Settling Basin and at one location in the northern part of the basin for analyses of total mercury; organic content; and cesium-137, which was

  8. Selenium Speciation in the Fountain Creek Watershed (Colorado, USA Correlates with Water Hardness, Ca and Mg Levels

    Directory of Open Access Journals (Sweden)

    James S. Carsella

    2017-04-01

    Full Text Available The environmental levels of selenium (Se are regulated and strictly enforced by the Environmental Protection Agency (EPA because of the toxicity that Se can exert at high levels. However, speciation plays an important role in the overall toxicity of Se, and only when speciation analysis has been conducted will a detailed understanding of the system be possible. In the following, we carried out the speciation analysis of the creek waters in three of the main tributaries—Upper Fountain Creek, Monument Creek and Lower Fountain Creek—located in the Fountain Creek Watershed (Colorado, USA. There are statistically significant differences between the Se, Ca and Mg, levels in each of the tributaries and seasonal swings in Se, Ca and Mg levels have been observed. There are also statistically significant differences between the Se levels when grouped by Pierre Shale type. These factors are considered when determining the forms of Se present and analyzing their chemistry using the reported thermodynamic relationships considering Ca2+, Mg2+, SeO42−, SeO32− and carbonates. This analysis demonstrated that the correlation between Se and water hardness can be explained in terms of formation of soluble CaSeO4. The speciation analysis demonstrated that for the Fountain Creek waters, the Ca2+ ion may be mainly responsible for the observed correlation with the Se level. Considering that the Mg2+ level is also correlating linearly with the Se levels it is important to recognize that without Mg2+ the Ca2+ would be significantly reduced. The major role of Mg2+ is thus to raise the Ca2+ levels despite the equilibria with carbonate and other anions that would otherwise decrease Ca2+ levels.

  9. Characterization of hydrology and water quality of Piceance Creek in the Alkali Flat area, Rio Blanco County, Colorado, March 2012

    Science.gov (United States)

    Thomas, Judith C.

    2015-12-07

    Previous studies by the U.S. Geological Survey identified Alkali Flat as an area of groundwater upwelling, with increases in concentrations of total dissolved solids, and streamflow loss, but additional study was needed to better characterize these observations. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, White River Field Office, conducted a study to characterize the hydrology and water quality of Piceance Creek in the Alkali Flat area of Rio Blanco County, Colorado.

  10. Hydrogeochemical and stream-sediment survey (NURE). Preliminary report on the Smoke Creek Desert Basin pilot study (Nevada)

    International Nuclear Information System (INIS)

    1976-01-01

    The Lawrence Livermore Laboratory (LLL) is conducting a hydrogeochemical and stream-sediment survey in the seven western states as part of ERDA's National Uranium Resources Evaluation (NURE) Program. The objective of this survey is to develop a geochemical data base for use by the private sector to locate regions of anomalous uranium content. Prior to wide area coverage, several pilot studies are being undertaken to develop and evaluate sampling and analytical techniques. The second through fifth of these studies were conducted in four playa basins in Nevada, selected to represent different regional geology and uranium occurrence. This study in the Smoke Creek Desert Basin, characterizes igneous surface geology with known uranium occurrences. The Smoke Creek Desert Basin is the largest of the four playa basins and contains an areaof about 2700 square kilometers (1003 square miles). The basin is bordered on the east by the Fox Hills and on the north and east by the Granite Ranges which are characterized by granite, pegmatites, and Tertiary rocks very similar to the lithology of the Winnemucca Basin boundary ranges (study UCID-16911-P-2). On the west the Desert is bordered by an area of extensive basalt flow. There is no known uranium occurrence in the area, and metallization of any kind is scarce. This study is applicable to the western igneous portion of the Basin and Range Province which includes southeastern Oregon, western Nevada, and southeastern California. This report contains only analytical data and sample locations

  11. Response surfaces of vulnerability to climate change: The Colorado River Basin, the High Plains, and California

    Science.gov (United States)

    Romano Foti; Jorge A. Ramirez; Thomas C. Brown

    2014-01-01

    We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that...

  12. Streamflow and water-quality data for Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, December 1987 - November 1988

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, from December 1987 to November 1988, to determine the prevailing quality of surface water throughout the basin. This data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water-quality station on Little Scrubgrass Creek near Lisbon, provided continuous-record of stream stage, Ph, specific conductance, and water temperature. Monthly water-quality samples collected at this station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended sediment concentrations. Fourteen partial-record sites, located throughout the basin, were similarly sampled four times during the period of study. Streamflow and water-quality data obtained at these sites during various base flow periods are also presented. 14 refs., 4 figs., 14 tabs

  13. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  14. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    Directory of Open Access Journals (Sweden)

    E. A. Rosenberg

    2013-04-01

    Full Text Available We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM, which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

  15. Hydrogeologic reconnaissance of the San Miguel River basin, southwestern Colorado

    Science.gov (United States)

    Ackerman, D.J.; Rush, F.E.

    1984-01-01

    The San Miguel River Basin encompasses 4,130 square kilometers of which about two-thirds is in the southeastern part of the Paradox Basin. The Paradox Basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Evaporite beds of mostly salt are both overlain and underlain by confining beds. Aquifers are present above and below the confining-bed sequence. The principal element of ground-water outflow from the upper aquifer is flow to the San Miguel River and its tributaries; this averages about 90 million cubic meters per year. A water budget for the lower aquifer has only two equal, unestimated elements, subsurface outflow and recharge from precipitation. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. No brines have been sampled and no brine discharges have been identified in the basin. Salt water has been reported for petroleum-exploration wells, but no active salt solution has been identified. (USGS)

  16. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Mahanoy Creek Basin, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania, 2001

    Science.gov (United States)

    Cravotta,, Charles A.

    2004-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the Mahanoy Creek Basin in east-central Pennsylvania. The Mahanoy Creek Basin encompasses an area of 157 square miles (407 square kilometers) including approximately 42 square miles (109 square kilometers) underlain by the Western Middle Anthracite Field. As a result of more than 150 years of anthracite mining in the basin, ground water, surface water, and streambed sediments have been adversely affected. Leakage from streams to underground mines and elevated concentrations (above background levels) of acidity, metals, and sulfate in the AMD from flooded underground mines and (or) unreclaimed culm (waste rock) degrade the aquatic ecosystem and impair uses of the main stem of Mahanoy Creek from its headwaters to its mouth on the Susquehanna River. Various tributaries also are affected, including North Mahanoy Creek, Waste House Run, Shenandoah Creek, Zerbe Run, and two unnamed tributaries locally called Big Mine Run and Big Run. The Little Mahanoy Creek and Schwaben Creek are the only major tributaries not affected by mining. To assess the current hydrological and chemical characteristics of the AMD and its effect on receiving streams, and to identify possible remedial alternatives, the U.S. Geological Survey (USGS) began a study in 2001, in cooperation with the Pennsylvania Department of Environmental Protection and the Schuylkill Conservation District. Aquatic ecological surveys were conducted by the USGS at five stream sites during low base-flow conditions in October 2001. Twenty species of fish were identified in Schwaben Creek near Red Cross, which drains an unmined area of 22.7 square miles (58.8 square kilometers) in the lower part of the Mahanoy Creek Basin. In contrast, 14 species of fish were identified in Mahanoy Creek near its mouth at Kneass, below Schwaben Creek. The diversity and abundance of fish

  17. Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa

    Science.gov (United States)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro

    2017-10-01

    In this study we focus on reconstructing the post-rift subsidence evolution of the Colorado Basin, offshore Argentina. We make use of detailed structural information about its present-day configuration of the sedimentary infill and the crystalline crust. This information is used as input in a backward modelling approach which relies on the assumption of local isostasy to reconstruct the amount of subsidence as induced by the sedimentary load through different time stages. We also attempt a quantification of the thermal effects on the subsidence as induced by the rifting, here included by following the uniform stretching model of lithosphere thinning and exponentially cooling through time. Based on the available information about the present-day geological state of the system, our modelling results indicate a rather continuous post-rift subsidence for the Colorado Basin, and give no significant evidence of any noticeable uplift phase. In a second stage, we compare the post-rift evolution of the Colorado Basin with the subsidence evolution as constrained for its conjugate SW African passive margin, the Orange Basin. Despite these two basins formed almost coevally and therefore in a similar large scale geodynamic context, their post-rift subsidence histories differ. Based on this result, we discuss causative tectonic processes likely to provide an explanation to the observed differences. We therefore conclude that it is most probable that additional tectonic components, other than the ridge-push from the spreading of the South Atlantic Ocean, are required to explain the observed differences in the subsidence of the two basins along the conjugate passive margins. Such additional tectonic components might be related to a dynamic mantle component in the form of either plume activity (Africa) or a subducting slab and the presence of an ongoing compressional stress system as revealed for different areas in South America.

  18. Using Multi-Objective Optimization to Explore Robust Policies in the Colorado River Basin

    Science.gov (United States)

    Alexander, E.; Kasprzyk, J. R.; Zagona, E. A.; Prairie, J. R.; Jerla, C.; Butler, A.

    2017-12-01

    The long term reliability of water deliveries in the Colorado River Basin has degraded due to the imbalance of growing demand and dwindling supply. The Colorado River meanders 1,450 miles across a watershed that covers seven US states and Mexico and is an important cultural, economic, and natural resource for nearly 40 million people. Its complex operating policy is based on the "Law of the River," which has evolved since the Colorado River Compact in 1922. Recent (2007) refinements to address shortage reductions and coordinated operations of Lakes Powell and Mead were negotiated with stakeholders in which thousands of scenarios were explored to identify operating guidelines that could ultimately be agreed on. This study explores a different approach to searching for robust operating policies to inform the policy making process. The Colorado River Simulation System (CRSS), a long-term water management simulation model implemented in RiverWare, is combined with the Borg multi-objective evolutionary algorithm (MOEA) to solve an eight objective problem formulation. Basin-wide performance metrics are closely tied to system health through incorporating critical reservoir pool elevations, duration, frequency and quantity of shortage reductions in the objective set. For example, an objective to minimize the frequency that Lake Powell falls below the minimum power pool elevation of 3,490 feet for Glen Canyon Dam protects a vital economic and renewable energy source for the southwestern US. The decision variables correspond to operating tiers in Lakes Powell and Mead that drive the implementation of various shortage and release policies, thus affecting system performance. The result will be a set of non-dominated solutions that can be compared with respect to their trade-offs based on the various objectives. These could inform policy making processes by eliminating dominated solutions and revealing robust solutions that could remain hidden under conventional analysis.

  19. Remediation scenarios for attenuating peak flows and reducing sediment transport in Fountain Creek, Colorado, 2013

    Science.gov (United States)

    Kohn, Michael S.; Fulton, John W.; Williams, Cory A.; Stogner, Sr., Robert W.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Fountain Creek Watershed, Flood Control and Greenway District assessed remediation scenarios to attenuate peak flows and reduce sediment loads in the Fountain Creek watershed. To evaluate these strategies, the U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) hydrologic and hydraulic models were employed. The U.S. Army Corps of Engineers modeling system HEC-HMS (Hydrologic Modeling System) version 3.5 was used to simulate runoff in the Fountain Creek watershed, Colorado, associated with storms of varying magnitude and duration. Rain-gage precipitation data and radar-based precipitation data from the April 28–30, 1999, and September 14–15, 2011, storm events were used in the calibration process for the HEC-HMS model. The curve number and lag time for each subwatershed and Manning's roughness coefficients for each channel reach were adjusted within an acceptable range so that the simulated and measured streamflow hydrographs for each of the 12 USGS streamgages approximated each other. The U.S. Army Corps of Engineers modeling system HEC-RAS (River Analysis System) versions 4.1 and 4.2 were used to simulate streamflow and sediment transport, respectively, for the Fountain Creek watershed generated by a particular storm event. Data from 15 USGS streamgages were used for model calibration and 7 of those USGS streamgages were used for model validation. The calibration process consisted of comparing the simulated water-surface elevations and the cross-section-averaged velocities from the model with those surveyed in the field at the cross section at the corresponding 15 and 7 streamgages, respectively. The final Manning’s roughness coefficients were adjusted between –30 and 30 percent at the 15 calibration streamgages from the original left, right, and channel-averaged Manning's roughness coefficients upon completion of calibration. The U.S. Army Corps of Engineers modeling system HEC

  20. Preliminary three-dimensional geohydrologic framework of the San Antonio Creek Groundwater Basin, Santa Barbara County, California

    Science.gov (United States)

    Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.

    2017-12-01

    The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are

  1. Landsat investigations of the northern Paradox basin, Utah and Colorado: implications for radioactive waste emplacement

    Science.gov (United States)

    Friedman, Jules D.; Simpson, Shirley L.

    1978-01-01

    The first stages of a remote-sensing project on the Paradox basin, part of the USGS (U.S. Geological Survey) radioactive waste-emplacement program, consisted of a review and selection of the best available satellite scanner images to use in geomorphologic and tectonic investigations of the region. High-quality Landsat images in several spectral bands (E-2260-17124 and E-5165-17030), taken under low sun angle October 9 and 10, 1975, were processed via computer for planimetric rectification, histogram analysis, linear transformation of radiance values, and edge enhancement. A lineament map of the northern Paradox basin was subsequently compiled at 1:400,000 using the enhanced Landsat base. Numerous previously unmapped northeast-trending lineaments between the Green River and Yellowcat dome; confirmatory detail on the structural control of major segments of the Colorado, Gunnison, and Dolores Rivers; and new evidence for late Phanerozoic reactivation of Precambrian basement structures are among the new contributions to the tectonics of the region. Lineament trends appear to be compatible with the postulated Colorado lineament zone, with geophysical potential-field anomalies, and with a northeast-trending basement fault pattern. Combined Landsat, geologic, and geophysical field evidence for this interpretation includes the sinuousity of the composite Salt Valley anticline, the transection of the Moab-Spanish Valley anticline on its southeastern end by northeast-striking faults, and possible transection (?) of the Moab diapir. Similarly, northeast-trending lineaments in Cottonwood Canyon and elsewhere are interpreted as manifestations of structures associated with northeasterly trends in the magnetic and gravity fields of the La Sal Mountains region. Other long northwesterly lineaments near the western termination of the Ryan Creek fault zone. may be associated with the fault zone separating the Uncompahgre horst uplift from the Paradox basin. Implications of the

  2. Effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution, in Irondequoit Creek basin, Monroe and Ontario counties, New York--application of a precipitation-runoff model

    Science.gov (United States)

    Coon, William F.; Johnson, Mark S.

    2005-01-01

    Urbanization of the 150-square-mile Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., continues to spread southward and eastward from the City of Rochester, on the shore of Lake Ontario. Conversion of forested land to other uses over the past 40 years has increased to the extent that more than 50 percent of the basin is now developed. This expansion has increased flooding and impaired stream-water quality in the northern (downstream) half of the basin. A precipitation-runoff model of the Irondequoit Creek basin was developed with the model code HSPF (Hydrological Simulation Program--FORTRAN) to simulate the effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution on the basin. Model performance was evaluated through a combination of graphical comparisons and statistical tests, and indicated 'very good' agreement (mean error less than 10 percent) between observed and simulated daily and monthly streamflows, between observed and simulated monthly water temperatures, and between observed total suspended solids loads and simulated sediment loads. Agreement between monthly observed and simulated nutrient loads was 'very good' (mean error less than 15 percent) or 'good' (mean error between 15 and 25 percent). Results of model simulations indicated that peak flows and loads of sediment and total phosphorus would increase in a rural subbasin, where 10 percent of the basin was converted from forest and grassland to pervious and impervious developed areas. Subsequent simulation of a stormflow-detention basin at the mouth of this subbasin indicated that peak flows and constituent loads would decrease below those that were generated by the land-use-change scenario, and, in some cases, below those that were simulated by the original land-use scenario. Other results from model simulations of peak flows over a 30-year period (1970-2000), with and without simulation of 50-percent flow reductions at one existing and nine

  3. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  4. Upper Colorado River Basin Climate Effects Network

    Science.gov (United States)

    Belnap, Jayne; Campbell, Donald; Kershner, Jeff

    2011-01-01

    The Upper Colorado River Basin (UCRB) Climate Effects Network (CEN) is a science team established to provide information to assist land managers in future decision making processes by providing a better understanding of how future climate change, land use, invasive species, altered fire cycles, human systems, and the interactions among these factors will affect ecosystems and the services they provide to human communities. The goals of this group are to (1) identify science needs and provide tools to assist land managers in addressing these needs, (2) provide a Web site where users can access information pertinent to this region, and (3) provide managers technical assistance when needed. Answers to the team's working science questions are intended to address how interactions among climate change, land use, and management practices may affect key aspects of water availability, ecosystem changes, and societal needs within the UCRB.

  5. Assessment of water quality, benthic invertebrates, and periphyton in the Threemile Creek basin, Mobile, Alabama, 1999-2003

    Science.gov (United States)

    McPherson, Ann K.; Gill, Amy C.; Moreland, Richard S.

    2005-01-01

    ; the water chemistry at the second tributary site, Toulmins Spring Branch, was characterized by a strong calcium component without a dominant anionic species. The ratios of sodium to chloride at the tributary at Center Street were higher than typical values for seawater, indicating that sources other than seawater (such as leaking or overflowing sewer systems or industrial discharge) likely are contributors to the increased levels of sodium and chloride. Concentrations of fluoride and boron also were elevated at this site, indicating possible anthropogenic sources. Dissolved-oxygen concentrations were not always within levels established by the Alabama Department of Environmental Management; continuous monitors recorded dissolved-oxygen concentrations that were repeatedly less than the minimum criterion (3.0 milligrams per liter) at the most downstream site on Threemile Creek. Water temperature exceeded the recommended criterion (32.2 degrees Celsius) at five of six sites in the Threemile Creek basin. The pH values were within established criteria (6.0 ? 8.5) at sites on Threemile Creek; however, pH values ranged from 7.2 to 10.0 at the tributary at Center Street and from 6.6 to 9.9 at Toulmins Spring Branch. Nutrient concentrations in the Threemile Creek basin reflect the influences of both land use and the complex hydrologic systems in the lower part of the basin. Nitrite-plus-nitrate concentrations exceeded U.S. Environmental Protection Agency ecoregion nutrient criteria in 88 percent of the samples. In 45 percent of the samples, total phosphorus concentrations exceeded the U.S. Environmental Protection Agency goal of 0.1 milligram per liter for preventing nuisance aquatic growth. Ratios of nitrogen to phosphorus indicate that both nutrients have limiting effects. Median concentrations of enterococci and fecal coliform bacteria were highest at the two tributary sites and lowest at the most upstream site on Threemile Creek. In general, concentrations o

  6. Geologic map of the Orchard 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Slate, Janet L.; Hanson, Paul R.; Brandt, Theodore R.

    2015-01-01

    The Orchard 7.5' quadrangle is located along the South Platte River corridor on the semi-arid plains of eastern Colorado, and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated through environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing alluvium deposition and terrace formation in the Orchard quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating east of the Front Range also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of drought. With the onset of irrigation during historic times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along this reach, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits in Orchard quadrangle, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.

  7. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  8. Geologic framework of nonmarine cretaceous-tertiary boundary sites, raton basin, new mexico and colorado

    Science.gov (United States)

    Pillmore, C.L.; Tschudy, R.H.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-01-01

    Indium concentrations are anomalously high at the palynological Cretaceous-Tertiary boundary in fluvial sedimentary rocks of the lower part of the Raton Formation at several localities in the Raton Basin of New Mexico and Colorado. The iridium anomaly is associated with a thin bed of kaolinitic claystone in a discontinuous carbonaceous shale and coal sequence.

  9. Streamflow and water-quality data for Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, December 1987-November 1988. Open File Report

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, from December 1987 to November 1988, to determine the prevailing quality of surface water throughout the basin. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water-quality station on Little Scrubgrass Creek near Lisbon, provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended sediment concentrations. Fourteen partial-record sites, located throughout the basin, were similarly sampled four times during the period of study. Streamflow and water-quality data obtained at these sites during various base flow periods are also presented

  10. Geologic framework, regional aquifer properties (1940s-2009), and spring, creek, and seep properties (2009-10) of the upper San Mateo Creek Basin near Mount Taylor, New Mexico

    Science.gov (United States)

    Langman, Jeff B.; Sprague, Jesse E.; Durall, Roger A.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Forest Service, examined the geologic framework, regional aquifer properties, and spring, creek, and seep properties of the upper San Mateo Creek Basin near Mount Taylor, which contains areas proposed for exploratory drilling and possible uranium mining on U.S. Forest Service land. The geologic structure of the region was formed from uplift of the Zuni Mountains during the Laramide Orogeny and the Neogene volcanism associated with the Mount Taylor Volcanic Field. Within this structural context, numerous aquifers are present in various Paleozoic and Mesozoic sedimentary formations and the Quaternary alluvium. The distribution of the aquifers is spatially variable because of the dip of the formations and erosion that produced the current landscape configuration where older formations have been exhumed closer to the Zuni Mountains. Many of the alluvial deposits and formations that contain groundwater likely are hydraulically connected because of the solid-matrix properties, such as substantive porosity, but shale layers such as those found in the Mancos Formation and Chinle Group likely restrict vertical flow. Existing water-level data indicate topologically downgradient flow in the Quaternary alluvium and indiscernible general flow patterns in the lower aquifers. According to previously published material and the geologic structure of the aquifers, the flow direction in the lower aquifers likely is in the opposite direction compared to the alluvium aquifer. Groundwater within the Chinle Group is known to be confined, which may allow upward migration of water into the Morrison Formation; however, confining layers within the Chinle Group likely retard upward leakage. Groundwater was sodium-bicarbonate/sulfate dominant or mixed cation-mixed anion with some calcium/bicarbonate water in the study area. The presence of the reduction/oxidation-sensitive elements iron and manganese in groundwater indicates reducing

  11. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    Science.gov (United States)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; McDowell, Nathan G.; Xu, Chonggang; Vivoni, Enrique; Middleton, Richard S.

    2018-01-01

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash-Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that future disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate-disturbance scenarios is at least 6-11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15-21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. These findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.

  12. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  13. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.

    Science.gov (United States)

    Tillman, Fred D; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-07-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Descriptions of the Animas River-Cement Creek confluence and mixing zone near Silverton, Colorado, during the late summers of 1996 and 1997

    Science.gov (United States)

    Schemel, Laurence E.; Cox, Marisa H.

    2005-01-01

    Acidic waters from Cement Creek discharge into the circum-neutral Animas River in a high-elevation region of the San Juan Mountains near Silverton, Colorado. Cement Creek is acidic and enriched in metals and sulfate because it is fed by discharges from abandoned mines and natural mineral deposits. Mixing with the Animas River raises the pH and produces precipitates of iron and aluminum (oxy)hydroxides, which in turn can adsorb other metals. This confluence was studied in 1996 and 1997 to better understand mixing and sorption processes which are common during the neutralization of acidic streams. The photographs in this report show flow braiding and other features that influenced the way the two streams mixed during the late summers of the two years. They also show 'banding' due to incomplete mixing and 'opalescence' due to chemical reactions and the formation of colloidal-size particles in the mixing zone.

  15. Water quality in the upper Shoal Creek basin, southwestern Missouri, 1999-2000

    Science.gov (United States)

    Schumacher, John G.

    2001-01-01

    Results of a water-quality investigation of the upper Shoal Creek Basin in southwestern Missouri indicate that concentrations of total nitrite plus nitrate as nitrogen (NO2t+NO3t) in water samples from Shoal Creek were unusually large [mean of 2.90 mg/L (milligrams per liter), n (sample size)=60] compared to other Missouri streams (mean of 1.02 mg/L, n=1,340). A comparison of instantaneous base-flow loads of NO2t+NO3t indicates that at base-flow conditions, most NO2t+NO3t discharged by Shoal Creek is from nonpoint sources. Nearly all the base-flow instantaneous load of total phosphorus as P (Pt) discharged by Shoal Creek can be attributed to effluent from a municipal wastewater treatment plant. Samples collected from a single runoff event indicate that substantial quantities of Pt can be transported during runoff events compared to base-flow transport. Only minor quantities of NO2t+NO3t are transported during runoff events compared to base-flow transport. Fecal coliform bacteria densities at several locations exceed the Missouri Department of Natural Resources (MDNR) standard of 200 col/100 mL (colonies per 100 milliliters) for whole-body contact recreation. During 13 months of monitoring at 13 stream sites, fecal coliform densities (median of 277 and 400 col/100 mL) at two sites (sites 2 and 3) on Shoal Creek exceeded the MDNR standard at base-flow conditions. The maximum fecal coliform density of 120,000 col/100 mL was detected at site 3 (MDNR monitoring site) during a runoff event in April 1999 at a peak discharge of 1,150 ft3/s (cubic feet per second). Fecal coliform densities also exceeded the MDNR standard in three tributaries with the largest densities (median of 580 col/100 mL) detected in Pogue Creek. Results of ribopattern analyses indicate that most Escherichia coli (E. coli) bacteria in water samples from the study area probably are from nonhuman sources. The study area contains about 25,000 cattle, and has an estimated annual production of 33 million

  16. Using Temperature Forecasts to Improve Seasonal Streamflow Forecasts in the Colorado and Rio Grande Basins

    Science.gov (United States)

    Lehner, F.; Wood, A.; Llewellyn, D.; Blatchford, D. B.; Goodbody, A. G.; Pappenberger, F.

    2017-12-01

    Recent studies have documented the influence of increasing temperature on streamflow across the American West, including snow-melt driven rivers such as the Colorado or Rio Grande. At the same time, some basins are reporting decreasing skill in seasonal streamflow forecasts, termed water supply forecasts (WSFs), over the recent decade. While the skill in seasonal precipitation forecasts from dynamical models remains low, their skill in predicting seasonal temperature variations could potentially be harvested for WSFs to account for non-stationarity in regional temperatures. Here, we investigate whether WSF skill can be improved by incorporating seasonal temperature forecasts from dynamical forecasting models (from the North American Multi Model Ensemble and the European Centre for Medium-Range Weather Forecast System 4) into traditional statistical forecast models. We find improved streamflow forecast skill relative to traditional WSF approaches in a majority of headwater locations in the Colorado and Rio Grande basins. Incorporation of temperature into WSFs thus provides a promising avenue to increase the robustness of current forecasting techniques in the face of continued regional warming.

  17. Surface Water Interim Measures/Interim Remedial Action Plan/ Environmental and Decision Document, South Walnut Creek Basin, Operable Unit No.2

    International Nuclear Information System (INIS)

    1991-01-01

    Water quality investigations have identified the presence of volatile organic compound (VOC) and radionuclide contamination of surface water at the Rocky Flats Plant (RFP). The subject interim Measures/Interim Remedial Action Plan/Environmental Assessment (IM/IRAP/EA) addresses contaminated surface water in a portion of the South Walnut Creek drainage basin located within an area identified as Operable Unit No. 2 (OU 2). There is no immediate threat to public health and the environment posed by this surface water contamination. The affected surface water is contained within the plant boundary by existing detention ponds, and is treated prior to discharge for removal of volatile contaminants and suspended particulates to which radionuclides, if present, are likely to absorb. However, there is a potential threat and the Department of Energy (DOE) is implementing this Surface Water IM/IRAP at the request of the US Environmental Protection Agency (EPA) and Colorado Department of Health (CDH). Implementation of the Surface Water IM/IRA will enhance the DOE's efforts towards containing and managing contaminated surface water, and will mitigate downgradient migration of contaminants. Another factor in implementing this IM/IRA is the length of time it will take to complete the investigations and engineering studies necessary to determine the final remedy for OU 2. 44 refs., 23 figs., 14 tabs

  18. Simulation of streamflow and water quality in the White Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania, Maryland, and Delaware. Water from the basin is used for recreation, drinking water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, White Clay Creek, and Red Clay Creek. The White Clay Creek is the second largest of the subbasins and drains an area of 108 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in non point-source evaluation, four independent models, one for each of the three major subbasins and for the Christina River, were developed and calibrated using the model code Hydrological Simulation Program—Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base- flow samples were collected during 1998 at two sites in the White Clay Creek subbasin and at nine sites in the other subbasins.The HSPF model for the White Clay Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 17 reaches draining areas that ranged from 1.37 to 13 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the White Clay Creek Basin are agricultural, forested

  19. Characterization of hydraulic conductivity of the alluvium and basin fill, Pinal Creek Basin near Globe, Arizona

    Science.gov (United States)

    Angeroth, Cory E.

    2002-01-01

    Acidic waters containing elevated concentrations of dissolved metals have contaminated the regional aquifer in the Pinal Creek Basin, which is in Gila County, Arizona, about 100 kilometers east of Phoenix. The aquifer is made up of two geologic units: unconsolidated stream alluvium and consolidated basin fill. To better understand how contaminants are transported through these units, a better understanding of the distribution of hydraulic conductivity and processes that affect it within the aquifer is needed. Slug tests were done in September 1997 and October 1998 on 9 wells finished in the basin fill and 14 wells finished in the stream alluvium. Data from the tests were analyzed by using either the Bouwer and Rice (1976) method, or by using an extension to the method developed by Springer and Gellhar (1991). Both methods are applicable for unconfined aquifers and partially penetrating wells. The results of the analyses show wide variability within and between the two geologic units. Hydraulic conductivity estimates ranged from 0.5 to 250 meters per day for the basin fill and from 3 to 200 meters per day for the stream alluvium. Results of the slug tests also show a correlation coefficient of 0.83 between the hydraulic conductivity and the pH of the ground water. The areas of highest hydraulic conductivity coincide with the areas of lowest pH, and the areas of lowest hydraulic conductivity coincide with the areas of highest pH, suggesting that the acidic water is increasing the hydraulic conductivity of the aquifer by dissolution of carbonate minerals.

  20. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational Simplified Surface Energy Balance Model

    Science.gov (United States)

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. L...

  1. Description of chronostratigraphic units preserved as channel deposits and geomorphic processes following a basin-scale disturbance by a wildfire in Colorado

    Science.gov (United States)

    Moody, John A.; Martin, Deborah A.

    2017-10-11

    The consequence of a 1996 wildfire disturbance and a subsequent high-intensity summer convective rain storm (about 110 millimeters per hour) was the deposition of a sediment superslug in the Spring Creek basin (26.8 square kilometers) of the Front Range Mountains in Colorado. Spring Creek is a tributary to the South Platte River upstream from Strontia Springs Reservoir, which supplies domestic water for the cities of Denver and Aurora. Changes in a superslug were monitored over the course of 18 years (1996–2014) by repeat surveys at 18 channel cross sections spaced at nearly equal intervals along a 1,500-meter study reach and by a time series of photographs of each cross section. Surveys were not repeated at regular time intervals but after major changes caused by different geomorphic processes. The focus of this long-term study was to understand the evolution and internal alluvial architecture of chronostratigraphic units (defined as the volume of sediment deposited between two successive surveys), and the preservation or storage of these units in the superslug. The data are presented as a series of 18 narratives (one for each cross section) that summarize the changes, illustrate these changes with photographs, and provide a preservation plot showing the amount of each chronostratigraphic unit still remaining in June 2014.The most significant hydrologic change after the wildfire was an exponential decrease in peak discharge of flash floods caused by summer convective rain storms. In response to these hydrologic changes, all 18 locations went through an aggradation phase, an incision phase, and finally a stabilization phase. However, the architecture of the chronostratigraphic units differs from cross section to cross section, and units are characterized by either a laminar, fragmented, or hybrid alluvial architecture. In response to the decrease in peak-flood discharge and the increase in hillslope and riparian vegetation, Spring Creek abandoned many of the

  2. Origin and microfossils of the oil shale of the Green River Formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins, the Piceance Creek basin in northwestern Colorado and the Uinta basin in northwestern Utah. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. Microgranular calcite and dolomite are the predominant mineral constituents of most of the oil shale. The microflora of the Green River formation consist of two forms that have been referred to as bacteria and many fungi spores. Two kinds of organic matter are seen in thin sections of the oil shale; one is massive and structureless and is the matrix of the other, which has definite form and consists of organisms or fragments of organisms. Most structureless organic matter is isotropic (there are two anisotropic varieties) and makes up the greater part of the total organic material.

  3. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    Science.gov (United States)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  4. Oil and gas development footprint in the Piceance Basin, western Colorado

    Science.gov (United States)

    Martinez, Cericia D.; Preston, Todd M.

    2018-01-01

    Understanding long-term implications of energy development on ecosystem functionrequires establishing regional datasets to quantify past development and determine relationships to predict future development. The Piceance Basin in western Colorado has a history of energy production and development is expected to continue into the foreseeable future due to abundant natural gas resources. To facilitate analyses of regional energy development we digitized all well pads in the Colorado portion of the basin, determined the previous land cover of areas converted to well pads over three time periods (2002–2006, 2007–2011, and 2012–2016), and explored the relationship between number of wells per pad and pad area to model future development. We also calculated the area of pads constructed prior to 2002. Over 21 million m2 has been converted to well pads with approximately 13 million m2 converted since 2002. The largest land conversion since 2002 occurred in shrub/scrub (7.9 million m2), evergreen (2.1 million m2), and deciduous (1.3 million m2) forest environments based on National Land Cover Database classifications. Operational practices have transitioned from single well pads to multi-well pads, increasing the average number of wells per pad from 2.5 prior to 2002, to 9.1 between 2012 and 2016. During the same time period the pad area per well has increased from 2030 m2 to 3504 m2. Kernel density estimation was used to model the relationship between the number of wells per pad and pad area, with these curves exhibiting a lognormal distribution. Therefore, either kernel density estimation or lognormal probability distributions may potentially be used to model land use requirements for future development. Digitized well pad locations in the Piceance Basin contribute to a growing body of spatial data on energy infrastructure and, coupled with study results, will facilitate future regional and national studies assessing the spatial and temporal effects of

  5. Groundwater Depletion During Drought Threatens Future Water Security of the Colorado River Basin

    Science.gov (United States)

    Castle, Stephanie L.; Thomas, Brian F.; Reager, John T.; Rodell, Matthew; Swenson, Sean C.; Famiglietti, James S.

    2014-01-01

    Streamflow of the Colorado River Basin is the most overallocated in the world. Recent assessment indicates that demand for this renewable resource will soon outstrip supply, suggesting that limited groundwater reserves will play an increasingly important role in meeting future water needs. Here we analyze 9 years (December 2004 to November 2013) of observations from the NASA Gravity Recovery and Climate Experiment mission and find that during this period of sustained drought, groundwater accounted for 50.1 cu km of the total 64.8 cu km of freshwater loss. The rapid rate of depletion of groundwater storage (5.6 +/- 0.4 cu km/yr) far exceeded the rate of depletion of Lake Powell and Lake Mead. Results indicate that groundwater may comprise a far greater fraction of Basin water use than previously recognized, in particular during drought, and that its disappearance may threaten the long-term ability to meet future allocations to the seven Basin states.

  6. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations

    Science.gov (United States)

    Painter, Thomas H.; Skiles, S. Mckenzie; Deems, Jeffrey S.; Bryant, Ann C.; Landry, Christopher C.

    2012-07-01

    Dust in snow accelerates snowmelt through its direct reduction of snow albedo and its further indirect reduction of albedo by accelerating the growth of snow grains. Since the westward expansion of the United States that began in the mid-19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading, largely from the Colorado Plateau and Great Basin. Radiative forcing of snowmelt by dust is not captured by conventional micrometeorological measurements, and must be monitored by a more comprehensive suite of radiation instruments. Here we present a 6 year record of energy balance and detailed radiation measurements in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Data include broadband irradiance, filtered irradiance, broadband reflected flux, filtered reflected flux, broadband and visible albedo, longwave irradiance, wind speed, relative humidity, and air temperatures. The gradient of the snow surface is monitored weekly and used to correct albedo measurements for geometric effects. The snow is sampled weekly for dust concentrations in plots immediately adjacent to each tower over the melt season. Broadband albedo in the last weeks of snow cover ranged from 0.33 to 0.55 across the 6 years and two sites. Total end of year dust concentration in the top 3 cm of the snow column ranged from 0.23 mg g-1 to 4.16 mg g-1. These measurements enable monitoring and modeling of dust and climate-driven snowmelt forcings in the Upper Colorado River Basin.

  7. Seismicity of the Paradox Basin and the Colorado Plateau interior

    International Nuclear Information System (INIS)

    Wong, I.G.

    1984-04-01

    National Waste Terminal Storage Program site qualification criteria require that a nuclear waste repository be located so that ground motion associated with the maximum credible and maximum probable earthquakes or other earthquake-associated effects will not have an unacceptable adverse impact on system performance. To determine whether a potential repository site located in the Paradox salt formation in the Paradox Basin of southeastern Utah satisfies these criteria, seismological studies were undertaken by Woodward-Clyde Consultants (WCC) in March 1978. These studies included: (1) analysis of historical seismicity; (2) analysis of contemporary seismicity and tectonics of both the Paradox Basin and surrounding Colorado Plateau, including an extensive program of microearthquake monitoring; (3) evaluation of the Paradox Basin crustal structure; (4) evaluation of mining-induced seismicity; and (5) characterization of design-related earthquake-induced ground motions pertinent to a potential repository site through studies of attentation and subsurface ground motions. A detailed discussion of the results of the seismological studies performed through December 1980 is contained in WCC (1982). The purpose of this topical report is to update and summarize the studies on the local, regional, and mining-induced seismicity conducted through December 1982. The limitations of any interpretations are also discussed and additional information that remains to be acquired is identified. 56 references, 45 figures, 4 tables

  8. Identification, mapping, and analysis of possible evidences of active petroleum systems in the Colorado Basin, offshore Argentina, South America

    Science.gov (United States)

    Loegering, Markus; Anka, Zahie; Rodriguez, Jorge; Marchal, Denis; di Primio, Rolando; Vallejo, Eduardo; Kohler, Guillermina; Pangaro, Francisco

    2010-05-01

    The analysis of a dense 2D seismic reflection dataset and 12 exploration wells data, allowed us to reconstruct the geological evolution of the Colorado Basin, offshore Argentina. We identified and mapped the major syn- and post-rift seismic sequences, and their boundaries such as unconformities and regional seismic markers, present on the continental shelf and slope (water depths from 50 to 1800 m) of the Colorado Basin. Seismic-to-well log correlations, as well as integration with biostratigraphic data provided a chrono-stratigraphic framework for the interpreted horizons. The construction of isochronal (twt) maps provided a 3D spatial visualisation of the stratigraphic relationship among the sequences. The maps show a change in configuration from the break-up unconformity (130 Ma) to the present-day seafloor. The break-up unconformity displays a central EW-elongated graben which prevails on the overlying sequences up to the Miocene. The EW Colorado basin turns NW-SE towards the East, going perpendicular to the present-day continental margin (oriented NE-SW). The strong obliquity of the basin orientation related to the direction corresponding to the opening of the South Atlantic (NE-SW) suggests a structural control from the pre-rift basement on the rift and post-rift sequences. Starting from the break-up unconformity, the history of basin filling is illustrated up to the flat seafloor. The basin sag phase is represented by the sequences deposited between the break-up unconformity and the Colorado discontinuity (Aptian to Campanian). The Campanian to Eocene successions are more or less parallel- layered suggesting sequence aggradation. The distribution of liquid/gas hydrocarbon-leakage features (i.e. gas chimneys, mud volcanoes, and seabed pockmarks) should allow the definition of potential migration pathways. In this sense, a systematic mapping of these paleo- and present-day features observed in the seismic profiles has been performed and their distribution was

  9. Streamflow and water-quality data for Little Clearfield Creek basin, Clearfield County, Pennsylvania, December 1987-November 1988. Open File Report

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Little Clearfield Creek basin, Clearfield County, Pennsylvania, from December 1987 through November 1988, to determine the existing quality of surface water over a range of hydrologic conditions. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal-mine permit applications. A water-quality station near the mouth of Little Clearfield Creek provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations, and suspended-sediment concentrations. Seventeen partial-record sites, located throughout the basin, were similarly sampled four times during the study. Streamflow and water-quality data obtained at these sites during a winter base flow, a spring storm event, a low summer base flow, and a more moderate summer base flow also are presented

  10. Surface Water Interim Measures/Interim Remedial Action Plan/Environmental Assessment and Decision Document, South Walnut Creek Basin, Operable Unit No. 2

    International Nuclear Information System (INIS)

    1991-01-01

    Volume 2 of this IM/IRA Plan contains OU 2 surface water, sediment, ground water and soil chemistry data, as well as the South Walnut Creek Basin Surface Water IM/IRA schedule and a tabulation of ARARs. (FL)

  11. National Uranium Resource Evaluation: intermediate-grade uranium resource assessment project for part of the Maybell District, Sand Wash Basin, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.

    1983-04-01

    Intermediate-grade uranium resources in the Miocene Browns Park Formation were assessed for part of the Maybell district in the Sand Wash Basin, Colorado, as part of the National Uranium Resource Evaluation program conducted by Bendix Field Engineering Corporation for the US Department of Energy. Two sites, each 2 mi 2 (5 km 2 ) in size, in the district were selected to be assessed. Site selection was based on evaluation of geologic, geophysical, and geochemical data that were collected from a larger project area known to contain uranium enrichment. The assessment of the sites was accomplished primarily by drilling 19 holes through the Browns Park Formation and by using the geophysical and geochemical data from those holes and from a larger number of industry-drilled holes. Analytical results of samples from uranium prospects, mainly along faults in the sites, were also used for the assessment. Data from surface samples and from drill-hole samples and logs of the site south of Lay Creek indicate that no intermediate-grade uranium resources are present. However, similar data from the site north of Lay Creek verify that approximately 25 million lb (11.2 million kg) of intermediate-grade uranium resources may be present. This assessment assumes that an average uranium-enriched thickness of 10 ft (3 m) at a grade of 0.017% U 3 O 8 is present in at least two thirds of the northern site. Uranium enrichment in this site occurs mainly in the lower 150 ft (45 m) of the Browns Park Formation in fine- to medium-grained sandstone that contains abundant clay in its matrix. Facies variations within the Browns Park preclude correlation of individual beds or zones of uranium enrichment between closely spaced drill holes

  12. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques. Semi-Annual Technical Progress Report April 6, 2003 - October 5, 2006

    International Nuclear Information System (INIS)

    Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

    2003-01-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m 3 ) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m 3 ) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound facies of

  13. Assessment of historical surface-water quality data in southwestern Colorado, 1990-2005

    Science.gov (United States)

    Miller, Lisa D.; Schaffrath, Keelin R.; Linard, Joshua I.

    2013-01-01

    The spatial and temporal distribution of selected physical and chemical surface-water-quality characteristics were analyzed at stream sites throughout the Dolores and San Juan River Basins in southwestern Colorado using historical data collected from 1990 through 2005 by various local, State, Tribal, and Federal agencies. Overall, streams throughout the study area were well oxygenated. Values of pH generally were near neutral to slightly alkaline throughout most of the study area with the exception of the upper Animas River Basin near Silverton where acidic conditions existed at some sites because of hydrothermal alteration and(or) historical mining. The highest concentrations of dissolved aluminum, total recoverable iron, dissolved lead, and dissolved zinc were measured at sites located in the upper Animas River Basin. Thirty-two sites throughout the study area had at least one measured concentration of total mercury that exceeded the State chronic aquatic-life criterion of 0.01 μg/L. Concentrations of dissolved selenium at some sites exceeded the State chronic water-quality standard of 4.6 μg/L. Total ammonia, nitrate, nitrite, and total phosphorus concentrations generally were low throughout the study area. Overall, results from the trend analyses indicated improvement in water-quality conditions as a result of operation of the Paradox Valley Unit in the Dolores River Basin and irrigation and water-delivery system improvements made in the McElmo Creek Basin (Lower San Juan River Basin) and Mancos River Valley (Upper San Juan River Basin).

  14. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Shamokin Creek Basin, Northumberland and Columbia Counties, Pennsylvania, 1999-2001

    Science.gov (United States)

    Cravotta,, Charles A.; Kirby, Carl S.

    2003-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the upper Shamokin Creek Basin in east-central Pennsylvania. The upper Shamokin Creek Basin encompasses an area of 54 square miles (140 square kilometers) within the Western Middle Anthracite Field, including and upstream of the city of Shamokin. Elevated concentrations of acidity, metals, and sulfate in the AMD from flooded underground anthracite coal mines and (or) unreclaimed culm (waste rock) piles degrade the aquatic ecosystem and water quality of Shamokin Creek to its mouth and along many of its tributaries within the upper basin. Despite dilution by unpolluted streams that more than doubles the streamflow of Shamokin Creek in the lower basin, AMD contamination and ecological impairment persist to its mouth on the Susquehanna River at Sunbury, 20 miles (32 kilometers) downstream from the mined area. Aquatic ecological surveys were conducted by the U.S. Geological Survey (USGS) in cooperation with Bucknell University (BU) and the Northumberland County Conservation District (NCCD) at six stream sites in October 1999 and repeated in 2000 and 2001 on Shamokin Creek below Shamokin and at Sunbury. In 1999, fish were absent from Quaker Run and Shamokin Creek upstream of its confluence with Carbon Run; however, creek chub (Semotilus atromaculatus) were present within three sampled reaches of Carbon Run. During 1999, 2000, and 2001, six or more species of fish were identified in Shamokin Creek below Shamokin and at Sunbury despite elevated concentrations of dissolved iron and ironencrusted streambeds at these sites. Data on the flow rate and chemistry for 46 AMD sources and 22 stream sites throughout the upper basin plus 1 stream site at Sunbury were collected by the USGS with assistance from BU and the Shamokin Creek Restoration Alliance (SCRA) during low base-flow conditions in August 1999 and high baseflow

  15. Analysis of stream quality in the Yampa River Basin, Colorado and Wyoming

    Science.gov (United States)

    Wentz, Dennis A.; Steele, Timothy Doak

    1980-01-01

    Historic data show no significant water-temperature changes since 1951 for the Little Snake or Yampa Rivers, the two major streams of the Yampa River basin in Colorado and Wyoming. Regional analyses indicate that harmonic-mean temperature is negatively correlated with altitude. No change in specific conductance since 1951 was noted for the Little Snake River; however, specific conductance in the Yampa River has increaed 14 % since that time and is attributed to increased agricultural and municipal use of water. Site-specific relationships between major inorganic constituents and specific conductance for the Little Snake and Yampa Rivers were similar to regional relationships developed from both historic and recent (1975) data. These relationships provide a means for estimating concentrations of major inorganic constituents from specific conductance, which is easily measured. Trace-element and nutrient data collected from August 1975 through September 1976 at 92 sites in the Yampa River basin indicate that water-quality degradation occurred upstream from 3 sites. The degradation resulted from underground drainage from pyritic materials that probably are associated with coal at one site, discharge from powerplant cooling-tower blowdown water at a second site, and runoff from a small watershed containing a gas field at the third site. Ambient concentrations of dissolved and total iron and manganese frequently exceeded proposed Colorado water-quality standards. The concentrations of many dissolved and total trace elements and nutrients were greatest during March 1976. These were associated with larger suspended-sediment concentrations and smaller pH values than at other times of the year. (USGS)

  16. Mass loading of selected major and trace elements in Lake Fork Creek near Leadville, Colorado, September-October 2001

    Science.gov (United States)

    Walton-Day, Katherine; Flynn, Jennifer L.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    load to the stream were the parts of the study reach containing inflow from the tribu-taries Halfmoon Creek (calcium) and Willow Creek (sulfate). The Arkansas River and its tributaries upstream from Lake Fork Creek were the source of most of the calcium (70 percent), sulfate (82 percent), manganese (77 percent), lead (78 percent), and zinc (95 percent) loads in the Arkansas River downstream from the Lake Fork confluence. In contrast, Lake Fork Creek was the major source of aluminum (68 percent), copper (65 percent), and iron (87 percent) loads to the Arkansas River downstream from the confluence. Attenuation was not important for calcium, sulfate, or iron. However, other metals loads were reduced up to 81 percent over the study reach (aluminum, 25 percent; copper, 20 percent; manganese, 81 percent; lead, 30 percent; zinc, 72 percent). Metal attenuation in the stream occurred primarily in three locations (1) the irrigation diversion ditch; (2) the beaver pond complex extending from upstream from the Colorado Gulch inflow to just downstream from that inflow; and (3) the stream reach that included the inflow from Willow Creek. The most likely attenuation mechanism is precipitation of metal oxides and hydroxides (primarily manganese), and sorption or coprecipitation of trace elements with the precipitating phase. A mass-balance calculation indicated that the wetland between the Dinero Tunnel and Lake Fork Creek removed iron, had little effect on zinc mass load, and was a source for, or was releasing, aluminum and manganese. In contrast, the wetland that occurred between the Siwatch Tunnel and Lake Fork Creek removed aluminum, iron, manganese, and zinc from the tunnel drainage before it entered the creek. Inflow from the National Fish Hatchery increased dissolved organic carbon concentrations in Lake Fork Creek and slightly changed the composition of the dissolved organic carbon. However, dissolved organic carbon loads increased in the stream reach downs

  17. Water quality and quantity and simulated surface-water and groundwater flow in the Laurel Hill Creek Basin, southwestern Pennsylvania, 1991–2007

    Science.gov (United States)

    Galeone, Daniel G.; Risser, Dennis W.; Eicholtz, Lee W.; Hoffman, Scott A.

    2017-07-10

    Laurel Hill Creek is considered one of the most pristine waterways in southwestern Pennsylvania and has high recreational value as a high-quality cold-water fishery; however, the upper parts of the basin have documented water-quality impairments. Groundwater and surface water are withdrawn for public water supply and the basin has been identified as a Critical Water Planning Area (CWPA) under the State Water Plan. The U.S. Geological Survey, in cooperation with the Somerset County Conservation District, collected data and developed modeling tools to support the assessment of water-quality and water-quantity issues for a basin designated as a CWPA. Streams, springs, and groundwater wells were sampled for water quality in 2007. Streamflows were measured concurrent with water-quality sampling at main-stem sites on Laurel Hill Creek and tributaries in 2007. Stream temperatures were monitored continuously at five main-stem sites from 2007 to 2010. Water usage in the basin was summarized for 2003 and 2009 and a Water-Analysis Screening Tool (WAST) developed for the Pennsylvania State Water Plan was implemented to determine whether the water use in the basin exceeded the “safe yield” or “the amount of water that can be withdrawn from a water resource over a period of time without impairing the long-term utility of a water resource.” A groundwater and surface-water flow (GSFLOW) model was developed for Laurel Hill Creek and calibrated to the measured daily streamflow from 1991 to 2007 for the streamflow-gaging station near the outlet of the basin at Ursina, Pa. The CWPA designation requires an assessment of current and future water use. The calibrated GSFLOW model can be used to assess the hydrologic effects of future changes in water use and land use in the basin.Analyses of samples collected for surface-water quality during base-flow conditions indicate that the highest nutrient concentrations in the main stem of Laurel Hill Creek were at sites in the

  18. Quantifying Changes in Accessible Water in the Colorado River Basin

    Science.gov (United States)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  19. Dating of river terraces along Lefthand Creek, western High Plains, Colorado, reveals punctuated incision

    Science.gov (United States)

    Foster, Melissa A.; Anderson, Robert S.; Gray, Harrison J.; Mahan, Shannon A.

    2017-10-01

    The response of erosional landscapes to Quaternary climate oscillations is recorded in fluvial terraces whose quantitative interpretation requires numerical ages. We investigate gravel-capped strath terraces along the western edge of Colorado's High Plains to constrain the incision history of this shale-dominated landscape. We use 10Be and 26Al cosmogenic radionuclides (CRNs), optically stimulated luminescence (OSL), and thermally transferred OSL (TT-OSL) to date three strath terraces, all beveled in shale bedrock and then deposited upon by Lefthand Creek, which drains the crystalline core of the Front Range. Our study reveals: (i) a long history (hundreds of thousands of years) of fluvial occupation of the second highest terrace, T2 (Table Mountain), with fluvial abandonment at 92 ± 3 ka; (ii) a brief occupation of a narrow and spatially confined terrace, T3, at 98 ± 7 ka; and (iii) a 10-25 thousand year period of cutting and fluvial occupation of a lower terrace, T4, marked by the deposition of a lower alluvial unit between 59 and 68 ka, followed by deposition of an upper alluvial package at 40 ± 3 ka. In conjunction with other recent CRN studies of strath terraces along the Colorado Front Range (Riihimaki et al., 2006; Dühnforth et al., 2012), our data reveal that long periods of lateral planation and fluvial occupation of strath terraces, sometimes lasting several glacial-interglacial cycles, are punctuated by brief episodes of rapid vertical bedrock incision. These data call into question what a singular terrace age represents, as the strath may be cut at one time (its cutting-age) and the terrace surface may be abandoned at a much later time (its abandonment age), and challenge models of strath terraces that appeal to simple pacing by the glacial-interglacial cycles.

  20. Using snow data assimilation to improve ensemble streamflow forecasting for the Upper Colorado River Basin

    Science.gov (United States)

    Micheletty, P. D.; Perrot, D.; Day, G. N.; Lhotak, J.; Quebbeman, J.; Park, G. H.; Carney, S.

    2017-12-01

    Water supply forecasting in the western United States is inextricably linked to snowmelt processes, as approximately 70-85% of total annual runoff comes from water stored in seasonal mountain snowpacks. Snowmelt-generated streamflow is vital to a variety of downstream uses; the Upper Colorado River Basin (UCRB) alone provides water supply for 25 million people, irrigation water for 3.5 million acres, and drives hydropower generation at Lake Powell. April-July water supply forecasts produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC) are critical to basin water management. The primary objective of this project as part of the NASA Water Resources Applied Science Program, is to improve water supply forecasting for the UCRB by assimilating satellite and ground snowpack observations into a distributed hydrologic model at various times during the snow accumulation and melt seasons. To do this, we have built a framework that uses an Ensemble Kalman Filter (EnKF) to update modeled snow water equivalent (SWE) states in the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) with spatially interpolated SNOTEL snow water equivalent (SWE) observations and products from the MODIS Snow Covered-Area and Grain size retrieval algorithm (when available). We have generated April-July water supply reforecasts for a 20-year period (1991-2010) for several headwater catchments in the UCRB using HL-RDHM and snow data assimilation in the Ensemble Streamflow Prediction (ESP) framework. The existing CBRFC ESP reforecasts will provide a baseline for comparison to determine whether the data assimilation process adds skill to the water supply forecasts. Preliminary results from one headwater basin show improved skill in water supply forecasting when HL-RDHM is run with the data assimilation step compared to HL-RDHM run without the data assimilation step, particularly in years when MODSCAG data were available (2000-2010). The final

  1. Measurement of flows for two irrigation districts in the lower Colorado River basin, Texas

    Science.gov (United States)

    Coplin, L.S.; Liscum, Fred; East, J.W.; Goldstein, L.B.

    1996-01-01

    The Lower Colorado River Authority sells and distributes water for irrigation of rice farms in two irrigation districts, the Lakeside district and the Gulf Coast district, in the lower Colorado River Basin of Texas. In 1993, the Lower Colorado River Authority implemented a water-measurement program to account for the water delivered to rice farms and to promote water conservation. During the rice-irrigation season (summer and fall) of 1995, the U.S. Geological Survey measured flows at 30 sites in the Lakeside district and 24 sites in the Gulf Coast district coincident with Lower Colorado River Authority measuring sites. In each district, the Survey made essentially simultaneous flow measurements with different types of meters twice a day once in the morning and once in the afternoon at each site on selected days for comparison with Lower Colorado River Authority measurements. One-hundred pairs of corresponding (same site, same date) Lower Colorado River Authority and U.S. Geological Survey measurements from the Lakeside district and 104 measurement pairs from the Gulf Coast district are compared statistically and graphically. For comparison, the measurement pairs are grouped by irrigation district and further subdivided by the time difference between corresponding measurements less than or equal to 1 hour or more than 1 hour. Wilcoxon signed-rank tests (to indicate whether two groups of paired observations are statistically different) on Lakeside district measurement pairs with 1 hour or less between measurements indicate that the Lower Colorado River Authority and U.S. Geological Survey measurements are not statistically different. The median absolute percent difference between the flow measurements is 5.9 percent; and 33 percent of the flow measurements differ by more than 10 percent. Similar statistical tests on Gulf Coast district measurement pairs with 1 hour or less between measurements indicate that the Lower Colorado River Authority and U.S. Geological

  2. Skill Assessment of Water Supply Outlooks in the Colorado River Basin

    Directory of Open Access Journals (Sweden)

    Brent Harrison

    2015-07-01

    Full Text Available Water-supply outlooks that predict the April through July (snowmelt runoff and assist in estimating the total water-year runoff, are very important to users that rely on the major contributing watersheds of the Colorado River. This study reviewed the skill level of April through July forecasts at 28 forecast points within the Colorado River basin. All the forecasts were made after 1950, with considerable variation in time period covered. Evaluations of the forecasts were made using summary measures, correlation measures and categorical measures. The summary measure, a skill score for mean absolute error, indicated a steady increase in forecast skill through the forecast season of January to May. The width of the distribution for each monthly forecast over the 28 locations remained similar through the forecast season. The Nash-Sutcliffe score, a correlation measure, showed similar results, with the Nash-Sutcliffe median showing an increase from 0.4 to 0.8 during the forecast season. The categorical measures used a three-section partition of the April through July runoff. The Probability of Detection for low and high flows showed an increase in skill from approx. 0.4 to 0.8 during the forecast season. The same score for mid-flow years showed limited increase in skill. The low False Alarm Rate illustrated the under forecast of high-flow years. The Bias of the mid-runoff forecasts indicated over forecast early in the forecast season (January to March, with lower Bias later in the forecast season (April and May, ending the forecast season at 1.0, indicating no Bias. Forecasts for both low and high runoff were under forecast early in the season with a Bias near 0.5, improving to nearly 1.0 by the end of the forecast season. The Hit Rate measure illustrated the difficulty of mid-flow forecasts, starting at 0.5 in January and increasing to 0.75 in May due to the forecasting assumption of normal climatology for the remaining forecast period. There was no

  3. Numerical modeling of the Snowmass Creek paleoglacier, Colorado, and climate in the Rocky Mountains during the Bull Lake glaciation (MIS 6)

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Leonard; Mitchell A. Plummer; Paul E. Carrara

    2014-04-01

    Well-preserved moraines from the penultimate, or Bull Lake, glaciation of Snowmass Creek Valley in the Elk Range of Colorado present an opportunity to examine the character of the high-altitude climate in the Rocky Mountains during Marine Oxygen Isotope Stage 6. This study employs a 2-D coupled mass/energy balance and flow model to assess the magnitudes of temperature and precipitation change that could have sustained the glacier in mass-balance equilibrium at its maximum extent during the Bull Lake glaciation. Variable substrate effects on glacier flow and ice thickness make the modeling somewhat more complex than in geologically simpler settings. Model results indicate that a temperature depression of about 6.7°C compared with the present (1971–2000 AD) would have been necessary to sustain the Snowmass Creek glacier in mass-balance equilibrium during the Bull Lake glaciation, assuming no change in precipitation amount or seasonality. A 50% increase or decrease from modern precipitation would have been coupled with 5.2°C and 9.1°C Bull Lake temperature depressions respectively. Uncertainty in these modeled temperature depressions is about 1°C.

  4. Interannual Variability in Dust Deposition, Radiative Forcing, and Snowmelt Rates in the Colorado River Basin

    Science.gov (United States)

    Skiles, M.; Painter, T. H.; Deems, J. S.; Barrett, A. P.

    2011-12-01

    Dust in snow accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. Since the Anglo expansion and disturbance of the western US that began in the mid 19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading. Here we present the impacts of dust deposition onto alpine snow cover using a 7-year energy balance record at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. We assess the radiative and hydrologic impacts with a two-layer point snow energy balance snowmelt model that calculates snowmelt and predicts point runoff using measured inputs of energy exchanges and snow properties. By removing the radiative forcing due to dust, we can determine snowmelt under observed dusty and modeled clean conditions. Additionally, we model the relative response of melt rates to simulated increases in air temperature. Our modeling results indicate that the number of days that dust advances retreat of snow cover and cumulative radiative forcing are linearly related to total dust concentration. The greatest dust radiative impact occurred in 2009, when the highest observed end of year dust concentrations reduced visible albedo to less than 0.35 during the last three weeks of snowcover and snow cover duration was shortened by 50 days. This work also shows that dust radiative forcing has a markedly greater impact on snow cover duration than increases in temperature in terms of acceleration of snowmelt. We have completed the same analysis over a 2-year energy balance record at the Grand Mesa Study plot (GMSP) in west central Colorado, 150 km north of SBBSA. This new location allows us to assess site variability. For example, at SBBSA 2010 and 2011 were the second and third highest dust deposition years, respectively, but 2010 was a larger year with 3

  5. Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind. Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.

  6. Water resources and effects of potential surface coal mining on dissolved solids in Hanging Woman Creek basin, southeastern Montana

    Science.gov (United States)

    Cannon, M.R.

    1989-01-01

    Groundwater resources of the Hanging Woman Creek basin, Montana include Holocene and Pleistocene alluvial aquifers and sandstone , coal, and clinker aquifers in the Paleocene Fort Union Formation. Surface water resources are composed of Hanging Woman Creek, its tributaries, and small stock ponds. Dissolved-solids concentrations in groundwater ranged from 200 to 11,00 mg/L. Generally, concentrations were largest in alluvial aquifers and smallest in clinker aquifers. Near its mouth, Hanging Woman Creek had a median concentration of about 1,800 mg/L. Mining of the 20-foot to 35-foot-thick Anderson coal bed and 3-foot to 16-foot thick Dietz coal bed could increase dissolved-solids concentrations in shallow aquifers and in Hanging Woman Creek because of leaching of soluble minerals from mine spoils. Analysis of saturated-paste extracts from 158 overburden samples indicated that water moving through mine spoils would have a median increase in dissolved-solids concentration of about 3,700 mg/L, resulting in an additional dissolved-solids load to Hanging Woman Creek of about 3.0 tons/day. Hanging Woman Creek near Birney could have an annual post-mining dissolved-solids load of 3,415 tons at median discharge, a 47% increase from pre-mining conditions load. Post-mining concentrations of dissolved solids, at median discharge, could range from 2,380 mg/L in March to 3,940 mg/L in August, compared to mean pre-mining concentrations that ranged from 1,700 mg/L in July, November, and December to 2,060 mg/L in May. Post-mining concentrations and loads in Hanging Woman Creek would be smaller if a smaller area were mined. (USGS)

  7. Geologic map of the Fort Morgan 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-06-08

    The Fort Morgan 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the late Pliocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Fort Morgan quadrangle. Distribution and characteristics of the alluvial deposits indicate that during the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling a deep paleochannel near the south edge of the quadrangle. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at and near their confluences, forming a broad, low-gradient fan composed of sidestream alluvium that could have occasionally dammed the river for short periods of time. Wildcat Creek, also originating on the Colorado Piedmont, and the small drainage of Cris Lee Draw dissect the map area north of the river. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the

  8. Year-Round Monitoring of Contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and Assessment of Risks to Salmonids.

    Directory of Open Access Journals (Sweden)

    Whitney B Hapke

    Full Text Available Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS and semipermeable membrane devices (SPMDs, were simultaneously deployed at four sites in the basin during Mar. 2011-Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs, and polychlorinated biphenyls (PCBs. The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin's streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July-Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1. Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion were detected at concentrations near or

  9. Assessment of undiscovered oil and gas resources in the Paradox Basin Province, Utah, Colorado, New Mexico, and Arizona, 2011

    Science.gov (United States)

    Whidden, Katherine J.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 560 million barrels of undiscovered oil, 12,701 billion cubic feet of undiscovered natural gas, and 490 million barrels of undiscovered natural gas liquids in the Paradox Basin of Utah, Colorado, New Mexico, and Arizona.

  10. Geochemical Data for Upper Mineral Creek, Colorado, Under Existing Ambient Conditions and During an Experimental pH Modification, August 2005

    Science.gov (United States)

    Runkel, Robert L.; Kimball, Briant A.; Steiger, Judy I.; Walton-Day, Katherine

    2009-01-01

    Mineral Creek, an acid mine drainage stream in south-western Colorado, was the subject of a water-quality study that employed a paired synoptic approach. Under the paired synoptic approach, two synoptic sampling campaigns were conducted on the same study reach. The initial synoptic campaign, conducted August 22, 2005, documented stream-water quality under existing ambient conditions. A second synoptic campaign, conducted August 24, 2005, documented stream-water quality during a pH-modification experiment that elevated the pH of Mineral Creek. The experimental pH modification was designed to determine the potential reductions in dissolved constituent concentrations that would result from the implementation of an active treatment system for acid mine drainage. During both synoptic sampling campaigns, a solution containing lithium bromide was injected continuously to allow for the calculation of streamflow using the tracer-dilution method. Synoptic water-quality samples were collected from 30 stream sites and 11 inflow locations along the 2-kilometer study reach. Data from the study provide spatial profiles of pH, concentration, and streamflow under both existing and experimentally-altered conditions. This report presents the data obtained August 21-24, 2005, as well as the methods used for sample collection and data analysis.

  11. Arsenic, metals, and nutrients in runoff from two detention basins to Raccoon Creek, New Jersey Coastal Plain, 2008

    Science.gov (United States)

    Barringer, Julia L.; Szabo, Zoltan; Bonin, Jennifer L.; McGee, Craig K.

    2011-01-01

    Arsenic (As) concentrations in the waters of Raccoon Creek in southern New Jersey commonly exceed the State\\'s Surface Water Quality Standard (SWQS) for freshwater of 0.017 microgram per liter (mu or ug/L). In order to assess contributions of As from residential runoff to the creek, samples of runoff water were collected from a detention basin in each of two residential developments underlain by different geologic formations and at the outlets of those basins. Samples of streamwater also were collected from Raccoon Creek adjacent to the developments. The samples were analyzed to determine concentrations of As, selected metals, organic carbon, and nutrients. Soil samples in and downgradient from the basins also were collected and analyzed. Concentrations of As in unfiltered water samples of runoff from the basin underlain by glauconitic clays generally were higher (up to 4.35 mu or ug/L) than in runoff from the basin underlain by predominantly quartz sands and silts (up to 2.68 mu or ug/L). Chromium (Cr) concentrations also were higher in runoff from the basin underlain by glauconitic clays than in runoff from the basin underlain by quartz sand and silt. In addition, Cr concentrations were higher in the glauconitic soils than in the quartz-rich soils. Metals such as aluminum (Al), iron (Fe), lead (Pb), and manganese (Mn) in the runoff and in the streamwater were mostly in particulate form. Arsenic, most metals, and phosphorus (P) however, were mostly in dissolved form in runoff but in particulate form in the streamwater. Total organic carbon concentrations in the runoff ranged from about 10 to nearly 16 milligrams per liter (mg/L). Given such levels of organic carbon and strong correlations between concentrations of some metals and organic carbon, it may be that many of the metals were complexed with dissolved organic carbon and transported in that form in the runoff. Although underlying geologic materials and soils appear to be major contributors of As to the

  12. Fish Lake, Utah - a promising long core site straddling the Great Basin to Colorado Plateau transition zone

    Science.gov (United States)

    Marchetti, D. W.; Abbott, M. B.; Bailey, C.; Wenrich, E.; Stoner, J. S.; Larsen, D. J.; Finkenbinder, M. S.; Anderson, L.; Brunelle, A.; Carter, V.; Power, M. J.; Hatfield, R. G.; Reilly, B.; Harris, M. S.; Grimm, E. C.; Donovan, J.

    2015-12-01

    Fish Lake (~7x1.5 km and 2696 m asl) is located on the Fish Lake Plateau in central Utah. The Lake occupies a NE-striking tectonic graben; one of a suite of grabens on the Plateau that cut 21-26 Ma volcanic rocks. The lake outflows via Lake Creek to the NE where it joins Sevenmile Creek to become the Fremont River, a tributary to the Colorado River. A bathymetric survey reveals a mean depth of 27 m and a max depth of 37.2 m. The lake bottom slopes from NW to SE with the deepest part near the SE wall, matching the topographic expression of the graben. Nearby Fish Lake Hightop (3545 m) was glaciated with an ice field and outlet glaciers. Exposure ages indicate moraine deposition during Pinedale (15-23 ka) and Bull Lake (130-150 ka) times. One outlet glacier at Pelican Canyon deposited moraines and outwash into the lake but the main basin of the lake was never glaciated. Gravity measurements indicate that lake sediments thicken toward the SE side of the lake and the thickest sediment package is modeled to be between 210 and 240 m. In Feb 2014 we collected cores from Fish Lake using a 9-cm diameter UWITECH coring system in 30.5 m of water. A composite 11.2-m-long core was constructed from overlapping 2 m drives that were taken in triplicate to ensure total recovery and good preservation. Twelve 14C ages and 3 tephra layers of known age define the age model. The oldest 14C age of 32.3±4.2 cal ka BP was taken from 10.6 m. Core lithology, CT scans, and magnetic susceptibility (ms) reveal three sediment packages: an organic-rich, low ms Holocene to post-glacial section, a fine-grained, minerogenic glacial section with high ms, and a short section of inferred pre-LGM sediment with intermediate composition. Extrapolating the age model to the maximum estimated sediment thicknesses suggest sediments may be older than 500-700 ka. Thus Fish Lake is an ideal candidate for long core retrieval as it likely contains paleoclimatic records extending over multiple glacial cycles.

  13. Estimated suspended-sediment loads and yields in the French and Brandywine Creek Basins, Chester County, Pennsylvania, water years 2008-09

    Science.gov (United States)

    Sloto, Ronald A.; Olson, Leif E.

    2011-01-01

    Turbidity and suspended-sediment concentration data were collected by the U.S. Geological Survey (USGS) at four stream stations--French Creek near Phoenixville, West Branch Brandywine Creek near Honey Brook, West Branch Brandywine Creek at Modena, and East Branch Brandywine Creek below Downingtown--in Chester County, Pa. Sedimentation and siltation is the leading cause of stream impairment in Chester County, and these data are critical for quantifying sediment transport. This study was conducted by the USGS in cooperation with the Chester County Water Resources Authority and the Chester County Health Department. Data from optical turbidity sensors deployed at the four stations were recorded at 15- or 30-minute intervals by a data logger and uploaded every 1 to 4 hours to the USGS database. Most of the suspended-sediment samples were collected using automated samplers. The use of optical sensors to continuously monitor turbidity provided an accurate estimate of sediment fluctuations without the collection and analysis costs associated with intensive sampling during storms. Turbidity was used as a surrogate for suspended-sediment concentration (SSC), which is a measure of sedimentation and siltation. Regression models were developed between SSC and turbidity for each of the monitoring stations using SSC data collected from the automated samplers and turbidity data collected at each station. Instantaneous suspended-sediment loads (SSL) were computed from time-series turbidity and discharge data for the 2008 and 2009 water years using the regression equations. The instantaneous computations of SSL were summed to provide daily, storm, and water year annual loads. The annual SSL contributed from each basin was divided by the upstream drainage area to estimate the annual sediment yield. For all four basins, storms provided more than 96 percent of the annual SSL. In each basin, four storms generally provided over half the annual SSL each water year. Stormflows with the

  14. THIN SECTION DESCRIPTIONS: LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    Energy Technology Data Exchange (ETDEWEB)

    David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field in Utah (figure 1). However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  15. Uranium favorability of precambrian rocks in the Badger Flats - Elkhorn Thrust Area, Park and Teller Counties, Colorado

    International Nuclear Information System (INIS)

    Gallagher, G.L.

    1976-10-01

    The area is approximately 1,800 square miles and extends from Cripple Creek northward to Fairplay and Bailey. The Precambrian rocks include the metamorphic sequences of the Idaho Springs Formation and the Boulder Creek Granodiorite, Silver Plume Granite, Pikes Peak Granite, and Redskin Granite. The known uranium deposits in the area include six vein deposits, three pegmatite occurrences, and one zone of probable secondary enrichment; they have not yielded any significant production. The vein deposits are probably the result of downward percolation of ground water. The zone of secondary uranium enrichment may have formed above a volcanic pipe, vein, or tuffaceous lake bed. Favorability in the area is considered good for both vein and large, disseminated, low-grade uranium deposits. On the bases of known uranium occurrences, favorable structures and host rocks, and a water-sampling program, recommendations are given for exploration. The occurrences in the area have substantial similarities with the Rossing deposit in South-West Africa and the Wheeler Basin uranium occurrence in Grand County, Colorado. 6 figures, 9 tables

  16. Uranium favorability of tertiary rocks in the Badger Flats, Elkhorn Thrust Area, Park and Teller Counties, Colorado

    International Nuclear Information System (INIS)

    Young, P.; Mickle, D.G.

    1976-10-01

    Uranium potential of Tertiary rocks in the Badger Flats--Elkhorn Thrust area of central Colorado is closely related to a widespread late Eocene erosion surface. Most uranium deposits in the area are in the Eocene Echo Park Alluvium and Oligocene Tallahassee Creek Conglomerate, which were deposited in paleodrainage channels on or above this surface. Arkosic detritus within the channels and overlying tuffaceous sedimentary rocks of the Antero and Florissant Formations of Oligocene age and silicic tuffs within the volcanic units provide abundant sources of uranium that could be concentrated in the channels where carbonaceous debris facilitates a reducing environment. Anomalous soil, water, and stream-sediment samples near the Elkhorn Thrust and in Antero basin overlie buried channels or are offset from them along structural trends; therefore, uranium-bearing ground water may have moved upward from buried uranium deposits along faults. The area covered by rocks younger than the late Eocene erosion surface, specifically the trends of mapped or inferred paleochannels filled with Echo Park Alluvium and Tallahassee Creek Conglomerate, and the Antero Formation are favorable for the occurrence of uranium deposits

  17. National Dam Inspection Program. Ingham Creek (Aquetong Lake) Dam (NDI ID PA 00224, PA DER 9-49) Delaware River Basin, Ingham Creek, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1981-04-01

    Delaware River Basing Ingham Justif icaticn--- L Creek, Pennsylvania. Phase I Inspection Do DEL-AWARE RIVER BASIN Availabilit T Co~es Avail and/or D...about 1.5H:IV and an unknown upstream slope below the water surface. The dam impounds a reservoir with a normal pool surface area of 12.4 acres and a...deep. It was once used to direct water to a mill downstream of the dam and is now in poor condition. The spillway Design Flood (SDF) chosen for this

  18. Streamflow characteristics of the Colorado River Basin in Utah through September 1981

    Science.gov (United States)

    Christensen, R.C.; Johnson, E.B.; Plantz, G.G.

    1987-01-01

     This report summarizes discharge data and other streamflow characteristics developed from gag ing-station records collected through September 1981 at 337 stations in the Colorado River Basin in Utah. Data also are included for 14 stations in adjacent areas of the bordering states of Arizona, Colorado, and Wyoming (fig. 1). The study leading to this report was done in cooperation with the U.S. Bureau of Land Management, which needs the streamflow data in order to evaluate impacts of mining on the hydrologic system. The report also will be beneficial to other Federal, State, and county agencies and to individuals concerned with water supply and water problems in the Colorado River Basin.The streamflow characteristics in the report could be useful in many water-related studies that involve the following:Definition of baseline-hydrologic conditions; studies of the effects of man's activities on streamflow; frequency analyses of low and high flows; regional analyses of streamflow characteristics; design of water-supply systems; water-power studies; forecasting of stream discharge; time-series analyses of streamflow; design of flood-control structures; stream-pollution studies; and water-chemistry transport studies.The basic data used to develop the summaries in this report are records of daily and peak discharge collected by the U.S. Geological Survey and other Federal agencies. Much of the work of the Geological Survey was done in cooperation with Federal, State, and county agencies. Discharge recordsincluded in the report generally were for stations with at least 1 complete water year of record and nearby stations that were on the same stream and had different streamflow characteristics. A water year is a 12-month period ending September 30, and it is designated by the calendar year in which it ends. For streams that have had significant changes in regulation by reservoirs or diversions, the records before and after those changes were used separately to provide

  19. Chemistry and age of groundwater in bedrock aquifers of the Piceance and Yellow Creek watersheds, Rio Blanco County, Colorado, 2010-12

    Science.gov (United States)

    McMahon, P.B.; Thomas, J.C.; Hunt, A.G.

    2013-01-01

    Fourteen monitoring wells completed in the Uinta and Green River Formations in the Piceance Creek and Yellow Creek watersheds in Rio Blanco County, Colorado, were sampled for chemical, isotopic, and groundwater-age tracers to provide information on the overall groundwater quality, the occurrence and distribution of chemicals that could be related to the development of underlying natural-gas reservoirs, and to better understand groundwater residence times in the flow system. Methane concentrations in groundwater ranged from less than 0.0005 to 387 milligrams per liter. The methane was predominantly biogenic in origin, although the biogenic methane was mixed with thermogenic methane in water from seven wells. Three BTEX compounds (benzene, toluene, and ethylbenzene) were detected in water from six of the wells, but none of the concentrations exceeded Federal drinking-water standards. The presence of thermogenic methane in the aquifers indicates a connection and vulnerability to chemicals in deeper geologic units. Helium-4 data indicate that groundwater had ages ranging from less than 1,000 years to greater than 50,000 years. The presence of old groundwater in parts of the aquifers indicates that these aquifers may not be useful for large-scale water supply because of low recharge rates.

  20. Sedimentation Study and Flume Investigation, Mission Creek, Santa Barbara, California; Corte Madera Creek, Marin County, California

    National Research Council Canada - National Science Library

    Copeland, Ronald

    2000-01-01

    .... An existing concrete-lined flood control channel on Corte Madera Creek in Marin County, California lacks a debris basin at its upstream terminus and carries significant bed load through a supercritical flow reach...

  1. Spatial variability of hillslope water balance, wolf creek basin, subarctic yukon

    Science.gov (United States)

    Carey, Sean K.; Woo, Ming-Ko

    2001-11-01

    A hydrological study was conducted between 1997 and 1999 in the subalpine open woodland of the Wolf Creek Basin, Yukon, to assess the interslope water balance variability. The water balance during the snowmelt and summer periods on four hillslopes revealed strong contrasts in process magnitudes and highlighted important factors including frost, vegetation, soils and microclimate that controlled vertical and lateral fluxes of water. Snow accounted for approximately half the annual water input, while differences in accumulation among hillslopes were related to interception properties of vegetation. Available energy at the snow surface controlled the melt sequence and the snow on some slopes disappeared up to two months earlier than others. Snowmelt runoff was confined to slopes with ice-rich substrates that inhibited deep percolation, with the runoff magnitude governed by the snow storage and the antecedent moisture of the desiccated organic soils prior to melt. During summer, evapotranspiration exceeded rainfall, largely sustained by water from the soil moisture reservoir recharged during the melt period. Differences in net radiation on slopes controlled the potential evapotranspiration, with the actual rates limited by the phenology of the deciduous forests and shrubs. Evapotranspiration was further suppressed on slopes where the organic soils became dry in late summer. Summer runoff was confined to slopes with porous organic layers overlying mineral soils to form a two-layer flow system: (1) quickflow in the surface organic layer and (2) slowflow in the mineral soil. Differences in the rates of flow were related to the position of the water table which may rise into the organic layer to activate quickflow. The presence of ice-rich frost and permafrost impeded vertical drainage and indirectly regulated the position of the water table. The location of the hillslope within a basin influenced recharge and discharge dynamics. Slope segments with large inflows sustained

  2. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas

    Science.gov (United States)

    Sophocleous, M.A.; Koelliker, J.K.; Govindaraju, R.S.; Birdie, T.; Ramireddygari, S.R.; Perkins, S.P.

    1999-01-01

    The objective of this article is to develop and implement a comprehensive computer model that is capable of simulating the surface-water, ground-water, and stream-aquifer interactions on a continuous basis for the Rattlesnake Creek basin in south-central Kansas. The model is to be used as a tool for evaluating long-term water-management strategies. The agriculturally-based watershed model SWAT and the ground-water model MODFLOW with stream-aquifer interaction routines, suitably modified, were linked into a comprehensive basin model known as SWATMOD. The hydrologic response unit concept was implemented to overcome the quasi-lumped nature of SWAT and represent the heterogeneity within each subbasin of the basin model. A graphical user-interface and a decision support system were also developed to evaluate scenarios involving manipulation of water fights and agricultural land uses on stream-aquifer system response. An extensive sensitivity analysis on model parameters was conducted, and model limitations and parameter uncertainties were emphasized. A combination of trial-and-error and inverse modeling techniques were employed to calibrate the model against multiple calibration targets of measured ground-water levels, streamflows, and reported irrigation amounts. The split-sample technique was employed for corroborating the calibrated model. The model was run for a 40 y historical simulation period, and a 40 y prediction period. A number of hypothetical management scenarios involving reductions and variations in withdrawal rates and patterns were simulated. The SWATMOD model was developed as a hydrologically rational low-flow model for analyzing, in a user-friendly manner, the conditions in the basin when there is a shortage of water.

  3. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    Science.gov (United States)

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably

  4. Energy resources of the Denver and Cheyenne Basins, Colorado - resource characteristics, development potential, and environmental problems. Environmental Geology 12

    International Nuclear Information System (INIS)

    Kirkham, R.M.; Ladwig, L.R.

    1980-01-01

    The geological characteristics, development potential, and environmental problems related to the exploration for and development of energy resources in the Denver and Cheyenne Basins of Colorado were investigated. Coal, lignite, uranium, oil and natural gas were evaluated. Emphasis is placed on environmental problems that may develop from the exploration for an extraction of these energy resources

  5. Four Mile Creek semi-annual sampling report, January 1993 sampling event

    International Nuclear Information System (INIS)

    1993-05-01

    From 1955 to 1988 low-level radioactive wastewater generated by chemical separation processes within the General Separations Area (GSA) was discharged to seepage basins in the F and H Areas of the Savannah River Site (SRS). These basins were designed to permit the infiltration of the process wastewaters. As wastewater percolated downward through the basins, chemical and radioactive constituents were retained or sequestered in the subsoils. An extensive study aimed at characterizing the groundwater seeping into Four Mile Creek and its associated seepline was conducted in 1988 and 1989 (Haselow et al. 1990). Results of this study suggested that contaminants leaching from the F and H Area seepage basins were impacting the Four Mile Creek wetland system. The seepage basins were closed in 1988 and capped and sealed in 1990. This effectively eliminated the source of the contaminants and the hydraulic head driving the migration of contaminants from the basins. It has been hypothesized that, after the elimination of the source and head, annual rainfall amounts would be sufficient to dilute and flush out contaminants remaining in the subsoils and groundwaters beneath the basins. Westinghouse Savannah River Company has designed a semi-annual sampling and analytical program for the Four Mile Creek (FMC) seepline and stream water to test the hypothesis. This report summarizes field monitoring activities from January 25, 1993 to February 4, 1993

  6. Potential for Water Savings by Defoliation of Saltcedar (Tamarix spp.) by Saltcedar Beetles (Diorhabda carinulata) in the Upper Colorado River Basin

    Science.gov (United States)

    Nagler, P. L.; Nguyen, U.; Bateman, H. L.; Jarchow, C.; van Riper, C., III; Waugh, W.; Glenn, E.

    2016-12-01

    Northern saltcedar beetles (Diorhabda carinata) have spread widely in riparian zones on the Colorado Plateau since their initial release in 2002. One goal of the releases was to reduce water consumption by saltcedar in order to conserve water through reduction of evapotranspiration (ET). The beetle moved south on the Virgin River and reached Big Bend State Park in Nevada in 2014, an expansion rate of 60 km/year. This is important because the beetle's photoperiod requirement for diapause was expected to prevent them from moving south of 37°N latitude, where endangered southwest willow flycatcher habitat occurs. In addition to focusing on the rate of dispersal of the beetles, we used remote sensing estimates of ET at 13 sites on the Colorado, San Juan, Virgin and Dolores rivers and their tributaries to estimate riparian zone ET before and after beetle releases. We estimate that water savings from 2007-2015 was 31.5 million m3/yr (25,547 acre-ft/yr), amounting to 0.258 % of annual river flow from the Upper Colorado River Basin to the Lower Basin. Reasons for the relatively low potential water savings are: 1) baseline ET before beetle release was modest (0.472 m/yr); 2) reduction in ET was low (0.061 m/yr) because saltcedar stands tended to recover after defoliation; 3) riparian ET even in the absence of beetles was only 1.8 % of river flows, calculated as the before beetle average annual ET (472 mm/yr) times the total area of saltcedar (51,588 ha) divided by the combined total average annual flows (1964-2015) from the upper to lower catchment areas of the Colorado River Basin at the USGS gages (12,215 million m3/yr or 9.90 million acre-ft). Further research is suggested to concentrate on the ecological impacts (both positive and negative) of beetles on riparian zones and on identifying management options to maximize riparian health.

  7. Effects of potential surface coal mining on dissolved solids in Otter Creek and in the Otter Creek alluvial aquifer, southeastern Montana

    Science.gov (United States)

    Cannon, M.R.

    1985-01-01

    Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)

  8. How well do CMIP5 Climate Models Reproduce the Hydrologic Cycle of the Colorado River Basin?

    Science.gov (United States)

    Gautam, J.; Mascaro, G.

    2017-12-01

    The Colorado River, which is the primary source of water for nearly 40 million people in the arid Southwestern states of the United States, has been experiencing an extended drought since 2000, which has led to a significant reduction in water supply. As the water demands increase, one of the major challenges for water management in the region has been the quantification of uncertainties associated with streamflow predictions in the Colorado River Basin (CRB) under potential changes of future climate. Hence, testing the reliability of model predictions in the CRB is critical in addressing this challenge. In this study, we evaluated the performances of 17 General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase Five (CMIP5) and 4 Regional Climate Models (RCMs) in reproducing the statistical properties of the hydrologic cycle in the CRB. We evaluated the water balance components at four nested sub-basins along with the inter-annual and intra-annual changes of precipitation (P), evaporation (E), runoff (R) and temperature (T) from 1979 to 2005. Most of the models captured the net water balance fairly well in the most-upstream basin but simulated a weak hydrological cycle in the evaporation channel at the downstream locations. The simulated monthly variability of P had different patterns, with correlation coefficients ranging from -0.6 to 0.8 depending on the sub-basin and the models from same parent institution clustering together. Apart from the most-upstream sub-basin where the models were mainly characterized by a negative seasonal bias in SON (of up to -50%), most of them had a positive bias in all seasons (of up to +260%) in the other three sub-basins. The models, however, captured the monthly variability of T well at all sites with small inter-model variabilities and a relatively similar range of bias (-7 °C to +5 °C) across all seasons. Mann-Kendall test was applied to the annual P and T time-series where majority of the models

  9. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Red Creek quartzite special study area, Vernal NTMS Quadrangle, Utah/Colorado, including concentrations of forty-six additional elements

    International Nuclear Information System (INIS)

    Goff, S.; George, W.E.; Apel, C.T.; Hansel, J.M.; Fuka, M.A.; Bunker, M.E.; Hanks, D.

    1981-04-01

    Totals of 22 water and 140 sediment samples were collected from 148 locations in the study area. The study area, in the north-central portion of the Vernal NTMS quadrangle, is covered by four 7-1/2' topographic maps: Dutch John, Goslin Mountain, and Clav Basin, Utah; and Willow Creek Butte, Utah/Colorado. Additional HSSR data are available for the entire Vernal quadrangle (Purson, 1980). All field and analytical data are presented in Appendix I. Figure 1 is an index and sample location map that can be used in conjunction with the 1:250,000-scale topographic map of the Vernal quadrangle (USGS, 1954). Standarized field, analytical, and data base management procedures were followed in all phases of the study. These procedures are described briefly in Appendix II-A and in reports by Sharp (1977), Hues et al (1977), Sharp and Aamodt (1978), Cheadle (1977), and Kosiewicz (1979). The data presented in Appendix I are available on magnetic tape from GJOIS Project, Union Carbide Corporation (UCC-ND), Computer Applications Department, 4500 North Building, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37830. Because this is simply a data release, intended to make the data available to the DOE and the public as quickly as possible, no discussion of the geology of the region, uranium occurrences, or data evaluation is included

  10. Water quality, streamflow conditions, and annual flow-duration curves for streams of the San Juan–Chama Project, southern Colorado and northern New Mexico, 1935-2010

    Science.gov (United States)

    Falk, Sarah E.; Anderholm, Scott K.; Hafich, Katya A.

    2013-01-01

    The Albuquerque–Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with water diverted from the Rio Grande. Water diverted from the Rio Grande for municipal use is derived from the San Juan–Chama Project, which delivers water from streams in the southern San Juan Mountains in the Colorado River Basin in southern Colorado to the Rio Chama watershed and the Rio Grande Basin in northern New Mexico. The U.S. Geological Survey, in cooperation with Albuquerque–Bernalillo County Water Utility Authority, has compiled historical streamflow and water-quality data and collected new water-quality data to characterize the water quality and streamflow conditions and annual flow variability, as characterized by annual flow-duration curves, of streams of the San Juan–Chama Project. Nonparametric statistical methods were applied to calculate annual and monthly summary statistics of streamflow, trends in streamflow conditions were evaluated with the Mann–Kendall trend test, and annual variation in streamflow conditions was evaluated with annual flow-duration curves. The study area is located in northern New Mexico and southern Colorado and includes the Rio Blanco, Little Navajo River, and Navajo River, tributaries of the San Juan River in the Colorado River Basin located in the southern San Juan Mountains, and Willow Creek and Horse Lake Creek, tributaries of the Rio Chama in the Rio Grande Basin. The quality of water in the streams in the study area generally varied by watershed on the basis of the underlying geology and the volume and source of the streamflow. Water from the Rio Blanco and Little Navajo River watersheds, primarily underlain by volcanic deposits, volcaniclastic sediments and landslide deposits derived from these materials, was compositionally similar and had low specific-conductance values relative to the other streams in the study area. Water from the Navajo River

  11. The Wells Creek Meteorite Impact Site and Changing Views on Impact Cratering

    Science.gov (United States)

    Ford, J. R. H.; Orchiston, Wayne; Clendening, Ron

    2012-11-01

    Wells Creek is a confirmed meteorite impact site in Tennessee, USA. The Wells Creek structure was first noticed by railroad surveyors around 1855 and brought to the attention of J.M. Safford, Tennessee's State Geologist. He included an insert in the 1869 Geologic Map of Tennessee, which is the first known map to include the structure. The origin of the Wells Creek structure was controversial, and was interpreted as being either the result of volcanic steam explosion or meteorite impact. It was only in the 1960s that Wilson and Stearns were able to state that the impact hypothesis was preferred. Evidence for a Wells Creek meteorite impact includes drill core results, extreme brecciation and shatter cones, while a local lack of volcanic material is telling. Just to the north of the Wells Creek Basin are three small basins that Wilson concluded were associated with the Wells Creek impact event, but evidence regarding the origin of the Austin, Indian Mound and Cave Spring Hollow sites is not conclusive.

  12. Simulation of streamflow and water quality in the Red Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania and Delaware and includes the major subbasins of Red Clay Creek, White Clay Creek, Brandywine Creek, and Christina River. The Red Clay Creek is the smallest of the subbasins and drains an area of 54 mi2. Streams in the Christina River Basin are used for recreation, drinking-water supply, and to support aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency, waterquality management strategy included a modeling component to evaluate the effects of point and nonpointsource contributions of nutrients and suspended sediment on stream water quality. To assist in nonpointsource evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program?Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at 1 site in the Red Clay Creek subbasin and at 10 sites elsewhere in the Christina River Basin.The HSPF model for the Red Clay Creek subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 1.7 to 10 mi2. One of the reaches contains a regulated reservoir. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Red Clay Creek

  13. Drivers of annual to decadal streamflow variability in the lower Colorado River Basin

    Science.gov (United States)

    Lambeth-Beagles, R. S.; Troch, P. A.

    2010-12-01

    The Colorado River is the main water supply to the southwest region. As demand reaches the limit of supply in the southwest it becomes increasingly important to understand the dynamics of streamflow in the Colorado River and in particular the tributaries to the lower Colorado River. Climate change may pose an additional threat to the already-scarce water supply in the southwest. Due to the narrowing margin for error, water managers are keen on extending their ability to predict streamflow volumes on a mid-range to decadal scale. Before a predictive streamflow model can be developed, an understanding of the physical drivers of annual to decadal streamflow variability in the lower Colorado River Basin is needed. This research addresses this need by applying multiple statistical methods to identify trends, patterns and relationships present in streamflow, precipitation and temperature over the past century in four contributing watersheds to the lower Colorado River. The four watersheds selected were the Paria, Little Colorado, Virgin/Muddy, and Bill Williams. Time series data over a common period from 1906-2007 for streamflow, precipitation and temperature were used for the initial analysis. Through statistical analysis the following questions were addressed: 1) are there observable trends and patterns in these variables during the past century and 2) if there are trends or patterns, how are they related to each other? The Mann-Kendall test was used to identify trends in the three variables. Assumptions regarding autocorrelation and persistence in the data were taken into consideration. Kendall’s tau-b test was used to establish association between any found trends in the data. Initial results suggest there are two primary processes occurring. First, statistical analysis reveals significant upward trends in temperatures and downward trends in streamflow. However, there appears to be no trend in precipitation data. These trends in streamflow and temperature speak to

  14. Assessment Of Inocula To Enhance Startup Of Ethanol-Fed And Solid-Phase Organic Sulfate Reducing Bioreactors For The National Tunnel Drainage, Clear Creek/Central City Superfund Site

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) is planning to construct an Anaerobic Passive Treatment System (APTS) to treat acid mine drainage from the National Tunnel in North Clear Creek near the City of Blackhawk, Colorado. North Clear Creek is part of the Clear Creek/Centr...

  15. Assessment of dissolved-solids loading to the Colorado River in the Paradox Basin between the Dolores River and Gypsum Canyon, Utah

    Science.gov (United States)

    Shope, Christopher L.; Gerner, Steven J.

    2014-01-01

    Salinity loads throughout the Colorado River Basin have been a concern over recent decades due to adverse impacts on population, natural resources, and regional economics. With substantial financial resources and various reclamation projects, the salt loading to Lake Powell and associated total dissolved-solids concentrations in the Lower Colorado River Basin have been substantially reduced. The Colorado River between its confluence with the Dolores River and Lake Powell traverses a physiographic area where saline sedimentary formations and evaporite deposits are prevalent. However, the dissolved-solids loading in this area is poorly understood due to the paucity of water-quality data. From 2003 to 2011, the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation conducted four synoptic sampling events to quantify the salinity loading throughout the study reach and evaluate the occurrence and impacts of both natural and anthropogenic sources. The results from this study indicate that under late-summer base-flow conditions, dissolved-solids loading in the reach is negligible with the exception of the Green River, and that variations in calculated loads between synoptic sampling events are within measurement and analytical uncertainties. The Green River contributed approximately 22 percent of the Colorado River dissolved-solids load, based on samples collected at the lower end of the study reach. These conclusions are supported by water-quality analyses for chloride and bromide, and the results of analyses for the stable isotopes of oxygen and deuterium. Overall, no significant sources of dissolved-solids loading from tributaries or directly by groundwater discharge, with the exception of the Green River, were identified in the study area.

  16. Instream habitat restoration and stream temperature reduction in a whirling disease-positive Spring Creek in the Blackfoot River Basin, Montana

    Science.gov (United States)

    Pierce, Ron; Podner, Craig; Marczak, Laurie B; Jones, Leslie A.

    2014-01-01

    Anthropogenic warming of stream temperature and the presence of exotic diseases such as whirling disease are both contemporary threats to coldwater salmonids across western North America. We examined stream temperature reduction over a 15-year prerestoration and postrestoration period and the severity of Myxobolus cerebralisinfection (agent of whirling disease) over a 7-year prerestoration and postrestoration period in Kleinschmidt Creek, a fully reconstructed spring creek in the Blackfoot River basin of western Montana. Stream restoration increased channel length by 36% and reduced the wetted surface area by 69% by narrowing and renaturalizing the channel. Following channel restoration, average maximum daily summer stream temperatures decreased from 15.7°C to 12.5°C, average daily temperature decreased from 11.2°C to 10.0°C, and the range of daily temperatures narrowed by 3.3°C. Despite large changes in channel morphology and reductions in summer stream temperature, the prevalence and severity of M. cerebralis infection for hatchery Rainbow Trout Oncorhynchus mykiss remained high (98–100% test fish with grade > 3 infection) versus minimal for hatchery Brown Trout Salmo trutta (2% of test fish with grade-1 infection). This study shows channel renaturalization can reduce summer stream temperatures in small low-elevation, groundwater-dominated streams in the Blackfoot basin to levels more suitable to native trout. However, because of continuous high infections associated with groundwater-dominated systems, the restoration of Kleinschmidt Creek favors brown trout Salmo trutta given their innate resistance to the parasite and the higher relative susceptibility of other salmonids.

  17. Regional hydrology of the Dolores River Basin, eastern Paradox Basin, Colorado and Utah

    International Nuclear Information System (INIS)

    Weir, J.E. Jr.; Maxfield, E.B.; Zimmerman, E.A.

    1983-01-01

    The Dolores River Basin, is in the eastern part of the Paradox Basin and includes the eastern slope of the La Sal Mountains, the western slopes of the Rico and La Plata Mountains, and the southwest flank of the Uncompahgre Plateau. The climate of this area is more humid than most of the surrounding Colorado Plateau region. Precipitation ranges from slightly 200 mm/yr to 1000 mm/yr; the estimated volume of water falling on the area is 4000 x 10 6 cm 3 /yr. Of this total, about 600 x 10 6 cm 3 /yr is runoff; 190 x 10 6 cm 3 /yr recharges the upper ground-water system; and an estimated 55 x 10 6 cm 3 returns to the atmosphere via evapotranspiration from stream valleys. The remainder evaporates. Principal hydrogeologic units are permeable sandstone and limestone and nearly impermeable salt (halitic) deposits. Structurally, the area is dominated by northwest-trending salt anticlines and contiguous faults paralleled by synclinal structures. The Uncompahgre Plateau lies along the north and northeast sides of the area. The instrusive masses that form the La Sal Mountains are laccoliths with bysmaliths and other complex intrusive forms comprising, in gross form, moderately faulted omal structures. Intrusive rocks underlie the La Plata and Rico Mountains along the southeastern edge of the area. These geologic structures significantly modify ground-water flow patterns in the upper ground-water system, but have no conspicuous effect on the flow regime in the lower ground-water system. The water in the upper ground-water system generally is fresh except where it is affected by evaporite dissolution from salt anticlines. The water of the lower ground-water system is slightly saline to briny. Water quality of the Dolores River is slightly saline to fresh, based on dissolved chemical constituents; some of the smaller tributaries of the river have saline water

  18. Assessment Of Inocula To Enhance Startup Of Ethanol-Fed And Solid-Phase Organic Sulfate Reducing Bioreactors For The National Tunnel Drainage, Clear Creek/Central City Superfund Site (Presentation)

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) is planning to construct an Anaerobic Passive Treatment System (APTS) to treat acid mine drainage from the National Tunnel in North Clear Creek near the City of Blackhawk, Colorado. North Clear Creek is part of the Clear Creek/Centr...

  19. Radioactivity in the environment; a case study of the Puerco and Little Colorado River basins, Arizona and New Mexico

    Science.gov (United States)

    Wirt, Laurie

    1994-01-01

    This report, written for the nontechnical reader, summarizes the results of a study from 1988-91 of the occurrence and transport of selected radionuclides and other chemical constituents in the Puerco and Little Colorado River basins, Arizona and New Mexico. More than two decades of uranium mining and the 1979 failure of an earthen dam containing mine tailings released high levels of radionuclides and other chemical constituents to the Puerco River, a tributary of the Little Colorado River. Releases caused public concern that ground water and streamflow downstream from mining were contaminated. Study findings show which radioactive elements are present, how these elements are distributed between water and sediment in the environment, how concentrations of radioactive elements vary naturally within basins, and how levels of radioactivity have changed since the end of mining. Although levels of radioactive elements and other trace elements measured in streamflow commonly exceed drinking-water standards, no evidence was found to indicate that the high concentrations were still related to uraniurn mining. Sediment radioactivity was higher at sample sites on streams that drain the eastern part of the Little Colorado River basin than that of samples from the western part. Radioactivity of suspended sediment measured in this study, therefore, represents natural conditions for the streams sampled rather than an effect of mining. Because ground water beneath the Puerco River channel is shallow, the aquifer is vulnerable to contamination. A narrow zone of ground water beneath the Puerco River containing elevated uranium concentrations was identified during the study. The highest concentrations were nearest the mines and in samples collected in the first few feet beneath the streambed. Natuxal radiation levels in a few areas of the underlying sedimentary aquifer not connected to the Puerco River also exceeded water quality standards. Water testing would enable those residents

  20. Radioactivity in the environment: a case study of the Puerco and Little Colorado River Basins, Arizona and New Mexico

    International Nuclear Information System (INIS)

    Wirt, L.

    1994-01-01

    This report, written for the nontechnical reader, summarizes the results of a study from 1988-91 of the occurrence and transport of selected radionuclides and other chemical constituents in the Puerco and Little Colorado River basins, Arizona and New Mexico. More than two decades of uranium mining and the 1979 failure of an earthen dam containing mine tailings released high levels of radionuclides and other chemical constituents to the Puerco River, a tributary of the Little Colorado River. Releases caused public concern that ground water and streamflow downstream from mining were contaminated. Study findings show which radioactive elements are present, how these elements are distributed between water and sediment in the environment, how concentrations of radioactive elements vary naturally within basins, and how levels of radioactivity have changed since the end of mining. Although levels of radioactive elements and other trace elements measured in streamflow commonly exceed drinking-water standards, no evidence was found to indicate that the high concentrations were still related to uraniurn mining. Sediment radioactivity was higher at sample sites on streams that drain the eastern part of the Little Colorado River basin than that of samples from the western part. Radioactivity of suspended sediment measured in this study, therefore, represents natural conditions for the streams sampled rather than an effect of mining. Because ground water beneath the Puerco River channel is shallow, the aquifer is vulnerable to contamination. A narrow zone of ground water beneath the Puerco River containing elevated uranium concentrations was identified during the study. The highest concentrations were nearest the mines and in samples collected in the first few feet beneath the streambed. Natuxal radiation levels in a few areas of the underlying sedimentary aquifer not connected to the Puerco River also exceeded water quality standards. Water testing would enable those residents

  1. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina.

    Science.gov (United States)

    Zabala, M E; Manzano, M; Vives, L

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the "Dr. Eduardo J. Usunoff" Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO3-Ca type, in the middle basin it is HCO3-Na, and in the lower basin it is ClSO4-NaCa and Cl-Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO2, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. DELIVERABLE 1.2.1.B THIN SECTION DESCRIPTIONS: LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    International Nuclear Information System (INIS)

    Eby, David E.; Wray, Laura L.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field in Utah (figure 1). However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  3. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  4. Dust in Snow in the Colorado River Basin: Spatial Variability in Dust Concentrations, Radiative Forcing, and Snowmelt Rates

    Science.gov (United States)

    Skiles, M.; Painter, T.; Deems, J. S.; Landry, C.; Bryant, A.

    2012-12-01

    Since the disturbance of the western US that began with the Anglo settlement in the mid 19th century, the mountain snow cover of the Colorado River Basin (CRB) has been subject to five-fold greater dust loading. This dust deposition accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. We have previously quantified the impacts of dust in snow using a 6-year record of dust concentration and energy balance fluxes at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. Dust loading exhibited interannual variability, and end of year dust concentrations were not necessarily related to the number of dust deposition events. Radiative forcing enhanced springtime melt by 21 to 51 days with the magnitude of advanced loss being linearly related to total dust concentration at the end of snow cover. To expand our understanding of dust on snow deposition patterns we utilize collections of dust concentration at the Colorado Dust on Snow (CODOS) study sites, established in 2009 along the western side of the CRB, to assess spatial variability in dust loading. In situ sampling of dust stratigraphy and concentration occurs twice each season, once over peak snow water equivalent (15 April), and again during melt (15 May). Dust loading occurs at all sites; dust concentrations are always higher in May, vary between sites, and the highest and lowest dust years were 2009 and 2012, respectively. In the absence of regular sampling and energy balance instrumentation these sites do not allow us to quantify the advanced melt due to dust. To facilitate this a new energy balance site, Grand Mesa Study plot (GMSP), was established for water year 2010 in west central Colorado, 150 km north of SBBSA. Back trajectories indicate similar Colorado Plateau dust sources at both SBBSA and GMSP, yet GMSP exhibits slightly lower dust

  5. Colorado River cutthroat trout: a technical conservation assessment

    Science.gov (United States)

    Michael K. Young

    2008-01-01

    The Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus) was once distributed throughout the colder waters of the Colorado River basin above the Grand Canyon. About 8 percent of its historical range is occupied by unhybridized or ecologically significant populations. It has been petitioned for listing under the Endangered Species Act...

  6. Paleocurrents of the Middle-Upper Jurassic strata in the Paradox Basin, Colorado, inferred from anisotropy of magnetic susceptibility (AMS)

    Science.gov (United States)

    Ejembi, J. I.; Ferre, E. C.; Potter-McIntyre, S. L.

    2017-12-01

    The Middle-Upper Jurassic sedimentary strata in the southwestern Colorado Plateau recorded pervasive eolian to fluvio-lacustrine deposition in the Paradox Basin. While paleocurrents preserved in the Entrada Sandstone, an eolian deposition in the Middle Jurassic, has been well constrained and show a northwesterly to northeasterly migration of ergs from the south onto the Colorado Plateau, there is yet no clear resolution of the paleocurrents preserved in the Wanakah Formation and Tidwell Member of the Morrison Formation, both of which are important sedimentary sequences in the paleogeographic framework of the Colorado Plateau. New U-Pb detrital zircon geochronology of sandstones from these sequences suggests that an abrupt change in provenance occurred in the early Late Jurassic, with sediments largely sourced from eroding highlands in central Colorado. We measured the anisotropy of magnetic susceptibility (AMS) of sediments in oriented sandstone samples from these three successive sequences; first, to determine the paleocurrents from the orientations of the AMS fabrics in order to delineate the source area and sediments dispersal pattern and second, to determine the depositional mechanisms of the sediments. Preliminary AMS data from two study sites show consistency and clustering of the AMS axes in all the sedimentary sequences. The orientations of the Kmin - Kint planes in the Entrada Sandstone sample point to a NNE-NNW paleocurrent directions, which is in agreement with earlier studies. The orientations of the Kmin - Kint planes in the Wanakah Formation and Tidwell Member samples show W-SW trending paleocurrent directions, corroborating our hypothesis of a shift in provenance to the eroding Ancestral Front Range Mountain, located northeast of the Paradox Basin, during the Late Jurassic. Isothermal remanence magnetization (IRM) of the samples indicate that the primary AMS carriers are detrital, syndepositional ferromagnetic minerals. Thus, we contend that AMS can

  7. Trace Element Concentration and Speciation in Selected Mining-Contaminated Soils and Water in Willow Creek Floodplain, Colorado

    Directory of Open Access Journals (Sweden)

    R. Burt

    2011-01-01

    Full Text Available Long-term mining activities in the mountains around Creede, Colorado have resulted in significant contamination in soils and water in the Willow Creek floodplain. Total major and trace were determined for soils and water and sequential chemical extraction for soils. Objectives were to determine concentrations and potential reactivity of trace elements and investigate their relationship with other soil and water properties. Water trace elements showed significant variability among sites, ranging from 347 to 12108 μg/L. Relative trend showed (Zn > Sr > Ba > (Mn > W > Cd > (Sn > V ≈ Ni ≈ Cu > Co > (Ag. Soil trace elements showed significant short-range spatial variability, ranging from 2819 to 19274 mg/kg. Relative trend showed (Pb ≈ Zn > Mn > Ba > P > (As > Cu > Sr > V > Cd > Sb ≈ Ag > (Co ≈ Cr > Mo ≈ Sn ≈ Ni > (Be ≈ W > Se ≈ Hg. Predominant fractions were oxide, specifically-sorbed/carbonate bound, and residual. Water soluble and exchangeable fractions showed (Zn ≈ Cd > Pb and Cd > Zn > Pb, respectively. Mobility factors for highly contaminated soils showed Cd ≈ Zn > Pb > Cu > As.

  8. Institutions and Societal Impacts of Climate in the Lower Colorado and San Pedro Basins of the U.S.-Mexico Border Region

    Science.gov (United States)

    Varady, R. G.; Wilder, M.; Morehouse, B. J.; Garfin, G. M.

    2007-05-01

    The U.S. Southwest and Mexico border region feature two prominent river basins, the Colorado and Rio Grande, and ecologically important sub-basins such as the San Pedro. The area within which these transboundary basins lie is characterized by overall aridity and high climatic variability over seasonal to decadal and longer time scales. Throughout human occupation, numerous and diverse strategies for buffering climate impacts have emerged. The most notable response has been an increasingly complex system of institutions and structures designed to buffer water scarcity. The Colorado River Compact, and the laws governing allocation of waters from the Rio Grande River, together with the dams, hydropower generators, canals and other engineered features, represent two of the most complex systems. Drought nevertheless remains a looming specter across much of the binational border region. Institutional mechanisms for responding to drought range from awareness-raising and capacity-building efforts, to implementation of formal drought plans, to storing water to make up for deficits, and water conservation rules that become increasingly stringent as drought intensifies. A number of formal and informal binational institutions operate in the region. Some are venerable, like the century-old International Boundary and Water Commission (IBWC) and its Mexican counterpart the Comision Internacional de Limites y Agua (CILA). Others, like the Border Environment Cooperation Commission and the North American Development Bank, were created in the mid-1990s with the North American Free Trade Agreement. These institutions, both domestic and transnational, operate in a complex binational, bicultural environment with contrasting legal and administrative traditions. Under such constraints, they manage water resources and ecosystems and attempt to improve water and sanitation infrastructure in the context of deep and extended drought. But in spite of their efforts, society and natural habitat

  9. Numerical simulation of flow in Brush Creek Valley, Colorado

    International Nuclear Information System (INIS)

    Leone, J.M. Jr.; Lee, R.L.

    1987-06-01

    In this paper, we present some results from our three-dimensional, non-hydrostatic, finite element model applied to simulations of flow in Brush Creek Valley. These simulations are not intended to reproduce any particular experiment, but rather are to evaluate the qualitative performance of the model, to explore the major difficulties involved, and to begin sensitivity studies of the flows of interest. 2 refs., 11 figs

  10. Point sources of emerging contaminants along the Colorado River Basin: Source water for the arid Southwestern United States

    Science.gov (United States)

    Jones-Lepp, Tammy L.; Sanchez, Charles; Alvarez, David A.; Wilson, Doyle C.; Taniguchi-Fu, Randi-Laurant

    2012-01-01

    Emerging contaminants (ECs) (e.g., pharmaceuticals, illicit drugs, personal care products) have been detected in waters across the United States. The objective of this study was to evaluate point sources of ECs along the Colorado River, from the headwaters in Colorado to the Gulf of California. At selected locations in the Colorado River Basin (sites in Colorado, Utah, Nevada, Arizona, and California), waste stream tributaries and receiving surface waters were sampled using either grab sampling or polar organic chemical integrative samplers (POCIS). The grab samples were extracted using solid-phase cartridge extraction (SPE), and the POCIS sorbents were transferred into empty SPEs and eluted with methanol. All extracts were prepared for, and analyzed by, liquid chromatography–electrospray-ion trap mass spectrometry (LC–ESI-ITMS). Log DOW values were calculated for all ECs in the study and compared to the empirical data collected. POCIS extracts were screened for the presence of estrogenic chemicals using the yeast estrogen screen (YES) assay. Extracts from the 2008 POCIS deployment in the Las Vegas Wash showed the second highest estrogenicity response. In the grab samples, azithromycin (an antibiotic) was detected in all but one urban waste stream, with concentrations ranging from 30 ng/L to 2800 ng/L. Concentration levels of azithromycin, methamphetamine and pseudoephedrine showed temporal variation from the Tucson WWTP. Those ECs that were detected in the main surface water channels (those that are diverted for urban use and irrigation along the Colorado River) were in the region of the limit-of-detection (e.g., 10 ng/L), but most were below detection limits.

  11. Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico

    Science.gov (United States)

    Ruleman, Chester A.; Machette, Michael; Thompson, Ren A.; Miggins, Dan M; Goehring, Brent M; Paces, James B.

    2016-01-01

    The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio

  12. Summary of sediment data from the Yampa river and upper Green river basins, Colorado and Utah, 1993-2002

    Science.gov (United States)

    Elliott, John G.; Anders, Steven P.

    2004-01-01

    The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near

  13. Characterization of water quality for streams in the southern Yampa River basin, northwestern Colorado. Water Resources Investigation

    International Nuclear Information System (INIS)

    Parker, R.S.

    1991-01-01

    Historically, the Yampa River basin in northwestern Colorado has been an area of coal-mining development. Coal mining generally has been developed in the southern part of the basin and at lower elevations. The purpose of the report is to characterize the stream water quality by summarizing selected major dissolved constituents for the streams that drain the southern part of the Yampa River basin. Characterization is done initially by providing a statistical summary of the constituents for individual water-quality sites in the study area. These statistical summaries can be used to help assess water-quality within specified stream reaches. Water-quality data are available for sites on most perennial streams in the study area, and these data provide the best information about the immediate stream reach. Water-quality data from all sites are combined into regions, and linear-regression equations between dissolved constituents and specific conductance are calculated. Such equations provide an estimate of the water-quality relations within these regions. The equations also indicate an increase in error as individual sites are combined

  14. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  15. Development, evolution, and destruction of the saline mineral area of Eocene Lake Uinta, Piceance Basin, western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Brownfield, Michael E.

    2015-01-01

    Halite and the sodium bicarbonate mineral nahcolite were deposited in Eocene-age saline Lake Uinta in the Piceance Basin, northwestern Colorado. Variations in the areal extent of saline mineral deposition through time were studied using descriptions of core and outcrop. Saline minerals have been extensively leached by groundwater, and the original extent of saline deposition was determined from the distribution of empty vugs and collapse breccias. Because vugs and breccias strongly influence groundwater movement, determining where leaching has occurred is an important consideration for in-situ oil shale extraction methods currently being developed.

  16. Raton basin assessment of coalbed methane resources. [USA - Colorado and New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S H; Kelso, B S; Lombardi, T E; Coates, J -M [Advanced Research International, Arlington, VA (USA)

    1993-02-01

    Coalbed methane resources of the Raton basin were assessed through an analysis of public and proprietary sources encompassing stratigraphic, structural, hydrologic, coal rank, and gas-content data. Mapping of coal seams within the Vermejo Formation and Raton Formation revealed several net-coal thickness maxima of 80 ft along the synclinal axis of the basin. However, this sizable coal resource is distributed among multiple, thin, laterally discontinuous coal seams; approximately 60 percent of the total coal in the Raton Formation and 50 percent in the Vermejo Formation occur in seams thinner than 4 ft. Coal rank of the basal Vermejo Formation ranges from high-volatile C to low-volatile bituminous, indicating adequate thermal maturity for methane-generation. Coal seam gas contents show considerable scatter, ranging from 4 to 810 CF/T (ash free), and vary more closely with depth below the hydrologic potentiometric surface than with depth below ground level. Exclusive of shallow and intruded coal seams, in-place coalbed methane resources are estimated at 8.4 to 12.1 TCF, with a mean average of 10.2 TCF. The apparent highest concentration of coalbed methane (24 BCF/mi[sup 2]) occurs along the La Veta trough in Colorado in an area that is geologically less well studied. A second maximum of 8 BCF/mi[sup 2] occurs southeast of Vermejo Park in New Mexico. Successful coalbed methane development in the Raton basin will require favourable coal seam geometry, depth, and reservoir properties in addition to sufficient in-place resources. Local fracturing and enhanced permeability may occur along folds, such as the Vermejo anticline, that splay off the Sangre de Cristo thrust belt. 16 refs., 9 figs.

  17. Agricultural Water Conservation in the Colorado River Basin: Alternatives to Permanent Fallowing Research Synthesis and Outreach Workshops

    Science.gov (United States)

    Udall, B. H.; Peterson, G.

    2017-12-01

    As increasing water scarcity occurs in the Colorado River Basin, water users have been looking for new sources of supply. The default solution is to transfer water from the cheapest and most plentiful source — agriculture — to supply new water demands in the region. However, if pursued in haste, and without sufficient information, the likely outcome may be permanent fallowing, along with serious economic disruption to agricultural communities, loss of valuable farmland, loss of important amenity values, and a loss of a sense of place in many rural communities within the basin. This project was undertaken to explore ways to minimize harm to agriculture if transfers out of agriculture were to occur. Four detailed synthesis reports of the four common methods used to temporarily transfer water from agriculture were produced by the project. The water saving methods covered by the reports are: (1) Deficit Irrigation of Alfalfa and other Forages; (2) Rotational Fallowing; (3) Crop Switching; and (4) Irrigation Efficiency and Water Conservation After the reports were drafted, three workshops were held, one in the Upper Basin in Grand Junction on November 4, 2016, one in the Lower Basin in Tucson on March 29, 2017, and one in Washington, DC on May 16, 2017 to disseminate the findings. Over 100 people attended these workshops.

  18. Geothermal Gradient impact on Induced Seismicity in Raton Basin, Colorado and New Mexico

    Science.gov (United States)

    Pfeiffer, K.; Ge, S.

    2017-12-01

    Since 1999, Raton Basin, located in southeastern Colorado and northern New Mexico, is the site of wastewater injection for disposing a byproduct of coal bed methane production. During 1999-2016, 29 wastewater injection wells were active in Raton Basin. Induced seismicity began in 2001 and the largest recorded earthquake, an M5.3, occurred in August 2011. Although most injection occurs in the Dakota Formation, the majority of the seismicity has been located in the crystalline basement. Previous studies involving Raton Basin focused on high injection rates and high volume wells to determine their effect on increased pore pressure. However, the geothermal gradient has yet to be studied as a potential catalyst of seismicity. Enhanced Geothermal Systems throughout the world have experienced similar seismicity problems due to water injection. Raton's geothermal gradient, which averages 49± 12°C/km, is much higher then other areas experiencing seismicity. Thermal differences between the hot subsurface and cooler wastewater injection have the potential to affect the strength of the rock and allow for failure. Therefore, we hypothesis that wells in high geothermal gradient areas will produce more frequent earthquakes due to thermal contrast from relatively cold wastewater injection. We model the geothermal gradient in the surrounding areas of the injection sites in Raton Basin to assess potential spatial relationship between high geothermal gradient and earthquakes. Preliminary results show that the fluid pressure increase from injecting cool water is above the threshold of 0.1MPa, which has been shown to induce earthquakes. In addition, temperatures in the subsurface could decrease up to 2°C at approximately 80 m from the injection well, with a temperature effect reaching up to 100 m away from the injection well.

  19. A description of the katabatic ''plume'' from Coal Creek Canyon and its fate in the Rocky Flats Area

    International Nuclear Information System (INIS)

    Coulter, R.L.; Shannon, J.D.

    1993-01-01

    Katabatic flow from Coal Creek Canyon often affects the region that includes the Rocky Flats Plant near Denver, Colorado. The flow from the canyon enters a wide, gently sloping plain approximately 5 km upwind of the plant. Measurements of this flow are combined with a theoretical analysis that describes the dimensions and strength of the flow across the plains as a function of downwind distance from Coal Creek

  20. Consumptive Water Use Analysis of Upper Rio Grande Basin in Southern Colorado.

    Science.gov (United States)

    Dubinsky, Jonathan; Karunanithi, Arunprakash T

    2017-04-18

    Water resource management and governance at the river basin scale is critical for the sustainable development of rural agrarian regions in the West. This research applies a consumptive water use analysis, inspired by the Water Footprint methodology, to the Upper Rio Grande Basin (RGB) in south central Colorado. The region is characterized by water stress, high dessert conditions, declining land health, and a depleting water table. We utilize region specific data and models to analyze the consumptive water use of RGB. The study reveals that, on an average, RGB experiences three months of water shortage per year due to the unsustainable extraction of groundwater (GW). Our results show that agriculture accounts for 77% of overall water consumption and it relies heavily on an aquifer (about 50% of agricultural consumption) that is being depleted over time. We find that, even though potato cultivation provides the most efficient conversion of groundwater resources into economic value (m 3 GW/$) in this region, it relies predominantly (81%) on the aquifer for its water supply. However, cattle, another important agricultural commodity produced in the region, provides good economic value but also relies significantly less on the aquifer (30%) for water needs. The results from this paper are timely to the RGB community, which is currently in the process of developing strategies for sustainable water management.

  1. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    Science.gov (United States)

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  2. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin.

    Science.gov (United States)

    Roberts, James J; Fausch, Kurt D; Peterson, Douglas P; Hooten, Mevin B

    2013-05-01

    Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a ≥90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. © 2013

  3. Gravity, magnetic, and physical property data in the Smoke Creek Desert area, northwest Nevada

    Science.gov (United States)

    Tilden, Janet E.; Ponce, David A.; Glen, Jonathan M.G.; Chuchel, Bruce A.; Tushman, Kira; Duvall, Alison

    2006-01-01

    The Smoke Creek Desert, located approximately 100 km (60 mi) north of Reno near the California-Nevada border, is a large basin situated along the northernmost parts of the Walker Lane Belt (Stewart, 1988), a physiographic province defined by northwest-striking topographic features and strike-slip faulting. Because geologic framework studies play an important role in understanding the hydrology of the Smoke Creek Desert, a geologic and geophysical effort was begun to help determine basin geometry, infer structural features, and estimate depth to Pre-Cenozoic rocks, or basement. In May and June of 2004, and June of 2005, the U.S. Geological Survey (USGS) collected 587 new gravity stations, more than 160 line-kilometers (100 line-miles) of truck-towed magnetometer data, and 111 rock property samples in the Smoke Creek Desert and vicinity in northwest Nevada, as part of an effort to characterize its hydrogeologic framework. In the Smoke Creek Desert area, gravity highs occur over rocks of the Skedaddle Mountains, Fox Range, Granite Range, and over portions of Tertiary volcanic rocks in the Buffalo Hills. These gravity highs likely reflect basement rocks, either exposed at the surface or buried at shallow depths. The southern Smoke Creek Desert corresponds to a 25-mGal isostatic gravity low, which corresponds with a basin depth of approximately 2 km. Magnetic highs are likely due to granitic, andesitic, and metavolcanic rocks, whereas magnetic lows are probably associated with less magnetic gneiss and metasedimentary rocks in the region. Three distinctive patterns of magnetic anomalies occur throughout the Smoke Creek Desert and Squaw Creek Valley, likely reflecting three different geological and structural settings.

  4. Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000

    Science.gov (United States)

    Sando, Steven Kent; Neitzert, Kathleen M.

    2003-01-01

    The Bureau of Reclamation has proposed construction of the Lake Andes/Wagner Irrigation Demonstration Project to investigate environmental effects of irrigation of glacial till soils substantially derived from marine shales. During 1983-2000, the U.S. Geological Survey collected hydrologic, water-quality, and sediment data in the Lake Andes and Choteau Creek Basins, and on the Missouri River upstream and downstream from Choteau Creek, to provide baseline information in support of the proposed demonstration project. Lake Andes has a drainage area of about 230 mi2 (square miles). Tributaries to Lake Andes are ephemeral. Water-level fluctuations in Lake Andes can be large, and the lake has been completely dry on several occasions. The outlet aqueduct from Lake Andes feeds into Garden Creek, which enters Lake Francis Case just upstream from Fort Randall Dam on the Missouri River. For Lake Andes tributary stations, calcium, magnesium, and sodium are approximately codominant among the cations, and sulfate is the dominant anion. Dissolved-solids concentrations typically range from about 1,000 mg/L (milligrams per liter) to about 1,700 mg/L. Major-ion concentrations for Lake Andes tend to be higher than the tributaries and generally increase downstream in Lake Andes. Proportions of major ions are similar among the different lake units (with the exception of Owens Bay), with calcium, magnesium, and sodium being approximately codominant among cations, and sulfate being the dominant anion. Owens Bay is characterized by a calcium sulfate water type. Dissolved-solids concentrations for Lake Andes typically range from about 1,400 to 2,000 mg/L. Whole-water nitrogen and phosphorus concentrations are similar among the Lake Andes tributaries, with median whole-water nitrogen concentrations ranging from about 1.6 to 2.4 mg/L, and median whole-water phosphorus concentrations ranging from about 0.5 to 0.7 mg/L. Whole-water nitrogen concentrations in Lake Andes are similar among the

  5. Atmospheric Dust in the Upper Colorado River Basin: Integrated Analysis of Digital Imagery, Total Suspended Particulate, and Meteorological Data

    Science.gov (United States)

    Urban, F. E.; Reynolds, R. L.; Neff, J. C.; Fernandez, D. P.; Reheis, M. C.; Goldstein, H.; Grote, E.; Landry, C.

    2012-12-01

    Improved measurement and observation of dust emission and deposition in the American west would advance understanding of (1) landscape conditions that promote or suppress dust emission, (2) dynamics of dryland and montane ecosystems, (3) premature melting of snow cover that provides critical water supplies, and (4) possible effects of dust on human health. Such understanding can be applied to issues of land management, water-resource management, as well as the safety and well-being of urban and rural inhabitants. We have recently expanded the scope of particulate measurement in the Upper Colorado River basin through the establishment of total-suspended-particulate (TSP) measurement stations located in Utah and Colorado with bi-weekly data (filter) collection, along with protocols for characterizing dust-on-snow (DOS) layers in Colorado mountains. A sub-network of high-resolution digital cameras has been co-located with several of the TSP stations, as well as at other strategic locations. These real-time regional dust-event detection cameras are internet-based and collect digital imagery every 6-15 minutes. Measurements of meteorological conditions to support these collections and observations are provided partly by CLIM-MET stations, four of which were deployed in 1998 in the Canyonlands (Utah) region. These stations provide continuous, near real-time records of the complex interaction of wind, precipitation, vegetation, as well as dust emission and deposition, in different land-use settings. The complementary datasets of dust measurement and observation enable tracking of individual regional dust events. As an example, the first DOS event of water year 2012 (Nov 5, 2011), as documented at Senator Beck Basin, near Silverton, Colorado, was also recorded by the camera at Island-in-the-Sky (200 km to the northwest), as well as in aeolian activity and wind data from the Dugout Ranch CLIM-MET station (170 km to the west-northwest). At these sites, strong winds and the

  6. Geochemistry and hydrodynamics of the Paradox Basin region, Utah, Colorado and New Mexico

    Science.gov (United States)

    Hanshaw, B.B.; Hill, G.A.

    1969-01-01

    The Paradox Basin region is approximately bounded by the south flank of the Uinta Basin to the north, the Uncompahgre uplift and San Juan Mountains to the east, the Four Corners structural platform to the southeast, the north rim of the Black Mesa Basin and the Grand Canyon to the south and southwest, and the Wasatch Plateau and Hurricane fault system to the west. Some of these geologic features are areas of ground-water recharge or discharge whereas others such as the Four Corners platform do not directly influence fluid movement. The aquifer systems studied were: (1) Mississippian rocks; (2) Pinkerton Trail Limestone of Wengerd and Strickland, 1954; (3) Paradox Member of the Hermosa Formation; (4) Honaker Trail Formation of Wengerd and Matheny, 1958; (5) Permian rocks. Recharge in the Paradox Basin occurs on the west flank of the San Juan Mountains and along the west side of the Uncompahgre uplift. The direction of ground-water movement in each analyzed unit is principally southwest-ward toward the topographically low outcrop areas along the Colorado River in Arizona. However, at any point in the basin, flow may be in some other direction owing to the influence of intrabasin recharge areas or local obstructions to flow, such as faults or dikes. A series of potentiometric surface maps was prepared for the five systems studied. Material used in construction of the maps included outcrop altitudes of springs and streams, drill-stem tests, water-well records, and an electric analog model of the entire basin. Many structurally and topographically high areas within the basin are above the regional potentiometric surface; recharge in these areas will drain rapidly off the high areas and adjust to the regional water level. With a few exceptions, most wells in formations above the Pennsylvanian contain fresh ( 35,000 mg/l T.D.S.) reported. Most water samples from strata below the Permian are brines of the sodium chloride type but with large amounts of calcium sulfate or

  7. Northern tamarisk beetle (Diorhabda carinulata) and tamarisk (Tamarix spp.) interactions in the Colorado River basin

    Science.gov (United States)

    Nagler, Pamela L.; Nguyen, Uyen; Bateman, Heather L.; Jarchow, Christopher; Glenn, Edward P.; Waugh, William J.; van Riper, Charles

    2018-01-01

    Northern tamarisk beetles (Diorhabda carinulata) were released in the Upper Colorado River Basin in the United States in 2004–2007 to defoliate introduced tamarisk shrubs (Tamarix spp.) in the region’s riparian zones. The primary purpose was to control the invasive shrub and reduce evapotranspiration (ET) by tamarisk in an attempt to increase stream flows. We evaluated beetle–tamarisk interactions with MODIS and Landsat imagery on 13 river systems, with vegetation indices used as indicators of the extent of defoliation and ET. Beetles are widespread and exhibit a pattern of colonize–defoliate–emigrate, so that riparian zones contain a mosaic of completely defoliated, partially defoliated, and refoliated tamarisk stands. Based on satellite data and ET algorithms, mean ET before beetle release (2000–2006) was 416 mm/year compared to postrelease (2007–2015) ET of 355 mm/year (pprojections that ET would be reduced by 300–460 mm/year. Reasons for the lower-than-expected ET reductions are because baseline ET rates are lower than initially projected, and percentage ET reduction is low because tamarisk stands tend to regrow new leaves after defoliation and other plants help maintain canopy cover. Overall reductions in tamarisk green foliage during the study are 21%. However, ET in the Upper Basin has shown a steady decline since 2007 and equilibrium has not yet been reached. Defoliation is now proceeding from the Upper Basin into the Lower Basin at a rate of 40 km/year, much faster than initially projected.

  8. Adaptation Challenges in Complex River Basins: Lessons Learned and Unlearned for the Colorado

    Science.gov (United States)

    Pulwarty, R. S.

    2008-12-01

    Climate variations affect the function and operation of existing water infrastructure - including hydropower, structural flood defenses, drainage and irrigation systems - as well as water management practices in support of efficiency and environmental needs. Selected basins around the world, including the Colorado, show agreements in model projections of increasing aridity. Adverse effects of climate change on freshwater systems aggravate the impacts of other stresses, such as population growth, changing economic activity, land-use change and urbanization and most importantly upstream-downstream winners and losers. Thus current water management practices may not be robust enough to cope with the impacts of climate change on water supply reliability. In many locations, water management does not even satisfactorily cope with current climate variability, so that large flood and drought-related environmental and economic damages occur on seasonal to decadal timescales. The recently released IPCC Technical Paper notes that adaptation procedures and risk management practices that incorporate projected hydrological changes with related uncertainties are being developed in some countries and regions.In this presentation we will review the challenges and lessons provided in drought and water resources management and optimization in the context of climate variability and projected change in the Western U.S., the European Union (including the Iberian Peninsula), the Murray-Darling Basin, and elsewhere. Since the release of the IPCC report several of the authors (including the presenter) have held meetings on comparative assessments of adaptation and its challenges in interstate and international river basins. As a first step, improved incorporation of information about current climate variability into water-related management could assist adaptation to longer-term climate change impacts. Future adaptations include technical changes that improve water use efficiency, demand

  9. Quality of water in an inactive uranium mine and its effects on the quality of water in Blue Creek, Stevens County, Washington, 1984-85. Water Resources Investigation

    International Nuclear Information System (INIS)

    Sumioka, S.S.

    1991-01-01

    The purpose of the report is to present the results of a study done to determine (1) the monthly and annual water budgets and probable variation in runoff for the drainage basin in which the mine is located; (2) if precipitation is the source of low pH water found in pit 3 and the retention pond; (3) the quality of water in pits 3 and 4, the retention pond, streamflow from the basin, Blue Creek upstream and downstream of the point the drainage enters, and near the mouth of Blue Creek; (4) the quality of ground water discharged from the basin into Blue Creek; and (5) the daily mean values of discharge, water temperature, specific conductance, and pH for mine drainage from the basin, Blue Creek upstream and downstream of the mine drainage, and near the mouth of Blue Creek. The report also describes a potential water-quality monitoring program that would allow the determination of annual loads of selected chemical constituents entering Blue Creek from the mine basin and information about the type of ground-water tracers and procedures needed to examine flow paths near the retention pond

  10. Estimation of potential runoff-contributing areas in the Kansas-Lower Republican River Basin, Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    1999-01-01

    Digital soils and topographic data were used to estimate and compare potential runoff-contributing areas for 19 selected subbasins representing soil, slope, and runoff variability within the Kansas-Lower Republican (KLR) River Basin. Potential runoff-contributing areas were estimated separately and collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented high, moderate, and low potential runoff. For infiltration-excess overland flow, various rainfall intensities and soil permeabilities were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that the subbasins with relatively high potential runoff are located in the central part of the KLR River Basin. These subbasins are Black Vermillion River, Clarks Creek, Delaware River upstream from Muscotah, Grasshopper Creek, Mill Creek (Wabaunsee County), Soldier Creek, Vermillion Creek (Pottawatomie County), and Wildcat Creek. The subbasins with relatively low potential runoff are located in the western one-third of the KLR River Basin, with one exception, and are Buffalo Creek, Little Blue River upstream from Barnes, Mill Creek (Washington County), Republican River between Concordia and Clay Center, Republican River upstream from Concordia, Wakarusa River downstream from Clinton Lake (exception), and White Rock Creek. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the KLR River Basin.

  11. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    International Nuclear Information System (INIS)

    Zabala, M.E.; Manzano, M.; Vives, L.

    2015-01-01

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO 3 -Ca type, in the middle basin it is HCO 3 -Na, and in the lower basin it is ClSO 4 –NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO 2 , calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The work studies the

  12. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Zabala, M.E., E-mail: mzabala@faa.unicen.edu.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires (Argentina); Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina); Manzano, M., E-mail: marisol.manzano@upct.es [Escuela de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas, Universidad Politécnica de Cartagena, P° de Alfonso XIII 52, E-30203 Cartagena (Spain); Vives, L., E-mail: lvives@faa.unicen.edu.ar [Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina)

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO{sub 3}-Ca type, in the middle basin it is HCO{sub 3}-Na, and in the lower basin it is ClSO{sub 4}–NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO{sub 2}, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The

  13. Geohydrology and simulation of ground-water flow in the Red Clay Creek Basin, Chester County, Pennsylvania, and New Castle County, Delaware

    Science.gov (United States)

    Vogel, Karen L.; Reif, Andrew G.

    1993-01-01

    The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per

  14. From Mountains to Plains: The Hydrogeochemistry of the Boulder Creek Watershed, Colorado during High- and Low-Flow Conditions 2000

    Science.gov (United States)

    Verplanck, P. L.; Murphy, S. F.; McCleskey, R. B.; Barber, L. B.; Roth, D. A.

    2002-05-01

    A hydrogeochemical study of the Boulder Creek watershed was undertaken to evaluate natural and anthropogenic sources of solutes and the geochemical processes that affect stream chemistry. The Boulder Creek watershed, 1160 km{2}, is in the Front Range of the Rocky Mountains in Colorado and can be delineated into five physiographic/land use regions: the headwater region (elev. 4100 to 2600 m, tundra to pine/fir forest, Precambrian and Tertiary gneisses and plutons, sparse habitation), the mountain corridor (elev. 2600 to 1750 m, ponderosa pine, Precambrian and Tertiary gneisses and plutons, small mountain communities), the urban region (elev. 1750 to 1560 m, grassland, Mesozoic sedimentary units, City of Boulder), the wastewater-dominated reach (elev. 1560 to 1540 m, grassland, Mesozoic sedimentary units, sewage treatment plant effluent), and the agriculture region (elev. 1540 to 1480 m, grassland, Mesozoic sedimentary units, mixed urban and agricultural). Potential anthropogenic sources of solutes include: mining (hardrock and aggregate), septic systems, highway runoff, urban wastewater, and agricultural practices. A 70 km reach of Boulder Creek (16 sites) and its major inflows (13 sites) were sampled during high- and low-flow conditions in 2000. At all sites, discharge was measured or estimated, and water samples were analyzed for major and trace elements and organic carbon. At selected sites, analyses also included a suite of pesticides, pharmaceuticals, and wastewater-derived organic compounds and the strontium isotopic composition. Stream water in the headwater region is a dilute Ca-Mg-HCO3-SO4- water, and in the mountain corridor a slight increase in solutes was observed. Within the urban reach solute concentrations increased, with the most dramatic increase below the sewage treatment plant. Many constituents continue to increase in concentration through the urban/agriculture region. Similar trends were observed during high- and low-flow conditions with

  15. Geochemistry of Standard Mine Waters, Gunnison County, Colorado, July 2009

    Science.gov (United States)

    Verplanck, Philip L.; Manning, Andrew H.; Graves, Jeffrey T.; McCleskey, R. Blaine; Todorov, Todor I.; Lamothe, Paul J.

    2009-01-01

    In many hard-rock-mining districts water flowing from abandoned mine adits is a primary source of metals to receiving streams. Understanding the generation of adit discharge is an important step in developing remediation plans. In 2006, the U.S. Environmental Protection Agency listed the Standard Mine in the Elk Creek drainage basin near Crested Butte, Colorado as a superfund site because drainage from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to the stream. Elk Creek flows into Coal Creek, which is a source of drinking water for the town of Crested Butte. In 2006 and 2007, the U.S. Geological Survey undertook a hydrogeologic investigation of the Standard Mine and vicinity and identified areas of the underground workings for additional work. Mine drainage, underground-water samples, and selected spring water samples were collected in July 2009 for analysis of inorganic solutes as part of a follow-up study. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 2 and 3 of the Standard Mine, two spring samples, and an Elk Creek sample. Reported analyses include field measurements (pH, specific conductance, water temperature, dissolved oxygen, and redox potential), major constituents and trace elements, and oxygen and hydrogen isotopic determinations. Overall, water samples collected in 2009 at the same sites as were collected in 2006 have similar chemical compositions. Similar to 2006, water in Level 3 did not flow out the portal but was observed to flow into open workings to lower parts of the mine. Many dissolved constituent concentrations, including calcium, magnesium, sulfate, manganese, zinc, and cadmium, in Level 3 waters substantially are lower than in Level 1 effluent. Concentrations of these dissolved constituents in water samples collected from Level 2 approach or exceed concentrations of Level 1 effluent

  16. Assimilation of ground and satellite snow observations in a distributed hydrologic model to improve water supply forecasts in the Upper Colorado River Basin

    Science.gov (United States)

    Micheletty, P. D.; Day, G. N.; Quebbeman, J.; Carney, S.; Park, G. H.

    2016-12-01

    The Upper Colorado River Basin above Lake Powell is a major source of water supply for 25 million people and provides irrigation water for 3.5 million acres. Approximately 85% of the annual runoff is produced from snowmelt. Water supply forecasts of the April-July runoff produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC), are critical to basin water management. This project leverages advanced distributed models, datasets, and snow data assimilation techniques to improve operational water supply forecasts made by CBRFC in the Upper Colorado River Basin. The current work will specifically focus on improving water supply forecasts through the implementation of a snow data assimilation process coupled with the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM). Three types of observations will be used in the snow data assimilation system: satellite Snow Covered Area (MODSCAG), satellite Dust Radiative Forcing in Snow (MODDRFS), and SNOTEL Snow Water Equivalent (SWE). SNOTEL SWE provides the main source of high elevation snowpack information during the snow season, however, these point measurement sites are carefully selected to provide consistent indices of snowpack, and may not be representative of the surrounding watershed. We address this problem by transforming the SWE observations to standardized deviates and interpolating the standardized deviates using a spatial regression model. The interpolation process will also take advantage of the MODIS Snow Covered Area and Grainsize (MODSCAG) product to inform the model on the spatial distribution of snow. The interpolated standardized deviates are back-transformed and used in an Ensemble Kalman Filter (EnKF) to update the model simulated SWE. The MODIS Dust Radiative Forcing in Snow (MODDRFS) product will be used more directly through temporary adjustments to model snowmelt parameters, which should improve melt estimates in areas affected by dust on snow. In

  17. Application of a calibrated/validated Agricultural Policy/Environmental eXtender model to assess sediment and nutrient delivery from the Wildcat Creek Mississippi River Basin Initiative – Cooperative Conservation Partnership

    Science.gov (United States)

    The Wildcat Creek, a tributary to the Wabash River was identified by the USDA Natural Resources Conservation Service (NRCS) as a priority watershed for its high sediment and nutrient loading contributions to the Mississippi River. As part of the Mississippi River Basin Initiative (MRBI), the incorpo...

  18. Northern tamarisk beetle (Diorhabda carinulata) and tamarisk (Tamarix spp.) interactions in the Colorado River basin

    Science.gov (United States)

    Nagler, Pamela L.; Nguyen, Uyen; Bateman, Heather L.; Jarchow, Christopher; Glenn, Edward P.; Waugh, William J.; van Riper, Charles

    2018-01-01

    Northern tamarisk beetles (Diorhabda carinulata) were released in the Upper Colorado River Basin in the United States in 2004–2007 to defoliate introduced tamarisk shrubs (Tamarix spp.) in the region’s riparian zones. The primary purpose was to control the invasive shrub and reduce evapotranspiration (ET) by tamarisk in an attempt to increase stream flows. We evaluated beetle–tamarisk interactions with MODIS and Landsat imagery on 13 river systems, with vegetation indices used as indicators of the extent of defoliation and ET. Beetles are widespread and exhibit a pattern of colonize–defoliate–emigrate, so that riparian zones contain a mosaic of completely defoliated, partially defoliated, and refoliated tamarisk stands. Based on satellite data and ET algorithms, mean ET before beetle release (2000–2006) was 416 mm/year compared to postrelease (2007–2015) ET of 355 mm/year (p<0.05) for a net reduction of 61 mm/year. This is lower than initial literature projections that ET would be reduced by 300–460 mm/year. Reasons for the lower-than-expected ET reductions are because baseline ET rates are lower than initially projected, and percentage ET reduction is low because tamarisk stands tend to regrow new leaves after defoliation and other plants help maintain canopy cover. Overall reductions in tamarisk green foliage during the study are 21%. However, ET in the Upper Basin has shown a steady decline since 2007 and equilibrium has not yet been reached. Defoliation is now proceeding from the Upper Basin into the Lower Basin at a rate of 40 km/year, much faster than initially projected.

  19. DELIVERABLE 1.1.1 REGIONAL PARADOX FORMATION STRUCTURE AND ISOCHORE MAPS, BLANDING SUB-BASIN, UTAH

    International Nuclear Information System (INIS)

    McClure, Kevin; Morgan, Craig D.; Chidsey, Thomas C. Jr.; Eby, David E.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field (figure 1). However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  20. Simulations of forest mortality in Colorado River basin

    Science.gov (United States)

    Wei, L.; Xu, C.; Johnson, D. J.; Zhou, H.; McDowell, N.

    2017-12-01

    The Colorado River Basin (CRB) had experienced multiple severe forest mortality events under the recent changing climate. Such forest mortality events may have great impacts on ecosystem services and water budget of the watershed. It is hence important to estimate and predict the forest mortality in the CRB with climate change. We simulated forest mortality in the CRB with a model of plant hydraulics within the FATES (the Functionally Assembled Terrestrial Ecosystem Simulator) coupled to the DOE Earth System model (ACME: Accelerated Climate Model of Energy) at a 0.5 x 0.5 degree resolution. Moreover, we incorporated a stable carbon isotope (δ13C) module to ACME(FATE) and used it as a new predictor of forest mortality. The δ13C values of plants with C3 photosynthetic pathway (almost all trees are C3 plants) can indicate the water stress plants experiencing (the more intensive stress, the less negative δ13C value). We set a δ13C threshold in model simulation, above which forest mortality initiates. We validate the mortality simulations with field data based on Forest Inventory and Analysis (FIA) data, which were aggregated into the same spatial resolution as the model simulations. Different mortality schemes in the model (carbon starvation, hydraulic failure, and δ13C) were tested and compared. Each scheme demonstrated its strength and the plant hydraulics module provided more reliable simulations of forest mortality than the earlier ACME(FATE) version. Further testing is required for better forest mortality modelling.

  1. Annual compilation and analysis of hydrologic data for Escondido Creek, San Antonio River basin, Texas

    Science.gov (United States)

    Reddy, D.R.

    1971-01-01

    IntroductionHistory of Small Watershed Projects in TexasThe U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of the "Flood Control Act of 1936 and 1944" and "Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. The Soil Conservation Service has found a total of approximately 3,500 floodwater-retarding structures to be physically and economically feasible in Texas. As of September 30, 1970, 1,439 of these structures had been built.This watershed-development program will have varying but important effects on the surface and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data under natural and developed conditions are needed to appraise the effects of the structures on the yield and mode of occurrence of runoff.Hydrologic investigations of these small watersheds were begun by the Geological Survey in 1951 and are now being made in 12 study areas (fig. 1). These investigations are being made in cooperation with the Texas Water Development Board, the Soil Conservation Service, the San Antonio River Authority, the city of Dallas, and the Tarrant County Water Control and Improvement District No. 1. The 12 study areas were chosen to sample watershed having different rainfall, topography, geology, and soils. In five of the study areas, (North, Little Elm, Mukewater, little Pond-North Elm, and Pin Oak Creeks), streamflow and rainfall records were collected prior to construction of the floodwater-retarding structures, thus affording the opportunity for analyses of the conditions "before and after" development. A summary of the development of the floodwater-retarding structures in each study areas of September 30, 1970, is shown in table 1.Objectives of the Texas Small Watersheds ProjectThe purpose of these investigations is to collect sufficient data to meeting the

  2. Surface Water Interim Measures/Interim Remedial Action Plan/Environmental Assessment and Decision Document for South Walnut Creek Basin (Operable Unit No. 2)

    International Nuclear Information System (INIS)

    1991-01-01

    The Department of Energy (DOE) is pursuing an Interim Measure/Interim Remedial Action (IM/IRA) at the 903 Pad, Mound, and East Trenches Areas (Operable Unit No. 2) at the Rocky Flats Plant (RFP). This IM/IRA is to be conducted to minimize the release from these areas of hazardous substances that pose a potential threat to the public health and environment. The Plan involved the collection of contaminated surface water at specific locations, treatment by chemical precipitation, cross-flow membrane filtration and granular activated carbon (GAC) adsorption, and surface discharge of treated water. Information for the initial configuration of the Plan is presented in the document entitled ''Proposed Interim Measures/Interim Remedial Action Plan and Decision Document, 903 Pad, Mound, and East Trenches Areas, Operable Unit No. 2'' (IM/IRAP) dated 26 September 1990. Information concerning the proposed Surface Water IM/IRA was presented during a public meeting held from 7 to 10 p.m., Tuesday, 23 October 1990, at the Westminster City Park Recreation Center in Westminster, Colorado. This Responsiveness Summary presents DOE's response to all comments received at the public meeting, as well as those mailed to DOE during the public comment period which ended 24 November 1990. There were a number of technical comments on the plan that DOE has addressed herein. It is noted that several major issues were raised by the comments. Regardless of the estimated low risk to the public from construction and water transport activities, the popular sentiment of the public, based on comments received, is strong concern over worker and public health risks from these activities. In the light of public and municipal concerns, DOE proposes to eliminate from this IM/IRA the interbasin transfer of Woman Creek seepage to the South Walnut Creek drainage and to address collection and treatment of contaminated South Walnut Creek and Woman Creek surface water under two separate IM/IRAs

  3. Anticipated transport of Cs-137 from Steel Creek following L-Area restart

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1982-01-01

    Heat exchanger cooling water, spent fuel storage basin effluents, and process water from P and L-Reactor Areas were discharged to Steel Creek beginning in 1954. Cs-137 was the most significant radionuclide discharged to the environs. Once the Cs-137 was discharged from P and L-Area reactors to Steel Creek, it became associated with silt and clay in the Steel Creek system. After its association with the silt and clay, the Cs-137 becomes part of the sediment transport process and undergoes continual deposition-resuspension in the stream system. This report discusses the expected fate and transport of Cs-137 currently present in the Steel Creek system after L-Reactor restart

  4. Discharge, sediment, and water chemistry in Clear Creek, western Nevada, water years 2013–16

    Science.gov (United States)

    Huntington, Jena M.; Riddle, Daniel J.; Paul, Angela P.

    2018-05-01

    Clear Creek is a small stream that drains the eastern Carson Range near Lake Tahoe, flows roughly parallel to the Highway 50 corridor, and discharges to the Carson River near Carson City, Nevada. Historical and ongoing development in the drainage basin is thought to be affecting Clear Creek and its sediment-transport characteristics. Previous studies from water years (WYs) 2004 to 2007 and from 2010 to 2012 evaluated discharge, selected water-quality parameters, and suspended-sediment concentrations, loads, and yields at three Clear Creek sampling sites. This report serves as a continuation of the data collection and analyses of the Clear Creek discharge regime and associated water-chemistry and sediment concentrations and loads during WYs 2013–16.Total annual sediment loads ranged from 870 to 5,300 tons during WYs 2004–07, from 320 to 1,770 tons during WYs 2010–12, and from 50 to 200 tons during WYs 2013–16. Ranges in annual loads during the three study periods were not significantly different; however, total loads were greater during 2004–07 than they were during 2013–16. Annual suspended-sediment loads in WYs 2013–16 showed no significant change since WYs 2010–12 at sites 1 (U.S. Geological Survey reference site 10310485; Clear Creek above Highway 50, near Spooner Summit, Nevada) or 2 (U.S. Geological Survey streamgage 10310500; Clear Creek above Highway 50, near Spooner Summit, Nevada), but significantly lower loads at site 3 (U.S. Geological Survey site 10310518; Clear Creek at Fuji Park, at Carson City, Nevada), supporting the theory of sediment deposition between sites 2 and 3 where the stream gradient becomes more gradual. Currently, a threshold discharge of about 3.3 cubic feet per second is required to mobilize streambed sediment (bedload) from site 2 in Clear Creek. Mean daily discharge was significantly lower in 2010–12 than in 2004–07 and also significantly lower in 2013–16 than in 2010–12. During this study, lower bedload, and

  5. Irrigation-water quality during 1976 irrigation season in the Sulphur Creek basin, Yakima and Benton counties, Washington

    Science.gov (United States)

    Boucher, P.R.; Fretwell, M.O.

    1982-01-01

    A water-quality-sampling network was designed for the Sulphur Creek basin to observe the effects of farming practices on irrigation. Sediment and nutrient yield, discharge, and water temperature data were collected during the 1976 irrigation season and the following fall and winter. The suspended-sediment yield of the basin during this period was 2.0 tons per acre of irrigated cropland. Only about 3% of the net outflow of sediment occurred during the nonirrigation season. The yield computed by subbasin ranged from 0.7 to 7 tons per acre, depending mainly on land slope, but a high percentage of orchard land in the subbasins was probably also significant in reducing loads. Nutrient outflows during the study period were 1,180,000 pounds of nitrogen and 120,000 pounds of phosphorous. Nitrate-plus-nitrite represent 70% of the nitrogen outflow in the irrigation season and 84% in the nonirrigation season. The monitoring network was discontinued at the end of the study period, due largely to insufficient farmer participation. Network sensitivity in the control subbasins was inadequate to detect the effects of a planned demonstration program of best management practices. (USGS)

  6. A detailed study of heat flow at the Fifth Water Site, Utah, in the Basin and Range-Colorado Plateaus transition

    Science.gov (United States)

    Powell, William G.; Chapman, David S.

    1990-05-01

    A detailed heat flow study has been conducted at a site in the southern Wasatch Mountains, Utah, in the thermal transition between the Colorado Plateau and Basin and Range tectonic provinces of the western U.S.A. Two wells, 600 m deep and only 400 m apart, in rugged terrain provided constraints on topographic and microclimatic effects and helped demonstrate the efficacy but also some inadequacies of commonly used heat flow corrections. Microclimatic effects changed the subsurface thermal gradients by up to 6%; atmospheric temperature lapse, insolation and vegetation all contribute about equally to the subsurface effects. The topographic disturbance decreased gradients by as much as 25%. Paleoclimate effects may decrease the heat flow by 7%, but the local paleoclimate is not well constrained and this value is uncertain. The rate of erosion in the Wasatch Mountains is also very poorly known, but is an important influence on the borehole temperature measurements. For reasonable bounds on the erosion rate of 0.1-1.0 mm y -1, acting over the past 10-20 My, the erosional history of the Wasatch Mountains contributes from 10% to 50% of the observed heat flow; lower values are more probable. The heat flow at Fifth Water is greater than 90 mW m -2, and possibly as high as 210 mW m -2, depending upon the paleoclimatic and erosional scenarios assumed. Our preferred value of corrected heat flow is 150 ± 10 mWm -2. This value is significantly higher than nearby heat flow determinations in both the Colorado Plateau and Basin and Range provinces, although well within the range of all Basin and Range heat flow estimates. Cooling of magma bodies in the upper crust and upwelling groundwater are unlikely mechanisms for the elevated heat flow at this site.

  7. Hydrologic data for North Creek, Trinity River basin, Texas, 1975

    Science.gov (United States)

    Kidwell, C.C.

    1977-01-01

    This report contains the rainfall, runoff, and storage data collected during the 1975 water year for the 21.6-square-mile area above the stream-gaging station North Creek near Jacksboro, Texas. The weighted-mean rainfall in the study area during the water year was 39.01 inches, which is greater than the 18-year average of 30.21 inches for the period 1958-75. Monthly rainfall totals ranged from 1.04 inches in November to 7.94 inches in May. The mean discharge for 1975 at the stream-gaging station was 5.98 cfs, compared with the 14-year (1957-70) average of 5.75 cfs. The annual runoff from the basin above the stream-gaging station was 4,330 acre-feet or 3.76 inches. Three storms were selected for detailed computations for the 1975 water year. The storms occurred on Oct. 30-31, 1974, May 2, 1975 , and Aug. 26, 1975. Rainfall and discharge were computed on the basis of a refined time breakdown. Patterns of the storms are illustrated by hydrographs and mass curves. A summary of rainfall-runoff data is tabulated. There are five floodwater-retarding structures in the study area. These structures have a total capacity of 4,425 acre-feet below flood-spillway crests and regulate streamflow from 16.3 square miles, or 75 percent of the study area. A summary of the physical data at each of the floodwater-retarding structures is included. (Woodard-USGS)

  8. Fish Creek Rim Research Natural Area: guidebook supplement 50

    Science.gov (United States)

    Reid Schuller; Ian Grinter

    2016-01-01

    This guidebook describes major biological and physical attributes of the 3531-ha (8,725-ac) Fish Creek Rim Research Natural Area located within the Northern Basin and Range ecoregion and managed by the Bureau of Land Management, Lakeview District (USDI BLM 2003).

  9. Trends in precipitation and streamflow and changes in stream morphology in the Fountain Creek watershed, Colorado, 1939-99

    Science.gov (United States)

    Stogner, Sr., Robert W.

    2000-01-01

    The Fountain Creek watershed, located in and along the eastern slope of the Front Range section of the southern Rocky Mountains, drains approximately 930 square miles of parts of Teller, El Paso, and Pueblo Counties in eastern Colorado. Streamflow in the watershed is dominated by spring snowmelt runoff and storm runoff during the summer monsoon season. Flooding during the 1990?s has resulted in increased streambank erosion. Property loss and damage associated with flooding and bank erosion has cost area residents, businesses, utilities, municipalities, and State and Federal agencies millions of dollars. Precipitation (4 stations) and streamflow (6 stations) data, aerial photographs, and channel reconnaissance were used to evaluate trends in precipitation and streamflow and changes in channel morphology. Trends were evaluated for pre-1977, post-1976, and period-of-record time periods. Analysis revealed the lack of trend in total annual and seasonal precipitation during the pre-1977 time period. In general, the analysis also revealed the lack of trend in seasonal precipitation for all except the spring season during the post-1976 time period. Trend analysis revealed a significant upward trend in long-term (period of record) total annual and spring precipitation data, apparently due to a change in total annual precipitation throughout the Fountain Creek watershed. During the pre-1977 time period, precipitation was generally below average; during the post- 1976 time period, total annual precipitation was generally above average. During the post- 1976 time period, an upward trend in total annual and spring precipitation was indicated at two stations. Because two of four stations evaluated had upward trends for the post-1976 period and storms that produce the most precipitation are isolated convection storms, it is plausible that other parts of the watershed had upward precipitation trends that could affect trends in streamflow. Also, because of the isolated nature of

  10. Factors controlling streambed coverage of Didymosphenia geminata in two regulated streams in the Colorado Front Range

    OpenAIRE

    Miller, Matthew P.; McKnight, Diane M.; Cullis, James D.; Greene, Alicia; Vietti, Kristin; Liptzin, Daniel

    2009-01-01

    Didymosphenia geminata is a stalk-forming freshwater diatom which was historically found primarily in oligotrophic lakes and streams, but has recently become a nuisance species in many lotic systems worldwide. In the last 5–8 years, D. geminata has become established in Boulder Creek and South Boulder Creek, two regulated montane streams in the Front Range of the Colorado Rocky Mountains. Factors that may influence the growth of D. geminata were monitored during the summer of 2006. D. geminat...

  11. Characterizing Drought Risk Management and Assessing the Robustness of Snowpack-based Drought Indicators in the Upper Colorado River Basin.

    Science.gov (United States)

    Livneh, B.; Badger, A.; Lukas, J.; Dilling, L.; Page, R.

    2017-12-01

    Drought conditions over the past two decades have arisen during a time of increasing water demands in the Upper Colorado River Basin. The Basin's highly allocated and diverse water systems raise the question of how drought-based information, such as snowpack, streamflow, and reservoir conditions, can be used to inform drought risk management. Like most of the western U.S., snow-water equivalent (SWE) at key dates during the year (e.g., April 1) is routinely used in water resource planning because it is often the highest observed value during the season and it embodies stored water to be released, through melt, during critical periods later in the summer. This presentation will first focus on how water managers on Colorado's Western Slope (a) perceive drought-related risk, (b) use and access drought information, and (c) respond to drought. Preliminary findings will be presented from in-person interviews, document analysis, observations of planning meetings, and other interactions with seven water-management entities across the Western Slope. The second part of the presentation will focus on how the predictive power of snowpack-based drought indicators—identified as the most useful and reliable drought indicator by regional water stakeholders—are expected change in a warmer world, i.e. where expectations are for more rain versus snow, smaller snowpacks, and earlier snowmelt and peak runoff. We will present results from hydrologic simulations using climate projection to examine how a warming climate will affect the robustness of these snowpack-based drought indicators by mid-century.

  12. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  13. Analytical Results for 35 Mine-Waste Tailings Cores and Six Bed-Sediment Samples, and An Estimate of the Volume of Contaminated Material at Buckeye Meadow on Upper Basin Creek, Northern Jefferson County, Montana

    Science.gov (United States)

    Fey, David L.; Church, Stan E.; Finney, Christopher J.

    1999-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubilization. Flotation-mill tailings in the meadow below the Buckeye mine, hereafter referred to as the Buckeye mill-tailings site, have been identified as significant contributors to water quality degradation of Basin Creek, Montana. Basin Creek is one of three tributaries to the Boulder River in the study area; bed sediments and waters draining from the Buckeye mine have also been implicated. Geochemical analysis of 35 tailings cores and six bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb,and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms that constitute their food. A suite of one-inch cores of dispersed flotation-mill tailings and underlying premining material was taken from a large, flat area north of Basin Creek near the site of the Buckeye mine. Thirty-five core samples were taken and divided into 204 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid digestion. Results of the core analyses show that the elements listed above are present at moderate to very high concentrations (arsenic to 63,000 ppm, silver to 290 ppm, cadmium to 370 ppm, copper to 4,800 ppm, lead to 93,000 ppm, and zinc to 23,000 ppm). Volume calculations indicate that an estimated 8,400 metric tons of contaminated material are present at the site. Six bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HCl-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of Basin Creek are only slightly impacted by past mining above the Buckeye-Enterprise complex, moderately impacted at the upper (eastern

  14. Stream profile analysis using a step backwater model for selected reaches in the Chippewa Creek basin in Medina, Wayne, and Summit Counties, Ohio

    Science.gov (United States)

    Straub, David E.; Ebner, Andrew D.

    2011-01-01

    The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.

  15. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    Science.gov (United States)

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    , less than 10 milligrams per liter, in median suspended-sediment concentration for either basin. During low-flow conditions in 2004 and 2005, previously mined areas investigated on Harrison Creek and on Frying Pan Creek did not contribute substantial suspended sediments to sample sites downstream from the mined areas. No substantial mining-related water- or sediment-quality problems were detected at any of the sites investigated in the upper Birch Creek watershed during low-flow conditions. Average annual streamflow and precipitation were near normal in 2002 and 2003. Drought conditions, extreme forest fire impact, and low annual streamflow set apart the 2004 and 2005 summer seasons. Daily mean streamflow for upper Birch Creek varied throughout the period of record-from maximums of about 1,000 cubic feet per second to minimums of about 20 cubic feet per second. Streamflow increased and decreased rapidly in response to rainfall and rapid snowmelt events because the steep slopes, thin soil cover, and permafrost areas in the watershed have little capacity to retain runoff. Median suspended-sediment concentrations for the 115 paired samples from Frying Pan Creek and 101 paired samples from Harrison Creek were less than the 20 milligrams per liter total maximum daily load. The total maximum daily load was set by the U.S. Environmental Protection Agency for the upper Birch Creek basin in 1996. Suspended-sediment paired-sample data were collected using automated samplers in 2004 and 2005, primarily during low-flow conditions. Suspended-sediment concentrations in grab samples from miscellaneous sites ranged from less than 1 milligram per liter during low-flow conditions to 1,386 milligrams per liter during a high-flow event on upper Birch Creek. Streambed-sediment samples were collected at six sites on Harrison Creek, two sites on Frying Pan Creek, and one site on upper Birch Creek. Trace-element concentrations of mercury, lead, and zinc in streambed sedimen

  16. Spring runoff water-chemistry data from the Standard Mine and Elk Creek, Gunnison County, Colorado, 2010

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Mast, M. Alisa; Marsik, Joseph; McCleskey, R. Blaine

    2011-01-01

    Water samples were collected approximately every two weeks during the spring of 2010 from the Level 1 portal of the Standard Mine and from two locations on Elk Creek. The objective of the sampling was to: (1) better define the expected range and timing of variations in pH and metal concentrations in Level 1 discharge and Elk Creek during spring runoff; and (2) further evaluate possible mechanisms controlling water quality during spring runoff. Samples were analyzed for major ions, selected trace elements, and stable isotopes of oxygen and hydrogen (oxygen-18 and deuterium). The Level 1 portal sample and one of the Elk Creek samples (EC-CELK1) were collected from the same locations as samples taken in the spring of 2007, allowing comparison between the two different years. Available meteorological and hydrologic data suggest that 2010 was an average water year and 2007 was below average. Field pH and dissolved metal concentrations in Level 1 discharge had the following ranges: pH, 2.90 to 6.23; zinc, 11.2 to 26.5 mg/L; cadmium, 0.084 to 0.158 mg/L; manganese, 3.23 to 10.2 mg/L; lead, 0.0794 to 1.71 mg/L; and copper, 0.0674 to 1.14 mg/L. These ranges were generally similar to those observed in 2007. Metal concentrations near the mouth of Elk Creek (EC-CELK1) were substantially lower than in 2007. Possible explanations include remedial efforts at the Standard Mine site implemented after 2007 and greater dilution due to higher Elk Creek flows in 2010. Temporal patterns in pH and metal concentrations in Level 1 discharge were similar to those observed in 2007, with pH, zinc, cadmium, and manganese concentrations generally decreasing, and lead and copper generally increasing during the snowmelt runoff period. Zinc and cadmium concentrations were inversely correlated with flow and thus apparently dilution-controlled. Lead and copper concentrations were inversely correlated with pH and thus apparently pH-controlled. Zinc, cadmium, and manganese concentrations near the

  17. DELIVERABLE 2.1.1 POROSITY/PERMEABILITY CROSS-PLOTS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    International Nuclear Information System (INIS)

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  18. Fisheries Enhancement in the Fish Creek Basin; Evaluation of In-Channel and Off-Channel Projects, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everest, Fred H.; Sedell, James R. (Oregon State University, Pacific Northwest Forest and Range Experiment Station, Corvallis, OR); Wolfe, John (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR)

    1985-07-01

    This S-year project which began in 1983 is designed to construct and evaluate habitat improvements in the Fish Creek basin by personnel of the Estacada Ranger District, Ht. Hood National Forest, and the Pacific Northwest Forest and Range Experiment Station. The work is jointly funded by BPA and USDA-Forest Service. The evaluation has focused on activities designed to improve spawning and rearing habitat for chinook and coho salmon and steelhead trout. Specific habitat improvements being evaluated include: boulder berms, an off-channel pond, a side-channel, addition of large woody debris to stream edge habitats, and hardwood plantings to improve riparian vegetation. The initial phases of habitat work have proceeded cautiously in concert with the evaluation so that knowledge gained could be immediately applied to future proposed habitat work. The evaluation has been conducted at the basin level, rather than reach or site level, and has focused intensely on identification of factors limiting production of salmonids in Fish Creek, as well as physical and biological changes resulting from habitat improvement. Identification of limiting factors has proven to be difficult and requires several years of all-season investigation. Results of this work to date indicate that spawning habitat is not limiting production of steelhead or coho in the basin. Coho habitat is presently underseeded because of inadequate escapement. Key summer habitats for coho, age 0 and age 1+ steelhead are beaver ponds, side channels, and pools, respectively. Key winter habitats appear to be groundwater-fed side channels and boulder-rubble stream margins with 30+ cm depth and low velocity water. Additional work is needed to determine whether summer habitat or winter habitat is limiting steelhead and coho production. Chinook use of the basin appears to be related to the timing of fall freshets that control migratory access into the system. Instream habitat improvements show varying degrees of promise

  19. Sources of coal-mine drainage and their effects on surface-water chemistry in the Claybank Creek basin and vicinity, north-central Missouri, 1983-84

    Science.gov (United States)

    Blevins, Dale W.

    1989-01-01

    Eighteen sources of drainage related to past coal-mining activity were identified in the Claybank Creek, Missouri, study area, and eight of them were considered large enough to have detectable effects on receiving streams. However, only three sources (two coal-waste sites and one spring draining an underground mine) significantly affected the chemistry of water in receiving streams. Coal wastes in the Claybank Creek basin contributed large quantities of acid drainage to receiving streams during storm runoff. The pH of coal-waste runoff ranged from 2.1 to 2.8. At these small pH values, concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards established for these constituents. Effects of acid storm runoff were detected near the mouth of North Fork Claybank Creek where the pH during a small storm was 3.9. Coal wastes in the streambeds and seepage from coal wastes also had significant effects on receiving streams during base flows. The receiving waters had pH values between 2.8 and 3.5, and concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards. Most underground mines in the North Fork Claybank Creek basin seem to be hydraulically connected, and about 80 percent of their discharge surfaced at one site. Drainage from the underground mines contributed most of the dissolved constituents in North Fork Claybank Creek during dry weather. Underground-mine water always had a pH near 5.9 and was well-buffered. It had a dissolved-sulfate concentration of about 2,400 milligrams per liter, dissolved-manganese concentrations ranging from 4.0 to 5.3 milligrams per liter, and large concentrations of ferrous iron. Iron was in the ferrous state because of reducing conditions in the mines. When underground-mine drainage reached the ground surface, the ferrous iron was oxidized and precipitated to

  20. Hydrologic data for North Creek, Trinity River basin, Texas, 1979

    Science.gov (United States)

    Kidwell, C.C.

    1981-01-01

    This report contains rainfall and runoff data collected during the 1979 water year for the 21.6-square mile area above the stream-gaging station North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are collected to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations are included for one storm during the 1979 water year at the stream-gaging station. (USGS)

  1. Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin

    Science.gov (United States)

    Geldon, Arthur L.

    2003-01-01

    The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone

  2. DELIVERABLE 1.3.1 GEOPHYSICAL WELL LOG/CORE DESCRIPTIONS, CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    International Nuclear Information System (INIS)

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  3. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    Science.gov (United States)

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from

  4. Geologic map of the Weldona 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-03-21

    The Weldona 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Weldona quadrangle. During the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling deep paleochannels now covered by younger alluvium. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at their confluences, forming a broad, low-gradient fan of sidestream alluvium that could have occasionally dammed the river for short periods of time. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly

  5. Hydrologic data for North Creek, Trinity River basin, Texas, 1976

    Science.gov (United States)

    Kidwell, C.C.

    1978-01-01

    This report contains rainfall and runoff data collected during the 1976 water year for a 21.6-square mile area above the stream-gaging station on North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are used to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations, including hydrographs and mass curves, are included for two storm periods during the 1976 water year at the stream-gaging station. (Woodard-USGS)

  6. Hydrogeologic and stratigraphic data pertinent to uranium mining, Cheyenne Basin, Colorado. Information series 12

    International Nuclear Information System (INIS)

    Kirkham, R.M.; O'Leary, W.; Warner, J.W.

    1980-01-01

    Recoverable low-grade uranium deposits occur in the Upper Cretaceous Fox Hills Sandstone and Laramie Formation in the Cheyenne Basin, Colorado. One of these deposits, the Grover deposit, has been test mined on a pilot scale using in-situ solution-mining techniques. A second deposit, the Keota deposit, is currently being licensed and will produce about 500,000 lb/yr (227,000 kg/yr) of yellowcake also using in-situ solution-mining techniques. Other uranium deposits exist in this area and will also probably be solution mined, although open-pit mining may possibly be employed at a few locations in the Cheyenne Basin. One of the principal environmental impacts of this uranium-mining activity is the potential effect on ground-water quality and quantity. In order to fully assess potential ground-water impacts, regulatory agencies and mine planners and operators must be familiar with regional geologic and hydrologic characteristics of the basin. The Oligocene White River Group and Upper Cretaceous Laramie Formation, Fox Hills Sandstone, and Pierre Shale contain important aquifers which supply water for domestic, stock-watering, irrigation, and municipal purposes in the study area. Should uranium mining seriously impact shallower aquifers, the upper Pierre and lower Fox Hills aquifers may become important sources of water. Water samples collected and analyzed from over 100 wells during this investigation provide baseline water-quality data for much of the study area. These analyses indicate water quality is highly variable not only between aquifers, but also within a particular aquifer. Many of the wells yield water that exceeds US Public Health drinking water standards for pH, TDS, sulfate, manganese, iron and selenium. Uranium, molybdenum, and vanadium concentrations are also high in many of these wells. 8 figures

  7. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques; SEMIANNUAL

    International Nuclear Information System (INIS)

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laural L.

    2001-01-01

    The project's primary objective was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox Basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 25 to 50 million barrels (4-8 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performance(s), and report associated validation activities

  8. Adapting to a Changing Colorado River: Making Future Water Deliveries More Reliable Through Robust Management Strategies

    Science.gov (United States)

    Groves, D.; Bloom, E.; Fischbach, J. R.; Knopman, D.

    2013-12-01

    The U.S. Bureau of Reclamation and water management agencies representing the seven Colorado River Basin States initiated the Colorado River Basin Study in January 2010 to evaluate the resiliency of the Colorado River system over the next 50 years and compare different options for ensuring successful management of the river's resources. RAND was asked to join this Basin Study Team in January 2012 to help develop an analytic approach to identify key vulnerabilities in managing the Colorado River basin over the coming decades and to evaluate different options that could reduce this vulnerability. Using a quantitative approach for planning under uncertainty called Robust Decision Making (RDM), the RAND team assisted the Basin Study by: identifying future vulnerable conditions that could lead to imbalances that could cause the basin to be unable to meet its water delivery objectives; developing a computer-based tool to define 'portfolios' of management options reflecting different strategies for reducing basin imbalances; evaluating these portfolios across thousands of future scenarios to determine how much they could improve basin outcomes; and analyzing the results from the system simulations to identify key tradeoffs among the portfolios. This talk will describe RAND's contribution to the Basin Study, focusing on the methodologies used to to identify vulnerabilities for Upper Basin and Lower Basin water supply reliability and to compare portfolios of options. Several key findings emerged from the study. Future Streamflow and Climate Conditions Are Key: - Vulnerable conditions arise in a majority of scenarios where streamflows are lower than historical averages and where drought conditions persist for eight years or more. - Depending where the shortages occur, problems will arise for delivery obligations for the upper river basin and the lower river basin. The lower river basin is vulnerable to a broader range of plausible future conditions. Additional Investments in

  9. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  10. Community-based restoration of desert wetlands: the case of the Colorado River delta

    Science.gov (United States)

    Osvel Hinojosa-Huerta; Mark Briggs; Yamilett Carrillo-Guerroro; Edward P. Glenn; Miriam Lara-Flores; Martha Roman-Rodriguez

    2005-01-01

    Wetland areas have been drastically reduced through the Pacific Flyway and the Sonoran Desert, with severe consequences for avian populations. In the Colorado River delta, wetlands have been reduced by 80 percent due to water management practices in the Colorado River basin. However, excess flows and agricultural drainage water has restored some areas, providing...

  11. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  12. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    Science.gov (United States)

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  13. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2014

    Science.gov (United States)

    Thomas, Judith C.

    2015-10-07

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Thirty wells total were installed for this project: 10 in 2012 (DS 923, http://dx.doi.org/10.3133/ds923), and 20 monitoring wells were installed during April and June 2014 which are presented in this report. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system can provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  14. Preliminary assessment of channel stability and bed-material transport along Hunter Creek, southwestern Oregon

    Science.gov (United States)

    Jones, Krista L.; Wallick, J. Rose; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Risley, John C.

    2011-01-01

    This preliminary assessment of (1) bed-material transport in the Hunter Creek basin, (2) historical changes in channel condition, and (3) supplementary data needed to inform permitting decisions regarding instream gravel extraction revealed the following: Along the lower 12.4 km (kilometers) of Hunter Creek from its confluence with the Little South Fork Hunter Creek to its mouth, the river has confined and unconfined segments and is predominately alluvial in its lowermost 11 km. This 12.4-km stretch of river can be divided into two geomorphically distinct study reaches based primarily on valley physiography. In the Upper Study Reach (river kilometer [RKM] 12.4-6), the active channel comprises a mixed bed of bedrock, boulders, and smaller grains. The stream is confined in the upper 1.4 km of the reach by a bedrock canyon and in the lower 2.4 km by its valley. In the Lower Study Reach (RKM 6-0), where the area of gravel bars historically was largest, the stream flows over bed material that is predominately alluvial sediments. The channel alternates between confined and unconfined segments. The primary human activities that likely have affected bed-material transport and the extent and area of gravel bars are (1) historical and ongoing aggregate extraction from gravel bars in the study area and (2) timber harvest and associated road construction throughout the basin. These anthropogenic activities likely have varying effects on sediment transport and deposition throughout the study area and over time. Although assessing the relative effects of these anthropogenic activities on sediment dynamics would be challenging, the Hunter Creek basin may serve as a case study for such an assessment because it is mostly free of other alterations to hydrologic and geomorphic processes such as flow regulation, dredging, and other navigation improvements that are common in many Oregon coastal basins. Several datasets are available that may support a more detailed physical assessment

  15. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    Science.gov (United States)

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  16. Multiscale sagebrush rangeland habitat modeling in the Gunnison Basin of Colorado

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2013-01-01

    North American sagebrush-steppe ecosystems have decreased by about 50 percent since European settlement. As a result, sagebrush-steppe dependent species, such as the Gunnison sage-grouse, have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, is needed to help maintain existing sagebrush habitats; however, products that accurately model and map sagebrush habitats in detail over the Gunnison Basin in Colorado are still unavailable. The goal of this project is to provide a rigorous large-area sagebrush habitat classification and inventory with statistically validated products and estimates of precision across the Gunnison Basin. This research employs a combination of methods, including (1) modeling sagebrush rangeland as a series of independent objective components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground measured plot data on 2.4-meter QuickBird satellite imagery in the same season the imagery is acquired; (3) modeling of ground measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of Landsat Thematic Mapper imagery (30-meter) for optimal modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution Landsat Thematic Mapper; and 6) employing accuracy assessment of model predictions to enable users to understand their dependencies. Results include the prediction of four primary components including percent bare ground, percent herbaceous, percent shrub, and percent litter, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata wyomingensis), and shrub height (centimeters

  17. Geologic map of the Weldona 7.5′ quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-03-21

    The Weldona 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Weldona quadrangle. During the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling deep paleochannels now covered by younger alluvium. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at their confluences, forming a broad, low-gradient fan of sidestream alluvium that could have occasionally dammed the river for short periods of time. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly

  18. 75 FR 30852 - Hydroelectric Power Development at Ridgway Dam, Dallas Creek Project, Colorado

    Science.gov (United States)

    2010-06-02

    ... associated with the Dallas Creek Project; and the anticipated return on investment. If there are additional... entity to develop hydroelectric power at Ridgway Dam, and power purchasing and/or marketing... and interested entities to discuss Western's potential marketing of hydropower. FOR FURTHER...

  19. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  20. Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82

    Science.gov (United States)

    Thompson, K.R.

    1985-01-01

    The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)

  1. Geologic map of the Frisco quadrangle, Summit County, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Bartos, Paul J.; Williams, Cindy L.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Frisco quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, K.S., 1999, Neogene basins of the northern Rio Grande rift?partitioning and asymmetry inherited from Laramide and older uplifts: Tectonophysics, v. 305, p. 141-152.), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts the northeastern corner of the quadrangle. The oldest rocks in the quadrangle underlie the Tenmile Range and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, Ogden, 1987, Rock units of the Precambrian- basement in Colorado: U.S. Geological Survey Professional Paper 1321-A, 54 p.). The oldest sedimentary unit is the Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. The sedimentary rocks are intruded by sills and dikes of dacite porphyry sills of Swan Mountain, dated at 44 Ma (Marvin, R.F., Mehnert, H.H., Naeser, C.W., and Zartman, R.E., 1989, U.S. Geological Survey radiometric ages, compilation ?C??Part five?Colorado, Montana, Utah, and Wyoming: Isochron/West, no. 53, p. 14-19. Simmons, E.C., and Hedge, C.E., 1978, Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt

  2. Transient calibration of a groundwater-flow model of Chimacum Creek Basin and vicinity, Jefferson County, Washington: a supplement to Scientific Investigations Report 2013-5160

    Science.gov (United States)

    Jones, Joseph L.; Johnson, Kenneth H.

    2013-01-01

    A steady-state groundwater-flow model described in Scientific Investigations Report 2013-5160, ”Numerical Simulation of the Groundwater-Flow System in Chimacum Creek Basin and Vicinity, Jefferson County, Washington” was developed to evaluate potential future impacts of growth and of water-management strategies on water resources in the Chimacum Creek Basin. This supplement to that report describes the unsuccessful attempt to perform a calibration to transient conditions on the model. The modeled area is about 64 square miles on the Olympic Peninsula in northeastern Jefferson County, Washington. The geologic setting for the model area is that of unconsolidated deposits of glacial and interglacial origin typical of the Puget Sound Lowlands. The hydrogeologic units representing aquifers are Upper Aquifer (UA, roughly corresponding to recessional outwash) and Lower Aquifer (LA, roughly corresponding to advance outwash). Recharge from precipitation is the dominant source of water to the aquifer system; discharge is primarily to marine waters below sea level and to Chimacum Creek and its tributaries. The model is comprised of a grid of 245 columns and 313 rows; cells are a uniform 200 feet per side. There are six model layers, each representing one hydrogeologic unit: (1) Upper Confining unit (UC); (2) Upper Aquifer unit (UA); (3) Middle Confining unit (MC); (4) Lower Aquifer unit (LA); (5) Lower Confining unit (LC); and (6) Bedrock unit (OE). The transient simulation period (October 1994–September 2009) was divided into 180 monthly stress periods to represent temporal variations in recharge, discharge, and storage. An attempt to calibrate the model to transient conditions was unsuccessful due to instabilities stemming from oscillations in groundwater discharge to and recharge from streamflow in Chimacum Creek. The model as calibrated to transient conditions has mean residuals and standard errors of 0.06 ft ±0.45 feet for groundwater levels and 0.48 ± 0.06 cubic

  3. New geochronologic and stratigraphic evidence confirms the paleocene age of the dinosaur-bearing ojo alamo sandstone and animas formation in the San Juan Basin, New Mexico and Colorado

    Science.gov (United States)

    Fassett, J.E.

    2009-01-01

    Dinosaur fossils are present in the Paleocene Ojo Alamo Sandstone and Animas Formation in the San Juan Basin, New Mexico, and Colorado. Evidence for the Paleo-cene age of the Ojo Alamo Sandstone includes palynologic and paleomagnetic data. Palynologic data indicate that the entire Ojo Alamo Sandstone, including the lower dinosaur-bearing part, is Paleocene in age. All of the palynomorph-productive rock samples collected from the Ojo Alamo Sandstone at multiple localities lacked Creta-ceous index palynomorphs (except for rare, reworked specimens) and produced Paleocene index palynomorphs. Paleocene palynomorphs have been identified strati-graphically below dinosaur fossils at two separate localities in the Ojo Alamo Sand-stone in the central and southern parts of the basin. The Animas Formation in the Colorado part of the basin also contains dinosaur fossils, and its Paleocene age has been established based on fossil leaves and palynology. Magnetostratigraphy provides independent evidence for the Paleocene age of the Ojo Alamo Sandstone and its dinosaur-bearing beds. Normal-polarity magnetochron C29n (early Paleocene) has been identified in the Ojo Alamo Sandstone at six localities in the southern part of the San Juan Basin. An assemblage of 34 skeletal elements from a single hadrosaur, found in the Ojo Alamo Sandstone in the southern San Juan Basin, provided conclusive evidence that this assemblage could not have been reworked from underlying Cretaceous strata. In addition, geochemical studies of 15 vertebrate bones from the Paleocene Ojo Alamo Sandstone and 15 bone samples from the underlying Kirtland Formation of Late Creta-ceous (Campanian) age show that each sample suite contained distinctly different abundances of uranium and rare-earth elements, indicating that the bones were miner-alized in place soon after burial, and that none of the Paleocene dinosaur bones ana-lyzed had been reworked. ?? U.S. Geological Survey, Public Domain April 2009.

  4. DELIVERABLE 1.4.1 AND 1.4.2 CROSS SECTIONS AND FIELD MAPS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    International Nuclear Information System (INIS)

    Chidsey, Thomas C. Jr; Morgan, Craig D.; McClure, Kevin; Eby, David E.; Wray, Laura L.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  5. A Literature Review of Cultural Resources in Morgan County, Colorado,

    Science.gov (United States)

    1978-06-02

    MILES APPRCXI: %TE LOCATIONS OF SURVEY AREAS 1. NARROWS DAM SURVEY 2. WILDCAT CREEK SURVEY 3. BRUS { FLOOD CO’IOL PROJECT L B3I B LI 0 RAP H Y...Kenneth L. 1975 Edible plants available to aboriginal occupants of the Narrows area. IN Morris, Elizabeth Ann, Bruce J. Lutz, N. Ted Ohr, Timothy J...Reservoi - , Morgan County. Prepared for -1e Riverside IrrigaLion District and Public Service Company of Colorado. Morris, Elizabeth Ann, Bruce J. Lutz, N

  6. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    The water resources of Deep Creek Valley were assessed during 2012–13 with an emphasis on better understanding the groundwater flow system and groundwater budget. Surface-water resources are limited in Deep Creek Valley and are generally used for agriculture. Groundwater is the predominant water source for most other uses and to supplement irrigation. Most groundwater withdrawal in Deep Creek Valley occurs from the unconsolidated basin-fill deposits, in which conditions are generally unconfined near the mountain front and confined in the lower-altitude parts of the valley. Productive aquifers are also present in fractured bedrock that occurs along the valley margins and beneath the basin-fill deposits. The consolidated-rock and basin-fill aquifers are hydraulically connected in many areas with much of the recharge occurring in the consolidated-rock mountain blocks and most of the discharge occurring from the lower-altitude basin-fill deposits.

  7. Potential field studies of the central San Luis Basin and San Juan Mountains, Colorado and New Mexico, and southern and western Afghanistan

    Science.gov (United States)

    Drenth, Benjamin John

    This dissertation includes three separate chapters, each demonstrating the interpretive utility of potential field (gravity and magnetic) geophysical datasets at various scales and in various geologic environments. The locations of these studies are the central San Luis Basin of Colorado and New Mexico, the San Juan Mountains of southwestern Colorado, and southern and western Afghanistan. The San Luis Basin is the northernmost of the major basins that make up the Rio Grande rift, and interpretation of gravity and aeromagnetic data reveals patterns of rifting, rift-sediment thicknesses, distribution of pre-rift volcanic and sedimentary rocks, and distribution of syn-rift volcanic rocks. Syn-rift Santa Fe Group sediments have a maximum thickness of ˜2 km in the Sanchez graben near the eastern margin of the basin along the central Sangre de Cristo fault zone. Under the Costilla Plains, thickness of these sediments is estimated to reach ˜1.3 km. The Santa Fe Group sediments also reach a thickness of nearly 1 km within the Monte Vista graben near the western basin margin along the San Juan Mountains. A narrow, north-south-trending structural high beneath San Pedro Mesa separates the graben from the structural depression beneath the Costilla Plains. Aeromagnetic anomalies are interpreted to mainly reflect variations of remanent magnetic polarity and burial depth of the 5.3-3.7 Ma Servilleta basalt of the Taos Plateau volcanic field. Magnetic-source depth estimates indicate patterns of subsidence following eruption of the basalt and show that the Sanchez graben has been the site of maximum subsidence. One of the largest and most pronounced gravity lows in North America lies over the rugged San Juan Mountains in southwestern Colorado. A buried, low-density silicic batholith related to an Oligocene volcanic field coincident with the San Juan Mountains has been the accepted interpretation of the source of the gravity low since the 1970s. However, this interpretation was

  8. Pilot project for a hybrid road-flooding forecasting system on Squaw Creek.

    Science.gov (United States)

    2014-09-01

    A network of 25 sonic stage sensors were deployed in the Squaw Creek basin upstream from Ames Iowa to determine : if the state-of-the-art distributed hydrological model CUENCAS can produce reliable information for all road crossings : including those...

  9. Geophysical Characterization of Subsurface Properties Relevant to the Hydrology of the Standard Mine in Elk Basin, Colorado

    Science.gov (United States)

    Minsley, Burke J.; Ball, Lyndsay B.; Burton, Bethany L.; Caine, Jonathan S.; Curry-Elrod, Erika; Manning, Andrew H.

    2010-01-01

    Geophysical data were collected at the Standard Mine in Elk Basin near Crested Butte, Colorado, to help improve the U.S. Environmental Protection Agency's understanding of the hydrogeologic controls in the basin and how they affect surface and groundwater interactions with nearby mine workings. These data are discussed in the context of geologic observations at the site, the details of which are provided in a separate report. This integrated approach uses the geologic observations to help constrain subsurface information obtained from the analysis of surface geophysical measurements, which is a critical step toward using the geophysical data in a meaningful hydrogeologic framework. This approach combines the benefit of many direct but sparse field observations with spatially continuous but indirect measurements of physical properties through the use of geophysics. Surface geophysical data include: (1) electrical resistivity profiles aimed at imaging variability in subsurface structures and fluid content; (2) self-potentials, which are sensitive to mineralized zones at this site and, to a lesser extent, shallow-flow patterns; and (3) magnetic measurements, which provide information on lateral variability in near-surface geologic features, although there are few magnetic minerals in the rocks at this site. Results from the resistivity data indicate a general two-layer model in which an upper highly resistive unit, 3 to 10 meters thick, overlies a less resistive unit that is imaged to depths of 20 to 25 meters. The high resistivity of the upper unit likely is attributed to unsaturated conditions, meaning that the contact between the upper and lower units may correspond to the water table. Significant lateral heterogeneity is observed because of the presence of major features such as the Standard and Elk fault veins, as well as highly heterogeneous joint distributions. Very high resistivities (greater than 10 kiloohmmeters) are observed in locations that may correspond

  10. Integrated mined-area reclamation and land use planning. Volume 3A. A case study of surface mining and reclamation planning: South Boulder Creek Park Project, Sand and Gravel Operations, Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L R; Perry, A O; LaFevers, J R

    1977-02-01

    This case study details reclamation planning for the Flatiron Companies' South Boulder Creek Park Project in Boulder, Colorado. The site contains a deposit of high-quality sand and gravel considered to be one of the best and largest known deposits of aggregate materials in the Front Range area. The aggregate deposit is located in a highly visible site just off the Denver-Boulder Turnpike at the entrance to the city from Denver, and adjacent to a residential portion of the city. In order to make maximum use of pre-mining planning, as a tool for resolving a conflict over the company's proposed operation, an extensive cooperative planning effort was initiated. This included the preparation of an environmental impact assessment, numerous public hearings, operating and reclamation plan review by city authorities, annexation of the site to the city, and the granting of a scenic easement on the property to the city for the development of a regional recreation park. A suite of contractual agreements was worked out among Flatiron Companies, the City of Boulder, the Colorado Open Lands Foundation, and the Federal Bureau of Outdoor Recreation. The purpose of this case study is to allow the planner to gain insight into the procedures, possibilities, and constraints involved in premining planning in a cooperative situation.

  11. Response of selenium concentrations in groundwater to seasonal canal leakage, lower Gunnison River Basin, Colorado, 2013

    Science.gov (United States)

    Linard, J.I.; McMahon, P.B.; Arnold, L.R.; Thomas, J.C.

    2016-05-23

    Selenium is a water-quality concern in the lower Gunnison River Basin because irrigation water interacting with seleniferous soils derived from the Mancos Shale Formation has mobilized selenium and increased its concentrations in surface water. Understanding the occurrence of elevated selenium concentrations in groundwater is necessary because groundwater discharge is an important source of selenium in surface water in the basin. In 2013, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation and the Colorado Water Conservation Board, began a study to understand how changes in groundwater levels attributed to canal leakage affected the concentrations and speciation of dissolved selenium in groundwater. The purpose of this report is to characterize the groundwater adjacent to an unlined leaky canal. Two locations, near the East Canal (W-N1 and W-N2) and farther from the East Canal (W-M1 and W-M2), were selected for nested monitoring well installations. The pressure exerted by changes in canal stage was more readily transferred to the deep groundwater measured in the W-N1 near the canal than the shallow groundwater at the W-N2 well. No definitive relation could be made between canal water-level elevation and water-level elevations in monitoring wells farther from the canal (W-M1 and W-M2). 

  12. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  13. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  14. Hydrochemical simulation of a mountain basin under hydrological variability

    Science.gov (United States)

    Montserrat, S.; Trewhela, T. A.; Navarro, L.; Navarrete, A.; Lagos Zuniga, M. A.; Garcia, A.; Caraballo, M.; Niño, Y.; McPhee, J. P.

    2016-12-01

    Water quality and the comprehension of hydrochemical phenomena in natural basins should be of complete relevance under hydrological uncertainties. The importance of identifying the main variables that are controlling a natural system and finding a way to predict their behavior under variable scenarios is mandatory to preserve these natural basins. This work presents an interdisciplinary model for the Yerba Loca watershed, a natural reserve basin in the Chilean central Andes. Based on different data sets, provided by public and private campaigns, a natural hydrochemical regime was identified. Yerba Loca is a natural reserve, characterized by the presence of several glaciers and wide sediment deposits crossed by a small low-slope creek in the upper part of the basin that leads to a high-slope narrow channel with less sediment depositions. Most relevant is the geological context around the glaciers, considering that most of them cover hydrothermal zones rich in both sulfides and sulfates, a situation commonly found in the Andes due to volcanic activity. Low pH (around 3), calcium-sulfate water with high concentrations of Iron, Copper and Zinc are found in the upper part of the basin in summer. These values can be attributed to the glaciers melting down and draining of the mentioned country rocks, which provide most of the creek flow in the upper basin. The latter clearly contrasts with the creek outlet, located 18 km downstream, showing near to neutral pH values and lower concentrations of the elements already mentioned. The scope of the present research is to account for the sources of the different hydrological inlets (e.g., rainfall, snow and/or glacier melting) that, depending on their location, may interact with a variety of reactive minerals and generate acid rock drainage (ARD). The inlet water is modeled along the creek using the softwares HEC-RAS and PHREEQC coupled, in order to characterize the water quality and to detect preferred sedimentation sections

  15. Climate change on the Colorado River: a method to search for robust management strategies

    Science.gov (United States)

    Keefe, R.; Fischbach, J. R.

    2010-12-01

    The Colorado River is a principal source of water for the seven Basin States, providing approximately 16.5 maf per year to users in the southwestern United States and Mexico. Though the dynamics of the river ensure Upper Basin users a reliable supply of water, the three Lower Basin states (California, Nevada, and Arizona) are in danger of delivery interruptions as Upper Basin demand increases and climate change threatens to reduce future streamflows. In light of the recent drought and uncertain effects of climate change on Colorado River flows, we evaluate the performance of a suite of policies modeled after the shortage sharing agreement adopted in December 2007 by the Department of the Interior. We build on the current literature by using a simplified model of the Lower Colorado River to consider future streamflow scenarios given climate change uncertainty. We also generate different scenarios of parametric consumptive use growth in the Upper Basin and evaluate alternate management strategies in light of these uncertainties. Uncertainty associated with climate change is represented with a multi-model ensemble from the literature, using a nearest neighbor perturbation to increase the size of the ensemble. We use Robust Decision Making to compare near-term or long-term management strategies across an ensemble of plausible future scenarios with the goal of identifying one or more approaches that are robust to alternate assumptions about the future. This method entails using search algorithms to quantitatively identify vulnerabilities that may threaten a given strategy (including the current operating policy) and characterize key tradeoffs between strategies under different scenarios.

  16. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  17. The historical distribution of Gunnison Sage-Grouse in Colorado

    Science.gov (United States)

    Braun, Clait E.; Oyler-McCance, Sara J.; Nehring, Jennifer A.; Commons, Michelle L.; Young, Jessica R.; Potter, Kim M.

    2014-01-01

    The historical distribution of Gunnison Sage-Grouse (Centrocercus minimus) in Colorado is described based on published literature, observations, museum specimens, and the known distribution of sagebrush (Artemisia spp.). Historically, Gunnison Sage-Grouse were widely but patchily distributed in up to 22 counties in south-central and southwestern Colorado. The historical distribution of this species was south of the Colorado-Eagle river drainages primarily west of the Continental Divide. Potential contact areas with Greater Sage-Grouse (C. urophasianus) were along the Colorado-Eagle river system in Mesa, Garfield, and Eagle counties, west of the Continental Divide. Gunnison Sage-Grouse historically occupied habitats that were naturally highly fragmented by forested mountains and plateaus/mesas, intermountain basins without robust species of sagebrush, and river systems. This species adapted to use areas with more deciduous shrubs (i.e., Quercus spp., Amelanchier spp., Prunus spp.) in conjunction with sagebrush. Most areas historically occupied were small, linear, and patchily distributed within the overall landscape matrix. The exception was the large intermountain basin in Gunnison, Hinsdale, and Saguache counties. The documented distribution east of the Continental Divide within the large expanse of the San Luis Valley (Alamosa, Conejos, Costilla, and Rio Grande counties) was minimal and mostly on the eastern, northern, and southern fringes. Many formerly occupied habitat patches were vacant by the mid 1940s with extirpations continuing to the late 1990s. Counties from which populations were recently extirpated include Archuleta and Pitkin (1960s), and Eagle, Garfield, Montezuma, and Ouray (1990s).

  18. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  19. Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park

    Science.gov (United States)

    Volk, J. M.

    2013-12-01

    Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.

  20. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    Science.gov (United States)

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  1. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    Science.gov (United States)

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  2. Heat flow in the north-central Colorado Plateau

    International Nuclear Information System (INIS)

    Bodell, J.M.; Chapman, D.S.

    1982-01-01

    We report new heat flow measurements at 25 evenly distributed sites in the north-central Colorado Plateau. Heat flow values computed for these new sites and one previously published site range from 43 to 116 mW m -2 but fall into the following district subsets related to physiographic and tectonic elements within the Plateau: (1) heat flow of 51 mW m -2 (12 sites; s.d. 6) in the San Rafael Swell and Green River Desert which constitute the core of the Colorado Plateau at this latitude, (2) heat flows of 69 mW m -2 (5 sites; s.d. 10) in successive parallel north-south bands approaching the Wasatch Plateau to the west but still 80 km east of the Basin and Range physiographic boundary, (3) heat flow of 64 mW m -2 (5 sites; s.d. 2) along the Salt Anticline trend which strikes northwest in the region of Moab, Utah. Heat flow results for the entire Colorado Plateau have been reexamined in view of our new results, and the overall pattern supports the concept of a low heat flow 'thermal interior' for the plateau surrounded by a periphery some 100 km wide having substantially higher heat flow. Average heat flow in the thermal interior is about 60 mW m -2 compared to 80--90 mW m -2 in the periphery. This regional heat flow pattern supports a model of tertiary lithospheric thinning under the Colorado Plateau whereby the plateau is still in transient thermal response and a 15--20 m.y. lag between uplift and corresponding surface heat flow anomaly is to be expected. The position of the heat flow transition between our interior and peripheral regions in the northwest plateau is roughly consistent with lateral warming and weakening of the Colorado Plateau lithosphere initiated at the Basin and Range boundary some 20 m.y. ago

  3. Deep mantle forces and the uplift of the Colorado Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Moucha, R; Forte, A M; Rowley, D B; Mitrovica, J X; Simmons, N A; Grand, S P

    2009-06-23

    Since the advent of plate tectonics, it has been speculated that the northern extension of the East Pacific Rise, specifically its mantle source, has been over-ridden by the North American Plate in the last 30 Myrs. Consequently, it has also been postulated that the opening of the Gulf of California, the extension in the Basin and Range province, and the uplift of the Colorado Plateau are the resulting continental expressions of the over-ridden mantle source of the East Pacific Rise. However, only qualitative models based solely on surface observations and heuristic, simplified conceptions of mantle convection have been used in support or against this hypothesis. We introduce a quantitative model of mantle convection that reconstructs the detailed motion of a warm mantle upwelling over the last 30 Myrs and its relative advance towards the interior of the southwestern USA. The onset and evolution of the crustal uplift in the central Basin and Range province and the Colorado Plateau is determined by tracking the topographic swell due to this mantle upwelling through time. We show that (1) the extension and magmatism in the central Basin and Range province between 25 and 10 Ma coincides with the reconstructed past position of this focused upwelling, and (2) the southwestern portion of the Colorado Plateau experienced significant uplift between 10 Ma and 5 Ma that progressed towards the northeastern portion of the plateau. These uplift estimates are consistent with a young, ca. 6 Ma, Grand Canyon model and the recent commencement of mafic magmatism.

  4. Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA

    Science.gov (United States)

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.; Bencala, K.E.

    2002-01-01

    Watersheds in mineralized zones may contain many mines, each of which can contribute to acidity and the metal load of a stream. In this study the authors delineate hydrogeologic characteristics determining the transport of metals from the watershed to the stream in the watershed of Cement Creek, Colorado. Combining the injection of a chemical tracer, to determine a discharge, with synoptic sampling, to obtain chemistry of major ions and metals, spatially detailed load profiles are quantified. Using the discharge and load profiles, the authors (1) identified sampled inflow sources which emanate from undisturbed as well as previously mined areas; (2) demonstrate, based on simple hydrologic balance, that unsampled, likely dispersed subsurface, inflows are significant; and (3) estimate attenuation. For example, along the 12-km study reach, 108 kg per day of Zn were added to Cement Creek. Almost half of this load came from 10 well-defined areas that included both mined and non-mined parts of the watershed. However, the combined effect of many smaller inflows also contributed a substantial load that could limit the effectiveness of remediation. Of the total Zn load, 58.3 kg/day came from stream segments with no visible inflow, indicating the importance of contributions from dispersed subsurface inflow. The subsurface inflow mostly occurred in areas with substantial fracturing of the bedrock or in areas downstream from tributaries with large alluvial fans. Despite a pH generally less than 4.5, there was 58.4 kg/day of Zn attenuation that occurred in mixing zones downstream from inflows with high pH. Mixing zones can have local areas of pH that are high enough for sorption and precipitation reactions to have an effect. Principal component analysis classified inflows into 7 groups with distinct chemical signatures that represent water-rock interaction with different mineral-alteration suites in the watershed. The present approach provides a detailed snapshot of metal load

  5. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy, and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.

  6. Ranking contributing areas of salt and selenium in the Lower Gunnison River Basin, Colorado, using multiple linear regression models

    Science.gov (United States)

    Linard, Joshua I.

    2013-01-01

    Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.

  7. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    Science.gov (United States)

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  8. Pine Creek Geosyncline, N.T

    International Nuclear Information System (INIS)

    Ewers, G.R.; Ferguson, J.; Needham, R.S.; Donnelly, T.H.

    1984-01-01

    The Pine Creek Geosyncline comprises about 14 km of chronostratigraphic mainly pelitic and psammitic Early Proterozoic sediments with interlayered tuff units, resting on granitic late Archaean complexes exposed as small domes. Sedimentation took place in one basin, and most stratigraphic units are represented throughout the basin. The sediments were regionally deformed and metamorphosed at 1800 Ma. Tightly folded greenschist facies strata in the centre grade into isoclinally deformed amphibolite facies metamorphics in the west and northeast, granulites are present in the extreme northeast. Pre and post-orogenic continental tholeiites, and post-orogenic granite diapirs intrude the Early Proterozoic metasediments, and the granites are surrounded by hornfels zones up to 10 km wide in the greenschist facies terrane. Cover rocks of Carpentarian (Middle Proterozoic) and younger ages rest on all these rocks unconformably and conceal the original basin margins. The uranium deposits post-date the approx. 1800 Ma regional metamorphic event; isotopic dating of uraninite and galena in the ore bodies indicates ages of mineralisation at approx. 1600 Ma, approx. 900 Ma and approx. 500 Ma. The ore bodies are stratabound, located within breccia zones, are of a shallow depth, and occur immediately below the Early/Middle Proterozoic unconformity

  9. Selected water-quality data for the Standard Mine, Gunnison County, Colorado, 2006-2007

    Science.gov (United States)

    Verplanck, Philip L.; Manning, Andrew H.; Mast, M. Alisa; Wanty, Richard B.; McCleskey, R. Blaine; Todorov, Todor I.; Adams, Monique

    2007-01-01

    Mine drainage and underground water samples were collected for analysis of inorganic solutes as part of a 1-year, hydrogeologic investigation of the Standard Mine and vicinity. The U.S. Environmental Protection Agency has listed the Standard Mine in the Elk Creek drainage near Crested Butte, Colorado, as a Superfund Site because discharge from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to Coal Creek, which is the primary drinking-water supply for the town of Crested Butte. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 3 and 5 of the Standard Mine, mine effluent from an adit located on the Elk Lode, and two spring samples that emerged from waste-rock material below Level 5 of the Standard Mine and the adit located on the Elk Lode. Reported analyses include field parameters (pH, specific conductance, water temperature, dissolved oxygen, and redox potential) and major constituents and trace elements.

  10. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    Science.gov (United States)

    Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.

    2018-01-01

    The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.

  11. Subsidence monitoring program at Cyprus Coal's Colorado operations

    International Nuclear Information System (INIS)

    Stewart, C.L.; Shoemaker, J.E.

    1992-01-01

    Published subsidence data for the western United States is limited in comparison with data for the east. This paper summarizes the results of a subsidence monitoring program above two longwall panels at the Foidel Creek Mine located in northwest Colorado. The monitoring area is characterized by overburden ranging from 1000 ft to 1100 ft in thickness. the surface slope parallels the dip of the bedding at approximately 5 deg. Average mining height is 9 ft. Smax averaged 3.4 ft. Draw angles averaged 15 deg for up-dip ribsides and 19 deg for down-dip ribsides. A site-specific profile function is developed from the data

  12. Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory

    Science.gov (United States)

    Roadhouse, Emily A.

    The links between climate and permafrost are well known, but the precise nature of the relationship between air and ground temperatures remains poorly understood, particularly in complex mountain environments. Although previous studies indicate that elevation and potential incoming solar radiation (PISR) are the two leading factors contributing to the existence of permafrost at a given location, additional factors may also contribute significantly to the existence of mountain permafrost, including vegetation cover, snow accumulation and the degree to which individual mountain landscapes are prone to air temperature inversions. Current mountain permafrost models consider only elevation and aspect, and have not been able to deal with inversion effects in a systematic fashion. This thesis explores the relationship between air and ground surface temperatures and the presence of surface-based inversions at 27 sites within the Wolf Creek basin and surrounding area between 2001 and 2006, as a first step in developing an improved permafrost distribution TTOP model. The TTOP model describes the relationship between the mean annual air temperature and the temperature at the top of permafrost in terms of the surface and thermal offsets (Smith and Riseborough, 2002). Key components of this model are n-factors which relate air and ground climate by establishing the ratio between air and surface freezing (winter) and thawing (summer) degree-days, thus summarizing the surface energy balance on a seasonal basis. Here we examine (1) surface offsets and (2) freezing and thawing n-factor variability at a number of sites through altitudinal treeline in the southern Yukon. Thawing n-factors (nt) measured at individual sites remained relatively constant from one year to the next and may be related to land cover. During the winter, the insulating effect of a thick snow cover results in higher surface temperatures, while thin snow cover results in low surface temperatures more closely

  13. Reconnaissance coal study in the Susitna basin, 2014

    Science.gov (United States)

    David L. LePain,; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth T.; Tsigonis, Rebekah

    2015-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) conducted fieldwork during the summer of 2014 in the Susitna basin as part of an ongoing evaluation of the hydrocarbon potential of frontier basins, particularly those near the Railbelt region (for example, Decker and others, 2013; Gillis and others, 2013). Topical studies associated with this recent work include sedimentary facies analysis (LePain and others, 2015) and structural geology investigations (Gillis and others, 2015). The Susitna basin contains coal-bearing Paleogene and Neogene strata correlative with formations that host oil and gas in Cook Inlet basin to its south. Isotopic signatures of natural gas reservoired in the Miocene/Pliocene Sterling and Miocene Beluga Formations suggest a biogenic origin for Cook Inlet gas (Claypool and others, 1980). To assess the biogenic gas potential of the Susitna basin, it is important to obtain information from its coal-bearing units.Characteristics of coal, such as maturity/rank and cleat development are key parameters influencing viability of a biogenic gas system (Laubach and others, 1998). In an early study of the Susitna basin (Beluga–Yentna region), Barnes (1966) identified, analyzed, and recognized potentially valuable subbituminous coal resources at Fairview Mountain, Canyon Creek, and Johnson Creek. Merritt (1990), in a sedimentological study to evaluate surface coal mining potential of the Tertiary rocks of the Susitna basin (Susitna lowland), concluded that the basin contained several billion tons of mineable reserves. This preliminary report offers a brief summary of new information on coals in the Susitna Basin acquired during associated stratigraphic studies (see LePain and others, 2015). 

  14. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and

  15. Tephrostratigraphy and potassium-argon age determinations of seven volcanic ash layers in the Muddy Creek formation of southern Nevada

    International Nuclear Information System (INIS)

    Metcalf, L.A.

    1982-04-01

    Seven silicic tephra layers occur in alluvial deposits of the Muddy Creek and equivalent formations at three localities in southern Nevada. Chemical and petrographic characterization indicate the tephra were derived from seven different volcanic eruptions and do not represent any previously known tephra layers. K-Ar age determinations on minerals or glass from each layer yielded 6 to 12 m.y. ages. Discordant ages were obtained on multiple mineral phases due to incorporation of detrital contaminants. The tephra are sufficiently distinctive to constitute stratigraphic marker horizons in the Muddy Creek and equivalent formations. Derivation from the southwestern Nevada volcanic field, active 16 to 6 m.y., is highly likely for some of the tephra. The K-Ar results suggest substantial parts of the Muddy Creek Formation and equivalent basin-fill are 6 to 12 m.y., indicating basin-range faulting began prior to 12 m.y. Little tectonic deformation or physiographic change has occurrred in the past 6 m.y

  16. Environmental Assessment for Wild Horse Gathering Inside and Outside Wild Horse Herd Management Areas

    OpenAIRE

    United States Department of the Interior, Bureau of Land Management

    1999-01-01

    Enclosed you will find the Environmental Assessment (EA) which describes the impacts of gathering wild horses in the Rock Springs Field Office area. Gathering wild horses would take place in the Great Divide Basin, White Mountain, Little Colorado, and Salt Wells Creek Wild Horse Herd Management Areas (HMA) and in an area known as the North Baxter/Jack Morrow area (outside the HMAs).

  17. Land and federal mineral ownership coverage for northwestern Colorado

    Science.gov (United States)

    Biewick, L.H.; Mercier, T.J.; Levitt, Pam; Deikman, Doug; Vlahos, Bob

    1999-01-01

    This Arc/Info coverage contains land status and Federal mineral ownership for approximately 26,800 square miles in northwestern Colorado. The polygon coverage (which is also provided here as a shapefile) contains two attributes of ownership information for each polygon. One attribute indicates where the surface is State owned, privately owned, or, if Federally owned, which Federal agency manages the land surface. The other attribute indicates which minerals, if any, are owned by the Federal govenment. This coverage is based on land status and Federal mineral ownership data compiled by the U.S. Geological Survey (USGS) and three Colorado State Bureau of Land Management (BLM) former district offices at a scale of 1:24,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment Project in the Uinta-Piceance Basin Province and the USGS National Coal Resource Assessment Project in the Colorado Plateau.

  18. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  19. Stable isotopes in yellow-bellied marmot (Marmota flaviventris) fossils reveal environmental stability in the late Quaternary of the Colorado Rocky Mountains

    Science.gov (United States)

    Reynard, Linda M.; Meltzer, David J.; Emslie, Steven D.; Tuross, Noreen

    2015-03-01

    High elevation plant and animal communities are considered extremely sensitive to environmental change. We investigated an exceptional fossil record of yellow-bellied marmot (Marmota flaviventris) specimens that was recovered from Cement Creek Cave (elev. 2860 m) and ranged in age from radiocarbon background circa 49.8 cal ka BP to ~ 1 cal ka BP. We coupled isotopic and radiocarbon measurements (δ18O, δD, δ15N, δ13C, and 14C) of bone collagen from individually-AMS dated specimens of marmots to assess ecological responses by this species to environmental change over time in a high elevation basin in the Rocky Mountains of southwestern Colorado, USA. We find little change in all four isotope ratios over time, demonstrating considerable environmental stability during periods when the marmots were present. The stable ecology and the apparent persistence of the small mammal community in the cave fauna throughout the late Quaternary are in marked contrast to the changes that occurred in the large mammal community, including local extirpation and extinction, at the end of the Pleistocene.

  20. Hydrology of coal-lease areas near Durango, Colorado

    Science.gov (United States)

    Brooks, Tom

    1985-01-01

    The U.S. Bureau of Land Management leases Federal lands and minerals for coal mining near Durango, Colorado. This report addresses the hydrologic suitability of those lands for coal leasing; the report describes the general hydrology of the Durango area and, more specifically, the hydrology of the Stollsteimer Creek study area 32 miles east of the Durango and the Hay Gulch study area, 12 miles southwest of Durango. The most productive aquifers in the Durango study area are Quaternary alluvium and the tertiary Animas Formation. Water wells completed in alluvium typically yield 5 to 20 gallons/min; wells completed is the Animas Formation yield as much as 50 gallons/min. Water quality in these aquifers is variable, but it generally is suitable for domestic use. The coal-bearing Cretaceous Fruitland and Menefee Formations are mined by surface methods at the Chimney Rock Mine in the Stollsteimer Creek study area and by underground methods at the National King Coal Mine in the Hay Gulch study area. Effects of surface mining in the Stollsteimer Creek area are: (1) Dewatering of an alluvial aquifer; and (2) Local degradation of alluvium water quality by spoil-pile effluent. Effects of underground mining in the Hay Gulch area are: (1) Introduction of water with greater dissolved-solids concentrations into the upper Hay Gulch alluvium from mine runoff; (2) Subsidence fracturing which could dewater streams and the alluvial aquifer. (USGS)

  1. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    Science.gov (United States)

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  2. Interannual Variability in Radiative Forcing and Snowmelt Rates by Desert Dust in Snowcover in the Colorado River Basin

    Science.gov (United States)

    Skiles, S.; Painter, T. H.; Barrett, A. P.; Landry, C.; Deems, J. S.; Winstral, A. H.

    2010-12-01

    Dust in snow accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. Since the Anglo expansion and disturbance of the western US that began in the mid 19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading. This research expands on the work done in Painter et al. (2007) by assessing the interannual variability in radiative forcing, melt rates, and shortening of snow cover duration from 2005 to 2010, and the relative response of melt rates to simulated increases in air temperature. We ran the SNOBAL snowmelt model over the 6 year energy balance record at the alpine and subalpine towers in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Observations indicate that dust concentrations are not correlated with total number of dust events and that dust loading and concentrations vary by an order of magnitude during the 6 year record. Our modeling results indicate that the number of days that dust advances retreat of snow cover and cumulative radiative forcing are linearly related to total dust concentration. Over the 6 years of record we have shown that for all years dust advances melt relative to a clean snowpack, even in lowest dust concentration years melt is advanced by up to 26 days. The greatest dust radiative impact occurred in 2009, when snow cover duration was shortened by 50 days, and the highest observed end of year dust concentrations reduced visible albedo to less than 0.35 during the last three weeks of snowcover. This work also shows that dust radiative forcing has a markedly greater impact on snow cover duration than increases in temperature. In the presence of dust there is little impact from temperature increases of 2 °C and 4 °C (0-4 days) and, in the absence of dust radiative forcing, temperature increases shorten snow cover duration by 5-18 days, compared with the 26

  3. Anthropocene landscape change and the legacy of nineteenth- and twentieth-century mining in the Fourmile Catchment, Colorado Front Range

    Science.gov (United States)

    Dethier, David P.; Ouimet, William B.; Murphy, Sheila F.; Kotikian, Maneh; Wicherski, Will; Samuels, Rachel M.

    2018-01-01

    Human impacts on earth surface processes and materials are fundamental to understanding the proposed Anthropocene epoch. This study examines the magnitude, distribution, and long-term context of nineteenth- and twentieth-century mining in the Fourmile Creek catchment, Colorado, coupling airborne LiDAR topographic analysis with historical documents and field studies of river banks exposed by 2013 flooding. Mining impacts represent the dominant Anthropocene landscape change for this basin. Mining activity, particularly placer operations, controls floodplain stratigraphy and waste rock piles related to mining cover >5% of hillslopes in the catchment. Total rates of surface disturbance on slopes from mining activities (prospecting, mining, and road building) exceed pre-nineteenth-century rates by at least fifty times. Recent flooding and the overprint of human impacts obscure the record of Holocene floodplain evolution. Stratigraphic relations indicate that the Fourmile valley floor was as much as two meters higher in the past 2,000 years and that placer reworking, lateral erosion, or minor downcutting dominated from the late Holocene to present. Concentrations of As and Au in the fine fraction of hillslope soil, mining-related deposits, and fluvial deposits serve as a geochemical marker of mining activity in the catchment; reducing As and Au values in floodplain sediment will take hundreds of years to millennia. Overall, the Fourmile Creek catchment provides a valuable example of Anthropocene landscape change for mountainous regions of the Western United States, where hillslope and floodplain markers of human activity vary, high rates of geomorphic processes affect mixing and preservation of marker deposits, and long-term impact varies by landscape location.

  4. Rainfall-Driven Diffusive Hydrograph and Runoff Model for Two Sub-Basins within the Arroyo Colorado in South Texas.

    Science.gov (United States)

    Ball, M. C.; Al-Qudah, O.; Jones, K.

    2017-12-01

    The Arroyo Colorado, located within the Rio Grande Valley of South Texas, has been on the list for the State of Texas's most impaired rivers since the 1990's. Few models for the watershed discharge and contaminates transport have been developed, but all require specialized understanding of modeling and input data which must either be assumed, estimated or which is difficult, time-consuming and expensive to collect. It makes sense to see if a general, simpler `catchment-scale' lumping model would be feasible to model water discharge along the Arroyo. Due to its simplicity and the hypothesized diffusive nature of the drainage in the alluvial floodplain deposits of the Arroyo watershed, the Criss and Winston model was chosen for this study. Hydrographs were characterized, clearly demonstrating that the discharge to the Arroyo is greatly affected by precipitation, and which provided clear rain events for evaluation: 62 rain events over a ten-year time span (2007 - 2017) were selected. Best fit curves using the Criss and Winston lag time were plotted, but better fitting curves were created by modifying the Criss and Winston lag time which improved the fit for the rising limb portion of the hydrograph but had no effect on the receding limb portion of the graph. This model provided some insights into the nature of water transport along the Arroyo within two separate sub-basins: El Fuste and Harlingen. The value for the apparent diffusivity constant "b", a constant which encompasses all diffusive characteristics of the watershed or sub-basins in the watershed (i.e. the lumping constant), was calculated to be 0.85 and 0.93 for El Fuste and Harlingen, respectively, indicating that each sub-basin within the watershed is somewhat unique. Due to the lumping nature of the "b" constant, no specific factor can be attributed to this difference. More research could provide additional insight. It is suggested that water diffusion takes longer in the Harlingen sub-basin (larger "b

  5. Pesticide Occurrence and Distribution in the Lower Clackamas River Basin, Oregon, 2000-2005

    Science.gov (United States)

    Carpenter, Kurt D.; Sobieszczyk, Steven; Arnsberg, Andrew J.; Rinella, Frank A.

    2008-01-01

    Pesticide occurrence and distribution in the lower Clackamas River basin was evaluated in 2000?2005, when 119 water samples were analyzed for a suite of 86?198 dissolved pesticides. Sampling included the lower-basin tributaries and the Clackamas River mainstem, along with paired samples of pre- and post-treatment drinking water (source and finished water) from one of four drinking water-treatment plants that draw water from the lower river. Most of the sampling in the tributaries occurred during storms, whereas most of the source and finished water samples from the study drinking-water treatment plant were obtained at regular intervals, and targeted one storm event in 2005. In all, 63 pesticide compounds were detected, including 33 herbicides, 15 insecticides, 6 fungicides, and 9 pesticide degradation products. Atrazine and simazine were detected in about half of samples, and atrazine and one of its degradates (deethylatrazine) were detected together in 30 percent of samples. Other high-use herbicides such as glyphosate, triclopyr, 2,4-D, and metolachlor also were frequently detected, particularly in the lower-basin tributaries. Pesticides were detected in all eight of the lower-basin tributaries sampled, and were also frequently detected in the lower Clackamas River. Although pesticides were detected in all of the lower basin tributaries, the highest pesticide loads (amounts) were found in Deep and Rock Creeks. These medium-sized streams drain a mix of agricultural land (row crops and nurseries), pastureland, and rural residential areas. The highest pesticide loads were found in Rock Creek at 172nd Avenue and in two Deep Creek tributaries, North Fork Deep and Noyer Creeks, where 15?18 pesticides were detected. Pesticide yields (loads per unit area) were highest in Cow and Carli Creeks, two small streams that drain the highly urban and industrial northwestern part of the lower basin. Other sites having relatively high pesticide yields included middle Rock Creek and

  6. Marketing San Juan Basin gas

    International Nuclear Information System (INIS)

    Posner, D.M.

    1988-01-01

    Marketing natural gas produced in the San Juan Basin of New Mexico and Colorado principally involves four gas pipeline companies with significant facilities in the basin. The system capacity, transportation rates, regulatory status, and market access of each of these companies is evaluated. Because of excess gas supplies available to these pipeline companies, producers can expect improved take levels and prices by selling gas directly to end users and utilities as opposed to selling gas to the pipelines for system supply. The complexities of transporting gas today suggest that the services of an independent gas marketing company may be beneficial to smaller producers with gas supplies in the San Juan Basin

  7. Uranium Bio-accumulation and Cycling as revealed by Uranium Isotopes in Naturally Reduced Sediments from the Upper Colorado River Basin

    Science.gov (United States)

    Lefebvre, Pierre; Noël, Vincent; Jemison, Noah; Weaver, Karrie; Bargar, John; Maher, Kate

    2016-04-01

    Uranium (U) groundwater contamination following oxidized U(VI) releases from weathering of mine tailings is a major concern at numerous sites across the Upper Colorado River Basin (CRB), USA. Uranium(IV)-bearing solids accumulated within naturally reduced zones (NRZs) characterized by elevated organic carbon and iron sulfide compounds. Subsequent re-oxidation of U(IV)solid to U(VI)aqueous then controls the release to groundwater and surface water, resulting in plume persistence and raising public health concerns. Thus, understanding the extent of uranium oxidation and reduction within NRZs is critical for assessing the persistence of the groundwater contamination. In this study, we measured solid-phase uranium isotope fractionation (δ238/235U) of sedimentary core samples from four study sites (Shiprock, NM, Grand Junction, Rifle and Naturita, CO) using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). We observe a strong correlation between U accumulation and the extent of isotopic fractionation, with Δ238U up to +1.8 ‰ between uranium-enriched and low concentration zones. The enrichment in the heavy isotopes within the NRZs appears to be especially important in the vadose zone, which is subject to variations in water table depth. According to previous studies, this isotopic signature is consistent with biotic reduction processes associated with metal-reducing bacteria. Positive correlations between the amount of iron sulfides and the accumulation of reduced uranium underline the importance of sulfate-reducing conditions for U(IV) retention. Furthermore, the positive fractionation associated with U reduction observed across all sites despite some variations in magnitude due to site characteristics, shows a regional trend across the Colorado River Basin. The maximum extent of 238U enrichment observed in the NRZ proximal to the water table further suggests that the redox cycling of uranium, with net release of U(VI) to the groundwater by

  8. Assessment of macroinvertebrate communities in adjacent urban stream basins, Kansas City, Missouri, metropolitan area, 2007 through 2011

    Science.gov (United States)

    Christensen, Eric D.; Krempa, Heather M.

    2013-01-01

    Macroinvertebrates were collected as part of two separate urban water-quality studies from adjacent basins, the Blue River Basin (Kansas City, Missouri), the Little Blue River and Rock Creek Basins (Independence, Missouri), and their tributaries. Consistent collection and processing procedures between the studies allowed for statistical comparisons. Seven Blue River Basin sites, nine Little Blue River Basin sites, including Rock Creek, and two rural sites representative of Missouri ecological drainage units and the area’s ecoregions were used in the analysis. Different factors or levels of urban intensity may affect the basins and macroinvertebrate community metrics differently, even though both basins are substantially developed above their downstream streamgages (Blue River, 65 percent; Little Blue River, 52 percent). The Blue River has no flood control reservoirs and receives wastewater effluent and stormflow from a combined sewer system. The Little Blue River has flood control reservoirs, receives no wastewater effluent, and has a separate stormwater sewer system. Analysis of macroinvertebrate community structure with pollution-tolerance metrics and water-quality parameters indicated differences between the Blue River Basin and the Little Blue River Basin.

  9. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was

  10. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    Science.gov (United States)

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Tongue River to 1,460 ?S/cm at 25?C on Prairie Dog Creek. The Tongue River drainage basin has the largest percentage of area underlain by Mesozoic-age and older rocks and by more resistant rocks. In addition, the higher annual precipitation and a steeper gradient in this basin compared to basins in the plains produce relatively fast stream velocities, which result in a short contact time between stream waters and basin materials. The Powder River drainage basin, which has the largest drainage area and most diverse site conditions, had the largest range of median specific-conductance values among the four major drainage basins. Median values in that basin ranged from 680 ?S/cm at 25?C on Clear Creek to 5,950 ?S/cm at 25?C on Salt Creek. Median specific-conductance values among sites in the Cheyenne River drainage basin ranged from 1,850 ?S/cm at 25?C on Black Thunder Creek to 4,680 ?S/cm at 25?C on the Cheyenne River. The entire Cheyenne River drainage basin is in the plains, which have low precipitation, soluble geologic materials, and relatively low gradients that produce slow stream velocities and long contact times. Median specific-conductance values among sites in the Belle Fourche River drainage basin ranged from 1,740 ?S/cm at 25?C on Caballo Creek to 2,800 ?S/cm at 25?C on Donkey Creek. Water in the study area ranged from a magnesium-calcium-bicarbonate type for some sites in the Tongue River drainage basin to a sodium-sulfate type at many sites in the Powder, Cheyenne, and Belle Fourche River drainage basins. Little Goose Creek, Goose Creek, and the Tongue River in the Tongue River drainage basin, and Clear Creek in the Powder River drainage basin, which have headwaters in the Bighorn Mountains, consistently had the smallest median dissolved-sodium concentrations, sodium-adsorption ratios, dissolved-sulfate concentrations, and dissolved-solids concentrations. Salt Creek, Wild Horse Creek, Little Powder River, and the Cheyenne River, which have headwat

  11. CO2 Saline Storage Demonstration in Colorado Sedimentary Basins. Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Nummedal, Dag [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Doran, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Sitchler, Alexis [Trustees Of The Colorado School Of Mines, Golden, CO (United States); McCray, John [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mouzakis, Katherine [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Glossner, Andy [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mandernack, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Gutierrez, Marte [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Pranter, Matthew [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Rybowiak, Chris [Trustees Of The Colorado School Of Mines, Golden, CO (United States)

    2012-09-30

    This multitask research project was conducted in anticipation of a possible future increase in industrial efforts at CO2 storage in Colorado sedimentary basins. Colorado is already the home to the oldest Rocky Mountain CO2 storage site, the Rangely Oil Field, where CO2-EOR has been underway since the 1980s. The Colorado Geological Survey has evaluated storage options statewide, and as part of the SW Carbon Sequestration Partnership the Survey, is deeply engaged in and committed to suitable underground CO2 storage. As a more sustainable energy industry is becoming a global priority, it is imperative to explore the range of technical options available to reduce emissions from fossil fuels. One such option is to store at least some emitted CO2 underground. In this NETL-sponsored CO2 sequestration project, the Colorado School of Mines and our partners at the University of Colorado have focused on a set of the major fundamental science and engineering issues surrounding geomechanics, mineralogy, geochemistry and reservoir architecture of possible CO2 storage sites (not limited to Colorado). Those are the central themes of this final report and reported below in Tasks 2, 3, 4, and 6. Closely related to these reservoir geoscience issues are also legal, environmental and public acceptance concerns about pore space accessibility—as a precondition for CO2 storage. These are addressed in Tasks 1, 5 and 7. Some debates about the future course of the energy industry can become acrimonius. It is true that the physics of combustion of hydrocarbons makes it impossible for fossil energy to attain a carbon footprint anywhere nearly as low as that of renewables. However, there are many offsetting benefits, not the least that fossil energy is still plentiful, it has a global and highly advanced distribution system in place, and the footprint that the fossil energy infrastructure occupies is

  12. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  13. Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree-Ring Chronologies

    Science.gov (United States)

    Tootle, G.; Anderson, S.; Grissino-Mayer, H.

    2012-12-01

    Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. Tree-ring chronologies (TRCs) were used to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k-nearest neighbor techniques. Moisture sensitive tree-ring chronologies in and adjacent to the UCRB were correlated with regional soil moisture and tested for temporal stability. TRCs that were positively correlated and stable for the calibration period were retained. Stepwise linear regression was applied to identify the best predictor combinations for each soil moisture region. The regressions explained 42-78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained increased variance in the datasets. Reconstructed soil moisture was standardized and compared with standardized reconstructed streamflow and snow water equivalent from the same region. Soil moisture reconstructions were highly correlated with streamflow and snow water equivalent reconstructions, indicating reconstructions of soil moisture in the UCRB using TRCs successfully represent hydrologic trends, including the identification of periods of prolonged drought.

  14. The trend of the multi-scale temporal variability of precipitation in Colorado River Basin

    Science.gov (United States)

    Jiang, P.; Yu, Z.

    2011-12-01

    Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.

  15. Hydrogeology of the Pictured Cliffs Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona, and Utah

    Science.gov (United States)

    Dam, William L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.; Craigg, S.D.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) study of the San Juan structural basin that began in October 1984. The purposes of the study (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams, and (3) determine the availability and quality of ground water. Previous reports in this series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Gallup Sandstone (Kernodle and others, 1989), Morrison Formation (Dam and others, 1990), Point Lookout Sandstone (Craigg and others, 1990), Kirtland Shale and Fruitland Formation (Kernodle and others, 1990), Menefee Formation (Levings and others, 1990), Cliff House Sandstone (Thorn and others, 1990), and Ojo Alamo Sandstone (Thorn and others, 1990) in the San Juan structural basin. This report summarizes information on the geology and the occurrence and quality of water in the Pictured Cliffs Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the RASA study or derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN database. Although all data available for the Pictured Cliffs Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin in New Mexico, Colorado, Arizona, and Utah has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic and younger age; therefore, the study area is less extensive than the structural basin. Triassic through Tertiary

  16. Executive summary--2002 assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado: Chapter 1 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    Science.gov (United States)

    ,

    2013-01-01

    In 2002, the U.S. Geological Survey (USGS) estimated undiscovered oil and gas resources that have the potential for additions to reserves in the San Juan Basin Province (5022), New Mexico and Colorado (fig. 1). Paleozoic rocks were not appraised. The last oil and gas assessment for the province was in 1995 (Gautier and others, 1996). There are several important differences between the 1995 and 2002 assessments. The area assessed is smaller than that in the 1995 assessment. This assessment of undiscovered hydrocarbon resources in the San Juan Basin Province also used a slightly different approach in the assessment, and hence a number of the plays defined in the 1995 assessment are addressed differently in this report. After 1995, the USGS has applied a total petroleum system (TPS) concept to oil and gas basin assessments. The TPS approach incorporates knowledge of the source rocks, reservoir rocks, migration pathways, and time of generation and expulsion of hydrocarbons; thus the assessments are geologically based. Each TPS is subdivided into one or more assessment units, usually defined by a unique set of reservoir rocks, but which have in common the same source rock. Four TPSs and 14 assessment units were geologically evaluated, and for 13 units, the undiscovered oil and gas resources were quantitatively assessed.

  17. Effect of detention basin release rates on flood flows - Application of a model to the Blackberry Creek Watershed in Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.

    2009-01-01

    The effects of stormwater detention basins with specified release rates are examined on the watershed scale with a Hydrological Simulation Program - FORTRAN (HSPF) continuous-simulation model. Modeling procedures for specifying release rates from detention basins with orifice and weir discharge configurations are discussed in this report. To facilitate future detention modeling as a tool for watershed management, a chart relating watershed impervious area to detention volume is presented. The report also presents a case study of the Blackberry Creek watershed in Kane County, Ill., a rapidly urbanizing area seeking to avoid future flood damages from increased urbanization, to illustrate the effects of various detention basin release rates on flood peaks and volumes and flood frequencies. The case study compares flows simulated with a 1996 land-use HSPF model to those simulated with four different 2020 projected land-use HSPF model scenarios - no detention, and detention basins with release rates of 0.08, 0.10, and 0.12 cubic feet per second per acre (ft3/s-acre), respectively. Results of the simulations for 15 locations, which included the downstream ends of all tributaries and various locations along the main stem, showed that a release rate of 0.10 ft3/s-acre, in general, can maintain postdevelopment 100-year peak-flood discharge at a similar magnitude to that of 1996 land-use conditions. Although the release rate is designed to reduce the 100-year peak flow, reduction of the 2-year peak flow is also achieved for a smaller proportion of the peak. Results also showed that the 0.10 ft3/s-acre release rate was less effective in watersheds with relatively high percentages of preexisting (1996) development than in watersheds with less preexisting development.

  18. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology

    Science.gov (United States)

    Deems, Jeffrey S.; Painter, Thomas H.; Barsugli, Joseph J.; Belnap, Jayne; Udall, Bradley

    2013-01-01

    The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases

  19. Geochemical variability of soils and biogeochemical variability of plants in the Piceance Basin, Colorado

    Science.gov (United States)

    Tuttle, M.L.; Severson, R.C.; Dean, W.E.; Klusman, R.W.

    1986-01-01

    Geochemical baselines for native soils and biogeochemical baselines for plants in the Piceance basin provide data that can be used to assess geochemical and biogeochemical effects of oil-shale development, monitor changes in the geochemical and biogeochemical environment during development, and assess the degree of success of rehabilitation of native materials after development. Baseline values for 52 properties in native soils, 15 properties in big sagebrush, and 13 properties in western wheatgrass were established. Our Study revealed statistically significant regional variations of the following properties across the basin: in soil&-aluminum, cobalt, copper, iron, manganese, sodium, nickel, phosphorus, lead, scandium, titanium, vanadium, zinc, organic and total carbon, pH, clay, dolomite, sodium feldspar, and DTPA-extractable calcium, cadmium, iron, potassium, manganese, nickel, phosphorus, yttrium, and zinc; in big sagebrush-barium, calcium, copper, magnesium, molybdenum, sodium, strontium, zinc, and ash; and in western wheatgrass-boron, barium, calcium, magnesium, manganese, molybdenum, strontium, zinc, and ash. These variations show up as north-south trends across the basin, or they reflect differences in elevation, hydrology, and soil parent material. Baseline values for properties that do not have statistically significant regional variations can be represented by geometric means and deviations calculated from all values within the basin. Chemical and mineralogical analyses of soil and chemical analyses of western wheatgrass samples from Colorado State University's experimental revegetation plot at Anvil Points provide data useful in assessing potential effects on soil and plant properties when largescale revegetation operations begin. The concentrations of certain properties are related to the presence of topsoil over spent shale in the lysimeters. In soils, calcium, fluorine, lithium, magnesium, sodium, phosphorus, strontium, carbonate and total carbon

  20. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  1. Hydrogeology of the Cliff House Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    Science.gov (United States)

    Thorn, Conde R.; Levings, G.W.; Craigg, S.D.; Dam, W.L.; Kernodle, J.M.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Point Lookout Sandstone (Craigg and others, 1990), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), and Menefee Formation (Levings and others, 1990) in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Cliff House Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Cliff House Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the

  2. Hydrogeology of the Point Lookout Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    Science.gov (United States)

    Craigg, Steven D.; Dam, W.L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), Menefee Formation (Levings and others, 1990), and Cliff House Sandstone (Thorn and others, 1990), in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Point Lookout Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's database, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Point Lookout Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less areally extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the

  3. Reconnaissance investigation of high-calcium marble in the Beaver Creek area, St. Lawrence County, New York

    Science.gov (United States)

    Brown, C. Ervin

    1978-01-01

    Three belts of marble of the Grenville Series were mapped in the Beaver Creek drainage basin, St. Lawrence County, N.Y. One of these, on the west side of Beaver Creek, consists of coarsely crystalline pure calcitic marble that occurs in a zone at least 10 by 0.8 km in extent. Samples of marble show CaCO3 content to be greater than 93 percent, and some samples contain greater than 96 percent, and only small amounts of MgO and Fe203 are present. Marble in two other belts to the east of Beaver Creek are variable in composition, but locally have high content of calcium carbonate material. The marble deposit west of Beaver Creek has a chemical composition favorable for specialized chemical, industrial, and metallurgical uses. Another favorable aspect of the deposit is its proximity to inexpensive water transportation on the St. Lawrence Seaway only 27.5 km away by road, at Ogdensburg, N.Y.

  4. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    Science.gov (United States)

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  5. Compilation of hydrologic data, Little Elm Creek, Trinity River basin, Texas, 1968

    Science.gov (United States)

    ,

    1972-01-01

    The U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of "The Flood Control Act ot 1936 and 1944" and ''Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. In June 1968, the Soil Conservation Service estimated approximately 3,500 structures to be physically and economically feasible for installation in Texas. As of September 30, 1968, 1,271 of these structures had been built. This watershed-development program will have varying but important effects on the surface- and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data are needed to appraise the effects of the structures on water yield and the mode of occurrence of runoff. Hydrologic investigations of these small watersheds were begun by the Geological Survey in 1951 and are now being made in 11 areas (fig. 1). These studies are being made in cooperation with t he Texas Water Development Board, the Soil Conservation Service, the San Antonio River Authority, the city of Dallas, and the Tarrant County Water Control and Improvement District No. 1. The 11 study areas were choson to sample watersheds having different rainfall, topography, geology, and soils. In four of the study areas (Mukewater, North, Little Elm, and Pin Oak Creeks), streamflow and rainfall records were collected prior to construction of the floodwater-retarding structures, thus affording the opportunity for analyses to the conditions before and after" development. Structures have now been built in three of these study areas. A summary of the development of the floodwater-retarding structures on each study area as of September 30, 1968, is shown in table 1.

  6. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  7. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate E.; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a thin, liquefied

  8. Seasonal inorganic nitrogen release in alpine lakes on the Colorado western slope

    Science.gov (United States)

    Inyan, B.I.; Williams, M.W.; Tonnessen, K.; Turk, J.T.; Campbell, D.H.

    1998-01-01

    In the Rocky Mountains, the association of increases in acidic deposition with increased atmospheric loading of sulfate and direct changes in surface water chemistry has been well established. The importance, though, of increased nitrogen (N) deposition in the episodic acidification of alpine lakes and N saturation in alpine ecosystems is only beginning to be documented. In alpine areas of the Colorado Front Range, modest loadings of N in deposition have been associated with leakage of N to surface waters. On the Colorado western slope, however, no leakage of N to surface waters has been reported. A 1995 study that included early season under-ice water samples that were not available in earlier studies showed that there is, in fact, N leakage to surface waters in some western slope basins. Under-ice nitrate (NO3-) concentrations were as high as 10.5 ??q L-1, and only decreased to detection limits in September. Landscape type appears to be important in leakage of N to surface waters, which is associated with basins having steep slopes, thin soils, and large amounts of exposed bedrock. NO3- leakage compounds the existing sensitivity to episodic acidification from low acid neutralizing capacity (ANC), which is less than 40 ??eq L-1 in those basins.

  9. Scaling up watershed model parameters: flow and load simulations of the Edisto River Basin, South Carolina, 2007-09

    Science.gov (United States)

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    As part of an ongoing effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin, analyses and simulations of the hydrology of the Edisto River Basin were made using the topography-based hydrological model (TOPMODEL). A primary focus of the investigation was to assess the potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River Basin. Scaling up was done in a step-wise manner, beginning with applying the calibration parameters, meteorological data, and topographic-wetness-index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made for subsequent simulations, culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River Basin and updated calibration parameters for some of the TOPMODEL calibration parameters. The scaling-up process resulted in nine simulations being made. Simulation 7 best matched the streamflows at station 02175000, Edisto River near Givhans, SC, which was the downstream limit for the TOPMODEL setup, and was obtained by adjusting the scaling factor, including streamflow routing, and using NEXRAD precipitation data for the Edisto River Basin. The Nash-Sutcliffe coefficient of model-fit efficiency and Pearson’s correlation coefficient for simulation 7 were 0.78 and 0.89, respectively. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the McTier Creek and Edisto River models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the substantial difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL

  10. Geophysical Characterization of the Hilton Creek Fault System

    Science.gov (United States)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  11. Review and interpretation of previous work and new data on the hydrogeology of the Schwartzwalder Uranium Mine and vicinity, Jefferson County, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Johnson, Raymond H.; Wild, Emily C.

    2011-01-01

    The Schwartzwalder deposit is the largest known vein type uranium deposit in the United States. Located about eight miles northwest of Golden, Colorado it occurs in Proterozoic metamorphic rocks and was formed by hydrothermal fluid flow, mineralization, and deformation during the Laramide Orogeny. A complex brittle fault zone hosts the deposit comprising locally brecciated carbonate, oxide, and sulfide minerals. Mining of pitchblende, the primary ore mineral, began in 1953 and an extensive network of underground workings was developed. Mine dewatering, treatment of the effluent and its discharge into the adjacent Ralston Creek was done under State permit from about 1990 through about 2008. Mining and dewatering ceased in 2000 and natural groundwater rebound has filled the mine workings to a current elevation that is above Ralston Creek but that is still below the lowest ground level adit. Water in the 'mine pool' has concentrations of dissolved uranium in excess of 1,000 times the U.S. Environmental Protection Agency drinking-water standard of 30 milligrams per liter. Other dissolved constituents such as molybdenum, radium, and sulfate are also present in anomalously high concentrations. Ralston Creek flows in a narrow valley containing Quaternary alluvium predominantly derived from weathering of crystalline bedrock including local mineralized rock. Just upstream of the mine site, two capped and unsaturated waste rock piles with high radioactivity sit on an alluvial terrace. As Ralston Creek flows past the mine site, a host of dissolved metal concentrations increase. Ralston Creek eventually discharges into Ralston Reservoir about 2.5 miles downstream. Because of highly elevated uranium concentrations, the State of Colorado issued an enforcement action against the mine permit holder requiring renewed collection and treatment of alluvial groundwater. As part of planned mine reclamation, abundant data were collected and compiled into a report by Wyman and Effner

  12. Characterization of hydrodynamic and sediment conditions in the lower Yampa River at Deerlodge Park, east entrance to Dinosaur National Monument, northwest Colorado, 2011

    Science.gov (United States)

    Williams, Cory A.

    2013-01-01

    The Yampa River in northwestern Colorado is the largest, relatively unregulated river system in the upper Colorado River Basin. Water from the Yampa River Basin continues to be sought for a number of municipal, industrial, and energy uses. It is anticipated that future water development within the Yampa River Basin above the amount of water development identified under the Upper Colorado River Endangered Fish Recovery Implementation Program and the Programmatic Biological Opinion may require additional analysis in order to understand the effects on habitat and river function. Water development in the Yampa River Basin could alter the streamflow regime and, consequently, could lead to changes in the transport and storage of sediment in the Yampa River at Deerlodge Park. These changes could affect the physical form of the reach and may impact aquatic and riparian habitat in and downstream from Deerlodge Park. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2011 to characterize the current hydrodynamic and sediment-transport conditions for a 2-kilometer reach of the Yampa River in Deerlodge Park. Characterization of channel conditions in the Deerlodge Park reach was completed through topographic surveying, grain-size analysis of streambed sediment, and characterization of streamflow properties. This characterization provides (1) a basis for comparisons of current stream functions (channel geometry, sediment transport, and stream hydraulics) to future conditions and (2) a dataset that can be used to assess channel response to streamflow alteration scenarios indicated from computer modeling of streamflow and sediment-transport conditions.

  13. An interesting new genus of Berothinae (Neuroptera: Berothidae) from the early Eocene Green River Formation, Colorado.

    Science.gov (United States)

    Makarkin, Vladimir N

    2017-01-30

    Xenoberotha angustialata gen. et sp. nov. (Neuroptera: Berothidae) is described from the early Eocene of the Parachute Creek Member of the Green River Formation (U.S.A., Colorado). It is assigned to Berothinae as an oldest known member of the subfamily based on the presence of scale-like setae on the foreleg coxae. Distal crossveins of the fourth (outer) gradate series which are located very close to the wing margin in Xenoberotha gen. nov. is a character state previously unknown in Berothinae.

  14. Western Gas Sands Project: stratigrapy of the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S. (comp.)

    1980-08-01

    The Western Gas Sands Project Core Program was initiated by US DOE to investigate various low permeability, gas bearing sandstones. Research to gain a better geological understanding of these sandstones and improve evaluation and stimulation techniques is being conducted. Tight gas sands are located in several mid-continent and western basins. This report deals with the Piceance Basin in northwestern Colorado. This discussion is an attempt to provide a general overview of the Piceance Basin stratigraphy and to be a useful reference of stratigraphic units and accompanying descriptions.

  15. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  16. Assessment of dissolved-selenium concentrations and loads in the lower Gunnison River Basin, Colorado, as part of the Selenium Management Program, from 2011 to 2016

    Science.gov (United States)

    Henneberg, Mark F.

    2018-04-23

    The Gunnison Basin Selenium Management Program implemented a water-quality monitoring network in 2011 in the lower Gunnison River Basin in Colorado. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents the percentile values of selenium because regulatory agencies in Colorado make decisions based on the U.S. Environmental Protection Agency (EPA) Clean Water Act Section 303(d) that uses percentile values of concentration. Also presented are dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for water years (WYs) 2011–2016 (October 1, 2010, through September 30, 2016). Annual dissolved-selenium loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations. Annual dissolved-selenium loads for WY 2011 through WY 2016 ranged from 179 and 391 pounds (lb) at Uncompahgre River at Colona to 11,100 and 17,300 lb at Gunnison River near Grand Junction (herein called Whitewater), respectively. Instantaneous loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations and 13 ancillary sites where discrete water-quality sampling also took place, using discrete water-quality samples and the associated discharge measurements collected during the period. Median instantaneous loads ranged from 0.01 pound per day (lb/d) at Smith Fork near Lazear to 33.0 lb/d at Whitewater. Mean instantaneous loads ranged from 0.06 lb/d at Smith Fork near Lazear to 36.2 lb/d at Whitewater. Most tributary sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb/day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream. The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved

  17. Tidal Flooding and Vegetation Patterns in a Salt Marsh Tidal Creek Imaged by Low-altitude Balloon Aerial Photography

    Science.gov (United States)

    White, S. M.; Madsen, E.

    2013-12-01

    Inundation of marsh surfaces by tidal creek flooding has implications for the headward erosion of salt marsh creeks, effect of rising sea levels, biological zonation, and marsh ecosystem services. The hydroperiod; as the frequency, duration, depth and flux of water across the marsh surface; is a key factor in salt marsh ecology, but remains poorly understood due to lack of data at spatial scales relevant to tracking the spatial movement of water across the marsh. This study examines how hydroperiod, drainage networks, and tidal creek geomorphology on the vegetation at Crab Haul Creek. Crab Haul Creek is the farthest landward tidal basin in North Inlet, a bar-built estuary in South Carolina. This study measures the hydroperiod in the headwaters Crab Haul Creek with normal and near-IR photos from a helium balloon Helikite at 75-100 m altitude. Photos provide detail necessary to resolve the waterline and delineate the hydroperiod during half tidal cycles by capturing the waterline hourly from the headwaters to a piezometer transect 260 meters north. The Helikite is an ideal instrument for local investigations of surface hydrology due to its maneuverability, low cost, ability to remain aloft for extended time over a fixed point, and ability to capture high-resolution images. Photographs taken from aircraft do not provide the detail necessary to determine the waterline on the marsh surface. The near-IR images make the waterline more distinct by increasing the difference between wet and dry ground. In the headwaters of Crab Haul Creek, individual crab burrows are detected by automated image classification and the number of crab burrows and their spatial density is tracked from January-August. Crab burrows are associated with the unvegetated region at the creek head, and we relate their change over time to the propagation of the creek farther into the tidal basin. Plant zonation is influenced by the hydroperiod, but also may be affected by salinity, water table depth, and

  18. A comparison of pre- and post-remediation water quality, Mineral Creek, Colorado

    Science.gov (United States)

    Runkel, R.L.; Bencala, K.E.; Kimball, B.A.; Walton-Day, K.; Verplanck, P.L.

    2009-01-01

    Pre- and post-remediation data sets are used herein to assess the effectiveness of remedial measures implemented in the headwaters of the Mineral Creek watershed, where contamination from hard rock mining has led to elevated metal concentrations and acidic pH. Collection of pre- and post-remediation data sets generally followed the synoptic mass balance approach, in which numerous stream and inflow locations are sampled for the constituents of interest and estimates of streamflow are determined by tracer dilution. The comparison of pre- and post-remediation data sets is confounded by hydrologic effects and the effects of temporal variation. Hydrologic effects arise due to the relatively wet conditions that preceded the collection of pre-remediation data, and the relatively dry conditions associated with the post-remediation data set. This difference leads to a dilution effect in the upper part of the study reach, where pre-remediation concentrations were diluted by rainfall, and a source area effect in the lower part of the study reach, where a smaller portion of the watershed may have been contributing constituent mass during the drier post-remediation period. A second confounding factor, temporal variability, violates the steady-state assumption that underlies the synoptic mass balance approach, leading to false identification of constituent sources and sinks. Despite these complications, remedial actions completed in the Mineral Creek headwaters appear to have led to improvements in stream water quality, as post-remediation profiles of instream load are consistently lower than the pre-remediation profiles over the entire study reach for six of the eight constituents considered (aluminium, arsenic, cadmium, copper, iron, and zinc). Concentrations of aluminium, cadmium, copper, lead, and zinc remain above chronic aquatic-life standards, however, and additional remedial actions may be needed. Future implementations of the synoptic mass balance approach should be

  19. National uranium resource evaluation, Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Ludlam, J.R.

    1981-06-01

    The Montrose Quadrangle in west-central Colorado was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits according to National Uranium Resource Evaluation program criteria. General surface reconnaissance and geochemical sampling were conducted in all geologic environments in the quadrangle. Preliminary data from aerial radiometric and hydrogeochemical and stream-sediment reconnaissance were analyzed and brief followup studies were performed. Twelve favorable areas were delineated in the quadrangle. Five favorable areas contain environments for magmatic-hydrothermal uranium deposits along fault zones in the Colorado mineral belt. Five areas in parts of the Harding and Entrada Sandstones and Wasatch and Ohio Creek Formations are favorable environments for sandstone-type uranium deposits. The area of late-stage rhyolite bodies related to the Lake City caldera is a favorable environment for hydroauthigenic uranium deposits. One small area is favorable for uranium deposits of uncertain genesis. All near-surface Phanerozoic sedimentary rocks are unfavorable for uranium deposits, except parts of four formations. All near-surface plutonic igneous rocks are unfavorable for uranium deposits, except five areas of vein-type deposits along Tertiary fault zones. All near-surface volcanic rocks, except one area of rhyolite bodies and several unevaluated areas, are unfavorable for uranium. All near-surface Precambrian metamorphic rocks are unfavorable for uranium deposits. Parts of two wilderness areas, two primitive areas, and most of the subsurface environment are unevaluated

  20. Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere.

    Science.gov (United States)

    Roy, Mousumi; Jordan, Thomas H; Pederson, Joel

    2009-06-18

    The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.

  1. Natural Propagation and Habitat Improvement Idaho: Lolo Creek and Upper Lochsa, Clearwater National Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, F.A. Jr.; Lee, Kristine M.

    1991-01-01

    In 1983, the Clearwater National Forest and the Bonneville Power Administration (BPA) entered into a contractual agreement to improve anadromous fish habitat in selected tributaries of the Clearwater River Basin. This agreement was drawn under the auspices of the Northwest Power Act of 1980 and the Columbia River basin Fish and Wildlife Program (section 700). The Program was completed in 1990 and this document constitutes the Final Report'' that details all project activities, costs, accomplishments, and responses. The overall goal of the Program was to enhance spawning, rearing, and riparian habitats of Lolo Creek and major tributaries of the Lochsa River so that their production systems could reach full capability and help speed the recovery of salmon and steelhead within the basin.

  2. Natural propagation and habitat improvement Idaho: Lolo Creek and Upper Lochsa, Clearwater National Forest

    International Nuclear Information System (INIS)

    Espinosa, F.A. Jr.; Lee, K.M.

    1991-01-01

    In 1983, the Clearwater National Forest and the Bonneville Power Administration (BPA) entered into a contractual agreement to improve anadromous fish habitat in selected tributaries of the Clearwater River Basin. This agreement was drawn under the auspices of the Northwest Power Act of 1980 and the Columbia River basin Fish and Wildlife Program (section 700). The Program was completed in 1990 and this document constitutes the ''Final Report'' that details all project activities, costs, accomplishments, and responses. The overall goal of the Program was to enhance spawning, rearing, and riparian habitats of Lolo Creek and major tributaries of the Lochsa River so that their production systems could reach full capability and help speed the recovery of salmon and steelhead within the basin

  3. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  4. Biological and associated water-quality data for lower Olmos Creek and upper San Antonio River, San Antonio, Texas, March-October 1990

    Science.gov (United States)

    Taylor, R. Lynn

    1995-01-01

    Biological and associated water-quality data were collected from lower Olmos Creek and upper San Antonio River in San Antonio, Texas, during March-October 1990, the second year of a multiyear data-collection program. The data will be used to document water-quality conditions prior to implementation of a proposal to reuse treated wastewater to irrigate city properties in Olmos Basin and Brackenridge Parks and to augment flows in the Olmos Creek/San Antonio River system.

  5. Uranium Geologic Drilling Project, Sand Wash Basin, Moffat and Routt Counties, Colorado:

    International Nuclear Information System (INIS)

    1978-01-01

    This environmental assessment of drill holes in Moffat and Routt Counties, Colorado considered the current environment; potential impacts from site preparation, drilling operations, and site restoration; coordination among local, state and federal plans; and consideration of alternative actions for this uranium drilling project

  6. Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado

    Science.gov (United States)

    Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.

    2013-01-01

    The synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed.The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the

  7. Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado

    Science.gov (United States)

    Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.

    2013-05-01

    SummaryThe synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed. The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent

  8. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    Science.gov (United States)

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  9. Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    Science.gov (United States)

    ,

    2013-01-01

    In 2002, the U.S. Geological Survey (USGS) estimated undiscovered oil and gas resources that have the potential for additions to reserves in the San Juan Basin Province, New Mexico and Colorado. Paleozoic rocks were not appraised. The last oil and gas assessment for the province was in 1995. There are several important differences between the 1995 and 2002 assessments. The area assessed is smaller than that in the 1995 assessment. This assessment of undiscovered hydrocarbon resources in the San Juan Basin Province also used a slightly different approach in the assessment, and hence a number of the plays defined in the 1995 assessment are addressed differently in this report. After 1995, the USGS has applied a total petroleum system (TPS) concept to oil and gas basin assessments. The TPS approach incorporates knowledge of the source rocks, reservoir rocks, migration pathways, and time of generation and expulsion of hydrocarbons; thus the assessments are geologically based. Each TPS is subdivided into one or more assessment units, usually defined by a unique set of reservoir rocks, but which have in common the same source rock. Four TPSs and 14 assessment units were geologically evaluated, and for 13 units, the undiscovered oil and gas resources were quantitatively assessed.

  10. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin.

    Science.gov (United States)

    Ficklin, Darren L; Stewart, Iris T; Maurer, Edwin P

    2013-01-01

    In the Upper Colorado River Basin (UCRB), the principal source of water in the southwestern U.S., demand exceeds supply in most years, and will likely continue to rise. While General Circulation Models (GCMs) project surface temperature warming by 3.5 to 5.6°C for the area, precipitation projections are variable, with no wetter or drier consensus. We assess the impacts of projected 21(st) century climatic changes on subbasins in the UCRB using the Soil and Water Assessment Tool, for all hydrologic components (snowmelt, evapotranspiration, surface runoff, subsurface runoff, and streamflow), and for 16 GCMs under the A2 emission scenario. Over the GCM ensemble, our simulations project median Spring streamflow declines of 36% by the end of the 21(st) century, with increases more likely at higher elevations, and an overall range of -100 to +68%. Additionally, our results indicated Summer streamflow declines with median decreases of 46%, and an overall range of -100 to +22%. Analysis of hydrologic components indicates large spatial and temporal changes throughout the UCRB, with large snowmelt declines and temporal shifts in most hydrologic components. Warmer temperatures increase average annual evapotranspiration by ∼23%, with shifting seasonal soil moisture availability driving these increases in late Winter and early Spring. For the high-elevation water-generating regions, modest precipitation decreases result in an even greater water yield decrease with less available snowmelt. Precipitation increases with modest warming do not translate into the same magnitude of water-yield increases due to slight decreases in snowmelt and increases in evapotranspiration. For these basins, whether modest warming is associated with precipitation decreases or increases, continued rising temperatures may make drier futures. Subsequently, many subbasins are projected to turn from semi-arid to arid conditions by the 2080 s. In conclusion, water availability in the UCRB could

  11. Determination of premining geochemical background and delineation of extent of sediment contamination in Blue Creek downstream from Midnite Mine, Stevens County, Washington

    Science.gov (United States)

    Church, Stan E.; Kirschner, Frederick E.; Choate, LaDonna M.; Lamothe, Paul J.; Budahn, James R.; Brown, Zoe Ann

    2008-01-01

    Geochemical and radionuclide studies of sediment recovered from eight core sites in the Blue Creek flood plain and Blue Creek delta downstream in Lake Roosevelt provided a stratigraphic geochemical record of the contamination from uranium mining at the Midnite Mine. Sediment recovered from cores in a wetland immediately downstream from the mine site as well as from sediment catchments in Blue Creek and from cores in the delta in Blue Creek cove provided sufficient data to determine the premining geochemical background for the Midnite Mine tributary drainage. These data provide a geochemical background that includes material eroded from the Midnite Mine site prior to mine development. Premining geochemical background for the Blue Creek basin has also been determined using stream-sediment samples from parts of the Blue Creek, Oyachen Creek, and Sand Creek drainage basins not immediately impacted by mining. Sediment geochemistry showed that premining uranium concentrations in the Midnite Mine tributary immediately downstream of the mine site were strongly elevated relative to the crustal abundance of uranium (2.3 ppm). Cesium-137 (137Cs) data and public records of production at the Midnite Mine site provided age control to document timelines in the sediment from the core immediately downstream from the mine site. Mining at the Midnite Mine site on the Spokane Indian Reservation between 1956 and 1981 resulted in production of more than 10 million pounds of U3O8. Contamination of the sediment by uranium during the mining period is documented from the Midnite Mine along a small tributary to the confluence of Blue Creek, in Blue Creek, and into the Blue Creek delta. During the period of active mining (1956?1981), enrichment of base metals in the sediment of Blue Creek delta was elevated by as much as 4 times the concentration of those same metals prior to mining. Cadmium concentrations were elevated by a factor of 10 and uranium by factors of 16 to 55 times premining

  12. Vegetation - Pine Creek WA and Fitzhugh Creek WA [ds484

    Data.gov (United States)

    California Natural Resource Agency — This fine-scale vegetation classification and map of the Pine Creek and Fitzhugh Creek Wildlife Areas, Modoc County, California was created following FGDC and...

  13. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply.Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222.Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  14. Estimates of water use and trends in the Colorado River Basin, Southwestern United States, 1985–2010

    Science.gov (United States)

    Maupin, Molly A.; Ivahnenko, Tamara I.; Bruce, Breton

    2018-06-26

    The Colorado River Basin (CRB) drains 246,000 square miles and includes parts of California, Colorado, Nevada, New Mexico, Utah, and Wyoming, and all of Arizona (Basin States). This report contains water-use estimates by category of use for drainage basins (Hydrologic Unit Code 8; HUC‑8) within the CRB from 1985 to 2010, at 5-year intervals. Estimates for public supply, domestic, commercial, industrial, irrigation, livestock, mining, aquaculture, hydroelectric and thermoelectric power, and wastewater returns are tabulated as (1) water withdrawals from groundwater or surface‑water sources of fresh or saline quality, (2) water delivered for domestic use, (3) wastewater returns and instream use (hydroelectric), and (4) consumptive use, or water that is consumed (USGS definition) and not available for immediate reuse. Water transported outside of the CRB (interbasin transfers) is not included as part of withdrawals and are not accounted for in any category of use within the CRB.Total withdrawals in the CRB (excluding interbasin transfers) averaged about 17 million acre-feet (maf) from 1985 to 2010, peaked at about 17.76 maf in 2000, and reached their lowest levels of 16.43 maf in 1990. Interbasin transfers to serve mostly public-supply and irrigation needs outside of the CRB are reported for 2000, 2005, and 2010 only, and averaged 5.40 maf. More surface water was used in the CRB than groundwater, averaging about 78 percent of total withdrawals, and its use increased less than 2 percent from 1985 to 2010, while groundwater withdrawals decreased about 12 percent. From 1985 to 2010, surface water averaged 98 percent of withdrawals in the upper CRB, and about 59 percent in the lower CRB. Nearly all withdrawals were freshwater, but some saline groundwater was used for mining and self-supplied industrial.Interbasin transfers have a large effect on flows in the Colorado River and are listed in this report separately with no explanation of how the water is used outside of

  15. Uranium distribution and sandstone depositional environments: oligocene and upper Cretaceous sediments, Cheyenne basin, Colorado

    International Nuclear Information System (INIS)

    Nibbelink, K.A.; Ethridge, F.G.

    1984-01-01

    Wyoming-type roll-front uranium deposits occur in the Upper Cretaceous Laramie and Fox Hills sandstones in the Cheyenne basin of northeastern Colorado. The location, geometry, and trend of specific depositional environments of the Oligocene White River and the Upper Cretaceous Laramie and Fox Hills formations are important factors that control the distribution of uranium in these sandstones. The Fox Hills Sandstone consists of up to 450 ft (140 m) of nearshore marine wave-dominated delta and barrier island-tidal channel sandstones which overlie offshore deposits of the Pierre Shale and which are overlain by delta-plain and fluvial deposits of the Laramie Formation. Uranium, which probably originated from volcanic ash in the White River Formation, was transported by groundwater through the fluvial-channel deposits of the White River into the sandstones of the Laramie and Fox Hills formations where it was precipitated. Two favorable depositional settings for uranium mineralization in the Fox Hills Sandstone are: (1) the landward side of barrier-island deposits where barrier sandstones thin and interfinger with back-barrier organic mudstones, and (2) the intersection of barrier-island and tidal channel sandstones. In both settings, sandstones were probably reduced during early burial by diagenesis of contained and adjacent organic matter. The change in permeability trends between the depositional strike-oriented barrier sandstones and the dip-oriented tidal-channel sandstones provided sites for dispersed groundwater flow and, as demonstrated in similar settings in other depositional systems, sites for uranium mineralization

  16. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  17. Umatilla River Basin Anadromus Fish Habitat Enhancement Project. 1994 Annual report

    International Nuclear Information System (INIS)

    Shaw, R.T.

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994--95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation

  18. Commercial production of ethanol in the San Luis Valley, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

    1983-07-01

    The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

  19. Willow Creek Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    Today's notice announces BPA's proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA's obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council's 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI

  20. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    International Nuclear Information System (INIS)

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring

  1. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  2. Assessing effects of changing land use practices on sediment loads in Panther Creek, north coastal California

    Science.gov (United States)

    Mary Ann Madej; Greg Bundros; Randy Klein

    2012-01-01

    Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal...

  3. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

    2009-02-19

    . These fish continued rearing in the outdoor collection basin until release in March 2006. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 12,056 of the smolts released were also tagged with Passive Integrated Transponder tags. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 90,450 smolts were released directly into Johnson Creek on March 13 through 15, 2006.

  4. Fire helps restore natural disturbance regime to benefit rare and endangered marsh birds endemic to the Colorado River.

    Science.gov (United States)

    Conway, Courtney J; Nadeau, Christopher P; Piest, Linden

    2010-10-01

    Large flood events were part of the historical disturbance regime within the lower basin of most large river systems around the world. Large flood events are now rare in the lower basins of most large river systems due to flood control structures. Endemic organisms that are adapted to this historical disturbance regime have become less abundant due to these dramatic changes in the hydrology and the resultant changes in vegetation structure. The Yuma Clapper Rail is a federally endangered bird that breeds in emergent marshes within the lower Colorado River basin in the southwestern United States and northwestern Mexico. We evaluated whether prescribed fire could be used as a surrogate disturbance event to help restore historical conditions for the benefit of Yuma Clapper Rails and four sympatric marsh-dependent birds. We conducted call-broadcast surveys for marsh birds within burned and unburned (control) plots both pre- and post-burn. Fire increased the numbers of Yuma Clapper Rails and Virginia Rails, and did not affect the numbers of Black Rails, Soras, and Least Bitterns. We found no evidence that detection probability of any of the five species differed between burn and control plots. Our results suggest that prescribed fire can be used to set back succession of emergent marshlands and help mimic the natural disturbance regime in the lower Colorado River basin. Hence, prescribed fire can be used to help increase Yuma Clapper Rail populations without adversely affecting sympatric species. Implementing a coordinated long-term fire management plan within marshes of the lower Colorado River may allow regulatory agencies to remove the Yuma Clapper Rail from the endangered species list.

  5. Influence of septic systems on stream base flow in the Apalachicola-Chattahoochee-Flint River Basin near Metropolitan Atlanta, Georgia, 2012

    Science.gov (United States)

    Clarke, John S.; Painter, Jaime A.

    2014-01-01

    Septic systems were identified at 241,733 locations in a 2,539-square-mile (mi2) study area that includes all or parts of 12 counties in the Metropolitan Atlanta, Georgia, area. Septic system percolation may locally be an important component of streamflow in small drainage basins where it augments natural groundwater recharge, especially during extreme low-flow conditions. The amount of groundwater reaching streams depends on how much is intercepted by plants or infiltrates to deeper parts of the groundwater system that flows beyond a basin divide and does not discharge into streams within a basin. The potential maximum percolation from septic systems in the study area is 62 cubic feet per second (ft3/s), of which 52 ft3/s is in the Chattahoochee River Basin and 10 ft3/s is in the Flint River Basin. These maximum percolation rates represent 0.4 to 5.7 percent of daily mean streamflow during the 2011–12 period at the farthest downstream gaging site (station 02338000) on the Chattahoochee River, and 0.5 to 179 percent of daily mean streamflow at the farthest downstream gaging site on the Flint River (02344350). To determine the difference in base flow between basins having different septic system densities, hydrograph separation analysis was completed using daily mean streamflow data at streamgaging stations at Level Creek (site 02334578), with a drainage basin having relatively high septic system density of 101 systems per square mile, and Woodall Creek (site 02336313), with a drainage basin having relatively low septic system density of 18 systems per square mile. Results indicated that base-flow yield during 2011–12 was higher at the Level Creek site, with a median of 0.47 cubic feet per second per square mile ([ft3/s]/mi2), compared to a median of 0.16 (ft3/s)/mi2, at the Woodall Creek site. At the less urbanized Level Creek site, there are 515 septic systems with a daily maximum percolation rate of 0.14 ft3/s, accounting for 11 percent of the base flow in

  6. Salmonid Gamete Preservation in the Snake River Basin : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. [Nez Perce Tribe. Dept. of Fisheries Resource Management, Lapwai, ID (US)

    2001-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2000 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2000, a total of 349 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Rapid River Hatchery, Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 283 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Imnaha River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Tribe acquired 5 frozen steelhead samples from the Selway River collected in 1994 and 15 from Fish Creek sampled in 1993 from the U.S. Geological Survey, for addition into the germplasm repository. Also, 590 cryopreserved samples from the Grande Ronde chinook salmon captive broodstock program are being stored at the University of Idaho as

  7. Floods in Colorado

    Science.gov (United States)

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    resulting from a cloudburst rises so quickly that it is usually described as a 'wall of water.' It has a peak duration of only a few minutes, followed by a rapid subsidence. Nearly 90 cloudburst floods in Colorado are described in varying detail in this report. The earliest recorded cloudburst--called at that time a waterspout--occurred in Golden Gate Gulch, July 14, 1872. The 'wall of water' was described as a 'perpendicular breast of 10 or 12 feet.' A cloudburst flood on Kiowa Creek in May 1878 caused the loss of a standard-gage locomotive, and although search was made by means of long metallic rods, the locomotive was never recovered, as bedrock was about 50 feet below the creek bed. All available information relative to floods in Colorado, beginning with the flood of 1826 on the Arkansas River, is presented in this report, although for many of the earlier floods estimates of discharge are lacking. Floods throughout a large part of the State have occurred in 1844, June 1864, June 1884, May 1894, and June 1921. The highest floods of record were on the larger streams and occurred as follows: South Platte River, June 1921; Rio Grande, June 1927; Colorado River, June and July 1884; San Juan River, October 1911. The greatest floods on the plains streams occurred during May and June 1935 and were caused by cloudbursts. Ranchers living in the vicinity noted rainfalls as high as 24 inches in a 13-hour period, measurements being made in a stock tank. The effect of settlement on channel capacities can be clearly traced. When settlement began, and with it the beginning of the livestock industry, the plains were thickly covered with a luxuriant growth of grasses. With the development of the livestock industry the grass cover was grazed so closely that it afforded little protection against erosion during the violent rains and resulting floods. The intensive grazing packed the soil so hard as to increase greatly the percentage of rainfall that entered the streams. This co

  8. Scoping Summary Report: Development of Lower Basin Shortage Guidelines and Coordinated Management Strategies for Lake Powell and Lake Mead, Particularly Under Low Reservoir Conditions

    OpenAIRE

    U.S. Department of the Interior, Bureau of Reclamation

    2006-01-01

    The Bureau of Reclamation (Reclamation) acting on behalf of the Secretary of the Department of the Interior (Secretary) proposes to take action to adopt specific Colorado River Lower Basin shortage guidelines and coordinated reservoir management strategies to address operations of Lake Powell and Lake Mead, particularly under low reservoir conditions. This proposed Action will provide a greater degree of certainty to all water users and managers in the Colorado River Basin by providing more d...

  9. Lagrangian sampling for emerging contaminants through an urban stream corridor in Colorado

    Science.gov (United States)

    Brown, J.B.; Battaglin, W.A.; Zuellig, R.E.

    2009-01-01

    Recent national concerns regarding the environmental occurrence of emerging contaminants (ECs) have catalyzed a series of recent studies. Many ECs are released into the environment through discharges from wastewater treatment plants (WWTPs) and other sources. In 2005, the U.S. Geological Survey and the City of Longmont initiated an investigation of selected ECs in a 13.8-km reach of St. Vrain Creek, Colorado. Seven sites were sampled for ECs following a Lagrangian design; sites were located upstream, downstream, and in the outfall of the Longmont WWTP, and at the mouths of two tributaries, Left Hand Creek and Boulder Creek (which is influenced by multiple WWTP outfalls). Samples for 61 ECs in 16 chemical use categories were analyzed and 36 were detected in one or more samples. Of these, 16 have known or suspected endocrine-disrupting potential. At and downstream from the WWTP outfall, detergent metabolites, fire retardants, and steroids were detected at the highest concentrations, which commonly exceeded 1 ??g/l in 2005 and 2 ??g/l in 2006. Most individual ECs were measured at concentrations less than 2 ??g/l. The results indicate that outfalls from WWTPs are the largest but may not be the sole source of ECs in St. Vrain Creek. In 2005, high discharge was associated with fewer EC detections, lower total EC concentrations, and smaller EC loads in St. Vrain Creek and its tributaries as compared with 2006. EC behavior differed by individual compound, and some differences between sites could be attributed to analytical variability or to other factors such as physical or chemical characteristics or distance from contributing sources. Loads of some ECs, such as diethoxynonylphenol, accumulated or attenuated depending on location, discharge, and distance downstream from the WWTP, whereas others, such as bisphenol A, were largely conservative. The extent to which ECs in St. Vrain Creek affect native fish species and macroinvertebrate communities is unknown, but recent

  10. Structured decision making for conservation of bull trout (Salvelinus confluentus) in Long Creek, Klamath River Basin, south-central Oregon

    Science.gov (United States)

    Benjamin, Joseph R.; McDonnell, Kevin; Dunham, Jason B.; Brignon, William R.; Peterson, James T.

    2017-06-21

    With the decline of bull trout (Salvelinus confluentus), managers face multiple, and sometimes contradictory, management alternatives for species recovery. Moreover, effective decision-making involves all stakeholders influenced by the decisions (such as Tribal, State, Federal, private, and non-governmental organizations) because they represent diverse objectives, jurisdictions, policy mandates, and opinions of the best management strategy. The process of structured decision making is explicitly designed to address these elements of the decision making process. Here we report on an application of structured decision making to a population of bull trout believed threatened by high densities of nonnative brook trout (S. fontinalis) and habitat fragmentation in Long Creek, a tributary to the Sycan River in the Klamath River Basin, south-central Oregon. This involved engaging stakeholders to identify (1) their fundamental objectives for the conservation of bull trout, (2) feasible management alternatives to achieve their objectives, and (3) biological information and assumptions to incorporate in a decision model. Model simulations suggested an overarching theme among the top decision alternatives, which was a need to simultaneously control brook trout and ensure that the migratory tactic of bull trout can be expressed. More specifically, the optimal management decision, based on the estimated adult abundance at year 10, was to combine the eradication of brook trout from Long Creek with improvement of downstream conditions (for example, connectivity or habitat conditions). Other top decisions included these actions independently, as well as electrofishing removal of brook trout. In contrast, translocating bull trout to a different stream or installing a barrier to prevent upstream spread of brook trout had minimal or negative effects on the bull trout population. Moreover, sensitivity analyses suggested that these actions were consistently identified as optimal across

  11. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    Science.gov (United States)

    Harvey, Judson W.; Fuller, Christopher C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The

  12. HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL

    Science.gov (United States)

    The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...

  13. Installation restoration program: Hydrologic measurements with an estimated hydrologic budget for the Joliet Army Ammunition Plant, Joliet, Illinois. [Contains maps of monitoring well locations, topography and hydrologic basins

    Energy Technology Data Exchange (ETDEWEB)

    Diodato, D.M.; Cho, H.E.; Sundell, R.C.

    1991-07-01

    Hydrologic data were gathered from the 36.8-mi{sup 2} Joliet Army Ammunition Plant (JAAP) located in Joliet, Illinois. Surface water levels were measured continuously, and groundwater levels were measured monthly. The resulting information was entered into a database that could be used as part of numerical flow model validation for the site. Deep sandstone aquifers supply much of the water in the JAAP region. These aquifers are successively overlain by confining shales and a dolomite aquifer of Silurian age. This last unit is unconformably overlain by Pleistocene glacial tills and outwash sand and gravel. Groundwater levels in the shallow glacial system fluctuate widely, with one well completed in an upland fluctuating more than 17 ft during the study period. The response to groundwater recharge in the underlying Silurian dolomite is slower. In the upland recharge areas, increased groundwater levels were observed; in the lowland discharge areas, groundwater levels decreased during the study period. The decreases are postulated to be a lag effect related to a 1988 drought. These observations show that fluid at the JAAP is not steady-state, either on a monthly or an annual basis. Hydrologic budgets were estimated for the two principal surface water basins at the JAAP site. These basins account for 70% of the facility's total land area. Meteorological data collected at a nearby dam show that total measured precipitation was 31.45 in. and total calculated evapotranspiration was 23.09 in. for the study period. The change in surface water storage was assumed to be zero for the annual budget for each basin. The change in groundwater storage was calculated to be 0.12 in. for the Grant Creek basin and 0. 26 in. for the Prairie Creek basin. Runoff was 7.02 in. and 7.51 in. for the Grant Creek and Prairie Creek basins, respectively. The underflow to the deep hydrogeologic system in the Grant Creek basin was calculated to be negligible. 12 refs., 17 figs., 15 tabs.

  14. Temporal inconsistencies in coarse-scale snow water equivalent patterns: Colorado River Basin snow telemetry-topography regressions

    Directory of Open Access Journals (Sweden)

    Fassnacht, S. R.

    2012-05-01

    Full Text Available The relation between snow water equivalent (SWE and 28 variables (27 topographically-based topographic variables and canopy density for the Colorado River Basin, USA was explored through a multi-variate regression. These variables include location, slope and aspect at different scales, derived variables to indicate the distance to sources of moisture and proximity to and characteristics of obstacles between these moisture sources and areas of snow accumulation, and canopy density. A weekly time step of snow telemetry (SNOTEL SWE data from 1990 through 1999 was used. The most important variables were elevation and regional scale (81 km² slope. Since the seasonal and inter-annual variability is high, a regression relationship should be formulated for each time step. The inter-annual variation in the relation between SWE and topographic variables partially corresponded with the amount of snow accumulated over the season and the El Niño Southern Oscillation cycle.Se analiza la relación entre el equivalente de agua en la nieve (SWE y 28 variables (27 variables topográficas y otra basada en la densidad del dosel para la Cuenca del Río Colorado, EE.UU. mediante regresión multivariante. Estas variables incluyen la localización, pendiente y orientación a diferentes escalas, además de variables derivadas para indicar la distancia a las fuentes de humedad y la proximidad a las barreras topográficas, además de las características de las barreras topográficas entre las fuentes de humedad, las áreas de acumulación de nieve y la densidad del dosel. Se utilizaron telemetrías semanales de nieve (SNOTEL desde 1990 hasta 1999. Las variables más importantes fueron la elevación y la pendiente a escala regional (81 km². Dada la alta variabilidad estacional e interanual, fue necesario establecer regresiones específicas para cada intervalo disponible de datos. La variación interanual en la relación entre variables topográficas y el SWE se

  15. Evidence for a marine incursion along the lower Colorado River corridor

    Science.gov (United States)

    McDougall, Kristin; Martínez, Adriana Yanet Miranda

    2014-01-01

    Foraminiferal assemblages in the stratigraphically lower part of the Bouse Formation in the Blythe Basin indicate marine conditions whereas assemblages in the upper part of the Bouse Formation indicate lacustrine conditions and suggest the presence of a saline lake. Benthic foraminiferal assemblages in the lower part of the Bouse Formation are similar to lagoonal and inner neritic biofacies of the modern Gulf of California. Evidence suggesting a change from marine to lacustrine conditions includes the highest occurrence of planktic foraminifers at an elevation of 123 m asl, the change from low diversity to monospecific foraminiferal assemblages composed only of Ammonia beccarii (between 110 to126 m asl), an increase in abundance of A. beccarii specimens (above ~110 m asl), increased number of deformed tests (above ~123 m asl), first appearance of Chara (at ~85 m asl), lowest occurrence of reworked Cretaceous coccoliths (at ~110 m), a decrease in strontium isotopic values (between 70-120 m), and δ18O and δ13C values similar to sea water (between 70-100 m asl). Planktic foraminifers indicate a late Miocene age between 8.10 and 5.3 Ma for the oldest part of the Bouse Formation in the southern part of the Blythe Basin. Benthic and planktic foraminifers correlate with other late Miocene sections and suggest that the basal Bouse Formation in the Blythe Basin was deposited at the northern end of the proto-Gulf of California. After the marine connection was restricted or eliminated, the Colorado River flowed into the Blythe Basin forming a saline lake. This lake supported a monospecific foraminiferal assemblage of A. beccarii until the lake spilled into the Salton Trough and the Colorado River became a through-flowing river.

  16. Commercial production of ethanol in the San Luis Valley, Colorado. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Sherwood, P.B.; Boswell, B.S.; Walter, K.M.; Hart, M.L.

    1983-07-01

    The purpose of this study is to assess the commercial feasibility of producing between 76 and 189 million liters (20 and 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (KGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstock for the production of ethanol.

  17. 76 FR 17444 - Notice of Inventory Completion: Colorado Historical Society (History Colorado), Denver, CO

    Science.gov (United States)

    2011-03-29

    ... Culture, Colorado Historical Society (History Colorado), 1560 Broadway, Suite 400, Denver, CO 80202...: Colorado Historical Society (History Colorado), Denver, CO AGENCY: National Park Service, Interior. ACTION... control of the Colorado Historical Society (History Colorado), Denver, CO. The human remains were removed...

  18. Review and analysis of available streamflow and water-quality data for Park County, Colorado, 1962-98

    Science.gov (United States)

    Kimbrough, Robert A.

    2001-01-01

    Information on streamflow and surface-water and ground-water quality in Park County, Colorado, was compiled from several Federal, State, and local agencies. The data were reviewed and analyzed to provide a perspective of recent (1962-98) water-resource conditions and to help identify current and future water-quantity and water-quality concerns. Streamflow has been monitored at more than 40 sites in the county, and data for some sites date back to the early 1900's. Existing data indicate a need for increased archival of streamflow data for future use and analysis. In 1998, streamflow was continuously monitored at about 30 sites, but data were stored in a data base for only 10 sites. Water-quality data were compiled for 125 surface-water sites, 398 wells, and 30 springs. The amount of data varied considerably among sites; however, the available information provided a general indication of where water-quality constituent concentrations met or exceeded water-quality standards. Park County is primarily drained by streams in the South Platte River Basin and to a lesser extent by streams in the Arkansas River Basin. In the South Platte River Basin in Park County, more than one-half the annual streamflow occurs in May, June, and July in response to snowmelt in the mountainous headwaters. The annual snowpack is comparatively less in the Arkansas River Basin in Park County, and mean monthly streamflow is more consistent throughout the year. In some streams, the timing and magnitude of streamflow have been altered by main-stem reservoirs or by interbasin water transfers. Most values of surface-water temperature, dissolved oxygen, and pH were within recommended limits set by the Colorado Department of Public Health and Environment. Specific conductance (an indirect measure of the dissolved-solids concentration) generally was lowest in streams of the upper South Platte River Basin and higher in the southern one-half of the county in the Arkansas River Basin and in the South

  19. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    International Nuclear Information System (INIS)

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin

  20. Web application to access U.S. Army Corps of Engineers Civil Works and Restoration Projects information for the Rio Grande Basin, southern Colorado, New Mexico, and Texas

    Science.gov (United States)

    Archuleta, Christy-Ann M.; Eames, Deanna R.

    2009-01-01

    The Rio Grande Civil Works and Restoration Projects Web Application, developed by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers (USACE) Albuquerque District, is designed to provide publicly available information through the Internet about civil works and restoration projects in the Rio Grande Basin. Since 1942, USACE Albuquerque District responsibilities have included building facilities for the U.S. Army and U.S. Air Force, providing flood protection, supplying water for power and public recreation, participating in fire remediation, protecting and restoring wetlands and other natural resources, and supporting other government agencies with engineering, contracting, and project management services. In the process of conducting this vast array of engineering work, the need arose for easily tracking the locations of and providing information about projects to stakeholders and the public. This fact sheet introduces a Web application developed to enable users to visualize locations and search for information about USACE (and some other Federal, State, and local) projects in the Rio Grande Basin in southern Colorado, New Mexico, and Texas.

  1. Feasibility and potential effects of the proposed Amargosa Creek Recharge Project, Palmdale, California

    Science.gov (United States)

    Christensen, Allen H.; Siade, Adam J.; Martin, Peter; Langenheim, V.E.; Catchings, Rufus D.; Burgess, Matthew K.

    2015-09-17

    Historically, the city of Palmdale and vicinity have relied on groundwater as the primary source of water, owing, in large part, to the scarcity of surface water in the region. Despite recent importing of surface water, groundwater withdrawal for municipal, industrial, and agricultural use has resulted in groundwater-level declines near the city of Palmdale in excess of 200 feet since the early 1900s. To meet the growing water demand in the area, the city of Palmdale has proposed the Amargosa Creek Recharge Project (ACRP), which has a footprint of about 150 acres along the Amargosa Creek 2 miles west of Palmdale, California. The objective of this study was to evaluate the long-term feasibility of recharging the Antelope Valley aquifer system by using infiltration of imported surface water from the California State Water Project in percolation basins at the ACRP.

  2. Occurrence of phosphorus, other nutrients, and triazine herbicides in water from the Hillsdale Lake basin, Northeast Kansas, May 1994 through May 1995

    Science.gov (United States)

    Putnam, J.E.

    1997-01-01

    An investigation of the occurrence of phosporus, other nutrients, and triazine herbicides in water samples from the Hillsdale Lake Basin in northeast Kansas was conducted from May 1994 through May 1995. Point-source and nonpoint-source contributions of these water-quality constituents were estimated by conducting synoptic sampling at 48 sites in the basin during five periods of low- flow conditions. Samples were collected for the determination of nutrients, including total phosphorus as phosphorus, dissolved orthophosphate as phosphorus, total nitrite plus nitrate as nitrogen, and total ammonia plus organic nitrogen as nitrogen, and for selected triazine herbicides. On the basis of criteria developed by the Kansas Department of Health and Environment, the Hillsdale Water-Quality Protection Project established a goal to maintain water quality in the tributaries of the Hillsdale Lake Basin at a mean annual low-flow total phosphorus concentration of 0.05 mg/L (milligrams per liter). The mean low- flow total phosphorus concentration of water samples collected in the Big Bull Creek (which includes drainage from Martin Creek), Rock Creek, Little Bull Creek, Wade Branch, and Smith Branch subbasins during low-flow conditions ranged from 0.05 to 4.9 mg/L during this study. Of the 44 sites sampled during low flow, 95 percent had low-flow total phosphorus concentrations larger than the 0.05-mg/L criterion. Discharges from wastewater- treatment plants located in Big Bull Creek and Martin Creek subbasins and the Little Bull Creek subbasin affected nutrient concentrations. Nutrient concentrations in water samples collected from the subbasins not affected by point-source discharges generally were smaller than those in the Big Bull Creek and Little Bull Creek subbasins. Estimated annual low-flow phosphorus loads computed at sampling sites located at the outlet of the subbasins show that the Big Bull Creeksubbasin, which includes drainage from the Martin Creek subbasin, had the

  3. Hydrogeologic Data of the Denver Basin, Colorado. Colorado Water Conservation Board Basic Data Report Number 15

    Science.gov (United States)

    1964-01-01

    mN N - N. 2 A 0 4 0 E N A 2 r. -C td , to- A . . . . . . 002 0 2.0 .2 0. 22 0 0 .30 0 0 0 C0 - Al 4 u’ 0 4 .2 3 . . 0 3 A aS u v 48 *0 U a 2 .0 "’U j...Depth C4~-344bb.--Conlt, td C4-66-4abda. Alt. S.431.0 ft. C4-i6-Sbcab. Alt. 5.444.0 ft. Sandstone. hard . . . 2 359 Piney Creek Alluvium Younger keess...sand. blue shale,and el68- 4bd ]c. Alt. 5,791.6 ft. Sandstone, yellow, and sandstone ...... ... 9 122 Slocum Alluviums sand .......... .. 6 89 Shale

  4. Simulations of hydrologic response in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern United States

    Science.gov (United States)

    LaFontaine, Jacob H.; Jones, L. Elliott; Painter, Jaime A.

    2017-12-29

    A suite of hydrologic models has been developed for the Apalachicola-Chattahoochee-Flint River Basin (ACFB) as part of the National Water Census, a U.S. Geological Survey research program that focuses on developing new water accounting tools and assessing water availability and use at the regional and national scales. Seven hydrologic models were developed using the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, land cover, and water use on basin hydrology. A coarse-resolution PRMS model was developed for the entire ACFB, and six fine-resolution PRMS models were developed for six subbasins of the ACFB. The coarse-resolution model was loosely coupled with a groundwater model to better assess the effects of water use on streamflow in the lower ACFB, a complex geologic setting with karst features. The PRMS coarse-resolution model was used to provide inputs of recharge to the groundwater model, which in turn provide simulations of groundwater flow that were aggregated with PRMS-based simulations of surface runoff and shallow-subsurface flow. Simulations without the effects of water use were developed for each model for at least the calendar years 1982–2012 with longer periods for the Potato Creek subbasin (1942–2012) and the Spring Creek subbasin (1952–2012). Water-use-affected flows were simulated for 2008–12. Water budget simulations showed heterogeneous distributions of precipitation, actual evapotranspiration, recharge, runoff, and storage change across the ACFB. Streamflow volume differences between no-water-use and water-use simulations were largest along the main stem of the Apalachicola and Chattahoochee River Basins, with streamflow percentage differences largest in the upper Chattahoochee and Flint River Basins and Spring Creek in the lower Flint River Basin. Water-use information at a shorter time step and a fully coupled simulation in

  5. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy; Carmichael, Richard; Noll, William

    2003-12-01

    The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resulted in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the index

  6. Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA

    Directory of Open Access Journals (Sweden)

    C. A. Orem

    2016-11-01

    Full Text Available Flood-envelope curves (FECs are useful for constraining the upper limit of possible flood discharges within drainage basins in a particular hydroclimatic region. Their usefulness, however, is limited by their lack of a well-defined recurrence interval. In this study we use radar-derived precipitation estimates to develop an alternative to the FEC method, i.e., the frequency–magnitude–area-curve (FMAC method that incorporates recurrence intervals. The FMAC method is demonstrated in two well-studied US drainage basins, i.e., the Upper and Lower Colorado River basins (UCRB and LCRB, respectively, using Stage III Next-Generation-Radar (NEXRAD gridded products and the diffusion-wave flow-routing algorithm. The FMAC method can be applied worldwide using any radar-derived precipitation estimates. In the FMAC method, idealized basins of similar contributing area are grouped together for frequency–magnitude analysis of precipitation intensity. These data are then routed through the idealized drainage basins of different contributing areas, using contributing-area-specific estimates for channel slope and channel width. Our results show that FMACs of precipitation discharge are power-law functions of contributing area with an average exponent of 0.82 ± 0.06 for recurrence intervals from 10 to 500 years. We compare our FMACs to published FECs and find that for wet antecedent-moisture conditions, the 500-year FMAC of flood discharge in the UCRB is on par with the US FEC for contributing areas of  ∼ 102 to 103 km2. FMACs of flood discharge for the LCRB exceed the published FEC for the LCRB for contributing areas in the range of  ∼ 103 to 104 km2. The FMAC method retains the power of the FEC method for constraining flood hazards in basins that are ungauged or have short flood records, yet it has the added advantage that it includes recurrence-interval information necessary for estimating event probabilities.

  7. Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma Panhandle, USA

    Science.gov (United States)

    Bement, Leland C.; Madden, Andrew S.; Carter, Brian J.; Simms, Alexander R.; Swindle, Andrew L.; Alexander, Hanna M.; Fine, Scott; Benamara, Mourad

    2014-02-01

    High levels of nanodiamonds (nds) have been used to support the transformative hypothesis that an extraterrestrial (ET) event (comet explosion) triggered Younger Dryas changes in temperature, flora and fauna assemblages, and human adaptations [Firestone RB, et al. (2007) Proc Natl Acad Sci USA 104(41):16016-16021]. We evaluate this hypothesis by establishing the distribution of nds within the Bull Creek drainage of the Beaver River basin in the Oklahoma panhandle. The earlier report of an abundance spike of nds in the Bull Creek I Younger Dryas boundary soil is confirmed, although no pure cubic diamonds were identified. The lack of hexagonal nds suggests Bull Creek I is not near any impact site. Potential hexagonal nds at Bull Creek were found to be more consistent with graphene/graphane. An additional nd spike is found in deposits of late Holocene through the modern age, indicating nds are not unique to the Younger Dryas boundary. Nd distributions do not correlate with depositional environment, pedogenesis, climate perturbations, periods of surface stability, or cultural activity.

  8. Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma panhandle, USA.

    Science.gov (United States)

    Bement, Leland C; Madden, Andrew S; Carter, Brian J; Simms, Alexander R; Swindle, Andrew L; Alexander, Hanna M; Fine, Scott; Benamara, Mourad

    2014-02-04

    High levels of nanodiamonds (nds) have been used to support the transformative hypothesis that an extraterrestrial (ET) event (comet explosion) triggered Younger Dryas changes in temperature, flora and fauna assemblages, and human adaptations [Firestone RB, et al. (2007) Proc Natl Acad Sci USA 104(41):16016-16021]. We evaluate this hypothesis by establishing the distribution of nds within the Bull Creek drainage of the Beaver River basin in the Oklahoma panhandle. The earlier report of an abundance spike of nds in the Bull Creek I Younger Dryas boundary soil is confirmed, although no pure cubic diamonds were identified. The lack of hexagonal nds suggests Bull Creek I is not near any impact site. Potential hexagonal nds at Bull Creek were found to be more consistent with graphene/graphane. An additional nd spike is found in deposits of late Holocene through the modern age, indicating nds are not unique to the Younger Dryas boundary. Nd distributions do not correlate with depositional environment, pedogenesis, climate perturbations, periods of surface stability, or cultural activity.

  9. Source Signature of Volatile Organic Compounds (VOCs) associated with oil and natural gas operations in Utah and Colorado

    Science.gov (United States)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Young, C. J.; Edwards, P.; Brown, S. S.; Wolfe, D. E.; Williams, E. J.; De Gouw, J. A.

    2012-12-01

    The U.S. Energy Information Administration has reported a sharp increase in domestic oil and natural gas production from "unconventional" reserves (e.g., shale and tight sands) between 2005 and 2012. The recent growth in drilling and fossil fuel production has led to environmental concerns regarding local air quality. Severe wintertime ozone events (greater than 100 ppb ozone) have been observed in Utah's Uintah Basin and Wyoming's Upper Green River Basin, both of which contain large natural gas fields. Raw natural gas is a mixture of approximately 60-95 mole percent methane while the remaining fraction is composed of volatile organic compounds (VOCs) and other non-hydrocarbon gases. We measured an extensive set of VOCs and other trace gases near two highly active areas of oil and natural gas production in Utah's Uintah Basin and Colorado's Denver-Julesburg Basin in order to characterize primary emissions of VOCs associated with these industrial operations and identify the key VOCs that are precursors for potential ozone formation. UBWOS (Uintah Basin Winter Ozone Study) was conducted in Uintah County located in northeastern Utah in January-February 2012. Two Colorado studies were conducted at NOAA's Boulder Atmospheric Observatory in Weld County in northeastern Colorado in February-March 2011 and July-August 2012 as part of the NACHTT (Nitrogen, Aerosol Composition, and Halogens on a Tall Tower) and SONNE (Summer Ozone Near Natural gas Emissions) field experiments, respectively. The C2-C6 hydrocarbons were greatly enhanced for all of these studies. For example, the average propane mixing ratio observed during the Utah study was 58 ppb (median = 35 ppb, minimum = 0.8, maximum = 520 ppb propane) compared to urban averages which range between 0.3 and 6.0 ppb propane. We compare the ambient air composition from these studies to urban measurements in order to show that the VOC source signature from oil and natural gas operations is distinct and can be clearly

  10. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    Science.gov (United States)

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  11. Prioritization of buffer areas with multi objective analysis: application in the Basin Creek St. Helena

    International Nuclear Information System (INIS)

    Zuluaga, Julian; Carvajal, Luis Fernando

    2006-01-01

    This paper shows a Multi objective Analysis (AMO-ELECTRE 111) with Geographical Information System (GIS) to establish priorities of buffer zones on the drainage network of the Santa Elena Creek, Medellin middle-east zone. 38 alternatives (small catchment) are evaluated with seven criteria, from field work, and maps. The criteria are: susceptibility to mass sliding, surface and lineal erosion, conflict by land use, and state of the waterways network in respect to hydrology, geology and human impact. The ELECTERE III method allows establishing priorities of buffer zones for each catchment; the indifference, acceptance, veto, and credibility threshold values, as well as those for criteria weighting factors are very important. The results show that the north zone of the catchment, commune 8, in particular La Castro creek, is most affected. The sensibility analysis shows that the obtained solution is robust, and that the anthropic and geologic criteria are paramount

  12. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  13. Didymosphenia geminata in the Upper Esopus Creek: Current Status, Variability, and Controlling Factors

    OpenAIRE

    George, Scott Daniel; Baldigo, Barry Paul

    2015-01-01

    In May of 2009, the bloom-forming diatom Didymosphenia geminata was first identified in the Upper Esopus Creek, a key tributary to the New York City water-supply and a popular recreational stream. The Upper Esopus receives supplemental flows from the Shandaken Portal, an underground aqueduct delivering waters from a nearby basin. The presence of D. geminata is a concern for the local economy, water supply, and aquatic ecosystem because nuisance blooms have been linked to degraded stream condi...

  14. Estimated flood-inundation maps for Cowskin Creek in western Wichita, Kansas

    Science.gov (United States)

    Studley, Seth E.

    2003-01-01

    The October 31, 1998, flood on Cowskin Creek in western Wichita, Kansas, caused millions of dollars in damages. Emergency management personnel and flood mitigation teams had difficulty in efficiently identifying areas affected by the flooding, and no warning was given to residents because flood-inundation information was not available. To provide detailed information about future flooding on Cowskin Creek, high-resolution estimated flood-inundation maps were developed using geographic information system technology and advanced hydraulic analysis. Two-foot-interval land-surface elevation data from a 1996 flood insurance study were used to create a three-dimensional topographic representation of the study area for hydraulic analysis. The data computed from the hydraulic analyses were converted into geographic information system format with software from the U.S. Army Corps of Engineers' Hydrologic Engineering Center. The results were overlaid on the three-dimensional topographic representation of the study area to produce maps of estimated flood-inundation areas and estimated depths of water in the inundated areas for 1-foot increments on the basis of stream stage at an index streamflow-gaging station. A Web site (http://ks.water.usgs.gov/Kansas/cowskin.floodwatch) was developed to provide the public with information pertaining to flooding in the study area. The Web site shows graphs of the real-time streamflow data for U.S. Geological Survey gaging stations in the area and monitors the National Weather Service Arkansas-Red Basin River Forecast Center for Cowskin Creek flood-forecast information. When a flood is forecast for the Cowskin Creek Basin, an estimated flood-inundation map is displayed for the stream stage closest to the National Weather Service's forecasted peak stage. Users of the Web site are able to view the estimated flood-inundation maps for selected stages at any time and to access information about this report and about flooding in general. Flood

  15. Morphological Analyses and Simulated Flood Elevations in a Watershed with Dredged and Leveed Stream Channels, Wheeling Creek, Eastern Ohio

    Science.gov (United States)

    Sherwood, James M.; Huitger, Carrie A.; Ebner, Andrew D.; Koltun, G.F.

    2008-01-01

    The USGS, in cooperation with the Ohio Emergency Management Agency, conducted a study in the Wheeling Creek Basin to (1) evaluate and contrast land-cover characteristics from 2001 with characteristics from 1979 and 1992; (2) compare current streambed elevation, slope, and geometry with conditions present in the late 1980s; (3) look for evidence of channel filling and over widening in selected undredged reaches; (4) estimate flood elevations for existing conditions in both undredged and previously dredged reaches; (5) evaluate the height of the levees required to contain floods with selected recurrence intervals in previously dredged reaches; and (6) estimate flood elevations for several hypothetical dredging and streambed aggradation scenarios in undredged reaches. The amount of barren land in the Wheeling Creek watershed has decreased from 20 to 1 percent of the basin area based on land-cover characteristics from 1979 and 2001. Barren lands appear to have been converted primarily to pasture, presumably as a result of surface-mine reclamation. Croplands also decreased from 13 to 8 percent of the basin area. The combined decrease in barren lands and croplands is approximately offset by the increase in pasture. Stream-channel surveys conducted in 1987 and again in 2006 at 21 sites in four previously dredged reaches of Wheeling Creek indicate little change in the elevation, slope, and geometry of the channel at most sites. The mean change in width-averaged bed and thalweg elevations for the 21 cross sections was 0.1 feet. Bankfull widths, mean depths, and cross-sectional areas measured at 12 sites in undredged reaches were compared to estimates determined from regional equations. The mean percentage difference between measured and estimated bankfull widths was -0.2 percent, suggesting that bankfull widths in the Wheeling Creek Basin are generally about the same as regional averages for undisturbed basins of identical drainage area. For bankfull mean depth and cross

  16. Regional hydrology of the Blanding-Durango area, southern Paradox Basin, Utah and Colorado

    International Nuclear Information System (INIS)

    Whitfield, M.S. Jr.; Thordarson, W.; Oatfield, W.J.; Zimmerman, E.A.; Rueger, B.F.

    1983-01-01

    Principal findings of this study that are pertinent to an assessment of suitability of the hydrogeologic systems to store and contain radioactive waste in salt anticlines of adjacent areas are: water in the upper ground-water flow system discharges to the San Juan River - a major tributary of the Colorado River. Discharge of water from the upper aquifer system to streambed channels of the San Juan River and its tributaries during low-flow periods primarily is through evapotranspiration from areas on flood plains and maintenance of streamflow; the lower ground-water system does not have known recharge or discharge areas within the study area; subsurface inflow to this system comes from recharge areas located north and northeast of the study area; the upper and lower ground-water systems are separated regionally by thick salt deposits in the Blanding-Durango study area of the Paradox basin; potential exists in mountainous areas for downward leakage between the upper and lower ground-water systems, where salt deposits are thin, absent, or faulted; no brines were found in this study area with outflow to the biosphere; water in the upper ground-water system generally is fresh. Water in the lower ground-water system generally is brackish or saline; and ground-water flow disruptions by contiguous faults probably are common in the upper ground-water system. These disruptions of flow are not apparent in the lower ground-water system, perhaps because available hydrologic data for the lower ground-water system are scarce. The above major findings do not preclude the potential for waste storage in salt; however, they do not allow the prediction of detailed ground-water flow rates and directions through this area. 55 references, 13 figures, 15 tables

  17. Geologic map of the upper Arkansas River valley region, north-central Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Shroba, Ralph R.; Ruleman, Chester A.; Bohannon, Robert G.; McIntosh, William C.; Premo, Wayne R.; Cosca, Michael A.; Moscati, Richard J.; Brandt, Theodore R.

    2017-11-17

    This 1:50,000-scale U.S. Geological Survey geologic map represents a compilation of the most recent geologic studies of the upper Arkansas River valley between Leadville and Salida, Colorado. The valley is structurally controlled by an extensional fault system that forms part of the prominent northern Rio Grande rift, an intra-continental region of crustal extension. This report also incorporates new detailed geologic mapping of previously poorly understood areas within the map area and reinterprets previously studied areas. The mapped region extends into the Proterozoic metamorphic and intrusive rocks in the Sawatch Range west of the valley and the Mosquito Range to the east. Paleozoic rocks are preserved along the crest of the Mosquito Range, but most of them have been eroded from the Sawatch Range. Numerous new isotopic ages better constrain the timing of both Proterozoic intrusive events, Late Cretaceous to early Tertiary intrusive events, and Eocene and Miocene volcanic episodes, including widespread ignimbrite eruptions. The uranium-lead ages document extensive about 1,440-million years (Ma) granitic plutonism mostly north of Buena Vista that produced batholiths that intruded an older suite of about 1,760-Ma metamorphic rocks and about 1,700-Ma plutonic rocks. As a result of extension during the Neogene and possibly latest Paleogene, the graben underlying the valley is filled with thick basin-fill deposits (Dry Union Formation and older sediments), which occupy two sub-basins separated by a bedrock high near the town of Granite. The Dry Union Formation has undergone deep erosion since the late Miocene or early Pliocene. During the Pleistocene, ongoing steam incision by the Arkansas River and its major tributaries has been interrupted by periodic aggradation. From Leadville south to Salida as many as seven mapped alluvial depositional units, which range in age from early to late Pleistocene, record periodic aggradational events along these streams that are

  18. Streamflow in the upper Santa Cruz River basin, Santa Cruz and Pima Counties, Arizona

    Science.gov (United States)

    Condes de la Torre, Alberto

    1970-01-01

    Streamflow records obtained in the upper Santa Cruz River basin of southern Arizona, United States, and northern Sonora, Mexico, have been analyzed to aid in the appraisal of the surface-water resources of the area. Records are available for 15 sites, and the length of record ranges from 60 years for the gaging station on the Santa .Cruz River at Tucson to 6 years for Pantano Wash near Vail. The analysis provides information on flow duration, low-flow frequency magnitude, flood-volume frequency and magnitude, and storage requirements to maintain selected draft rates. Flood-peak information collected from the gaging stations has been projected on a regional basis from which estimates of flood magnitude and frequency may be made for any site in the basin. Most streams in the 3,503-square-mile basin are ephemeral. Ground water sustains low flows only at Santa Cruz River near Nogales, Sonoita Creek near Patagonia, and Pantano Wash near Vail. Elsewhere, flow occurs only in direct response to precipitation. The median number of days per year in which there is no flow ranges from 4 at Sonoita Creek near Patagonia to 335 at Rillito Creek near Tomson. The streamflow is extremely variable from year to year, and annual flows have a coefficient of variation close to or exceeding unity at most stations. Although the amount of flow in the basin is small most of the time, the area is subject to floods. Most floods result from high-intensity precipitation caused by thunderstorms during the period ,July to September. Occasionally, when snowfall at the lower altitudes is followed by rain, winter floods produce large volumes of flow.

  19. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin

    Science.gov (United States)

    Senay, Gabriel; Friedrichs, MacKenzie O.; Singh, Ramesh K.; Velpuri, Naga Manohar

    2016-01-01

    Evapotranspiration (ET) mapping at the Landsat spatial resolution (100 m) is essential to fully understand water use and water availability at the field scale. Water use estimates in the Colorado River Basin (CRB), which has diverse ecosystems and complex hydro-climatic regions, will be helpful to water planners and managers. Availability of Landsat 8 images, starting in 2013, provides the opportunity to map ET in the CRB to assess spatial distribution and patterns of water use. The Operational Simplified Surface Energy Balance (SSEBop) model was used with 528 Landsat 8 images to create seamless monthly and annual ET estimates at the inherent 100 m thermal band resolution. Annual ET values were summarized by land use/land cover classes. Croplands were the largest consumer of “blue” water while shrublands consumed the most “green” water. Validation using eddy covariance (EC) flux towers and water balance approaches showed good accuracy levels with R2 ranging from 0.74 to 0.95 and the Nash–Sutcliffe model efficiency coefficient ranging from 0.66 to 0.91. The root mean square error (and percent bias) ranged from 0.48 mm (13%) to 0.60 mm (22%) for daily (days of satellite overpass) ET and from 7.75 mm (2%) to 13.04 mm (35%) for monthly ET. The spatial and temporal distribution of ET indicates the utility of Landsat 8 for providing important information about ET dynamics across the landscape. Annual crop water use was estimated for five selected irrigation districts in the Lower CRB where annual ET per district ranged between 681 mm to 772 mm. Annual ET by crop type over the Maricopa Stanfield irrigation district ranged from a low of 384 mm for durum wheat to a high of 990 mm for alfalfa fields. A rainfall analysis over the five districts suggested that, on average, 69% of the annual ET was met by irrigation. Although the enhanced cloud-masking capability of Landsat 8 based on the cirrus band and utilization of the Fmask algorithm improved the

  20. Sediment sources and storages in the urbanizing South Creek catchment, Lake Macquarie, NSW

    International Nuclear Information System (INIS)

    Curtis, S.J.

    1988-10-01

    An investigation of the sediment source areas and sediment storages has been undertaken in the South Creek catchment, Lake Macquarie, NSW. Source areas have been examined by analyzing suspended sediment concentrations, field measurements and observations, and caesium-137 values. The caesium-137 technique and field measurements were used to study the sediment storages on the South Creek flood plain. Particle size analysis of sediments on the slopes and flood plain were undertaken to provide information on the efficiency of the sediment transport system. The results of these investigations indicate that the developing urban areas are the main sources of poorest water quality (in terms of suspended sediment) in the South Creek catchment. The open woodland, rural and established urban areas were minor sediment source areas, although the open woodland had the potential to become a major sediment source if disturbed by human activities. The developing urban areas had efficient sediment transport systems, while the open woodland and rural areas tended to deposit sediment locally. The upstream section of the flood plain was found to be storing more sediment than the downstream section. The study revealed that when urban development occurs on the steeper gradients of the South Creek catchment erosion processes are greatly accelerated and thus the developing urban area becomes the major source of poorest water quality in the catchment. The importance of the developing urban area as a sediment source needs to be considered in any future land developments in urbanizing drainage basins

  1. Tectonic Implications of Changes in the Paleogene Paleodrainage Network in the West-Central Part of the San Luis Basin, Northern Rio Grande Rift, New Mexico and Colorado, USA

    Science.gov (United States)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.

    2016-12-01

    The San Luis Basin is the largest of extensional basins in the northern Rio Grande rift (>11,400 km2). The modern basin configuration is the result of Neogene deformation that has been the focus of numerous studies. In contrast, Paleogene extensional deformation is relatively little studied owing to a fragmentary or poorly exposed stratigraphic record in most areas. However, volcanic and volcaniclastic deposits exposed along the western margin of the basin provide the spatial and temporal framework for interpretation of paleodrainage patterns that changed in direct response to Oligocene basin subsidence and the migration of centers of Tertiary volcanism. The early Oligocene (34 to 30 Ma) drainage pattern that originated in the volcanic highlands of the San Juan Mountains flowed south into the northern Tusas Mountains. A structural and topographic high composed of Proterozoic rocks in the Tusas Mountains directed flow to the southeast at least as late as 29 Ma, as ash-flow tuffs sourced in the southeast San Juan Mountains are restricted to the north side of the paleohigh. Construction of volcanic highlands in the San Luis Hills between 30 and 28.5 Ma provided an abundant source of volcanic debris that combined with volcanic detritus sourced in the southeast San Juan Mountains and was deposited (Los Pinos Formation) throughout the northern Tusas Mountains progressively onlapping the paleotopographic high. By 29 Ma, subsidence of the Las Mesitas graben, a structural sub-basin, between the San Luis Hills and the southeast San Juan and northern Tusas Mountains is reflected by thick deposits of Los Pinos Formation beneath 26.5 Ma basalts. Regional tectonism responsible for the formation of the graben may have also lowered the topographic and structural high in the Tusas Mountains, which allowed development of a southwest-flowing paleodrainage that likely flowed onto the Colorado Plateau. Tholeiitic basalt flows erupted in the San Luis Hills at 25.8 Ma, that presently cap

  2. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems

  3. 1998 BPA habitat projects completed within the Asotin Creek Watershed, WA; Ridge-Top to Ridge-Top Habitat Projects; 1998 BPA Completion Report - November 1999

    International Nuclear Information System (INIS)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed

  4. A legacy of change: The lower Colorado River, Arizona-California-Nevada, USA, and Sonora-Baja California Norte, Mexico

    Science.gov (United States)

    Mueller, G.A.; Marsh, P.C.; Minckley, W.L.

    2005-01-01

    The lower Colorado is among the most regulated rivers in the world. It ranks as the fifth largest river in volume in the coterminous United States, but its flow is fully allocated and no longer reaches the sea. Lower basin reservoirs flood nearly one third of the river channel and store 2 years of annual flow. Diverted water irrigates 1.5 million ha of cropland and provides water for industry and domestic use by 22 million people in the southwestern United States and northern Mexico. The native fish community of the lower Colorado River was among the most unique in the world, and the main stem was home to nine freshwater species, all of which were endemic to the basin. Today, five are extirpated, seven are federally endangered, and three are being reintroduced through stocking. Decline of the native fauna is attributed to predation by nonnative fishes and physical habitat degradation. Nearly 80 alien species have been introduced, and more than 20 now are common. These nonnative species thrived in modified habitats, where they largely eliminated the native kinds. As a result, the lower Colorado River has the dubious distinction of being among the few major rivers of the world with an entirely introduced fish fauna. ?? 2005 by the American Fisheries Society.

  5. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Science.gov (United States)

    2010-07-13

    ... TENNESSEE VALLEY AUTHORITY Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek...-managed public land on Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and... Proposed Land Use Alternative) identified in the final environmental impact statement (FEIS). Under the...

  6. Assessing effects of changing land use practices on sediment loads in Panther Creek, north coastal California

    Science.gov (United States)

    Madej, Mary Ann; Bundros, Greg; Klein, Randy

    2011-01-01

    Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal California. We compute land use statistics, analyze suspended sediment discharge rating curves, and compare sediment yields in Panther Creek to a control (unlogged) stream, Little Lost Man Creek. From 1978 to 2008, 8.2 km2 (over half the watershed) was clearcut and other timber management activities (thinning, selection cuts, and so forth) affected an additional 5.9 km2. Since 1984, 40.7 km of streams in harvest units received riparian buffer strip protection. Between 2000 and 2009, 22 km of roads were upgraded and 9.7 km were decommissioned, reducing potential sediment production by an estimated 40,000 m3. Road density is currently 3.1 km/km2. Sediment rating curves from 2005 to 2010 indicate a decrease in suspended sediment concentrations when compared to the pre-1996 period, although Panther Creek still has a higher sediment yield on a per unit area basis than the control stream.

  7. Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA

    Science.gov (United States)

    McMahon, Peter B.; Thomas, Judith C.; Crawford, John T.; Dornblaser, Mark M.; Hunt, Andrew G.

    2018-01-01

    Site-specific and regional analysis of time-series hydrologic and geochemical data collected from 15 monitoring wells in the Piceance Basin indicated that a leaking gas well contaminated shallow groundwater with thermogenic methane. The gas well was drilled in 1956 and plugged and abandoned in 1990. Chemical and isotopic data showed the thermogenic methane was not from mixing of gas-rich formation water with shallow groundwater or natural migration of a free-gas phase. Water-level and methane-isotopic data, and video logs from a deep monitoring well, indicated that a shale confining layer ~125 m below the zone of contamination was an effective barrier to upward migration of water and gas. The gas well, located 27 m from the contaminated monitoring well, had ~1000 m of uncemented annular space behind production casing that was the likely pathway through which deep gas migrated into the shallow aquifer. Measurements of soil gas near the gas well showed no evidence of methane emissions from the soil to the atmosphere even though methane concentrations in shallow groundwater (16 to 20 mg/L) were above air-saturation levels. Methane degassing from the water table was likely oxidized in the relatively thick unsaturated zone (~18 m), thus rendering the leak undetectable at land surface. Drilling and plugging records for oil and gas wells in Colorado and proxies for depth to groundwater indicated thousands of oil and gas wells were drilled and plugged in the same timeframe as the implicated gas well, and the majority of those wells were in areas with relatively large depths to groundwater. This study represents one of the few detailed subsurface investigations of methane leakage from a plugged and abandoned gas well. As such, it could provide a useful template for prioritizing and assessing potentially leaking wells, particularly in cases where the leakage does not manifest itself at land surface.

  8. Toxicity of inorganic contaminants, individually and in environmental mixtures, to three endangered fishes (Colorado squawfish, bonytail, and razorback sucker)

    Science.gov (United States)

    Buhl, Kevin J.; Hamilton, S.J.

    1996-01-01

    Two life stages of three federally-listed endangered fishes, Colorado squawfish (Ptychocheilus lucius), bonytail (Gila elegans), and razorback sucker (Xyrauchen texanus) were exposed to copper, selenate, selenite, and zinc individually, and to mixtures of nine inorganics in a reconstituted water that simulated the water quality of the middle Green River, Utah. The mixtures simulated environmental ratios of arsenate, boron, copper, molybdenum, selenate, selenite, uranium, vanadium, and zinc in two tributaries, Ashley Creek and Stewart Lake outlet, of the middle Green River. The rank order of toxicity of the individual inorganics, from most to least toxic, was: copper > zinc > selenite > selenate. Colorado squawfish larvae were more sensitive to all four inorganics and the two mixtures than the juveniles, whereas there was no consistent response between the two life stages for the other two species. There was no consistent difference in sensitivity to the inorganics among the three endangered fishes. Both mixtures exhibited either additive or greater than additive toxicity to these fishes. The primary toxic components in the mixtures, based on toxic units, were copper and zinc. Acute toxicity values were compared to measured environmental concentrations in the two tributaries to derive margins of uncertainty. Margins of uncertainty were low for both mixtures (9–22 for the Stewart Lake outlet mixture, and 12–32 for the Ashley Creek mixture), indicating that mixtures of inorganics derived from irrigation activities may pose a hazard to endangered fishes in the Green River.

  9. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Science.gov (United States)

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  10. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  11. Indian Creek-AML: Coal slurry reclamation (Kansas case history)

    International Nuclear Information System (INIS)

    Witthar, S.R.

    1998-01-01

    Black and Veatch, assisted by Jack Nawrot, developed conceptual and final designs and provided construction assistance to create grasslands and wetlands in order to reclaim an abandoned coal mine for the state of Kansas. The mine included spoils, a coal refuse dump, and slurry pond in the Indian Creek drainage basin in east central Kansas. The Indian Creek flowed from an off-site abandoned mine and through the coal slurry pond where its waters became more polluted. The intent of the reclamation project was to improve water quality and create a wildlife refuge. The coal refuse was covered and seeded with a diversity of vegetation including several grasses and legume. The slurry pond was developed into a series of large wetland cells to improve water quality. Prior to reclamation, the water leaving the site had a typical pH of 3.3, ranging from 2.4 to 5.6, an iron content which typically over 22 mg/L and ranging over 100 mg/L, and contained large amounts of coal slurry. The acid sediment in the slurry killed fish and caused visible damage to a new large concrete box culvert several miles downstream of the site. Post-reclamation water quality leaving the Indian Creek site showed immediate improvement even before vegetation was reestablished. The existing wetland treatment systems have been successfully treating water for over seven years with the pH of the water leaving the wetlands above 7 and soluble iron content less than 1 mg/L. Fish in the constructed wetlands support waterfowl which now nest onsite

  12. Assessment of impacts of proposed coal-resource and related economic development on water resources, Yampa River basin, Colorado and Wyoming; a summary

    Science.gov (United States)

    Steele, Timothy Doak; Hillier, Donald E.

    1981-01-01

    Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated

  13. Regional geology of the Pine Creek Geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Crick, I.H.; Stuart-Smith, P.G.

    1980-01-01

    The Pine Creek Geosyncline comprises about 14km of chronostratigraphic mainly pelitic and psammitic Lower Proterozoic sediments with interlayered tuff units, resting on granitic late Archaean complexes exposed as three small domes. Sedimentation took place in one basin, and most stratigraphic units are represented throughout the basin. The sediments were regionally deformed and metamorphosed at 1800Ma. Tightly folded greenschist facies strata in the centre grade into isoclinally deformed amphibolite facies metamorphics in the west and northeast. Pre and post-orogenic continental tholeiites, and post-orogenic granite diapirs intrude the Lower Proterozoic metasediments, and the granites are surrounded by hornfels zones up to 10km wide in the greenschist facies terrane. Cover rocks of Carpentarian (Middle Proterozoic) and younger ages rest on all these rocks unconformably and conceal the original basin margins. The Lower Proterozoic metasediments are mainly pelites (about 75 percent) which are commonly carbonaceous, lesser psammites and carbonates (about 10 percent each), and minor rudites (about 5 percent). Volcanic rocks make up about 10 percent of the total sequence. The environment of deposition ranges from shallow-marine to supratidal and fluviatile for most of the sequence, and to flysch in the topmost part. Poor exposure and deep weathering over much of the area hampers correlation of rock units; the correlation preferred by the authors is presented, and possible alternatives are discussed. Regional geological observations pertinent to uranium ore genesis are described. (author)

  14. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  15. The late cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation

    Science.gov (United States)

    Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, Chad; McClelland, W.

    2004-01-01

    The Donlin Creek gold deposit, southwestern Alaska, has an indicated and inferred resource of approximately 25 million ounces (Moz) Au at a cutoff grade of 1.5 g/t. The ca. 70 Ma deposit is hosted in the Late Cretaceous Kuskokwim flysch basin, which developed in the back part of the are region of an active continental margin, on previously accreted oceanic terranes and continental fragments. A hypabyssal, mainly rhyolitic to rhyodacitic, and commonly porphyritic, 8- ?? 3-km dike complex, part of a regional ca. 77 to 58 Ma magmatic arc, formed a structurally competent host for the mineralization. This deposit is subdivided into about one dozen distinct prospects, most of which consist of dense quartz ?? carbonate veinlet networks that fill north-northeast-striking extensional fractures in the northeast-trending igneous rocks. The sulfide mineral assemblage is dominated by arsenopyrite, pyrite, and, typically younger, stibnite; gold is refractory within the arsenopyrite. Sericitization, carbonatization, and suffidation were the main alteration processes. Fluid inclusion studies of the quartz that hosts the resource indicate dominantly aqueous ore fluids with also about 3 to 7 mol percent CO2 ?? CH4 and a few tenths to a few mole percent NaCl + KCl. The gold-bearing fluids were mainly homogeneously trapped at approximately 275?? to 300??C and at depths of 1 to 2 km. Some of the younger stibnite may have been deposited by late-stage aqueous fluids at lower temperature. Measured ??18O values for the gold-bearing quartz range between 11 and 25 per mil; the estimated ??18O fluid values range from 7 to 12 per mil, suggesting a mainly crustally derived fluid. A broad range of measured ??D values for hydrothermal micas, between -150 and -80 per mil, is suggestive of a contribution from devolatilization of organic matter and/or minor amounts of mixing with meteoric fluids. Gold-associated hydrothermal sulfide minerals are characterized by ??34S values mainly between -16 and

  16. The Use of Numerical Modeling to Address Surface and Subsurface Water Contamination due to Fracwater Spills in Larry's Creek, Pennsylvania

    Science.gov (United States)

    Simon, C. A.; Arjmand, S.; Abad, J. D.

    2012-12-01

    Because of its relatively low carbon dioxide emissions, natural gas is considered to be more efficient and environmentally friendly than other non-renewable fuels. As a result of this, among other factors, in recent years natural gas has become one of the world's primary energy sources. In the United States, drilling to extract natural gas has substantially increased over the past few years. In the Marcellus Shale, unconventional gas is currently extracted by using two new techniques: horizontal drilling and hydraulic fracturing. Today, fracking fluids which have been applied as part of the hydraulic fracturing process to fracture the shale rock and release the gas, pose a major environmental concern. These fluids are highly contaminated with radionuclides and toxic metals and any exposure of this highly polluted water to surface water or soil could heavily contaminate the media. The area selected for the current study is the Larry's Creek, located in Lycoming County in Pennsylvania. Larry's Creek Watershed was adversely affected by coal and iron mines activities in the 19th century. Though, the water quality in this creek was considered to be good as of 2006. Recently, oil and gas drilling activities have raised concerns about the creek's water quality again. A major environmental hazard is the freshwater contamination by frac/flowback water. Drilling companies are using impoundments on site to keep fracwater, and to store and evaporate flowback water. However, these ponds may fail or leak due to construction problems and/or accidents. Close to Saladasburg, Larry's Creek's stream was observed running rich with clay in October 19, 2011. Historical measurements show very high turbidity during this period which has raised questions about water contamination by the gas industry activities in the upper stream of the watershed. An interstate watershed agency has reported spills in Wolf Run in different drilling sites in the Larry's Creek basin. The focus of this study

  17. Water uptake of trees in a montane forest catchment and the geomorphological potential of root growth in Boulder Creek Critical Zone Observatory, Rocky Mountains, Colorado

    Science.gov (United States)

    Skeets, B.; Barnard, H. R.; Byers, A.

    2011-12-01

    The influence of vegetation on the hydrological cycle and the possible effect of roots in geomorphological processes are poorly understood. Gordon Gulch watershed in the Front Range of the Rocky Mountains, Colorado, is a montane climate ecosystem of the Boulder Creek Critical Zone Observatory whose study adds to the database of ecohydrological work in different climates. This work sought to identify the sources of water used by different tree species and to determine how trees growing in rock outcrops may contribute to the fracturing and weathering of rock. Stable isotopes (18O and 2H) were analyzed from water extracted from soil and xylem samples. Pinus ponderosa on the south-facing slope consumes water from deeper depths during dry periods and uses newly rain-saturated soils, after rainfall events. Pinus contorta on the north -facing slope shows a similar, expected response in water consumption, before and after rain. Two trees (Pinus ponderosa) growing within rock outcrops demonstrate water use from cracks replenished by new rains. An underexplored question in geomorphology is whether tree roots growing in rock outcrops contribute to long-term geomorphological processes by physically deteriorating the bedrock. The dominant roots of measured trees contributed approximately 30 - 80% of total water use, seen especially after rainfall events. Preliminary analysis of root growth rings indicates that root growth is capable of expanding rock outcrop fractures at an approximate rate of 0.6 - 1.0 mm per year. These results demonstrate the significant role roots play in tree physiological processes and in bedrock deterioration.

  18. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  19. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Toole, M.A.; van Duyn, Y.

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years' data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143

  20. Detecting ecosystem performance anomalies for land management in the upper colorado river basin using satellite observations, climate data, and ecosystem models

    Science.gov (United States)

    Gu, Yingxin; Wylie, B.K.

    2010-01-01

    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005-2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using "percentage of bare soil" ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005-2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions. ?? 2010 by the authors.

  1. The Frasnian-Famennian boundary (Upper Devonian) in black shale sequences: US Southern Midcontinent, Illinois Basin, and northern Appalachian Basin

    Energy Technology Data Exchange (ETDEWEB)

    Over, D.J. (State Univ. of New York, Geneseo, NY (United States). Dept. of Geological Sciences)

    1994-04-01

    The Frasnian-Famennian (F/F) boundary in the Woodford Shale of the US southern Midcontinent, Sweetland Creek Shale of the Illinois Basin, and the Hanover Shale of the northern Appalachian Basin is recognized to a discrete horizon. In each locality the boundary is marked by evidence of a disconformity: phosphate nodules, concentration of conodonts, or coated and corroded grains. The Woodford Shale consists of finely laminated pyritic organic-rich shale containing interbeds of greenish shale and chert. The F/F boundary horizon is marked by a concentration of conodonts and phosphatic nodules. The boundary lag horizon contains Pa. linguliformis, Pa. subperlobtata, Pa. delicatula delicatula, and Pa. triangularis. Underlying laminations contain Ancyrognathus ubiquitus and Pa. triangularis indicating that the disconformity is within the uppermost MN Zone 13 or Lower triangularis Zone. The upper portion of the Type Sweetland Creek Shale consists of dark organic-rich shales. The F/F boundary is located within an interval containing three green shale interbeds. Palmatolepis triangularis in the absence of Frasnian species first occurs in the middle green shale. In the thick Upper Devonian clastic sequence of the northern Appalachian Basin the F/F boundary is within an interval of interbedded pyritic green and organic-rich silty shales of the Hanover Shale. At Irish Gulf strata containing Pa. triangularis overlie finely laminated dark shales containing Pa. bogartensis, Pa. triangularis, Pa. winchell, Ancyrodella curvata, and Icriodus alternatus. The conodont fauna transition is below a conodont-rich laminae containing a Famennian fauna that marks the boundary horizon.

  2. National uranium resource evaluation. Raton Quadrangle New Mexico and Colorado. Final report

    International Nuclear Information System (INIS)

    Reid, B.E.; Griswold, G.B.; Jacobsen, L.C.; Lessard, R.H.

    1980-12-01

    Using National Uranium Resource Evaluation criteria, the Raton Quadrangle (New Mexico and Colorado) contains one environment favorable for uranium deposits, the permeable arkosic sandstone members of the Pennsylvanian-Permian Sangre de Cristo Formation for either peneconcordant or roll-type deposits. The favorable parts of the Sangre de Cristo lie mostly in the subsurface in the Raton and Las Vegas Basins in the eastern part of the quadrangle. An area in the Costilla Peak Massif was investigated for uranium by determining geochemical anomalies in stream sediments and spring waters. Further work will be required to determine plutonic environment type. Environments unfavorable for uranium deposits include the Ogallala, Raton, and Vermejo Formations, the Trinidad Sandstone, the Pierre Shale, the Colorado Group, the Dakota Sandstone, the Morrison Formation, the Entrada and Glorieta Sandstones, Mississippian and Pennsylvanian rocks, quartz-pebble conglomerates, pegmatities, and Tertiary granitic stocks

  3. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    Science.gov (United States)

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia

  4. Fluvial sediment study of Fishtrap and Dewey Lakes drainage basins, Kentucky - Virginia

    Science.gov (United States)

    Curtis, William F.; Flint, Russell F.; George, Frederick H.; Santos, John F.

    1978-01-01

    Fourteen drainage basins above Fishtrap and Dewey Lakes in the Levisa Fork and Johns Creek drainage basins of eastern Kentucky and southwestern Virginia were studied to determine sedimentation rates and origin of sediment entering the two lakes. The basins ranged in size from 1.68 to 297 square miles. Sediment yields ranged from 2,890 to 21,000 tons per square mile where surface-mining techniques predominated, and from 732 to 3 ,470 tons per square mile where underground mining methods predominated. Yields, in terms of tons per acre-foot of runoff, ranged from 2.2 to 15 for surface-mined areas, and from 0.5 to 2.7 for underground-mined areas. Water and sediment discharges from direct runoff during storms were compared for selected surface-mined and underground-mined areas. Data points of two extensively surface-mined areas, one from the current project and one from a previous project in Beaver Creek basin, McCreary County, Kentucky, grouped similarly in magnitude and by season. Disturbed areas from mining activities determined from aerial photographs reached 17 percent in one study area where extensive surface mining was being practiced. For most areas where underground mining was practiced, percentage disturbed area was almost negligible. Trap efficiency of Fishtrap Lake was 89 percent, and was 62 percent for Dewey Lake. Average annual deposition rates were 464 and 146 acre-feet for Fishtrap and Dewey Lakes, respectively. The chemical quality of water in the Levisa Fork basin has been altered by man 's activities. (Woodard-USGS)

  5. Levels of radioactivity in fish from streams near F-Area and H-Area seepage basins

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Loehle, C.

    1991-05-01

    This report summarizes results of recent analyses of radioactivity in fish from SRS streams near the F-Area and H-Area seepage basins. Fish were collected from headwater areas of Four Mile Creek and Pen Branch, from just below the H-Area seepage basin, and from three sites downstream in Four Mile Creek. These fish were analyzed for gross alpha and gross beta radioactivity using standard EPA methods. Levels of gross alpha and nonvolatile beta radioactivity in fish were found to be comparable to levels previously reported for these sites. Gross alpha activity was not found to be influenced by Separations Area discharges. Nonvolatile beta activity was higher in the nonvolatile beta activity was attributable to Cs-137 and K-40. The dosimetric consequences of consuming fish from this area were found to be well below DOE guidelines

  6. Ellicott Creek Basin, New York. Water Resources Development. Phase 2. Volume 2. Appendices.

    Science.gov (United States)

    1973-08-01

    would cause overtopping of the embankment, which would act as a broad - crested weir . The proposed Harlow Road embankmert section would act as a critical...runoff from the 8 inches of snow covering the area. The creek crested at 5:00 a.m. on March 31, at 8.99 feet, which is the maximum stage of record at...gradual convergence to a maximum of 0.7 __ for a sharp divergence. Bridge losses have been computed from the formula for restricted openings: Q = KA(2gh+V2

  7. Point Sources of Emerging Contaminants Along the Colorado River Basin: Impact on Water Use and Reuse in the Arid Southwest

    Science.gov (United States)

    Emerging contaminants (ECs) (e.g., pharmaceuticals, illicit drugs, personal care products) have been detected in waters across the United States. The objective of this study was to evaluate point sources of ECs along the Colorado River, from the headwaters in Colorado to the Gulf...

  8. Landslides in the northern Colorado Front Range caused by rainfall, September 11-13, 2013

    Science.gov (United States)

    Godt, Jonathan W.; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Jones, Eric S.; Harp, Edwin L.; Staley, Dennis M.; Barnhart, William D.

    2014-01-01

    During the second week of September 2013, nearly continuous rainfall caused widespread landslides and flooding in the northern Colorado Front Range. The combination of landslides and flooding was responsible for eight fatalities and caused extensive damage to buildings, highways, and infrastructure. Three fatalities were attributed to a fast moving type of landslide called debris flow. One fatality occurred in Jamestown, and two occurred in the community of Pinebrook Hills immediately west of the City of Boulder. All major canyon roads in the northern Front Range were periodically closed between September 11 and 13, 2013. Some canyon closures were caused by undercutting of roads by landslides and flooding, and some were caused by debris flows and rock slides that deposited material on road surfaces. Most of the canyon roads, with the exceptions of U.S. Highway 6 (Clear Creek Canyon), State Highway 46/Jefferson Co. Rd. 70 (Golden Gate Canyon), and Sunshine Canyon in Boulder County, remained closed at the end of September 2013. A review of historical records in Colorado indicates that this type of event, with widespread landslides and flooding occurring over a very large region, in such a short period of time, is rare.

  9. Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2003-04-01

    basin construction and the installation of strip systems are also taking place. The years 2000 through 2002 were productive years for the Pataha Creek Model Watershed but due to the fact that most of the cooperators in the watershed have reached their limitation allowed for no-till and direct seed/ two pass of 3 years with each practice, the cost share for these practices is lower than the years of the late 90's. All the upland practices that were implemented have helped to further reduce erosion from the cropland. This has resulted in a reduction of sedimentation into the spawning and rearing area of the fall chinook salmon located in the lower portion of the Tucannon River. The tree planting projects have helped in reducing sedimentation and have also improved the riparian zone of desired locations inside the Pataha Creek Watershed. The CREP (Conservation Reserve Enhancement Program) along with the CCRP (Continuous Conservation Reserve Program) are becoming more prevalent in the watershed and are protecting the riparian areas along the Pataha Creek at an increasing level every year. Currently roughly 197 acres of riparian has been enrolled along the Pataha Creek in the CREP program.

  10. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Vincent; Boye, Kristin; Kukkadapu, Ravi K.; Bone, Sharon; Lezama Pacheco, Juan S.; Cardarelli, Emily; Janot, Noémie; Fendorf, Scott; Williams, Kenneth H.; Bargar, John R.

    2017-12-15

    River floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, may have water quality jeopardized by native or exogenous metals. Redox processes mediate the accumulation and release of these species in groundwater. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability and variability of redox conditions is therefore critical to developing conceptual and numerical models of contaminants transport within floodplains. The distribution and intensity of redox activity at the Rifle, CO, site within the Upper Colorado River Basin (UCRB), are believed to be controlled by textural and compositional heterogeneities. Regionally, the UCRB is impacted by former uranium and vanadium ore processing, resulting in contaminations by U, Mo, V, As, Se, and Mn. Floodplains throughout the UCRB share sediment and groundwater characteristics, making redox activity regionally important to metal and radionuclide mobility. In this study, Fe and S speciation were used to track the distribution and stability of redox processes in sediment cores from three floodplain sites covering a 250 km range in the central portion of the UCRB. The results of the present study support the hypothesis that Fe(III) and sulfate reducing sediments are regionally important in the UCRB. The presence of organic carbon together with pore saturation were the key requirements for reducing conditions, dominated by sulfate-reduction. Sediment texture moderated the response of the system to external forcing, such as oxidant infusion, making fine-grain sediments resistant to change in comparison to coarser-grained sediments. Exposure to O2 and NO3- mediates the reactivity and longevity of freshly precipitated sulfides creating the potential for release of sequestered radionuclides and metals. The physical and chemical parameters of reducing zones evidenced in this study are thus thought to be key parameters on the dynamic exchange

  11. Pine creek geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Ewers, G.R.; Ferguson, J.

    1988-01-01

    The Pine Creek Geosyncline is a 66,000 km 2 inlier of Early Proterozoic metasediments, mafic and felsic intrusives and minor extrusives, surrounding small late Archaean granitic domes. Economic uranium occurrences cluster into three fields, with the Alligator Rivers field being the most significant. The metasediments are alluvial and reduced shallow-water pelites and psammites. Evaporitic carbonate developed on shallow shelves around Archaean islands. Basin development and sedimentation (c. 2000-1870 Ma) were related to gradual subsidence induced by crustal extension. Facies variations and volcanism were in places controlled by the extensional faults. The rocks were metamorphosed to lower the high grade, complexly folded, and intruded by numerous granitoids from c. 1870 to 1730 Ma. Late orogenic felsic volcanics accumulated in local rift systems. Middle Proterozoic sandstone was deposited on a peneplaned and deeply weathered surface from about 1650 Ma. Uranium is enriched in some Archaean and Proterozoic igneous rocks, but there is no local or regional enrichment of the metasedimentary hosts or of the unconformably overlying sandstone. There is no regional gravity, magnetic or radiometric character attributable to the region's significance as a uranium province; contrasts with surrounding sedimentary basins reflect expected differences in rock properties between a heterogeneous igneous/metamorphic region and relatively homogeneous undeformed and unmineralized sediments. Uranium-enriched Archaean and Proterozoic granitoids and felsic volcanics with labile U are likely though not exclusive source rocks. U was probably transported in oxidized low temperature solutions as uranyl complexes and precipitated in reduced, structurally controlled, low-pressure traps. All uranium occurrences are broadly classified as 'Proterozoic unconformity related'. Greatest potential for further discovery is offered in the Alligator Rivers field, where perhaps at least 3 to 5.5 times the

  12. Regional Hydrology of the Green River-Moab Area, Northwestern Paradox Basin, Utah

    OpenAIRE

    United States Geological Survey

    1982-01-01

    The Green River-Moab area encompasses about 7,800 square kilometers or about 25 percent of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and overlying and underlying thick sequences of rocks with...

  13. Examination of the potential impacts of dust and pollution aerosol acting as cloud nucleating aerosol on water resources in the Colorado River Basin

    Science.gov (United States)

    Jha, Vandana

    In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation

  14. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  15. 78 FR 50095 - Notice of Inventory Completion: History Colorado, Formerly Colorado Historical Society, Denver, CO

    Science.gov (United States)

    2013-08-16

    ... Mountain Reservation, Colorado, New Mexico & Utah may proceed. History Colorado is responsible for....R50000] Notice of Inventory Completion: History Colorado, Formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. [[Page 50096

  16. 78 FR 19296 - Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO

    Science.gov (United States)

    2013-03-29

    ... Reservation, Colorado, New Mexico & Utah agreed to accept disposition of the human remains. In 2006, History....R50000] Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History Colorado, formerly...

  17. 78 FR 30737 - Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...

    Science.gov (United States)

    2013-05-23

    ... FR] Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...: This final rule reestablishes the membership on the Colorado Potato Administrative Committee, Area No... Irish potatoes grown in Colorado. This action modifies the Committee membership structure by amending...

  18. Advancements in understanding the aeromagnetic expressions of basin-margin faults—An example from San Luis Basin, Colorado

    Science.gov (United States)

    Grauch, V. J.; Bedrosian, Paul A.; Drenth, Benjamin J.

    2013-01-01

    Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets. Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets.

  19. Radiological survey of the inactive uranium-mill tailings at Durango, Colorado

    International Nuclear Information System (INIS)

    Haywood, F.F.; Perdue, P.T.; Shinpaugh, W.H.; Ellis, B.S.; Chou, K.D.

    1980-03-01

    Results of a radiological survey of the inactive uranium-mill site at Durango, Colorado, conducted in April 1976, in cooperation with a team from Ford, Bacon and Davis Utah Inc., are presented together with descriptions of the instruments and techniques used to obtain the data. Direct above-ground gamma measurements and analysis of surface soil and sediment samples indicate movement of tailings from the piles toward Lightner Creek on the north and the Animas River on the east side of the piles. The concentration of 226 Ra in the former raffinate pond area is only slightly above the background level. Two structures in Durango were found to contain high concentrations of airborne radon daughters, where tailings are known to have been utilized in construction. Near-background concentrations of radon daughters were found in a well-ventilated building close to the tailings

  20. MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO

    International Nuclear Information System (INIS)

    Paul La Pointe; Claudia Rebne; Steve Dobbs

    2004-01-01

    This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado'', for the Second Biennial Report covering the time period May 1, 2003 through October 31, 2003. During this period, the project achieved two significant objectives: completion of the acquisition and processing design and specifications 3D9C seismic acquisition and the 3D VSP log; and completion of the permitting process involving State, Tribal and Federal authorities. Successful completion of these two major milestones pave the way for field acquisition as soon as weather permits in the Spring of 2004. This report primarily describes the design and specifications for the VSP and 3D9C surveys

  1. Geothermal resource assessment of western San Luis Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Zacharakis, Ted G.; Pearl, Richard Howard; Ringrose, Charles D.

    1983-01-01

    The Colorado Geological Survey initiated and carried out a fully integrated assessment program of the geothermal resource potential of the western San Luis Valley during 1979 and 1980. The San Luis Valley is a large intermontane basin located in southcentral Colorado. While thermal springs and wells are found throughout the Valley, the only thermal waters found along the western part of the Valley are found at Shaw Warm Springs which is a relatively unused spring located approximately 6 miles (9.66 km) north of Del Norte, Colorado. The waters at Shaws Warm Spring have a temperature of 86 F (30 C), a discharge of 40 gallons per minute and contain approximately 408 mg/l of total dissolved solids. The assessment program carried out din the western San Luis Valley consisted of: soil mercury geochemical surveys; geothermal gradient drilling; and dipole-dipole electrical resistivity traverses, Schlumberger soundings, Audio-magnetotelluric surveys, telluric surveys, and time-domain electro-magnetic soundings and seismic surveys. Shaw Warm Springs appears to be the only source of thermal waters along the western side of the Valley. From the various investigations conducted the springs appear to be fault controlled and is very limited in extent. Based on best evidence presently available estimates are presented on the size and extent of Shaw Warm Springs thermal system. It is estimated that this could have an areal extent of 0.63 sq. miles (1.62 sq. km) and contain 0.0148 Q's of heat energy.

  2. Use of real-time monitoring to predict concentrations of select constituents in the Menomonee River drainage basin, Southeast Wisconsin, 2008-9

    Science.gov (United States)

    Baldwin, Austin K.; Graczyk, David J.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2012-01-01

    The Menomonee River drainage basin in southeast Wisconsin is undergoing changes that may affect water quality. Several rehabilitation and flood-management projects are underway, including removal of concrete channels and the construction of floodwater retention basins. The city of Waukesha may begin discharging treated wastewater into Underwood Creek, thus approximately doubling the current base-flow discharge. In addition, the headwater basins, historically dominated by agriculture and natural areas, are becoming increasingly urbanized.

  3. Application of sediment characteristics and transport conditions to resource management in selected main-stem reaches of the Upper Colorado River, Colorado and Utah, 1965-2007

    Science.gov (United States)

    Williams, Cory A.; Schaffrath, Keelin R.; Elliott, John G.; Richards, Rodney J.

    2013-01-01

    The Colorado River Basin provides habitat for 14 native fish, including 4 endangered species protected under the Federal Endangered Species Act of 1973. These endangered fish species once thrived in the Colorado River system, but water-resource development, including the building of numerous diversion dams and several large reservoirs, and the introduction of non-native fish, resulted in large reductions in the numbers and range of the four species through loss of habitat and stream function. Understanding how stream conditions and habitat change in response to alterations in streamflow is important for water administrators and wildlife managers and can be determined from an understanding of sediment transport. Characterization of the processes that are controlling sediment transport is an important first step in identifying flow regimes needed for restored channel morphology and the sustained recovery of endangered fishes within these river systems. The U.S. Geological Survey, in cooperation with the Upper Colorado River Endangered Fish Recovery Program, Bureau of Reclamation, U.S. Fish and Wildlife Service, Argonne National Laboratory, Western Area Power Administration, and Wyoming State Engineer’s Office, began a study in 2004 to characterize sediment transport at selected locations on the Colorado, Gunnison, and Green Rivers to begin addressing gaps in existing datasets and conceptual models of the river systems. This report identifies and characterizes the relation between streamflow (magnitude and timing) and sediment transport and presents the findings through discussions of (1) suspended-sediment transport, (2) incipient motion of streambed material, and (3) a case study of sediment-transport conditions for a reach of the Green River identified as a razorback sucker spawning habitat (See report for full abstract).

  4. 33 CFR 117.331 - Snake Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  5. Henretta Creek reclamation project

    International Nuclear Information System (INIS)

    Pumphrey, J.F.

    2009-01-01

    Teck Coal Ltd. operates 6 open-pit coal mines, of which 5 are located in the Elk Valley in southeastern British Columbia. The Fording River Operations (FRO) began in 1971 in mining areas in Eagle Mountain, Turnbull Mountain and Henretta Valley. The recovery of approximately 5 million tons of coal from the Henretta Creek Valley posed significant challenges to mine planners, hydrologists and environmental experts because the coal had to be recovered from the valley flanks and also from under the main valley floor, on which the fish-bearing Henretta Creek runs. The Henretta Dragline Mining project was described along with the water control structures and fisheries management efforts for the cutthroat trout. A detailed Environmental Impact Assessment and Stage 1 mining report for the Henretta Valley area was completed in December 1990. FRO was granted a mining and reclamation permit in 1991. A temporary relocation of 1,270 metres was required in in April 1997 in order to enable mining on both sides and below the creek bed. Among the innovative construction techniques was a diversion of Henretta Creek through large diameter steel culverts and a specialized crossing of the creek to allow fish passage. The first water flowed through the reclaimed Henretta Creek channel in late 1998 and the first high flow occurred in the spring of 2000. Teck coal FRO then launched an annual fish and fish habitat monitoring program which focused on the Henretta Creek Reclaimed Channel and Henretta Lake. This document presented the results from the final year, 2006, and a summary of the 7 year aquatic monitoring program. It was concluded that from mining through to reclamation, the Henretta project shows the commitment and success of mining and reclamation practices at Teck Coal. Indicators of the project's success include riparian zone vegetation, fisheries re-establishment, aquatic communities and habitat utilization by terrestrial and avian species. 33 refs., 1 fig.

  6. Liquid-Rich Shale Potential of Utah’s Uinta and Paradox Basins: Reservoir Characterization and Development Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Vanden Berg, Michael [Utah Geological Survey, Salt Lake City, UT (United States); Morgan, Craig [Utah Geological Survey, Salt Lake City, UT (United States); Chidsey, Thomas [Utah Geological Survey, Salt Lake City, UT (United States); McLennan, John [Univ. of Utah, Salt Lake City, UT (United States). Energy & Geoscience Inst.; Eby, David [Eby Petrography & Consulting, Littleton, CO (United States); Machel, Hans [Univ. of Alberta, Edmonton, AB (Canada); Schamel, Steve [GeoX Consulting, Salt Lake City, UT (United States); Birdwell, Justin [U.S. Geological Survey, Boulder, CO (United States); Johnson, Ron [U.S. Geological Survey, Boulder, CO (United States); Sarg, Rick [Colorado School of Mines, Golden, CO (United States)

    2017-08-31

    The enclosed report is the culmination of a multi-year and multi-faceted research project investigating Utah’s unconventional tight oil potential. From the beginning, the project team focused efforts on two different plays: (1) the basal Green River Formation’s (GRF) Uteland Butte unconventional play in the Uinta Basin and (2) the more established but understudied Cane Creek shale play in the Paradox Basin. The 2009-2014 high price of crude oil, coupled with lower natural gas prices, generated renewed interest in exploration and development of liquid hydrocarbon reserves. Following the success of the mid-2000s shale gas boom and employing many of the same well completion techniques, petroleum companies started exploring for liquid petroleum in shale formations. In fact, many shales targeted for natural gas include areas in which the shale is more prone to liquid production. In Utah, organic-rich shales in the Uinta and Paradox Basins have been the source of significant hydrocarbon generation, with companies traditionally targeting the interbedded sands or carbonates for their conventional resource recovery. Because of the advances in horizontal drilling and hydraulic fracturing techniques, operators in these basins started to explore the petroleum production potential of the shale units themselves. The GRF in the Uinta Basin has been studied for over 50 years, since the first hydrocarbon discoveries. However, those studies focused on the many conventional sandstone reservoirs currently producing oil and gas. In contrast, less information was available about the more unconventional crude oil production potential of thinner carbonate/shale units, most notably the basal Uteland Butte member. The Cane Creek shale of the Paradox Basin has been a target for exploration periodically since the 1960s and produces oil from several small fields. The play generated much interest in the early 1990s with the successful use of horizontal drilling. Recently, the USGS assessed

  7. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the

  8. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    Science.gov (United States)

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  9. Preliminary geologic map of the Big Costilla Peak area, Taos County, New Mexico, and Costilla County, Colorado

    Science.gov (United States)

    Fridrich, Christopher J.; Shroba, Ralph R.; Hudson, Adam M.

    2012-01-01

    This map covers the Big Costilla Peak, New Mex.&nash;Colo. quadrangle and adjacent parts of three other 7.5 minute quadrangles: Amalia, New Mex.–Colo., Latir Peak, New Mex., and Comanche Point, New Mex. The study area is in the southwesternmost part of that segment of the Sangre de Cristo Mountains known as the Culebra Range; the Taos Range segment lies to the southwest of Costilla Creek and its tributary, Comanche Creek. The map area extends over all but the northernmost part of the Big Costilla horst, a late Cenozoic uplift of Proterozoic (1.7-Ga and less than 1.4-Ga) rocks that is largely surrounded by down-faulted middle to late Cenozoic (about 40 Ma to about 1 Ma) rocks exposed at significantly lower elevations. This horst is bounded on the northwest side by the San Pedro horst and Culebra graben, on the northeast and east sides by the Devils Park graben, and on the southwest side by the (about 30 Ma to about 25 Ma) Latir volcanic field. The area of this volcanic field, at the north end of the Taos Range, has undergone significantly greater extension than the area to the north of Costilla Creek. The horsts and grabens discussed above are all peripheral structures on the eastern flank of the San Luis basin, which is the axial part of the (about 26 Ma to present) Rio Grande rift at the latitude of the map. The Raton Basin lies to the east of the Culebra segment of the Sangre de Cristo Mountains. This foreland basin formed during, and is related to, the original uplift of the Sangre de Cristo Mountains which was driven by tectonic contraction of the Laramide (about 70 Ma to about 40 Ma) orogeny. Renewed uplift and structural modification of these mountains has occurred during formation of the Rio Grande rift. Surficial deposits in the study area include alluvial, mass-movement, and glacial deposits of middle Pleistocene to Holocene age.

  10. Sacaton riparian grasslands of the Sky Islands: Mapping distribution and ecological condition using state-and-transition models in Upper Cienega Creek Watershed

    Science.gov (United States)

    Ron Tiller; Melissa Hughes; Gita Bodner

    2013-01-01

    Riparian grasslands dominated by Sporobolus wrightii (big sacaton) were once widely distributed in the intermountain basins of the Madrean Archipelago. These alluvial grasslands are still recognized as key resources for watershed function, livestock, and wildlife. The upper Cienega Creek watershed in SE Arizona is thought to harbor some of the region’s most extensive...

  11. Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn

    2007-02-01

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

  12. Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.

    1990-11-01

    A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

  13. Integrated study of basins in the Four Corners region

    Science.gov (United States)

    Fagbola, Olamide Olawumi

    2007-12-01

    This dissertation is an integrated study of basins in the four corners area of the central part of the Colorado Plateau. The Colorado Plateau is a structurally unique part of the Rocky Mountain region because it has only been moderately deformed when compared to the more intensely deformed areas around it. The Colorado Plateau covers a portion of Utah, Colorado, New Mexico and Arizona. The study area extends from latitude 34°N-40°N to longitude 106°W-111W° encompassing a series of major basins and uplifts: the San Juan, Black Mesa, Paradox, and the Blanding basins; and the Zuni, Defiance, Four Corners, Monument uplifts and the San Juan dome and volcanic field. An analysis of gravity anomalies, basement and crustal structure for basins in the four corners region was carried out. This involved using gravity, magnetic, well, outcrop, seismic estimates of crustal thickness, and geologic data in an integrated fashion. Six filtered gravity and three filtered magnetic maps were generated to aid in the interpretation of the gravity and magnetic anomalies in the study area. A detailed comparison of these maps was carried out. The results show a deep seated mafic structure in the basement acting as a crustal boundary separating the high gravity anomalies from the low. These maps also show that the sources of these anomalies are quite shallow resulting from the upper crust in the study area. The structures in the study area are characterized by northwest and northeast trends which correspond to the Precambrian and the Late Paleozoic structures, respectively. A crustal thickness map of the area was also constructed from seismic estimates of crustal thickness. A comparison was done between the crustal thickness map and the 45 km upward continuation Bouguer anomaly map. The result of this comparison shows that areas of thicker ix crust corresponded to low gravity while areas of thinner crust means mantle material is closer to the surface, thereby producing a high gravity

  14. Hydrology and hydrochemistry for the Rice Creek watershed of the Whiteshell Research Area, 1986--1990

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, G. A.; Laporte, J. M.; Clarke, D.

    1992-12-01

    This report presents data and results of a hydrometeorological study carried out in the Rice Creek Watershed of the Whiteshell Research Area during 1986-90. Major water budget components, such as precipitation, runoff, groundwater, storage and evaporation, are evaluated and discussed. men annual precipitation was 544 mm, mean runoff was 101 mm, with evapo-transpiration as the residual being 443 mm. The steady-state groundwater component of the runoff is estimated to be less than 2 mm/unit area, or less than 2% of men annual basin yield. Water chemistry data for precipitation,l surface waters, and groundwaters are presented and the relative concentrations compared to provide information about sources of streamflow. Data on a major storm event that provided precipitation with an estimated return period of over 100 a are presented. Also discussed are the effects of beaver dams on the hydrology of a major tributary of the Rice Creek watershed. (auth)

  15. A comparison of integrated river basin management strategies: A global perspective

    Science.gov (United States)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  16. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  17. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  18. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  19. Colorado Water Institute

    Science.gov (United States)

    Colorado Water Institute Colorado State University header HomeMission StatementGRAD592NewslettersPublications/ReportsCSU Water ExpertsFunding OpportunitiesScholarshipsSubscribeEmploymentAdvisory BoardStaffContact UsCommentsLinks Water Center Logo Water Resources Archive Office of Engagement Ag Water

  20. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Wayne

    2007-04-01

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during August and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5,138 juvenile

  1. The Middle Triassic megafossil flora of the Basin Creek Formation, Nymboida Coal Measures, New South Wales, Australia. Part 3. Fern-like foliage

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, W.B.K. [Noonee Nyrang, Wellington, NSW (Australia)

    2003-01-31

    Two quarries in the Basin Creek Formation of the Middle Triassic Nymboida Coal Measures have yielded numerous examples of fern-like foliage. No affiliated fertile material is available to place the fronds in a natural classification. Twenty three species in twelve genera are described as morpho-taxa in Order and Family Incertae Sedis. Plants described in this paper are: Cladophlebis conferta sp. nov., C octonerva sp. nov., C. paucinerva sp. nov., C. relallachfisp. nov., C. sinuala sp. nov., C. lenuoinnula sp. nov., Diconymba sparnosa gen. et sp. nov., Gouldianum alelhopleroides gen. et sp. nov., Leconama stachyophylla gen. et sp. nov., Micronymbopteris repens gen. et sp. nov., Nymbiella lacerata gen. et sp. nov., Nymboidiantum glossophyllum (Tenison-Woods) gen. et comb. nov., N. multilobatum gen. et sp. nov., N. elegans gen. et sp. nov., N. fractiflexum gen. et sp. nov., N. robustum gen. et sp. nov., Nymbophlebis polymorpha gen. et sp. nov., Nymbopteron dejerseyi (Retallack) gen. et comb. nov.,N. foleyi gen. et sp. nov., N. uncinatum gen. et sp. nov., Nymborhipteris radiata gen. et sp. nov., Ptilotonymba curvinervia gen. et sp. nov. and Sphenopteris speciosa sp. nov. The diversity of this new material demonstrates the remarkable recovery of Gondwana vegetation following the end-Permian extinction event.

  2. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    Science.gov (United States)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide

  3. Availability, Sustainability, and Suitability of Ground Water, Rogers Mesa, Delta County, Colorado - Types of Analyses and Data for Use in Subdivision Water-Supply Reports

    Science.gov (United States)

    Watts, Kenneth R.

    2008-01-01

    The population of Delta County, Colorado, like that in much of the Western United States, is forecast to increase substantially in the next few decades. A substantial portion of the increased population likely will reside in rural subdivisions and use residential wells for domestic water supplies. In Colorado, a subdivision developer is required to submit a water-supply plan through the county for approval by the Colorado Division of Water Resources. If the water supply is to be provided by wells, the water-supply plan must include a water-supply report. The water-supply report demonstrates the availability, sustainability, and suitability of the water supply for the proposed subdivision. During 2006, the U.S. Geological Survey, in cooperation with Delta County, Colorado, began a study to develop criteria that the Delta County Land Use Department can use to evaluate water-supply reports for proposed subdivisions. A table was prepared that lists the types of analyses and data that may be needed in a water-supply report for a water-supply plan that proposes the use of ground water. A preliminary analysis of the availability, sustainability, and suitability of the ground-water resources of Rogers Mesa, Delta County, Colorado, was prepared for a hypothetical subdivision to demonstrate hydrologic analyses and data that may be needed for water-supply reports for proposed subdivisions. Rogers Mesa is a 12-square-mile upland mesa located along the north side of the North Fork Gunnison River about 15 miles east of Delta, Colorado. The principal land use on Rogers Mesa is irrigated agriculture, with about 5,651 acres of irrigated cropland, grass pasture, and orchards. The principal source of irrigation water is surface water diverted from the North Fork Gunnison River and Leroux Creek. The estimated area of platted subdivisions on or partially on Rogers Mesa in 2007 was about 4,792 acres of which about 2,756 acres was irrigated land in 2000. The principal aquifer on Rogers

  4. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California

    Science.gov (United States)

    Bedrosian, P.A.; Burton, B.L.; Powers, M.H.; Minsley, B.J.; Phillips, J.D.; Hunter, L.E.

    2012-01-01

    A recent evaluation of Martis Creek Dam highlighted the potential for dam failure due to either seepage or an earthquake on nearby faults. In 1972, the U.S. Army Corps of Engineers constructed this earthen dam, located within the Truckee Basin to the north of Lake Tahoe, CA for water storage and flood control. Past attempts to raise the level of the Martis Creek Reservoir to its design level have been aborted due to seepage at locations downstream, along the west dam abutment, and at the base of the spillway. In response to these concerns, the U.S. Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, and reservoir and groundwater levels. This paper concerns the geologic structure surrounding Martis Creek Dam and emphasizes the importance of a regional-scale understanding to the interpretation of engineering-scale geophysical data. Our studies reveal a thick package of sedimentary deposits interbedded with Plio-Pleistocene volcanic flows; both the deposits and the flows are covered by glacial outwash. Magnetic field data, seismic tomography models, and seismic reflections are used to determine the distribution and chronology of the volcanic flows. Previous estimates of depth to basement (or the thickness of the interbedded deposits) was 100 m. Magnetotelluric soundings suggest that electrically resistive bedrock may be up to 2500 m deep. Both the Polaris Fault, identified outside of the study area using airborne LiDAR, and the previously unnamed Martis Creek Fault, have been mapped through the dam area using ground and airborne geophysics. Finally, as determined by direct-current resistivity imaging, time-domain electromagnetic sounding, and seismic refraction, the paleotopography of the interface between the sedimentary deposits and the overlying glacial outwash plays a principal role both in controlling groundwater flow and in the distribution of the

  5. 2011 Kids Count in Colorado! The Impact of the Great Recession on Colorado's Children

    Science.gov (United States)

    Colorado Children's Campaign, 2011

    2011-01-01

    "Kids Count in Colorado!" is an annual publication of the Colorado Children's Campaign, which provides the best available state- and county-level data to measure and track the education, health and general well-being of the state's children. "Kids Count in Colorado!" informs policy debates and community discussions, serving as…

  6. Aquatic Communities and Selected Water Chemistry in St. Vrain Creek near the City of Longmont, Colorado, Wastewater-Treatment Plant, 2005 and 2006

    Science.gov (United States)

    Zuellig, Robert E.; Sprague, Lori A.; Collins, Jim A.; Cox, Oliver N.

    2007-01-01

    In 2005, the U.S. Geological Survey and the City of Longmont, Colo., began a study to document chemical characteristics of St. Vrain Creek that had previously been unavailable either due to high cost of analysis or lack of analytical capability. Stream samples were collected at seven sites on St. Vrain Creek during the spring of 2005 and 2006 for analysis of wastewater compounds. A Lagrangian-sampling design was followed during each sampling event, and time-of-travel studies were conducted just prior to each sampling event to determine appropriate sampling times for the synoptic. In addition, semipermeable membrane devices, passive samplers that concentrate hydrophobic organic chemicals, were installed at six sites during the spring of 2005 and 2006 for approximately 4 weeks. After retrieval, contaminant residues concentrated in the semipermeable membrane devices were recovered and used in a toxicity assay that provided a screen for aryl hydrocarbon receptor type compounds, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins, and furans. In addition, the U.S. Geological Survey summarized information on macroinvertebrate and fish communities known from St. Vrain Creek dating back to the early 1900s in order to assess their utility in evaluating wastewater-treatment plant upgrades and habitat improvement projects. Unfortunately, because of inconsistencies in data collection these data cannot be used as intended; however, they are useful for understanding to some degree gross patterns in fish species distribution, but less so for macroinvertebrates.

  7. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    Science.gov (United States)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment

  8. Adult Chinook Salmon Abundance Monitoring in Lake Creek, Idaho, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave

    2002-12-01

    exhibited two behaviorally distinct segments of fish movement in 2001. Mainly upstream only movement characterized the first segment. The second segment consisted of upstream and downstream movement with less net upstream movement. The fish counting stations did not impede salmon movements, nor was spawning displaced downstream. Fish moved freely upstream and downstream through the fish counting structures. There appeared to be a segment of ''nomadic'' males that moved into and out of the spawning area, apparently seeking other mates to spawn with. The downstream movement of salmon afforded by this fish counting station design may be an important factor in the reproductive success of listed salmon. This methodology provides more accurate salmon spawner abundance information than single-pass and multiple-pass spawning ground surveys. Accurate adult escapement information would allow managers to determine if recovery actions benefited listed chinook salmon in tributary streams. A major project recommendation is to locate an adult salmon abundance monitoring site on the Secesh River that would assess the total Lake Creek and the Secesh River spawning area. This would provide a measure of the recovery actions being implemented on listed chinook salmon in the Snake River basin.

  9. Analysis and mapping of post-fire hydrologic hazards for the 2002 Hayman, Coal Seam, and Missionary Ridge wildfires, Colorado

    Science.gov (United States)

    Elliott, J.G.; Smith, M.E.; Friedel, M.J.; Stevens, M.R.; Bossong, C.R.; Litke, D.W.; Parker, R.S.; Costello, C.; Wagner, J.; Char, S.J.; Bauer, M.A.; Wilds, S.R.

    2005-01-01

    Wildfires caused extreme changes in the hydrologic, hydraulic, and geomorphologic characteristics of many Colorado drainage basins in the summer of 2002. Detailed assessments were made of the short-term effects of three wildfires on burned and adjacent unburned parts of drainage basins. These were the Hayman, Coal Seam, and Missionary Ridge wildfires. Longer term runoff characteristics that reflect post-fire drainage basin recovery expected to develop over a period of several years also were analyzed for two affected stream reaches: the South Platte River between Deckers and Trumbull, and Mitchell Creek in Glenwood Springs. The 10-, 50-, 100-, and 500-year flood-plain boundaries and water-surface profiles were computed in a detailed hydraulic study of the Deckers-to-Trumbull reach. The Hayman wildfire burned approximately 138,000 acres (216 square miles) in granitic terrain near Denver, and the predominant potential hazard in this area is flooding by sediment-laden water along the large tributaries to and the main stem of the South Platte River. The Coal Seam wildfire burned approximately 12,200 acres (19.1 square miles) near Glenwood Springs, and the Missionary Ridge wildfire burned approximately 70,500 acres (110 square miles) near Durango, both in areas underlain by marine shales where the predominant potential hazard is debris-flow inundation of low-lying areas. Hydrographs and peak discharges for pre-burn and post-burn scenarios were computed for each drainage basin and tributary subbasin by using rainfall-runoff models because streamflow data for most tributary subbasins were not available. An objective rainfall-runoff model calibration method based on nonlinear regression and referred to as the ?objective calibration method? was developed and applied to rainfall-runoff models for three burned areas. The HEC-1 rainfall-runoff model was used to simulate the pre-burn rainfall-runoff processes in response to the 100-year storm, and HEC-HMS was used for runoff

  10. Evaluating connection of aquifers to springs and streams, Great Basin National Park and vicinity, Nevada

    Science.gov (United States)

    Prudic, David E.; Sweetkind, Donald S.; Jackson, Tracie R.; Dotson, K. Elaine; Plume, Russell W.; Hatch, Christine E.; Halford, Keith J.

    2015-12-22

    Federal agencies that oversee land management for much of the Snake Range in eastern Nevada, including the management of Great Basin National Park by the National Park Service, need to understand the potential extent of adverse effects to federally managed lands from nearby groundwater development. As a result, this study was developed (1) to attain a better understanding of aquifers controlling groundwater flow on the eastern side of the southern part of the Snake Range and their connection with aquifers in the valleys, (2) to evaluate the relation between surface water and groundwater along the piedmont slopes, (3) to evaluate sources for Big Springs and Rowland Spring, and (4) to assess groundwater flow from southern Spring Valley into northern Hamlin Valley. The study focused on two areas—the first, a northern area along the east side of Great Basin National Park that included Baker, Lehman, and Snake Creeks, and a second southern area that is the potential source area for Big Springs. Data collected specifically for this study included the following: (1) geologic field mapping; (2) drilling, testing, and water quality sampling from 7 test wells; (3) measuring discharge and water chemistry of selected creeks and springs; (4) measuring streambed hydraulic gradients and seepage rates from 18 shallow piezometers installed into the creeks; and (5) monitoring stream temperature along selected reaches to identify places of groundwater inflow.

  11. 78 FR 72700 - Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO

    Science.gov (United States)

    2013-12-03

    ... Mexico, were invited to consult but did not participate. History and Description of the Remains In the....R50000] Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History Colorado has completed...

  12. Seasonal Stream Partitioning and Critical Zone Feedbacks within a Colorado River Headwater Basin

    Science.gov (United States)

    Carroll, R. W. H.; Bearup, L. A.; Williams, K. H.; Brown, W. S.; Dong, W.; Bill, M.

    2017-12-01

    Groundwater contribution to streams can modulate discharge response to climate extremes, thereby protecting ecosystem health and water supply for downstream users. However, much uncertainty exists on the role of groundwater contribution in snow-dominated, mountainous systems. To better understand seasonal stream source, we employ the empirical approach of end-member mixing analysis (EMMA) using a suite of natural chemical and isotopic observations within the East River; a headwater catchment of the Colorado River and recently designated as a Science Focus Area with Lawrence Berkeley National Laboratory. EMMA relies on principal component analysis to reduce the number of dimensions of variability (U-space) for use in hydrograph separation. The mixing model was constructed for the furthest downstream and most heavily characterized stream gauge in the study site (PH; 84.7 km2). Potential tracers were identified from PH discharge as near linear (Mg, Ca, Sr, U, SO4, DIC, δ2H and δ18O) with alternative groupings evaluated. The best model was able to describe 97% of the tracer variance in 2-dimensions with low error and lack of residual structure. U-space positioning resulted in seasonal stream water source contributions of rain (8-16%), snow (48-74%) and groundwater (18-42%). EMMA developed for PH did not scale across 10 nested sub-basins (ranging from 0.38 km2 to 69.9 km2). Differences in mixing ratios are attributable to feedbacks in the critical zone with a focus on (1) source rock contributions of SO4 and U; (2) biogeochemical processes of enhanced SO4 reduction in the floodplain sediments, (3) flow path length as expressed by carbonate weathering, and (4) enhanced groundwater contributions as related to snow distribution and ecosystem structure. EMMA is an initial step to elucidate source contributions to streamflow and address scalability and applicability of mixing processes in a complex, highly heterogeneous, snow-dominated catchment. Work will aid hydrologic

  13. MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO

    International Nuclear Information System (INIS)

    Paul La Pointe; Claudia Rebne; Steve Dobbs

    2003-01-01

    This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of

  14. Analysis of trends in selected streamflow statistics for the Concho River Basin, Texas, 1916-2009

    Science.gov (United States)

    Barbie, Dana L.; Wehmeyer, Loren L.; May, Jayne E.

    2012-01-01

    The Concho River Basin is part of the upper Colorado River Basin in west-central Texas. Monotonic trends in streamflow statistics during various time intervals from 1916-2009 were analyzed to determine whether substantial changes in selected streamflow statistics have occurred within the Concho River Basin. Two types of U.S. Geological Survey streamflow data comprise the foundational data for this report: (1) daily mean discharge (daily discharge) and (2) annual instantaneous peak discharge. Trend directions are reported for the following streamflow statistics: (1) annual mean daily discharge, (2) annual 1-day minimum discharge, (3) annual 7-day minimum discharge, (4) annual maximum daily discharge, and (5) annual instantaneous peak discharge.

  15. Geospatial analysis of creeks evolution in the Indus Delta, Pakistan using multi sensor satellite data

    Science.gov (United States)

    Ijaz, Muhammad Wajid; Mahar, Rasool Bux; Siyal, Altaf Ali; Anjum, Muhammad Naveed

    2018-01-01

    Sea level rise (SLR) in response to looming climate change is being considered as a major impediment to coastal areas. Acute wave activities and tidal propagations of semi-diurnal to mixed type are impairing the morphology of the Indus Delta in Pakistan. In this study a synthetic approach has been adopted using multi sensor satellite and ground data in order to integrate the individual effect of topography, oceanic activities and vegetative canopy for deduction of a synergic impact over the morphology of the Indus Delta creeks system from 1972 to 2017. Geomorphologic anomalies in the planform of fourteen major creeks were explored. Spatiotemporal variations suggested that a substantial amount of the delta alluvium had been engulfed by the Arabian Sea. On average, the creeks located on the right side of the Indus River were relatively less wide (3.9 km) than those of on the left side (5.2 km). Zonal statistics calculated with topographic position index (TPI) enabled to understand the tide induced inundation extents. The mangrove canopy on the right side was found greater, which is why tidal basins on that side experienced less erosive activities. Thus, it could be maintained that the coastal sedimentary processes may be monitored effectively with the remotely sensed data and temporal pattern of changes can be quantified for future planning and mitigation of adverse effects.

  16. Sedimentary history and economic geology of San Juan Basin, New Mexico and Colorado

    International Nuclear Information System (INIS)

    Peterson, J.A.; LeLeit, A.J.; Spencer, C.W.; Ullrich, R.A.

    1981-01-01

    The San Juan Basin contains up to 15,000 ft of sedimentary rocks ranging in age from Cambrian to Recent. The earliest development of the area as a sedimentary basin or trough apparently took place in Pennsylvanian time, and the basin was maintained, with changing rates of subsidence and filling, through the remainder of geologic time. During the Early Paleozoic, sedimentation was dominated by marine transgressions across the northwestern flank of the regional Transcontinental Arch. The Late Paleozoic history was strongly influenced by tectonism related to development of the Ancestral Rocky Mountains Uplifts and associated downwarping. The Early Mesozoic is characterized by fluvial and eolian environments, interrupted periodically by thin marine transgressive deposits of nearshore redbeds. The final Mesozoic event was the widespread Late Cretaceous marine transgression which deposited a thick cyclic sequence of marine gray shale and sandstone, with interbedded coal. Late Tertiary regional uplift and resulting volcanism were accompanied by a regional dissection of the area by stream systems that evolved into the present drainage pattern of superposed streams. The sedimentary history is directly related to the occurrence of economic deposits in the basin. Major reserves of petroleum and gas are in Cretaceous and Pennsylvanian rocks, coal in Cretaceous, and uranium in Jurassic and Cretaceous. Abstract only

  17. Surface-water and ground-water quality in the Powell Creek and Armstrong Creek Watersheds, Dauphin County, Pennsylvania, July-September 2001

    Science.gov (United States)

    Galeone, Daniel G.; Low, Dennis J.

    2003-01-01

    Powell Creek and Armstrong Creek Watersheds are in Dauphin County, north of Harrisburg, Pa. The completion of the Dauphin Bypass Transportation Project in 2001 helped to alleviate traffic congestion from these watersheds to Harrisburg. However, increased development in Powell Creek and Armstrong Creek Watersheds is expected. The purpose of this study was to establish a baseline for future projects in the watersheds so that the effects of land-use changes on water quality can be documented. The Pennsylvania Department of Environmental Protection (PADEP) (2002) indicates that surface water generally is good in the 71 perennial stream miles in the watersheds. PADEP lists 11.1 stream miles within the Armstrong Creek and 3.2 stream miles within the Powell Creek Watersheds as impaired or not meeting water-quality standards. Siltation from agricultural sources and removal of vegetation along stream channels are cited by PADEP as likely factors causing this impairment.

  18. 78 FR 9629 - Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...

    Science.gov (United States)

    2013-02-11

    ... Service 7 CFR Part 948 [Doc. No. AMS-FV-12-0044; FV12-948-2 PR] Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato Administrative Committee, Area No. 2 AGENCY: Agricultural... membership on the Colorado Potato Administrative Committee, Area No. 2 (Committee). The Committee locally...

  19. Assessment of stream quality using biological indices at selected sites in the Schuylkill River basin, Chester County, Pennsylvania, 1981-97

    Science.gov (United States)

    Reif, Andrew G.

    2002-01-01

    IntroductionIn 1970, the Chester County Water Resources Authority (Pennsylvania) and the U.S. Geological Survey (USGS) established a long-term water-quality network with the goal of assessing the quality of streams in the county and understanding stream changes in response to urbanization using benthic-macroinvertebrate data. This database represents one of the longest continuous water-quality data sets in the country. Benthic macroinvertebrates are aquatic insects, such as mayflies, caddisflies, riffle beetles, and midges, and other invertebrates that live on the stream bottom. Benthic macroinvertebrates are useful in evaluating stream quality because their habitat preferences and low motility cause them to be affected directly by substances that enter the aquatic system. By evaluating the diversity and community structure of benthic-macroinvertebrate populations, a determination of stream quality can be made.Between 1981 and 1997, the network consisted of 43 sites in 5 major basins in Chester County—Delaware, Schuylkill, Brandywine, Big Elk and Octoraro, and Red and White Clay. Benthic-macroinvertebrate, water-chemistry, and habitat data were collected each year in October or November during base-flow conditions. Using these data, Reif evaluated the overall water-quality condition of Chester County streams. This Fact Sheet summarizes the key findings from Reif for streams in the Schuylkill River Basin. These streams include Pigeon Creek (site 10), Stony Run (site 6), French Creek (sites 12-16), Pickering Creek (sites 1-5), Little Valley Creek (site 49), and Valley Creek (site 50). This summary includes an analysis of stream conditions based on benthic-macroinvertebrate samples and an analysis of trends in stream conditions for the 17-year study period.

  20. Simultaneous caving and surface restoration system for oil shale mining

    Energy Technology Data Exchange (ETDEWEB)

    Allsman, P.T.

    1968-10-01

    A modified caving method is introduced for mining oil shale and simultaneous restoration of the land surface by return of spent shale onto the subsided area. Other methods have been designed to mine the relatively thin richer beds occurring near outcrops in the Piceance Creek Basin of NW. Colorado. Since the discovery of the much thicker beds in the N.-central part of the basin, some attention has focused on in situ and open-pit methods of recovery. Although caving has been recognized as a possible means of mining shale, most people have been skeptical of its success. This stems from the unknown and salient factors of cavability and size of broken rock with caving. Wisdom would seem to dictate that serious evaluation of the caving method be made along with the other methods.

  1. Water quality in the Sugar Creek basin, Bloomington and Normal, Illinois

    Science.gov (United States)

    Prugh, Byron J.

    1978-01-01

    Urban runoff and overflows from combined sewers affect water quantity and quality in Sugar Creek within the twin cities of Bloomington and Normal, Illinois. Water-quality data from five primary and eight secondary locations showed three basic types of responses to climatic and hydrologic stresses. Stream temperatures and concentrations of dissolved oxygen, ammonia nitrogen, total phosphorus, biochemical oxygen demand, and fecal bacteria showed seasonal variations. Specific conductivity, pH, chloride, and suspended solids concentrations varied more closely with stream discharges. Total organic carbon, total nitrogen, total phosphorus, biochemical oxygen demand, and fecal coliform and fecal streptococcal bacteria concentrations exhibited variations indicative of intial flushing action during storm runoff. Selected analyses for herbicides, insecticides, and other complex organic compounds in solution and in bed material showed that these constituents were coming from sources other than the municipal sanitary treatment plant effluent. Analyses for 10 common metals: arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc showed changes in concentrations below the municipal sanitary plant outfall. (Woodard-USGS)

  2. Using fluorescence spectroscopy to gain new insights into seasonal patterns of stream DOC concentrations in an alpine, headwater catchment underlain by discontinuous permafrost in Wolf Creek Research Basin, Yukon Territory, Canada

    Science.gov (United States)

    Shatilla, N. J.; Carey, S.; Tang, W.

    2017-12-01

    The Canadian subarctic is experiencing rapid climate warming resulting in decreased depth and duration of snowcover, decreased permafrost extent and time span of seasonal frozen ground resulting in increased active layer depth, and increased frequency and magnitude of rainfall events during the growing season. These changes challenge our conceptual models of permafrost hydrology as comparisons between recent and historical streamflow records show an emerging secondary post-freshet peak in flow in recent years along with enhanced winter flows. Long-term monitoring of Granger Creek (7.6km2), an alpine watershed underlain by discontinuous permafrost located within Wolf Creek Research Basin (176km2) in Yukon Territory, Canada provided a multi-decadal record of hydro-meteorological measurements. Granger Creek experienced warmer and wetter summers in 2015-6 compared to 2001-8, and an altered streamflow pattern with an earlier spring freshet and peak in dissolved organic carbon (DOC) concentrations. DOC concentrations post-freshet remained low at both the headwater and meso-catchment scale, which contradicts trends of increasing DOC concentrations observed in larger river systems. Hysteresis loops of sub-hourly measurements of streamflow, salinity and chromophoric dissolved organic matter (CDOM) were analyzed to provide new insights into how hydrological connectivity at the headwater scale affected the timing of solute release with supporting information from optical indices calculated from fluorescence spectroscopy. These indices provided a more nuanced view of catchment dynamics than the DOC concentrations. The composition and quality of DOM varied throughout the growing season with the delivery of older, terrestrially-derived material corresponding to high DOC concentrations at the onset of spring freshet when the catchment was initially being flushed. The origin and quality of stream DOM shifted throughout the rest of the season to newer, more easily mobilized DOM

  3. Summary and evaluation of the quality of stormwater in Denver, Colorado, 2006-2010

    Science.gov (United States)

    Stevens, Michael R.; Slaughter, Cecil B.

    2012-01-01

    , samples collected at Toll Gate Creek above 6th Avenue at Aurora station, Sand Creek at mouth near Commerce City station, and the South Platte River at Henderson station, each had about 30 to 50 percent exceedances of both acute and chronic dissolved manganese standards. Of the samples collected at Sand Creek at mouth near Commerce City, 1 sample exceeded the acute standard and 4 samples exceeded the chronic standard for dissolved zinc, but no samples collected from the other sites exceeded either standard for zinc. Almost all samples of stormwater analyzed for Escherichia coli exceeded Colorado numeric standards. A numerical standard for fecal coliform is no longer applicable as of 2004. Results from the 2002-2005 study indicated that the general quality of stormwater had improved during 2002-2005 compared to 1998-2001, having fewer exceedances of Colorado standards, and showing downward trends for many water-quality values and concentrations. These trends coincided with general downward or relatively similar mean streamflows for the 2002-2005 compared to 1998-2001, which indicates that dilution may be a smaller influence on values and concentrations than other factors. For this report, downward trends were indicated for many constituents at each station during 2006-2010 compared to 2002-2005. The trends for mean streamflow for 2006-2010 compared to 2002-2005 are upward at all sites except for the South Platte River at Henderson, indicating that dilution by larger flows could be a factor in the downward concentration trends. At the South Platte River below Union Avenue station, downward trends were indicated for hardness, dissolved ammonia, dissolved orthophosphate, and dissolved copper. Upward trends at South Platte River below Union Avenue were indicated for pH. At the South Platte River at Denver station, downward trends were indicated for total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus

  4. Meeting instream flow needs of lower Colorado River in Texas

    International Nuclear Information System (INIS)

    Martin, Q.W.

    1993-01-01

    The Lower Colorado River Authority (LCRA), an agency of the State of Texas, manages the surface waters of the lower Colorado River in Texas. The major water supply source in the lower basin is the Highland Lakes chain of reservoirs in Central Texas. The use of water from these lakes for environmental protection and enhancement has received increasing attention in recent years. The LCRA recently completed major revisions to its comprehensive Water Management Plan (WMP) for the Highland Lakes. These revisions included changes to incorporate the results of a three year study of instream flow needs in the lower Colorado River. The instream flow needs were determined to consist of two flow regimes: critical and target. The critical flows are considered to be the daily minimum flows needed to maintain minimum viable aquatic conditions for important fish species. The target flow needs are those daily flows which maximize the available habitat for a variety of fish. After evaluating numerous policy options, LCRA revised to WMP to allow the release of water from the Highland Lakes to maintain the daily river flows at no less than the critical flows in all years. Further, in those years when drought-induced irrigation water supply curtailments do not occur, LCRA will release water from the lakes, to the extent of daily inflows, to maintain daily river flows at no less than the target levels. To fully honor this pledge, LCRA committed an average of 28,700 acre-feet annually, during any ten consecutive years, from the dependable supply of the Highland Lakes

  5. Simulation of streamflow in the McTier Creek watershed, South Carolina

    Science.gov (United States)

    Feaster, Toby D.; Golden, Heather E.; Odom, Kenneth R.; Lowery, Mark A.; Conrads, Paul; Bradley, Paul M.

    2010-01-01

    The McTier Creek watershed is located in the Sand Hills ecoregion of South Carolina and is a small catchment within the Edisto River Basin. Two watershed hydrology models were applied to the McTier Creek watershed as part of a larger scientific investigation to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin. The two models are the topography-based hydrological model (TOPMODEL) and the grid-based mercury model (GBMM). TOPMODEL uses the variable-source area concept for simulating streamflow, and GBMM uses a spatially explicit modified curve-number approach for simulating streamflow. The hydrologic output from TOPMODEL can be used explicitly to simulate the transport of mercury in separate applications, whereas the hydrology output from GBMM is used implicitly in the simulation of mercury fate and transport in GBMM. The modeling efforts were a collaboration between the U.S. Geological Survey and the U.S. Environmental Protection Agency, National Exposure Research Laboratory. Calibrations of TOPMODEL and GBMM were done independently while using the same meteorological data and the same period of record of observed data. Two U.S. Geological Survey streamflow-gaging stations were available for comparison of observed daily mean flow with simulated daily mean flow-station 02172300, McTier Creek near Monetta, South Carolina, and station 02172305, McTier Creek near New Holland, South Carolina. The period of record at the Monetta gage covers a broad range of hydrologic conditions, including a drought and a significant wet period. Calibrating the models under these extreme conditions along with the normal flow conditions included in the record enhances the robustness of the two models. Several quantitative assessments of the goodness of fit between model simulations and the observed daily mean flows were done. These included the Nash-Sutcliffe coefficient

  6. Geology and total petroleum systems of the Paradox Basin, Utah, Colorado, New Mexico, and Arizona

    Science.gov (United States)

    Whidden, Katherine J.; Lillis, Paul G.; Anna, Lawrence O.; Pearson, Krystal M.; Dubiel, Russell F.

    2014-01-01

    The geological model for the development of the Total Petroleum Systems (TPSs) within the Paradox Basin formed the foundation of the recent U.S. Geological Survey assessment of undiscovered, technically recoverable resources in the basin. Five TPSs were defined, of which three have known production and two are hypothetical. These TPSs are based on geologic elements of the basin and the potential development of Precambrian, Devonian, Pennsylvanian, Permian-Mississippian, and Cretaceous source rock intervals.

  7. Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, as determined by laser-ablation ICP-MS analysis

    International Nuclear Information System (INIS)

    Belousova, E.A.; Jackson, S.E.; O'Reilly, S.Y.; Griffin, W.L.

    2001-01-01

    Two populations of kimberlitic zircon are present in the Timber Creek kimberlites, Northern Territory. Laser-ablation ICP-MS U-Pb dating yields an age of 1483 ± 15 (2σ) Ma for the main group and an age of 179 ± 2 Ma for the other group. This distinction of two age groups is strongly supported by Hf isotope data on the same zircons. Although the trace-element patterns of both populations are typical of mantle-derived zircons, the 'young' population has slightly higher concentrations of most trace elements, but has lower Hf, Nb, Ta and Pb contents. The distinct differences in trace-element contents and Hf isotopic composition of the two zircon populations indicate that they were derived from different magma sources. The dating results indicate that the emplacement age of the Timber Creek kimberlites cannot be older than the age of the 'young' zircon population (i.e. 179 ± 2 Ma). This clarifies the inconsistency between the previously reported SHRIMP age of the Timber Creek zircons (1462 ± 53 Ma) and the much younger age (1200Ma) of the sediments of the Victoria River Basin into which these kimberlites have intruded. The Timber Creek kimberlites are a newly recognised extension of the widespread Jurassic kimberlite activity known in Western Australia and South Australia. Copyright (2001) Geological Society of Australia

  8. Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayenta formation (lower jurassic), Southwest Colorado

    Science.gov (United States)

    Miall, Andrew D.

    1988-03-01

    Three well-exposed outcrops in the Kayenta Formation (Lower Jurassic), near Dove Creek in southwestern Colorado, were studied using lateral profiles, in order to test recent regarding architectural-element analysis and the classification and interpretation of internal bounding surfaces. Examination of bounding surfaces within and between elements in the Kayenta outcrops raises problems in applying the three-fold classification of Allen (1983). Enlarging this classification to a six-fold hierarchy permits the discrimination of surfaces intermediate between Allen's second- and third-order types, corresponding to the upper bounding surfaces of macroforms, and internal erosional "reactivation" surfaces within the macroforms. Examples of the first five types of surface occur in the Kayenta outcrops at Dove Creek. The new classifications is offered as a general solution to the problem of description of complex, three-dimensional fluvial sandstone bodies. The Kayenta Formation at Dove Creek consists of a multistorey sandstone body, including the deposits of lateral- and downstream-accreted macroforms. The storeys show no internal cyclicity, neither within individual elements nor through the overall vertical thickness of the formation. Low paleocurrent variance indicates low sinuosity flow, whereas macroform geometry and orientation suggest low to moderate sinuosity. The many internal minor erosion surfaces draped with mud and followed by intraclast breccias imply frequent rapid stage fluctuation, consistent with variable (seasonal? monsonal? ephemmeral?) flow. The results suggest a fluvial architecture similar to that of the South Saskatchewan River, through with a three-dimensional geometry unlike that interpreted from surface studies of that river.

  9. Detection of Flooding Responses at the River Basin Scale Enhanced by Land use Change

    Science.gov (United States)

    McCormick, Brian C.; Eshleman, Keith N.; Griffith, Jeff L.; Townsend, Philip A.

    2009-01-01

    The Georges Creek watershed (area 187.5 sq km) in western Maryland (United States) has experienced land use changes (>17% of area) associated with surface mining of coal. The adjacent Savage River watershed (area 127.2 sq km) is unmined. Moments of flood frequency distributions indicated that climatic variability affected both watersheds similarly. Normalizing annual maximum flows by antecedent streamflow and causative precipitation helped identify trends in flooding response. Analysis of contemporary storm events using Next Generation Weather Radar (NEXRAD) stage III precipitation data showed that Georges Creek floods are characterized by higher peak runoff and a shorter centroid lag than Savage River floods, likely attributable to differences in current land use. Interestingly, Georges Creek produces only two thirds of the storm-flow volume as Savage River, apparently because of infiltration into abandoned deep mine workings and an associated transbasin diversion constructed circa 1900. Empirical trend analysis is thus complicated by both hydroclimatic variability and the legacy of deep mining in the basin.

  10. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    Science.gov (United States)

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per

  11. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  12. Temperature Inversions and Permafrost Distribution in a Mountain Valley: Preliminary Results From Wolf Creek, Yukon Territory, Canada

    Science.gov (United States)

    Lewkowicz, A. G.; Smith, K. M.

    2004-12-01

    The BTS (Basal Temperature of Snow) method to predict permafrost probability in mountain basins uses elevation as an easily available and spatially distributed independent variable. The elevation coefficient in the BTS regression model is, in effect, a substitute for ground temperature lapse rates. Previous work in Wolf Creek (60° 8'N 135° W), a mountain basin near Whitehorse, has shown that the model breaks down in a mid-elevation valley (1250 m asl) where actual permafrost probability is roughly twice that predicted by the model (60% vs. 20-30%). The existence of a double tree-line at the site suggested that air temperature inversions might be the cause of this inaccuracy (Lewkowicz and Ednie, 2004). This paper reports on a first year (08/2003-08/2004) of hourly air and ground temperature data collected along an altitudinal transect within the valley in upper Wolf Creek. Measurements were made at sites located 4, 8, 22, 82 and 162 m above the valley floor. Air temperature inversions between the lowest and highest measurement points occurred 42% of the time and in all months, but were most frequent and intense in winter (>60% of December and January) and least frequent in September (snow cover. In many cases, however, air temperature inversions are not duplicated in the ground temperature record. Nevertheless, the annual altitudinal ground temperature gradient is much lower than would be expected from a standard atmospheric lapse rate, suggesting that the inversions do have an important impact on permafrost distribution at this site. More generally, therefore, it appears probable that any reduction in inversion frequency resulting from a more vigorous atmospheric circulation in the context of future climate change, would have a significant effect on permafrost distribution in mountain basins.

  13. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-10-15

    spawning refugias, supplementation if necessary and a habitat and fish monitoring and evaluation plan. If chum have been extirpated from previously utilized streams, develop re-introduction plans that utilize appropriate genetic donor stock(s) of LCR chum salmon and integrate habitat improvement and fry-to-adult survival evaluations. Third, reduce extinction risks to the Grays River chum salmon population by randomly capturing adults in the basin for use in a supplementation program and reintroduction into the Chinook River basin. The Duncan Creek project was developed using the same recovery strategy implemented for LCR chum. Biologists with the WDFW and Pacific States Marine Fisheries Commission (PSMFC) identified Duncan Creek as an ideal upriver location below Bonneville Dam for chum re-introduction. It has several attributes that make it a viable location for a re-introduction project: historically chum salmon were present, the creek is low gradient, has numerous springs/seeps, has a low potential for future development and is located close to a donor population of Lower Gorge chum. The Duncan Creek project has two goals: (1) re-introduction of chum into Duncan Creek by providing off channel high-quality spawning and incubation areas, and (2) to simultaneously evaluate natural recolonization and a supplementation strategy where adults are collected and spawned artificially at a hatchery. For supplementation, eggs are incubated and the fry reared at the Washougal Hatchery to be released back into Duncan Creek. The tasks associated with re-establishing a naturally self-sustaining population include: (1) removing mud, sand and organics present in four of the creek branches and replace with gravels expected to provide maximum egg-to-fry survival rates to a depth of at least two feet; (2) armoring the sides of these channels to reduce importation of sediment by fish spawning on the margins; (3) planting native vegetation adjacent to the channels to stabilize the banks, trap

  14. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    Science.gov (United States)

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake

  15. 7 CFR 948.51 - Colorado Potato Committee.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Colorado Potato Committee. 948.51 Section 948.51... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Order Regulating Handling Committees § 948.51 Colorado Potato Committee. The Colorado Potato Committee...

  16. Favorability for uranium in tertiary sedimentary rocks, southwestern Montana

    International Nuclear Information System (INIS)

    Wopat, M.A.; Curry, W.E.; Robins, J.W.; Marjaniemi, D.K.

    1977-10-01

    Tertiary sedimentary rocks in the basins of southwestern Montana were studied to determine their favorability for potential uranium resources. Uranium in the Tertiary sedimentary rocks was probably derived from the Boulder batholith and from silicic volcanic material. The batholith contains numerous uranium occurrences and is the most favorable plutonic source for uranium in the study area. Subjective favorability categories of good, moderate, and poor, based on the number and type of favorable criteria present, were used to classify the rock sequences studied. Rocks judged to have good favorability for uranium deposits are (1) Eocene and Oligocene strata and undifferentiated Tertiary rocks in the western Three Forks basin and (2) Oligocene rocks in the Helena basin. Rocks having moderate favorability consist of (1) Eocene and Oligocene strata in the Jefferson River, Beaverhead River, and lower Ruby River basins, (2) Oligocene rocks in the Townsend and Clarkston basins, (3) Miocene and Pliocene rocks in the Upper Ruby River basin, and (4) all Tertiary sedimentary formations in the eastern Three Forks basin, and in the Grasshopper Creek, Horse Prairie, Medicine Lodge Creek, Big Sheep Creek, Deer Lodge, Big Hole River, and Bull Creek basins. The following have poor favorability: (1) the Beaverhead Conglomerate in the Red Rock and Centennial basins, (2) Eocene and Oligocene rocks in the Upper Ruby River basin, (3) Miocene and Pliocene rocks in the Townsend, Clarkston, Smith River, and Divide Creek basins, (4) Miocene through Pleistocene rocks in the Jefferson River, Beaverhead River, and Lower Ruby River basins, and (5) all Tertiary sedimentary rocks in the Boulder River, Sage Creek, Muddy Creek, Madison River, Flint Creek, Gold Creek, and Bitterroot basins

  17. Geohydrology and numerical simulation of groundwater flow in the central Virgin River Basin of Iron and Washington Counties, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system.The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important.The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Differences in well yield indicate that there is considerable

  18. Analysis of soil and water at the Four Mile Creek seepline near the F ampersand H Areas of SRS

    International Nuclear Information System (INIS)

    Haselow, J.S.; Harris, M.; Looney, B.B.; Halverson, N.V.; Gladden, J.B.

    1990-01-01

    Until 1988, solutions containing sodium hydroxide, nitride acid, low levels of radionuclides (mostly tritiated water) and some metals were discharged to unlined seepage basins at the F and H Areas of the Savannah River Site (SRS) as part of normal operations (Killian et al, 1987a,b). The basins are now being closed according to the Resource Conservation and Recovery Act (RCRA). As part of the closure, a Part B Post-Closure Care Permit is being prepared. The information included in this report will fulfill some of the data requirements for that Part B permit. Several soil and water samples were collected along the Four Mile Creek (FMC) seepline at the F ampersand H Areas of the Savannah River Site. The samples were analyzed for concentrations of metals, radionuclides, and inorganic constituents. The goal of the work reported herein is to document the impacts from the basins of FMC has been completed in a phased approach

  19. Multivariate statistical analysis of stream sediments for mineral resources from the Craig NTMS Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Beyth, M.; McInteer, C.; Broxton, D.E.; Bolivar, S.L.; Luke, M.E.

    1980-06-01

    Multivariate statistical analyses were carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Craig quadrangle, Colorado, to support the National Uranium Resource Evaluation and to evaluate strategic or other important commercial mineral resources. A few areas for favorable uranium mineralization are suggested for parts of the Wyoming Basin, Park Range, and Gore Range. Six potential source rocks for uranium are postulated based on factor score mapping. Vanadium in stream sediments is suggested as a pathfinder for carnotite-type mineralization. A probable northwest trend of lead-zinc-copper mineralization associated with Tertiary intrusions is suggested. A few locations are mapped where copper is associated with cobalt. Concentrations of placer sands containing rare earth elements, probably of commercial value, are indicated for parts of the Sand Wash Basin

  20. Environmental Setting of the Lower Merced River Basin, California

    Science.gov (United States)

    Gronberg, Jo Ann M.; Kratzer, Charles R.

    2006-01-01

    In 1991, the U.S. Geological Survey began to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology as part of the National Water-Quality Assessment (NAWQA) Program. As part of this program, the San Joaquin-Tulare Basins study unit is assessing parts of the lower Merced River Basin, California. This report provides descriptions of natural and anthropogenic features of this basin as background information to assess the influence of these and other factors on water quality. The lower Merced River Basin, which encompasses the Mustang Creek Subbasin, gently slopes from the northeast to the southwest toward the San Joaquin River. The arid to semiarid climate is characterized by hot summers (highs of mid 90 degrees Fahrenheit) and mild winters (lows of mid 30 degrees Fahrenheit). Annual precipitation is highly variable, with long periods of drought and above normal precipitation. Population is estimated at about 39,230 for 2000. The watershed is predominately agricultural on the valley floor. Approximately 2.2 million pounds active ingredient of pesticides and an estimated 17.6 million pounds active ingredient of nitrogen and phosphorus fertilizer is applied annually to the agricultural land.