WorldWideScience

Sample records for credit cask designs

  1. Conceptual cask design with burnup credit

    International Nuclear Information System (INIS)

    Lee, Seong Hee; Ahn, Joon Gi; Hwang, Hae Ryong

    2003-01-01

    Conceptual design has been performed for a spent fuel transport cask with burnup credit and a neutron-absorbing material to maximize transportation capacity. Both fresh and burned fuel are assumed to be stored in the cask and boral and borated stainless steel are selected for the neutron-absorbing materials. Three different sizes of cask with typical 14, 21 and 52 PWR fuel assemblies are modeled and analyzed with the SCALE 4.4 code system. In this analysis, the biases and uncertainties through validation calculations for both isotopic predictions and criticality calculation for the spent fuel have been taken into account. All of the reactor operating parameters, such as moderator density, soluble boron concentration, fuel temperature, specific power, and operating history, have been selected in a conservative way for the criticality analysis. Two different burnup credit loading curves are developed for boral and borated stainless steel absorbing materials. It is concluded that the spent fuel transport cask design with burnup credit is feasible and is expected to increase cask payloads. (author)

  2. The use of burnup credit for spent fuel cask design

    International Nuclear Information System (INIS)

    Lake, W.H.

    1993-01-01

    A new generation of high capacity spent fuel transport casks is being developed by the U.S. Department of Energy (DOE) as part of the Federal Waste Management System (FWMS). Burnup credit, which recognizes the reduced reactivity of spent fuel is being used for these casks. Two cask designs being developed for DOE by Babcock and Wilcox and General Atomics use burnup credit. The cask designs must be certified by the U.S. Nuclear Regulatory Commission (NRC) if they are to be used in the FWMS. Certification of these casks by the NRC would not require any change in the NRC's transport regulations, and would be consistent with past practices. Furthermore, use of burnup credit casks appears to be consistent with current International Atomic Energy Agency (IAEA) rules and regulations. To support NRC certification, DOE has identified the technical issues related to burnup credit, and embarked on a development program to resolve them. (J.P.N.)

  3. Parametric neutronic analyses related to burnup credit cask design

    International Nuclear Information System (INIS)

    Parks, C.V.

    1989-01-01

    The consideration of spent fuel histories (burnup credit) in the design of spent fuel shipping casks will result in cost savings and public risk benefits in the overall fuel transportation system. The purpose of this paper is to describe the depletion and criticality analyses performed in conjunction with and supplemental to the referenced analysis. Specifically, the objectives are to indicate trends in spent fuel isotopic composition with burnup and decay time; provide spent fuel pin lattice values as a function of burnup, decay time, and initial enrichment; demonstrate the variation of k eff for infinite arrays of spent fuel assemblies separated by generic cask basket designs (borated and unborated) of varying thicknesses; and verify the potential cask reactivity margin available with burnup credit via analysis with generic cask models

  4. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    It is possible to develop an optimal strategy for implementing burnup credit in spent fuel transport casks. For transport, the relative risk is rapidly reduced if additional pre-transport controls such as a cavity dryness verifications are conducted prior to transport. Some other operational and design features that could be incorporated into a burnup credit cask strategy are listed. These examples represent many of the system features and alternatives already available for use in developing a broadly based criticality safety strategy for implementing burnup credit in the design and operation of spent fuel transport casks. 4 refs., 1 tab

  5. Evaluation of burnup credit for accommodating PWR spent nuclear fuel in high-capacity cask designs

    International Nuclear Information System (INIS)

    Wagner, John C.

    2003-01-01

    This paper presents an evaluation of the amount of burnup credit needed for high-density casks to transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic 32-assembly cask and the current regulatory guidance were used as bases for this evaluation. By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based loading curves, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of SNF assemblies in high-capacity storage and transportation casks. The impact of varying selected calculational assumptions is also investigated, and considerable improvement in effectiveness is shown with the inclusion of the principal fission products (FPs) and minor actinides and the use of a bounding best-estimate approach for isotopic validation. Given sufficient data for validation, the most significant component that would improve accuracy, and subsequently enhance the utilization of burnup credit, is the inclusion of FPs. (author)

  6. Incentives for the allowance of burnup credit in the design of spent nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Westfall, R.M.; Jones, R.H.

    1987-01-01

    An analysis has been completed which indicates that the consideration of spent fuel histories ('burnup credit') in the criticality design of spent fuel shipping casks could result in considerable public risk benefits and cost savings in the transport of spent nuclear fuel. Capacities of casks could be increased considerably in some cases. These capacity increases result in lower public and occupational exposures to ionizing radiation due to the reduced number of shipments necessary to transport a given amount of fuel. Additional safety benefits result from reduced non-radiological risks to both public and occupational sectors. In addition, economic benefits result from lower in-transit shipping costs, reduced transportation fleet capital costs, and fewer cask handling requirements at both shipping and receiving facilities

  7. The role of ORIGEN-S in the design of burnup credit spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.

    1991-01-01

    Current licensing practices for spent fuel pools, storage facilities, and transportation casks require a conservative ''fresh fuel assumption'' be used in the criticality analysis. Burnup credit refers to a new approach in criticality analyses for spent fuel handling systems in which reactivity credit is allowed for the depleted state of the fuel. Studies have shown that the increased cask capacities that can be achieved with burnup credit offer both economic and risk incentives. The US Department of Energy is currently sponsoring a program to develop analysis methodologies and establish a new generation of spent fuel casks using the principle of burnup credit. The key difference in this new approach is the necessity to accurately predict the isotopic composition of the spent fuel. ORIGEN-S was selected to satisfy this requirement because of the flexibility and user-friendly input offered via its usage in the Standardized Computer Analyses for Licensing and Evaluation (SCALE) code system. Specifically, through the Shielding Analysis Sequence 2H (SAS2H), ORIGEN-S is linked with cross-section processing codes and one-dimensional transport analyses to produce problem-specific cross-section data for the point-depletion calculation. The utility code COUPLE facilitates updating basic cross-section and fission-yield data for the calculations. This paper describes the fundamental role fulfilled by ORIGEN-S in the development of the analysis methodology, validation of the methods, definition of criticality safety margins and other licensing considerations in the design of a new generation of spent fuel casks. Particular emphasis is given to the performance of ORIGEN-S in comparisons with measurements of irradiated fuel compositions and in predicting isotopics for use in the calculation of reactor restart critical configurations that are performed as a part of the validation process

  8. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    The traditional assumption used in evaluating criticality safety of spent fuel cask is that the spent fuel is as reactive as when it was fresh (new). This is known as the fresh fuel assumption. It avoids a number of calculational and verification difficulties, but could take a heavy toll in decreased efficiency. The alternative to the fresh fuel assumption is called burnup credit. That is, the reduced reactivity of spent fuel that comes about from depletion of fissile radionuclides and net increase in neutron absorbers (poisons) is taken into account. It is recognizable that the use of burnup credit will in fact increase the percentage of unacceptable or non-specification fuel available for misloading. This could reduce individual cask safety margins if current practices with respect to loading procedures are maintained. As such, additional operational, design, analysis, and validation requirements should be established that, as a minimum, compensate for any potential reduction in fuel loading safety margin. This method is based on a probabilistic (PRA) approach and is called a relative risk comparison. The method assumes a linear risk model, and uses a selected probability function to compare the system of interest and an acceptable reference system by varying the features of each to assess effects on system safety. While risk is the product of an event probability and its consequence, the consequences of criticality in a cask are considered to be both unacceptable and the same, regardless of the initiating sequence. Therefore, only the probability of the event is considered in a relative risk evaluation

  9. An economic evaluation of a storage system for casks with burnup credit

    International Nuclear Information System (INIS)

    Mimura, Masahiro; Tsuda, Kazuaki; Yamada, Nobuyuki; O-iwa, Akio.

    1993-01-01

    It is generally recognized that casks designed with burnup credit are more economical than those without burnup credit. To estimate how much more economical they are, we made conceptual designs of transport/storage casks with and without burnup credit for PWR and BWR fuels of various uranium enrichment. The casks were designed to contain the maximum number of fuel assemblies under the necessary weight and dimensional limitations as well as the criticality and shielding criteria. The results showed that approximately 8 % to 44 % more fuel assemblies could be contained in casks with burnup credit. We then evaluated the economy of cask storage system incorporating the cask designs obtained above both with and without burnup credit. The results showed that the cost of storing casks with burnup credit is approximately 7 % to 30 % less expensive than storing casks without burnup credit. (J.P.N.)

  10. Burnup credit applications in a high-capacity truck cask

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1992-09-01

    General Atomics (GA) has designed two legal weight truck (LWT) casks, the GA-4 and GA-9, to carry four pressurized-water-reactor (PWR) and nine boiling-water-reactor (BWR) fuel assemblies, respectively. GA plans to submit applications for certification to the US Nuclear Regulatory Commission (NRC) for the two casks in mid-1993. GA will include burnup credit analysis in the Safety Analysis Report for Packaging (SARP) for the GA-4 Cask. By including burnup credit in the criticality safety analysis for PWR fuels with initial enrichments above 3% U-235, public and occupation risks are reduced and cost savings are realized. The GA approach to burnup credit analysis incorporates the information produced in the US Department of Energy Burnup Credit Program. This paper describes the application of burnup credit to the criticality control design of the GA-4 Cask

  11. Burnup credit for storage and transportation casks

    International Nuclear Information System (INIS)

    Wells, A.H.

    1988-01-01

    The application of burnup credit to storage and transportation cask licensing results in a significant improvement in cask capacity and an associated reduction of the cost per kilogram of uranium in the cask contents. The issues for licensing with burnup credit deal primarily with the treatment of fission product poisons and methods of verification of burnup during cask operations. Other issues include benchmarking of cross-section sets and codes and the effect of spatial variation of burnup within an assembly. The licensing of burnup credit for casks will be complex, although the criticality calculations are not themselves difficult. Attention should be directed to the use of fission product poisons and the uncertainties that they introduce. Verification of burnup by measurements will remove some of the concerns for criticality safety. Calculations for burnup credit casks should consider rod-to-rod and axial variations of burnup, as well as variability of burnable poisons it they are used in the assembly. In spite of the complexity of cask burnup credit licensing issues, these issues appear to be resolvable within the current state of the art of criticality safety

  12. Burnup credit effect on proposed cask payloads

    International Nuclear Information System (INIS)

    Hall, I.K.

    1989-01-01

    The purpose of the Cask Systems Development Program (CSDP) is to develop a variety of cask systems which will allow safe and economical movement of commercial spent nuclear fuel and high-level waste from the generator to the Federal repository or Monitored Retrievable Storage (MRS) facility. Program schedule objectives for the initial phase of the CSDP include the development of certified spent fuel cask systems by 1995 to support Office of Civilian Radioactive Waste Management shipments from the utilities beginning in the late 1990s. Forty-nine proposals for developing a family of spent fuel casks were received and comparisons made. General conclusions that can be drawn from the comparisons are that (1) the new generation of casks will have substantially increased payloads in comparison to current casks, and (2) an even greater payload increase may be achievable with burnup credit. The ranges in the payload estimates do not allow a precise separation of the payload increase attributable to the proposed allowance of fuel burnup credit, as compared wilt the no-burnup-credit case. The beneficial effects of cask payload increases on overall costs and risks of transporting spent fuel are significant; therefore further work aimed toward taking advantage of burnup credit is warranted

  13. Description of from-reactor transportation cask designs

    International Nuclear Information System (INIS)

    Lake, W.H.

    1990-01-01

    This paper describes two from-reactor cask development program contracts. They are a contract for legal weight truck cask designs, and a contract for a rail/barge cask design. The paper also presents several general considerations affecting the cask development program. Two of these which are covered in some detail are the technical topics of burnup credit and source term evaluation

  14. Analysis of collective life-cycle dose for burnup credit shipping casks

    International Nuclear Information System (INIS)

    Brentlinger, L.A.; Peterson, R.W.; Hofmann, P.L.

    1989-01-01

    In 1987, several studies were conducted by Sandia National Laboratories (SNL) to investigate the feasibility of and the incentive to justify the consideration of spent fuel histories in the design of spent fuel shipping casks. Taking credit for reduction in fissile content of fuel elements resulting from burnup credit is not current practice in the design and certification of shipping casks. The general argument can be made, however, that if this were done cask capacities could be increased over the current shipping cask designs which do not take the benefit of such burnup credit. This paper deals specifically with the question of occupational and public dose reduction via the use of a series of postulated burnup-credit cask designs

  15. End effects in the criticality analysis of burnup credit casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Parks, C.V.

    1990-01-01

    A study to evaluate the effect of axially dependent burnup on k eff has been performed as part of an effort to qualify procedures to be used in establishing burnup credit in shipping cask design and certification. This study was performed using a generic 31-element modular cast-iron cask (wall thickness 33.1 cm) with a 1-cm-thick borated stainless-steel basket for reactivity control. Fuel isotopics used here are those of the 17 x 17 Westinghouse assemblies from the North Anna Unit 1 reactor. Virginia Power (VP) provided detailed spatial isotopics for the fuel assemblies in-core at beginning-of-cycle 5 (BOC-5) as generated from their PDQ analyses. Twenty-two axial planes were defined in the original VP data. The isotopics used in this study were for a 3.41 initial wt % 235 U and an average burnup of 31.5 GWd/MTU

  16. Proceedings of a workshop on the use of burnup credit in spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1989-10-01

    The Department of Energy sponsored a workshop on the use of burnup credit in the criticality design of spent fuel shipping casks on February 21 and 22, 1988. Twenty-five different presentations on many related topics were conducted, including the effects of burnup credit on the design and operation of spent fuel storage pools, casks and modules, and shipping casks; analysis and physics issues related to burnup credit; regulatory issues and criticality safety; economic incentives and risks associated with burnup credit; and methods for verifying spent fuel characteristics. An abbreviated version of the DOE workshop was repeated as a special session at the November 1988 American Nuclear Society Meeting in Washington, DC. Each of the invited speakers prepared detailed papers on his or her respective topic. The individual papers have been cataloged separately

  17. Cask system design guidance for robotic handling

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs

  18. Burnup credit applications in a high-capacity truck cask

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1993-01-01

    The use of burnup credit in the criticality safety analysis of the GA-4 Cask increases the cask's capacity from three spent fuel assemblies to four, resulting in reduced public and occupational risk and reduced life cycle costs. GA's criticality calculations for burnup credit, including the associated uncertainties and analytical bias, establish the minimum burnup required as a function of initial enrichment to maintain K eff ≤ 0.95 under any conceivable condition. The minimum burnup requirement as a function of initial enrichment has been determined to be 15,000 MWd/MTU for 3.5 wt% U-235 fuel, 20,000 MWd/MTU for 4.0 wt% U-235 fuel and 25,000 MWd/MTU for 4.5 wt% U-235 fuel. The minimum burnup requirement as a function of enrichment is well below the typical burnup levels seen in the current and projected spent fuel inventory. (J.P.N.)

  19. End effect Keff bias curve for actinide-only burnup credit casks

    International Nuclear Information System (INIS)

    Kang, C.H.; Lancaster, D.B.

    1997-01-01

    A conservative end effect k eff bias curve for actinide-only burnup credit for spent fuel casks is presented in this paper. The k eff bias values can be added to the uniform axial burnup analysis to conservatively bound the actinide-only end effect. A normalized axial burnup distribution for the standard Westinghouse 17 x 17 assembly design is used for calculating k eff . The end effect calculated is a strong function of burnup, and increases as cask size size decreases. The presence of poison plates increases the end effect. The bias curve presented is based on the most limiting cask configuration of a single PWR assembly with completely black poison plates. Therefore, axially uniform criticality calculations with application of the proposed k eff could eliminate the need for axially burnup dependent analyses. 7 refs., 1 fig

  20. Criticality calculations of various spent fuel casks - possibilities for burn up credit implementation

    International Nuclear Information System (INIS)

    Apostolov, T; Manolova, M.; Prodanova, R.

    2001-01-01

    A methodology for criticality safety analysis of spent fuel casks with possibilities for burnup credit implementation is presented. This methodology includes the world well-known and applied program systems: NESSEL-NUKO for depletion and SCALE-4.4 for criticality calculations. The abilities of this methodology to analyze storage and transportation casks with different type of spent fuel are demonstrated on the base of various tests. The depletion calculations have been carried out for the power reactors (WWER-440 and WWER-1000) and the research reactor IRT-2000 (C-36) fuel assemblies. The criticality calculation models have been developed on the basis of real fuel casks, designed by the leading international companies (for WWER-440 and WWER-1000 spent fuel assemblies), as well as for real a WWER-440 storage cask, applied at the 'Kozloduy' NPP. The results obtained show that the criticality safety criterion K eff less than 0.95 is satisfied for both: fresh and spent fuel. Besides the implementation of burnup credit allows to account for the reduced reactivity of spent fuel and to evaluate the conservatism of the fresh fuel assumption. (author)

  1. Design review report FFTF interim storage cask

    International Nuclear Information System (INIS)

    Scott, P.L.

    1995-01-01

    Final Design Review Report for the FFTF Interim Storage Cask. The Interim Storage Cask (ISC) will be used for long term above ground dry storage of FFTF irradiated fuel in Core Component Containers (CCC)s. The CCC has been designed and will house assemblies that have been sodium washed in the IEM Cell. The Solid Waste Cask (SWC) will transfer a full CCC from the IEM Cell to the RSB Cask Loading Station where the ISC will be located to receive it. Once the loaded ISC has been sealed at the RSB Cask Loading Station, it will be transferred by facility crane to the DSWC Transporter. After the ISC has been transferred to the Interim Storage Area (ISA), which is yet to be designed, a mobile crane will be used to place the ISC in its final storage location

  2. Application of gadolinia credit to cask transportation of BWR-STEP3 SFAs

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Mitsuhashi, Ishi; Ito, Dai-ichiro; Nakamura, Yu

    2003-01-01

    Instead of the fresh-fuel assumption, the application of gadolinia credit to cask transportation of BWR SFAs is studied. Its efficacy for BWR-STEP2 SFAs had already been estimated. This paper reports on the application of gadolinia credit to cask transportation of BWR-STEP3 SFAs. (author)

  3. TITAN Legal Weight Truck cask preliminary design report

    International Nuclear Information System (INIS)

    1990-04-01

    The Preliminary Design of the TITAN Legal Weight Truck (LWT) Cask System and Ancillary Equipment is presented in this document. The scope of the document includes the LWT cask with fuel baskets; impact limiters, and lifting and tiedown features; the cask support system for transportation; intermodal transfer skid; personnel barrier; and cask lifting yoke assembly. 75 figs., 48 tabs

  4. Design assessment for transport and storage casks

    International Nuclear Information System (INIS)

    Janberg, K.; Diersch, R.; Spilker, H.; Dreier, G.

    1995-01-01

    The design assessment concerning the mechanical behaviour of transport and storage casks for radioactive material to fulfil nuclear safety criteria has to be based on two essential considerations: (1) Effective analysis of the stress-strain state of the cask components under both normal operational and test conditions including hypothetical accident scenarios with suitable accepted methods. (2) Economic estimation of the required properties and the structural state of the cask components with sufficient exactness. In an overview of the codes which are available at GNS/GNB for cask impact strength analyses (ANSYS, ADINA, VDI Codes), procedures and aspects of benchmarking and validation of calculation codes are described. The results of experimental full size cask drop test programs (CASTOR, POLLUX) and corresponding pre-test calculational analyses show the suitability of the codes used. The influence of dynamic effects on the mechanical properties of material (ductile cast iron, wood) has been investigated experimentally. By consideration of these dynamic values in strength analyses of casks at impact a good agreement between experimental and calculational results has been achieved. (author)

  5. A validated methodology for evaluating burn-up credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1992-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (USDOE) programme to resolve issues related to the implementation of burn-up credit in spent fuel cask design. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burn-up credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor re-start critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias effective multiplication (k eff ). Implementation issues affecting licensing requirements and operational procedures are discussed briefly. (Author)

  6. Storage/transport cask design and challenges

    International Nuclear Information System (INIS)

    Houston, J.V.; Viebrock, J.M.

    1989-01-01

    The concept of spent-fuel casks that could be used for both storage and for transport has been around for some years, but was only seriously evaluated when utilities started becoming concerned about adequate fuel storage. In the early 1980s, the U.S. Department of Energy proposed to solve the problem with their away-from-reactor storage facility concept. This was superceded by passage of the Nuclear Waste Policy Act of 1982, which directed the development of one or more waste repositories, the first of which was to be in operation by 1998. Delays in this program now indicate an opening data of 2003 or later. This, together with the lack of significant progress on a monitored retrievable storage facility, leaves the utility companies to solve their storage problems individually. One alternative is to use dual-purpose casks. The use of such a cask should eliminate the need to move the cask and fuel back into the spent-fuel pool for transfer to a transport cask. However, a dual-purpose cask must be licensed for use under both 10CFR71 and 10CFR72 of the U.S. Code of Federal Regulations. The purpose of this paper is to examine the differences between the requirements of 10CFR71 and 10CFR72, to note the changes over the past several years in the NRC's interpretation of 10CFR71 requirements, and to review the design modifications that the Nuclear Assurance Corporation (NAC) believes are required to make a licensed storage cask acceptable for transport under 10CFR71

  7. TITAN Legal Weight Truck cask preliminary design report

    International Nuclear Information System (INIS)

    1990-04-01

    The Preliminary Design of the TITAN Legal Weight Truck (LWT) Cask System and Ancillary Equipment is presented in this document. The scope of this document includes the LWT cask with fuel baskets, impact limiters, and lifting and tiedown features; the cask support system for transportation; intermodal transfer skid; personnel barrier; and cask lifting yoke assembly. The results of the tradeoff studies and evaluations that were performed during the preliminary design are presented in Appendix A to this report. 51 figs., 17 tabs

  8. Developing cask designs in the USSR

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To tackle the problem of transporting spent fuel from its VVER-1000s, the Soviet Union has developed two casks - the TK-10 and the TK-13 which are described here. Future developments of these designs may use a silicon-organics based material for the solid neutron shielding and no neutron absorbers in the fuel assembly basket. (author)

  9. Approach for implementing burnup credit in high-capacity truck casks

    International Nuclear Information System (INIS)

    Boshoven, J.; Hopf, J.; Su, S.

    1991-01-01

    General Atomics (GA) will be submitting an application for certification to the US Nuclear Regulatory Commission (NRC) for the GA-4 and GA-9 Casks in 1992. To maintain a capacity of four pressurized-water-reactor (PWR) spent fuel assemblies, the GA-4 Cask uses burnup credit as part of the criticality control for the higher enrichments. Using the US Department of Energy (DOE) Burnup Credit Program as a basis, GA presents here an approach to burnup credit analysis to be included in the Safety Analysis Report for Packaging (SARP). 6 refs., 2 figs., 5 tabs

  10. Impacts of SNF burnup credit on the shipment capability of the GA-4 cask

    International Nuclear Information System (INIS)

    Mobasheran, A.S.; Lake, W.; Richardson, J.

    1996-01-01

    Scoping analyses were performed to determine the impacts of two different levels of burnup credit and two different spent fuel pickup rates on the shipment capability and the minimum fleet size of the GA-4 cask. The analyses involved developing loading curves for the GA-4 cask based on the actinide-only and principal-isotope burnup credit considerations. The analyses also involved examination of the spent nuclear fuel assembly population at nine reactor sites and categorization of the assemblies in accordance with the loading restrictions imposed. The results revealed that for the nine sites considered, depending on the level of burnup credit and the pickup rate assumed, the total savings in shipment and cask fleet costs (1994 dollars) can range from $55 million to $74 million

  11. Sewage Solids Irradiator Transportation System (SSITS) cask: preliminary design description

    International Nuclear Information System (INIS)

    Eakes, R.G.; Kempka, S.N.; Lamoreaux, G.H.; Sutherland, S.H.

    1983-02-01

    The preliminary design of the Sewage Solids Irradiator Transportation System (SSITS) Cask is presented in this document. The SSITS cask is to be used for the transport of radioactive cesium chloride and strontium fluoride capsules which are of use in irradiators or as heat sources. The SSITS cask is approximately 1.4 m in diameter, 1.3 m high, weighs roughly 9 t, provides 33 cm of steel shielding, and can dissipate up to 5.2 kW of decay heat. The cask design criteria are identified and a description of the cask design and operation is provided. Detailed analyses of the design were performed to demonstrate licensability of the cask by the Nuclear Regulatory Commission (NRC). Results of the analyses indicate that the preliminary design is in compliance with the pertinent regulatory requirements for licensing of a radioactive material transportation container

  12. Use of inelastic analysis in cask design

    International Nuclear Information System (INIS)

    Ammerman, Douglas J.; Breivik, Nicole L.

    2000-01-01

    In this paper, the advantages and disadvantages of inelastic analysis are discussed. Example calculations and designs showing the implications and significance of factors affecting inelastic analysis are given. From the results described in this paper it can be seen that inelastic analysis provides an improved method for the design of casks. It can also be seen that additional code and standards work is needed to give designers guidance in the use of inelastic analysis. Development of these codes and standards is an area where there is a definite need for additional work. The authors hope that this paper will help to define the areas where that need is most acute

  13. A Criticality Evaluation of the GBC-32 Dry Storage Cask in PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyoungju; Park, Kwangheon; Hong, Ser Gi [Kyung Hee Univ., Yongin (Korea, Republic of)

    2015-05-15

    The current criticality safety evaluation assumes the only unirradiated fresh fuels with the maximum enrichment in a dry storage cask (DSC) for conservatism without consideration of the depletion of fissile nuclides and the generation of neutron-absorbing fission products. However, the large conservatism leads to the significant increase of the storage casks required. Thus, the application of burnup credit which takes credit for the reduction of reactivity resulted from fuel depletion can increase the capacity in storage casks. On the other hand, the burnup credit application introduces lots of complexity into a criticality safety analysis such as the accurate estimation of the isotopic inventories and the burnup of UNFs and the validation of the criticality calculation. The criticality evaluation with an effect of burnup credit was performed for the DSC of GBC-32 by using SCALE 6.1/STARBUCS. keff values were calculated as a function of burnup and cooling time for four initial enrichments of 2, 3, 4, and 5 wt. % 235U. The values were calculated for the burnup range of 0 to 60,000 MWD/MTU, in increments of 10,000 MWD/MTU, and for five cooling times of 0, 5, 10, 20, and 40 years.

  14. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1991-08-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications

  15. Criticality safety and shielding design issues in the development of a high-capacity cask for truck transport

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1992-01-01

    General Atomics (GA) will be submitting an application for certification to the US Nuclear Regulatory Commission (NRC) for the GA-4 and GA-9 Casks In 1992. The GA-4 and GA-9 Casks are high-capacity legal weight truck casks designed to transport light water reactor spent fuel assemblies. To maintain a capacity of four pressurized-water-reactor (PWR) spent fuel assemblies, the GA-4 Cask uses burnup credit as part of the criticality control for initial enrichments over 3.0 wt% U-235. Using the US Department of Energy (DOE) Burnup Credit Program as a basis, GA has performed burnup credit analysis which is included in the Safety Analysis Report for Packaging (SARP). The GA-9 Cask can meet the criticality safety requirements using the ''fresh fuel'' assumption. Our approach to shielding design is to optimize the GA-4 and GA-9 Cask shielding configurations for minimum weights and maximum payloads. This optimization involves the use of the most effective shielding material, square cross-section geometry with rounded corners and tapered neutron shielding sections in the non-fuel regions

  16. Cask and plug handling system design in port cell

    International Nuclear Information System (INIS)

    Martins, Jean-Pierre; Friconneau, Jean-Pierre; Gabellini, Eros; Keller, Delphine; Levesy, Bruno; Selvi, Anna; Tesini, Alessandro; Utin, Yuri; Wagrez, Julien

    2011-01-01

    The ITER maintenance strategy relies partly on the remote transfer of components from vacuum vessel to hot cells. This function will be fulfilled by transfer cask systems. This paper describes the recent design progresses on interfaces in order to increase components handling feasibility by implementing continuous guiding features that avoid cantilevered loads on the in-cask tractor. Also the design has progressed in order to allow generic docking of the casks. When the cask is connected to the port, it becomes part of the machine first confinement boundary, thus it must provide tightness continuity. This high level safety function was one of the main concerns of a finite element analysis study that has been performed to assess the behavior of the whole system. Numerical analysis methodology and results are explained and shown in order to highlight how it has reinforced the knowledge of the system.

  17. A validated methodology for evaluating burnup credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1991-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the U.S. Department of Energy (DOE) program to resolve issues related to the implementation of burnup credit. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burnup credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor restart critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias in k eff . Implementation issues affecting licensing requirements and operational procedures are discussed briefly. (Author)

  18. A validated methodology for evaluating burnup credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1991-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (DOE) program to resolve issues related to the implementation of burnup credit. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burnup credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various casks geometries, and reactor restart critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias in k eff . Implementation issues affecting licensing requirements and operational procedures are discussed briefly

  19. Conceptual design of the Clinch River Breeder Reactor spent-fuel shipping cask

    International Nuclear Information System (INIS)

    Pope, R.B.; Diggs, J.M.

    1982-04-01

    Details of a baseline conceptual design of a spent fuel shipping cask for the Clinch River Breeder Reactor (CRBR) are presented including an assessment of shielding, structural, thermal, fabrication and cask/plant interfacing problems. A basis for continued cask development and for new technological development is established. Alternates to the baseline design are briefly presented. Estimates of development schedules, cask utilization and cost schedules, and of personnel dose commitments during CRBR in-plant handling of the cask are also presented

  20. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    International Nuclear Information System (INIS)

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs

  1. A CASKCOM: A cask life cycle cost model

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    CASKCOM (cask cost model) is a computerized model which calculates the life cycle costs (LCC) associated with specific transportation cask designs and discounts those costs, if the user so chooses, to a net present value. The model has been used to help analyze and compare the life cycle economics of burnup credit and nonburnup credit cask designs being considered as conditions for a new generation of spent fuel transportation casks. CASKCOM is parametric in the sense that its input data can be easily changed in order to analyze and compare the life cycle cost implications arising from alternative assumptions. The input data themselves are organized into two main groupings. The first grouping comprises a set of data which is independent of cask design. This first grouping does not change from the analysis of one cask design to another. The second grouping of data is specific to each individual cask design. This second grouping thus changes each time a new cask design is analyzed

  2. A validated methodology for evaluating burnup credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1991-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (DOE) program to resolve issues related to the implementation of burnup credit. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burnup credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor restart critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias in k eff . Implementation issues affecting licensing requirements and operational procedures are discussed briefly. 24 refs., 3 tabs

  3. Design of casks: incorporating operational feedback from maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Bimet, F.; Hartenstein, M. [COGEMA Logistics, Saint Quentin (France)

    2004-07-01

    Casks are designed to conform to regulations and to client specifications. Essential areas such as easy operation, low costs of maintenance, low operation and maintenance doses, limited waste, are not explicitly covered. Notwithstanding, COGEMA LOGISTICS uses all feedback available, so that casks are designed to be easy, safe and economical to operate and maintain. Maintenance is an activity where you do spot items that old-time designers could have made better, and things that users should not have done. Thanks to quality assurance, there are a number of data available, waiting to be collected and exploited; they have to be identified, located, retrieved, and analysed. Using information such as wear, damage, use of spare parts, access problems helps to make casks ever better. It leads to more efficient concepts, and to upgrades on existing designs; it also allows to integrate environmental considerations, inter alia in the choice of materials and in maintenance methods. It is necessary for the designer to interact with the users, the cask owners, the maintenance providers, in order to gather all relevant information and events. This is made easier when all these actors are ''under one roof'', or have very close ties. This paper presents COGEMA LOGISTICS methods for collecting and analysing all these experiences waiting to be used. It explains our process for analysing data, preparing yearly reports that are made available to our designers. It describes how each new design is subject to a maintainability study, using this feedback, so that the cask safety is always assured, that radiological doses are kept to a minimum, and that operating and maintenance costs will remain as low as possible.

  4. Design of casks: incorporating operational feedback from maintenance

    International Nuclear Information System (INIS)

    Bimet, F.; Hartenstein, M.

    2004-01-01

    Casks are designed to conform to regulations and to client specifications. Essential areas such as easy operation, low costs of maintenance, low operation and maintenance doses, limited waste, are not explicitly covered. Notwithstanding, COGEMA LOGISTICS uses all feedback available, so that casks are designed to be easy, safe and economical to operate and maintain. Maintenance is an activity where you do spot items that old-time designers could have made better, and things that users should not have done. Thanks to quality assurance, there are a number of data available, waiting to be collected and exploited; they have to be identified, located, retrieved, and analysed. Using information such as wear, damage, use of spare parts, access problems helps to make casks ever better. It leads to more efficient concepts, and to upgrades on existing designs; it also allows to integrate environmental considerations, inter alia in the choice of materials and in maintenance methods. It is necessary for the designer to interact with the users, the cask owners, the maintenance providers, in order to gather all relevant information and events. This is made easier when all these actors are ''under one roof'', or have very close ties. This paper presents COGEMA LOGISTICS methods for collecting and analysing all these experiences waiting to be used. It explains our process for analysing data, preparing yearly reports that are made available to our designers. It describes how each new design is subject to a maintainability study, using this feedback, so that the cask safety is always assured, that radiological doses are kept to a minimum, and that operating and maintenance costs will remain as low as possible

  5. Preliminary design report for the NAC combined transport cask

    International Nuclear Information System (INIS)

    1990-04-01

    Nuclear Assurance Corporation (NAC) is under contract to the United States Department of Energy (DOE) to design, license, develop and test models, and fabricate a prototype cask transportation system for nuclear spent fuel. The design of this combined transport (rail/barge) transportation system has been divided into two phases, a preliminary design phase and a final design phase. This Preliminary Design Package (PDP) describes the NAC Combined Transport Cask (NAC-CTC), the results of work completed during the preliminary design phase and identifies the additional detailed analyses, which will be performed during final design. Preliminary analytical results are presented in the appropriate sections and supplemented by summaries of procedures and assumptions for performing the additional detailed analyses of the final design. 60 refs., 1 fig., 2 tabs

  6. Impact of more conservative cask designs of the CRWMS transportation system

    International Nuclear Information System (INIS)

    Joy, D.S.; Pope, R.B.; Johnson, P.E.

    1993-01-01

    The Office of Civilian Radioactive Waste Management has been working since the mid-1980s to develop a cask fleet, which will include legal weight truck and rail/barge casks for the transport of spent nuclear fuel (SNF) from reactors to Civilian Radioactive Waste Management System SNF receiving sites. The cask designs resulting from this effort have been identified as Initiative I casks. In order to maximize payloads, advanced technologies have been incorporated in the Initiative I cask designs, and some design margins have been reduced. Due to the wide range of the characteristics (age/burnup) of the spent fuel assemblies to be transported in the Initiative I casks, it has become apparent that a significant portion of the shipments of the Initiative I casks could not be loaded to their design capacity. Application of a more conventional cask design philosophy might result in new generation casks that would be easier to license, have more operational flexibility as to the range of age/burnup fuel that could be transported at full load, and be easier to fabricate. In general, these casks would have a lower capacity than the currently proposed Initiative I casks, thereby increasing the transportation impacts and the transportation costs

  7. Fuel transfer cask concept design for reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Ahmad Nabil Ab Rahim; Phongsakorn Prak; Tonny Lanyau; Mohd Fazli Zakaria

    2010-01-01

    Reactor Triga PUSPATI (RTP) has been operated since 1982 till now. For such long period, the organization feels the need to upgrade the power from 1 MW to 3 MW which involved changing new fuels. Spent fuels will be stored in a Spent Fuel Pool. The process of transferring spent fuels into Spent Fuels Pool required a fuel transfer cask. This paper discussed the design concept for the fuel transfer cast which is essential equipment for reactor upgrading mission. (author)

  8. Design of double containment canister cask storage system

    International Nuclear Information System (INIS)

    Asami, M.; Matsumoto, T.; Oohama, T.; Kuriyama, K.; Kawakami, K.

    2004-01-01

    Spent fuels discharged from Japanese LWR will be stored as recycled-fuel-resources in interim storage facilities. The concrete cask storage system is one of important forms for the spent fuel interim storage. In Japan, the interim storage facility will be located near the coast, therefore it is important to prevent SCC (Stress Corrosion Cracking) caused by sea salt particles and to assure the containment integrity of the canister which contains spent fuels. KEPCO, NFT and OCL have designed the double containment canister cask storage system that can assure the long-term containment integrity and monitor the containment performance without storage capacity decrease. Major features of the combined canister cask system are shown as follows: This system can survey containment integrity of dual canisters by monitoring the pressure of the gap between canisters. The primary canister has dual lids sealed by welding. The secondary canister has single lid tightened by bolts and sealed by metallic gaskets. The primary canister is contained in the transport cask during transportation, and the gap between the primary canister and the transport cask is filled with He gas. Under storage condition in the concrete cask, the primary canister is contained in the secondary canister, and the gap between these canisters is filled with helium gas. Hence this system can prevent the primary canister to contact sea salt particle in the air and from SCC. Decrease of cooling performance because of the double canister is compensated by fins fitted on the secondary canister surface. Then, this system can prevent the decrease of storage capacity determined by the fuel temperature limit. This system can assure that the primary canister will keep intact for long term storage. Therefore, in the case of pressure down of the gap between canisters, it can be considered that the secondary canister containment is damaged, and the primary canister will be transferred to another secondary canister at the

  9. Design analysis report for the TN-WHC cask and transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Brisbin, S.A., Fluor Daniel Hanford

    1997-02-13

    This document presents the evaluation of the Spent Nuclear Fuel Cask and Transportation System. The system design was developed by Transnuclear, Inc. and its team members NAC International, Nelson Manufacturing, Precision Components Corporation, and Numatec, Inc. The cask is designated the TN-WHC cask. This report describes the design features and presents preliminary analyses performed to size critical dimensions of the system while meeting the requirements of the performance specification.

  10. A relative risk comparison of criticality control strategies based on fresh fuel and burnup credit design bases

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1989-01-01

    The fresh fuel design basis provides some margin of safety, i.e., criticality safety is almost independent of loading operations if fuel designs do not change significantly over the next 40 years. However, the design basis enrichment for future nuclear fuel will most likely vary with time. As a result, it cannot be guaranteed that the perceived passivity of the concept will be maintained over the life cycle of a future cask system. Several options are available to ensure that the reliability of a burnup credit system is comparable to or greater than that of a system based on a fresh fuel assumption. Criticality safety and control reliability could increase with burnup credit implementation. The safety of a burnup credit system could be comparable to that for a system based on the fresh fuel assumption. A burnup credit philosophy could be implemented without any cost-benefit tradeoff. A burnup credit design basis could result in a significant reduction in total system risk as well as economic benefits. These reductions occur primarily as a result of increased cask capacities and, thus, fewer shipments. Fewer shipments also result in fewer operations over the useful life of a cask, and opportunities for error decrease. The system concept can be designed such that only benefits occur. These benefits could include enhanced criticality safety and the overall reliability of cask operations, as well as system risk and economic benefits. Thus, burnup credit should be available as an alternative for the criticality design of spent fuel shipping casks

  11. Human factors engineering applications to the cask design activities of the Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Lake, W.H.; Peck, M. III

    1993-01-01

    The use of human factors engineering (HFE) in the design and use of spent fuel casks being developed for the Department of Energy's Civilian Radioactive Waste Management Program is addressed. The safety functions of cask systems are presented as background for HFE considerations. Because spent fuel casks are passive safety devices they could be subject to latent system failures due to human error. It is concluded that HFE should focus on operations and verifications tests, but should begin, to the extent possible, at the beginning of cask design. Use of HFE during design could serve to eliminate or preclude opportunity for human error

  12. Design of a transportation cask for irradiated CANDU fuel

    International Nuclear Information System (INIS)

    Nash, K.E.; Gavin, M.E.

    1983-01-01

    A major step in the development of a large-scale transportation system for irradiated CANDU fuel is being made by Ontario Hydro in the design and construction of a demonstration cask by 1988/89. The system being designed is based on dry transportation with the eventual fully developed system providing for dry fuel loading and unloading. Research carried out to date has demonstrated that it is possible to transport irradiated CANDU fuel in a operationally efficient and simple manner without any damage which would prejudice subsequent automated fuel handling

  13. CERCA 01: a new safe multi-design MTR transport cask

    Energy Technology Data Exchange (ETDEWEB)

    Faure-Geors, B.S. [Framatome ANP Nuclear Fuel, CERCA, F-26104 Romans (France); Doucet, M.E. [Framatome ANP Nuclear Fuel, F-69006 Lyon (France)

    2001-07-01

    CERCA, a subsidiary company of FRAMATOME ANP, manufactures fuel for research reactors all over the world. To comply with customer requirements, fabrication of material testing reactors elements is a mixed of various parameters. Worldwide transportation of elements requires a flexible cask, which accommodates different designs and meets international transportation regulations. To be able to deliver most of fuel elements, and to cope with non-validation of casks used previously, CERCA decided to design its own cask. All regulatory tests were successfully performed. They completely validated and qualified the safety of this new cask concept. No matter the accidental conditions are, a 5 % {delta}K subcriticality margin is always met.

  14. Application of the ASME code in the design of the GA-4 and GA-9 casks

    International Nuclear Information System (INIS)

    Mings, W.J.; Koploy, M.A.

    1992-01-01

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption

  15. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    Energy Technology Data Exchange (ETDEWEB)

    Muhamad, Shalina Sheik [Prototype and Plant Development Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor (Malaysia); Hamzah, Mohd Arif Arif B. [Prototype and Plant Development Center, Technical Support Division Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor (Malaysia)

    2014-02-12

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP)

  16. Packaging design criteria for the MCO cask

    International Nuclear Information System (INIS)

    Clements, M.D.

    1996-01-01

    Approximately 2,100 metric tons of unprocessed, irradiated nuclear fuel elements are presently stored in the K Basins. To permit cleanup of the K Basins and fuel conditioning, the fuel will be transported from the K Basins to a Canister Storage Building in the 200 East Area. The purpose of this packaging design criteria is to provide criteria for the design, fabrication, and use of a packaging system to transport the large quantities of irradiated nuclear fuel elements positioned within Multiple Canister Overpacks

  17. Packaging design criteria for the MCO cask

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1996-01-01

    Approximately 2,100 metric tons of unprocessed, irradiated nuclear fuel elements are presently stored in the K Basins (including possibly 700 additional elements from PUREX, N Reactor, and 327 Laboratory). The basin water, particularly in the K East Basin, contains significant quantities of dissolved nuclear isotopes and radioactive fuel corrosion particles. To permit cleanup of the K Basins and fuel conditioning, the fuel will be transported from the 100 K Area to a Canister Storage Building (CSB) in the 200 East area. In order to initiate K Basin cleanup on schedule, the two-year fuel-shipping campaign must begin by December 1997. The purpose of this packaging design criteria is to provide criteria for the design, fabrication, and use of a packaging system to transport the large quantities of irradiated nuclear fuel elements positioned within Multiple Canister Overpacks

  18. Packaging Design Criteria for the MCO Cask

    International Nuclear Information System (INIS)

    FLANAGAN, B.D.

    2000-01-01

    Approximately 2,100 metric tons of unprocessed, irradiated, nuclear fuel elements are presently stored in the K Basins (including approximately 700 additional elements from the Plutonium-Uranium Extraction Plant, N Reactor, and 327 Laboratory). To permit cleanup of the K Basins and fuel conditioning, the fuel will be transported from the 100 K Area to a Canister Storage Building (CSB) in the 200 East Area. The purpose of this packaging design criteria is to provide criteria for the design, fabrication, and use of a packaging system to transport the large quantities of irradiated nuclear fuel elements positioned within Multi-canister Overpacks. Concurrent with the K Basin cleanup, 72 Shippingport Pressurized Water Reactor Core 2 fuel assemblies will be transported from T Plant to the CSB to provide space at T Plant for K Basin sludge canisters

  19. Man/machine interface for a nuclear cask remote handling control station: system design requirements

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.; Draper, J.V.

    1984-01-01

    Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables

  20. Transfer cask system design activities: status and plan

    International Nuclear Information System (INIS)

    Locke, D.; Gutierrez, C. Gonzalez; Damiani, C.; Gracia, V.; Friconneau, J.-P.; Martins, J.-P.; Blight, J.

    2011-01-01

    The ITER Cask and Plug Remote Handling System (CPRHS), a.k.a. Transfer Cask System, is a critical element of the ITER Remote Maintenance System (IRMS) devoted to transportation of components between the Tokamak building and Hot Cell. Due to the necessary confinement of contaminated components the CPRHS is defined as Safety Importance Class 1 (SIC-1) plus the mobile nature of the CPRHS brings with it a significant number of complex interfaces with other ITER sub-systems. With a total CPRHS fleet in excess of 20 units, including seven typologies, the management of design and procurement needs to be carefully planned and implemented to ensure compliance with ITER's requirements. Fusion for Energy (F4E) and its beneficiaries/contractors are currently working under ITER Task Agreements (ITAs) on the conceptual design of the CPRHS and, following the signing of the Procurement Arrangement (PA) in mid 2012, will take responsibility for the entire CPRHS fleet. F4E must, therefore, develop a robust strategy to meet the needs of both ITER machine assembly (for which a number of CPRHS units will be utilised) and the remote maintenance of ITER. Within this context this paper will present the status of the current CPRHS design activities, highlight some of the significant issues which will be faced during procurement and present the overall strategy which is being implemented by F4E in order to meet these challenging objectives.

  1. Development of design and safety analysis supporting system for casks

    International Nuclear Information System (INIS)

    Ohsono, Katsunari; Higashino, Akira; Endoh, Shuji

    1993-01-01

    Mitsubishi heavy Industries has developed a design and safety analysis supporting system 'CADDIE' (Cask Computer Aided Design, Drawing and Integrated Evaluation System), with the following objectives: (1) Enhancement of efficiency of the design and safety analysis (2) Further advancement of design quality (3) Response to the diversification of design requirements. The features of this system are as follows: (1) The analysis model data common to analyses is established, and it is prepared automatically from the model made by CAD. (2) The input data for the analysis code is available by simple operation of conversation type from the analysis model data. (3) The analysis results are drawn out in diagrams by output generator, so as to facilitate easy observation. (4) The data of material properties, fuel assembly data, etc. required for the analyses are made available as a data base. (J.P.N.)

  2. A revision of the cask designers guide for the '90s

    International Nuclear Information System (INIS)

    Shappert, L.B.; Green, V.M.

    1993-01-01

    DOE has requested that ORNL initiate a revision to NSIC-68, A Guide for the Design, Fabrication, and Operation of Shipping Casks for Nuclear Applications, commonly called the Cask Designers Guide. This revision, called the Cask Handbook, has two goals: (1) to improve the quality of SARPs that are submitted to DOE, and (2) to provide up-to-date information on the design of spent fuel shipping casks, including information on fabrication, quality assurance, SARP preparation, certification, use, maintenance, and other general topics. The revision provides guidance that will help engineers through the cask licensing process, in part, by providing as much regulator-approved data and 'lessons-learned' information as possible. The effort is sponsored by DOE-Environmental, Safety and Health (EH), guided by Transportation Technology staff members at ORNL, and the information is being generated by experts in the various technical fields. (J.P.N.)

  3. Developments in shielding and criticality assessment for cask design

    International Nuclear Information System (INIS)

    Watmough, M.H.; Cooper, A.J.; Croxford, R.W.

    1993-01-01

    This paper presents recent highlights from the shielding and criticality methods development programme that are of relevance to cask design. Specifically, the following points emerge: 1) the preparation of a licence application based upon UK methods and data used in a standardized fissile depletion and plutonium production model has been completed; 2) the assumptions used in the modelling of granules of broken fuel within the transport package following a postulated impact accident have been revised thereby allowing less pessimistic assessments to be performed; 3) enhancements are being made to the software used for shielding and criticality analysis enabling a more cost effective design service to be provided. These ongoing developments clearly show the activity to extend the scope of assessments while increasing the physical realism of the models. Through these developments BNFL continues to offer a comprehensive and cost effective shielding and criticality analysis service as part of its worldwide fuel transport business. (J.P.N.)

  4. FUEL CASK IMPACT LIMITER VULNERABILITIES

    International Nuclear Information System (INIS)

    Leduc, D.; England, J.; Rothermel, R.

    2009-01-01

    Cylindrical fuel casks often have impact limiters surrounding just the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and maintaining lower peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) impacts. Large casks are often certified by analysis only because of the costs associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 Spent Fuel Containment Cask found problems with the design of the impact limiter attachment system. Assumptions in the original Safety Analysis for Packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs

  5. A truck cask design for shipping defense high-level waste

    International Nuclear Information System (INIS)

    Madsen, M.M.; Zimmer, A.

    1985-01-01

    The Defense High-Level Waste (DHLW) cask is a Type B packaging currently under development by the U.S. Department of Energy (DOE). This truck cask has been designed to initially transport borosilicate glass waste from the Defense Waste Processing Facility (DWPF) to the Waste Isolation Pilot Plant (WIPP). Specific program activities include designing, testing, certifying, and fabricating a prototype legal-weight truck cask system. The design includes such state-of-the-art features as integral impact limiters and remote handling features. A replaceable shielding liner provides the flexibility for shipping a wide range of waste types and activity levels

  6. Conceptual design and cost estimation of dry cask storage facility for spent fuel

    International Nuclear Information System (INIS)

    Maki, Yasuro; Hironaga, Michihiko; Kitano, Koichi; Shidahara, Isao; Shiomi, Satoshi; Ohnuma, Hiroshi; Saegusa, Toshiari

    1985-01-01

    In order to propose an optimum storage method of spent fuel, studies on the technical and economical evaluation of various storage methods have been carried out. This report is one of the results of the study and deals with storage facility of dry cask storage. The basic condition of this work conforms to ''Basic Condition for Spent Fuel Storage'' prepared by Project Group of Spent Fuel Dry Storage at July 1984. Concerning the structural system of cask storage facilities, trench structure system and concrete silo system are selected for storage at reactor (AR), and a reinforced concrete structure of simple design and a structure with membrance roof are selected for away from reactor (AFR) storage. The basic thinking of this selection are (1) cask is put charge of safety against to radioactivity and (2) storage facility is simplified. Conceptual designs are made for the selected storage facilities according to the basic condition. Attached facilities of storage yard structure (these are cask handling facility, cask supervising facility, cask maintenance facility, radioactivity control facility, damaged fuel inspection and repack facility, waste management facility) are also designed. Cost estimation of cask storage facility are made on the basis of the conceptual design. (author)

  7. Application of advanced handling techniques to transportation cask design

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1992-01-01

    Sandia National Laboratories supports the US Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) applying technology to the safe transport of nuclear waste. Part of that development effort includes investigation of advanced handling technologies for automation of cask operations at nuclear waste receiving facilities. Although low radiation levels are expected near transport cask surfaces, cumulative occupational exposure at a receiving facility can be significant. Remote automated cask handling has the potential to reduce both the occupational exposure and the time necessary to process a cask. Thus, automated handling is consistent with DOE efforts to reduce the lifecycle costs of the waste disposal system and to maintain public and occupational radiological risks as low as reasonably achievable. This paper describes the development of advanced handling laboratory mock-ups and demonstrations for spent fuel casks. Utilizing the control enhancements described below, demonstrations have been carried out including cask location and identification, contact and non-contact surveys, impact limiter removal, tiedown release, uprighting, swing-free movement, gas sampling, and lid removal operations. Manually controlled movement around a cask under off-normal conditions has also been demonstrated

  8. Optimization strategies for cask design and container loading in long term spent fuel storage

    International Nuclear Information System (INIS)

    2006-12-01

    As delays are incurred in implementing reprocessing and in planning for geologic repositories, storage of increasing quantities of spent fuel for extended durations is becoming a growing reality. Accordingly, effective management of spent fuel continues to be a priority topic. In response, the IAEA has organized a series of meetings to identify cask loading optimisation issues in preparation for a technical publication on Optimization Strategies for Cask/Container Loading in Long Term Spent Fuel Storage. This publication outlines the optimisation process for cask design, licensing and utilization, describing three principal groups of optimization activities in terms of relevant technical considerations such as criticality, shielding, structural design, operations, maintenance and retrievability. The optimization process for cask design, licensing, and utilization is outlined. The general objectives for the design of storage casks, including storage casks that are intended to be transportable, are summarized. The nature of optimization within the design process is described. The typical regulatory and licensing process is outlined, focusing on the roles of safety regulations, the regulator, and the designer/applicant in the optimization process. Based on the foregoing, a description of the three principal groups of optimization activities is provided. The subsequent chapters of this document then describe the specific optimization activities within these three activity groups, in each of the several design disciplines

  9. DESIGN OF A CONCRETE SLAB FOR STORAGE OF SNF AND HLW CASKS

    International Nuclear Information System (INIS)

    J. Bisset

    2005-01-01

    This calculation documents the design of the Spent Nuclear Fuel (SNF) and High-Level Waste (HLW) Cask storage slab for the Aging Area. The design is based on the weights of casks that may be stored on the slab, the weights of vehicles that may be used to move the casks, and the layout shown on the sketch for a 1000 Metric Ton of Heavy Metal (MTHM) storage pad on Attachment 2, Sht.1 of the calculation 170-C0C-C000-00100-000-00A (BSC 2004a). The analytical model used herein is based on the storage area for 8 vertical casks. To simplify the model, the storage area of the horizontal concrete modules and their related shield walls is not included. The heavy weights of the vertical storage casks and the tensile forces due to pullout at the anchorages will produce design moments and shear forces that will envelope those that would occur in the storage area of the horizontal modules. The design loadings will also include snow and live loads. In addition, the design will also reflect pertinent geotechnical data. This calculation will document the preliminary thickness and general reinforcing steel requirements for the slab. This calculation also documents the initial design of the cask anchorage. Other slab details are not developed in this calculation. They will be developed during the final design process. The calculation also does not include the evaluation of the effects of cask drop loads. These will be evaluated in this or another calculation when the exact cask geometry is known

  10. CASTORR 1000/19: Development and Design of a New Transport and Storage Cask

    International Nuclear Information System (INIS)

    Funke, Th.; Henig, Ch.

    2008-01-01

    The design of the new transport and storage cask type CASTOR R 1000/19 is presented in this paper. This cask was developed for the dry interim storage of spent VVER1000 fuel assemblies concerning the requirements of the Temelin NPP, Czech Republic. While the cask body is based on well-known ductile cast iron cask types with in-wall moderator, the basket follows a new concept. The basket is able to carry 19 fuel assemblies with a total decay heat power up to approximately 17 kW. The cask fulfils all requirements for a type B(U)F package. The main nuclear, mechanical and thermal properties of the cask are illustrated for normal conditions and for hypothetical accident scenarios during transport and storage. The main steps of the handling procedure such as loading the cask, drying the cavity and mounting the double lid system for tightness during interim storage are shown in principle. For this handling, boundary conditions at the NPP site such as dimensions, weight and the loading machine interface are considered. (authors)

  11. Impacts of the use of spent nuclear fuel burnup credit on DOE advanced technology legal weight truck cask GA-4 fleet size

    International Nuclear Information System (INIS)

    Mobasheran, A.S.; Boshoven, J.; Lake, B.

    1995-01-01

    The object of this paper is to study the impact of full and partial spent fuel burnup credit on the capacity of the Legal Weight Truck Spent Fuel Shipping Cask (GA-4) and to determine the numbers of additional spent fuel assemblies which could be accommodated as a result. The scope of the study comprised performing nuclear criticality safety scoping calculations using the SCALE-PC software package and the 1993 spent fuel database to determine logistics for number of spent fuel assemblies to be shipped. The results of the study indicate that more capacity than 2 or 3 pressurized water reactor assemblies could be gained for GA-4 casks when burnup credit is considered. Reduction in GA-4 fleet size and number of shipments are expected to result from the acceptance of spent fuel burnup credit

  12. Nuclear criticality safety studies applicable to spent fuel shipping cask designs and spent fuel storage

    International Nuclear Information System (INIS)

    Tang, J.S.

    1980-11-01

    Criticality analyses of water-moderated and reflected arrays of LWR fresh and spent fuel assemblies were carried out in this study. The calculated results indicate that using the assumption of fresh fuel loading in spent fuel shipping cask design leads to assembly spacings which are about twice the spacings of spent fuel loadings. Some shipping cask walls of composite lead and water are more effective neutron reflectors than water of 30.48 cm

  13. CASKS (Computer Analysis of Storage casKS): A microcomputer based analysis system for storage cask design review. User's manual to Version 1b (including program reference)

    International Nuclear Information System (INIS)

    Chen, T.F.; Gerhard, M.A.; Trummer, D.J.; Johnson, G.L.; Mok, G.C.

    1995-02-01

    CASKS (Computer Analysis of Storage casKS) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent-fuel storage casks. The bulk of the complete program and this user's manual are based upon the SCANS (Shipping Cask ANalysis System) program previously developed at LLNL. A number of enhancements and improvements were added to the original SCANS program to meet requirements unique to storage casks. CASKS is an easy-to-use system that calculates global response of storage casks to impact loads, pressure loads and thermal conditions. This provides reviewers with a tool for an independent check on analyses submitted by licensees. CASKS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests

  14. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  15. Activation analysis of dual-purpose metal cask after the end of design lifetime for decommission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Man; Ku, Ji Young; Dho Ho Seog; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Ko, Jae Hun [Korea Nuclear Engineering and Service Co., Daejeon (Korea, Republic of)

    2016-12-15

    The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5·ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, {sup 60}Co had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as {sup 28}Al and {sup 24}Na had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that

  16. Effectiveness of shield materials in the design of the PFBR irradiated fuel subassembly shipping cask

    International Nuclear Information System (INIS)

    Radhakrishnan, G.

    2003-01-01

    Fuel subassemblies are irradiated inside the reactor core till they achieve the required burn up and after that they are cooled to permissible decay power level in in-vessel and ex-vessel storage places. Subsequently they are transported to reprocessing plants by means of shipping casks. Shield for the shipping cask has to be designed such a way that it has to comply with the ICRP recommended dose levels of less than 2 mSv/h on contact at the outer surface of the cask and less than 100 mSv/h at 1 m distance from the outer surface of the cask. In this paper, shield design of a typical PFBR irradiated fuel subassembly, which can transport three subassemblies at a time, is narrated. Considering the neutron and fission product and induced gamma rays emitted by typical PFBR irradiated core central subassembly subjected to a maximum burn up, as the source term shield design optimizations have been done. One-dimensional discrete ordinates transport theory computer code ANISN and point kernel computer code QAD-CGGP have been used in complement to carry out the shield design optimizations. Cast-iron, carbon steel, stainless steel 304 and lead and permali have been considered for shield materials. Shield requirements on top, bottom and along the axial height of the shipping cask have also been estimated. (author)

  17. ITER Upper Port Plug handling cask system assessment and design proposals

    NARCIS (Netherlands)

    Pustjens, J.; Friconneau, J.P.; Heemskerk, C.J.M.; Koning, J.F.; Martins, J.P.; Rosielle, P.C.J.N.; Steinbuch, M.

    2011-01-01

    The current design of the ITER cask for Upper Port Plugs has been evaluated. Careful reduction of the number of mechanical degrees of freedom is an opportunity to relax the tolerances in the design, resulting in cost reduction and reliability increase. A new kinematical design for the tractor module

  18. ITER Upper Port Plug Handling Cask System assessment and design proposals

    NARCIS (Netherlands)

    Pustjens, J.; Friconneau, J.P.; Heemskerk, C.J.M.; Koning, J.F.; Martins, J.P.; Rosielle, P.C.J.N.; Steinbuch, M.

    2010-01-01

    The current design of the ITER Cask for Upper Port Plugs (UPPs) has been evaluated. Careful reduction of the number of mechanical Degrees of Freedom is an opportunity to relax the tolerances in the design, resulting in cost reduction and reliability increase. A new kinematical design for the tractor

  19. Design Of Dry Cask Storage For Serpong Multipurpose Reactor Spent Nuclear Fuel

    Directory of Open Access Journals (Sweden)

    Dyah Sulistyani Rahayu

    2018-03-01

    Full Text Available DESIGN OF DRY CASK STORAGE FOR SERPONG MULTI PURPOSE REACTOR SPENT NUCLEAR FUEL. The spent nuclear fuel (SNF from Serpong Multipurpose Reactor, after 100 days storing in the reactor pond, is transferred to water pool interim storage for spent fuel (ISFSF. At present there are a remaining of 245 elements of SNF on the ISSF,198 element of which have been re-exported to the USA. The dry-cask storage allows the SNF, which has already been cooled in the ISSF, to lower its radiation exposure and heat decayat a very low level. Design of the dry cask storage for SNF has been done. Dual purpose of unventilated vertical dry cask was selected among other choices of metal cask, horizontal concrete modules, and modular vaults by taking into account of technical and economical advantages. The designed structure of cask consists of SNF rack canister, inner steel liner, concrete shielding of cask, and outer steel liner. To avoid bimetallic corrosion, the construction material for canister and inner steel liner follows the same material construction of fuel cladding, i.e. the alloy of AlMg2. The construction material of outer steel liner is copper to facilitate the heat transfer from the cask to the atmosphere. The total decay heat is transferred from SNF elements bundle to the atmosphere by a serial of heat transfer resistance for canister wall, inner steel liner, concrete shielding, and outer steel liner respectedly. The rack canister optimum capacity of 34 fuel elements was designed by geometric similarity method basedon SNF position arrangement of 7 x 6 triangular pitch array of fuel elements for prohibiting criticality by spontaneous neutron. The SNF elements are stored vertically on the rack canister.  The thickness of concrete wall shielding was calculated by trial and error to give air temperature of 30 oC and radiation dose on the wall surface of outer liner of 200 mrem/h. The SNF elements bundles originate from the existing racks of wet storage, i

  20. Conceptual design report for a remotely operated cask handling system

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to the problem of lowering operator cumulative dose and increasing throughput during cask handling operations in proposed nuclear waste container shipping and receiving facilities. The functional criteria for each subsystem are defined, and candidate systems are described. The report also contains a generic description of a waste receiving facility, to show possible deployment configurations for the equipment

  1. Welding issues associated with design, fabrication and loading of spent fuel storage casks

    International Nuclear Information System (INIS)

    Battige, C.K. Jr.; Howe, A.G.; Sturz, F.C.

    1999-01-01

    The U.S. Nuclear Regulatory Commission (NRC) has observed a number of welding issues associated with design, fabrication, and loading of spent fuel storage casks. These emerging welding-related issues involving a certain dry cask storage system have challenged the safety basis for which NRC approved the casks for storage of spent nuclear fuel. During closure welding, problems have been encountered with cracking. Although the cracks have been attributed to several causes including material suitability, joint restraint and residual stresses, NRC believes hydrogen-induced cracking is the most likely explanation. In light of these cracking events and the potential for flaws in any welding process, NRC sought verification of the corrective actions and the integrity of the lid closure welds before allowing additional casks to be loaded. As a result, the affected utility companies modified the closure welding procedures and developed an acceptable ultrasonic inspection (UT) method. In addition, the casks already loaded at three power reactor sites will require additional non-destructive examinations (NDE) to determine their suitability for continued use. NRC plans to evaluate the generic implications of this issue for current designs and for those in the licensing process. (author)

  2. Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, Mahdi [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Kamali, Jamshid [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of)

    2016-12-15

    Dual purpose cask technology is one of the most prominent options for interim storage of spent fuels following their removal from reactors. Criticality safety of the spent fuel assemblies are ensured by design of the basket within these casks. In this study, a set of criticality design calculations of a dual purpose cask for 12 VVER 1000 spent fuel assemblies of Bushehr nuclear power plant were carried out. The basket material of borated stainless steel with 0.5 to 2.5 wt% of boron and Boral (Al-B{sub 4}C) with 1.5 to 40 wt% of boron carbide, were investigated and the minimum required receptacle pitch of the basket was determined. Using the calculated receptacle pitch of the basket, the minimum required diameter of the cavity could be established.

  3. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  4. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    International Nuclear Information System (INIS)

    Barkauskas, V.; Plukiene, R.; Plukis, A.

    2016-01-01

    Highlights: • RBMK-1500 fuel burn-up impact on k_e_f_f in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k_e_f_f in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k_e_f_f) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality safety.

  5. Validation of a fracture mechanics approach to nuclear transportation cask design through a drop test program

    International Nuclear Information System (INIS)

    Sorenson, K.B.

    1986-01-01

    Sandia National Laboratories (SNL), under contract to the Department of Energy, is conducting a research program to develop and validate a fracture mechanics approach to cask design. A series of drop tests of a transportation cask is planned for the summer of 1986 as the method for benchmarking and, thereby, validating the fracture mechanics approach. This paper presents the drop test plan and background leading to the development of the test plan including structural analyses, material characterization, and non-destructive evaluation (NDE) techniques necessary for defining the test plan properly

  6. A revision of the Cask Designers Guide for the '90s

    International Nuclear Information System (INIS)

    Shappert, L.B.; Green, V.M.

    1992-01-01

    The report A Guide for the Design Fabrication, and Operation of Shipping Casks for Nuclear Applications, ORNL-NSIC-68, commonly called the Cask Designers Guide, is being revised at the request of the Transportation and Packaging Safety Division of the Department of Energy (DOE). The new document will be called the Packaging Handbook. The Cask Designers Guide was published in 1970 during the period when many radioactive materials packagings were being developed and many technical studies applicable to these packagings were being performed. Since that period, many improvements in packaging design have appeared, designers have improved their calculational techniques, and much effort has gone into applying Quality Assurance (QA) principles to cask development Materials, and their limitations, have surfaced as a very important consideration in the licensing process. While the Packaging Handbook considers all Type B packages, most of the authors' experience lies in the technical areas found in the licensing of spent nuclear fuel (SNF) packagings and this is reflected in the document

  7. A relative risk comparison of criticality control strategies based on fresh fuel and burnup credit design bases

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1988-01-01

    The proposed use of burnup credit in spent fuel cask design and operation represents a departure from current regulatory practice, and creates technical issues that ultimately must be resolved for the concept to be implemented. Issues related to specific technical considerations can generally be resolved conclusively. However, an underlying perception may still exist that the use of burnup credit compromises criticality safety. In practice, individual casks are designed to satisfy regulatory requirements in a generally conservative manner. The designer's application of the regulatory requirements involves some engineering judgement, as does the regulator's implementation of them. This does not have an adverse effect on safety, but does make it difficult to objectively compare new or alternative designs and/or operating approaches. 5 refs., 7 figs., 2 tabs

  8. Cask technology program activities

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.

    1986-01-01

    The civilian waste cask technology program consists of five major activities: (1) technical issue resolution directed toward NRC and DOT concerns, (2) system concept evaluations to determine the benefits of proposals made to DOE for transportation improvements, (3) applied technology and technical data tasks that provide independent information and enhance technology transfer between cask contractors, (4) standards development and code benchmarking that provide a service to DOE and cask contractors, and (5) testing to ensure the adequacy of cask designs. The program addresses broad issues that affect several cask development contractors and areas where independent technical input could enhance the Office of Civilian Radioactive Waste Management goals

  9. Cask technology program activities

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.

    1986-01-01

    The civilian waste cask technology program consists of five major activities: Technical issue resolution directed toward NRC and DOT concerns; system concept evaluations to determine the benefits of proposals made to DOE for transportation improvements; applied technology and technical data tasks that provide independent information and enhance technology transfer between cask contractors; standards development and code benchmarking that provide a service to DOE and cask contractors; and testing to ensure the adequacy of cask designs. This paper addresses broad issues that affect several cask development contractors and areas where independent technical input could enhance OCRWM goals

  10. A new type-B cask design for transporting 252Cf

    International Nuclear Information System (INIS)

    Simmons, C.M.

    2000-01-01

    A project to design, certify, and build a new US Department of Energy (DOE) Type B container for transporting >5 mg of 252 Cf is more than halfway to completion. This project was necessitated by the fact that the existing Oak Ridge National Laboratory (ORNL) Type B containers were designed and built many years ago and thus do not have the records and supporting data that current regulations require. Once the new cask is available, it will replace the existing Type B containers. The cask design is driven by the unique properties of 252 Cf, which is a very intense spontaneous fission neutron source and necessitates a large amount of neutron shielding. The cask is designed to contain up to 60 mg of 252 Cf in the form of californium oxide or californium oxysulfate, in pellet, wire, or sintered material forms that are sealed inside small special-form capsules. The new cask will be capable of all modes of transport (land, sea, and air). The ORNL team, composed of technical and purchasing personnel and using rigorous selection criteria, chose NAC, International (NAC), as the subcontractor for the project. In January 1997, NAC started work on developing the conceptual design and performing the analyses. The original design concept was for a tungsten alloy gamma shield surrounded by two concentric shells of NS-4-FR neutron shield material. A visit to US Nuclear Regulatory Commission (NRC) regulators in November 1997 to present the conceptual design for their comments resulted in a design modification when the question of potential straight-line cracking in the NS-4-FR neutron shield material arose. NAC's modified design includes offset, wedgelike segments of the neutron shield material. The new geometry eliminates concerns about straight-line cracking but increases the weight of the packaging and makes the fabrication more complex. NAC has now completed the cask design and performed the analyses (shielding, structural, thermal, etc.) necessary to certify the cask. The cask

  11. Investigation of burnup credit allowance in the criticality safety evaluation of spent fuel casks

    International Nuclear Information System (INIS)

    Lake, W.H.; Sanders, T.L.; Parks, C.V.

    1990-01-01

    This presentation discusses work in progress on criticality analysis verification for designs which take account of the burnup and age of transported fuel. The work includes verification of cross section data, correlation with experiments, proper extension of the methods into regimes not covered by experiments, establishing adequate reactivity margins, and complete documentation of the project. Recommendations for safe operational procedures are included, as well as a discussion of the economic and safety benefits of such designs

  12. Design of dry cask storage for Serpong multi purpose reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Dyah Sulistyani Rahayu; Yuli Purwanto; Zainus Salimin

    2018-01-01

    The spent nuclear fuel (SNF) from Serpong Multipurpose Reactor, after 100 days storing in the reactor pond, is transferred to water pool interim storage for spent fuel (ISFSF). At present there are a remaining of 245 elements of SNF on the ISSF, 198 element of which have been re-exported to the USA. The dry-cask storage allows the SNF, which has already been cooled in the ISSF, to lower its radiation exposure and heat decay at a very low level. Design of the dry cask storage for SNF has been done. Dual purpose of unventilated vertical dry cask was selected among other choices of metal cask, horizontal concrete modules, and modular vaults by taking into account of technical and economical advantages. The designed structure of cask consists of SNF rack canister, inner steel liner, concrete shielding of cask, and outer steel liner. To avoid bimetallic corrosion, the construction material for canister and inner steel liner follows the same material construction of fuel cladding, i.e. the alloy of AlMg 2 . The construction material of outer steel liner is copper to facilitate the heat transfer from the cask to the atmosphere. The total decay heat is transferred from SNF elements bundle to the atmosphere by a serial of heat transfer resistance for canister wall, inner steel liner, concrete shielding, and outer steel liner respectedly. The rack canister optimum capacity of 34 fuel elements was designed by geometric similarity method based on SNF position arrangement of 7 x 6 triangular pitch array of fuel elements for prohibiting criticality by spontaneous neutron. The SNF elements are stored vertically on the rack canister. The thickness of concrete wall shielding was calculated by trial and error to give air temperature of 30 °C and radiation dose on the wall surface of outer liner of 200 mrem/h. The SNF elements bundles originate from the existing racks of wet storage, i.e. rack canister no 3, 8 and 10. The value of I 0 from the rack no 3, 8 and 10 are 434.307; 446

  13. Conceptual Design Report Cask Loadout Sys and Cask Drop Redesign for the Immersion Pail Support Structure and Operator Interface Platform at 105 K West

    Energy Technology Data Exchange (ETDEWEB)

    LANGEVIN, A.S.

    1999-07-12

    This conceptual design report documents the redesign of the IPSS and the OIP in the 105 KW Basin south loadout pit due to a postulated cask drop accident, as part of Project A.5/A.6, Canister Transfer Facility Modifications. Project A.5/A.6 involves facility modifications needed to transfer fuel from the basin into the cask-MCO. The function of the IPSS is to suspend, guide, and position the immersion pail. The immersion pail protects the cask-MCO from contamination by basin water and acts as a lifting device for the cask-MCO. The OIP provides operator access to the south loadout pit. Previous analyses studied the effects of a cask-MCO drop on the south loadout pit concrete structure and on the IPSS. The most recent analysis considered the resulting loads at the pit slab/wall joint (Kanjilal, 1999). This area had not been modeled previously, and the analysis results indicate that the demand capacity exceeds the allowable at the slab/wall joint. The energy induced on the south loadout pit must be limited such that the safety class function of the basin is maintained. The solution presented in this CDR redesigns the IPSS and the OIP to include impact-absorbing features that will reduce the induced energy. The impact absorbing features of the new design include: Impact-absorbing material at the IPSS base and at the upper portion of the IPSS legs. A sleeve which provides a hydraulic means of absorbing energy. Designing the OIP to act as an impact absorber. The existing IPSS structure in 105 KW will be removed. This conceptual design considers only loads resulting from drops directly over the IPSS and south loadout pit area. Drops in other areas of the basin are not considered, and will be covered as part of a future revision to this CDR.

  14. Status of radiation shield design for liquid metal fast breeder reactor spent fuel shipping cask application

    International Nuclear Information System (INIS)

    Dupree, S.A.; Rack, H.J.

    1976-09-01

    Neutron and gamma-ray transport calculations in one-dimensional cylindrical geometry have been performed on a trial reference LMFBR spent-fuel shipping cask that could transport one CRBR subassembly. In the study it was assumed that a layer of depleted U and a layer of neutron shielding materials were sandwiched between 5.08-cm-thick (2-in.) layers of stainless steel. The thicknesses of the internal layers were adjusted until a balanced dose rate (50 percent neuton and 50 percent gamma-ray) of 5 mrem/hr was achieved at a point 1.83 m (6 ft) from the cask surface. Neutron-shield materials considered were LiH, Be, B 4 C, DiH 2 . 5 , and C (graphite). Of these materials, LiH provided the smallest, lightest, and least expensive cask; however, its use would be contigent on expansion of production facilities for LiH and development of a canning or cladding procedure. The B 4 C shielded cask would offer the best alternative if the designs were limited to those using currently available materials

  15. High-capacity, high-strength trailer designs for the GA-4/GA-9 casks

    International Nuclear Information System (INIS)

    Rickard, N.D.; Kissinger, J.A.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. The authors are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight will to be very close to this target weight

  16. High-capacity, high-strength trailer designs for the GA-4/GA-9 Casks

    International Nuclear Information System (INIS)

    Kissinger, J.A.; Rickard, N.D.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. We are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight is expected to be very close to this target weight. 3 refs., 3 figs

  17. Nuclear criticality safety: general. 5. Reactivity Effect of Burnable Absorbers in Burnup Credit for the CASTOR X/32S Storage and Transport Cask

    International Nuclear Information System (INIS)

    Rombough, Charles T.; Lancaster, Dale B.; Diersch, Rudolf; Spilker, Harry

    2001-01-01

    When considering burnup credit in the licensing of storage and transportation casks, a significant effect is whether or not the burned fuel was depleted with burnable absorbers present. This paper presents the results of detailed calculations to quantitatively determine the burnable absorber effect for the CASTOR X/32S transport cask, which assumes burnup of the fuel in the criticality analysis. A radial view of the CASTOR X/32S cask is shown in Fig. 1. This is the actual plot of the geometry as modeled in KENO V.a. Note that there are no water-filled flux traps and the assemblies are tightly packed. This reduces the overall dimensions of the cask for a given number of fuel assemblies. Reactivity is held down by borated aluminum plates between the fuel assemblies and by placing absorber rod modules (ARMs) in the guide tubes of selected assemblies. If burnup of the fuel is not considered and the initial enrichment is 5.0 wt% 235 U, then 28 of the 32 fuel assemblies must contain an ARM to maintain a k eff 3 ; 4. moderator temperature of 604 K; 5. cooling time of 9.5 yr; 6. specific power of 60 W/g of U metal; 7. conservative axial and radial burnup shape distribution; 8. Westinghouse BP material containing 12.5 wt% B 4 C. Using the model described earlier, calculations were performed with varying numbers of BP fingers inserted for different exposure times. The results are shown in Tables I and II. The 1 s statistical error in these results is σ equals ±0.05%. Note that the BP finger and exposure effects decrease with fuel burnup and the effect is smaller when the cask contains ARMs. Conservatively combining the results from Tables I and II and interpolating, we can equate fewer BP fingers with longer BP exposure time as shown in Table III. The Table III results were checked by running the actual cases (for example, 20 BP fingers for 24 GWd/tonne exposure) to verify that the k eff 's for the cask were always less than the base-case values. These results can also be

  18. Design lead shielded casks for shipment and spent fuel from power reactors to reprocessing plant at Tarapur

    International Nuclear Information System (INIS)

    Seetharamaiah, P.

    1975-01-01

    Spent fuels from the Tarapur and Rajasthan Atomic Power Stations (TAPS and RAPS) are shipped to Fuel Reprocessing Plant at Tarapur in heavily lead shielded casks weighing about 65 tonnes as they are highly radioactive. The design of the casks has to meet stringemt requirements of safety and the integrity should be ensured to contain activity under credible accidents during handling and transportation. The paper presents the design of two casks for TAPS and RAPS spent fuel transportation particularly with reference to stress analysis considerations. The analysis also includes the handling gadgets and tie down attachments on the rail wagon and road trailer. (author)

  19. Role of measurement systems in burnup credit operations

    International Nuclear Information System (INIS)

    Ewing, R.I.; Sanders, T.L.

    1991-01-01

    Spent fuel transport casks designed using burnup credit have increased payloads that may greatly reduce the number of shipments required to transport spent fuel from reactor sites to repositories. Burnup credit is obtained by applying the reduced reactivity of spent fuel to considerations of nuclear criticality in the design of transport casks. Although it does not appear to be possible to directly measure the criticality of spent fuel assemblies, measurements can be employed to ensure that the only assemblies loaded into a cask have the characteristics appropriate to that cask design. An effective on-site measurement system must be matched to the characteristics of the spent fuel cask design and to the inventory of spent fuel. For operation reasons the system should be simple, accurate, efficient, and easily calibrated. This paper is part of a study to examine the effects of the spent fuel inventory in the U.S. on the selection of measurement systems useful in burnup credit operations

  20. AUTOCASK (AUTOmatic Generation of 3-D CASK models). A microcomputer based system for shipping cask design review analysis

    International Nuclear Information System (INIS)

    Gerhard, M.A.; Sommer, S.C.

    1995-04-01

    AUTOCASK (AUTOmatic Generation of 3-D CASK models) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for the structural analysis of shipping casks for radioactive material. Model specification is performed on the microcomputer, and the analyses are performed on an engineering workstation or mainframe computer. AUTOCASK is based on 80386/80486 compatible microcomputers. The system is composed of a series of menus, input programs, display programs, a mesh generation program, and archive programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests

  1. AUTOCASK (AUTOmatic Generation of 3-D CASK models). A microcomputer based system for shipping cask design review analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, M.A.; Sommer, S.C. [Lawrence Livermore National Lab., CA (United States)

    1995-04-01

    AUTOCASK (AUTOmatic Generation of 3-D CASK models) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for the structural analysis of shipping casks for radioactive material. Model specification is performed on the microcomputer, and the analyses are performed on an engineering workstation or mainframe computer. AUTOCASK is based on 80386/80486 compatible microcomputers. The system is composed of a series of menus, input programs, display programs, a mesh generation program, and archive programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.

  2. Assessment of LMFBR spent fuel shipping cask concepts for the CRBRP and the US conceptual design study

    International Nuclear Information System (INIS)

    Pope, R.B.; Ortman, J.M.; Eakes, R.G.; Leisher, W.B.; Dupree, S.A.

    1980-01-01

    Study of conceptual shipping systems for CRBRP and CDS spent fuel has shown that systems significantly different from those used for LWR spent fuel will be required. In the conceptual design, liquid sodium was assumed to be the coolant in canisters containing the spent fuel assemblies, and multiple levels of containment were provided by canisters, an inner cask lid and an outer cask lid. Cask cooling at the reactor site during loading, and cooldown at the receiving site prior to unloading are significant but tractable problems

  3. Thermal-hydraulic software development for nuclear waste transportation cask design and analysis

    International Nuclear Information System (INIS)

    Brown, N.N.; Burns, S.P.; Gianoulakis, S.E.; Klein, D.E.

    1991-01-01

    This paper describes the development of a state-of-the-art thermal-hydraulic software package intended for spent fuel and high-level nuclear waste transportation cask design and analysis. The objectives of this software development effort are threefold: (1) to take advantage of advancements in computer hardware and software to provide a more efficient user interface, (2) to provide a tool for reducing inefficient conservatism in spent fuel and high-level waste shipping cask design by including convection as well as conduction and radiation heat transfer modeling capabilities, and (3) to provide a thermal-hydraulic analysis package which is developed under a rigorous quality assurance program established at Sandia National Laboratories. 20 refs., 5 figs., 2 tabs

  4. CASTOR{sup R} 1000/19: Development and Design of a New Transport and Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Funke, Th.; Henig, Ch. [GNS mbH, Hollestrasse 7A, 45127 Essen (Germany)

    2008-07-01

    The design of the new transport and storage cask type CASTOR{sup R} 1000/19 is presented in this paper. This cask was developed for the dry interim storage of spent VVER1000 fuel assemblies concerning the requirements of the Temelin NPP, Czech Republic. While the cask body is based on well-known ductile cast iron cask types with in-wall moderator, the basket follows a new concept. The basket is able to carry 19 fuel assemblies with a total decay heat power up to approximately 17 kW. The cask fulfils all requirements for a type B(U)F package. The main nuclear, mechanical and thermal properties of the cask are illustrated for normal conditions and for hypothetical accident scenarios during transport and storage. The main steps of the handling procedure such as loading the cask, drying the cavity and mounting the double lid system for tightness during interim storage are shown in principle. For this handling, boundary conditions at the NPP site such as dimensions, weight and the loading machine interface are considered. (authors)

  5. QA in the design and fabrication of the TMI-2 rail cask

    International Nuclear Information System (INIS)

    Hayes, G.R.

    1988-01-01

    EGandG Idaho, Inc., acting on behalf of the US Department of Energy, is responsible for transporting core debris from Three Mile Island-Unit 2 to the Idaho National Engineering Laboratory. Transportation of the debris is being accomplished using an NRC licensed container, called the NuPac 125-B. This paper describes the NuPac 125-B Rail Cask and the quality assurance (QA) requirements for that system. Also discussed are the QA roles of the various organizations involved in designing, building, inspecting and testing the NuPac 125-B. The paper presents QA/QC systems implemented during the design, procurement, and fabrication of the cask to assure compliance with all applicable technical codes, standards and regulations. It also goes beyond the requirements aspect and describes unique QA/QC measures employed to assure that the cask was built with minimum QA problems. Finally, the lessons learned from the NuPac 125-B project is discussed. 4 refs., 4 figs

  6. Use of burnup credit for transportation and storage

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ewing, R.I.; Lake, W.H.

    1991-01-01

    Burnup credit is the application of the effects of fuel burnup to nuclear criticality design. When burnup credit is considered in the design of storage facilities and transportation casks for spent fuel, the objectives are to reduce the requirements for storage space and to increase the payload of casks with acceptable nuclear criticality safety margins. The spent-fuel carrying capacities of previous-generation transport casks have been limited primarily by requirements to remove heat and/or to provide shielding. Shielding and heat transfer requirements for casks designed to transport older spent fuel with longer decay times are reduced significantly. Thus a considerable weight margin is available to the designer for increasing the payload capacity. One method to achieve an increase in capacity is to reduce fuel assembly spacing. The amount of reduction in assembly spacing is limited by criticality and fuel support structural concerns. The optimum fuel assembly spacing provides the maximum cask loading within a basket that has adequate criticality control and sufficient structural integrity for regulatory accident scenarios. The incorporation of burnup credit in cask designs could result in considerable benefits in the transport of spent fuel. The acceptance of burnup credit for the design of transport casks depends on the resolution of system safety issues and the uncertainties that affect the determination of criticality safety margins. The remainder of this report will examine these issues and the integrated approach under way to resolve them. 20 refs., 2 figs

  7. Double seal door design and analysis for ITER transfer cask

    International Nuclear Information System (INIS)

    Liu, C.L.; Yao, D.M.; Cheng, T.

    2007-01-01

    DSD (Double seal door) design concept was introduced. 3-D model work was performed for DSD in the three typical regions, such as upper port, equatorial port, divertor port. The numerical analysis for some typical components was done based on Finite Element (FE) method by using ANSYS code, especially for the optimization activities. The rescue procedures of the DSD was discussed which could benefit a little for future engineering implementation. The design and analysis work can support and be the important reference for future procurement. (authors)

  8. Spent Nuclear Fuel (SNF) Project Cask and MCO Helium Purge System Design Review Completion Report - Project A.5 and A.6

    International Nuclear Information System (INIS)

    ARD, K.E.

    2000-01-01

    This report documents the results of the design verification performed on the Cask and Multiple Canister Over-pack (MCO) Helium Purge System. The helium purge system is part of the Spent Nuclear Fuel (SNF) Project Cask Loadout System (CLS) at 100K area. The design verification employed the ''Independent Review Method'' in accordance with Administrative Procedure (AP) EN-6-027-01

  9. Value/impact of design criteria for cast ductile iron shipping casks

    International Nuclear Information System (INIS)

    1983-01-01

    The ductile failure criteria proposed in the Base report appear appropriate except that stress intensity values, S/sub m/ should be based on lower safety factors and ductility should be added as a criterion. A safety factor for stress intensity, s/sub m/ of 4 is recommended rather than 3 on minimum ultimate tensile strength, S/sub u/ in accordance with ASME code philosophy of assigning higher safety factors to cast ductile iron than to steel. This more conservative approach has no impact on costs since the selection of wall thickness is controlled by shielding rather than by stress considerations. The addition of a ductility criterion is recommended because of the problems associated with the selection of appropriate brittle failure criteria and the potential for cast ductile iron to have extremely low elongation at failure. Neither a materials nor a linear elastic fracture mechanics (LEFM) approach appear to be viable for demonstrating the prevention of brittle failure in cast ductile iron shipping casks. It is possible that the analytic methods predict brittle failure because of extremely conservative assumptions whereas real casks may not fail. Model drop tests could be used to demonstrate containment integrity. It is estimated that a risk committment of at least $1,000,000 would be required for engineering, design, model fabrication and testing. Before taking such risks, a mechanism should be found to obtain concurrence from NRC that the results of the test would be acceptable. Probabilistic approaches or model testing could be used to demonstrate the acceptability of cast ductile iron casks from a brittle failure point of view. Before probabilistic methods can be used, the NRC would have to be persuaded to accept the approach of the Competent Authority in West Germany or more formalized methods for probabilistic risk assessments

  10. A survey of previous and current industry-wide efforts regarding burnup credit

    International Nuclear Information System (INIS)

    Jones, R.H.

    1989-01-01

    Sandia has examined the matter of burnup credit from the perspective of physics, logistics, risk, and economics. A limited survey of the nuclear industry has been conducted to get a feeling for the actual application of burnup credit. Based on this survey, it can be concluded that the suppliers of spent fuel storage and transport casks are in general agreement that burnup credit offers the potential for improvements in cask efficiency without increasing the risk of accidental criticality. The actual improvement is design-specific but limited applications have demonstrated that capacity increases in the neighborhood of 20 percent are not unrealistic. A number of these vendors acknowledge that burnup credit has not been reduced to practice in cask applications and suggest that operational considerations may be more important to regulatory acceptance than to the physics. Nevertheless, the importance of burnup credit to the nuclear industry as a cask design and analysis tool has been confirmed by this survey

  11. Impacts of transportation regulations on spent fuel and high level waste cask design

    International Nuclear Information System (INIS)

    Lake, W.H.

    1992-01-01

    The regulation of radioactive material transport has a long and successful history. Prior to 1966, these activities were regulated by the Interstate Commerce Commission (ICC) Bureau of Explosives (the ICC was predecessor to the Department of Transportation (DOT)). In 1966, the Atomic Energy Commission (AEC) developed what is now 10 CFR 71, concurrently with the development of similar international standards. In 1975, the AEC was reorganized and the Nuclear Regulatory Commission (NRC) was established as an independent regulatory commission. The NRC was given responsibility for the regulation of commercial use of radioactive materials, including transportation. This paper discusses various aspects of the NRC's role in the transport of radioactive material as well as its role in the design and certification of casks necessary to the transport of this material

  12. Limited take-up of health coverage tax credits: a challenge to future tax credit design.

    Science.gov (United States)

    Dorn, Stan; Varon, Janet; Pervez, Fouad

    2005-10-01

    The Trade Act of 2002 created federal tax credits to subsidize health coverage for certain early retirees and workers displaced by international trade. Though small, this program offers the opportunity to learn how to design future tax credits for larger groups of uninsured. During September 2004, the most recent month for which there are data about all forms of Trade Act credits, roughly 22 percent of eligible individuals received credits. The authors find that health insurance tax credits are more likely to reach their target populations if such credits: 1) limit premium costs for the low-income uninsured and do not require full premium payments while applications are pending; 2) provide access to coverage that beneficiaries value, including care for preexisting conditions; 3) are combined with outreach that uses easily understandable, multilingual materials and proactive enrollment efforts; and 4) feature a simple application process involving one form filed with one agency.

  13. Materials issues in cask development

    International Nuclear Information System (INIS)

    Chapman, R.L.; Sorenson, K.B.

    1987-01-01

    The Department of Energy Office of Civilian Radioactive Waste Management (DOE-OCRWM) is chartered by Congress under the Nuclear Waste Policy Act (NWPA) to build a permanent repository for commercial spent nuclear fuel and to provide a supporting transportation system. The OCRWM-sponsored From-Reactor Cask Systems Acquisition Program is developing a family of casks suitable for transporting commercial spent fuel. Phase I of the program is in the process of procuring cask designs for further development and eventual licensing. New materials will probably be proposed for various components of the cask system. This paper identifies potential new materials as a function of their use in the cask (containment, shielding, etc). To the extent that the identified materials are new (not yet qualified for their intended application), this paper identifies probable technical issues and development efforts which may be required to qualify the materials for uses in transportation casks

  14. Alternative cask maintenance facility concepts

    International Nuclear Information System (INIS)

    Attaway, C.R.; Pope, R.B.; Wiliamson, A.C.; Medley, L.G.; Shappert, L.B.

    1992-01-01

    In this paper, the results of three trade-off studies of alternative concepts for performing cask maintenance for Civilian Radioactive Waste Management System casks are presented. An earlier study resulted in a recommendation that a submerged pool concept for cask internal component removal be used in the design of a Cask Maintenance Facility. The first trade-off study resulted in confirming the previous recommendation that a submerged pool concept be used rather than an isolation cell; the basis for this continued recommendation is discussed. The second study provides an evaluation of the previously proposed facility for the capability of handling an increased quantity of OCRWM casks. The third study provides a preliminary concept for adding the capability to repaint the exterior cylindrical portions of casks

  15. Cask development, testing, and licensing

    International Nuclear Information System (INIS)

    Quinn, G.J.; Haelsig, R.T.; Warrant, M.M.

    1986-01-01

    The NuPac 125-B Rail Cask was developed to provide a safe means of transporting the damaged core of Three Mile Island Unit 2 from the TMI site at Middletown, PA, to the Idaho National Engineering laboratory (INEL) at Idaho Falls, ID. The development of the NuPac 125-B Rail Cask posed two engineering and technical management challenges; Licensing Strategy - The NuPac 125-B Rail Cask represented the first irradiated fuel rail cask developed within the United States in the past decade, a decade characterized by changing nuclear regulations, and Accelerated Schedule - The TMI-2 defueling schedule demanded a cask development schedule one-third as long as normally required. These challenges governed the overall development and licensing process for the cask. First, a high degree of conservation was incorporated into the design to allow quick, simplified demonstrations of adequacy to regulatory staff. Second, redundant design techniques were employed in all areas of uncertainty. The testing program eliminated performance uncertainties and validated predictions and predictive models. Drop tests of a quarter-scale model of the cask were conducted, and results were correlated with analytic predictions to verify structural and mechanical performance of the cask. Full-scale tests of the canisters were conducted to verify structural behavior of canister internals which provide criticality control. This paper describes the testing program for the NuPac 125-B Rail Cask, presents results therefrom, and correlates findings with Regulation 10 CFR 71 of the U.S. Nuclear Regulatory Commission

  16. Estimation of gamma dose rate from hulls and shield design for the hull transport cask of Fuel Reprocessing Plant (FRP)

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    In Fuel Reprocessing Plant (FRP), un-dissolved clad of fuel pins known as hulls are the major sources of high level solid waste. Safe handling, transport and disposal require the estimation of radioactivity as a consequent of gamma dose rate from hulls in fast reactor fuel reprocessing plant in comparison with thermal reactor fuel. Due to long irradiation time and low cooling of spent fuel, the evolution of activation products 51 Cr, 58 Co, 54 Mn and 59 Fe present as impurities in the fuel clad are the major sources of gamma radiation. Gamma dose rate from hull container with hulls from Fuel Sub Assembly (FSA) and Radial Sub Assembly (RSA) of Fuel Reprocessing Plant (FRP) was estimated in order to design the hull transport cask. Shielding computations were done using point kernel code, IGSHIELD. This paper describes the details of source terms, estimation of dose rate and shielding design of hull transport cask in detail. (author)

  17. Feasibility and incentives for the consideration of spent fuel operating histories in the criticality analysis of spent fuel shipping casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Westfall, R.M.; Jones, R.H.

    1987-08-01

    Analyses have been completed that indicate the consideration of spent fuel histories (''burnup credit'') in the design of spent fuel shipping casks is a justifiable concept that would result in cost savings and public risk benefits in the transport of spent nuclear fuel. Since cask capacities could be increased over those of casks without burnup credit, the number of shipments necessary to transport a given amount of fuel could be reduced. Reducing the number of shipments would increase safety benefits by reducing public and occupational exposure to both radiological and nonradiological risks associated with the transport of spent fuel. Economic benefits would include lower in-transit shipping, reduced transportation fleet capital costs, and reduced numbers of cask handling operations at both shipping and receiving facilities. 44 refs., 66 figs., 28 tabs

  18. Progress in the conceptual design of the ITER cask and plug remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Locke, Darren, E-mail: darren.locke@f4e.europa.eu [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); González Gutiérrez, Carmen; Damiani, Carlo [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Friconneau, Jean-Pierre; Martins, Jean-Pierre [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    Highlights: • The CPRHS is a complex system with a significant number of complicated interfaces. • Significant effort is being made to ensure that the system requirements are clearly defined. • This solution relates to planned operations and also anticipation of rescue operations. • With the CPRHS performing a safety function process control is being put in place. • All these factors will have a significant impact on the success of the CPRHS. - Abstract: One function of the ITER remote maintenance system is the transportation of in-vessel components and remote handling systems to and from the vacuum vessel and docking stations in the Hot Cell via dedicated galleries and lift. The cask and plug remote handling system (CPRHS) has been adopted as the solution to provide this nuclear confinement and transportation. This paper discusses the development of the conceptual design to-date and presents the processes being implemented to effectively control the subsequent CPRHS development. The CPRHS is a complex suite of systems with a significant number of interfaces with other ITER systems. Significant effort is being made to ensure that the system requirements are comprehensively defined and carefully managed and a feasible solution is developed – including planned and rescue operations. With the CPRHS performing a critical confinement function appropriate processes are being put in place to control the system development of the CPRHS. The expectation is that the combination of these factors will have a significant impact on the successful implementation of the CPRHS.

  19. Progress in the conceptual design of the ITER cask and plug remote handling system

    International Nuclear Information System (INIS)

    Locke, Darren; González Gutiérrez, Carmen; Damiani, Carlo; Friconneau, Jean-Pierre; Martins, Jean-Pierre

    2014-01-01

    Highlights: • The CPRHS is a complex system with a significant number of complicated interfaces. • Significant effort is being made to ensure that the system requirements are clearly defined. • This solution relates to planned operations and also anticipation of rescue operations. • With the CPRHS performing a safety function process control is being put in place. • All these factors will have a significant impact on the success of the CPRHS. - Abstract: One function of the ITER remote maintenance system is the transportation of in-vessel components and remote handling systems to and from the vacuum vessel and docking stations in the Hot Cell via dedicated galleries and lift. The cask and plug remote handling system (CPRHS) has been adopted as the solution to provide this nuclear confinement and transportation. This paper discusses the development of the conceptual design to-date and presents the processes being implemented to effectively control the subsequent CPRHS development. The CPRHS is a complex suite of systems with a significant number of interfaces with other ITER systems. Significant effort is being made to ensure that the system requirements are comprehensively defined and carefully managed and a feasible solution is developed – including planned and rescue operations. With the CPRHS performing a critical confinement function appropriate processes are being put in place to control the system development of the CPRHS. The expectation is that the combination of these factors will have a significant impact on the successful implementation of the CPRHS

  20. SCANS (Shipping Cask ANalysis System) a microcomputer-based analysis system for shipping cask design review: User's manual to Version 3a. Volume 1, Revision 2

    International Nuclear Information System (INIS)

    Mok, G.C.; Thomas, G.R.; Gerhard, M.A.; Trummer, D.J.; Johnson, G.L.

    1998-03-01

    SCANS (Shipping Cask ANalysis System) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent fuel shipping casks. SCANS is an easy-to-use system that calculates the global response to impact loads, pressure loads and thermal conditions, providing reviewers with an independent check on analyses submitted by licensees. SCANS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests. Analysis options are based on regulatory cases described in the Code of Federal Regulations 10 CFR 71 and Regulatory Guides published by the US Nuclear Regulatory Commission in 1977 and 1978

  1. Past experience and future needs for the use of burnup credit in LWR fuel storage

    International Nuclear Information System (INIS)

    Boyd, W.A.; Wrights, G.N.

    1987-01-01

    To achieve improved fuel economics and reduce the amount of fuel discharged annually, utilities are engaging in fuel management strategies that will achieve higher discharge burnups for their fuel assemblies. Although burnup credit methodologies have been developed and spent-fuel racks have been licensed, burnup credit fuel storage racks are not the answer for all utilities. Off-site and out-of-pool spent-fuel storage may be more appropriate. This is leading to the development of dry spent-fuel storage and shipping casks. Cask designs with spent-fuel storage capability between 20 and 32 assemblies are being developed by several vendors. The US Dept. of Energy is also funding work by VEPCO. Westinghouse is currently licensing its dry storage cask, developing a shipping cask for the domestic market, and is involved in a joint venture to develop a cask for the international market. Although methods of taking credit for fuel burnup in spent-fuel storage racks have been developed and licensed, use of these methods on dry spent-fuel storage and shipping casks can lead to new issues. These issues arise because the excess reactivity margin that is inherent in a burnup credit spent-fuel storage rack criticality analysis will not be available in a dry cask analysis

  2. Burnup credit in Spain

    International Nuclear Information System (INIS)

    Conde, J.M.; Recio, M.

    2001-01-01

    The status of development of burnup credit for criticality safety analyses in Spain is described in this paper. Ongoing activities in the country in this field, both national and international, are resumed. Burnup credit is currently being applied to wet storage of PWR fuel, and credit to integral burnable absorbers is given for BWR fuel storage. It is envisaged to apply burnup credit techniques to the new generation of transport casks now in the design phase. The analysis methodologies submitted for the analyses of PWR and BWR fuel wet storage are outlined. Analytical activities in the country are described, as well as international collaborations in this field. Perspectives for future research and development of new applications are finally resumed. (author)

  3. A fuel response model for the design of spent fuel shipping casks

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Duffey, T.A.; Einziger, R.E.; Hobbins, R.R.; Jordon, H.; Rashid, Y.R.; Barrett, P.R.; Sanders, T.L.

    1989-01-01

    The radiological source terms pertinent to spent fuel shipping cask safety assessments are of three distinct origins. One of these concerns residual contamination within the cask due to handling operations and previous shipments. A second is associated with debris (''crud'') that had been deposited on the fuel rods in the course of reactor operation, and a third involves the radioactive material contained within the rods. Although the lattermost source of radiotoxic material overwhelms the others in terms of inventory, its release into the shipping cask, and thence into the biosphere, requires the breach of an additional release barrier, viz., the fuel rod cladding. Hence, except for the special case involving the transport of fuel rods containing previously breached claddings, considerations of the source terms due to material contained in the fuel rods are complicated by the need to address the likelihood of fuel cladding failure during transport. The purpose of this report is to describe a methodology for estimating the shipping cask source terms contribution due to radioactive material contained within the spent fuel rods. Thus, the probability of fuel cladding failure as well as radioactivity release is addressed. 8 refs., 2 tabs

  4. Source storage and transfer cask: Users Guide

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Speir, L.G.; Garcia, D.C.

    1985-04-01

    The storage and shield cask for the dual californium source is designed to shield and transport up to 3.7 mg (2 Ci) of 252 Cf. the cask meets Department of Transportation (DOT) license requirements for Type A materials (DOT-7A). The cask is designed to transfer sources to and from the Flourinel and Fuel Storage (FAST) facility delayed-neutron interrogator. Californium sources placed in the cask must be encapsulated in the SR-CF-100 package and attached to Teleflex cables. The cask contains two source locations. Each location contains a gear box that allows a Teleflex cable to be remotely moved by a hand crank into and out of the cask. This transfer procedure permits sources to be easily removed and inserted into the delayed-neutron interrogator and reduces personnel radiation exposure during transfer. The radiation dose rate with the maximum allowable quantity of californium (3.7 mg) in the cask is 30 mR/h at the surface and less than 2 mR/h 1 m from the cask surface. This manual contains information about the cask, californium sources, describes the method to ship the cask, and how to insert and remove sources from the cask. 28 figs

  5. Spent fuel shipping cask accident evaluation

    International Nuclear Information System (INIS)

    Fields, S.R.

    1975-12-01

    Mathematical models have been developed to simulate the dynamic behavior, following a hypothetical accident and fire, of typical casks designed for the rail shipment of spent fuel from nuclear reactors, and to determine the extent of radioactive releases under postulated conditions. The casks modeled were the IF-300, designed by the General Electric Company for the shipment of spent LWR fuel, and a cask designed by the Aerojet Manufacturing Company for the shipment of spent LMFBR fuel

  6. Test Plan for Cask Identification Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    This document serves to outline the testing of a Used Fuel Cask Identification Detector (CID) currently being designed under the DOE-NE MPACT Campaign. A bench-scale prototype detector will be constructed and tested using surrogate neutron sources. The testing will serve to inform the design of the full detector that is to be used as a way of fingerprinting used fuel storage casks based on the neutron signature produced by the used fuel inside the cask.

  7. Design of a dry cask storage system for spent LWR fuels: radiation protection, subcriticality, and heat removal aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, U. [Turkish Atomic Energy Authority, Ankara (Turkey). Nuclear Safety Dept.; Zabunoolu, O.H. [Hacettepe Univ., Ankara (Turkey). Dept. of Nuclear Engineering

    2006-08-15

    Spent nuclear fuel resulting from reactor operation must be safely stored and managed prior to reprocessing and/or final disposal of high-level waste. Any spent fuel storage system must provide for safe receipt, handling, retrieval, and storage of spent fuel. In order to achieve the safe storage, the design should primarily provide for radiation protection, subcriticality of spent fuel, and removal of spent fuel residual heat. This article is focused on the design of a metal-shielded dry-cask storage system, which will host spent LWR fuels burned to 33 000, 45 000, and 55 000 MWd/t U and cooled for 5 or 10 years after discharge from reactor. The storage system is analyzed by taking into account radiation protection, subcriticality, and heat-removal aspects; and appropriate designs, in accordance with the international standards. (orig.)

  8. Conceptual design report for a remotely operated cask handling system. Revision 1

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    1984-09-01

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to lowering operator cumulative radiation exposure and increasing throughput during cask handling operations in nuclear shipping and receiving facilities. Revision 1 incorporates functional criteria for facility equipment, equipment technical outline specifications, and interface control drawings to assist Architect Engineers in the application of remote handling to waste shipping and receiving facilities. The document has also been updated to show some of the equipment used in proof-of-principle testing during fiscal year 1984. 10 references, 50 figures, 1 table

  9. Concrete spent fuel storage casks dose rates

    International Nuclear Information System (INIS)

    Bace, M.; Jecmenica, R.; Trontl, K.

    1998-01-01

    Our intention was to model a series of concrete storage casks based on TranStor system storage cask VSC-24, and calculate the dose rates at the surface of the casks as a function of extended burnup and a prolonged cooling time. All of the modeled casks have been filled with the original multi-assembly sealed basket. The thickness of the concrete shield has been varied. A series of dose rate calculations for different burnup and cooling time values have been performed. The results of the calculations show rather conservative original design of the VSC-24 system, considering only the dose rate values, and appropriate design considering heat rejection.(author)

  10. Performance of the improved version of Monte Carlo Code A3MCNP for cask shielding design

    International Nuclear Information System (INIS)

    Hasegawa, T.; Ueki, K.; Sato, O.; Sjoden, G.E.; Miyake, Y.; Ohmura, M.; Haghighat, A.

    2004-01-01

    A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic ''importance'' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for cask neutron and gamma-ray shielding problem

  11. Transportation cask decontamination and maintenance at the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Hill, R.R.

    1992-04-01

    This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described

  12. Radioactive fuel cask railcar humping study

    International Nuclear Information System (INIS)

    Wilson, L.T.

    1978-01-01

    The response of two radioactive shipping casks due to railroad humping shocks was calculated using a spring-mass model. The two railcars for these casks had different coupling mechanisms and different tiedown arrangements. Humping tests had been performed on one of the railcars (ATMX-600) and the resulting shock spectra was used to adjust the spring-mass model to get matching results. One car (designed for cask shipment) was equipped with Freightmaster E-15 end of car coupler and had about 1 / 8 in. free travel of the cask skid relative to the car. The other car (ATMX-600), equipped with Miner RF-333 draft gear, was designed for nuclear weapon shipment and adapted to nuclear waste shipment by fastening the casks to the floor. Both car frames were built by the same manufacturer and are very similar. The response of the casks was put in shock spectra format and a parametric study was performed with various cask weights. Additional studies were done on the effects of fastening the loose cask, and using the Freightmaster end of car coupler on the ATMX car. Half-sine response spectra were overlaid to include the natural frequency of the cask tiedown. The resulting shock amplitude was plotted against the cask weight for each car. The results show a constant acceleration level for all the weights on the car with hydraulic end-of-car coupler which results from constant force at that impact velocity. The cask acceleration can be reduced by fastening it to the car, rather than allowing it to move freely through some small space. This study also shows that the cask response can be optimized on railcars without hydraulic draft gear by adjusting the tiedown stiffness to keep the tiedown frequency different than car frequencies

  13. Inspection of NFT-type cask fabrication

    International Nuclear Information System (INIS)

    Takani, M.; Umegaki, O.

    1998-01-01

    NFT-type cask has been developed to transport the high burn-up spent fuel from Japanese nuclear power stations to the reprocessing plant of Japan Nuclear Fuel Limited which is under construction in Rokkasho-mura, Aomori prefecture. NFT placed orders of 53 casks to 5 fabricators in Japan and overseas, and these casks have been fabricated since 1994. There are two types of NFT-type casks for PWR spent fuel and four types of NFT-type cask for BWR spent fuel. These are designed in consideration of the number of spent fuels accommodated into each type of casks and the handling conditions at domestic nuclear power stations. According to Japanese notification, it is required to be confirmed by competent authority that casks are manufactured in accordance with approved designs. Furthermore, additional tests are performed such as through-gauge test for basket and pressure test on the shielding material space to ensure the performance of cask by NFT other than items inspected by the competent authority. In order to enhance maintainability of casks, replacement parts such as bolts and valves are shared as much as possible. (authors)

  14. Optimal Designs for the Generalized Partial Credit Model

    OpenAIRE

    Bürkner, Paul-Christian; Schwabe, Rainer; Holling, Heinz

    2018-01-01

    Analyzing ordinal data becomes increasingly important in psychology, especially in the context of item response theory. The generalized partial credit model (GPCM) is probably the most widely used ordinal model and finds application in many large scale educational assessment studies such as PISA. In the present paper, optimal test designs are investigated for estimating persons' abilities with the GPCM for calibrated tests when item parameters are known from previous studies. We will derive t...

  15. Application of burnup credit concept to transport

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Nakagome, Yoshihiro.

    1994-01-01

    For the design and safety assessment of the casks for transporting spent fuel, the fuel contained in them has been assumed to be new fuel. The reason is, it was difficult to evaluate the variation of the reactivity of fuel, and the research on the affecting factors and the method of measuring burnup were not much advanced. Recently, high burnup fuel has been adopted, and initial degree of enrichment rose. The research has been advanced for pursuing the economy of the casks for spent fuel, and burnup credit has become applicable to their design and safety assessment. As the result, the containing capacity increases by about 20%. When burnup credit is considered, it is necessary to confirm accurately the burnup of spent fuel. The burnup dependence of the concentration of fissile substances and neutron emissivity, the coolant void dependence of the concentration of fissile substances, and the relation of neutron multiplication rate with initial degree of enrichment or burnup are discussed. The conceptual design of casks considering burnup credit and its assessment, the merit, problem and the countermeasures to it when burnup credit is introduced are described. (K.I.)

  16. Impact analysis of shipping casks

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1989-01-01

    Shipping casks are being used in the United States Department of Energy to transport irradiated experiments, reactor fuel, radioactive waste, etc. One of the critical requirements in shipping cask analysis is the necessity to withstand severe impact environments. It is still conventional to develop the design and to verify the design requirements by hand calculations. Full three dimensional computations of impact scenarios have been performed but they are too expensive and time consuming for design purposes. Typically, on the order of more than an hour of CRAY time is required for a detailed, three dimensional analysis. The paper describes how simpler two- and three-dimensional models can be used to provide an intermediate level of detail between full three dimensional finite element calculations and hand calculations. The regulation that is examined here is: 10 CFR-71.73 hypothetical accident conditions, free drop. Free drop for an accident condition of a Class I package (approximate weight of 22,000 lb) is defined as a 30 foot drop onto a flat, essentially unyielding, horizontal surface, striking the surface in a position for which maximum damage is expected. Three free drop scenarios are analyzed to assess the integrity of the cask when subjected to large bending and axial stresses. These three drop scenarios are: (1) a thirty foot axial drop on either end, (2) a thirty foot oblique angle drop with the cask having several different orientations from the vertical with impact on the top end cask corner, and (3) a thirty foot side drop with simultaneous impact on the strength of the various components that comprise the cask. The predicted levels of deformation and stresses in the cask will be used to assess the potential damage level. 5 refs., 5 figs., 1 tab

  17. Storage and transport casks combine to bring benefits

    International Nuclear Information System (INIS)

    Thorup, C.

    1988-01-01

    The Nuclear Assurance Corporation is currently preparing a safety report on its new spent fuel storage/transport casks. The report is due to be submitted to the NRC in 1989, together with an application for a licence. The aim of the combined casks is to simplify the process of dealing with spent fuel, whilst keeping costs down. The design of the casks is described, together with questions relating to the licensing of the casks. (author)

  18. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ... Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel Storage Casks'' to include... for the MAGNASTOR[supreg] System cask design within the list of approved spent fuel storage casks that...

  19. Demonstration of criticality safety for the modified TN-REG and TN-BRP transport/storage casks

    International Nuclear Information System (INIS)

    Parks, C.V.; Fox, P.B.

    1989-01-01

    An inability to model the structural performance of borated steel baskets under accident conditions forced the specially designed TN-BRP and TN-REG casks to be modified for half-loaded shipments. This paper discusses the approach used to demonstrate that the half-loaded casks would remain safely subcritical even if no credit were taken for the borated basket. Normal and accident configurations were analyzed with the KENO V.a code. The strategy conceived and the analyses performed to demonstrate an acceptable margin of safety are discussed. 5 refs., 3 figs., 2 tabs

  20. Expansion of the capabilities of the GA-4 legal weight truck spent fuel shipping cask

    International Nuclear Information System (INIS)

    Zimmer, A.; Razvi, J.; Johnson, L.; Welch, B.; Lancaster, D.

    2004-01-01

    General Atomics (GA) has developed the Model GA-4 Legal Weight Truck Spent Fuel Cask, a high capacity cask for the transport of four PWR spent fuel assemblies, and obtained a Certificate of Compliance (CoC No. 9226) in 1998 from the US Nuclear Regulatory Commission (NRC). The currently authorized contents in this CoC however, are much more limiting than the actual capability of the GA-4 cask to transport spent PWR fuel assemblies. The purpose of this paper is to show how the authorized contents can be significantly expanded by additional analyses without any changes to the physical design of the package. Using burnup credit per ISG-8 Rev. 2, the authorized contents can be significantly expanded by increasing the maximum enrichment as the burnup increases. Use of burnup credit eliminates much of the criticality imposed limits on authorized package contents, but shielding still limits the use of the cask for the higher burnup, short cooled fuel. By downloading to two assemblies and using shielding inserts, even the high burnup fuel with reasonable cooling times can be transported

  1. THERMAL EVALUATION OF ALTERNATE SHIPPING CASK FOR GTRI EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2014-06-01

    The Global Threat Reduction Initiative (GTRI) has many experiments yet to be irradiated in support of the High Performance Research Reactor fuels development program. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for post irradiation examination. To date, the General Electric (GE)-2000 cask has been used to transport GTRI experiments between these facilities. However, the availability of the GE-2000 cask to support future GTRI experiments is at risk. In addition, the internal cavity of the GE-2000 cask is too short to accommodate shipping the larger GTRI experiments. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping, and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled experiments. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. From a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask.

  2. Status of the Beneficial Uses Shipping System cask (BUSS)

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Eakes, R.G.; Bronowski, D.R.

    1994-01-01

    The Beneficial Uses Shipping System cask is a Type B packaging developed by Sandia National Laboratories for the U.S. Department of Energy. The cask is designed to transport special form radioactive source capsules (cesium chloride and strontium fluoride) produced by the Department of Energy's Hanford Waste Encapsulation and Storage Facility. This paper describes the cask system and the analyses performed to predict the response of the cask in impact, puncture, and fire accident conditions as specified in the regulations. The cask prototype has been fabricated and Certificates of Compliance have been obtained

  3. Cask manufacturing methods and quality assurance problems

    International Nuclear Information System (INIS)

    Riddle, J.H.; Cross, H.D.; Trujillo, A.A.; Pope, R.B.; Rack, H.J.

    1980-01-01

    This paper presents the results of a study performed to identify and evaluate cask manufacturing methods and materials which are presently or could be readily available in the United States. The study includes a comparison of the economic and technical advantages to be gained from manufacturing casks specifically for application to long-cooled fuel (5 years or greater) and waste materials. The conclusions that have been drawn from this study, which is still in progress are as follows: if spent fuel payloads are in fact cooled for five or more years prior to transportation there is a significant advantage to be gained from cask designs which are tailored to this longer cooling time; the most economic cask design is that which utilizes a lead gamma shield; the all-steel, single wall casks show substantial potential benefits resulting from ready availability and the cost and inspection advantages that result from the design simplicity; the future use of depleted uranium shielded casks in the United States is expected to be low as a result of the high cost and lack of manufacturing facilities; of the three types of neutron absorber systems evluated, the borated cast-in-place silicone rubber shows significant technical and cost advantages; and design and fabrication code requirements and regulatory requirements yet to be developed in the United States are likely to have a profound effect on the next generation of transportation casks

  4. Applying consensus standards to cask development

    International Nuclear Information System (INIS)

    Leatham, J.; Abbott, D.G.; Warrant, M.M.

    1987-01-01

    The Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management is procuring cask systems for transporting commercial spent nuclear fuel and is encouraging development of innovative cask designs and materials to improve system efficiency. New designs and innovative materials require that consensus standards be established so that cask designers and regulators have criteria for determining acceptability. Recent DOE experience in certifying three spent fuel shipping casks, NUPAC-125B, TN-BRP, and TN-REG, is discussed. Certification of the NUPAC-125B was expedited because it was made of conventional American Society for Testing and Materials (ASTM) materials and complied with the American Society of Mechanical Engineers (ASME) Code and Nuclear Regulatory Commission Regulatory Guides. The TN-BRP and TN-REG cask designs are still being reviewed because baskets included in the casks are made of borated stainless steel, which has no ASTM Specification or ASME Code approval. The process of developing and approving consensus standards is discussed, including the role of ANSI and ANSI N14. Specific procedures for ASTM and ASME are described. A draft specification or standard must be prepared and then approved by the appropriate body. For new material applications to the ASME Code, an existing ASTM Specification is needed. These processes may require several years. The status of activities currently in progress to develop consensus standards for spent fuel casks is discussed, including (1) ASME NUPAC, and (2) ASTM Specifications for ductile cast iron and borated stainless steel

  5. Comparison of analysis methods for burnup credit applications

    International Nuclear Information System (INIS)

    Sanders, T.L.; Brady, M.C.; Renier, J.P.; Parks, C.V.

    1989-01-01

    The current approach used for the development and certification of spent fuel storage and transport casks requires an assumption of fresh fuel isotopics in the criticality safety analysis. However, it has been shown that there is a considerable reactivity reduction when the isotopics representative of the depleted (or burned) fuel are used in a criticality analysis. Thus, by taking credit for the burned state of the fuel (i.e., burnup credit), a cask designer could achieve a significant increase in payload. Accurate prediction of k eff for spent fuel arrays depends both on the criticality safety analysis and the prediction of the spent fuel isotopics via a depletion analysis. Spent fuel isotopics can be obtained from detailed multidimensional reactor analyses, e.g. the code PDQ, or from point reactor burnup models. These reactor calculations will help verify the adequacy of the isotopics and determine Δk eff biases for various analysis assumptions (with and without fission products, actinide absorbers, burnable poison rods, etc.). New software developed to interface PDQ multidimensional isotopics with KENO V.a reactor and cask models is described. Analyses similar to those performed for the reactor cases are carried out with a representative burnup credit cask model using the North Anna fuel. This paper presents the analysis methodology that has been developed for evaluating the physics issues associated with burnup credit. It is applicable in the validation and characterization of fuel isotopics as well as in determining the influence of various analysis assumptions in terms of δk eff . The methodology is used in the calculation of reactor restart criticals and analysis of a typical burnup credit cask

  6. Seismic stability of unanchored spent nuclear fuel storage casks

    International Nuclear Information System (INIS)

    Ofoegbu, G. I.; Gute, G. D.; Chowdhury, A. H.

    2003-01-01

    Dynamic soil-structure interaction analyses were performed to examine the effects of a potential earthquake on the stability of unanchored cylindrical spent nuclear fuel casks for an above-ground storage installation. The casks would be placed on a cluster of reinforced concrete pads founded on a deep sequence of clays and silts underlain by sandstones. The analyses focused on evaluating the geometric stability of the casks during an earthquake with respect to a design concept that a cask should not tip over, slide off the storage pad, or collide with another cask. The analyses were performed using LS-DYNA with a three-dimensional explicit finite element model representing the site soil and a fully loaded storage pad. Three statistically independent acceleration time histories were applied simultaneously at the base of the model to generate a free-field ground motion time history representing the design-basis earthquake. Sensitivity studies were performed to examine the effects of the interface conditions between the storage pad and the surrounding soil, and between the base of the storage casks and the top surface of the pad. The results indicate that ground motion from the design-basis earthquake would not cause any cask to tip over, slide off the pad, or collide with another cask. The contact conditions at the cask-to-pad and pad-to-soil interfaces have a strong effect on potential cask motions during an earthquake. If the cask-base friction coefficient is small, the casks may slide, but would not experience any significant rocking. If the cask-base friction is large enough to permit a significant transfer of earthquake lateral motions across the cask-to-pad interface, a design with bonded pad-to-soil interfaces would produce larger cask motions than a design with frictional pad-to-soil interfaces. Furthermore, a cask strage design in which the cask motions are essentially isolated from the motions of the pad-soil system, which can be accomplished if the cask

  7. Development of cask and transportation system

    International Nuclear Information System (INIS)

    Ro, Seong Gy; Kang, Hee Dong; Lee, Heung Young; Seo, Ki Suk; Koo, Jung Hoe; Jung, Sung Hwan; Yoon, Jung Hyun; Lee, Ju Chan; Bang, Kyung Sik; Baek, Chang Yeol

    1992-03-01

    The major goal of this project is to establish the safe transport system and obtain the necessary data for cask development by during research work for the design and safety test of shipping cask. The analysis technique using computer code for design has been studied in the field of structure, thermal and shielding analysis in this study. And also the test and measurement technology was developed for the measuring system of drop and fire test. It is expected that research activity ensured in this job will enable us to ultilize the basic data for the cask development. (Author)

  8. Homogeneous versus heterogeneous shielding modeling of spent-fuel casks

    International Nuclear Information System (INIS)

    Carbajo, J.J.; Lindner, C.N.

    1992-01-01

    The design of spent-fuel casks for storage and transport requires modeling the cask for criticality, shielding, thermal, and structural analyses. While some parts of the cask are homogeneous, other regions are heterogeneous with different materials intermixed. For simplicity, some of the heterogeneous regions may be modeled as homogeneous. This paper evaluates the effect of homogenizing some regions of a cask on calculating radiation dose rates outside the cask. The dose rate calculations were performed with the one-dimensional discrete ordinates shielding XSDRNPM code coupled with the XSDOSE code and with the three-dimensional QAD-CGGP code. Dose rates were calculated radially at the midplane of the cask at two locations, cask surface and 2.3 m from the radial surface. The last location corresponds to a point 2 m from the lateral sides of a transport railroad car

  9. Development of metal cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    It is one of the realistic solutions against increasing demand on interim storage of spent fuel assemblies arising from nuclear power plants in Japan to apply dual purpose (transport and storage) metal casks. Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities, etc. in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage casks use various new design concepts and materials to improve thermal performance of the cask, structural integrity of the basket, durability of the neutron shielding material and so on. This paper summarizes an outline of the cask design that can accommodate BWR spent fuel assemblies as well as the new technologies applied to the design and fabrication. (author)

  10. Utility oversight of Cask System Development Program

    International Nuclear Information System (INIS)

    Vincent, J.A.; Jordan, J.M.; Schwartz, M.H.

    1993-01-01

    This paper will present the electric utility industry's perspective on the status and scope of the DOE's Office of Civilian Radioactive Waste Management's (DOE/OCRWM) transportation cask systems development activities, including the Cask Systems Development Program (CSDP) Initiative I transportation cask projects. This presentation is particularly timely because the CSDP Independent Management Review Group (IMRG), os which one of the authors is a member, completed an objective assessment of OCRWM's transportation cask system development activities and issued its first report in late August 1992. The perspective on these cask systems development activities that will be presented reflects conclusions based on (1) the industry's review of CSDP Preliminary and Draft Final Design Reports for the Initiative I cask projects, (2) the activities of one of the authors as a member of the IMRG, and (3) the positions that the industry has consistently taken on what it believes to be the appropriate scope and pace of the CSDP and its integration with other OCRWM activities. Background information on the OCRWM transportation cask systems development activities and the relevant industry activities will also be provided

  11. Testing of Metal Cask and Concrete Cask

    International Nuclear Information System (INIS)

    Shirai, K.; Wataru, M.; Takeda, H.; Tani, J.; Arai, T.; Saegusa, T.

    2015-01-01

    In Japan, the first interim spent fuel storage facility (ISF) outside of nuclear power plant site in use of dual-purpose metal cask is being planned to start its commercial operation in 2012 in Mutsu city, Aomori prefecture. The CRIEPI (Central Research Institute of Electric Power Industry) has executed several study programs on demonstrative testing for interim storage of spent fuel, mainly related to metal cask and concrete cask storage technology to reflect in Japanese safety requirements for dry casks issued by NISA/METI (Nuclear and Industrial Safety Agency, Ministry of Economy and Trade Industry). On top of that, the Japan Nuclear Energy Safety Organization (JNES) has executed study programs on spent fuel integrity, etc. This paper introduces the summary of these research programs. (author)

  12. Actinide partitioning-transmutation program. V. Preconceptual designs and costs of partitioning facilities and shipping casks, Appendix 4. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This Appendix contains cost estimate documents for the Fuels Fabrication Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contributing to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed. Shipping cask costs are provided.

  13. Actinide partitioning-transmutation program. V. Preconceptual designs and costs of partitioning facilities and shipping casks, Appendix 4. Final report

    International Nuclear Information System (INIS)

    1980-06-01

    This Appendix contains cost estimate documents for the Fuels Fabrication Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contributing to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed. Shipping cask costs are provided

  14. The impact of using reduced capacity baskets on cask fleet size and cask fleet mix

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.; Andress, D.A.

    1993-01-01

    The Civilian Radioactive Waste Management System transportation system will encounter a wide range of spent fuel characteristics. Since the Initiative I casks are being designed to transport 10-year-old fuel with a burnup of 35,000 MWd/MTU, there is a good likelihood that a number of the cask shipments will need to be derated in order to meet the Nuclear Regulatory Commission radiation guidelines. This report discusses the impact of cask derating by using reduced-capacity baskets. Cask derating, while enhancing the ability to move spent fuel with a wider range of age and burnup characteristics, increases the number of shipments; the amount of equipment (cask bodies, baskets, etc.); and the number of visits to both shipping and receiving sites required to transport a specific amount of spent fuel

  15. The impact of using reduced-capacity baskets on cask fleet size and cask fleet mix

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.; Andress, D.A.

    1993-01-01

    The Civilian Radioactive Waste Management System transportation system will encounter a wide range of spent fuel characteristics. Since the Initiative I casks are being designed to transport 10-year-old fuel with a burnup of 35,000 MWd/MTU, there is a good likelihood that a number of the cask shipments will need to be derated in order to meet the Nuclear Regulatory Commission radiation guidelines. This report discusses the impact of cask derating by using reduced-capacity baskets. Cask derating, while enhancing the ability to move spent fuel with a wider range of age and burnup characteristics, increases the number of shipments; the amount of equipment (cask bodies, baskets, etc.); and the number of visits to both shipping and receiving sites required to transport a specific amount of spent fuel

  16. A cask maintenance facility feasibility study

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1989-01-01

    The Oak Ridge National Laboratory (ORNL) is developing a transportation system for spent nuclear fuel (SNF) and defense high level waste (HLW) as a part of the Federal Waste Management System (FWMS). In early 1988, a feasibility study was undertaken to design a stand-alone, ''green field'' facility for maintaining the FWMS casks. The feasibility study provided an initial layout facility design, an estimate of the construction cost, and an acquisition schedule for a Cask Maintenance Facility (CMF). The study also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrievable Storage (MRS) facility. The data, design, and estimated costs resulting from the study have been organized for use in the total transportation system decision-making process. Most importantly, the feasibility study also provides a foundation for continuing design and planning efforts. Fleet servicing facility studies, operational studies from current cask system operators, a definition of the CMF system requirements, and the experience of others in the radioactive waste transportation field were used as a basis for the feasibility study. In addition, several cask handling facilities were visited to observe and discuss cask operations to establish the functions and methods of cask maintenance expected to be used in the facility. Finally, a peer review meeting was held at Oak Ridge, Tennessee in August, 1988, in which the assumptions, design, layout, and functions of the CMF were significantly refined. Attendees included representatives from industry, the repository and transportation operations

  17. BR-100 spent fuel shipping cask development

    International Nuclear Information System (INIS)

    McGuinn, E.J.; Childress, P.C.

    1990-01-01

    Continued public acceptance of commercial nuclear power is contingent to a large degree on the US Department of Energy (DOE) establishing an integrated waste management system for spent nuclear fuel. As part of the from-reactor transportation segment of this system, the B ampersand W Fuel Company (BWFC) is under contract to the DOE to develop a spent-fuel cask that is compatible with both rail and barge modes of transportation. Innovative design approaches were the keys to achieving a cask design that maximizes payload capacity and cask performance. The result is the BR-100, a 100-ton rail/barge cask with a capacity of 21 PWR or 52 BWR ten-year cooled, intact fuel assemblies. 3 figs

  18. Burnup credit in a dry storage module

    International Nuclear Information System (INIS)

    Thornton, J.R.

    1989-01-01

    Comparison of spent fuel storage expansion options available to Oconee Nuclear Station revealed that dry storage could be economically competitive with transshipment and rod consolidation. Economic competitiveness, however, mandated large unit capacity while existing cask handling facilities at Oconee severely limited size and weight. The dry storage concept determined to best satisfy these conflicting criteria is a 24 pressurized water reactor (PWR) fuel assembly capacity NUTECH Horizontal Modular Storage (NUHOMS) system. The Oconee version of the NUHOMS system takes advantage of burnup credit in demonstrating criticality safety. The burnup credit criticality analysis was performed by Duke Power Company's Design Engineering Department. This paper was prepared to summarize the criticality control design features employed in the Oconee NUHOMS-24P DSC basket and to describe the incentives for pursuing a burnup credit design. Principal criticality design parameters, criteria, and analysis methodology are also presented

  19. Design criteria for the structural analysis of shipping cask containment vessels

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    10 CFR Part 71, Sections 71.35 and 71.36, require that packages used to transport radioactive materials meet specified normal and hypothetical accident conditions. Acceptable design criteria are presented for use in the structural analysis of the containment vessels of Type B packages used to transport irradiated nuclear fuel. Alternative design criteria meeting the structural requirements of 10 CFR Part 71, Section 71.35 and 71.36, may also be used

  20. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  1. 47 CFR 27.209 - Designated entities; bidding credits; unjust enrichment.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Designated entities; bidding credits; unjust enrichment. 27.209 Section 27.209 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... 2305-2320 MHz and 2345-2360 MHz Bands § 27.209 Designated entities; bidding credits; unjust enrichment...

  2. Calculation of source term in spent PWR fuel assemblies for dry storage and shipping cask design

    International Nuclear Information System (INIS)

    Fernandez, J. L.; Lopez, J.

    1986-01-01

    Using the ORIGEN-2 Coda, the decay heat and neutron and photon sources for an irradiated PWR fuel element have been calculated. Also, parametric studies on the behaviour of the magnitudes with the burn-up, linear heat power and irradiation and cooling times were performed. Finally, a comparison between our results and other design calculations shows a good agreement and confirms the validity of the used method. (Author) 6 refs

  3. European experience in transport/storage cask for vitrified residues

    International Nuclear Information System (INIS)

    Otton, Camille; Sicard, Damien

    2007-01-01

    Available in abstract form only. Full text of publication follows: Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues would not be transported in the existing cask designs. Therefore, TN International has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TN TM 81 casks currently in use in Switzerland and the TN TM 85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues defining a thermal power of 56 kW (kilowatts). The challenges for the TN TM 81 and TN TM 85 cask designs were that the geometry entry data were very restrictive and were combined with a fairly wide range set by the AREVA NC Specification relative to vitrified residue canister. The TN TM 81 and the TN TM 85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production. It also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing flasks such as the TN TM 28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. (authors)

  4. Method to mount defect fuel elements i transport casks

    International Nuclear Information System (INIS)

    Borgers, H.; Deleryd, R.

    1996-01-01

    Leaching or otherwise failed fuel elements are mounted in special containers that fit into specially designed chambers in a transportation cask for transport to reprocessing or long-time storage. The fuel elements are entered into the container under water in a pool. The interior of the container is dried before transfer to the cask. Before closing the cask, its interior, and the exterior of the container are dried. 2 figs

  5. Transport casks help solve spent fuel interim storage problems

    International Nuclear Information System (INIS)

    Dierkes, P.; Janberg, K.; Baatz, H.; Weinhold, G.

    1980-01-01

    Transport casks can be used as storage modules, combining the inherent safety of passive cooling with the absence of secondary radioactive waste and the flexibility to build up storage capacity according to actual requirements. In the Federal Republic of Germany, transport casks are being developed as a solution to its interim storage problems. Criteria for their design and licensing are outlined. Details are given of the casks and the storage facility. Tests are illustrated. (U.K.)

  6. Cask fleet operations study

    International Nuclear Information System (INIS)

    1988-01-01

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system

  7. SCOPE, Shipping Cask Optimization and Parametric Evaluation

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: Given the neutron and gamma-ray shielding requirements as input, SCOPE may be used as a conceptual design tool for the evaluation of various casks designed to carry square fuel assemblies, circular canisters of nuclear waste material, or circular canisters containing 'intact' spent-fuel assemblies. It may be used to evaluate a specific design or to search for the maximum number of full assemblies (or canisters) that might be shipped in a given type of cask. In the 'search' mode, SCOPE will use built-in packing arrangements and the tabulated shielding requirements input by the user to 'design' a cask carrying one fuel assembly (or canister); it will then continue to increment the number of assemblies (or canisters) until one or more of the design limits can no longer be met. In each case (N = 1,2,3...), SCOPE will calculate the steady-state temperature distribution throughout the cask and perform a complete 1-D space/time transient thermal analysis following a postulated half-hour fire; then it will edit the characteristic dimensions of the cask (including fins, if required), the total weight of the loaded case, the steady-state temperature distribution at selected points, and the maximum transient temperature in key components. With SCOPE, the effects of various design changes may be evaluated quickly and inexpensively. 2 - Method of solution: SCOPE assumes that the user has already made an independent determination of the neutron and gamma-ray shielding requirements for the particular type of cask(s) under study. The amount of shielding required obviously depends on the type of spent fuel or nuclear waste material, its burnup and/or exposure, the decay time, and the number of assemblies or canisters in the cask. Source terms (and spectra) for spent PWR and BWR fuel assemblies are provided at each of 17 decay times, along with recommended neutron and gamma-ray shield thicknesses for Pb, Fe, and U-metal casks containing a

  8. Modification of SKYSHINE-III to include cask array shadowing

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, N.E. [Georgia Institute of Technology, Atlanta, GA (United States); Pfeifer, H.J. [NAC International, Norcross, GA (United States); Napolitano, D.G. [NISYS Corporation, Duluth, GA (United States)

    2000-03-01

    The NAC International version of SKYSHINE-III has been expanded to represent the radiation emissions from ISFSI (Interim Spent Fuel Storage Installations) dry storage casks using surface source descriptions. In addition, this modification includes a shadow shielding algorithm of the casks in the array. The resultant code is a flexible design tool which can be used to rapidly assess the impact of various cask loadings and arrangements. An example of its use in calculating dose rates for a 10x8 cask array is presented. (author)

  9. A Cask Processing Enclosure for the TRU Waste Processing Center - 13408

    Energy Technology Data Exchange (ETDEWEB)

    Newman, John T.; Mendez, Nicholas [IP Systems, Inc., 2685 Industrial Lane, Broomfield, Colorado 80020 (United States)

    2013-07-01

    This paper will discuss the key elements considered in the design, construction, and use of an enclosure system built for the TRU Waste Processing Center (TWPC). The TWPC system is used for the repackaging and volume reduction of items contaminated with radioactive material, hazardous waste and mixed waste. The modular structural steel frame and stainless steel skin was designed for rapid field erection by the use of interchangeable self-framing panel sections to allow assembly of a sectioned containment building and for ease of field mobility. The structure was installed on a concrete floor inside of an outer containment building. The major sections included an Outer Cask Airlock, Inner Cask Airlock, Cask Process Area, and Personnel Airlocks. Casks in overpacks containing transuranic waste are brought in via an inter-site transporter. The overpack lid is removed and the cask/overpack is transferred into the Outer Cask Airlock. A contamination cover is installed on the overpack body and the Outer Cask Airlock is closed. The cask/overpack is transferred into the Inner Cask Airlock on a cask bogie and the Inner Cask Airlock is closed. The cask lid is removed and the cask is transferred into the Cask Process Area where it is placed on a cask tilting station. Once the Cask Processing Area is closed, the cask tilt station is activated and wastes are removed, size reduced, then sorted and re-packaged into drums and standard waste boxes through bag ports. The modular system was designed and built as a 'Fast Track' project at IP Systems in Broomfield Colorado and then installed and is currently in use at the DOE TWPC located near Oak Ridge, Tennessee. (authors)

  10. Interfacing the existing cask fleet with the MRS

    International Nuclear Information System (INIS)

    Doman, J.W.; Hahn, R.E.

    1992-01-01

    This paper reports that the Department of Energy (DOE) is considering the possibility of using the existing fleet of casks to achieve spent fuel receipt at the Monitored Retrievable Storage (MRS) facility. The existing cask fleet includes the NLI-1/2, the NAC-LWT, the TN-8 (and TN-8L), the TN-9, and the IF-300 casks. Other casks may be available, but their status is not certain. Use of the existing cask fleet at the MRS places additional design requirements on the system, and specifically affects the cask-to-MRS interface. The decision to use the existing cask fleet also places additional demands on training needs and operator certification, and the configuration management system. Some existing cask designs may not be able to mate with a bottom opening hot cell MRS. Use of the existing cask fleet also greatly increases the number of shipments that must be received, to the point that a facility larger than originally envisioned may be required

  11. Functions of the cask maintenance facility: A white paper

    International Nuclear Information System (INIS)

    1987-01-01

    The shipping cask systems are the mobile components of the transportation system, designed to safely transport spent nuclear fuel between different facilities under both normal and accident conditions. The cask system will consist of the heavily shielded cask, the cask transport vehicle (truck trailer or railcar), and any associated ancillary equipment (covers, impact limiters, lifting devices, etc.). The cask and certain parts of the cask system must be operated within the limits imposed by a certificate of compliance (COC) granted by the Nuclear Regulatory Commission (NRC). Each cask system must transport spent fuel safely during the life of the system. To maintain the operational effectiveness and safety of the cask systems, a cask maintenance facility (CMF) will be included as an integral part of the transportation system. The planning activity of the transportation system and the design effort of the CMF require that the functions to be performed by the CMF be explicitly defined. The purpose of this paper is to (1) define the potential transportation system functions to be performed at the CMF; (2) examine the impact of this functional definition on the overall transportation system; (3) identify any unresolved issues concerning the interaction of the CMF with other elements of the transportation system; and (4) make recommendations to resolve any unresolved issues so that decisions can be made early in the transportation system planning process

  12. A cask fleet operations study

    International Nuclear Information System (INIS)

    1988-03-01

    This document describes the cask fleet currently available to transport spent nuclear fuels. The report describes the proposed operational procedures for these casks and the vehicles intended to transport them. Included are techniques for loading the cask, lifting it onto the transport vehicle, preparing the invoices, and unloading the cask at the destination. The document concludes with a discussion on the maintenance and repair of the casks. (tem) 29 figs

  13. Value of burnup credit beyond actinides

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.; Kang, Chi.

    1997-01-01

    DOE has submitted a topical report to the NRC justifying burnup credit based only on actinide isotopes (U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241). When this topical report is approved, it will allow a great deal of the commercial spent nuclear fuel to be transported in significantly higher capacity casks. A cost savings estimate for shipping fuel in 32 assembly (burnup credit) casks as opposed to 24 assembly (non-burnup credit) casks was previously presented. Since that time, more detailed calculations have been performed using the methodology presented in the Actinide-Only Burnup Credit Topical Report. Loading curves for derated casks have been generated using actinide-only burnup credit and are presented in this paper. The estimates of cost savings due to burnup credit for shipping fuel utilizing 32, 30, 28, and 24 assembly casks where only the 24 assembly cask does not burnup credit have been created and are discussed. 4 refs., 2 figs

  14. 76 FR 2243 - List of Approved Spent Fuel Storage Casks: NUHOMS ® HD System Revision 1

    Science.gov (United States)

    2011-01-13

    ... Storage Casks: NUHOMS [supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION: Direct... fuel storage regulations by revising the Transnuclear, Inc. (TN) NUHOMS [supreg] HD System listing... NUHOMS [supreg] HD System cask design listed in Sec. 72.214 (List of approved spent fuel storage casks...

  15. 75 FR 24786 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Science.gov (United States)

    2010-05-06

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... storage regulations by revising the Transnuclear, Inc. (TN) NUHOMS[supreg] HD System listing within the... System cask design within the list of approved spent fuel storage casks that power reactor licensees can...

  16. CASKCODES, Program CAPSIZE Scope KWIKDOSE for Shipping Cask Shielding

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of program or function: CAPSIZE is an interactive program to rapidly determine the likely impact that proposed design objectives might have on the size and capacity of spent fuel casks designed to meet those objectives. 2 - Method of solution: Given the burnup of the spent fuel, its cooling time, the thickness of the internal basket walls, the desired external dose rate, and the nominal weight limit of the load cask, the CAPSIZE program will determine the maximum number of PWR fuel assemblies that may be shipped in a lead-, steel-, or uranium- shielded cask meeting those objectives. Using optimal packing arrangements and shielding requirements input by the user, SCOPE will design a cask to carry a single fuel assembly and then continue incrementing the number of assemblies until one or more of the design limits can no longer be met. KWIKDOSE queries the user for the number of PWR fuel assemblies in a cask, the type of cask and thickness of the shield. Upon getting the necessary input, KWIKDOSE prints out the total dose rate, 10 feet from the centerline of the cask, as a function of the burnup and cooling time of the spent fuel. 3 - Restrictions on the complexity of the problem: The restrictions are subject to the shielding requirements of the shipping cask

  17. A practical approach to burn-up credit use in package design approval for PWR uranium oxide spent fuel assemblies

    International Nuclear Information System (INIS)

    Kroger, H.; Reiche, I.

    2009-01-01

    TN International has applied for a license for the TN 24 E transport and storage cask with the German competent authority using a new Burn-up Credit (BUC) approach for PWR uranium oxide fuel assemblies based on actinides and six selected fission products. In order to enable the use of BUC for fission products, various experimental data have to be provided for the two important aspects of the criticality calculation. Firstly, post-irradiation examination (PIE) experiments for the verification of the calculated fission product concentrations have to be provided for each selected fission product. These data are then used to validate the depletion calculations. Secondly, experimental data for the criticality calculations in the form of critical benchmark experiments have to be provided. The submitted data will be investigated for their applicability to the TN 24 E transport and storage cask. Since the application is limited to six fission products only, the conservatism of the BUC approach can be further justified, as the reduction in reactivity from the remaining fission products (about 190) is not taken credit for. (authors)

  18. Isotopic biases for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Rahimi, M.; Lancaster, D.; Hoeffer, B.; Nichols, M.

    1997-01-01

    The primary purpose of this paper is to present the new methodology for establishing bias and uncertainty associated with isotopic prediction in spent fuel assemblies for burnup credit analysis. The analysis applies to the design of criticality control systems for spent fuel casks. A total of 54 spent fuel samples were modeled and analyzed using the Shielding Analyses Sequence (SAS2H). Multiple regression analysis and a trending test were performed to develop isotopic correction factors for 10 actinide burnup credit isotopes. 5 refs., 1 tab

  19. EBRII cask characterization measurements

    International Nuclear Information System (INIS)

    Haggard, D.L.; Brackenbush, L.W.

    1996-01-01

    This report describes the measurements performed to provide the radionuclide content and verify the stated mass of special nuclear material (SNM) in Experimental Breeder Reactor EBRII casks stored in Trench 1, Burial Ground 4C, 218-WAC 200 West Area. this information is needed to characterize the curie content of each cask and the total curies in the storage area. Gamma assay techniques typically employed for nondestructive assay (NDA) were used to determine the gamma-emitting isotopes in each cask, which were fission and activation products from the spent fuel. Passive neutron counting was selected to verify the stated plutonium content because the fission and activation products masked any gamma emissions from plutonium. The fast neutrons emitted by plutonium are highly penetrating and easily detected through several inches of shielding. A slab neutron detector containing five 3 He proportional counters was used to determine the neutron emission rates and estimate the mass of plutonium present. The measurements followed the methods and procedures routinely used for nuclear waste assay and safeguard measurements. The measured neutron yields confirmed the declared plutonium content for the fuel elements, with the exception of several casks that contained recycled plutonium or americium target material. In these casks, the 244 Cm content masked the neutron emissions from any plutonium. For these casks, the plutonium content was estimated by correlation with the 244 Cm neutron emissions

  20. Evaluation of the 252Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    International Nuclear Information System (INIS)

    Mihalczo, J.T.

    1987-01-01

    The 252 Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt LWR fuel submerged in fuel storage pools, fully loaded and as they are being loaded. The motivation for this evaluation was that measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This in turn could lead to more cost-effective cask designs. Evaluation of the method for this application was based on (1) experiments already completed at a critical experiments facility using arrays of PWR fuel pins typical of the size of storage cask configurations, (2) the existence of neutron detectors that can function in shipping cask environments, and (3) the ability to construct ionization chambers containing 252 Cf of adequate intensity for these measurements. These three considerations are discussed

  1. Development of NUPAC 140B 100 ton rail/barge cask

    International Nuclear Information System (INIS)

    1990-04-01

    The 140-B Cask Ancillary Equipment includes all cask-related hardware necessary for a complete transportation package and for handling of the cask at shipping and receiving facilities. The transportation package equipment includes the cask tiedown system, the railcar and the sunshield/personnel barrier. The cask handling systems include both single and dual load path cask lifting fixtures, a cask uprighting system, an intermodal transfer system, and the cask drain and fill system. This document describes the individual systems in terms of their purpose, their function, and their mechanical features. Structural analyses are provided for the cask lifting and tiedown devices. The cask ancillary equipment will also include special tools and equipment such as seal surface protection device, special torque wrenches, leak test equipment, etc., for handling the cask at a reactor site. Although final design work remains to be completed, the ancillary equipment design information presented in this document ensures that the 140-B cask transportation package will meet or exceed all structural, functional, and operational requirements, within the specified gross vehicle weight limit. 18 figs

  2. Operation and maintenance of the T-3 cask system

    International Nuclear Information System (INIS)

    Hussey, M.W.; Berger, J.D.; Peterson, J.M.

    1983-01-01

    The T-3 cask system consists of three lead-shielded casks and the associated payload containers, internal fixturing, tiedowns, transportation trailers and handling devices. The three casks were designed to meet the requirements of Title 10 of the Code of Federal Regulations, Part 71. The Nuclear Regulatory Commission cask licensing activities for original design and for licensing revisions have required significant analytical support. Commercial transportation contractors can provide needed services including provisions of suitable equipment, compliances with security requirements, and safe movement of the shipment at a potential savings over DOE-owned transportation systems. Proper periodic inspection/maintenance activities supported by adequate decontamination facilities are a must in keeping the T-3 casks available for service

  3. Cask crush pad analysis using detailed and simplified analysis methods

    International Nuclear Information System (INIS)

    Uldrich, E.D.; Hawkes, B.D.

    1997-01-01

    A crush pad has been designed and analyzed to absorb the kinetic energy of a hypothetically dropped spent nuclear fuel shipping cask into a 44-ft. deep cask unloading pool at the Fluorinel and Storage Facility (FAST). This facility, located at the Idaho Chemical Processing Plant (ICPP) at the Idaho national Engineering and Environmental Laboratory (INEEL), is a US Department of Energy site. The basis for this study is an analysis by Uldrich and Hawkes. The purpose of this analysis was to evaluate various hypothetical cask drop orientations to ensure that the crush pad design was adequate and the cask deceleration at impact was less than 100 g. It is demonstrated herein that a large spent fuel shipping cask, when dropped onto a foam crush pad, can be analyzed by either hand methods or by sophisticated dynamic finite element analysis using computer codes such as ABAQUS. Results from the two methods are compared to evaluate accuracy of the simplified hand analysis approach

  4. Certifying the TN-BRP and TN-REG transportable storage demonstration casks

    International Nuclear Information System (INIS)

    Abbott, D.G.; Nolan, D.J.; Yoshimura, H.R.

    1991-01-01

    The US DOE has obtained US NRC certification to transport two transportable storage casks for a demonstration project. Because the casks had been built before the decision was made to obtain NRC certification, only limited modifications could be made to the casks. NRC's review resulted in several technical concerns that were subsequently resolved by design modifications, testing, and further analysis. Certification activities included qualifying the ferritic steel body material, modifying the borated stainless steel basket design, and extensive impact limiter testing. Recommendations for certifying future casks are presented based on experience with these casks

  5. Spent and fresh fuel shipping cask considerations

    International Nuclear Information System (INIS)

    Shappert, L.B.; Unger, W.E.; Freedman, J.M.

    1975-01-01

    A program to provide basic information for cask design and safety has been conducted for over ten years at Oak Ridge National Laboratory. Principal problem areas in Liquid Metal Fast Breeder Reactor (LMFBR) casks are identified as heat transfer, structures and containment, criticality and shielding. Solutions in the problem areas, as well as the need for future work, are addressed by describing an LMFBR conceptual design cask. A new program, which is underway at Sandia Laboratories, Albuquerque, New Mexico, is aimed at producing technology useful to industry and government. Technologies are being developed in areas of hazards analysis, heat transfer, shielding, structures and containment, and spent fuel characterization, substantiated by hot laboratory verification. Particular emphasis will be placed on establishing qualification tests based on accident experience. Handling requirements and limitations are discussed. (auth)

  6. NUHOMS registered - MP197 transport cask

    International Nuclear Information System (INIS)

    Shih, P.; Sicard, D.; Michels, L.

    2004-01-01

    The NUHOMS registered -MP197 cask is an optimized transport design which can be loaded in the spent fuel pool (wet loading) or loaded the canister from the NUHOMS concrete modules at the ISFSI site. With impact limiters attached, the package can be transported within the states or world-wide. The NUHOMS registered -MP197 packaging can be used to transport either BWR or PWR canisters. The NUHOMS registered -MP197 cask is designed to the ASME B and PV Code and meets the requirements of Section III, Division 3 for Transport Packaging. The cask with impact limiters has undergone drop testing to verify the calculated g loadings during the 9m drops. The test showed good correlation with analytical results and demonstrate that the impact limiters stay in place and protect the package and fuel during the hypothetical accidents

  7. Design of special purpose database for credit cooperation bank business processing network system

    Science.gov (United States)

    Yu, Yongling; Zong, Sisheng; Shi, Jinfa

    2011-12-01

    With the popularization of e-finance in the city, the construction of e-finance is transfering to the vast rural market, and quickly to develop in depth. Developing the business processing network system suitable for the rural credit cooperative Banks can make business processing conveniently, and have a good application prospect. In this paper, We analyse the necessity of adopting special purpose distributed database in Credit Cooperation Band System, give corresponding distributed database system structure , design the specical purpose database and interface technology . The application in Tongbai Rural Credit Cooperatives has shown that system has better performance and higher efficiency.

  8. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  9. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  10. Seismic tipping analysis of a spent nuclear fuel shipping cask sitting on a crush pad

    International Nuclear Information System (INIS)

    Uldrich, E.D.; Hawkes, B.D.

    1998-04-01

    A crush pad has been designed and analyzed to absorb the kinetic energy of an accidentally dropped spent nuclear fuel shipping cask into a 44 ft. deep cask unloading pool. Conventional analysis techniques available for evaluating a cask for tipping due to lateral seismic forces assume that the cask rests on a rigid surface. In this analysis, the cask (110 tons) sits on a stainless steel encased (0.25 in. top plate), polyurethane foam (4 ft. thick) crush pad. As the cask tends to rock due to horizontal seismic forces, the contact area between the cask and the crush pad is reduced, increasing the bearing stress, and causing the pivoting corner of the cask to depress into the crush pad. As the crush pad depresses under the cask corner, the pivot point shifts from the corner toward the cask center, which facilitates rocking and potential tipping of the cask. Subsequent rocking of the cask may deepen the depression, further contributing to the likelihood of cask tip over. However, as the depression is created, the crush pad is absorbing energy from the rocking cask. Potential tip over of the cask was evaluated by performing a non-linear, dynamic, finite element analysis with acceleration time history input. This time history analysis captured the effect of a deforming crush pad, and also eliminated conservatisms of the conventional approaches. For comparison purposes, this analysis was also performed with the cask sitting on a solid stainless steel crush pad. Results indicate that the conventional methods are quite conservative relative to the more exacting time history analysis. They also indicate that the rocking motion is less on the foam crush pad than on the solid stainless steel pad

  11. Free drop impact analysis of shipping cask

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1989-01-01

    The WHAMS-2D and WHAMS-3D codes were used to analyze the dynamic response of the RAS/TREAT shielded shipping cask subjected to transient leadings for the purpose of assessing potential damage to the various components that comprise the the cask. The paper describes how these codes can be used to provide and intermediate level of detail between full three-dimensional finite element calculations and hand calculations which are cost effective for design purposes. Three free drops were adressed: (1) a thirty foot axial drop on either end; (2) a thirty foot oblique angle drop with the cask having several different orientations from the vertical with impact on the cask corner; and (3) a thirty foot side drop with simultaneous impact on the lifting trunnion and the bottom end. Results are presented for two models of the side and oblique angle drops; one model includes only the mass of the lapped sleeves of depleted uranium (DU) while the other includes the mass and stiffness of the DU. The results of the end drop analyses are given for models with and without imperfections in the cask. Comparison of the analysis to hand calculations and simplified analyses are given. (orig.)

  12. Criticality studies for dry storage cask

    International Nuclear Information System (INIS)

    Krishnani, P.D.; Srinivasan, K.R.

    1993-01-01

    Spent nuclear fuel from Tarapur Atomic Power Station (TAPS) is stored in a storage pool located inside the reactor building. The capacity of this pool was initially to meet storage requirements of 528 bundles which was later augmented from time to time. Since the enhanced capacity was also getting exhausted, setting up of a storage pool away from reactor was envisaged. As an interim measure, the dry storage casks were designed to store the spent fuel already cooled for a few years in the storage pools. If water enters the cask, the cask interior may be covered with steam water or air-water mixture. This paper gives the results of criticality calculations for storage cask under various conditions of steam water mixture, using the computer code LWRBOX. In these calculations, it has been assumed that the cask contains the most reactive fuel assemblies of reload-1 at zero burnup. It also gives the comparison of some of the results with General Electric (GE) calculations. (author). 3 refs., 1 fig., 2 tabs

  13. Mechanical properties used for the qualification of transport casks

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1993-01-01

    The qualification process that should be sufficient for qualification of a specific cask (material/geometry combination) has been examined. The prototype cask should be tested to determine its overall variation in microstructure, chemistry, and mechanical properties. This prototype may also be subjected to 'proof testing' to demonstrate the validity of the design analysis (including the mechanical properties used in the analysis). The complete mechanical property mapping does not necessarily have to precede the proof testing (i.e., portions of the cask which experience only low (elastic) loads during the drop test are suitable for mechanical test specimens). The behavior of the prototype cask and the production casks are linked by assuring that each cask possesses at least the minimum level of one or more critical mechanical properties. This may be done by measuring the properties of interest directly, or by relying on a secondary measurement (such as subsize mechanical test results or microstructure/compositional measurements) which has been statistically correlated to the critical properties. The database required to show the correlation between the secondary measurement and the valid design property may be established by tests on the material from the prototype cask. The production controls must be demonstrated as being adequate to assure that a uniform product is produced. The testing of coring (or test block or prolongation) samples can only be viewed as providing a valid link to the benchmark results provided by the prototype cask if the process used to create follow-on casks remains essentially similar. The MOSAIK Test Program has demonstrated the qualification method through the benchmarking stage. The program did not establish for qualifying serial production casks through, for example, a correlation between small specimen parameters and valid design fracture toughness properties. Such a correlation would require additional experimental work. (J.P.N.)

  14. The dry spent RBMK fuel cask storage site at the Ignalina NPP in Lithuania

    International Nuclear Information System (INIS)

    Penkov, V.V.; Diersch, R.

    1999-01-01

    At present, there are about 15,000 spent RBMK fuel assemblies stored in the water pools near the reactors at the Ignalina Nuclear Power Plant (INPP). Part of them are cut in two bundles and stored in standardized baskets in the pools. Each basket is loaded with 102 bundles. For long-term interim storage of this fuel, it was decided to use dry storage in casks. For this reason, the total activity to be stored is split into individual units (casks). Each cask represents a closed and independent safety system, fulfilling all safety-relevant requirements for both normal operational and hypothetical accidental conditions. The main safety relevant features of the storage cask system are: (1) Inherent safety system; (2) Double barrier system; (3) Passive cooling by natural convection; (4) Safety against accidents. The cask dry storage system is a cost effective and multi-functional system for storage, transport after the operation time and final disposal under consideration of additional protective elements. From an economical point of view, cask storage has a number of advantages. Two cask types have been intended for the INPP storage site: (1) The CASTOR RBMK cask made of ductile cast iron; (2) The CONSTOR RBMK sandwich cask made of an inner and outer steel shell and reinforced heavy concrete. The CASTOR RBMK and the CONSTOR RBMK casks are designed to withstand severe storage site accidents and with help of impact limiters - to fulfil the IAEA test criteria for type B(U)F packages. The INPP spent RBMK fuel storage site is designed as an open air storage for an operational time of 50 years. The casks are arranged on the concrete storage pad. The site is equipped with a crane for cask handling and technological buildings and security systems. The safety analyses for fuel and cask handling and for cask handling and for cask technology at the site have been made and accepted by the Lithuanian Competent Authority. (author)

  15. Technical issues affecting the transport of dual purpose casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ottinger, C.A.; Brimhall, J.L.; Gilbert, E.R.; Jones, R.H.

    1989-01-01

    Spent fuel storage pools at many nuclear reactors in the US have already or will soon be filled to maximum capacity. Approximately 50,000 metric tons of uranium (MTU) spent fuel will be discharged by the projected 2003 start-up date of a federal disposal system. Of this, approximately 6,000 MTU will require storage outside existing or projected pool storage capabilities (DOE, 1988). At-reactor dry storage of spent fuel, including vault, caisson, and cask systems, is being considered as an alternative to accommodate this excess fuel. Two dry storage cask concepts are among those under consideration. One involves placing spent fuel in storage-only casks (SOC) until a monitored retrievable storage (MRS) facility or repository is open when the spent fuel would be transferred to a transport-only cask (TOC) for shipment. The second option, the dual purpose or transportable storage cask (TSC), is a system that would serve for both storage and later transport without requiring the spent fuel to be unloaded. To carry out its purpose, a TSC must be shipped directly from a storage facility to a disposal facility without first being opened to evaluate the cask or the fuel. To assure that both the fuel and the cask are in a transportable condition after 20 to 40 years of storage requires: (1) a definition of expected storage conditions; (2) an assessment of the impact of expected storage conditions on the reliability of the components and functions of the TSC during transport; and (3) the development of an overall TSC system design and operational strategy which ensures that TSC transport reliability meets or exceeds that of a transport-only cask. The later requirement is related to defining what appropriate design features, pre-shipment inspections, and/or alternative fuel and cask monitoring requirements are necessary during long-term storage to ensure the cask will meet transport requirements during later transport

  16. Technical issues affecting the transport of dual purpose casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ottinger, C.A.; Brimhall, J.L.; Gilbert, E.R.; Jones, R.H.

    1989-01-01

    Approximately 60,000 metric tons of uranium (MTU) spent fuel will be discharged by the projected 2003 startup date of a federal disposal system. Of this, approximately 15,000 MTU will require storage outside existing or projected pool storage capabilities (Orvis et al., 1984). At-reactor dry storage of spent fuel, including vault, caisson, and cask systems, is being considered as an alternative to accommodate this excess fuel. Two dry storage cask concepts are among those under consideration. One involves placing spent fuel in storage-only casks (SOC) until a monitored retrievable storage (MRS) facility or repository is open, when the spent fuel would be transferred to a transport-only cask (TOC) for shipment. The second option, the dual purpose or transportable storage cask (TSC), is a system that would serve for both storage and later transport. To carry out its purpose, a TSC must be shipped directly from a storage facility to a disposal facility without first being opened to evaluate the cask or the fuel. To assure that both the fuel and the cask are in a transportable condition after 20 to 40 years of storage requires: (1) a definition of expected storage conditions; (2) an assessment of the impact of expected storage conditions on the reliability of the components and functions of the TSC during transport; and (3) the development of an overall TSC system design and operational strategy which ensures that TSC transport reliability compares to that of a transport-only cask. The later requirement is related to defining what appropriate design features, pre-shipment inspection, and/or alternative fuel and cask monitoring requirements are necessary during long-term storage to ensure the cask will meet transport performance requirements during later transport. 8 refs., 1 fig., 1 tab

  17. Cask handling method and apparatus

    International Nuclear Information System (INIS)

    Yoli, A.H.; Husain, I.

    1977-01-01

    The method of transferring radioactive material into and out of the cask comprises positioning a tank with an open end in a well. Then a cask having a passage for moving radioactive material into and out of the cask is placed in the tank through the opening in the tank. The tank opening is then sealed to the cask relative to the well without sealing the passage relative to the well to prevent water filled into the well from leaking into the tank. Then the well is filled with water above the seal, and radioactive material is then moved through the water in the well through the passage into the cask. The tank may be filled with demineralized water from a separate source to pressurize the space in the tank on the other side of the seal from the well to prevent water in the well from entering the tank. The water level in the well and in the tank is then lowered, the tank opening to the cask seal is removed, and a cover is attached to the cask passage to maintain the radioactive material and contaminated water in the cask. The apparatus which accomplishes the above method comprises a tank in a well for receiving a cask therein. A seal between the tank and the cask prevents water in the well from flowing into the tank about the cask and permits water in the well to flow through the cask opening into the cask. A first water supply means raises and lowers the water level in the well, and a second water supply means supplies clean demineralized water to the tank under pressure to prevent water in the well from leaking into the tank. The seal is annularly shaped and is attached to the top of the tank. The central portion of the annular seal is aligned with the cask opening and it has means to seal the annular seal to the cask

  18. Development of concrete cask storage technology for spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Shirai, Koji; Takeda, Hirofumi

    2010-01-01

    Need of spent fuel storage in Japan is estimated as 10,000 to 25,000 t by 2050 depending on reprocessing. Concrete cask storage is expected due to its economy and risk hedge for procurement. The CRIEPI executed verification tests using full-scale concrete casks. Heat removal performances in normal and accidental conditions were verified and analytical method for the normal condition was established. Shielding performance focus on radiation streaming through the air outlet was tested and confirmed to meet the design requirements. Structural integrity was verified in terms of fracture toughness of stainless steel canister for the cask of accidental drop tests. Cracking of cylindrical concrete container due to thermal stress was confirmed to maintain its integrity. Seismic tests of concrete cask without tie-down using scale and full-scale model casks were carried out to confirm that the casks do not tip-over and the spent fuel assembly keeps its integrity under severe earthquake conditions. Long-term integrity of concrete cask for 40 to 60 years is required. It was confirmed using a real concrete cask storing real spent fuel for 15 years. Stress corrosion cracking is serious issue for concrete cask storage in the salty air environment. The material factor was improved by using highly corrosion resistant stainless steel. The environmental factor was mitigated by the development of salt reduction technology. Estimate of surface salt concentration as a function of time became possible. Monitoring technology to detect accidental loss of containment of the canister by the stress corrosion cracking was developed. Spent fuel integrity during storage was evaluated in terms of hydrogen movement using spent fuel claddings stored for 20 years. The effect of hydrogen on the integrity of the cladding was found negligible. With these results, information necessary for real service of concrete cask was almost prepared. Remaining subject is to develop more economical and rational

  19. Criticality safety study of dry spent fuel cask loaded with increased enrichment fuel

    International Nuclear Information System (INIS)

    Bznuni, S.; Baghdasaryan, N.; Amirjanyan, A.

    2013-01-01

    Existing Dry Spent Fuel Casks (DSC) for transporting and storing of Armenian NPP fuel was licensed for WWER-440 fuel assemblies with 3.6% enrichment. Having in mind that ANPP introduced new fuel assemblies with increased enrichment (3.82 %) re-assessment of criticality safety analysis for DSC is required. Criticality safety analysis of DSC was performed by KENO-VI program using 238-GROUP ENDF/B-VII.0 LIBRARY (V7-238). Results of analysis showed that additional 8 borated racks for fuel assemblies should be included in the design of DSC. In addition feasibility study was performed to find out level of burnup-credit approach implementation to keep current design of DSC unchanged. Burnup-credit analysis was performed by STARBUCS program using axial burnup profiles from Armenian NPP neutronics analysis carried out by BIPR code. (authors)

  20. Fabrication and operational experience with the interim storage cask

    International Nuclear Information System (INIS)

    Scott, P.L.

    1998-01-01

    This paper discusses the fabrication and operational experience of the Interim Storage Cask (ISC). The ISC is a dry storage cask which is used to safely store a Core Component Container (CCC) containing up to seven Fast Flux Test Facility (FFTF) spent fuel assemblies at the US Department of Energy's Hanford Site. Under contract to B and W Hanford Company (BWHC), General Atomics (GA) designed and fabricated thirty ISC casks which BWHC is remotely loading at the FFTF facility. BWHC designed and fabricated the CCCS. As of December 1997, thirty ISCs have been fabricated, of which eighteen have been loaded and moved to a storage site adjacent to the FFTF facility. Fabrication consisted of three sets of casks. The first unit was completed and acceptance tested before any other units were fabricated. After the first unit passed all acceptance tests, nine more units were fabricated in the first production run. Before those nine units were completed, GA began a production run of twenty more units. The paper provides an overview of the cask design and discusses the problems encountered in fabrication, their resolution, and changes made in the fabrication processes to improve the quality of the casks. The paper also discusses the loading process and operational experiences with loading and handling of the casks. Information on loading times, worker dose exposure, and total dose for loading are presented

  1. Neutron and Gamma Shielding Evaluation for KN-12 Spent Nuclear Fuel Transport Cask

    Energy Technology Data Exchange (ETDEWEB)

    Cho, I. J.; Min, D. K.; Lee, J. C.; You, G. S.; Yoon, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chang, G. H.; Jeong, Y. C.; Ko, Y. W. [Korea Hydro and Nuclear Power Co., LTD., Kori (Korea, Republic of)

    2007-07-01

    The CASTOR KN-12 is designed to transport 12 intact PWR spent fuel assemblies for dry and wet transportation conditions. The overall cask length is 480.1 cm with a wall thickness 37.5 cm. Shield for the KN-12 is maintained by the thick walled cask body and the lid. For neutron shielding, polyethylene rods (PE) are arranged in longitudinal boreholes in the vessel wall and PE-plates are inserted between the cask lid and lid side shock absorber and between the cask bottom and bottom steel plate. The shielding evaluation of the cask has been performed with MCNP to confirm the shielding integrity of cask for pre-service inspection of transport cask.

  2. Comparative economics for DUCRETE spent fuel storage cask handling, transportation, and capital requirements

    International Nuclear Information System (INIS)

    Powell, F.P.

    1995-04-01

    This report summarizes economic differences between a DUCRETE spent nuclear fuel storage cask and a conventional concrete storage cask in the areas of handling, transportation, and capital requirements. The DUCRETE cask is under evaluation as a new technology that could substantially reduce the overall costs of spent fuel and depleted U disposal. DUCRETE incorporates depleted U in a Portland cement mixture and functions as the cask's primary radiation barrier. The cask system design includes insertion of the US DOE Multi-Purpose Canister inside the DUCRETE cask. The economic comparison is from the time a cask is loaded in a spent fuel pool until it is placed in the repository and includes the utility and overall US system perspectives

  3. Key technology studies of GY-20 and GY-40 High-capacity cobalt-60 transport casks

    International Nuclear Information System (INIS)

    Liu Huifang; Zhang Xin

    2012-01-01

    GY-20 and GY-40 high-capacity cobalt-60 transport casks are used to transport cobalt-60 industrial irradiators and cobalt-60 bundles. The radioactive contents have special features of high-activity and high residual heat, so only a few countries such as Canada, England and Russia have design capacity. The key technologies and corresponding solutions were studied for the design and manufacture of the cask taking into account the structural, thermal, mechanics and shield requests. A series of tests prove that the cask structure design, design criteria for lead coating structure and quality control measurements are reasonable and effective, and the cask shield integrity can be ensured for all conditions. The casks have ability to transport high-activity sealed sources safely, and the design of cask satisfies the requirement of design code and standard. It can provide reference for other B type package. (authors)

  4. SMART, Radiation Dose Rates on Cask Surface

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1989-01-01

    1 - Description of program or function: SMART calculates radiation dose rate at the center of each cask surface by using characteristic functions for radiation shielding ability and for radiation current back-scattered from cask wall and cask cavity of each cask, once cask-type is specified. 2 - Method of solution: Matrix Calculation

  5. Basic Considerations for Dry Storage of Spent Nuclear Fuels and Revisited CFD Thermal Analysis on the Concrete Cask

    International Nuclear Information System (INIS)

    Noh, Jae Soo; Park, Younwon; Song, Sub Lee; Kim, Hyeun Min

    2016-01-01

    The integrity of storage facility and also of the spent nuclear fuel itself is considered very important. Storage casks can be located in a designated area on a site or in a designated storage building. A number of different designs for dry storage have been developed and used in different countries. Dry storage system was classified into two categories by IAEA. One is container including cask and silo, the other one is vault. However, there is various way of categorization for dry storage system. Dry silo and cask are usually classified separately, so the dry storage system can be classified into three different types. Furthermore, dry cask storage can be categorized into two types based on the type of the materials, concrete cask and metal cask. In this paper, the design characteristics of dry storage cask are introduced and computational fluid dynamics (CFD) based thermal analysis for concrete cask is revisited. Basic principles for dry storage cask design were described. Based on that, thermal analysis of concrete dry cask was introduced from the study of H. M. Kim et al. From the CFD calculation, the temperature of concrete wall was maintained under the safety criteria. From this fundamental analysis, further investigations are expected. For example, thermal analysis on the metal cask, thermal analysis on horizontally laid spent nuclear fuel assemblies for transportation concerns, and investigations on better performance of natural air circulation in dry cask can be promising candidates

  6. Basic Considerations for Dry Storage of Spent Nuclear Fuels and Revisited CFD Thermal Analysis on the Concrete Cask

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jae Soo [ACT Co. Ltd., Daejeon (Korea, Republic of); Park, Younwon; Song, Sub Lee [BEES Inc., Daejeon (Korea, Republic of); Kim, Hyeun Min [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The integrity of storage facility and also of the spent nuclear fuel itself is considered very important. Storage casks can be located in a designated area on a site or in a designated storage building. A number of different designs for dry storage have been developed and used in different countries. Dry storage system was classified into two categories by IAEA. One is container including cask and silo, the other one is vault. However, there is various way of categorization for dry storage system. Dry silo and cask are usually classified separately, so the dry storage system can be classified into three different types. Furthermore, dry cask storage can be categorized into two types based on the type of the materials, concrete cask and metal cask. In this paper, the design characteristics of dry storage cask are introduced and computational fluid dynamics (CFD) based thermal analysis for concrete cask is revisited. Basic principles for dry storage cask design were described. Based on that, thermal analysis of concrete dry cask was introduced from the study of H. M. Kim et al. From the CFD calculation, the temperature of concrete wall was maintained under the safety criteria. From this fundamental analysis, further investigations are expected. For example, thermal analysis on the metal cask, thermal analysis on horizontally laid spent nuclear fuel assemblies for transportation concerns, and investigations on better performance of natural air circulation in dry cask can be promising candidates.

  7. Transportation cask contamination weeping

    International Nuclear Information System (INIS)

    Bennett, P.C.; Doughty, D.H.; Chambers, W.B.

    1993-01-01

    This paper describes the problem of cask contamination weeping, and efforts to understand the phenomenon and to eliminate its occurrence during spent nuclear fuel transport. The paper summarizes analyses of field experience and scoping experiments, and concentrates on current modelling and experimental validation efforts. (J.P.N.)

  8. Analysis of a hypothetical dropped spent nuclear fuel shipping cask impacting a floor mounted crush pad

    International Nuclear Information System (INIS)

    Hawkes, B.D.; Uldrich, E.D.

    1998-03-01

    A crush pad has been designed and analyzed to absorb the kinetic energy of a hypothetically dropped spent nuclear fuel shipping cask into a 44-ft. deep cask unloading pool at the Idaho Chemical Processing Plant. The 110-ton Large Cell Cask was assumed to be accidentally dropped onto the parapet of the unloading pool, causing the cask to tumble through the pool water and impact the floor mounted crush pad with the cask's top corner. The crush pad contains rigid polyurethane foam, which was modeled in a separate computer analysis to simulate the manufacturer's testing of the foam and to determine the foam's stress and strain characteristics. This computer analysis verified that the foam was accurately represented in the analysis to follow. A detailed non-linear, dynamic finite element analysis was then performed on the crush pad and adjacent pool structure to assure that a drop of this massive cask does not result in unacceptable damage to the storage facility. Additionally, verification was made that the crush pad adequately protects the cask from severe impact loading. At impact, the cask has significant vertical, horizontal and rotational velocities. The crush pad absorbs much of the energy of the cask through plastic deformation during primary and secondary impacts. After the primary impact with the crush pad, the cask still has sufficient energy to rebound and rotate until it impacts the pool wall. An assessment is made of the damage to the crush pad and pool wall and of the impact loading on the cask

  9. Decontamination of transport casks and of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    The present document provides an analysis of the technical papers presented at the meeting as well as a summary of the panel discussion. Conclusions and Recommendations: The meeting agreed that the primary source of contamination of transport casks is the production of radioactive isotopes in nuclear fuel and activation products of fuel components in nuclear reactors. The type, amount of mechanism for the release of these isotopes depend on the reactor type and fuel handling process. The widespread use of pools for the storage and handling of fuel provides an easy path for the transfer of contamination. Control of pool water conditions is essential for limiting the spread of contamination. For plants where casks are immersed in pools for loading, the immersion times should be minimised. Casks should be designed for ease of decontamination. The meeting discussed the use of stainless steel and suitable paints for coating casks. Designers should consider the appropriate coating for specific applications. The use of pressurized water for decontamination is recommended whenever possible. A number of commercially available reagents exist for decontaminating cask external surfaces. More work, however, is needed to cope with Pressurized Water Reactor crud within casks. Leaking fuel should be identified and isolated before storage in pools. Basic studies of the uptake and release of contamination from cask surfaces should be initiated. Standardization of methods of contamination measurement and instrumentation should be instituted. Refs, figs and tabs

  10. Robotic radiation survey and analysis system for radiation waste casks

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    Sandia National Laboratories (SNL) and the Hanford Engineering Development Laboratories have been involved in the development of remote systems technology concepts for handling defense high-level waste (DHLW) shipping casks at the waste repository. This effort was demonstrated the feasibility of using this technology for handling DHLW casks. These investigations have also shown that cask design can have a major effect on the feasibility of remote cask handling. Consequently, SNL has initiated a program to determine cask features necessary for robotic remote handling at the waste repository. The initial cask handling task selected for detailed investigation was the robotic radiation survey and analysis (RRSAS) task. In addition to determining the design features required for robotic cask handling, the RRSAS project contributes to the definition of techniques for random selection of swipe locations, the definition of robotic swipe parameters, force control techniques for robotic swipes, machine vision techniques for the location of objects in 3-D, repository robotic systems requirements, and repository data management system needs

  11. Spreader beam analysis for the CASTOR GSF cask

    International Nuclear Information System (INIS)

    Clements, E.P.

    1997-01-01

    The purpose of this report is to document the results of the 150% rated capacity load test performed by DynCorp Hoisting and Rigging on the CASTOR GSF special cask lifting beams. The two lifting beams were originally rated and tested at 20,000kg (44,000lb) by the cask manufacturer in Germany. The testing performed by DynCorp rated and tested the lifting beams to 30,000 kg (66,000 lb)+0%, -5%, for Hanford Site use. The CASTOR GSF cask, used to transport isotopic Heat Sources (canisters), must be lifted with its own designed lifting beam system (Figures 1, 2, and 3). As designed, the beam material is RSt 37-2 (equivalent to American Society for Testing and Materials[ASTM] A-570), the eye plate is St 52-2 (equivalent to ASTM A-516), and the lifting pin is St 50 (equivalent to ASTM A-515). The beam has two opposing 58 mm (2.3 in.) diameter by 120 mm(4.7 in.) length, high grade steel pins that engage the cask for lifting. The pins have a manual locking mechanism to prevent disengagement from the casks. The static, gross weight (loaded) of the cask 18,640 kg (41,000 lb) on the pins prevents movement of the pins during lifting. This is due to the frictional force of the cask on the pins when lifting begins

  12. The quality of procedures to assess and credit prior learning: Implications for design.

    NARCIS (Netherlands)

    Joosten-ten Brinke, Desirée; Sluijsmans, Dominique; Brand-Gruwel, Saskia; Jochems, Wim

    2008-01-01

    Joosten-ten Brinke, D., Sluijsmans, D. M. A., Brand-Gruwel, S., & Jochems, W. M. G. (2008). The quality of procedures to assess and credit prior learning: Implications for design. Educational Research Review, 3, 51-65. doi:10.1016/j.edurev.2007.08.001.

  13. Developing new transportable storage casks for interim dry storage

    International Nuclear Information System (INIS)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R.

    2004-01-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication

  14. An analysis of contingencies for making casks available for use during the early years of Federal Waste Management System operations

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Pope, R.B.; Shappert, L.B.; Wankerl, M.W.; Best, R.E.; Schmid, S.; Danese, F.L.

    1992-01-01

    A study has been performed to examine the contingencies that could be pursued by the Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) for shipping spent fuel beginning in 1998. OCRWM's current plan is to initiate operations using early production units of Initiative I truck and rail/barge casks that are presently being designed. Contingencies to this plan were considered in case some unforeseen event occurs that precludes the Initiative I casks from entering into service early in 1998 in sufficient quantities (both numbers and types) to satisfy DOE's shipping needs. Specifically, the study addressed the potential availability of cask systems, selected several cask usage scenarios, determined the requirements for casks under these scenarios, generically assessed different strategies for acquiring casks or the use of casks, and generically assessed cask fabrication capabilities. Issues concerning both domestic and foreign resources were addressed with a focus on the first five years of Federal Waste Management System (FWMS) operation

  15. Validation of SCALE-4 for burnup credit applications

    International Nuclear Information System (INIS)

    Bowman, S.M.; DeHart, M.D.; Parks, C.V.

    1995-01-01

    In the past, a criticality analysis of PWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. If credit is allowed for fuel burnup in the design of casks that are used in the transport of spent light water reactor fuel to a repository, the increase in payload can lead to a significant reduction in the cost of transport and a potential reduction in the risk to the public. A portion of the work has been performed at ORNL in support of the US DOE efforts to demonstrate a validation approach for criticality safety methods to be used in burnup credit cask design. To date, the SCALE code system developed at ORNL has been the primary computational tool used by DOE to investigate technical issues related to burnup credit. The ANSI/ANS-8.1 criticality safety standard requires validation and benchmarking of the calculational methods used in evaluating criticality safety limits for applications outside reactors by correlation against critical experiments that are applicable. Numerous critical experiments for fresh PWR-type fuel in storage and transport configurations exist and can be used as part of a validation database. However, there are no critical experiments with burned PWR-type fuel in storage and transport configurations. As an alternative, commercial reactors offer an excellent source of measured critical configurations. The results reported demonstrate the ability of the ORNL SCALE-4 methodology to predict a value of k eff very close to the known value of 1.0, both for fresh fuel criticals and for the more complex reactor criticals. Beyond these results, additional work in the determination of biases and uncertainties is necessary prior to use in burnup credit applications

  16. Development of the nuclear ship MUTSU spent fuel shipping cask

    International Nuclear Information System (INIS)

    Ishizuka, M.; Umeda, M.; Nawata, Y.; Sato, H.; Honami, M.; Nomura, T.; Ohashi, M.; Higashino, A.

    1989-01-01

    After the planned trial voyage (4700 MWD/MTU) of the nuclear ship MUTSU in 1990, her spent fuel assemblies, initially made of two types of enriched UO 2 (3.2wt% and 4.4wt%), will be transferred to the reprocessing plant soon after cooling down in the ship reactor for more than one year. For transportation, the MUTSU spent fuel shipping casks will be used. Prior to transportation to the reprocessing plant, the cooled spent fuel assemblies will be removed from the reactor to the shipping casks and housed at the spent fuel storage facility on site. In designing the MUTSU spent fuel shipping cask, considerations were given to make the leak-tightness and integrity of the cask confirmable during storage. The development of the cask and the storage function demonstration test were performed by Japan Atomic Energy Research Institute (JAERI) and Mitsubishi Heavy Industries, Ltd. (MHI). One prototype cask for the storage demonstration test and licensed thirty-five casks were manufactured between 1987 and 1988

  17. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  18. A preliminary evaluation of the ability of from-reactor casks to geometrically accommodate commercial LWR spent nuclear fuel

    International Nuclear Information System (INIS)

    Andress, D.; McLeod, N.B.; Rahimi, M.; Joy, D.S.; Peterson, R.W.

    1991-01-01

    The DOE has sponsored a number of cask design efforts to define several transportation casks to accommodate the various assemblies expected to be accepted by the Federal Waste Management System. At this time, three preliminary cask designs have been selected for the final design - the GA-4 and GA-9 truck casks and the BR-100 rail cask. The GA-4 cask is designed for PWR fuel only; the GA-9 cask is a longer cask with less shielding designed for BWR fuel only; and the BR-100 cask is designed to accommodate both PWR and BWR fuels. In total, this assessment indicates that the current Initiative I cask designs can be expected to dimensionally accommodate 100% of the PWR fuel assemblies (other than the extra-long South Texas Fuel) with control elements removed, and >90% of the assemblies having the control elements as an integral part of the fuel assembly. For BWR assemblies, >99% of the assemblies can be accommodated with fuel channels removed. Because of the button and spring interference, the basket openings in these casks will not accommodate assemblies in the BWR/2,3 and BWR/4-6 fuel classes with the fuel channels in place

  19. Structural dimensioning of dual purpose cask prototype

    International Nuclear Information System (INIS)

    Silva, Luiz Leite da; Mourao, Rogerio Pimenta; Lopes, Claudio Cunha

    2005-01-01

    The structural dimensioning of a Type B(U) dual purpose cask prototype is part of the scope of work of the Brazilian institute CDTN in the IAEA regional project involving Latin American countries which operate research reactors (Argentina, Brazil, Chile, Mexico and Peru). In order to meet the dimensional and operational characteristics of the reactor facilities in these countries, a maximum weight of 10.000 kgf and a maximum dimension of 1 m in at least one direction were set for the cask. With these design restrictions, the cask's payload is either 21 MTR or 78 TRIGA fuel elements. The cask's most important components are main body, primary and secondary lids, basket and impact limiters. The main body has a sandwich-like wall with internal and external layers made of AISI 304 stainless steel with lead in-between. The lead provides biological shielding. The primary lid is similarly layered, but in the axial direction. It is provided with a double system of metallic rings and has ports for pressurization, sampling and containment verification. The secondary lid has the main function of protecting the primary lid against mechanical impacts. The basket structure is basically a tube array reinforced by bottom plate, feet and spacers. Square tubes are used for MTR elements and circular tubes for TRIGA elements. Finally, the impact limiters are structures made of an external stainless steel thin covering and a filling made of the wood composite OSB - Oriented Strand Board. The prototype is provided with bottom and top impact limiters, which are attached to each other by means of four threaded rods. The limiters are not rigidly attached to the cask body. A half scale cask model was designed to be submitted to a testing program. As its volume scales down to 1:8, the model weight is 1,250 kgf. This paper presents the methodology for the preliminary structural dimensioning of the critical parameters of the cask prototype. Both normal conditions of operation and hypothetical

  20. Issues related to the transport of a transportable storage cask after storage

    International Nuclear Information System (INIS)

    McConnell, P.; Brimhall, J.L.; Creer, J.M.; Gilbert, E.R.; Sanders, T.L.; Jones, R.H.

    1991-01-01

    An evaluation was performed to assess whether the reliability of a transportable storage cask system and the risks associated with its use are comparable to those associated with existing transport cask systems and, if they are not, determine how the transportable storage cask system can be made as reliable as existing systems. Reliability and failure mode analyses of both transport-only casks and transportable storage casks and implementation options are compared. Current knowledge regarding the potential effects of a long-term dry storage environment on spent fuel and cask materials is reviewed. A summary assessment of the consideration for deploying a transportable storage cask (TSC) system with emphasis on preliminary design, validation and operational recommendations for TSC implementations is presented. The analyses conclude that a transportable storage cask can likely be shipped upopened by applying a combination of design considerations and operational constraints, including environmental monitoring and pretransport assessments of functional reliability of the cask. A proper mix of these constraints should yield risk parity with any existing transport cask

  1. Impact of axial burnup profile on criticality safety of ANPP spent fuel cask

    International Nuclear Information System (INIS)

    Bznuni, S.

    2006-01-01

    Criticality safety assessment for WWER-440 NUHOMS cask with spent nuclear fuel from Armenian NPP has been performed. The cask was designed in such way that the neutron multiplication factor k eff must be below 0,95 for all operational modes and accident conditions. Usually for criticality analysis, fresh fuel approach with the highest enrichment is taken as conservative assumption as it was done for ANPP. NRSC ANRA in order to improve future fuel storage efficiency initiated research with taking into account burn up credit in the criticality safety assessment. Axial burn up profile (end effect) has essential impact on criticality safety justification analysis. However this phenomenon was not taken into account in the Safety Analysis Report of NUHOMS spent fuel storage constructed on the site of ANPP. Although ANRA does not yet accept burn up credit approach for ANPP spent fuel storage, assessment of impact of axial burnup profile on criticality of spent fuel assemblies has important value for future activities of ANRA. This paper presents results of criticality calculations of spent fuel assemblies with axial burn up profile. Horizontal burn up profile isn't taken account since influence of the horizontal variation of the burn up is much less than the axial variation. The actinides and actinides + fission products approach are discussed. The calculations were carried out with STARBUCS module of SCALE 5.0 code package developed at Oak Ridge National laboratory. SCALE5.0 sequence CSAS26 (KENO-VI) was used for evaluation the k eff for 3-D problems. Obtained results showed that criticality of ANPP spent fuel cask is very sensitive to the end effect

  2. Regulatory status of burnup credit for dry storage and transport of spent nuclear fuel in the United States

    International Nuclear Information System (INIS)

    Carlson, D.E.

    2001-01-01

    During 1999, the Spent Fuel Project Office of the U.S. Nuclear Regulatory Commission (NRC) introduced technical guidance for allowing burnup credit in the criticality safety analysis of casks for transporting or storing spent fuel from pressurized water reactors. This paper presents the recommendations embodied by the current NRC guidance, discusses associated technical issues, and reviews information needs and industry priorities for expanding the scope and content of the guidance. Allowable analysis approaches for burnup credit must account for the fuel irradiation variables that affect spent fuel reactivity, including the axial and horizontal variation of burnup within fuel assemblies. Consistent with international transport regulations, the burnup of each fuel assembly must be verified by pre-loading measurements. The current guidance limits the credited burnup to no more than 40 GWd/MTU and the credited cooling time to five years, imposes a burnup offset for fuels with initial enrichments between 4 and 5 wt% 235U, does not include credit for fission products, and excludes burnup credit for damaged fuels and fuels that have used burnable absorbers. Burnup credit outside these limits may be considered when adequately supported by technical information beyond that reviewed to-date by the NRC staff. The guidance further recommends that residual subcritical margins from the neglect of fission products, and any other nuclides not credited in the licensing-basis analysis, be estimated for each cask design and compared against estimates of the maximum reactivity effects associated with remaining computational uncertainties and potentially nonconservative modeling assumptions. The NRC's Office of Nuclear Regulatory Research is conducting a research program to help develop the technical information needed for refining and expanding the evolving guidance. Cask vendors have announced plans to submit the first NRC license applications for burnup credit later this year

  3. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the

  4. Internal pressure changes of liquid filled shipping casks due to thermal environment

    International Nuclear Information System (INIS)

    Jackson, J.E.

    1978-01-01

    A discussion of the significance of internal pressure calculations in liquid filled shipping casks subjected to a high temperature thermal environment is presented. Some basic thermodynamic relationships are introduced and discussed as they apply to the two-phase mixture problem encountered with liquid filled casks. A model of the liquid filled cask is developed and the assumptions and limitations of the mathematical model are discussed. A relationship is derived which can be used to determine internal cask pressures as a function of initial thermodynamic loading conditions, initial fluid volume ratio and final mixture temperature. The results for water/air filled casks are presented graphically in a parametric form. The curves presented are particularly useful for preliminary design verification purposes. A qualitative discussion of the use of the results from an error analysis aspect is presented. Some pressure calculation problems frequently seen by NRC for liquid filled cask designs are discussed

  5. Breeder Spent Fuel Handling (BSFH) cask study for FY83. Final report

    International Nuclear Information System (INIS)

    Diggs, J.M.

    1985-01-01

    This report documents a study conducted to investigate the applicability of existing LWR casks to shipment of long-cooled LMFBR fuel from the Clinch River Breeder Reactor Plant (CRBRP) to the Breeder Reprocessing Engineering Test (BRET) Facility. This study considered a base case of physical constraints of plants and casks, handling capabilities of plants, through-put requirements, shielding requirements due to transportation regulation, and heat transfer capabilities of the cask designs. Each cask design was measured relative to the base case. 15 references, 4 figures, 6 tables

  6. Feasibility study for a transportation operations system cask maintenance facility

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  7. Feasibility study for a transportation operations system cask maintenance facility

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs

  8. Development of the GA-4 and GA-9 legal weight truck spent fuel casks

    International Nuclear Information System (INIS)

    Grenier, R.M.; Meyer, R.J.; Mings, W.J.

    1993-01-01

    General Atomics (GA) has designed two new truck casks under contract to the U.S. Department of Energy as part of the Office of Civilian Radioactive Waste Management (OCRWM) Cask System Development Program. The GA-4 and GA-9 Casks, when licensed by the U.S. Nuclear Regulatory Commission, will transport intact spent fuel assemblies from commercial nuclear reactor sites to a monitored retrievable storage facility or permanent repository. (J.P.N.)

  9. Materials issues in cask development

    International Nuclear Information System (INIS)

    Chapman, R.L.; Sorensen, K.B.

    1987-01-01

    This paper identifies potential new materials as a function of their use in the cask. To the extent that identified materials are not yet qualified for their intended application, this paper identifies probable technical issues and development efforts that may be required to qualify the materials for use in transportation casks. 1 tab

  10. 78 FR 63375 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Science.gov (United States)

    2013-10-24

    ... Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS[supreg] Cask System AGENCY: Nuclear...] Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No..., Inc. Standardized NUHOMS[supreg] Cask System listing within the ``List of Approved Spent Fuel Storage...

  11. Impact analysis of shipping casks

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1989-01-01

    This paper describes how simpler two- and three-dimensional models can be used to provide an intermediate level of detail between full three dimensional finite element calculations and hand calculation. Three free drop scenarios are analyzed to assess the integrity of the cask when subjected to large bending and axial stresses. These three drop scenarios are: a thirty foot axial drop on either end, a thirty foot oblique angel drop with the cask having several different orientations from the vertical with impact on the top end cask corner, and a thirty foot side drop with simultaneous impact on one of the lifting trunnions and the bottom end. Prevention of damage hinges on the strength of the various components that comprises the cask. The predicted levels of deformation and stresses in the cask are used to assess the potential damage level

  12. Geometric feasibility of flexible cask transportation system for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lima, P; Ribeiro, M I; Aparicio, P [Instituto Superior Tecnico-Instituto de Sistemas e Robotica, Lisboa (Portugal)

    1998-07-01

    One of the remote operations that has to be carried out in the International Thermonuclear Experimental Reactor (ITER) is the transportation of sealed casks between the various ports of the Tokamak Building (TB) and the Hot Cell Building (HCB). The casks may contain different in-vessel components (e.g. blanket modules, divertors) and are designed for a maximum load of about 80 ton. To improve the safety and flexibility of ITER Remote Handling (RH) transport vehicles, the cask is not motorized by itself, but instead, a motorized platform carrying the cask was proposed. This paper addresses the geometric feasibility of the flexible cask transportation system, taking into account the vehicle kinematics. The feasibility issues studied include planning smooth paths to increase safety, the discussion of building constraints by the evaluation of the vehicle spanned areas when following a planned path, and the analysis of the clearance required to remove the platform from underneath the cask at different possible failure locations. Simulation results are presented for the recommended trajectory, the spanned area and the rescue manoeuvres at critical locations along the path. (authors)

  13. Geometric feasibility of flexible cask transportation system for ITER

    International Nuclear Information System (INIS)

    Lima, P.; Ribeiro, M.I.; Aparicio, P.

    1998-01-01

    One of the remote operations that has to be carried out in the International Thermonuclear Experimental Reactor (ITER) is the transportation of sealed casks between the various ports of the Tokamak Building (TB) and the Hot Cell Building (HCB). The casks may contain different in-vessel components (e.g. blanket modules, divertors) and are designed for a maximum load of about 80 ton. To improve the safety and flexibility of ITER Remote Handling (RH) transport vehicles, the cask is not motorized by itself, but instead, a motorized platform carrying the cask was proposed. This paper addresses the geometric feasibility of the flexible cask transportation system, taking into account the vehicle kinematics. The feasibility issues studied include planning smooth paths to increase safety, the discussion of building constraints by the evaluation of the vehicle spanned areas when following a planned path, and the analysis of the clearance required to remove the platform from underneath the cask at different possible failure locations. Simulation results are presented for the recommended trajectory, the spanned area and the rescue manoeuvres at critical locations along the path. (authors)

  14. Research on localization and alignment technology for transfer cask

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingchuan, E-mail: jchwang@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai (China); Yang, Ming; Chen, Weidong [Department of Automation, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai (China)

    2015-10-15

    Highlights: • A method for the alignment between TB and HCB based on localizability is proposed. • A localization method based on the localizability estimation is proposed to realize the cask's localization accurately and ensures the transfer cask's accurate docking in the front of the window of Tokmak Building. • The experimental results show that the proposed algorithm works well in the indoor simulation environment. This system will be test in EAST of China. - Abstract: According to the long length characteristics of transfer cask compared to the environment space between Tokmak Building (TB) and HCB (Hot Cell Building), this paper proposes an autonomous localization and alignment method for the internal components transportation and replacement. A localization method based on the localizability estimation is used to realize the cask's localization and navigation accurately. Once the cask arrives at the front of the TB window, the position and attitude measurement system is used to detect the relative alignment error between the seal door of pallet and the window of TB real-time. The alignment between seal door and TB window could be realized based on this offset. The simulation experiment based on the real model is designed according to the real TB situation. The experiment results show that the proposed localization and alignment method can be used for transfer cask.

  15. Castor-V/21 PWR spent fuel storage cask performance test

    International Nuclear Information System (INIS)

    Creer, J.M.; Schoonen, D.H.

    1986-01-01

    Performance testing of a CASTOR-V/21 PWR spent fuel storage cask manufactured by Gesellschaft fur Nuklear Service (GNS) was performed as part of a cooperative program between Virginia Power and the US Department of Energy. The performance test consisted of obtaining cask handling experience and heat transfer, shielding, and limited fuel integrity data. Five heat transfer test runs were performed with 21 Surry reactor spent fuel assemblies generating approximately 28 kW. Test runs were performed vacuum, nitrogen, and helium backfill environments with the cask in both vertical and horizontal orientations. Cask exterior surface gamma and neutron dose rates were measured with the cask fully loaded. Gas samples were obtained at the beginning and end of each run with nitrogen or helium environments to verify fuel integrity. The heat transfer performance of the CASTOR-V/21 cask was exceptionally good. Peak clad temperatures with helium and nitrogen environments with the cask in a vertical orientation and with helium with the cask in a horizontal orientation were less than 380 0 C. Vertical vacuum and horizontal nitrogen test runs resulted in peak clad temperatures over 380 0 , but the temperatures were not excessively high ( 0 C). The shielding performance of the cask met the design goal of less than 200 mrem/hr. Cask surface dose rates of <75 mrem/hr can easily be established with minor gamma shielding design refinements if desired. Gas samples obtained during testing indicated no leaking fuel rods were present in the cask. It was concluded that the cask performed satisfactorily from heat transfer and shielding perspectives

  16. CASTOR-V/21 PWR spent fuel storage cask performance test

    International Nuclear Information System (INIS)

    Creer, J.M.; Schoonen, D.H.

    1986-01-01

    Performance testing of a CASTOR-V/21 PWR spent fuel storage cask manufactured by Gesellschaft fur Nuklear Service (GNS) was performed as part of a cooperative program between Virginia Power and the US Department of Energy. The performance test consisted of obtaining cask handling experience and heat transfer, shielding, and limited fuel integrity data. Five heat transfer test runs were performed with 21 Surry reactor spent fuel assemblies generating approximately 28 kW. Test runs were performed with vacuum, nitrogen, and helium backfills in both vertical and horizontal orientations. Cask exterior surface gamma and neutron dose rates were measured with the cask fully loaded. Gas samples were obtained at the beginning and end of each run with nitrogen or helium backfills to verify fuel integrity. The heat transfer performance of the CASTOR-V/21 cask was exceptionally good. Peak clad temperatures with helium and nitrogen backfills in a vertical orientation and with helium in a horizontal orientation were less than 380 0 C. Vertical vacuum and horizontal nitrogen runs resulted in peak clad temperatures over 380 0 , but the temperatures were not excessively high ( 0 C). The shielding performance of the cask met the design expectation of less than 200 mrem/h. Cask surface dose rates of <75 mrem/h can easily be established with minor gamma shielding design refinements if desired. Gas samples obtained during testing indicated no leaking fuel rods were present in the cask. It was concluded that the cask performed satisfactorily from heat transfer and shielding perspectives

  17. Routine methods for post-transportation accident recovery of spent fuel casks

    International Nuclear Information System (INIS)

    Shappert, L.B.; Pope, R.B.; Best, R.E.; Jones, R.H.

    1991-01-01

    Spent fuel casks and other large radioactive material packages have been examined to determine whether the designs are adequate to allow the casks to be recovered using conventional recovery methods following a transportation accident. Casks and similar packages are typically designed with, and handled by, trunnions that support the package during transport. These trunnions are considered the best cask feature with which to grapple the cask once it is no longer in its usual shipping mode. Following a transport accident, the trunnions may be buried or entangled so that they are not readily accessible to initiate the recovery process. To evaluate the effectiveness of applying traditional recovery methods to spent fuel casks, a workshop was held in which a series of accidents involving casks were postulated; the modes of transportation considered included truck, rail, and barge. These participants knowledgeable in transport, handling, and, in some cases, recovery of large, heavy containers attended. Participants concluded that the physical recovery of a cask involved in an accident, irrespective of where the accident occurs, would be a straightforward rigging operation and that the addition of specific recovery features (e.g., additional trunnions) to the cask appears unnecessary

  18. Influence of local regulations on TN dual purpose BWR casks

    International Nuclear Information System (INIS)

    Samson, P.; Neider, T.

    1999-01-01

    Transnucleaire (Paris, France) and Transnuclear, Inc. (Hawthorne, New York, United Sates) have both developed Pressurized Water Reactor (PWR) spent fuel casks for storage and transport purposes. The products are supplied in Europe by Transnucleaire and in the United States by Transnuclear, Inc. Now the TN Group is working on a design for Boiling Water Reactor (BWR) spent fuel assemblies: the TN 52 L cask is designed for transport and storage is Switzerland, the TN 68 cask is designed for transport and storage in the United States. For storage purpose, national regulatory requirements have to be met: each country has specific demands and criteria. As a consequence, differences between the TN 52 L design and the TN 68 design for rather similar contents appear in several fields: the design work, the licensing process, the manufacturing and the operational life. (author)

  19. Trunnions for spent fuel element shipping casks

    International Nuclear Information System (INIS)

    Cooke, B.

    1989-01-01

    Trunnions are used on spent fuel element shipping casks for one or more of a combination of lifting, tilting or securing to a transport vehicle. Within the nuclear transportation industry there are many different philosophies on trunnions, concerning the shape, manufacture, attachment, inspection, maintenance and repair. With the volume of international transport of spent fuel now taking place, it is recognized that problems are occurring with casks in international traffic due to the variance of the philosophies, national standards, and the lack of an international standard. It was agreed through the ISO that an international standard was required to harmonize. It was not possible to evolve an international standard. It was only possible to evolve an international guide. To evolve a standard would mean superseding any existing national standards which already cover particular aspects of trunnions i.e. deceleration forces imposed on trunnions used as tie down features. Therefore the document is a guide only and allows existing national standards to take precedence where they exist. The guide covers design, manufacture, maintenance, repair and quality assurance. The guide covers trunnions used on spent fuel casks transported by road, rail and sea. The guide details the considerations which should be taken account of by cask designers, i.e. stress intensity, design features, inspection and test methods etc. Manufacture, attachment and pre-service testing is also covered. The guide details user requirements which should also be taken account of, i.e. servicing frequency, content, maintenance and repair. The application of quality assurance is described separately although the principles are used throughout the guide

  20. Spent fuel storage and transport cask decontamination and modification. An overview of management requirements and applications based on practical experience

    International Nuclear Information System (INIS)

    1999-04-01

    A large increase in the number of casks required for transport and/or storage of spent fuel is forecast into the next century. The principal requirement will be for increased number of storage and dual purpose (transport/storage) casks for interim storage of spent fuel prior to reprocessing or permanent disposal in both on-site and off-site storage facilities. Through contact with radioactive materials spent fuel casks will be contaminated on both internal and external surfaces. In broad terms, cask contamination management can be defined by three components: minimisation, prevention and decontamination. This publication is a compilation of international experience with cask contamination problems and decontamination practices. The objective is to present current knowledge and experience as well as developments, trends and potential for new applications in this field. Furthermore, the report may assist in new design or modification of existing casks, cask handling systems and decontamination equipment

  1. Mining Association Rules Between Credits in the Leadership in Energy and Environmental Design for New Construction (LEED-NC) Green Building Assessment System

    National Research Council Canada - National Science Library

    Thomas, Benjamin J

    2008-01-01

    .... Taking this vision into account, the individual credits that comprise LEED are designed to reward design teams for employing sustainable design strategies that reduce the total environmental impact...

  2. Transport experience of NH-25 spent fuel shipping cask for post irradiation examination

    International Nuclear Information System (INIS)

    Mori, Ryuji

    1982-01-01

    Since the Japan Atomic Energy Research Institute and Nippon Nuclear Fuel Development Co. hot laboratories are located far off from the port which can handle spent fuel shipping casks, it is necessary to use a trailer-mounted cask which can be transported by public roads, bridges and intersections for the transportation of spent fuel specimens to these hot laboratories. Model NH-25 shipping cask was designed, manufactured and oualification tested to meet Japanese regulations and was officially registered as a BM type cask. The NH-25 cask accomodates two BWR fuel assemblies, one PWR assembly or one ATR fuel assembly using interchangeable inner containers. The cask weight is 29.2 t. The cask has three concentric stainless steel shells. Gamma shielding is lead cast between the inner shell and the intermediate shell. Neutro n shielding consists of ethylene-glycol-aqueous solution layer formed between the intermediate shell and the outer shell. The NH-25 cask now has been in operation for 2.5 yr. It was used for the transportation of spent fuel assemblies from six LWR power plants to the port on shipping cask carrier ''Hinouramaru'' on the sea, as well as from the port to the hot laboratory on a trailer. The capability of safe handling and transporting of spent fuel assemblies has been well demonstrated. (author)

  3. Status of burnup credit for transport of SNF in the United States

    International Nuclear Information System (INIS)

    Parks, C.V.; Wagner, J.C.

    2004-01-01

    Allowing credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transportation, and disposal of spent nuclear fuel (SNF) while maintaining a subcritical margin sufficient to establish an adequate safety basis. This paper reviews the current status of burnup credit applied to the design and transport of SNF casks in the United States. The existing U.S. regulatory guidance on burnup credit is limited to pressurized-water-reactor (PWR) fuel and to allowing credit only for actinides in the SNF. By comparing loading curves against actual SNF discharge data for U.S. reactors, the potential benefits that can be realized using the current regulatory guidance with actinide-only burnup credit are illustrated in terms of the inventory allowed in high-capacity casks and the concurrent reduction in SNF shipments. The additional benefits that might be realized by extending burnup credit to credit for select fission products are also illustrated. The curves show that, although fission products in SNF provide a small decrease in reactivity compared with actinides, the additional negative reactivity causes the SNF inventory acceptable for transportation to increase from roughly 30% to approximately 90% when fission products are considered. A savings of approximately $150M in transport costs can potentially be realized for the planned inventory of the repository. Given appropriate experimental data to support code validation, a realistic best-estimate analysis of burnup credit that includes validated credit for fission products is the enhancement that will yield the most significant impact on future transportation plans

  4. Safety analysis of spent fuel transport and storage casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wolff, D.; Wieser, G.; Ballheimer, V.; Voelzke, H.; Droste, B.

    2005-01-01

    Full text: Worldwide the security of transport and storage of spent fuel with respect to terrorism threats is a matter of concern. In Germany a spent nuclear fuel management program was developed by the government including a new concept of dry on-site interim storage instead of centralized interim storage. In order to minimize transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities, the operators of NPPs have to erect and to use interim storage facilities for spent nuclear fuel on the site or in the vicinity of nuclear power plants. Up to now, 11 on-site interim storage buildings, one storage tunnel and 4 on-site interim storage areas (preliminary cask storage till the on-site interim storage building is completed) have been licensed at 12 nuclear power plant sites. Inside the interim storage buildings the casks are kept in upright position, whereas at the preliminary interim storage areas horizontal storage of the casks on concrete slabs is used and each cask is covered by concrete elements. Storage buildings and concrete elements are designed only for gamma and neutron radiation shielding reasons and as weather protection. Therefore the security of spent fuel inside a dual purpose transport and storage cask depends on the inherent safety of the cask itself. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. Since the terror attacks of 11 September 2001 the determination of casks' inherent safety also under extreme impact conditions due to terrorist attacks has been of our increasing interest. With respect to spent fuel storage one of the most critical scenarios of a terrorist attack for a cask is the centric impact of a dynamic load onto the lid-seal-system caused e.g. by direct aircraft crash or its engine as well as by a

  5. Development of neutron shielding material for cask

    International Nuclear Information System (INIS)

    Najima, K.; Ohta, H.; Ishihara, N.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd (MHI) has established transport and storage cask design 'MSF series' which makes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed neutron shielding material. This neutron shielding material has been developed for improving durability under high condition for long term. Since epoxy resin contains a lot of hydrogen and is comparatively resistant to heat, many casks employ epoxy base neutron shielding material. However, if the epoxy base neutron shielding material is used under high temperature condition for a long time, the material deteriorates and the moisture contained in it is released. The loss of moisture is in the range of several percents under more than 150 C. For this reason, our purpose was to develop a high durability epoxy base neutron shielding material which has the same self-fire-extinction property, high hydrogen content and so on as conventional. According to the long-time heating test, the weight loss of this new neutron shielding material after 5000 hours heating has been lower than 0.04% at 150 C and 0.35% at 170 C. A thermal test was also performed: a specimen of neutron shielding material covered with stainless steel was inserted in a furnace under condition of 800 C temperature for 30 minutes then was left to cool down in ambient conditions. The external view of the test piece shows that only a thin layer was carbonized

  6. Regulatory status of burnup credit for storage and transport of spent fuel in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Schweer, H.H.; Johann, H.G.

    2001-01-01

    This paper describes the regulatory status of burnup credit applications to pond storage and dry-cask transport and storage of spent fuel in Germany. Burnup credit for wet storage of LWR fuel at nuclear power plants has to comply with the newly developed safety standard DIN 25471. This standard establishes the safety requirements for burnup credit criticality safety analysis of LWR fuel storage ponds and gives guidance on meeting these requirements. Licensing evaluations of dry transport systems are based on the application of the IAEA Safety Standards Series No.ST-1. However, because of the fact that burnup credit for dry-cask transport becomes more and more inevitable due to increasing initial enrichment of the fuel, and because of the increasing importance of dry-cask storage in Germany, the necessity of giving regulatory guidance on applying burnup credit to dry-cask transport and storage is seen. (author)

  7. A robotic system to conduct radiation and contamination surveys on nuclear waste transport casks

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Sanders, T.L.

    1990-06-01

    The feasibility of performing, numerous spent fuel cask operations using fully integrated robotic systems is under evaluation. Using existing technology, operational and descriptive software and hardware in the form of robotic end effectors are being designed in conjunction with interfacing cask components. A robotic radiation and contamination survey system has been developed and used on mock-up cask hardware to evaluate the impact of such fully automated operations on cask design features and productivity. Based on experience gained from the survey system, numerous health physics operations can be reliably performed with little human intervention using a fully automated system. Such operations can also significantly reduce time requirements for cask-receiving operations. 7 refs., 51 figs., 6 tabs

  8. 78 FR 78693 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Science.gov (United States)

    2013-12-27

    ... Storage Casks: Transnuclear, Inc. Standardized NUHOMS[supreg] Cask System AGENCY: Nuclear Regulatory... storage regulations by revising the Transnuclear, Inc. Standardized NUHOMS[supreg] Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 11 to Certificate of...

  9. 78 FR 63408 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Science.gov (United States)

    2013-10-24

    ... Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS[supreg] Cask System AGENCY: Nuclear...] Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No... Safety Analysis Report for the Standardized NUHOMS[supreg] Horizontal Modular Storage System for...

  10. Development of new type concrete for spent fuel storage cask

    International Nuclear Information System (INIS)

    Shimojo, J.; Mantani, K.; Owaki, E.; Sugihara, Y.; Hata, A.; Shimono, M.; Taniuchi, H.

    2004-01-01

    Heat resistant concrete has been developed to make it possible to design a new type cask that has been designed on the same concept of metal cask technologies for use in high temperature conditions. The allowable temperature of conventional concrete is limited to less than 100 degrees Celsius because most of its moisture is free water and therefore hydrogen, which is effective for neutron shielding, can be easily lost. Our newly developed concrete uses chemically bonded water and as a result can be used under high temperatures

  11. Development of new type concrete for spent fuel storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, J.; Mantani, K. [Kobe Steel, Ltd., Hyogo (Japan); Owaki, E.; Sugihara, Y.; Hata, A.; Shimono, M. [Taisei Corp., Tokyo (Japan); Taniuchi, H. [Transnuclear, Ltd., Tokyo (Japan)

    2004-07-01

    Heat resistant concrete has been developed to make it possible to design a new type cask that has been designed on the same concept of metal cask technologies for use in high temperature conditions. The allowable temperature of conventional concrete is limited to less than 100 degrees Celsius because most of its moisture is free water and therefore hydrogen, which is effective for neutron shielding, can be easily lost. Our newly developed concrete uses chemically bonded water and as a result can be used under high temperatures.

  12. Management of spent fuel from power and research reactors using CASTOR and CONSTOR casks and licensing experience worldwide

    International Nuclear Information System (INIS)

    Becher, D.

    2003-01-01

    An overview of the spent fuel storage in CASTOR and CONSTOR casks during the last 30 years is made. Design characteristics of the both types of casks are presented. CASTOR casks fulfill both the requirements for type B packages according to the IAEA requirements covering different accident situations in storage sites. Analyses of nuclear and thermal behavior and strength are carried out for CONSTOR concept. Special experimental program for verification of mechanical and thermomechanical properties is implemented. Licensing experience of the casks in German storage facilities is presented. Special modifications of CASTOR casks for WWER-440 and RBMK fuel assemblies have been designed for implementation in Eastern Europe. Contracts for GNB spent fuel casks delivery are concluded with Czech Republic, Slovakia, Hungary and Lithuania

  13. Structural challenges in the development of a truck shipping cask for the OCRWM Cask Systems Development Program

    International Nuclear Information System (INIS)

    Mello, R.M.; Severson, W.J.; Nair, B.R.

    1990-01-01

    The development of a spent fuel transportation cask design based on a structural material without licensing precedent presents many challenges. The US Nuclear Regulatory Commission (NRC) requires that any new material be qualified to meet the design and fabrication requirements of the ASME Boiler ampersand Pressure Vessel Code, Section III, Class 1. This paper discusses the strategy that is being implemented towards obtaining Code acceptance of a titanium alloy (3A1-2.5V). This alloy has been chosen as the principal structural material for a Legal Weight Truck cask being developed by Westinghouse for the US Department of Energy. The analysis approach used on some of the principal cask components is also presented. 5 refs., 8 figs., 3 tabs

  14. Structural challenges in the development of a truck shipping cask for the OCRWM cask systems development program

    International Nuclear Information System (INIS)

    Mello, R.M.; Severson, W.J.; Nair, B.R.

    1990-01-01

    The development of a spent fuel transportation cask design based on a structural material without licensing precedent presents many challenges. The U.S. Nuclear Regulatory Commission (NRC) requires that any new material be qualified to meet the design and fabrication requirements of the ASME Boiler and Pressure Vessel Code, Section III, Class 1. This paper discusses the strategy that is being implemented towards obtaining Code Acceptance of a titanium alloy (3A1-2.5V). This alloy has been chosen as the principal structural material for a Legal Weight Truck cask being developed by Westinghouse for the U.S. Department of Energy. The analysis approach used on some of the principal cask components is also presented

  15. Safety Assessment of a Metal Cask under Aircraft Engine Crash

    Directory of Open Access Journals (Sweden)

    Sanghoon Lee

    2016-04-01

    Full Text Available The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact load–time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

  16. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Dehart, M.D.; Wagner, J.C.

    2001-01-01

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  17. Cask size and weight reduction through the use of depleted uranium dioxide-concrete material

    International Nuclear Information System (INIS)

    Lobach, S.Yu.; Haire, J.M.

    2007-01-01

    Newly developed depleted uranium (DU) composite materials enable fabrication of spent nuclear fuel (SNF) transport and storage casks that are smaller and lighter in weight than casks made with conventional materials. One such material is DU dioxide (DUO2)-concrete, so-called DUCRETE TM . This paper examines the radiation shielding efficiency of DUCRETE as compared with that of a conventional concrete cask that holds 32 pressurized-water-reactor SNF assemblies. In this analysis, conventional concrete shielding material is replaced with DUCRETE. The thickness of the DUCRETE shielding is adjusted to give the same radiation surface dose, 200 mrem/h (2 mSv/hr), as the conventional concrete cask. It was found that the concrete shielding thickness decreased from 71 to 20 cm and that the cask radial cross-section shielding area was reduced approx 50 %. The weight was reduced approx 21 %, from 154 to approx 127 tons. Should one choose to add an extra outer ring of SNF assemblies, the number of such assemblies would increase from 32 to 52. In this case, the outside cask diameter would still decrease, from 169 to 137 cm. However, the weight would increase somewhat from 156 to 177 tons. Neutron cask surface dose is only approx 10 % of the gamma dose. These reduced sizes and weights will significantly influence the design of next-generation SNF casks

  18. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.

  19. Numerical Simulation of the Thermal Performance of a Dry Storage Cask for Spent Nuclear Fuel

    Directory of Open Access Journals (Sweden)

    Heui-Yung Chang

    2018-01-01

    Full Text Available In this study, the heat flow characteristics and thermal performance of a dry storage cask were investigated via thermal flow experiments and a computational fluid dynamics (CFD simulation. The results indicate that there are many inner circulations in the flow channel of the cask (the channel width is 10 cm. These circulations affect the channel airflow efficiency, which in turn affects the heat dissipation of the dry storage cask. The daily operating temperatures at the top concrete lid and the upper locations of the concrete cask are higher than those permitted by the design specification. The installation of the salt particle collection device has a limited negative effect on the thermal dissipation performance of the dry storage cask.

  20. Prototypical fabrication of PWR spent fuel shipping cask

    International Nuclear Information System (INIS)

    Kwack, Eun Ho; Kim, Byung Ku; Kang, Hee Yung; Lee, Chung Young; Jeon, Kyeong Lak; Lee, Bum Soo

    1985-02-01

    This report describes about the safety analysis for the spent fuel shipping cask, which is used to transfer a single fuel assembly discharged from PWR in operation in Korea. The contents cover the methods and the results of structural, thermal, thermo-hydraulic, radiation shield and criticality detail analysis. The safety evaluation has been made under the normal transportation and hypothetical accident conditions such as 30ft free drop, puncture, fire, immersion, penetration, corner drop, etc,. Some corrections in design are made, and a brief information for fabrication and transportation are obtained by the use of a 1/6 scale model. The design is based on one year cooling time of the spent fuel with 40,000 MWT/MTU maximum burnup, which gives 7.2KW decay heat and 1.6x10 6 ci/hr radiation intensity. The cask is composed of main body with the double closures, impact limiter and fuel basket. The inner shell, inner closure and valves constitute the pressure boundary of the containment. The inner, intermediate and outer shells, upper and lower forgings are made of stainless steel which compose the main body with lead for gamma shield and 50% ethylene glycol for neutron shield. The impact limiters are made of balsa wood on both end sides of the cask to protect the cask from a sudden shocks in accident during the transportation. The analysis results show that the cask is proved to retain its structural integrity within allowable stress and to be safe under the normal and hypothetical accident conditions, and the maximum dose rates of radiation at 2m distance from the surface of the cask are less than the required values. The weight will be 23.2tons in dry and 27.8 tons in wet with fuel loaded. All the design data, calculated results for the structural integrity, shield and thermal analysis are shown in this report with the basic drawings. (Author)

  1. Contract Report for Usage Inspection of KN-12 Transport Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. C.; Seo, K. S.; Bang, K. S.; Cho, I. J.; Kim, D. H.; Min, D. K

    2007-03-15

    The usage inspection of the KN-12 spent nuclear fuel transport package was performed to receive the license for reuse. According to the Korea Atomic Energy Act, all type B transport package should receive and pass the usage inspection every five years. The KN-12 transport cask was designed to transport twelve spent PWR fuel assemblies under wet and dry conditions. The cask was developed and licensed in 2002 in accordance with the Korea and the IAEA's safe transport regulations. The areas of usage inspection include: visual inspection, nondestructive weld inspection, load test, maximum operating pressure test, leakage test, shielding test, thermal test, external surface contamination test. In the results of the usage inspection, the damage or defect could not found out and the performance of the cask was maintained according to the requirements of the regulation. Therefore, the usage inspection was successfully performed to acquire the license for the reuse.

  2. Performance testing of thermal analysis codes for nuclear fuel casks

    International Nuclear Information System (INIS)

    Sanchez, L.C.

    1987-01-01

    In 1982 Sandia National Laboratories held the First Industry/Government Joint Thermal and Structural Codes Information Exchange and presented the initial stages of an investigation of thermal analysis computer codes for use in the design of nuclear fuel shipping casks. The objective of the investigation was to (1) document publicly available computer codes, (2) assess code capabilities as determined from their user's manuals, and (3) assess code performance on cask-like model problems. Computer codes are required to handle the thermal phenomena of conduction, convection and radiation. Several of the available thermal computer codes were tested on a set of model problems to assess performance on cask-like problems. Solutions obtained with the computer codes for steady-state thermal analysis were in good agreement and the solutions for transient thermal analysis differed slightly among the computer codes due to modeling differences

  3. Usage Inspection of KN-12 Spent Fuel Transport Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. C.; Seo, K. S.; Bang, K. S.; Cho, I. J.; Kim, D. H.; Min, D. K

    2007-03-15

    The usage inspection of the KN-12 spent nuclear fuel transport package was performed to receive the license for reuse. According to the Korea Atomic Energy Act, all type B transport package should receive and pass the usage inspection every five years. The KN-12 transport cask was designed to transport twelve spent PWR fuel assemblies under wet and dry conditions. The cask was developed and licensed in 2002 in accordance with the Korea and the IAEA's safe transport regulations. The areas of usage inspection include: visual inspection, nondestructive weld inspection, load test, maximum operating pressure test, leakage test, shielding test, thermal test, external surface contamination test. In the results of the usage inspection, the damage or defect could not found out and the performance of the cask was maintained according to the requirements of the regulation. Therefore, the usage inspection was successfully performed to acquire the license for the reuse.

  4. GA-4 half-scale cask model fabrication

    International Nuclear Information System (INIS)

    Meyer, R.J.

    1995-01-01

    Unique fabrication experience was gained during the construction of a half-scale model of the GA-4 Legal Weight Truck Cask. Techniques were developed for forming, welding, and machining XM-19 stainless steel. Noncircular 'rings' of depleted uranium were cast and machined to close tolerances. The noncircular cask body, gamma shield, and cavity liner were produced using a nonconventional approach in which components were first machined to final size and then welded together using a low-distortion electron beam process. Special processes were developed for fabricating the bonded aluminum honeycomb impact limiters. The innovative design of the cask internals required precision deep hole drilling, low-distortion welding, and close tolerance machining. Valuable lessons learned were documented for use in future manufacturing of full-scale prototype and production units

  5. Contract Report for Usage Inspection of KN-12 Transport Cask

    International Nuclear Information System (INIS)

    Lee, J. C.; Seo, K. S.; Bang, K. S.; Cho, I. J.; Kim, D. H.; Min, D. K.

    2007-03-01

    The usage inspection of the KN-12 spent nuclear fuel transport package was performed to receive the license for reuse. According to the Korea Atomic Energy Act, all type B transport package should receive and pass the usage inspection every five years. The KN-12 transport cask was designed to transport twelve spent PWR fuel assemblies under wet and dry conditions. The cask was developed and licensed in 2002 in accordance with the Korea and the IAEA's safe transport regulations. The areas of usage inspection include: visual inspection, nondestructive weld inspection, load test, maximum operating pressure test, leakage test, shielding test, thermal test, external surface contamination test. In the results of the usage inspection, the damage or defect could not found out and the performance of the cask was maintained according to the requirements of the regulation. Therefore, the usage inspection was successfully performed to acquire the license for the reuse

  6. Usage Inspection of KN-12 Spent Fuel Transport Cask

    International Nuclear Information System (INIS)

    Lee, J. C.; Seo, K. S.; Bang, K. S.; Cho, I. J.; Kim, D. H.; Min, D. K.

    2007-03-01

    The usage inspection of the KN-12 spent nuclear fuel transport package was performed to receive the license for reuse. According to the Korea Atomic Energy Act, all type B transport package should receive and pass the usage inspection every five years. The KN-12 transport cask was designed to transport twelve spent PWR fuel assemblies under wet and dry conditions. The cask was developed and licensed in 2002 in accordance with the Korea and the IAEA's safe transport regulations. The areas of usage inspection include: visual inspection, nondestructive weld inspection, load test, maximum operating pressure test, leakage test, shielding test, thermal test, external surface contamination test. In the results of the usage inspection, the damage or defect could not found out and the performance of the cask was maintained according to the requirements of the regulation. Therefore, the usage inspection was successfully performed to acquire the license for the reuse

  7. Test program of the drop tests with full scale and 1/2.5 scale models of spent nuclear fuel transport and storage cask

    International Nuclear Information System (INIS)

    Kuri, S.; Matsuoka, T.; Kishimoto, J.; Ishiko, D.; Saito, Y.; Kimura, T.

    2004-01-01

    MHI have been developing 5 types of spent nuclear fuel transport and storage cask (MSF cask fleet) as a cask line-up. In order to demonstrate their safety, a representative cask model for the cask fleet have been designed for drop test regulated in IAEA TS-R-1. The drop test with a full and a 1/2.5 scale models are to be performed. It describes the test program of the drop test and manufacturing process of the scale models used for the tests

  8. Quality assurance in a cask fleet parts control system

    International Nuclear Information System (INIS)

    Fernandez, C.; Shappert, L.B.

    1992-01-01

    This paper discusses applicable portions of the eighteen Quality Assurance criteria of Subpart H, 10 CFR 71 which are incorporated into a relational data base system which has been designed to manage the spare parts control system for a fleet of spent nuclear fuel casks. The system includes not only parts in warehouse storage but parts in use in the field plus casks, ancillary equipment, test equipment, support devices, and even personnel. It provides a high degree of assurance that any device for which a condition for certification has expired will be flagged for recertification testing or removal from service well before the critical date

  9. Quality assurance in a cask fleet parts control system

    International Nuclear Information System (INIS)

    Fernandez, C.; McCreery, P.N.; Shappert, L.B.

    1991-01-01

    Applicable portions of the eighteen Quality Assurance criteria of Subpart H, 10 CFR 71 are incorporated into a relational data base system which has been designed to manage the spare parts control system for a fleet of spent nuclear fuel casks. The system includes not only parts in warehouse storage but parts in use in the field plus casks, ancillary equipment, test equipment, support devices, and even personnel. It provides a high degree of assurance that any device for which a condition for certification has expired will be flagged for recertification testing or removal from service well before the critical date

  10. Research and development of spent fuel shipping casks and the criteria for seagoing vessel carrying casks

    International Nuclear Information System (INIS)

    Aoki, S.; Ando, Y.

    1977-01-01

    Considering that the transportation of spent fuel will increase rapidly and extensively in the near future, Japanese Atomic Energy Committee enacted ''Technical Standard for Transportation of Radioactive Materials'' based on ''IAEA Regulation for the Safe Transport of Radioactive Materials 1973 Revised Edition''. Coping with the recommendation of AEC, Atomic Energy Bureau in Science and Technology Agency and other authorities concerned started to review the former ordinances for transportation of radioactive materials and to consolidate a unified system of relevant laws and standards. On the other hand, Atomic Energy Bureau has invested in research and development since ten years ago in order to obtain the data for design and licensing work of spent fuel shipping casks. In those studies some different scale models of a prototype of 80 t in weight have been used to make clear the scale effect at the drop, pucture and fire tests, which are one of the features of Japanese research and development. And also the immersion test in high pressure water up to about 500 bars is now carried out to investigate the integrity of cask body and sealing structure to prevent leakage of radioactive contents to the ambient when the cask falls into deep sea. In Japan, depending on the site conditions of nuclear plants, almost all transportations of unirradiated and spent fuels are done on the sea. Therefore, in order to secure the safety of transportation, the design criteria of the seagoing vessels for exclusive transportation of spent fuel shipping casks, namely full load shipping, has been enacted, which aims to make minimum the probability of sinking at collison, stranding and other unforeseen accidents at sea and also to restrain radiation exposure of the crew as low as possible

  11. CASTOR(r) and CONSTOR(r) type transport and storage casks for spent fuel and high active waste

    International Nuclear Information System (INIS)

    Kuehne, B.; Sowa, W.

    2002-01-01

    The German company GNB has developed, tested, licensed, fabricated, loaded, transported and stored a large number of casks for spent fuel and high-level waste. CASTOR(r) casks are used at 18 sites on three continents. Spent fuel assemblies of the types PWR, BWR, VVER, RBMK, MTR and THTR as well as vitrified high active waste (HAW) containers are stored in these kinds of casks. More than 600 CASTOR(r) casks have been loaded for long-term storage. The two decades of storage have shown that the basic requirements, which are safe confinement, criticality safety, sufficient shielding and appropriate heat transfer have been fulfilled in each case. There is no indication that problems will arise in the future. Of course, the experience of 20 years has resulted in improvements of the cask design. One basic improvement is GNB's development since the mid 1990s of a sandwich cask design using heavy concrete and steel as basic materials, for economical and technical reasons. This CONSTOR(r) cask concept also fulfils all design criteria for transport and storage given by the IAEA recommendations and national authorities. By May 2002 40 CONSTOR(r) casks had been delivered and 15 had been successfully loaded and stored. In this paper the different types of casks are presented. Experiences gained during the large number of cask loadings and more than 4000 cask-years of storage will be summarised. The presentation of recent and future development shows the optimisation potential of the CASTOR(r) and CONSTOR(r) cask families for safe and economical management of spent fuel. (author)

  12. SNF shipping cask shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Pace, J.V. III.

    1996-01-01

    The Waste Management and Remedial Action Division has planned a modification sequence for storage facility 7827 in the Solid Waste Storage Area (SWSA). The modification cycle is: (1) modify an empty caisson, (2) transfer the spent nuclear fuel (SNF) of an occupied caisson to a hot cell in building 3525 for inspection and possible repackaging, and (3) return the package to the modified caisson in the SWSA. Although the SNF to be moved is in the solid form, it has different levels of activity. Thus, the following 5 shipping casks will be available for the task: the Loop Transport Carrier, the In- Pile Loop LITR HB-2 Carrier, the 6.5-inch HRLEL Carrier, the HFIR Hot Scrap Carrier, and the 10-inch ORR Experiment Removal Shield Cask. This report describes the shielding tasks for the 5 casks: determination of shielding characteristics, any streaming avenues, estimation of thermal limits, and shielding calculational uncertainty for use in the transportation plan

  13. Estimation of terrorist attack resistibility of dual-purpose cask TP-117 with DU (depleted uranium) gamma shield

    International Nuclear Information System (INIS)

    Alekseev, O.G.; Matveev, V.Z.; Morenko, A.I.; Il'kaev, R.I.; Shapovalov, V.I.

    2004-01-01

    Report is devoted to numerical research of dual-purpose unified cask (used for SFA transportation and storage) resistance to terrorist attacks. High resistance of dual-purpose unified cask has been achieved due to the unique design-technological solutions and implementation of depleted uranium in cask construction. In suggested variant of construction depleted uranium fulfils functions of shielding and constructional material. It is used both in metallic and cermet form (basing on steel and depleted uranium dioxide). Implementation of depleted uranium in cask construction allows maximal load in existing overall dimensions of the cask. At the same time: 1) all safety requirements (IAEA) are met, 2) dual-purpose cask with SFA has high resistance to terrorist attacks

  14. Estimation of terrorist attack resistibility of dual-purpose cask TP-117 with DU (depleted uranium) gamma shield

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, O.G.; Matveev, V.Z.; Morenko, A.I.; Il' kaev, R.I.; Shapovalov, V.I. [Russian Federal Nuclear Center - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)

    2004-07-01

    Report is devoted to numerical research of dual-purpose unified cask (used for SFA transportation and storage) resistance to terrorist attacks. High resistance of dual-purpose unified cask has been achieved due to the unique design-technological solutions and implementation of depleted uranium in cask construction. In suggested variant of construction depleted uranium fulfils functions of shielding and constructional material. It is used both in metallic and cermet form (basing on steel and depleted uranium dioxide). Implementation of depleted uranium in cask construction allows maximal load in existing overall dimensions of the cask. At the same time: 1) all safety requirements (IAEA) are met, 2) dual-purpose cask with SFA has high resistance to terrorist attacks.

  15. Optimization of cask for transport of radioactive material under impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kuldeep, E-mail: kuldeep.brit@gmail.com [Indian Institute of Technology Bombay (India); Pawaskar, D.N.; Guha, Anirban [Indian Institute of Technology Bombay (India); Singh, R.K. [Bhabha Atomic Research Center (India)

    2014-07-01

    Highlights: • Cost and weight are important criteria for fabrication and transportation of cask used for transportation of radioactive material. • Reduction of cask cost by modifying few cask geometry parameters using complex search method. • Maximum von Mises stress generated and deformation after impact as design constraints. • Up to 6.9% reduction in cost and 4.6% reduction in weight observed in the examples used. - Abstract: Casks used for transporting radioactive material need to be certified fit by subjecting them to a specific set of tests (IAEA, 2012). The high cost of these casks gives rise to the need for optimizing them. Conducting actual experiments for the process of design iterations is very costly. This work outlines a procedure for optimizing Type B(U) casks through simulations of the 9 m drop test conducted in ABAQUS{sup ®}. Standard designs and material properties were chosen, thus making the process as realistic as reasonable even at the cost of reducing the options (design variables) available for optimization. The results, repeated for different source cavity sizes, show a scope for 6.9% reduction in cost and 4.6% reduction in weight over currently used casks.

  16. Initiatives in transport cask licensing

    International Nuclear Information System (INIS)

    Patterson, John

    1998-01-01

    The variations in research reactor fuel form, configuration, irradiation characteristics, and transport cask have required a substantial number of transport cask licensing actions associated with foreign research reactor spent fuel transportation. When compounded by limited time for shipment preparations, due to contract timing or delayed receipt of technical data, the number and timing of certifications has adversely impacted the ability of regulatory agencies to support intended shipping schedules. This issue was brought into focus at a april, 1998 meeting among DOE, the US Nuclear Regulatory Commission, and DOE's spent fuel transportation contractors. (author)

  17. Credit Card Quiz.

    Science.gov (United States)

    Marks, Jeff

    2000-01-01

    Describes an activity in which students design credit cards and discover for themselves the mathematical realities of buying on credit. Employs multiple-intelligence theory to increase the chance that all students will be reached. (YDS)

  18. Status of spent fuel shipping cask development

    International Nuclear Information System (INIS)

    Hall, I.K.; Hinschberger, S.T.

    1989-01-01

    This paper discusses how several new-generation shopping cask systems are being developed for safe and economical transport of commercial spent nuclear fuel and other radioactive wastes for the generating sites to a federal geologic repository or monitored retrievable storage (MRS) facility. Primary objectives of the from-reactor spent fuel cask development work are: to increase cask payloads by taking advantage of the increased at-reactor storage time under the current spent fuel management scenario, to facilitate more efficient cask handling operations with reduced occupational radiation exposure, and to promote standardization of the physical interfaces between casks and the shipping and receiving facilities. Increased cask payloads will significantly reduce the numbers of shipments, with corresponding reductions in transportation costs and risks to transportation workers, cask handling personnel, and the general public

  19. Spent fuel shipping cask sealing concepts

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1989-05-01

    In late 1985, the International Atomic Energy Agency (IAEA) requested the US Program for Technical Assistance to IAEA Safeguards (POTAS) to provide a study which examined sealing concepts for application to spent fuel shipping casks. This request was approved, and assigned to Sandia National Laboratories (Sandia). In the course of this study, discussions were held with personnel in the International Safeguards Community who were familiar with the shipping casks used in their States. A number of shipping casks were examined, and discussions were held with two shipping cask manufacturers in the US. As a result of these efforts, it was concluded that the shipping casks provided an extremely good containment, and that many of the existing casks can be effectively sealed by applying the seal to the cask closure bolts/nuts

  20. Benchmark study of some thermal and structural computer codes for nuclear shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Kanae, Yoshioki; Shimada, Hirohisa; Shimoda, Atsumu; Halliquist, J.O.

    1984-01-01

    There are many computer codes which could be applied to the design and analysis of nuclear material shipping casks. One of problems which the designer of shipping cask faces is the decision regarding the choice of the computer codes to be used. For this situation, the thermal and structural benchmark tests for nuclear shipping casks are carried out to clarify adequacy of the calculation results. The calculation results are compared with the experimental ones. This report describes the results and discussion of the benchmark test. (author)

  1. Criticality analysis of a spent fuel shipping cask

    International Nuclear Information System (INIS)

    Pena, J.

    1984-01-01

    Criticality analysis for a system yields to the determination of the multiplication factor. Should such analysis be performed for a spent fuel shipping cask some standards must be accomplished. In this study a sample design is analyzed and criticality results are presented. (author)

  2. Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    International Nuclear Information System (INIS)

    1990-02-01

    This Preliminary Design Report (PDR) provides a detailed description of the design, analyses, and testing programs for the BR-100 cask. The BR-100 is a Type B(U) cask designed for transport by rail or barge. This report presents the preliminary analyses and tests which have been performed for the BR-100 and outlines the confirmatory analyses and tests which will be performed

  3. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    International Nuclear Information System (INIS)

    Toubon, H.; Guillou, E.; Cousinou, P.; Barbry, F.; Grouiller, J.P.; Bignan, G.

    2001-01-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis

  4. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H. [Cogema, 78 - Saint Quentin en Yvelines (France); Guillou, E. [Cogema Etablissement de la Hague, D/SQ/SMT, 50 - Beaumont Hague (France); Cousinou, P. [CEA Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, 92 (France); Barbry, F. [CEA Valduc, Inst. de Protection et de Surete Nucleaire, 21 - Is sur Tille (France); Grouiller, J.P.; Bignan, G. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis.

  5. A Multi-function Cask for At-Reactor Storage of Short-Cooled Spent Fuel, Transport, and Disposal

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    2004-01-01

    The spent nuclear fuel (SNF) system in the United States was designed with the assumptions that SNF would be stored for several years in an at-reactor pool and then transported to reprocessing plants for recovery of fissile materials, that security would not be a major issue, and that the SNF burnups would be low. The system has evolved into a once-through fuel cycle with high-burnup SNF, long-term storage at the reactor sites, and major requirements for safeguards and security. An alternative system is proposed to better meet these current requirements. The SNF is placed in multi-function casks with the casks used for at-reactor storage, transport, and repository disposal. The cask is the handling package, provides radiation shielding, and protects the SNF against accidents and assault. SNF assemblies are handled only once to minimize accident risks, maximize security and safeguards by minimizing access to SNF, and reduce costs. To maximize physical protection, the cask body is constructed of a cermet (oxide particles embedded in steel, the same class of materials used in tank armor) and contains no cooling channels or other penetrations that allow access to the SNF. To minimize pool storage of SNF, the cask is designed to accept short-cooled SNF. To maximize the capability of the cask to reject decay heat and to limit SNF temperatures from short-cooled SNF, the cask uses (1) natural circulation of inert gas mixtures inside the cask to transfer heat from the SNF to the cask body and (2) an overpack with external natural-circulation, liquid-cooled fins to transfer heat from the cask body to the atmosphere. This approach utilizes the entire cask body area for heat transfer to maximize heat removal rates-without any penetrations through the cask body that would reduce the physical protection capabilities of the cask body. After the SNF has cooled, the cooling overpack is removed. At the repository, the cask is placed in a corrosion-resistant overpack before disposal

  6. Study on burnup credit evaluation method at JAERI towards securing criticality safety rationale for management of spent fuel

    International Nuclear Information System (INIS)

    Nomura, Y.

    1998-01-01

    Lately, due to massive accumulation of spent fuel discharged from light water reactors in Japan, it is gradually demanded to introduce the so-called burnup credit methodology into criticality safety design for nuclear fuel cycle facilities, such as spent fuel storage pools and transport casks. In order to save space in the spent fuel storage pool of the Rokkasho Reprocessing Plant, the burnup credit design has been firstly implemented for its criticality safety evaluation. Here, its design conditions and operational control procedures are briefly shown and research using burned fuel at JAERI is explained to support its licensing safety review, focusing on the relevant content of the Nuclear Criticality Safety Handbook of Japan, which has been prepared so far and planned in the near future. Finally, international co-operation for study on burnup credit issues practiced by JAERI is addressed. (author)

  7. Software requirements definition Shipping Cask Analysis System (SCANS)

    International Nuclear Information System (INIS)

    Johnson, G.L.; Serbin, R.

    1985-01-01

    The US Nuclear Regulatory Commission (NRC) staff reviews the technical adequacy of applications for certification of designs of shipping casks for spent nuclear fuel. In order to confirm an acceptable design, the NRC staff may perform independent calculations. The current NRC procedure for confirming cask design analyses is laborious and tedious. Most of the work is currently done by hand or through the use of a remote computer network. The time required to certify a cask can be long. The review process may vary somewhat with the engineer doing the reviewing. Similarly, the documentation on the results of the review can also vary with the reviewer. To increase the efficiency of this certification process, LLNL was requested to design and write an integrated set of user-oriented, interactive computer programs for a personal microcomputer. The system is known as the NRC Shipping Cask Analysis System (SCANS). The computer codes and the software system supporting these codes are being developed and maintained for the NRC by LLNL. The objective of this system is generally to lessen the time and effort needed to review an application. Additionally, an objective of the system is to assure standardized methods and documentation of the confirmatory analyses used in the review of these cask designs. A software system should be designed based on NRC-defined requirements contained in a requirements document. The requirements document is a statement of a project's wants and needs as the users and implementers jointly understand them. The requirements document states the desired end products (i.e. WHAT's) of the project, not HOW the project provides them. This document describes the wants and needs for the SCANS system. 1 fig., 3 tabs

  8. Developing new transportable storage casks for interim dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R. [Hitachi Zosen Diesel and Engineering Co., Ltd., Tokyo (Japan)

    2004-07-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication.

  9. Sandia National Laboratories cask drop test programme: a demonstration of fracture mechanics principles for the prevention of brittle fracture

    International Nuclear Information System (INIS)

    McConnell, P.; Sorenson, K.B.

    1995-01-01

    Sandia National Laboratories recently completed a cask drop test programme. The aims of the programme were (1) to demonstrate the applicability of a fracture mechanics-based methodology for ensuring cask integrity, and (2) to assess the viability of using a ferritic materials for cask containment. The programme consisted of four phases: (i) materials characterisation; (ii) non-destructive examination of the cask; (iii) finite element analyses of the drop events; and (iv) a series of drop tests of a ductile iron cask. The first three phases of the programme provided information for fracture mechanics analyses and predictions for the drop test phase. The drop tests were nominally based upon the IAEA 9 m drop height hypothetical accident scenario although one drop test was from 18 m. All tests were performed in the side drop orientation at a temperature of -29 o C. A circumferential, mid-axis flaw was introduced into the cask body for each drop test. Flaw depth ranged from 19 to 76 mm. Steel saddles were welded to the side wall of the cask to enhance the stresses imposed upon the cask in the region of the introduced flaw. The programme demonstrated the applicability of a fracture mechanics methodology for predicting the conditions under which brittle fracture may occur and thereby the utility of fracture mechanics design for ensuring cask structural integrity by ensuring an appropriate margin of safety. Positive assessments of ductile iron for cask containment and the quality of the casting process for producing ductile iron casks were made. The results of this programme have provided data to support IAEA efforts to develop brittle fracture acceptance criteria for cask containment. (author)

  10. Fire resistant nuclear fuel cask

    International Nuclear Information System (INIS)

    Heckman, R.C.; Moss, M.

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked

  11. Thermoelectric Powered Wireless Sensors for Dry-Cask Storage

    Science.gov (United States)

    Carstens, Thomas Alan

    This study focuses on the development of self-powered wireless sensors. These sensors can be used to measure key parameters in extreme environments; e.g., temperature monitoring for spent nuclear fuel during dry-cask storage. This study has developed a design methodology for these self-powered monitoring systems. The main elements that constitute this work consist of selecting and testing a power source for the wireless sensor, determination of the attenuation of the wireless signal, and testing the wireless sensor circuitry in an extreme environment. OrigenArp determined the decay heat and gamma/neutron source strength of the spent fuel throughout the service life of the dry-cask. A first principles analysis modeled the temperatures inside the dry-cask. A finite-element heat transfer code calculated the temperature distribution of the thermoelectric and heat sink. The temperature distributions determine the power produced by the thermoelectric. It was experimentally verified that a thermoelectric generator (HZ-14) with a DC/DC converter (Linear Technology LTC3108EDE) can power a transceiver (EmbedRF) at condition which represent prototypical conditions throughout and beyond the service life of the dry-cask. The wireless sensor is required to broadcast with enough power to overcome the attenuation from the dry-cask. It will be important to minimize the attenuation of the signal in order to broadcast with a small transmission power. To investigate the signal transmission through the dry-cask, CST Microwave Studio was used to determine the scattering parameter S2,1 for a horizontal dry-cask. Important parameters that can influence the transmission of the signal are antenna orientation, antenna placement, and transmission frequency. The thermoelectric generator, DC/DC converter, and transceiver were exposed to 60Co gamma radiation (exposure rate170.3 Rad/min) at the University of Wisconsin Medical Radiation Research Center. The effects of gamma radiation on the

  12. Mechanical properties used for the qualification of transport casks: Prototype development and extension to serial production

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1991-01-01

    A thorough understanding of the mechanical behavior of material in a specific cask is required to properly analyze the structural response of the cask. An appropriate way to establish this understanding is through laboratory testing of cask material. The laboratory testing that was done to support the MOSAIK Drop Test Program is summarized as an example of how mechanical properties can be mapped for a prototype cask. The broad range behavior to be understood. This is necessary for the proper application of fracture mechanics, and focuses on fracture toughness as the inherent materials property which quantifies the fracture resistance of a material. The understanding established by a mechanics to a particular prototype, behavior of a prototype must be correctly associated with parameters which can be measured on production casks. Since the production casks cannot be destructively tested, measurements are commonly made on sub-size specimens. This may prevent direct measurement of valid design properties. An additional database may then be required to establish the correlation between sub-size specimen measurements and valid design properties. This is illustrated by outlining the additional testing which would be necessary to allow the successful verification of the MOSAIK Drop Test Program to be extended from the prototype to serially produced casks

  13. Mechanical properties used for the qualification of transport casks: Prototype development and extension to serial production

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1992-01-01

    A thorough understanding of the mechanical behavior of material in a specific cask is required to properly analyze the structural response of the cask. An appropriate way to establish this understanding is through laboratory testing of cask material. The laboratory testing that was done to support the MOSAIK Drop Test Program is summarized as an example of how mechanical properties can be mapped for a prototype cask. The broad range of measured properties allows the critical aspects of mechanical behavior to be understood. This is necessary for the proper application of fracture mechanics, and focuses on fracture toughness as the inherent materials property which quantifies the fracture resistance of a material. The general fracture mechanics approach and its application to specific cask designs are described elsewhere (Salzbrenner et al. 1990, Sorenson et al. 1992a, Sorenson et al. 1992b). The understanding established by a thorough mapping of the mechanical properties is necessary to apply fracture mechanics to a particular prototype, but it is not sufficient for qualifying serially produced casks. The mechanical behavior of a prototype must be correctly associated with parameters which can be measured on production casks. Since the production casks cannot be destructively tested, measurements are commonly made on sub-size specimens. This may prevent direct measurement of valid design properties. An additional database may then be required to establish the correlation between sub-size specimen measurements and valid design properties. This is illustrated by outlining the additional testing which would be necessary to allow the successful verification of the MOSAIK Drop Test Program to be extended from the prototype to serially produced casks

  14. Two microcephaly-associated novel missense mutations in CASK specifically disrupt the CASK-neurexin interaction.

    Science.gov (United States)

    LaConte, Leslie E W; Chavan, Vrushali; Elias, Abdallah F; Hudson, Cynthia; Schwanke, Corbin; Styren, Katie; Shoof, Jonathan; Kok, Fernando; Srivastava, Sarika; Mukherjee, Konark

    2018-03-01

    Deletion and truncation mutations in the X-linked gene CASK are associated with severe intellectual disability (ID), microcephaly and pontine and cerebellar hypoplasia in girls (MICPCH). The molecular origin of CASK-linked MICPCH is presumed to be due to disruption of the CASK-Tbr-1 interaction. This hypothesis, however, has not been directly tested. Missense variants in CASK are typically asymptomatic in girls. We report three severely affected girls with heterozygous CASK missense mutations (M519T (2), G659D (1)) who exhibit ID, microcephaly, and hindbrain hypoplasia. The mutation M519T results in the replacement of an evolutionarily invariant methionine located in the PDZ signaling domain known to be critical for the CASK-neurexin interaction. CASK M519T is incapable of binding to neurexin, suggesting a critically important role for the CASK-neurexin interaction. The mutation G659D is in the SH3 (Src homology 3) domain of CASK, replacing a semi-conserved glycine with aspartate. We demonstrate that the CASK G659D mutation affects the CASK protein in two independent ways: (1) it increases the protein's propensity to aggregate; and (2) it disrupts the interface between CASK's PDZ (PSD95, Dlg, ZO-1) and SH3 domains, inhibiting the CASK-neurexin interaction despite residing outside of the domain deemed critical for neurexin interaction. Since heterozygosity of other aggregation-inducing mutations (e.g., CASK W919R ) does not produce MICPCH, we suggest that the G659D mutation produces microcephaly by disrupting the CASK-neurexin interaction. Our results suggest that disruption of the CASK-neurexin interaction, not the CASK-Tbr-1 interaction, produces microcephaly and cerebellar hypoplasia. These findings underscore the importance of functional validation for variant classification.

  15. 78 FR 73456 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Science.gov (United States)

    2013-12-06

    ...-2012-0052] RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment... International HI-STORM 100 Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to... requirements for the HI-STORM 100U part of the HI-STORM 100 Cask System and updates the thermal model and...

  16. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    International Nuclear Information System (INIS)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-01-01

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used

  17. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  18. Status of cask procurement strategy to satisfy DOE/OCRWM requirements

    International Nuclear Information System (INIS)

    Teer, B.R.; Nolan, D.J.; Lake, W.H.

    1993-01-01

    The Nuclear Waste Policy Act requires the development of a safe and efficient system to transport spent nuclear fuel to and within the Federal Waste Management System. This paper describes the DOE/OCRWM strategy to develop and procure a major component of the Transportation System-the transport cask systems. The original initiative to develop high-capacity innovative designs and its current status is described. The follow-on phase to design and procure proven technology cask systems is also discussed

  19. Development of on-site accident criteria for waste transfer casks

    International Nuclear Information System (INIS)

    Uldrich, E.D.

    1989-01-01

    Removal of radioactive waste must withstand the scrutiny of the public and various regulatory offices. Currently, there is no standard accident criteria or methodology for intra-site shipments at the Idaho National Engineering Laboratory (INEL). Since the radioactive waste transfer casks only carry material within the INEL site boundaries and are not used for normal over-the-road transport, the requirements of 10 CFR 71 Packaging and Transportation of Radioactive Material, do not provide suitable requirements for cask design or safety analyses. The objective is to develop realistically conservative accident scenarios consistent with the limited uses at the INEL for which the cask is approved

  20. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  1. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    International Nuclear Information System (INIS)

    Halstead, R. J.; Dilger, F.

    2003-01-01

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million

  2. Verification of heat removal capability of a concrete cask system for spent fuel storage

    International Nuclear Information System (INIS)

    Sakai, Mikio; Fujiwara, Hiroaki; Sakaya, Tadatugu

    2001-01-01

    The reprocessing works comprising of a center of nuclear fuel cycle in Japan is now under construction at Rokkasho-mura in Aomori prefecture, which is to be operated in 2005. However, as reprocessing capacity of the works is under total forming amount of spent nuclear fuels, it has been essential to construct a new facility intermediately to store them at a period before reprocessing them because of prediction to reach limit of pool storage in nuclear power stations. There are some intermediate storage methods, which are water pool method for wet storage, and bolt method, metal cask method, silo method and concrete cask method for dry storage. Among many methods, the dry storage is focussed at a standpoint of its operability and economy, the concrete cask method which has a lot of using results in U.S.A. has been focussed as a method expectable in its cost reduction effect among it. The Ishikawajima-Harima Heavy Industries Co., Ltd. produced, in trial, a concrete cask with real size to confirm productivity when advancing design work on concrete cask. By using the trial product, a heat removal test mainly focussing temperature of concrete in the cask was carried out to confirm heat conductive performances of the cask. And, analysis of heat conductivity was also carried out to verify validity of its analysis model. (G.K.)

  3. Duo_2-Steel cermet manufacturing technology for PWR Spent Nuclear Fuel (SNF) casks

    International Nuclear Information System (INIS)

    Siti Alimah; Budiarto

    2005-01-01

    Assessment of DUO_2-Steel cermet manufacturing technology for PWR SNF casks has been done. DUO_2-Steel cermet consisting of DUO_2 particulates and other particulates, embedded in a steel matrix. Cermet SNF casks have the potential for superior performance compared with casks constructed of other materials. The addition of DUO_2 ceramic particulates can increase SNF cask capacity, improve of repository performance and disposal of excess depleted uranium as potential waste. Two sets of cermet manufacturing technologies are casting and powder metallurgy. Three casting methods are infusion casting, traditional casting and centrifugal casting. While for powder metallurgy methods there are traditional method and new method. DUO_2-Steel cermet have traditionally been produced by powder metallurgy methods. The production of a cask, however, presents special requirements: the manufacture of an annular object with weights up to 100 tons, and methods are being not to manufacture a cermet of this size and geometry. A new powder metallurgy method, is a method for manufacturing cermet for PWR SNF cask. This powder metallurgy techniques have potentials low costs and provides greater freedom In the design of the cermet cask by allowing variable cermet properties. (author)

  4. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    Yoshioka, Ken-ichi; Ando, Y.; Kumanomido, H.; Sasaki, T.; Mitsuhashi, I.; Ueda, M.

    2001-01-01

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  5. Nuclear cask testing films misleading and misused

    Energy Technology Data Exchange (ETDEWEB)

    Audin, L. (Audin (Lindsay), Ossining, NY (United States))

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as proof'' to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests.

  6. Nuclear cask testing films misleading and misused

    Energy Technology Data Exchange (ETDEWEB)

    Audin, L. [Audin (Lindsay), Ossining, NY (United States)

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as ``proof`` to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests.

  7. Nuclear cask testing films misleading and misused

    International Nuclear Information System (INIS)

    Audin, L.

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as ''proof'' to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests

  8. A cask maintenance facility feasibility study

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1989-01-01

    The Oak Ridge National Laboratory (ORNL) is supporting the USDOE Office of Civilian Radioactive Waste Management (OCRWM) in developing a transportation system for spent nuclear fuel (SNF) and defense high level waste (HLW) as a part of the Federal Waste Management System (FWMS). In early 1988, a feasibility study was undertaken to design a stand-alone, green field facility for maintaining the FWMS casks. The feasibility study provided an initial layout facility design, an estimate of the construction cost, and an acquisition schedule for a Cask Maintenance Facility (CMF). The study also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrieveable Storage (MRS) facility. The data, design, and estimated cost resulting from the study have been organized for use in the total transportation system decision-making process. Most importantly, the feasibility study also provides a foundation for continuing design and planning efforts. The feasibility study was based on an assumed stand-alone green field configuration because of the flexibility this design approach provides. A stand-alone facility requires the inclusion with support functions as well as the primary process facilities thus yielding a comprehensive design evaluation and cost estimate. For example, items such as roads, security and waste processing which might be shared with an integrated or collocated facility have been fully costed in the feasibility study. Thus, while the details of the facility design might change, the overall concept used in the study can be applied to other facility configurations as planning for the total FWMS develops

  9. Structural analysis of a metal spent-fuel storage cask in an aircraft crash for risk assessment

    International Nuclear Information System (INIS)

    Almomani, Belal; Lee, Sanghoon; Kang, Hyun Gook

    2016-01-01

    Highlights: • Several engine-applied loads with different locations of impact on the storage cask body were implemented. • Cask structural responses due to the influence of engine impact loadings were analyzed. • Leakage path areas from lid closure openings were numerically calculated. • Release fractions that depend on the generated seal opening areas and fuel damage ratios were estimated. - Abstract: Evaluations of the impact resistance of a dry storage cask under mechanical impact loadings resulting from a large commercial aircraft crash have become an important issue for designers and evaluators, in order to promote interim dry storage activities and to evaluate design safety margins. This study presents a method to evaluate the structural integrity of a generic metal cask subjected to various mechanical loading conditions, which represent aircraft engine impacts, on different locations of the cask body. Thirty representative impact conditions are analyzed to provide a comprehensive evaluation of cask damage response. The applied engine impact load–time functions were carefully re-derived by utilizing CRIEPI’s proposed curve through Riera’s approach for six impact velocities, and applied to five locations on a freestanding cask: lateral impacts on the lower half, center of gravity, and upper half of the cask body, corner impact on the lid closure, and vertical impact on the center of the lid closure. A nonlinear dynamic finite element analysis is performed to evaluate the dynamic response of the cask lid closure system and to calculate the lid gaps. The release fractions from the cask to the environment for each impact condition are preliminarily estimated by referring to a proposed methodology from literature. It is believed that this paper presents a systematic process to connect the mechanical analysis of a cask response at the moment of aircraft engine impact with its radiological consequence analysis.

  10. Structural analysis of a metal spent-fuel storage cask in an aircraft crash for risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Belal, E-mail: balmomani@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Sanghoon, E-mail: shlee1222@kmu.ac.kr [Department of Mechanical and Automotive Engineering, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu (Korea, Republic of); Kang, Hyun Gook, E-mail: hyungook@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2016-11-15

    Highlights: • Several engine-applied loads with different locations of impact on the storage cask body were implemented. • Cask structural responses due to the influence of engine impact loadings were analyzed. • Leakage path areas from lid closure openings were numerically calculated. • Release fractions that depend on the generated seal opening areas and fuel damage ratios were estimated. - Abstract: Evaluations of the impact resistance of a dry storage cask under mechanical impact loadings resulting from a large commercial aircraft crash have become an important issue for designers and evaluators, in order to promote interim dry storage activities and to evaluate design safety margins. This study presents a method to evaluate the structural integrity of a generic metal cask subjected to various mechanical loading conditions, which represent aircraft engine impacts, on different locations of the cask body. Thirty representative impact conditions are analyzed to provide a comprehensive evaluation of cask damage response. The applied engine impact load–time functions were carefully re-derived by utilizing CRIEPI’s proposed curve through Riera’s approach for six impact velocities, and applied to five locations on a freestanding cask: lateral impacts on the lower half, center of gravity, and upper half of the cask body, corner impact on the lid closure, and vertical impact on the center of the lid closure. A nonlinear dynamic finite element analysis is performed to evaluate the dynamic response of the cask lid closure system and to calculate the lid gaps. The release fractions from the cask to the environment for each impact condition are preliminarily estimated by referring to a proposed methodology from literature. It is believed that this paper presents a systematic process to connect the mechanical analysis of a cask response at the moment of aircraft engine impact with its radiological consequence analysis.

  11. 78 FR 78165 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Science.gov (United States)

    2013-12-26

    ... Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9 AGENCY: Nuclear Regulatory... storage regulations by revising the Holtec International HI-STORM 100 Cask System listing within the...

  12. Spent nuclear fuel shipping cask handling capabilities of commercial light water reactors

    International Nuclear Information System (INIS)

    Daling, P.M.; Konzek, G.J.; Lezberg, A.J.; Votaw, E.F.; Collingham, M.I.

    1985-04-01

    This report describes an evaluation of the cask handling capabilities of those reactors which are operating or under construction. A computerized data base that includes cask handling information was developed with information from the literature and utility-supplied data. The capability of each plant to receive and handle existing spent fuel shipping casks was then evaluated. Modal fractions were then calculated based on the results of these evaluations and the quantities of spent fuel projected to be generated by commercial nuclear power plants through 1998. The results indicated that all plants are capable of receiving and handling truck casks. Up to 118 out of 130 reactors (91%) could potentially handle the larger and heavier rail casks if the maximum capability of each facility is utilized. Design and analysis efforts and physical modifications to some plants would be needed to achieve this high rail percentage. These modifications would be needed to satisfy regulatory requirements, increase lifting capabilities, develop rail access, or improve other deficiencies. The remaining 12 reactors were determined to be capable of handling only the smaller truck casks. The percentage of plants that could receive and handle rail casks in the near-term would be reduced to 64%. The primary reason for a plant to be judged incapable of handling rail casks in the near-term was a lack of rail access. The remaining 36% of the plants would be limited to truck shipments. The modal fraction calculations indicated that up to 93% of the spent fuel accumulated by 1998 could be received at federal storage or disposal facilities via rail (based on each plant's maximum capabilities). If the near-term cask handling capabilities are considered, the rail percentage is reduced to 62%

  13. Underground transportation and handling system for Pollux-casks

    International Nuclear Information System (INIS)

    Schrimpf, C.

    1988-01-01

    The concept for the underground transportation and handling system for Pollux-casks was optimized in a first phase by dividing the process in the repository up into the several transportation and manipulation steps. For each step, the possibilities were described and evaluated by means of a list of criteria (technical, safety and economical criteria). The following concept for the transportation and handling was developed: The casks are transported to the unloading area of the surface facilities by railway or truck. After removal of the transport protection, the entry control is performed. The cask is lifted from the vehicle and placed on a railbound transportation vehicle. This transport unit is transferred to the shaft and placed there ready for shaft hoisting. With the hoisting cage protruding, the transport unit is placed on the hoisting cage by means of a pushing-on device, locked, and then conveyed underground. After arrival on the emplacement level, the transport unit is pulled-off from the hoisting cage and taken over by a mine locomotive and transferred through the transportation and access drifts as far as to the emplacement site. There the locomotive pushed the rail transport vehicle into the emplacement drift, as far as to the designated emplacement position. At the emplacement position, the cask is again lifted by means of hoisting equipment. The rail transport vehicle is pulled out of the emplacement drift and returned to the surface for reloading. After deposition of the cask on the drift floor, the emplacement equipment is pulled back in order to give the operation space free for the slinger backfill truck. Within preceding tests two different backfilling techniques were investigated under realistic conditions: pneumatic backfilling and slinger backfilling. The slinger truck was found to be the most suitable for the designated purpose

  14. Transportation capabilities of the existing cask fleet

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Wankerl, M.W.

    1991-01-01

    This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 46 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the Department of Energy (DOE) consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated. 5 refs., 4 tabs

  15. Transportation capabilities of the existing cask fleet

    International Nuclear Information System (INIS)

    Johnson, P.E.; Wankerl, M.W.; Joy, D.S.

    1991-01-01

    This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 465 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the DOE consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated

  16. Used Fuel Cask Identification through Neutron Profile

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-20

    Currently, most spent fuel is stored near reactors. An interim consolidated fuel storage facility would receive fuel from multiple sites and store it in casks on site for decades. For successful operation of such a facility there is need for a way to restore continuity of knowledge if lost as well as a method that will indicate state of fuel inside the cask. Used nuclear fuel is identifiable by its radiation emission, both gamma and neutron. Neutron emission from fission products, multiplication from remaining fissile material, and the unique distribution of both in each cask produce a unique neutron signature. If two signatures taken at different times do not match, either changes within the fuel content or misidentification of a cask occurred. It was found that identification of cask loadings works well through the profile of emitted neutrons in simulated real casks. Even casks with similar overall neutron emission or average counts around the circumference can be distinguished from each other by analyzing the profile. In conclusion, (1) identification of unaltered casks through neutron signature profile is viable; (2) collecting the profile provides insight to the condition and intactness of the fuel stored inside the cask; and (3) the signature profile is stable over time.

  17. Life cycle cost report of VHLW cask

    International Nuclear Information System (INIS)

    1995-06-01

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste

  18. ANS/ENS tutorial session: Burnup credit issues in spent fuel transportation: Overview and objectives

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1988-01-01

    A number of opportunities exist to increase the efficiency of the next generation of spent fuel shipping casks. Improving cask efficiency will not only reduce life cycle transportation costs, but also is consistent with maintaining public and occupational radiological risks and, more importantly, total risks (radiological and nonradiological) within the guidelines of the ''as low as reasonably achievable'' (ALARA) philosophy. Increases in cask capacities will reduce both the total number of shipments required to transport a given amount of fuel and the number of handling operations at both shipping and receiving facilities. Additional capacity increases can be achieved by implementing various design strategies based on new concepts and/or the actual characteristics of the majority of the spent fuel to be shipped in the future. For example, it has been determined that additional capacity increases can be achieved by taking credit for burnup, the reduced reactivity that results when fuel has been used to produce power in a nuclear reactor. That is, as the fuel is used the atoms of fissile material decrease, and neutron absorbers (or ''poisons'') that tend to retard the fission process are produced. 7 refs., 1 fig

  19. GA-4 and GA-9 legal weight truck shipping cask development

    International Nuclear Information System (INIS)

    Grenier, R.M.; Meyer, R.J.; Jensen, M.F.

    1989-02-01

    We are developing two new legal weight truck spent fuel shipping casks that will carry four PWR or nine BWR spent fuel assemblies. They are being developed to meet requirements to dispose of nuclear wastes at a permanent disposal site. Our primary goal is to maximize the number of fuel elements of each fuel type that a legal weight truck (LWT) cask can carry, while ensuring that the design meets all NRC licensing requirements. 1 ref., 4 figs

  20. The metal and concrete cask for SNF and its radiation protection quality control

    International Nuclear Information System (INIS)

    Shchigolev, N.D.; Golubev, O.M.

    2005-01-01

    The transportation and packing module on the basis of metal and concrete cask for the long-term storage and shipment of the spent nuclear fuel is developed in compliance with the requirements of the national standards and IAEA recommendations. Such wares designed for the NPP and submarine reactors fuel may be remade also for the research ones. A procedure and remote device for the radiation protection control of this cask equally its integrity checks after dynamic testing also is described. (author)

  1. Interim and final storage casks

    International Nuclear Information System (INIS)

    Stumpfrock, L.; Kockelmann, H.

    2012-01-01

    The disposal of radioactive waste is a huge social challenge in Germany and all over the world. As is well known the search for a site for a final repository for high-level waste in Germany is not complete. Therefore, interim storage facilities for radioactive waste were built at plant sites in Germany. The waste is stored in these storage facilities in appropriate storage and transport casks until the transport in a final repository can be carried out. Licensing of the storage and transport casks aimed for use in the public space is done according to the traffic laws and for handling in the storage facility according to nuclear law. Taking into account the activity of the waste to be stored, different containers are in use, so that experience is available from the licensing and operation in interim storage facilities. The large volume of radioactive waste to be disposed of after the shut-down of power generation in nuclear power stations makes it necessary for large quantities of licensed storage and transport casks to be provided soon.

  2. Seismic Performance of Dry Casks Storage for Long- Term Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Luis [Univ. of Utah, Salt Lake City, UT (United States); Sanders, David [Univ. of Nevada, Reno, NV (United States); Yang, Haori [Oregon State Univ., Corvallis, OR (United States); Pantelides, Chris [Univ. of Utah, Salt Lake City, UT (United States)

    2016-12-30

    The main goal of this study is to evaluate the long-term seismic performance of freestanding and anchored Dry Storage Casks (DSCs) using experimental tests on a shaking table, as well as comprehensive numerical evaluations that include the cask-pad-soil system. The study focuses on the dynamic performance of vertical DSCs, which can be designed as free-standing structures resting on a reinforced concrete foundation pad, or casks anchored to a foundation pad. The spent nuclear fuel (SNF) at nuclear power plants (NPPs) is initially stored in fuel-storage pools to control the fuel temperature. After several years, the fuel assemblies are transferred to DSCs at sites contiguous to the plant, known as Interim Spent Fuel Storage Installations (ISFSIs). The regulations for these storage systems (10 CFR 72) ensure adequate passive heat removal and radiation shielding during normal operations, off-normal events, and accident scenarios. The integrity of the DSCs is important, even if the overpack does not breach, because eventually the spent fuel-rods need to be shipped either to a reprocessing plant or a repository. DSCs have been considered as a temporary storage solution, and usually are licensed for 20 years, although they can be relicensed for operating periods of up to 60 years. In recent years, DSCs have been reevaluated as a potential mid-term solution, in which the operating period may be extended for up to 300 years. At the same time, recent seismic events have underlined the significant risks DSCs are exposed. The consideration of DCSs for storing spent fuel for hundreds of years has created new challenges. In the case of seismic hazard, longer-term operating periods not only lead to larger horizontal accelerations, but also increase the relative effect of vertical accelerations that usually are disregarded for smaller seismic events. These larger seismic demands could lead to casks sliding and tipping over, impacting the concrete pad or adjacent casks. The casks

  3. Concept study for interim storage of research reactor fuel elements in transport and storage casks. Transport and storage licensing procedure for the CASTOR MTR 2 cask. Final report

    International Nuclear Information System (INIS)

    Weiss, M.

    2001-01-01

    As a result of the project, a concept was to be developed for managing spent fuel elements from research reactors on the basis of the interim storage technology existing in Germany, in order to make the transition to direct disposal possible in the long term. This final report describes the studies for the spent fuel management concept as well as the development of a transport and storage cask for spent fuel elements from research reactors. The concept analyses were based on data of the fuel to be disposed of, as well as the handling conditions for casks at the German research reactors. Due to the quite different conditions for handling of casks at the individual reactors, it was necessary to examine different cask concepts as well as special solutions for loading the casks outside of the spent fuel pools. As a result of these analyses, a concept was elaborated on the basis of a newly developed transport and storage cask as well as a mobile fuel transfer system for the reactor stations, at which a direct loading of the cask is not possible, as the optimal variant. The cask necessary for this concept with the designation CASTOR trademark MTR 2 follows in ist design the tried and tested principles of the CASTOR trademark casks for transport and interim storage of spent LWR fuel. With the CASTOR trademark MTR 2, it is possible to transport and to place into long term interim storage various fuel element types, which have been and are currently used in German research reactors. The technical development of the cask has been completed, the documents for the transport license as type B(U)F package design and for obtaining the storage license at the interim storage facility of Ahaus have been prepared, submitted to the licensing authorities and to a large degree already evaluated positively. The transport license of the CASTOR trademark MTR 2 has been issued for the shipment of VKTA-contents and FRM II compact fuel elements. (orig.)

  4. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    International Nuclear Information System (INIS)

    Il'kaev, R.I.; Matveev, V.Z.; Morenko, A.I.; Shapovalov, V.I.; Semenov, A.G.; Sergeyev, V.M.; Orlov, V.K.; Shatalov, V.V.; Gotovchikov, V.T.; Seredenko, V.A.; Haire, Jonathan M.; Forsberg, C.W.

    2004-01-01

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism

  5. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Il' kaev, R.I.; Matveev, V.Z.; Morenko, A.I.; Shapovalov, V.I. [Russian Federal Nuclear Center - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation); Semenov, A.G.; Sergeyev, V.M.; Orlov, V.K. [All-Russian Research Inst. of Inorganic Materials, Moscow (Russian Federation); Shatalov, V.V.; Gotovchikov, V.T.; Seredenko, V.A. [All-Russian Research Inst. of Applied Chemistry, Moscow (Russian Federation); Haire, Jonathan M.; Forsberg, C.W. [Oak Ridge National Lab., Oak Ridge (United States)

    2004-07-01

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism.

  6. Criticality safety of spent fuel casks considering water inleakage

    International Nuclear Information System (INIS)

    Osgood, N.L.; Withee, C.J.; Easton, E.P.

    2004-01-01

    A fundamental safety design parameter for all fissile material packages is that a single package must be critically safe even if water leaks into the containment system. In addition, criticality safety must be assured for arrays of packages under normal conditions of transport (undamaged packages) and under hypothetical accident conditions (damaged packages). The U.S. Nuclear Regulatory Commission staff has revised the review protocol for demonstrating criticality safety for spent fuel casks. Previous review guidance specified that water inleakage be considered under accident conditions. This practice was based on the fact that the leak tightness of spent fuel casks is typically demonstrated by use of structural analysis and not by physical testing. In addition, since a single package was shown to be safe with water inleakage, it was concluded that this analysis was also applicable to an array of damaged packages, since the heavy shield walls in spent fuel casks neutronically isolate each cask in the array. Inherent in this conclusion is that the fuel assembly geometry does not change significantly, even under drop test conditions. Requests for shipping fuel with burnup exceeding 40 GWd/MTU, including very high burnups exceeding 60 GWD/MTU, caused a reassessment of this assumption. Fuel cladding structural strength and ductility were not clearly predictable for these higher burnups. Therefore the single package analysis for an undamaged package may not be applicable for the damaged package. NRC staff developed a new practice for review of spent fuel casks under accident conditions. The practice presents two methods for approval that would allow an assessment of potential reconfiguration of the fuel assembly under accident conditions, or, alternatively, a demonstration of the water-exclusion boundary through physical testing

  7. Fuel element transfer cask modelling using MCNP technique

    International Nuclear Information System (INIS)

    Rosli Darmawan

    2009-01-01

    Full text: After operating for more than 25 years, some of the Reaktor TRIGA PUSPATI (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement. (author)

  8. Fuel Element Transfer Cask Modelling Using MCNP Technique

    International Nuclear Information System (INIS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  9. Stress analysis of closure bolts for shipping casks

    International Nuclear Information System (INIS)

    Mok, G.C.; Fischer, L.E.; Hsu, S.T.

    1993-01-01

    This report specifies the requirements and criteria for stress analysis of closure bolts for shipping casks containing nuclear spent fuels or high level radioactive materials. The specification is based on existing information conceming the structural behavior, analysis, and design of bolted joints. The approach taken was to extend the ASME Boiler and Pressure Vessel Code requirements and criteria for bolting analysis of nuclear piping and pressure vessels to include the appropriate design and load characteristics of the shipping cask. The characteristics considered are large, flat, closure lids with metal-to-metal contact within the bolted joint; significant temperature and impact loads; and possible prying and bending effects. Specific formulas and procedures developed apply to the bolt stress analysis of a circular, flat, bolted closure. The report also includes critical load cases and desirable design practices for the bolted closure, an in-depth review of the structural behavior of bolted joints, and a comprehensive bibliography of current information on bolted joints

  10. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports

  11. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  12. A method for determining the spent-fuel contribution to transport cask containment requirements

    International Nuclear Information System (INIS)

    Sanders, T.L.; Seager, K.D.; Rashid, Y.R.; Barrett, P.R.; Malinauskas, A.P.; Einziger, R.E.; Jordan, H.; Reardon, P.C.

    1992-11-01

    This report examines containment requirements for spent-fuel transport containers that are transported under normal and hypothetical accident conditions. A methodology is described that estimates the probability of rod failure and the quantity of radioactive material released from breached rods. This methodology characterizes the dynamic environment of the cask and its contents and deterministically models the peak stresses that are induced in spent-fuel cladding by the mechanical and thermal dynamic environments. The peak stresses are evaluated in relation to probabilistic failure criteria for generated or preexisting ductile tearing and material fractures at cracks partially through the wall in fuel rods. Activity concentrations in the cask cavity are predicted from estimates of the fraction of gases, volatiles, and fuel fines that are released when the rod cladding is breached. Containment requirements based on the source term are calculated in terms of maximum permissible volumetric leak rates from the cask. Calculations are included for representative cask designs

  13. An analysis of contingencies for making casks available for use during the early years of federal waste management system operations

    International Nuclear Information System (INIS)

    Johnson, P.E.; Pope, R.B.; Wankerl, M.W.; Joy, D.S.; Shappert, L.B.; Danese, F.L.; Best, R.E.; Schmid, S.

    1992-01-01

    This paper reports on a study which has been performed to examine the contingencies that could be pursued by the Department of energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) for shipping spent fuel beginning in 1998. OCRWM's current plan is to initiate operations using early production units of Initiative I truck and rail/barge casks that are presently being designed. Contingencies to this plan were considered in case some unforeseen event occurs that precludes the Initiative I casks from entering into service early in 1998 in sufficient quantities (both numbers and types) to satisfy DOE's shipping needs. Specifically, the study addressed the potential availability of cask systems, selected several cask usage scenarios, determined the requirements for casks under these scenarios, generically assessed different strategies for acquiring casks or the use of casks, and generically assessed cask fabrication capabilities. Issues concerning both domestic and foreign resources were addressed with a focus on the first five years of Federal Waste Management System (FWMS) operation

  14. High-burnup/low-cooling-time fuel carrying capacity of the GA-4 and GA-9 spent fuel shipping casks

    International Nuclear Information System (INIS)

    Boshoven, J.K.; Hopf, J.E.

    1994-01-01

    In response to utilities' projected needs to ship higher burnup spent fuel, General Atomics (GA) has performed shielding and thermal analysis for the GA-4 and GA-9 legal weight shipping casks to determine the minimum cooling times for various burnup levels for fully loaded GA-4 and GA-9 casks and reduced payloads for the casks. Tables are provided in the paper which show the minimum cooling time for a given burnup and payload for each of the casks. The analyses show that the GA-4 and GA-9 casks can carry at least as many high-burnup and/or short-cooling-time spent fuel assemblies as present day shipping casks. In addition, the GA casks are able to carry at least twice as many assemblies as the present day shipping casks if the spent fuel burnup levels and/or cooling times are open-quotes coolerclose quotes or open-quotes as coolclose quotes as their design basis fuels. The increased shipping capacity for these more common open-quotes coolerclose quotes assemblies allows fewer shipments and therefore increases the efficiency and lowers predicted risks of the transport system

  15. Cask system maintenance in the Federal Waste Management System

    International Nuclear Information System (INIS)

    Pope, R.B.; Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    In early 1988, in support of the development of the transportation system for the Office of Civilian Radioactive Waste Management System (OCRWM), a feasibility study was undertaken to define a the concept for a stand-alone, ''green-field'' facility for maintaining the Federal Waste Management System (FWMS) casks. This study provided and initial layout facility design, an estimate of the construction costs, and an acquisition schedule for a Cask Maintenance Facility (CMF). It also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrievable Storage (MRS) facility. The data, design, and estimated costs derived from the study have been organized for use in the total transportation system decision-making process. Most importantly, they also provide a foundation for continuing design and planning efforts. The feasibility study was based on an assumed stand-alone, ''green-field'' configuration. This design approach provides a comprehensive design evaluation, to guide the development of a cost estimate and to permit flexibility in locating the facility. The following sections provide background information on cask system maintenance, briefly summarizes some of the functional requirements that a CMF must satisfy, provides a physical description of the CMF, briefly discusses the cost and schedule estimates and then reviews the findings of the efforts undertaken since the feasibility study was completed. 15 refs., 3 figs

  16. Nondestructive Evaluation of the VSC-17 Cask

    International Nuclear Information System (INIS)

    Sheryl Morton; Al Carlson; Cecilia Hoffman; James Rivera; Phil Winston; Koji Shirai; Shin Takahashi; Masaharo Tanaka

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to store fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution

  17. Three-dimensional finite element impact analysis of a nuclear waste truck cask

    International Nuclear Information System (INIS)

    Miller, J.D.

    1985-01-01

    This paper presents a three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask which is used to transport radioactive waste by standard tractor-semitrailer truck. The nonlinear dynamic structural analysis code DYNA3D run on Sandia's Cray-1 computer was used to calculate the effects of the cask's closure-end impacting a rigid frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the cask (made of 304 stainless steel and depleted uranium) was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Interactive color graphics (PATRAN and MOVIE BYU) were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact, and leakage would not be expected after the event. As an example of a large three-dimensional finite element dynamic impact calculation, this analysis can serve as an excellent benchmark for computer aided design procedures

  18. Combined Thermal Management and Power Generation Concept for the Spent Fuel Dry Storage Cask

    International Nuclear Information System (INIS)

    Kim, In Guk; Bang, In Cheol

    2017-01-01

    The management of the spent nuclear fuel generated by nuclear power plants is a major issue in Korea due to insufficient capacity of the wet storage pools. Therefore, it is considered that dry storage system is the one possible solution for storing spent fuel. A dual-purpose metal cask (transportation and storage) is currently developing in Korea. This cask has 21 of fuel assemblies and 16.8 kW of maximum decay heat. To evaluate the critical safety in normal/off normal and accident conditions, critical stabilities were conducted by using CSAS 6.0. The experimental investigation of heat removal of a concrete storage cask was also conducted under normal, off normal and accident conditions. The results of the evaluation showed a good safety of the dry storage cask. The results showed the enhanced thermal performance according to modification of flow rate. To verify combined thermal management and power generation concept, a new type of test facility for dry storage cask was designed in 1/10 scale of concrete dry storage cask. The experimental study involved the cooling methods that are an integrated system on the top of the dry cask and air flow path on the canister wall. The results showed the temperature distribution of the wall and inside of the dry cask at the normal condition. The influence of the change of the heat load and cooling system were investigated. The heat removal by the integrated system is approximately 20% of the total heat removal of the dry cask with reduced wall temperature. In these tests, economic analysis is conducted by applying the concept of the cost and efficiency. Under different decay power cases, the energy efficiency of the heat pipe and Stirling engine are determined and compared based on experimental results. The average efficiencies of the Stirling engine were the range of 2.375 to 3.247% under the power range of 35– 65W. These results showed that advanced dry storage concept had a better cooling performance in comparison with

  19. Method for handling nuclear fuel casks

    International Nuclear Information System (INIS)

    Weems, S.J.

    1976-01-01

    A heavy shielded nuclear fuel cask is lowered into and removed from a water filled spent fuel pool by providing a vertical guide tube in the pool, affixing to the bottom of the cask a base plate that approximates the transverse dimension of the guide tube, and lowering and elevating the cask and base plate assembly into and out of the pool by causing it to traverse within the guide tube. The guide tube and base plate coact to function as a dashpot, thereby cushioning and controlling the fall of the cask in the pool should it break loose while being lowered into or raised out of the pool. a specified approach path to the guide tube insures that the cask assembly will not fall into the pool, should it break loose on its approach to the guide tube

  20. Cask ownership: Options and strategic factors

    International Nuclear Information System (INIS)

    Smith, C.W.

    1986-01-01

    Because of the potential number of casks available through utility modular storage programs, it is imperative that the planning for the provision and operation of casks under the NWPA program include consideration of the utility owned casks. As to the remainder of the cask requirements for implementation of the NWPA, the author believes that the cost factor is an artificial one for determining the benefits to the taxpayers and ratepayers for cask ownership and that the decision should be made on the basis of capability of the industry to perform on a competitive bid basis and assurance that the shipments will be made on a timely, safe and cost effective basis. If the procurement process is structured to rally permit competitive bidding on spent fuel shipping services, the competition in the market place will assure that DOE and the ratepayers, receive safe, high quality, and cost effective transportation proposals from very capable companies

  1. Recommendations for cask features for robotic handling from the Advanced Handling Technology Project

    International Nuclear Information System (INIS)

    Drotning, W.

    1991-02-01

    This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs

  2. Issues for effective implementation of burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Wagner, J.C.

    2001-01-01

    In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the technical issues related to the basic physics phenomena and parameters of importance are similar in each of these applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the implementation of burnup credit to each of these applications is dependent somewhat on the specific safety bases developed over the history of each operational area. This paper will briefly review the implementation status of burnup credit for each application area and explore some of the remaining issues associated with effective implementation of burnup credit. (author)

  3. Spent fuel transport and storage system for NOK: The TN52L, TN97L, TN24 BHL and TN24 GB casks

    International Nuclear Information System (INIS)

    Wattez, L.; Verdier, A.; Monsigny, P.-A.

    2007-01-01

    NOK nuclear power plants in Switzerland, LEIBSTADT (KKL) BWR nuclear power plant and BEZNAU (KKB) PWR nuclear power plant have opted to ship spent fuel to a central facility called ZWILAG for interim storage. In the mid-nineties, COGEMA LOGISTICS was contracted by KKL for the supply of the TN52L and TN97L transport and storage casks for BWR fuel types. In 2003, KKL also ordered from COGEMA LOGISTICS the supply of six TN24 BHL transport and storage casks. This paper shows how all the three cask designs have responded to the KKL needs to ship and store BWR spent fuel. In addition, it highlights the already significant operational feedback of the TN52L and TN97L casks by the KKL and ZWILAG operators. In 2004, NOK also ordered three TN24 GB transport and storage casks for PWR fuel types. These casks are presently being manufactured. (author)

  4. A preliminary evaluation of the ability of from-reactor casks to geometrically accommodate commercial LWR spent nuclear fuel

    International Nuclear Information System (INIS)

    Andress, D.; Joy, D.S.; McLeod, N.B.; Peterson, R.W.; Rahimi, M.

    1991-01-01

    The Department of Energy has sponsored a number of cask design efforts to define several transportation casks to accommodate the various assemblies expected to be accepted by the Federal Waste Management System. At this time, three preliminary cask designs have been selected for the final design--the GA-4 and GA-9 truck casks and the BR-100 rail cask. In total, this assessment indicates that the current Initiative I cask designs can be expected to dimensionally accommodate 100% of the PWR fuel assemblies (other than the extra-long South Texas Fuel) with control elements removed, and >90% of the assemblies having the control elements as an integral part of the fuel assembly. For BWR assemblies, >99% of the assemblies can be accommodated with fuel channels removed. This paper summarizes preliminary results of one part of that evaluation related to the ability of the From-Reactor Initiative I casks to accommodate the physical and radiological characteristics of the Spent Nuclear Fuel projected to be accepted into the Federal Waste Management System. 3 refs., 5 tabs

  5. Sensitivity analyses of seismic behavior of spent fuel dry cask storage systems

    International Nuclear Information System (INIS)

    Luk, V.K.; Spencer, B.W.; Shaukat, S.K.; Lam, I.P.; Dameron, R.A.

    2003-01-01

    Sandia National Laboratories is conducting a research project to develop a comprehensive methodology for evaluating the seismic behavior of spent fuel dry cask storage systems (DCSS) for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC). A typical Independent Spent Fuel Storage Installation (ISFSI) consists of arrays of free-standing storage casks resting on concrete pads. In the safety review process of these cask systems, their seismically induced horizontal displacements and angular rotations must be quantified to determine whether casks will overturn or neighboring casks will collide during a seismic event. The ABAQUS/Explicit code is used to analyze three-dimensional coupled finite element models consisting of three submodels, which are a cylindrical cask or a rectangular module, a flexible concrete pad, and an underlying soil foundation. The coupled model includes two sets of contact surfaces between the submodels with prescribed coefficients of friction. The seismic event is described by one vertical and two horizontal components of statistically independent seismic acceleration time histories. A deconvolution procedure is used to adjust the amplitudes and frequency contents of these three-component reference surface motions before applying them simultaneously at the soil foundation base. The research project focused on examining the dynamic and nonlinear seismic behavior of the coupled model of free-standing DCSS including soil-structure interaction effects. This paper presents a subset of analysis results for a series of parametric analyses. Input variables in the parametric analyses include: designs of the cask/module, time histories of the seismic accelerations, coefficients of friction at the cask/pad interface, and material properties of the soil foundation. In subsequent research, the analysis results will be compiled and presented in nomograms to highlight the sensitivity of seismic response of DCSS to

  6. Safety Analysis Report: Packages, Pu oxide and Am oxide shipping cask: Packaging of fissile and other radioactive materials: Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1984-12-01

    The PuO 2 cask or 5320-3 cask is designed for shipment of americium or plutonium by surface transportation modes. The cask design was physically tested to demonstrate that it met the criteria specified in US ERDA Manual Chapter 0529, dated 12/21/76, which invokes Title 10 Code of Federal Regulations, Part 71 (10 CFR 71) ''Packaging of Radioactive Materials for Transport,'' and Title 49 CFR Parts 171.179 ''Hazardous Materials Regulations.'' (US DOE Order 4580.1A, Chapter III, superseded manual chapter 0529 effective May 1981, but it retained the same 10 CFR 71 and 49 CFR 171-179 references

  7. The evaluation of minimum cooling period for loading of PWR spent nuclear fuel of a dual purpose metal cask

    Energy Technology Data Exchange (ETDEWEB)

    Dho, Ho Seog; Kim, Tae Man; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R and D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0-4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask.

  8. The evaluation of minimum cooling period for loading of PWR spent nuclear fuel of a dual purpose metal cask

    International Nuclear Information System (INIS)

    Dho, Ho Seog; Kim, Tae Man; Cho, Chun Hyung

    2016-01-01

    Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R and D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0-4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask

  9. Legal weight truck cask model impact limiter response

    International Nuclear Information System (INIS)

    Meinert, N.M.; Shappert, L.B.

    1989-01-01

    Dynamic and quasi-static quarter-scale model testing was performed to supplement the analytical case presented in the Nuclear Assurance Corporation Legal Weight Truck (NAC LWT) cask transport licensing application. Four successive drop tests from 9.0 meters (30 feet) onto an unyielding surface and one 1.0-meter (40-inch) drop onto a scale mild steel pin 3.8 centimeters (1.5 inches) in diameter, corroborated the impact limiter design and structural analyses presented in the licensing application. Quantitative measurements, made during drop testing, support the impact limiter analyses. High-speed photography of the tests confirm that only a small amount of energy is elastically stored in the aluminum honeycomb and that oblique drop slapdown is not significant. The qualitative conclusion is that the limiter protected LWT cask will not sustain permanent structural damage and containment will be maintained, subsequent to a hypothetical accident, as shown by structural analyses

  10. Dynamic fracture toughness data for CASTOR registered casks

    International Nuclear Information System (INIS)

    Winkler, H.P.; Trubitz, P.; Pusch, G.; Warnke, E.P.; Beute, K.; Novotny, V.

    2004-01-01

    For the use of cast iron spherical graphite for heavy-sectioned casks for transportation and storage of radiactive materials a complete failure assessment including fracture mechanical analysis is necessary. The casks require an elaborate fracture mechanics design based on fracture mechanics evaluation. The extension of the existing code with respect to dynamic loading takes account new developments to extend the field of applications. It also includes new criteria to design these casks against operating and accident loadings. A fundamental requirement for the realisation of this standard and the calculation of admissible crack lengths of stresses under dynamic loads is the availability of fracture mechanical data. The paper presents-as a part of a large test-program-first results of dynamic fracture-toughness-investigations depending on structure and temperature. The test-program will incorporate investigations on more then 2500 specimens. The investigations that will be done include static and dynamic fracture mechanics tests, dynamic tensile and pressure-tests on different formed specimens. The temperatures and other test conditions follows the IAEA-regulations and the real service conditions. The test-program will be realised in partnership with different institutes

  11. Modal analysis of spent fuel cask for WWER-1000 reactors

    International Nuclear Information System (INIS)

    Azimfar, S. A.; Kazemi, A.

    2011-01-01

    The Spent Fuel Assemblies of WWER-1000 reactors are planned to be transported by special containers which are supposed to be designed in a manner to stand against vibrations and impacts in order to protect the spent fuel from any possible damage. The vibration opposition of these containers shall be far beyond the critical resonance, because the resonances about the natural frequency of the structure will cause the enhancement of its oscillation range and may end with its disintegration. Determination of the amounts of natural frequencies and their mode shape can be achieved by vibration analyzing methods. The amount of the natural frequency of any structure crucially depends on its shape, material and lean points as well as the amount of the loads and the type of these loads. Due to the fact that the Spent Fuel Casks used for transportation in nuclear power plants in Russian Federation are TK-13 type and the pieces of information released are negligible, the scientists in Russia are working on the design and analysis of a new type made up of composite Material. In the presented paper the cask of spent fuel of TK-13 is modeled by ANSYS at 10.0 and ten natural frequency modes have been calculated, followed by the comparison of this result with the composite cask.

  12. Dynamic fracture toughness data for CASTOR {sup registered} casks

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, H.P. [GNS Gesellschaft fuer Nuklear-Service mbH/GNB, Essen (Germany); Trubitz, P.; Pusch, G. [Technische Univ. Bergakademie Freiberg, Freiberg (Germany); Warnke, E.P. [Siempelkamp GmbH and Co. KG, Krefeld (Germany); Beute, K. [Gontermann-Peipers GmbH, Siegen (Germany); Novotny, V. [SKODA, HUTE, Plzen (Czech Republic)

    2004-07-01

    For the use of cast iron spherical graphite for heavy-sectioned casks for transportation and storage of radiactive materials a complete failure assessment including fracture mechanical analysis is necessary. The casks require an elaborate fracture mechanics design based on fracture mechanics evaluation. The extension of the existing code with respect to dynamic loading takes account new developments to extend the field of applications. It also includes new criteria to design these casks against operating and accident loadings. A fundamental requirement for the realisation of this standard and the calculation of admissible crack lengths of stresses under dynamic loads is the availability of fracture mechanical data. The paper presents-as a part of a large test-program-first results of dynamic fracture-toughness-investigations depending on structure and temperature. The test-program will incorporate investigations on more then 2500 specimens. The investigations that will be done include static and dynamic fracture mechanics tests, dynamic tensile and pressure-tests on different formed specimens. The temperatures and other test conditions follows the IAEA-regulations and the real service conditions. The test-program will be realised in partnership with different institutes.

  13. Spent fuel transportation cask response to a tunnel fire scenario

    Energy Technology Data Exchange (ETDEWEB)

    Bajwa, C.S. [U.S. Nuclear Regulatory Commission, Washington, D.C. (United States); Adkins, H.E.; Cuta, J.M. [Pacific Northwest National Lab., Richland, WA (United States)

    2004-07-01

    On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB), the U.S. agency responsible for determining the cause of transportation accidents, to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation cask designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the ANSYS {sup registered} and COBRA-SFS computer codes to evaluate the thermal performance of different cask designs. The staff concluded that the transportation casks analyzed would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event. No release of radioactive materials would result from exposure of the casks analyzed to such an event. This paper describes the methods and approach used for this assessment.

  14. Spent fuel transportation cask response to a tunnel fire scenario

    International Nuclear Information System (INIS)

    Bajwa, C.S.; Adkins, H.E.; Cuta, J.M.

    2004-01-01

    On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB), the U.S. agency responsible for determining the cause of transportation accidents, to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation cask designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the ANSYS registered and COBRA-SFS computer codes to evaluate the thermal performance of different cask designs. The staff concluded that the transportation casks analyzed would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event. No release of radioactive materials would result from exposure of the casks analyzed to such an event. This paper describes the methods and approach used for this assessment

  15. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  16. Moving the largest capacity PWR dual-purpose cask in the world from Goesgen NPP to the Zwilag interim storage site

    International Nuclear Information System (INIS)

    Delannay, M.; Dudragne, S.

    2002-01-01

    The Swiss Goesgen nuclear power plant (NPP) has decided to use two different methods for the disposal of its spent fuel. (1) To reprocess some of its spent fuel in dedicated facilities. Some of the vitrified waste from the reprocessing will be shipped back to Switzerland using the new COGEMA Logistics, TN81 cask. (2) To ship the other part of its spent fuel to the central interim storage facility of Zwilag (Switzerland) using a COGEMA Logistics dual-purpose TN24G cask. The TN24G is the heaviest and largest dual-purpose cask manufactured so far by COGEMA Logistics in Europe. It is intended for the transport and storage of 37 pressurised water-reactor (PWR) spent fuel assemblies. Four casks were delivered by COGEMA Logistics to Goesgen NPP. Three transports of loaded TN24G casks between Goesgen and Zwilag were successfully performed at the beginning of 2002 with the new COGEMA Logistics Q76 wagon specifically designed to transport heavy casks. This article describes the procedure of operations and shipments for the first TN24G casks up to storage at Zwilag. The fourth transport of loaded TN24G was due to happen in October 2002. The TN24G cask, as part of the TN24 casks family, proved to be a very efficient solution for the KKG spent fuel management. (author)

  17. Selected concrete spent fuel storage cask concepts and the DOE/PSN Cooperative Cask Testing Program

    International Nuclear Information System (INIS)

    Creer, J.M.; McKinnon, M.A.; Collantes, C.E.

    1990-01-01

    To date, water pools, metal casks, horizontal concrete modules, and modular vaults have been used to store the major quantity of commercial light water reactor spent nuclear fuel. Recently, vertical concrete dry storage casks have received consideration for storage of spent nuclear fuel. This paper reviews the evolution of the development of selected vertical concrete dry storage casks and outlines a cooperative cask testing (heat transfer and shielding) program involving the US Department of Energy and Pacific Sierra Nuclear Associates. Others participating in the cooperative program are Pacific Northwest Laboratory; EG ampersand G Idaho, Inc.; Wisconsin Electric Power Company; and the Electric Power Research Institute. 28 refs., 14 figs

  18. Details on an actinide-only burnup credit application in the USA

    International Nuclear Information System (INIS)

    Lancaster, D.

    2001-01-01

    Details on the Actinide-Only burnup credit assumptions that will be used for the CASTOR X/32 S cask are presented. Preliminary results show that using a conservative set of assumptions the cask will allow most fuel to be loaded without the addition of any additional reactivity control. With the addition of 8 control rod elements it is possible to load most of the rest of the fuel. (author)

  19. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    International Nuclear Information System (INIS)

    Wagner, J.C.

    2001-01-01

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses

  20. Structural evaluation and analysis under normal conditions for spent fuel concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Taechul; Baeg, Changyeal; Yoon, Sitae [Korea Radioactive waste Management Agency, Daejeon (Korea, Republic of); Jung, Insoo [Korea Nuclear Engineering and Service Co., Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this paper is the verification of stabilities of the structural elements that influence the safety of a concrete storage cask. The evaluation results were reviewed with respect to every design criterion, in terms of whether the results satisfy the criteria, provided by 10CFR 72 and NUREG-1536. The basic information on the design is partially explained in 2. Description of spent fuel storage system and the maintainability and assumptions included in the analysis were confirmed through detailed explanations of the acceptable standards, analysis model, and analysis method. ABAQUS 6.10, a widely used finite element analysis program, was used in the structural analysis. The storage cask shall maintain the sub-criticality, shielding, structural integrity, thermal capability and confinement in accordance with the requirements specified in US 10 CFR 72. The safety of storage cask is analyzed and it has been confirmed to meet the requirements of US 10 CFR 72. This paper summarizes the structural stability evaluation results of a concrete storage cask with respect to the design criteria. The evaluation results of this paper show that the maximum stress was below the allowable stress under every condition, and the concrete storage cask satisfied the design criteria.

  1. GA-4/GA-9 legal weight truck from reactor spent fuel shipping casks

    International Nuclear Information System (INIS)

    1990-04-01

    The preliminary design report presents the results of General Atomics (GA) preliminary design effort to develop weight truck from reactor spent fuel shipping casks. The thermal evaluation of the Office of Civilian Radioactive Waste Management (OCRWM) cask considered normal and hypothetical accident conditions of transport. We employed analytical modeling as well as fire testing of the neutron shielding material to perform the evaluation. This document addresses the thermal design features of the cask, discusses thermal criteria, and summarizes the results of the thermal evaluation, as well as results of structural containment and nuclear evaluations that support the design. Also included are the results of trade-off studies. 69 refs., 103 figs., 76 tabs

  2. Interactions between cask components and content of packaging for the transport of radioactive material during drop tests

    International Nuclear Information System (INIS)

    Quercetti, T.; Ballheimer, V.; Zeisler, P.; Mueller, K.

    2003-01-01

    This paper describes the analytical, numerical and experimental investigations on the phenomenon of interactions between cask components and content of packages for the transport of radioactive material during drop tests required according to the IAEA Regulations for the Safe Transport of Radioactive Material. Radial and axial gaps between cask components and content are usually necessary for thermal reasons but larger gaps can exist because of the geometrical dimensions of the specified content. Consequently interactions between content and cask components (lid system, cask body, etc.) are possible and can not be excluded during drop tests. Interactions in this context are relative movements between cask and content which are mainly due to elastic spring effects after releasing the cask for the free drop. These relative movements can cause interior collisions between content and cask during the main impact of the package onto the unyielding target. Drop tests with various types of Type A and Type B packages fully instrumented with strain gauges and accelerometers showed that these interactions respectively interior collisions can be considerable relating to high forces acting on cask lids, lid bolts and the content. Of course the real quantitative consequences of the interactions depend upon different conditions, among others the drop orientation, the design characteristics of the impact limiters, the dimensions of the gaps, the material characteristics of the contents, etc. . In order to investigate more precisely the phenomenon of interactions BAM carried out finite element calculations for the named casks using the ABAQUS/ Standard and ABAQUS/ Explicit computer code comparing them with results obtained from experiments. Additionally, tests with a simplified model instrumented with accelerometers were carried out accompanied by finite element calculations and analytical calculations using MATHEMATICA. The investigations on the mentioned phenomena of interaction

  3. Cask operation and maintenance for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage.

  4. Cask operation and maintenance for spent fuel storage

    International Nuclear Information System (INIS)

    Lee, J.S.

    2004-01-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage

  5. Estimate of the crud contribution to shipping cask containment requirements

    International Nuclear Information System (INIS)

    Sandoval, R.P.; Einziger, R.E.; Jordan, H.; Malinauskas, A.P.; Mings, W.J.

    1992-01-01

    This paper reports that a methodology is developed to relate U.S. Code of Federal Regulations, Title 10, Part 71 (10CFR71) containment requirements to leak rates for the special case in which the only radioactive species having a potential for escape form the cask is that associated with debris (crud) contained on the fuel assemblies being transported. The methodology accounts for the characteristics of the crud and for attenuation of the gas-borne crud particulates once they become suspended within the cask. Calculations are performed for typical spent-fuel transport cask geometries and the normal and accident conditions prescribed in 10CFR71. The most current published data are used for crud composition and structure, specific activity, spallation mechanics and fractions, and crud particle size. The containment criteria leak rates are calculated assuming 5-yr-old spent fuel. In each accident case, the containment leak rate criteria are well in excess of 10 cm 3 /s. Under normal conditions of transport, the regulatory containment requirements are met by leak rates ranging from 1.5 x 10 -3 cm 3 /s to 1.5 x 10 -4 cm 3 /s for the transport of boiling water reactor fuel assemblies and form 1.8 x 10 -2 cm 3 /s to 1.3 x 10 -3 cm 3 /s for pressurized water reactor fuel assemblies. The calculated leak rates are most sensitive to the cask design, type of fuel, and particle size distribution. Conservatism of the limiting leak rates is discussed

  6. T-3 cask users' manual. Revision 1

    International Nuclear Information System (INIS)

    1986-06-01

    This user's manual for the T-C spent fuel cask provides information on: operating procedures; inspection and maintenance procedures; criticality evaluation; shielding evaluation; thermal evaluation; structural evaluation; and limitations

  7. Radiation shielding and criticality safety assessment for KN-12 spent nuclear fuel transport cask

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kyung; Shin, Chang Ho; Kim, Gi Hwan [Hanyang Univ., Seoul (Korea, Republic of)

    2001-08-15

    Because SNFs involve TRU (Transuranium), fission products, and fissile materials, they are highly radioactive and also have a possibility to be critical. Therefore, radiation shielding and criticality safety for transport casks containing the SNFs should be guaranteed through reliable valuation procedure. IAEA safety standard series No ST-1 recommends regulation for safe transportation of the SNFs by transport casks, and United States is carrying out it according to the regulation guide, 10 CFR parts 71 and 72. Present research objective is to evaluate the KN-12 spent nuclear fuel transport cask that is designed for transportation of up to 12 assemblies and is standby status for being licensed in accordance with Korea Atomic Energy Act. Both radiation shielding and criticality analysis using the accurate Monte Carlo transport code, MCNP-4B are carried out for the KN-12 SNF cask as a benchmark calculation. Source terms for radiation shielding calculation are obtained using ORIGEN-S computer code. In this work, for normal transport conditions, the results from MCNP-4B shows the maximum dose rate of 0.557 mSv/hr at the side surface. And the maximum dose rate of 0.0871 mSv/hr was resulted at the 2 m distance from the cask. The level of calculated dose rate is 27.9% of the limit at the cask surface, 87.1% at 2 m from the cask surface for normal transport condition. For hypothetical accident conditions, the maximum rate of 2.5144 mSv/hr was resulted at the 1 m distance from the cask and this level is 25.1% of the limit for hypothetical accident conditions. In criticality calculations using MCNP-4B, the k{sub eff} values yielded for 5.0 w/o U-235 enriched fresh fuel are 0.92098 {+-} 0.00065. This result confirms subcritical condition of the KN-12 SNF cask and gives 96.95% of recommendations for criticality safety evaluation by US NRC these results will be useful as a basis for approval for the KN-12 SNF cask.

  8. Performance of CASTORR HAW Cask Cold Trials for Loading, Transport and Storage of HAW canisters

    International Nuclear Information System (INIS)

    Wilmsmeier, Marco; Vossnacke, Andre

    2008-01-01

    On the basis of reprocessing contracts, concluded between the German Nuclear Utilities (GNUs) and the reprocessing companies in France (AREVA NC) and the UK (Nuclear Decommissioning Authority), GNS has the task to return the resulting residues to Germany. The high active waste (HAW) residuals from nuclear fuel reprocessing are vitrified and filled into steel cans, the HAW canisters. According to reprocessing contracts the equivalent number of HAW canisters to heavy metals delivered has to be returned to the country of origin and stored at an interim storage facility where applicable. The GNS' CASTOR R HAW casks are designed and licensed to fulfil the requirements for transport and long-term storage of HAW canisters. The new cask type CASTOR R HAW28M is capable of storing 28 HAW canisters with a maximum thermal power of 56 kW in total. Prior to the first active cask loading at a reprocessing facility it is required to demonstrate all important handling steps with the CASTOR R HAW28M cask according to a specific and approved sequence plan (MAP). These cold trials have to be carried out at the cask loading plant and at the reception area of an interim storage facility in Gorleben (TBL-G), witnessed by the licensing authorities and their independent experts. At transhipment stations GNS performs internal trials to demonstrate safe handling. A brand-new, empty CASTOR R HAW28M cask has been shipped from the GNS cask assembly facility in Muelheim to the TBL-G for cold trials. With this cask, GNS has to demonstrate the transhipment of casks at the Dannenberg transfer station from rail to road, transport to and reception at the TBL-G as well as incoming dose rate and contamination measurements and preparation for storage. After removal of all shock absorbers with a cask specific handling frame, tilting operation and assembly of the secondary lid with a pressure sensor, the helium leak tightness and 'Block-mass' tests have to be carried out as well. GNS long-term CASTOR R

  9. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technologies; Lindgren, Eric Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technologies

    2016-09-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry cask

  10. Dry Cask Storage Characterization Project - Phase 1: CASTOR V/21 Cask Opening and Examination

    Energy Technology Data Exchange (ETDEWEB)

    Bare, Walter Claude; Ebner, Matthias Anthony; Torgerson, Laurence Dale

    2001-08-01

    This report documents visual examination and testing conducted in 1999 and early 2000 at the Idaho National Engineering and Environmental Laboratory (INEEL) on a Gesellschaft für Nuklear Service (GNS) CASTOR V/21 pressurized water reactor (PWR) spent fuel dry storage cask. The purpose of the examination and testing is to develop a technical basis for renewal of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level waste at independent spent fuel storage installation sites. The examination and testing was conducted to assess the condition of the cask internal and external surfaces, cask contents consisting of 21 Westinghouse PWR spent fuel assemblies from Dominion’s (formerly named Virginia Power) Surry Power Station and cask concrete storage pad. The assemblies have been continuously stored in the CASTOR cask since 1985. Cask exterior surface and selected fuel assembly temperatures, and cask surface gamma and neutron dose rates were measured. Cask external/internal surfaces, fuel basket components including accessible weldments, fuel assembly exteriors, and primary lid seals were visually examined. Selected fuel rods were removed from one fuel assembly, visually examined, and then shipped to Argonne National Laboratory for nondestructive, destructive, and mechanical examination. Cask interior crud samples and helium cover gas samples were collected and analyzed. The results of the examination and testing indicate the concrete storage pad, CASTOR V/21 cask, and cask contents exhibited sound structural and seal integrity and that long-term storage has not caused detectable degradation of the spent fuel cladding or the release of gaseous fission products between 1985 and 1999.

  11. ASME codification of ductile cast iron cask for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Arai, Taku

    2012-01-01

    The CRIEPI has been executing research and development on ductile cast iron cask for transport and storage of spent nuclear fuel in order to diversify options of the casks. Based on the research results, the CRIEPI proposed materials standards (Section II) and structural design standards (Section III) for the ductile cast iron cask to the authoritative and international ASME (American Society of Mechanical Engineers) Codes. For the Section II, the CRIEPI proposed the JIS G 5504 material with additional requirement prohibiting repair of cast body by welding, etc. as well as the ASTM A874 material to the Part A. In addition, the CRIEPI proposed design stress allowables, physical properties (thermal conductivity, modulus of elasticity, etc.), and external pressure chart to the Part D. For the Section III, the CRIEPI proposed a fracture toughness requirement of the ductile cast iron cask at -40degC to WB and WC of Division 3. Additionally, the CRIEPI proposed a design fatigue curve of the ductile cast iron cask to Appendix of Division 1. This report describes the outline of the proposed standards, their bases, and the deliberation process in order to promote proper usage of the code, future improvement, etc. (author)

  12. Consequence Analysis of Release from KN-18 Cask during a Severe Transportation Accident

    International Nuclear Information System (INIS)

    Lim, Heoksoon; Bhang, Giin; Na, Janghwan; Ban, Jaeha; Kim, Myungsu

    2015-01-01

    Korea Hydro and Nuclear Power (KHNP) has launched a project entitled 'Development of APR1400 Physical Protection System Design' and conducting a new conceptual physical protection system(PPS) design. One of mayor contents is consequence analysis for spent nuclear fuel cask. Proper design of physical protection system for facilities and storage and transformation involving nuclear and radioactive material requires the quantification of potential consequence from prescribed sabotage and theft scenarios in order to properly understand the level of PPS needed for specific facilities and materials. An important aspect of the regulation of the nuclear industry is assessing the risk to the public and the environment from a release of radioactive material produced by accidental or intentional scenarios. This paper describes the consequence analysis methodology, structural analysis for KN-18 cask and results of release from the cask during a severe transportation accident. Accident during spent fuel cask transportation was numerically calculated for KN-18, and showed the integrity of the fuel assemblies and cask itself was unharmed on a scenario that is comparable to state of art NRC research. Even assumption of leakage as a size of 1 x 10''2 mm''2 does not exceed for a certain criteria at any distance

  13. Consequence Analysis of Release from KN-18 Cask during a Severe Transportation Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Bhang, Giin; Na, Janghwan; Ban, Jaeha; Kim, Myungsu [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Korea Hydro and Nuclear Power (KHNP) has launched a project entitled 'Development of APR1400 Physical Protection System Design' and conducting a new conceptual physical protection system(PPS) design. One of mayor contents is consequence analysis for spent nuclear fuel cask. Proper design of physical protection system for facilities and storage and transformation involving nuclear and radioactive material requires the quantification of potential consequence from prescribed sabotage and theft scenarios in order to properly understand the level of PPS needed for specific facilities and materials. An important aspect of the regulation of the nuclear industry is assessing the risk to the public and the environment from a release of radioactive material produced by accidental or intentional scenarios. This paper describes the consequence analysis methodology, structural analysis for KN-18 cask and results of release from the cask during a severe transportation accident. Accident during spent fuel cask transportation was numerically calculated for KN-18, and showed the integrity of the fuel assemblies and cask itself was unharmed on a scenario that is comparable to state of art NRC research. Even assumption of leakage as a size of 1 x 10''2 mm''2 does not exceed for a certain criteria at any distance.

  14. CREDIT SYSTEM AND CREDIT GUARANTEE PROGRAMS

    OpenAIRE

    Turgay GECER

    2012-01-01

    Credit system is an integrated architecture consisted of financial information, credit rating, credit risk management, receivables and credit insurance systems, credit derivative markets and credit guarantee programs. The main purpose of the credit system is to provide the functioning of all credit channels and to make it easy to access of credit sources demanded by all of real and legal persons in any economic system. Credit guarantee program, the one of prominent elements of the credit syst...

  15. Prototypic fabrication of TRIGA irradiated fuel shipping casks

    International Nuclear Information System (INIS)

    Kim, B.K.; Lee, Y.W.; Whang, C.K.; Lee, J.B.

    1980-01-01

    This is the safety analysis report on the prototypic fabrication of ''TRIGA Irradiated Fuel Shipping Cask'' conducted by KAERI in 1980. The results of the evaluation show that the shipping cask is in compliance with the applicable regulation for the normal conditions of transport as well as hypothetical accident conditions. The prototypic fabrication of the shipping cask (type B) was carried out for the first time in Korea after getting technical experience from fabrication of the ''TRIGA Spent Fuel Shipping Cask'' and ''the KO-RI Unit 1 surveillance capsule shipping cask'' in 1979. This report contains structural evaluation, thermal evaluation, shielding, criticality, quality assurance, and handling procedures of the shipping cask

  16. BWR - Spent Fuel Transport and Storage with the TNTM9/4 and TNTM24BH Casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2006-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., the Muehleberg Nuclear Power Plant owner, is involved in this process and has elected to store its BWR spent fuel in a new high capacity dual-purpose cask, the TNeTeM24BH from the COGEMA Logistics/TRANSNUCLEAR TN TM 24 family. The Muehleberg BWR spent fuels are transported by road in a medium size shuttle transport cask and then transferred to a heavy transport/storage cask (dry transfer) in the hot cell of ZWILAG site. For that purpose, COGEMA Logistics designed and supplied: - Two shuttle casks, TN TM 9/4, mainly devoted to transport of spent fuel from Muehleberg NPP to ZWILAG. Licensed according to IAEA 1996, the TN TM 9/4 is a 40 ton transport cask, for 7 BWR high bum-up spent fuel assemblies. - A series of new high capacity dual-purpose casks, TN TM 24BH, holding 69 BWR spent fuels. Two transport campaigns took place in 2003 and 2004. For each campaign, ten TN TM 9/4 round trips are performed, and one TN TM 24BH is loaded. 5 additional TN TM 24BH are being manufactured for BKW, and the next transport campaigns are scheduled from 2006. The TN TM 24BH high capacity dual purpose cask and the TN TM 9/4 transport cask characteristics and capabilities will then be detailed. (authors)

  17. Safety analysis report: packages. Pu oxide and Am oxide shipping cask (Packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1980-05-01

    The PuO 2 cask or SP 5320-2 and 3 cask is designed for surface shipment of americium or plutonium. The cask design was physically tested to demonstrate that it met the criteria specified in US ERDA Manual Chapter 0529, and Chapter I, Interstate Commerce Commission. The package has been assessed for transport of up to 357 grams of plutonium (403 grams PuO 2 powder) and up to 176 grams of americium (200 grams AmO 2 powder), having a maximum decay heat of 203 watts. Criticality evaluation alone would allow the shipment as Fissile Class II but the radiation level of the cask, measured at the time of shipment, may exceed 50 mrem/h at the surface and require shipment as Fissile Class III. Sample calculations address only the more restrictive of the two materials, which in most cases is 238 PuO 2

  18. Comparison of elastic and inelastic analysis and test results for the defense high level waste shipping cask

    International Nuclear Information System (INIS)

    Zimmer, A.; Koploy, M.A.; Madsen, M.M.

    1991-01-01

    In the early 1980s, the US DOE/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as fully complies with all applicable DOE, Nuclear Regulatory Commission, and DOT regulations. General Atomics designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Labs. (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This paper will compare the results of the two analytical approaches and with model testing results. The purpose of this work is to provide data to support licensing of the DHLW cask and to support the acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing

  19. Estimation of Shielding Thickness for a Prototype Department of Energy National Spent Nuclear Fuel Program Transport Cask

    Energy Technology Data Exchange (ETDEWEB)

    SANCHEZ,LAWRENCE C.; MCCONNELL,PAUL E.

    2000-07-01

    Preliminary shielding calculations were performed for a prototype National Spent Nuclear Fuel Program (NSNFP) transport cask. This analysis is intended for use in the selection of cask shield material type and preliminary estimate of shielding thickness. The radiation source term was modeled as cobalt-60 with radiation exposure strength of 100,000 R/hr. Cobalt-60 was chosen as a surrogate source because it simultaneous emits two high-energy gammas, 1.17 MeV and 1.33 MeV. This gamma spectrum is considered to be large enough that it will upper bound the spectra of all the various spent nuclear fuels types currently expected to be shipped within the prototype cask. Point-kernel shielding calculations were performed for a wide range of shielding thickness of lead and depleted uranium material. The computational results were compared to three shielding limits: 200 mrem/hr dose rate limit at the cask surface, 50 mR/hr exposure rate limit at one meter from the cask surface, and 10 mrem/hr limit dose rate at two meters from the cask surface. The results obtained in this study indicated that a shielding thickness of 13 cm is required for depleted uranium and 21 cm for lead in order to satisfy all three shielding requirements without taking credit for stainless steel liners. The system analysis also indicated that required shielding thicknesses are strongly dependent upon the gamma energy spectrum from the radiation source term. This later finding means that shielding material thickness, and hence cask weight, can be significantly reduced if the radiation source term can be shown to have a softer, lower energy, gamma energy spectrum than that due to cobalt-60.

  20. Introduction of a new structural material for spent nuclear fuel transportation casks

    International Nuclear Information System (INIS)

    Severson, W.J.; Mello, R.M.; Ciez, A.P.

    1991-01-01

    The From-Reactor Transportation Cask Initiative of the DOE Office of Civilian Radioactive Waste Management (OCRWM) has, since 1988, supported the development of cask systems for the shipment of spent nuclear fuel by both legal weight truck (LWT) and rail or barge. The design basis fuel to be transported would be 10 years out-of-reactor with maximum burnups of 35 and 30 GWD/MTU for PWR and BWR assemblies, respectively. Westinghouse's work on the program led to the development of a common use LWT cask design capable of transporting either three PWR or seven BWR assemblies. This payload in a common use cask is achieved by the use of depleted uranium for the gamma shielding material and Grade 9 titanium as the principal structural material. The use of Grade 9 titanium for cask structures has no certification precedent. This paper describes the work performed to characterize the material and the status of steps taken to gain its acceptance by the NRC, which includes ASME approval of its use in the construction of Section 3 Class 1 components. 9 refs., 7 figs., 9 tabs

  1. Fuel-assembly behavior under dynamic impact loads due to dry-storage cask mishandling

    International Nuclear Information System (INIS)

    1991-07-01

    Continued operation of nuclear power plants is contingent on the ability to provide adequate storage of spent fuel. Until recently, utilities have been able to maintain interim in-pool spent fuel storage. However, many facilities have reached their capacity and are now faced with shipping their spent fuel in dry casks to alternate storage facilities. The objective of this report is to provide estimates of the structural integrity of irradiated LWR fuel rods subjected to impact loads resulting from postulated cask handling accidents. This is accomplished in five stages: (1) Material properties for irradiated fuel are compiled for use in the structural analyses. (2) Results from parametric analyses of representative assembly designs are used to determine the most limiting case for end and side drop postulated handling accidents. (3) Detailed structural analysis results are presented for these critical designs. The detailed analyses include the coupling of assembly interaction with the cask and cask internals. (4) Criteria for both ultimate stress and brittle fracture failure modes of fuel rod cladding are established. (5) Safe cask handling drop height limits are computed based on items 2 through 4 above. 44 figs., 18 tabs

  2. Spent fuel metal storage cask performance testing and future spent fuel concrete module performance testing

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Creer, J.M.

    1988-10-01

    REA-2023 Gesellshaft fur Nuklear Service (GNS) CASTOR-V/21, Transnuclear TN-24P, and Westinghouse MC-10 metal storage casks, have been performance tested under the guidance of the Pacific Northwest Laboratory to determine their thermal and shielding performance. The REA-2023 cask was tested under Department of Energy (DOE) sponsorship at General Electric's facilities in Morris, Illinois, using BWR spent fuel from the Cooper Reactor. The other three casks were tested under a cooperative agreement between Virginia Power Company and DOE at the Idaho National Engineering Laboratory (INEL) by EGandG Idaho, Inc., using intact spent PWR fuel from the Surry reactors. The Electric Power Research Institute (EPRI) made contributions to both programs. A summary of the various cask designs and the results of the performance tests is presented. The cask designs include: solid and liquid neutron shields; lead, steel, and nodular cast iron gamma shields; stainless steel, aluminum, and copper baskets; and borated materials for criticality control. 4 refs., 8 figs., 6 tabs

  3. B cell remote-handled waste shipment cask alternatives study

    International Nuclear Information System (INIS)

    RIDDELLE, J.G.

    1999-01-01

    The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria

  4. Application of burnup credit in spent fuel management at Russian NPPs

    International Nuclear Information System (INIS)

    Koulikov, V.I.; Makarchuk, T.F.; Tikhonov, N.S.

    1998-01-01

    The article concerns implementation of burnup credit in spent fuel storage and transportation. Some of the problems with increased enrichment fuel can be resolved by use of modified transport methodology. Such as shipping in gas-filled casks only, reduced number of assemblies in casks, etc. However, the use of modified schemes of transportation results in essential financial losses. An actinide-only burnup credit is taken into account in most part of criticality calculations, and a parameter limiting loading of spent fuel in the cask or the repository is the avenge value of burnup on an assembly. The main method of burnup depth definition is its defect measurement. A short description of devices for measurement as well as some technical results of suing burnup credit approach in storage and transport are given. (author)

  5. Spent-fuel shipping and cask-handling studies in wet and dry environments. Studies and research concerning BNFP

    International Nuclear Information System (INIS)

    McCreery, P.N.

    1982-09-01

    A demonstration cask system has been constructed specifically to be used in examining unconventional techniques in handling spent fuel and fuel-hauling casks. This report demonstrates, through a series of photographs, some of these techniques and discusses others. It includes wet and dry operations, loading and unloading horizontally and vertically, mobile on-site carriers that can eliminate the need for some cranes and, in general, many of the operational options that are open in the design of future fuel handling systems

  6. Demonstration of cask transportation and dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Teer, B.R.; Clark, J.

    1984-01-01

    Nuclear Fuel Services, Inc. and the Department of Energy's Idaho Operations Office have signed a cost sharing contract to demonstrate dual purpose shipping and storage casks for spent nuclear fuel. Transnuclear, Inc. has been selected by NFS to design and supply two forged steel casks - one for 40 PWR assemblies from the Ginna reactor, the other for 85 BWR assemblies from the Big Rock Point reactor. The casks will be delivered to West Valley in mid-1985, loaded with the fuel assemblies and shipped by rail to the Idaho National Engineering Laboratory. The shipments will be made under a DOE Certificate of Compliance which will be issued based on reviews by Oak Ridge National Laboratory of Transnuclear's designs

  7. Behaviour of a spent fuel transport-storage cask during an airplane crash

    International Nuclear Information System (INIS)

    Malesys, P.

    1994-01-01

    TRANSNUCLEAIRE has got an order for the design and manufacturing of dual purpose, transport and storage, casks for spent fuel.An original item of the qualification of the design of this cask, for the storage aspect, is the necessity to demonstrate the resistance to an air crash.The typical case taken into account for design is the crash of a military fighter (F16) with a total mass of 14600kg and an impact speed of 150ms -1 . The demonstration of the ability of the cask to withstand this test is provided by both calculation and test.Two cases were considered. For the first one, the projectile hits the cask at the centre of the anti-crash lid. For the second one, it hits the cask in the plane of the closure system.The first step of the qualification is based on calculations performed with a code designed to study the effects of crashes. The aim of the calculations is, mainly, to determine the missile which has to be shot, and to select the worst orientation for the impact.To provide a full justification of the acceptability of the impact as concerned leaktightness, a test has been performed on a one-third scale model. It has shown that it was not altered by the impact.The paper provides a full description of the method of analysis, results of the numerical analysis, conclusion of the test and how the combination of calculation and test demonstrates the ability of the cask to withstand an airplane crash. ((orig.))

  8. First experience in international air transportation of RR SFA in Russian-made TUK-19 casks

    International Nuclear Information System (INIS)

    Kanashov, B.A.; Barinkov, O.P.; Dorofeev, A.N.; Komarov, S.V.; Smirnov, A.V.; Biro, L.; Budu, M.; Ciocanescu, M.

    2010-01-01

    Traditionally, spent fuel assemblies (SFA) have been transported across the Russian Federation by rail in special railcars. New conditions required SFA shipments by other conveyance, i.e. road, sea and even air transport. The air shipment of the VVR-S research reactor SNF in TUK-19 casks from Magurele, Romania in June 2009 was the first experience after new Russian and international regulations for the safe transport of radioactive material came into effect. The preparatory stage of the shipment focused on the issues associated with radiation and nuclear safety both during the loading and transport operations. The project covered development of a technology and equipment for SFA loading into TUK-19 casks and that for the air shipment. The SFAs were loaded into the TUK-19 casks with a specially designed transfer cask, and the SFA-containing packages were transported in specialized freight 20-foot ISO-containers. The safety of the loading and transport operations was ensured both by reliable engineering solutions, and selected conveyances and routes. The paper shows that the loading and the air shipment of the Romanian SFAs in TUK-19 casks does not contradict Romanian, Russian and international regulations for the safe transport of radioactive material. The outcomes of the SNF shipment from Romania confirmed correctness of the solutions and demonstrated high environmental safety. (author)

  9. Multi-purpose canister storage unit and transfer cask thermal analysis

    International Nuclear Information System (INIS)

    Montgomery, R.A.; Niemer, K.A.; Lindner, C.N.

    1997-01-01

    Spent Nuclear Fuel (SNF) generated at commercial nuclear power plants throughout the US is a concern because of continued delays in obtaining a safe, permanent disposal facility. Most utilities maintain their SNF in wet storage pools; however, after decades of use, many pools are filled to capacity. Unfortunately, DOE's proposed final repository at Yucca Mountain is at least 10 years from completion, and commercial power utilities have few options for SNF storage in the interim. The Multi-Purpose Canister (MPC) system, sponsored by DOE's Office of Civilian Radioactive Waste Management, is a viable solution to the interim storage problem. The system is designed for interim dry storage, transport, and ultimate disposal of commercial SNF. The MPC system consists of four separate components: an MPC, Transfer Cask, Storage Unit, and Transport Cask. The SNF assemblies are loaded and sealed inside the helium-filled steel MPC. Once sealed, the MPC is not reopened, eliminating the need to re-handle the individual spent fuel assemblies. The MPC is transferred, using the MPC Transfer Cask, into a cylindrical, reinforced-concrete Storage Unit for on-site dry storage. The MPC may be removed from the Storage Unit at any time and transferred into the MPC Transport Cask for transport to the final repository. This paper discusses the analytical approach used to evaluate the heat transfer characteristics of an MPC containing SNF assemblies in the MPC Transfer Cask and Storage Unit

  10. Thermal analysis on NAC-STC spent fuel transport cask under different transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yumei [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Yang, Jian, E-mail: zdhjkz@zju.edu.cn [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Xu, Chao; Wang, Weiping [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Ma, Zhijun [Department of Material Engineering, South China University of Technology, Guangzhou (China)

    2013-12-15

    Highlights: • Spent fuel cask was investigated as a whole instead of fuel assembly alone. • The cask was successfully modeled and meshed after several simplifications. • Equivalence method was used to calculate the properties of parts. • Both the integral thermal field and peak values are captured to verify safety. • The temperature variations of key parts were also plotted. - Abstract: Transport casks used for conveying spent nuclear fuel are inseparably related to the safety of the whole reprocessing system for spent nuclear fuel. Thus they must be designed according to rigorous safety standards including thermal analysis. In this paper, for NAC-STC cask, a finite element model is established based on some proper simplifications on configurations and the heat transfer mechanisms. Considering the complex components and gaps, the equivalence method is presented to define their material properties. Then an equivalent convection coefficient is introduced to define boundary conditions. Finally, the temperature field is captured and analyzed under both normal and accident transport conditions by using ANSYS software. The validity of numerical calculation is given by comparing its results with theoretical calculation. Obtaining the integral distribution laws of temperature and peak temperature values of all vital components, the security of the cask can be evaluated and verified.

  11. Multiple-Angle Muon Radiography of a Dry Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Durham, J. Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guardincerri, Elena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morris, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poulson, Daniel Cris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bacon, Jeffrey Darnell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morley, Deborah Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Plaud-Ramos, Kenie Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-23

    A partially loaded dry storage cask was imaged using cosmic ray muons. Since the cask is large relative to the size of the muon tracking detectors, the instruments were placed at nine different positions around the cask to record data covering the entire fuel basket. We show that this technique can detect the removal of a single fuel assembly from the center of the cask.

  12. Dry cask handling system for shipping nuclear fuel

    International Nuclear Information System (INIS)

    Jones, C.R.

    1975-01-01

    A nuclear facility is described for improved handling of a shipping cask for nuclear fuel. After being brought into the building, the cask is lowered into a tank mounted on a transporter, which then carries the tank into a position under an auxiliary well to which it is sealed. Fuel can then be loaded into or unloaded from the cask via the auxiliary well which is flooded. Throughout the procedure, the cask surface remains dry. (U.S.)

  13. Analysis of DCI cask drop test onto reinforced concrete pad

    International Nuclear Information System (INIS)

    Ito, C.; Kato, Y.; Hattori, S.; Shirai, K.; Misumi, M.; Ozaki, S.

    1993-01-01

    In a cask-storage facility, a cask may be subjected to an impact load as a result of a free drop onto the floor because of cask mishandling. We performed drop tests of casks onto a reinforced concrete (RC) slab representing the floor of a facility as well as simulation analysis [Kato et al]. This paper describes the details of the FEM analysis and calculated results and compares them with the drop test results. (J.P.N.)

  14. Burnup credit demands for spent fuel management in Ukraine

    International Nuclear Information System (INIS)

    Medun, V.

    2001-01-01

    In fact, till now, burnup credit has not be applied in Ukrainian nuclear power for spent fuel management systems (storage and transport). However, application of advanced fuel at VVER reactors, arising spent fuel amounts, represent burnup credit as an important resource to decrease spent fuel management costs. The paper describes spent fuel management status in Ukraine from viewpoint of subcriticality assurance under spent fuel storage and transport. It also considers: 1. Regulation basis concerning subcriticality assurance, 2. Basic spent fuel and transport casks characteristics, 3. Possibilities and demands for burnup credit application at spent fuel management systems in Ukraine. (author)

  15. Vestibule and Cask Preparation Mechanical Handling Calculation

    International Nuclear Information System (INIS)

    Ambre, N.

    2004-01-01

    The scope of this document is to develop the size, operational envelopes, and major requirements of the equipment to be used in the vestibule, cask preparation area, and the crane maintenance area of the Fuel Handling Facility. This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAIC Company L.L.C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC--28-01R W12101'' (Ref. 167124). This correspondence was appended by further correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC--28-01R W12101; TDL No. 04-024'' (Ref. 16875 1). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process

  16. Performance of CASTOR {sup registered} HAW cask cold trials for loading, Transport and storage of HAW canisters

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsmeier, Marco; Horn, Thomas; Graf, Wilhelm [GNS Gesellschaft fuer Nuklear-Service mbH (Germany)

    2009-07-01

    With over 30 years of experience in the design, manufacturing, assembly and loading of CASTOR {sup registered} casks, GNS is one of the worldwide leading suppliers of casks for the transport and storage of spent fuel assemblies as well as for canisters with vitrified high active wastes (meanwhile over 1.000 casks loaded and stored and more than 1.500 ordered). GNS's products are used at around 30 sites worldwide for a wide range of inventories from pressurised and boiling water reactor fuels (PWR, VVER and BWR, RBMK), thorium high-temperature reactor fuels (THTR) and research reactor fuels (MTR) to vitrified high active wastes (HAW) from reprocessing plants. GNS is responsible for all nuclear wastes resulting from German Nuclear Power Plants and assists and/or performs in the loading and dispatch of CASTOR {sup registered} casks as well as their transport to and storage at central interim storage facilities and local interim storage areas. (orig.)

  17. 78 FR 78285 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Science.gov (United States)

    2013-12-26

    ...-2012-0052] RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment... document proposed to amend the NRC's spent fuel storage regulations by revising the Holtec International HI...

  18. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  19. Capabilities for processing shipping casks at spent fuel storage facilities

    International Nuclear Information System (INIS)

    Baker, W.H.; Arnett, L.M.

    1978-01-01

    Spent fuel is received at a storage facility in heavily shielded casks transported either by rail or truck. The casks are inspected, cooled, emptied, decontaminated, and reshipped. The spent fuel is transferred to storage. The number of locations or space inside the building provided to perform each function in cask processing will determine the rate at which the facility can process shipping casks and transfer spent fuel to storage. Because of the high cost of construction of licensed spent fuel handling and storage facilities and the difficulty in retrofitting, it is desirable to correctly specify the space required. In this paper, the size of the cask handling facilities is specified as a function of rate at which spent fuel is received for storage. The minimum number of handling locations to achieve a given throughput of shipping casks has been determined by computer simulation of the process. The simulation program uses a Monte Carlo technique in which a large number of casks are received at a facility with a fixed number of handling locations in each process area. As a cask enters a handling location, the time to process the cask at that location is selected at random from the distribution of process time. Shipping cask handling times are based on experience at the General Electric Storage Facility, Morris, Illinois. Shipping cask capacity is based on the most recent survey available of the expected capability of reactors to handle existing rail or truck casks

  20. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1992-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both nominal use and accident conditions to serve the dual-role of shielding and containment, the use of other structure materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describesa two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature. The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracmm resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as win be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term ''structural credit'' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.)

  1. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1993-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both normal use and accident conditions to serve the dual-role of shielding and containment, the use of other structural materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describes a two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature (Eckelmeyer, 1991). The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracture resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as will be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term 'structural credit' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.) (J.P.N.)

  2. The state of the Primary Degradation Factors and Models of Concrete Cask in Spent Fuel Dry Storage System

    International Nuclear Information System (INIS)

    Kim, J. S.; Lee, K. S.; Choi, J. W.; Kwon, S.

    2010-01-01

    In South Korea, a total of twenty nuclear reactors are in operation; the cumulative amount of spent fuel is estimated to be 10,490 MTU in 2009. The full capacity of the waste storage is expected to be saturated in around 2016. However, a national strategy for spent fuel management has not yet been set down and high level waste (HLW) such as spent fuel will have to be stored at-reactor (AR) by re-racking. Recently an worldwide interest on the dry storage has increased especially around U.S. With a perspective of the material of the spent fuel dry storage cask, the system can be divided into two types of metal and concrete casks. The concrete type cask is a very attractive option because of the cost competitiveness of concrete material and its relatively long-term durability. Although the type of metal cask is chosen, the use of cementitious material is inevitable at least for the cask foundation and the facilities for the protection of dry storage structures. Upon being placed, the performance of concrete begins to deteriorate from the intrinsic change of cement and the physical/ chemical environmental conditions. Thus it is necessary to evaluate the durability of a concrete for the increase of reliability and safety of the whole system during the designed life time. Considering the dry storage system of spent fuel is the item which can create a lot of added value, the development of a dry storage cask is usually initiated by private enterprises among developed countries. The detail research results and specific design criteria for the safety assessment of a concrete cask have not been revealed to the public well. In this paper, the major expected degradation factors and related degradation models of concrete casks were investigated as part of the safety assessment by taking account of the site where Korea industrial nuclear power plants are located

  3. Development of boronated aluminum alloy for basket of cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Sakaguchi, Y.; Saida, T.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities and competent authorities in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed boronated aluminum as basket material. This boronated aluminum has been developed to improve characteristics of material. To achieve this object, powder metallurgy method has been adopted for manufacturing boronated material. It is well known that this method provides excellent characteristics for the material and this boronated aluminum alloy has obtained excellent both mechanical and neutron absorbing characteristics. In addition, in order to maintain material properties for long-term use this boronated material is not strengthened by aging treatment. This paper summarizes an outline of the boronated aluminum alloy for basket assemblies by powder metallurgy. (author)

  4. Benefits of the S/F cask impact limiter weldment imperfection

    International Nuclear Information System (INIS)

    Ku, Jeong Hoe; Lee, Ju Chan; Kim, Jong Hun; Park, Seong Won; Park, Hyun Soo

    2000-01-01

    This paper describes the beneficial effect of weldment imperfection of the cask impact limiter, by applying intermittent-weld, for impact energy absorbing behavior. From the point of view of energy absorbing efficiency of an energy absorber, it is desirable to reduce the crush load resistance and increase the deformation of the energy absorber within certain limit. This paper presents the test results of intermittent-weldment and the analysis results of cask impacts and the discussions of the improvement of impact mitigating effect by the imperfect-weldment. The rupture of imperfect weldment of an impact limiter improves the energy-absorbing efficiency by reducing the crush load amplitude without loss of total energy absorption. The beneficial effect of weldment imperfection should be considered to the cask impact limiter design. (author)

  5. Management plan for the procurement of shipping casks required to service proposed federal waste repositories

    International Nuclear Information System (INIS)

    Renken, J.H.; Dupree, S.A.; Allen, G.C. Jr.; Freedman, J.M.

    1978-08-01

    Development of transportation systems to move radioactive waste and unreprocessed spent fuel to proposed federal waste repositories is an integral part of the National Waste Terminal Storage Program. To meet this requirement, shipping casks must be designed, licensed, and fabricated. To assist the manager charged with this responsibility, a Cask Procurement Plan has been formulated. This plan is presented as a logic diagram that is suitable for computer analysis. In addition to the diagram, narrative material that describes various activities in the plan is also included. A preliminary computer analysis of the logic diagram indicates that, depending on the result of several decisions which must be made during the course of the work, the latest start dates which will allow prototype delivery of all types of casks by December 1985, range from November 1977 to March 1982

  6. Study on the key technologies of the Transfer Equipment Cask for Tokamak Equator Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Buyun, E-mail: ayun@iim.ac.cn [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Gao, Lifu [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Cao, Huibin; Sun, Jian [Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Sun, Yuxiang; Song, Quanjun; Ma, Chengxue; Chang, Li; Shuang, Feng [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-12-15

    Highlights: • Design on Intelligent Air Transfer System (IATS) for Transfer Equipment Cask (TECA). • A rhombic-like parallel robot for docking with minimum misalignment. • Design on electro-hydraulic servo system of the TECA for Tokamak Equator Port Plug (TEPP) manipulation. • A control architecture with several algorithms and information acquired from sensors could be used by the TECA for Remote Handling (RH). - Abstract: The Transfer Equipment Cask (TECA) is a key solution for Remote Handling (RH) in Tokamak Equator Port Plug (TEPP) operations. From the perspectives of both engineering and technical designs of effective experiments on the TEPP, key technologies on these topics covering the TECA are required. According to conditions in ITER (International Thermonuclear Experimental Reactor) and features of the TEPP, this paper introduces the design of an Intelligent Air Transfer System (IATS) with an adaptive attitude and high precision positioning that transports a cask system of more than 30 tons from the Tokamak Building (TB) to the Hot Cell Building (HCB). Additionally, different actuators are discussed, and the hydraulic power drive is eventually selected and designed. A rhombic-like parallel robot is capable of being used for docking with minimum misalignment. Practical mechanisms of the cask system are presented for hostile environments. A control architecture with several algorithms and information acquired from sensors could be used by the TECA. These designs yield realistic and extended applications for the RH of ITER.

  7. Development of a toroidal shell-type shock absorber for an irradiated fuel shipping cask

    International Nuclear Information System (INIS)

    Sugita, Y.; Mochizuki, S.

    1983-01-01

    This study described the design method of a toroidal shell-type shock absorber and the dynamic responses of the cask body, the internal structure and water when this shock absorber was used. Conclusions are: the calculated results on the basis of the master curves of non-dimensionalized force-deflection relations by static compression tests show a close agreement with the experimental results; the internal structure moves together with the cask body in every position; and the maximum water pressure is larger by a factor of 1.2 than the static pressure multiplied by the maximum deceleration in every direction due to the low-frequency wave propagation

  8. Safety analysis report for packaging: the ORNL tungsten-shielded cask

    International Nuclear Information System (INIS)

    Evans, J.H.; Levine, D.L.; Just, R.A.

    1977-10-01

    The ORNL tungsten-shielded cask was designed and fabricated at the Oak Ridge National Laboratory (ORNL) for the transport of Type B and large quantity nonfissile isotopes. The container was evaluated analytically to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported. Computational methods were employed in a determination of the structural integrity and thermal behavior of the cask relative to the general standards for normal conditions of transport and to the standards for the hypothetical accident conditions. The results of these evaluations demonstrate that the container is in compliance with the applicable regulations

  9. GA-4 and GA-9 legal weight truck shipping cask development

    International Nuclear Information System (INIS)

    Grenier, R.; Meyer, R.; Jensen, M.

    1989-01-01

    General Atomics (GA), under contract to the Idaho Operations Office of the U.S. Department of Energy, is developing two new legal weight truck spent fuel shipping casks that will carry four PWR or nine BWR spent fuel assemblies. They are being developed for the Office of Civilian Radioactive Waste Management (OCRWM) to meet its mission to dispose of nuclear wastes at a permanent disposal site. This paper discusses the primary goal, to maximize the number of fuel elements of each fuel type that a LWT cask can carry, while ensuring that the design meets all NRC licensing requirements

  10. Neutron multiplication and shielding problems in pressurized water reactor spent fuel shipping casks

    International Nuclear Information System (INIS)

    Devillers, C.; Blum, P.

    1977-01-01

    To evaluate the degree of accuracy of computational methods used in the shield design of spent fuel shipping casks, comparisons have been made between biological dose-rate calculations and measurements at the surface of a cask carrying three pressurized water reactor fuel assemblies. Neutron dose-rate measurements made with the fuel-carrying region successively wet and dry are also used to derive an experimental value of the k/sub eff/ of the wet fuel assemblies. Results obtained by this method are shown to be consistent with criticality calculations, taking into account fuel depletion

  11. Numerical study of thermal test of a cask of transportation for radioactive material

    International Nuclear Information System (INIS)

    Vieira, Tiago A.S.; Santos, André A.C. dos; Vidal, Guilherme A.M.; Silva Junior, Geraldo E.

    2017-01-01

    In this study numerical simulations of a transport cask for radioactive material were made and the numerical results were compared with experimental results of tests carried out in two different opportunities. A mesh study was also made regarding the previously designed geometry of the same cask, in order to evaluate its impact in relation to the stability of numerical results for this type of problem. The comparison of the numerical and experimental results allowed to evaluate the need to plan and carry out a new test in order to validate the CFD codes used in the numerical simulations

  12. The Design, Implementation, and Evaluation of Online Credit Nutrition Courses: A Systematic Review

    Science.gov (United States)

    Cohen, Nancy L.; Carbone, Elena T.; Beffa-Negrini, Patricia A.

    2011-01-01

    Objective: To assess how postsecondary online nutrition education courses (ONEC) are delivered, determine ONEC effectiveness, identify theoretical models used, and identify future research needs. Design: Systematic search of database literature. Setting: Postsecondary education. Participants: Nine research articles evaluating postsecondary ONEC.…

  13. 78 FR 73379 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Science.gov (United States)

    2013-12-06

    ... Storage Casks: HI-STORM 100 Cask System; Amendment No. 9 AGENCY: Nuclear Regulatory Commission. ACTION... storage regulations by revising the Holtec International HI- STORM 100 Cask System listing within the...C) No. 1014. Amendment No. 9 broadens the subgrade requirements for the HI-STORM 100U part of the HI...

  14. Safety analysis report for packaging (onsite) Castor GSF cask

    International Nuclear Information System (INIS)

    Clements, E.P.

    1997-01-01

    The CASTOR GSF packaging was designed and fabricated to be a certified Type B(U) packaging and comply with the requirements of the International Atomic Energy Agency (IAEA) for transport of up to five sealed canisters of vitrified radioactive materials. This onsite Safety Analysis Report for Packaging (SARP) provides the analysis and evaluations necessary to demonstrate that the casks, with the canister payload, meet the intent of the Type B packaging regulations set forth in 10 CFR 71 and therefore meet the onsite transportation safety requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping

  15. Radiation Templates of Spent Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Vanier, Peter

    2018-05-07

    BNL and INL propose to perform a scoping study, using heavily collimated gamma and fast neutron detectors, to obtain passive radiation templates of dry storage casks containing spent fuel. The goal is to demonstrate sufficient spatial resolution and sensitivity to detect a missing fuel assembly. Such measurements, combined with detailed modeling and decay corrections should provide confidence that the cask contents have not been altered, despite loss of continuity of knowledge (CoK). The concept relies on the leakage of high energy gammas and neutrons through the shielding of the casks. Tests will emphasize organic scintillators with pulse shape discrimination, but baseline comparisons will be made to high purity germanium (HPGe) and collimated moderated 3He detectors deployed in the same locations. Commercial off-the-shelf (COTS) detectors and data acquisition electronics will be used with custom-built collimators and shielding.

  16. Status of burnup credit implementation and research in Switzerland

    International Nuclear Information System (INIS)

    Grimm, P.

    2001-01-01

    Burnup credit has recently been approved by the Swiss licensing authority for the spent-fuel storage pool of a PWR plant for fuel exceeding the originally licensed initial enrichment. The criticality safety assessment is based on a configuration consisting of a small number (approximately a reload batch) of fresh assemblies surrounded by assemblies having a burnup corresponding to the minimum value in the top 1 m section after one cycle of irradiation. The allowable initial enrichment in this configuration is about 0.5% higher than for all fresh fuel. A central storage facility for all types of radioactive wastes from Switzerland, including cask storage of spent fuel assemblies is being commissioned presently. The first applications for licenses for casks to be used in this facility have been submitted. Credit for burnup has not been requested in these applications (conforming to the original licenses of the casks in their countries of origin), but utilities are interested in burnup credit for fuel with higher initial enrichments. Reactivity worth measurements as well as chemical assays of spent fuel samples in the LWR-PROTEUS facility at PSI are in detailed planning currently. The experiments, scheduled to start in 2001, will be performed in cooperation with the Swiss utilities and their fuel vendors. Although the focus of interest of these partners is on validation of in-core fuel management tools, the same experiments are also applicable to burnup credit, and contacts with further potential partners interested in this field are underway. (author)

  17. Dynamic Virtual Credit Card Numbers

    Science.gov (United States)

    Molloy, Ian; Li, Jiangtao; Li, Ninghui

    Theft of stored credit card information is an increasing threat to e-commerce. We propose a dynamic virtual credit card number scheme that reduces the damage caused by stolen credit card numbers. A user can use an existing credit card account to generate multiple virtual credit card numbers that are either usable for a single transaction or are tied with a particular merchant. We call the scheme dynamic because the virtual credit card numbers can be generated without online contact with the credit card issuers. These numbers can be processed without changing any of the infrastructure currently in place; the only changes will be at the end points, namely, the card users and the card issuers. We analyze the security requirements for dynamic virtual credit card numbers, discuss the design space, propose a scheme using HMAC, and prove its security under the assumption the underlying function is a PRF.

  18. Development of integrated cask body and base plate

    International Nuclear Information System (INIS)

    Sasaki, T.; Koyama, Y.; Yoshida, T.; Wada, T.

    2015-01-01

    The average of occupancy of stored spent-fuel in the nuclear power plants have reached 70 percent and it is anticipated that the demand of metal casks for the storage and transportation of spent-fuel rise after resuming the operations. The main part of metal cask consists of main body, neutron shield and external cylinder. We have developed the manufacturing technology of Integrated Cask Body and Base Plate by integrating Cask Body and Base Plate as monolithic forging with the goal of cost reduction, manufacturing period shortening and further reliability improvement. Here, we report the manufacturing technology, code compliance and obtained properties of Integrated Cask body and Base Plate. (author)

  19. Safety evaluation for packaging (onsite) SERF cask

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1997-01-01

    This safety evaluation for packaging (SEP) documents the ability of the Special Environmental Radiometallurgy Facility (SERF) Cask to meet the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B quantities (up to highway route controlled quantities) of radioactive material within the 300 Area of the Hanford Site. This document shall be used to ensure that loading, tie down, transport, and unloading of the SERF Cask are performed in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required

  20. Mitigation of sliding motion of a cask-canister by fluid-structure interaction in an annular region - 59208

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Fujiwara, Yoshihiro; Shintani, Atsuhiko; Nakagaw, Chihiro; Furuta, Kazuhisa

    2012-01-01

    sliding motion of the cask can be suppressed for the excitation frequency region around the canister natural frequency. It is also shown that this sliding motion suppression method can be applied to the actual cask-canister system. However, in designing the actual plants, attentions should be paid to the liquid level in the annular region, because fluid-structure coupling effects treated in this paper will depend on the liquid level in the annular space. (authors)

  1. The design, implementation, and evaluation of online credit nutrition courses: a systematic review.

    Science.gov (United States)

    Cohen, Nancy L; Carbone, Elena T; Beffa-Negrini, Patricia A

    2011-01-01

    To assess how postsecondary online nutrition education courses (ONEC) are delivered, determine ONEC effectiveness, identify theoretical models used, and identify future research needs. Systematic search of database literature. Postsecondary education. Nine research articles evaluating postsecondary ONEC. Knowledge/performance outcomes and student satisfaction, motivation, or perceptions. Systematic search of 922 articles and review of 9 articles meeting search criteria. Little research regarding ONEC marketing/management existed. Studies primarily evaluated introductory courses using email/websites (before 2000), or course management systems (after 2002). None used true experimental designs; just 3 addressed validity or reliability of measures or pilot-tested instruments. Three articles used theoretical models in course design; few used theories to guide evaluations. Four quasi-experimental studies indicated no differences in nutrition knowledge/performance between online and face-to-face learners. Results were inconclusive regarding student satisfaction, motivation, or perceptions. Students can gain knowledge in online as well as in face-to-face nutrition courses, but satisfaction was mixed. More up-to-date investigations on effective practices are warranted, using theories to identify factors that enhance student outcomes, addressing emerging technologies, and documenting ONEC marketing, management, and delivery. Adequate training/support for faculty is needed to improve student experiences and faculty time management. Copyright © 2011 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.

  2. Low-cost concepts for dry transfer of spent fuel and waste between storage and transportation casks

    International Nuclear Information System (INIS)

    Schneider, K.L.

    1984-01-01

    The federal government may provide interim storage for spent fuel from commercial nuclear power reactors that have used up their available storage capacity. One of the leading candidate concepts for this interim storage is to place spent fuel in large metal shielding casks. The Federal Interim Storage (FIS) site may not have the capability to transfer spent fuel from transportation casks to storage casks and vice versa. Thus, there may be an incentive to construct a relatively inexpensive but reliable intercask transfer system for use at an FIS site. This report documents the results of a preliminary study of preconceptual design and analysis of four intercask transfer concepts. The four concepts are: a large shielded cylindrical turntable that contains an integral fuel handling machine (turntable concept); a shielded fuel handling machine under which shipping and storage casks are moved horizontally (shuttle concept); a small hot cell containing equipment for transferring fuel betwee shipping and storage casks (that enter and leave the cell on carts) in a bifurcated trench (trench concept) and a large hot cell, shielded by an earthen berm, that houses equipment for handling fuel between casks that enter and leave the cell on a single cart (igloo concept). Information derived for each of the concepts is operating, capital and relocation costs; implementation and relocation time requirements; and overall characteristics

  3. A program to qualify ductile cast iron for use as a containment material for type B transport cask

    International Nuclear Information System (INIS)

    Golliher, K.G.; Sorenson, K.B.; Witt, C.R.

    1990-01-01

    This paper reports on the Department of Energy (DOE) investigations for the use of ductile cast iron (DCI) as a candidate material for radioactive material transportation cask construction. The investigation will include materials testing and full-scale cask testing. The major effort will focus on materials qualification and cask evaluation of the 9 meter and puncture drop test events. Interaction by contract with the private industry, the American Society for Testing and Materials (ASTM) Committee A4.04, and the Electric Power Research Institute (EPRI) will be actively pursued to establish material specification acceptance criteria for ductile iron use as a cask material in the United States of America (USA). All test results will be documented in the safety analysis report for packaging for submission to the U.S. Nuclear Regulatory Commission (NRC). The goal of this program is a certificate of compliance for DCI from the NRC to transport high-level radioactive materials. The acceptance of DCI within the USA cask design community will offer an alternative to present-day materials for cask construction, and its entry has the potential of providing significant cost-savings

  4. Operations experience with the NAC-1 legal weight truck cask

    International Nuclear Information System (INIS)

    Viebrock, J.M.; Hoffman, C.C.

    1978-01-01

    The first three years of operation of Nuclear Assurance Corporation's (NAC) four (4) NAC-1 Casks have demonstrated that shipments of spent fuel, fuel rods and other highly irradiated reactor components can be moved routinely by legal weight truck transport. Shipments of these materials have involved some 800,000 miles of highway travel and cask handling at some fifteen different nuclear facilities. This paper presents details on NAC's operations experience with these casks including cask description, cask handling (loading and unloading), pre-shipment testing, facility turnaround and transit times, operator exposure, transport vehicles and shipper/carrier/cask owner responsibilities, actual experience with regard to facility interfacing requirements and operational procedures. Cask and equipment utilization is discussed together with the methods used to control operation costs and to improve the economics of truck transport

  5. DOE procurement activities for spent fuel shipping casks

    International Nuclear Information System (INIS)

    Callaghan, E.F.; Lake, W.H.

    1988-01-01

    The DOE cask development program satisfies the requirements of the NWPA by providing safe efficient casks on a timely schedule. The casks are certified by the NRC in compliance with the 1987 amendment to NWPA. Private industry is used to the maximum extent. DOE encourages use of present cask technology, but does not hesitate to advance the state-of-the-art to improve efficiency in transport operations, provided that safety is not compromised. DOE supports the contractor's efforts to advance the state-of-the-art by maintaining a technical development effort that responds to the common needs of all the contractors. DOE and the cask contractors develop comprehensive and well integrated programs of test and analysis for cask certification. Finally, the DOE monitors the cask development program within a system that fosters early identification of improvement opportunities as well as potential problems, and is sufficiently flexible to respond quickly yet rationally to assure a fully successful program

  6. Thermal tests of a transport / Storage cask in buried conditions

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Saegusa, T.; Ito, C.

    1998-01-01

    Thermal tests for a hypothetical accident which simulated accidents caused by building collapse in case of an earthquake were conducted using a full-scale dry type transport and storage cask (total heat load: 23 kW). The objectives of these tests were to clarify the heat transfer features of the buried cask under such accidents and the time limit for maintaining the thermal integrity of the cask. Moreover, thermal analyses of the test cask under the buried conditions were carried out on basis of experimental results to establish methodology for the thermal analysis. The characteristics of the test cask are described as well as the test method used. The heat transfer features of the buried cask under such accidents and a time for maintaining the thermal integrity of the cask have been obtained. (O.M.)

  7. Post-test fuel basket evaluations of the CASTOR-V/21 cask

    International Nuclear Information System (INIS)

    Anderson, R.T.; Kingsley, K.R.

    1986-01-01

    Following an extensive testing program of the CASTOR-V/21 cask at INEL, eight symmetrically positioned indications were observed on the fuel basket. Since the presence of fuel in the cask permitted only remote visual inspection, it could not be conclusively determined if the indications represented material failure. The cask was not functionally limited since vertical movement of various fuel assemblies was possible and the structure remained intact. The basket is a redundant structure and criticality safety is maintained by fluxtrap boxes which were not in affected regions of the basket. The indications were observed at plate joints, which are stitch-welded for basket-manufacturing purposes. An extensive analysis was made of the basket design, manufacture, and test sequence to determine the possible cause and nature of the indications. This test cask had been tested under stringent thermal operating conditions. The cask was held at a power level 45% over rated conditions (28.5 kW vs. 21 kW). Also, the cask was held for two days with a vacuum in the cavity rather than helium (a conductive, inert gas), which is used during fuel storage. An evaluation was performed which included the following considerations: history under similar conditions, unique aspects of the test, basket construction techniques, fatigue, metallurgy and welding, and thermal stress. The consensus of several experts was that high thermal stress due to constrained thermal expansion of the fuel basket components caused the indications. This situation was remedied for future baskets by ensuring that certain manufacturing tolerance be measured and controlled. These limiting dimensions were established to permit sufficient space for thermal expansion. An extensive stress analysis was performed to define the dimensional requirements and demonstrate that the resulting basket stresses are acceptably low

  8. Constor steel concrete sandwich cask concept for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Diersch, R.; Dreier, G.; Gluschke, K.; Zubkov, A.; Danilin, B.; Fromzel, V.

    1998-01-01

    A spent nuclear fuel transport and storage sandwich cask concept has been developed together with the Russian company CKTI. Special consideration was given to an economical and effective way of manufacturing by using conventional mechanical engineering technologies and common materials. The main objective of this development was to fabricate these casks in countries not having highly specialized industries. Nevertheless, this sandwich cask concept fulfills both the internationally valid IAEA criteria for transportation and the German criteria for long-term intermediate storage. The basic cask concept has been designed for adaptation to different spent fuel specifications as well as handling conditions in the NPP. Recently, adaptations have been made for spent fuel from the RBMK and VVER reactors, and also for BWR spent fuel. The analyses of nuclear and thermal behaviour as well as of strength according to IAEA examination requirements (9-m-drop, 1-m-pin drop, 800 deg. C-fire test) and of the behaviour during accident scenarios at the storage site (drop, fire, gas cloud explosion, side impact) were carried out by means of recognized calculation methods and programmes. In a special experimental programme, the mechanical and thermodynamic properties of heavy concrete were examined and the reference values required for safety analyses were determined. The results of the safety analysis after drop tests according to IAEA-regulations as well as after 1 m-drops at the storage site were confirmed by means of a test programme using a scale model. The fabrication technology has been tested with help of a half scale cask model. The model has been prefabricated in Russia and completed in Germany. It has been shown that the CONSTOR cask can be fabricated in an effective and economic way. (authors)

  9. New generation of CASTOR registered casks for high enriched, high burn-up fuel from German NPP

    International Nuclear Information System (INIS)

    Gartz, R.; Kuehne, B.; Diersch, R.

    2004-01-01

    Requirements for new cask designs for transport and long-term dry storage of spent fuel assemblies (FA) from LWR-reactors are based on both increased source terms of the LWR FA including MOX FA, as well as the demand for economical optimisation of decommissioning costs by increased cask capacities. For this, cask development is the challenge to create and establish cask designs that can accommodate more FA with higher source terms, each under fixed boundary conditions (i.e. transport requirements and limitations of the power plants as crane loads and/or fixed maximum dimensions). This task has been elaborated by working simultaneously on different development actions each focussed to improve the cask performance. In the following a brief summary will be presented to give an overview which developments and investigations have been and are still will be performed for development and safety analyses of the new CASTOR registered -designs under the main subjects: material investigation and qualification, component tests and verifications, detailed design analysis and not at least design verification

  10. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.; Parks, C.V. [Oak Ridge National Lab., TN (United States); Brady, M.C. [Sandia National Labs., Las Vegas, NV (United States)

    1996-06-01

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155.

  11. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    International Nuclear Information System (INIS)

    DeHart, M.D.; Parks, C.V.; Brady, M.C.

    1996-06-01

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155

  12. Safety analysis of dual purpose metal cask subjected to impulsive loads due to aircraft engine crash

    International Nuclear Information System (INIS)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    2009-01-01

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters and seismic tests subjected to strong earthquake motions. Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001. This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine research (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are developed

  13. Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash

    Science.gov (United States)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are

  14. Safety analysis of casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao, L.; Voelzke, H.; Wolff, D.; Droste, B.

    2004-01-01

    The determination of the inherent safety of casks under extreme impact conditions has been of increasing interest since the terrorist attacks of 11 September 2001. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. One of the most critical scenarios for a cask is the centric impact of a dynamic load onto the lid-seal system. This can be caused, for example, by a direct aircraft crash (or just its engine) as well as by an impact due to the collapse of a building, e.g. a nuclear facility storage hall. In this context BAM is developing methods to calculate the deformation of cask components and-with respect to leak-tightness-relative displacements between the metallic seals and their counterparts. This paper presents reflections on modelling of cask structures for finite-element analyses and discusses calculated results of stresses and deformations. Another important aspect is the behaviour of a cask under a lateral impact by aircraft or fragments of a building. Examples of the kinetic reaction (cask acceleration due to the fragments, subsequent contact with neighbouring structures like the ground, buildings or casks) are shown and discussed in correlation to cask stresses which are to be expected. (author)

  15. Safety analysis of casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao Linan; Voelzke, H.; Wolff, D.; Droste, B.

    2004-01-01

    The determination of the inherent safety of casks also under extreme impact conditions has been of increasing interest since the terrorist attacks from 11th September 2001. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. One of the most critical scenarios for a cask is the centric impact of a dynamic load onto the lid seal system. This can be caused e.g. by direct aircraft crash or its engine as well as by an impact due to the collapse of a building e.g. a nuclear facility storage hall. In this context BAM is developing methods to calculate the deformation of cask components and - with respect to leak tightness - relative displacements between the metallic seals and their counterparts. This paper presents reflections on modelling of cask structures for Finite Element analyses and discusses calculated results of stresses and deformations. Another important aspect is the behaviour of a cask under a lateral impact by aircraft and fragments of a building. Examples of the kinetic reaction (cask acceleration due to the fragments, subsequent contact with neighbouring structures like ground, buildings or casks) are shown and discussed in correlation to cask stresses which are to be expected

  16. Performance of CASTOR{sup R} HAW Cask Cold Trials for Loading, Transport and Storage of HAW canisters

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsmeier, Marco; Vossnacke, Andre [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, D-45127 Essen (Germany)

    2008-07-01

    On the basis of reprocessing contracts, concluded between the German Nuclear Utilities (GNUs) and the reprocessing companies in France (AREVA NC) and the UK (Nuclear Decommissioning Authority), GNS has the task to return the resulting residues to Germany. The high active waste (HAW) residuals from nuclear fuel reprocessing are vitrified and filled into steel cans, the HAW canisters. According to reprocessing contracts the equivalent number of HAW canisters to heavy metals delivered has to be returned to the country of origin and stored at an interim storage facility where applicable. The GNS' CASTOR{sup R} HAW casks are designed and licensed to fulfil the requirements for transport and long-term storage of HAW canisters. The new cask type CASTOR{sup R} HAW28M is capable of storing 28 HAW canisters with a maximum thermal power of 56 kW in total. Prior to the first active cask loading at a reprocessing facility it is required to demonstrate all important handling steps with the CASTOR{sup R} HAW28M cask according to a specific and approved sequence plan (MAP). These cold trials have to be carried out at the cask loading plant and at the reception area of an interim storage facility in Gorleben (TBL-G), witnessed by the licensing authorities and their independent experts. At transhipment stations GNS performs internal trials to demonstrate safe handling. A brand-new, empty CASTOR{sup R} HAW28M cask has been shipped from the GNS cask assembly facility in Muelheim to the TBL-G for cold trials. With this cask, GNS has to demonstrate the transhipment of casks at the Dannenberg transfer station from rail to road, transport to and reception at the TBL-G as well as incoming dose rate and contamination measurements and preparation for storage. After removal of all shock absorbers with a cask specific handling frame, tilting operation and assembly of the secondary lid with a pressure sensor, the helium leak tightness and 'Block-mass' tests have to be carried out

  17. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  18. Thermal-Hydraulic Results for the Boiling Water Reactor Dry Cask Simulator.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both aboveground and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of this investigation was to produce validation-quality data that can be used to test the validity of the modeling presently used to determine cladding temperatures in modern vertical dry casks. These cladding temperatures are critical to evaluate cladding integrity throughout the storage cycle. To produce these data sets under well-controlled boundary conditions, the dry cask simulator (DCS) was built to study the thermal-hydraulic response of fuel under a variety of heat loads, internal vessel pressures, and external configurations. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric

  19. Neutronic and thermal hydraulic of dry cask storage systems

    International Nuclear Information System (INIS)

    Yavuz, U.

    2000-01-01

    Interim spent fuel storage systems must provide for the safe receipt, handling, retrieval and storage of spent nuclear fuel before reprocessing or disposal. In the context of achieving these objectives, the following features of the design are to be taken into consideration: to maintain fuel subcritical, to remove spent fuel residualheat, and to provide for radiation protection. These features in the design of a dry cask storage system were analyzed for normal operating conditions by employing COBRA-SFS, SCALE4.4 (ORIGEN, XSDOSE, CSAS6) codes. For a metal-shielded type storage system, appropriate designs, in accordance with safety assurance limits of IAEA, were obtained for spent fuel burned to 33000, 45000 and 55000 MW d/t and cooled for 5 and 10 years

  20. Thermal analyses of the IF-300 shipping cask

    International Nuclear Information System (INIS)

    Meier, J.K.

    1978-07-01

    In order to supply temperature data for structural testing and analysis of shipping casks, a series of thermal analyses using the TRUMP thermal analyzer program were performed on the GE IF-300 spent fuel shipping cask. Major conclusions of the analyses are: (1) Under normal cooling conditions and a cask heat load of 262,000 BTU/h, the seal area of the cask will be roughly 100 0 C (180 0 F) above the ambient surroundings. (2) Under these same conditions the uranium shield at the midpoint of the cask will be between 69 0 C (125 0 F) and 92 0 C (166 0 F) above the ambient surroundings. (3) Significant thermal gradients are not likely to develop between the head studs and the surrounding metal. (4) A representative time constant for the cask as a whole is on the order of one day

  1. Operational and safety aspects of vitrified waste casks

    International Nuclear Information System (INIS)

    Kirchner, B.

    1993-01-01

    For the time being two technical solutions have been developed for the interim storage: 1) one is based on forced air cooled pits set out in a concrete structure, as presently provided close to the Vitrification Facilities on reprocessing sites; 2) the other one is based on transportable storage casks standing vertically onto a storage pad, following principles similar to those already experienced with spent fuel storage casks. Considering these two solutions for interim storage, TRANSNUCLEAIRE has developed two main types of transportable casks for vitrified HAW; one is a routine transport cask; the other one is a transportable storage cask. Both are covered by the generic name TN28V and have already been described in previous papers. This paper deals with the safety and operation aspects of the casks under both transport and storage conditions. (J.P.N.)

  2. Criticality effects of longitudinal gaps in poison for storage/transport casks

    International Nuclear Information System (INIS)

    Wells, A.H.

    1985-01-01

    A series of criticality calculations was performed with the AMPX/KENO system to determine the sensitivity of the NAC S/T cask 31 assembly basket, which is optimized for a design-basis fuel enrichment of 3.7 wt % 235 U, to axial gaps in the boron neutron poison. The results of these calculations show that axial gaps in the boron cause no statistically detectable change in k/sub eff/ until a minimum gap size is reached. The minimum gap size to change k/sub eff/ is dependent on the basket segment length, because a longer segment length results in fewer gaps for a given active fuel length. Longer segment lengths are less sensitive to gaps in the neutron poison. A typical segment length of 12 to 18 in. is projected for a casting of aluminum/boron alloy, indicating that axial gaps in the neutron poison of 1 in. would be acceptable. This gap thickness is much greater than the intersegment gap produced by modern casting techniques. The investigation described here demonstrated that an axial gap in neutron poison is acceptable for basket castings of large storage/transport casks. A precedent for such gaps is the NLI-6502 cask, so a cask basket with intersegment gaps should be licensable

  3. Development of an evaluation method for long-term sealability of the spent fuel storage cask

    International Nuclear Information System (INIS)

    Kato, Osamu; Ito, Chihiro; Saegusa, Toshiari

    1996-01-01

    One of the characteristics of the cask storage method of spent fuel is that containment of radioactive materials is assured by the storage cask itself. Thus, the seal structure of the cask is designed to have a highly reliable multi-barrier system using metallic gaskets instead of the conventional rubber gaskets. Although, it has been reported that the containment feature of the metallic gaskets is influenced by the plastic deformation and stress relaxation of the gaskets for a short-term usage, no research report has been published on the containment feature of the metallic gaskets for a long-term usage. In this paper, the stress relaxation features of the metallic gaskets is investigated which will directly influence the long-term sealability of the storage cask, at first. Next, the relationship between the temperature/time dependence of the plastic deformation and the containment features of the metallic gaskets. Finally, an evaluation method of the long-term sealability from experimental data of a short-term behavior of the metallic gaskets is proposed. (author)

  4. Transportation accident response of a high-capacity truck cask for spent fuel

    International Nuclear Information System (INIS)

    O'Connell, W.J.; Glaser, R.E.; Johnson, G.L.; Perfect, S.A.; McGuinn, E.J.; Lake, W.H.

    1995-11-01

    Two of the primary goals of this study were (i) to check the structural and thermal performance of the GA-4 cask in a broad range of accidents and (ii) to carry out a severe-accidents analysis as had been addressed in the Modal Study but now using a specific recent cask design and using current-generation computer models and capabilities. At the same time, it was desired to compare the accident performance of the Ga-4 cask to that of the generic truck cask analyzed in the Modal Study. The same range of impact and fire accidents developed in the Modal Study was adopted for this study. The accident-description data base of the Modal Study categorizes accidents into types of collisions with mobile or fixed objects, non-collision accidents, and fires. The mechanical modes of damage may be via crushing, impact, or puncture. The fire occurrences in the Modal Study data are based on truck accident statistics. The fire types are taken to be pool fires of petroleum products from fuel tanks and/or cargoes

  5. Standard casks for the transport of LWR spent fuel

    International Nuclear Information System (INIS)

    Blum, P.

    1986-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks have been manufactured in different countries and are presently used for european and intercontinental transports. The main advantages of these casks are: large payload, moderate cost, reliability, standardisation facilitating fabrication, operation and spare part supply [fr

  6. Size and transportation capabilities of the existing US cask fleet

    International Nuclear Information System (INIS)

    Danese, F.L.; Johnson, P.E.; Joy, D.S.

    1990-01-01

    This study investigates the current spent nuclear fuel cask fleet capability in the United States. In addition, it assesses the degree to which the current fleet would be available, as a contingency, until proposed Office of Civilian Radioactive Waste Management casks become operational. A limited fleet of ten spent fuel transportation casks is found to be readily available for use in Federal waste management efforts over the next decade

  7. Structural dimensioning of dual purpose cask prototype; Dimensionamento estrutural de prototipo de casco de duplo proposito

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz Leite da; Mourao, Rogerio Pimenta; Lopes, Claudio Cunha [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: silvall@cdtn.br; mouraor@cdtn.br; ccl@cdtn.br

    2005-07-01

    The structural dimensioning of a Type B(U) dual purpose cask prototype is part of the scope of work of the Brazilian institute CDTN in the IAEA regional project involving Latin American countries which operate research reactors (Argentina, Brazil, Chile, Mexico and Peru). In order to meet the dimensional and operational characteristics of the reactor facilities in these countries, a maximum weight of 10.000 kgf and a maximum dimension of 1 m in at least one direction were set for the cask. With these design restrictions, the cask's payload is either 21 MTR or 78 TRIGA fuel elements. The cask's most important components are main body, primary and secondary lids, basket and impact limiters. The main body has a sandwich-like wall with internal and external layers made of AISI 304 stainless steel with lead in-between. The lead provides biological shielding. The primary lid is similarly layered, but in the axial direction. It is provided with a double system of metallic rings and has ports for pressurization, sampling and containment verification. The secondary lid has the main function of protecting the primary lid against mechanical impacts. The basket structure is basically a tube array reinforced by bottom plate, feet and spacers. Square tubes are used for MTR elements and circular tubes for TRIGA elements. Finally, the impact limiters are structures made of an external stainless steel thin covering and a filling made of the wood composite OSB - Oriented Strand Board. The prototype is provided with bottom and top impact limiters, which are attached to each other by means of four threaded rods. The limiters are not rigidly attached to the cask body. A half scale cask model was designed to be submitted to a testing program. As its volume scales down to 1:8, the model weight is 1,250 kgf. This paper presents the methodology for the preliminary structural dimensioning of the critical parameters of the cask prototype. Both normal conditions of operation and

  8. Thermo-mechanical finite element analyses of bolted cask lid structures

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao Linan; Eberle, A.; Voelzke, H.

    2004-01-01

    The analysis of complex bolted cask lid structures under mechanical or thermal accident conditions is important for the evaluation of cask integrity and leak-tightness in package design assessment according to the Transport Regulations or in aircraft crash scenarios. In this context BAM is developing methods based on Finite Elements to calculate the effects of mechanical impacts onto the bolted lid structures as well as effects caused by severe fire scenarios. I n case of fire it might be not enough to perform only a thermal heat transfer analysis. The complex cask design in connection with a severe hypothetical time-temperature-curve representing an accident fire scenario will create a strong transient heating up of the cask body and its lid system. This causes relative displacements between the seals and its counterparts that can be analyzed by a so-called thermo-mechanical calculation. Although it is currently not possible to correlate leakage rates with results from deformation analyses directly an appropriate Finite Element model of the considered type of metallic lid seal has been developed. For the present it is possible to estimate the behaviour of the seal based on the calculated relative displacements at its seating and the behaviour of the lid bolts under the impact load or the temperature field respectively. Except of the lid bolts the geometry of the cask and the mechanical loading is axial-symmetric which simplifies the analysis considerably and a two-dimensional Finite Element model with substitute lid bolts may be used. The substitute bolts are modelled as one-dimensional truss or beam elements. An advanced two-dimensional bolt submodel represents the bolts with plane stress continuum elements. This paper discusses the influence of different bolt modelling on the relative displacements at the seating of the seals. Besides this, the influence of bolt modelling, thermal properties and detail in geometry of the two-dimensional Finite Element models on

  9. Seismic Response Analysis and Test of 1/8 Scale Model for a Spent Fuel Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Park, C. G.; Koo, G. H.; Seo, G. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yeom, S. H. [Chungnam Univ., Daejeon (Korea, Republic of); Choi, B. I.; Cho, Y. D. [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2005-07-15

    The seismic response tests of a spent fuel dry storage cask model of 1/8 scale are performed for an typical 1940 El-centro and Kobe earthquakes. This report firstly focuses on the data generation by seismic response tests of a free standing storage cask model to check the overturing possibility of a storage cask and the slipping displacement on concrete slab bed. The variations in seismic load magnitude and cask/bed interface friction are considered in tests. The test results show that the model gives an overturning response for an extreme condition only. A FEM model is built for the test model of 1/8 scale spent fuel dry storage cask using available 3D contact conditions in ABAQUS/Explicit. Input load for this analysis is El-centro earthquake, and the friction coefficients are obtained from the test result. Penalty and kinematic contact methods of ABAQUS are used for a mechanical contact formulation. The analysis methods was verified with the rocking angle obtained by seismic response tests. The kinematic contact method with an adequate normal contact stiffness showed a good agreement with tests. Based on the established analysis method for 1/8 scale model, the seismic response analyses of a full scale model are performed for design and beyond design seismic loads.

  10. Concrete storage cask for interim storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nabemoto, Toyonobu; Fujiwara, Hiroaki; Kobayashi, Shunji; Shionaga, Ryosuke

    2004-01-01

    Experiments and analytical evaluation of the fabrication, non-destructive inspection and structural integrity of reinforced concrete body for storage casks were carried out to demonstrate the concrete storage cask for spent fuel generated from nuclear power plants. Analytical survey on the type of concrete material and fabrication method of the storage cask was performed and the most suitable fabrication method for the concrete body was identified to reduce concrete cracking. The structural integrity of the concrete body of the storage cask under load conditions during storage was confirmed and the long term integrity of concrete body against degradation dependent on environmental factors was evaluated. (author)

  11. Studies and research concerning BNFP: cask handling equipment standardization

    International Nuclear Information System (INIS)

    McCreery, P.N.

    1980-10-01

    This report covers the activities of one of the sub-tasks within the Spent LWR Fuel Transportation Receiving, Handling, and Storage program. The sub-task is identified as Cask Handling Equipment Standardization. The objective of the sub-task specifies: investigate and identify opportunities for standardization of cask interface equipment. This study will examine the potential benefits of standardized yokes, decontamination barriers and special tools, and, to the extent feasible, standardized methods and software for handling the variety of casks presently available in the US fleet. The result of the investigations is a compilation of reports that are related by their common goal of reducing cask turnaround time

  12. Rail tiedown tests with heavy casks for radioactive shipments

    International Nuclear Information System (INIS)

    Petry, S.F.

    1980-08-01

    A rail tiedown test program was conducted at the Savannah River Plant in July and August 1978. For each test, a 40- or 70-ton cask was secured on a railcar. The railcar was pushed to speeds up to 11 mph and allowed to couple to parked railcars simulating ordinary railyard operations. The test car carrying the cask was heavily instrumented to measure the accelerations and forces generated at strategically selected places. Eighteen test runs were made with different combinations of railcars, couplers, casks, speeds, and tiedown configurations. The major objectives of the test program were to (1) provide test data as a basis to develop a tiedown standard for rail cask shipments of radioactive materials and (2) collect dynamic data to support analytical models of the railcar cask tiedown system. The optimum tiedown configuration demonstrated for heavy casks was a combination of welded, fixed stops to secure the cask longitudinally and flexible cables to restrain vertical and lateral cask movement. Cables alone were inadequate to secure a heavy cask to a standard railcar, and bolting was found disadvantageous in several respects. The use of cushioning coupler mechanisms dramatically reduced the tiedown requirements for the rail coupling operation. The test program and general conclusions are discussed

  13. Closure for casks containing radioactive materials

    International Nuclear Information System (INIS)

    Hall, G.V.B.; Mallory, C.W.

    1990-01-01

    This patent describes an improved closure for covering and sealing an opening in a single cask for containing radioactive material, wherein the opening is characterized by a ledge. It comprises: an inner lid receivable within the opening and having a gasket means that is seatable over the ledge; an outer lid which is likewise receivable into the opening and securable therearound when the outer lid is rotated relative to the opening. The inner lid remaining stationary relative to the cask opening when the outer lid is rotated and having no torque applied thereto by the outer lid when the outer lid is rotated, and bolt means threadedly mounted through the outer lid for applying a compressive force between the inner and outer lids after the outer lid has been secured to the opening in order to depress the gasket means of the inner lid into sealing engagement with the ledge while avoiding the application of torsion between the gasket means and the ledge

  14. MCO loading and cask loadout technical manual

    International Nuclear Information System (INIS)

    PRAGA, A.N.

    1998-01-01

    A compilation of the technical basis for loading a multi-canister overpack (MCO) with spent nuclear fuel and then placing the MCO into a cask for shipment to the Cold Vacuum Drying Facility. The technical basis includes a description of the process, process technology that forms the basis for loading alternatives, process control considerations, safety considerations, equipment description, and a brief facility structure description

  15. Half and full scale drop tests for qualification of CONSTOR registered casks as type B(U)F packages

    International Nuclear Information System (INIS)

    Koenig, S.; Diersch, R.

    2004-01-01

    The CONSTOR registered steel-sandwich cask was developed as a cost-effective design by using conventional mechanical engineering technologies and commonly available materials. The CONSTOR registered consists of a cask body with an outer and an inner shell made of steel. At the upper end, the shells are welded to a ring made of forged steel. The space between the two shells is filled with heavy concrete for gamma and neutron shielding. The liner of the casks and the forged head ring form the basis for the structural integrity, the concrete bears only a menial part of accident loads. The CONSTOR registered concept fulfils both the internationally valid IAEA criteria for transportation and the requirements for long-term intermediate storage in the US and various European countries. Since the beginning of the development of the CONSTOR registered design, two drop test series have already been performed and a third one is being planned to start in 2004

  16. Tuition Tax Credits. Issuegram 19.

    Science.gov (United States)

    Augenblick, John; McGuire, Kent

    Approaches for using the federal income tax system to aid families of pupils attending private schools include: tax credits, tax deductions, tax deferrals, and education savings incentives. Tax credit structures can be made refundable and made sensitive to taxpayers' income levels, the level of education expenditures, and designated costs.…

  17. Safety analysis report for packaging: the ORNL loop transport cask

    International Nuclear Information System (INIS)

    Evans, J.H.; Chipley, K.K.; Nelms, H.A.; Crowley, W.K.; Just, R.A.

    1977-11-01

    An evaluation of the ORNL loop transport cask demonstrating its compliance with the regulations governing the transportation of radioactive and fissile materials is presented. A previous review of the cask is updated to demonstrate compliance with current regulations, to present current procedures, and to reflect the more recent technology

  18. Transport experience with the NAC-1 radioactive materials shipping cask

    International Nuclear Information System (INIS)

    Rollins, J.D.; Hoffman, C.C.

    1976-01-01

    During the first one and one-half years of operation of Nuclear Assurance Corporation's (NAC) four (4) second-generation NAC-1 truck casks, shipments of spent fuel assemblies, fuel rods, and other highly irradiated reactor components have involved over 300,000 cask miles of travel by land, and cask handling at some ten different nuclear facilities. This on-site experience has included the use of various types of auxiliary lifting devices, operational problems with which have identified the need to establish related Quality Assurance procedures in the area of post-fabrication testing. During the course of pre-shipment checkout and testing of the casks minor defects in the upper impact limiter and lower cask shielding wall have been detected and repaired according to procedure. One enroute occurrence with the cask in which an emergency response was implemented has emphasized the need for rigid adherence to procedural checkout before shipment. Periodic inspection and testing are performed as part of the cask license requirement whereby cask components are inspected and/or replaced. During such test periods leaking ball valves and a leaking neutron shield tank have been detected and repaired. (author)

  19. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructive testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined

  20. Drop test of reinforced concrete slab onto storage cask

    International Nuclear Information System (INIS)

    Kato, Y.; Hattori, S.; Ito, C.; Sirai, K.; Ozaki, S.; Kato, O.

    1993-01-01

    In this research, drop tests onto full-scale casks considering the specifications of a falling object (weight, construction, drop height, etc.) demonstrate and evaluate the integrity of casks in case a heavy object drops into the storage facilities. (J.P.N.)

  1. Shipment and Storage Containers for Tritium Production Transportation Casks

    International Nuclear Information System (INIS)

    Massey, W.M.

    1998-04-01

    The need for a shipping and storage container for the Tritium production transportation casks is addressed in this report. It is concluded that a shipping and storage container is not required. A recommendation is made to eliminate the requirement for this container because structural support and inerting requirements can be satisfied completely by the cask with a removable basket

  2. Report on the joint USA-Germany drop test program for a vitrified high level waste cask

    International Nuclear Information System (INIS)

    Golliher, K.G.; Witt, C.R.; Wieser, K.E.

    1993-01-01

    A series of full-scale drop tests was performed on a ductile iron transport cask in a cooperative program between the US Department of Energy (DOE) and Bundesantalt fuer Materialpruefung (BAM) in Germany. The tests, which were performed at BAM's test facility located near Lehre, Germany, were performed on a prototype cask designed for transport of Vitrified High Level Waste (VHLW) canisters. The VHLW cask is a right circular cylinder with a diameter of 1156 mm and a height of 3454 cm, and weighs approximately 24.6 kg including its payload of a single VHLW canister. The drop tests were performed with a non-radioactive, prototype VHLW canister in the cavity. (J.P.N.)

  3. Application of the tack weld to cask impact limiter case

    International Nuclear Information System (INIS)

    Ku, J. H.; Choung, W. M.; You, G. S.; Park, S. W.

    2001-01-01

    The objective of this paper is to evaluate the benefit of the application of intermittent tack weld to the cask impact limiter case in the cask impact accident. This paper describes the test results of weldment rupture of foam filled tube type energy absorber and analytical evaluation of the effect of intermittent tack weld to the cask impact limiter case on the cask impact behavior. Prior to the cask impact analysis, the evaluation of weldment joint was carried out for intermittent tack weldment considering the weldment rupture. The intermittent tack welded part is weaker than ordinary weldment so ruptured if the stress exceeds certain limit. The rupture of the impact limiter case causes to lose its constraining effect for the wood blocks, which are filled into the metal incasement between the case and the gussets. The application of intermittent tack weld to the impact limiter case showed great advantage in vertical and horizontal drop impacts

  4. Safety analysis report for radwaste foam transport cask

    International Nuclear Information System (INIS)

    Ku, J. H.; Lee, J. C.; Bang, K. S.; Seo, K. S.; Lee, D. W.; Kim, J. H.; Park, S. W.; Lee, J. W.; Kim, K. H.

    1999-08-01

    For the tests and examinations of radwaste foam which generated in domestic nuclear power plants a radioactive material transport cask is needed to transport the radwaste foam from the power plants to KAERI. This cask should be easy to handle in the facilities and safe to maintain the shielding safety of operators. According to the regulations, it should be verified that this cask maintains the thermal and structural integrities under prescribed load conditions by the regulations. The basic structural functions and the integrities of the cask under required load conditions were evaluated. Therefore, it was verified that the cask is suitable to transport radwaste foam from nuclear power plants to KAERI. (author). 11 refs., 10 tabs., 25 figs

  5. Shielding Calculations for PUSPATI TRIGA Reactor (RTP) Fuel Transfer Cask with Micro shield

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Ariff Shah Ismail

    2011-01-01

    The shielding calculations for RTP fuel transfer cask was performed by using computer code Micro shield 7.02. Micro shield is a computer code designed to provide a model to be used for shielding calculations. The results of the calculations can be obtained fast but the code is not suitable for complex geometries with a shielding composed of more than one material. Nevertheless, the program is sufficient for As Low As Reasonable Achievable (ALARA) optimization calculations. In this calculation, a geometry based on the conceptual design of RTP fuel transfer cask was modeled. Shielding material used in the calculations were lead (Pb) and stainless steel 304 (SS304). The results obtained from these calculations are discussed in this paper. (author)

  6. Development of a dry transport and storage cask for spent LWR fuel assemblies in Spain

    International Nuclear Information System (INIS)

    Melches, C.; Uriarte, A.; Espallardo, J.A.

    1982-01-01

    One of the advantages of the cask storage concept is its flexibility which makes it specially attractive in the case of the Spanish circumstances. For these reasons the Empresa Nacional del Uranio, S.A. (ENUSA), Junta de Energia Nuclear (JEN) and Equipos Nucleares, S.A. (ENSA) initiated in 1981 a joint program for the development of a prototype cask for the dry transport and storage of spent fuel assemblies. This program includes as main steps the analysis of the conceptual design, the detailed design and experimental tests, the fabrication of a prototype and its licencing and safety testing. The mentioned program, which started in the early 1981, is scheduled to be completed at the end of 1984

  7. Application of dose evaluation of the MCNP code for interim spent fuel cask storage facility

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Iimoto, Takeshi; Ishikawa, Satoshi; Tsuboi, Takafumi; Teramura, Masahiro; Okamura, Tomomi; Narumiya, Yoshiyuki

    2007-01-01

    The interim storage facility for spent fuel metallic cask is designed as a concrete building structure with air inlet and outlet for circulating the natural cooling. The feature of the interim storage facility is big capacity of spent fuel at several thousands MTU and restricted site usage. It is important to evaluate realistic dose rate in shielding design of the interim storage facility, therefore the three-dimensional continuous-energy Monte Carlo radiation transport code MCNP that exactly treating the complicated geometry was applied. The validation of dose evaluation for interim storage facility by MCNP code were performed by three kinds of neutron shielding benchmark experiments; cask shadow shielding experiment, duct streaming experiment and concrete deep penetration experiment. Dose rate distributions at each benchmark were measured and compared with the calculated results. The comparison showed a good consistency between calculation and experiment results. (author)

  8. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Science.gov (United States)

    2012-02-17

    ... Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Proposed... spent fuel storage cask regulations by revising the Holtec International HI-STORM 100 dry cask storage... Amendment No. 8 to CoC No. 1014 and does not include other aspects of the HI-STORM 100 dry storage cask...

  9. MODELING CREDIT RISK THROUGH CREDIT SCORING

    OpenAIRE

    Adrian Cantemir CALIN; Oana Cristina POPOVICI

    2014-01-01

    Credit risk governs all financial transactions and it is defined as the risk of suffering a loss due to certain shifts in the credit quality of a counterpart. Credit risk literature gravitates around two main modeling approaches: the structural approach and the reduced form approach. In addition to these perspectives, credit risk assessment has been conducted through a series of techniques such as credit scoring models, which form the traditional approach. This paper examines the evolution of...

  10. Scale-4 shipping cask shielding applications

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Parks, C.V.

    1991-01-01

    This paper reports the application of the SCALE-4 shielding sequences SAS1 and SAS4 to the problem set distributed by the Organization for Economic Cooperation and Development (OECD) Working Group on Shielding Assessment of Transportation Packages. In many cases, additional comparison are made with MCNP and QADS solutions to provide a complete cross-check of methods, cross sections, geometry, etc. The results from this effort permit the evaluation of a number of approximations and effects that must be considered in a typical shielding analysis of a transportation cask

  11. CASTOR THTR transport/storage casks

    International Nuclear Information System (INIS)

    Laug, R.W.; Spilker, H.; Sappok, M.

    1998-01-01

    For the management of spent fuel from nuclear power plants, two possibilities are available in Germany. One possibility is the reprocessing of the spent fuel and the realization of a so called closed nuclear fuel cycle, the other is the direct disposal after a period of interim storage, without reprocessing. For the German GCR plants ''THTR 300'' and ''AVR'', only the way of direct disposal is available to date for managing the spent fuel (pebble-bed fuel). For the period of interim storage, dry storage in casks was selected. (author)

  12. Development of heat resistant concrete and its application to concrete casks. Improvement of neutron shielding performance of concrete in high temperature environment

    International Nuclear Information System (INIS)

    Owaki, Eiji; Hata, Akihito; Sugihara, Yutaka; Shimojo, Jun; Taniuchi, Hiroaki; Mantani, Kenichi

    2003-01-01

    Heat resistant concrete with hydrogen, which is able to shield neutron at more than 100degC, was developed. Using this new type concrete, a safety concrete cask having the same concept of metal casks was designed and produced. The new type cask omitted the inhalation and exhaust vent of the conventional type concrete casks. The new concrete consists of Portland cement added calcium hydroxide, iron powder and iron fiber. It showed 2.17 g/cm 3 density, 10.8 mass% water content, 1.4 W/(m·K) thermal conductivity at 150degC. Increasing of heat resistance made possible to produce the perfect sealing type structure, which had high shielding performance of radiation no consideration for streaming of radiation. Moreover, a monitor of sealing can be set. General view of concrete casks, outer view of 1/3 scaled model, cask storage system in the world, properties of new developed heat resistant concrete, results of shielding calculation are contained. (S.Y.)

  13. A conceptual redesign of an Inter-Building Fuel Transfer Cask

    International Nuclear Information System (INIS)

    Klann, R.T.; Picker, B.A. Jr.

    1993-01-01

    The Inter-Building Fuel Transfer Cask, referred to as the IBC, is a lead shielded cask for transporting subassemblies between buildings on the Argonne National Laboratory-West site near Idaho Falls, Idaho. The cask transports both newly fabricated and spent reactor subassemblies between the Experimental Breeder Reactor-II (EBR-II), the Fuel Cycle Facility (FCF) and the Hot Fuel Examination Facility (HFEF). The IBC will play a key role in the Integral Fast Reactor (IFR) fuel recycling demonstration project. This report discusses a conceptual redesign of the IBC which has been performed. The objective of the conceptual design was to increase the passive heat removal capabilities, reduce the personnel radiation exposure and incorporate enhanced safety features into the design. The heat transfer, radiation and thermal-hydraulic properties of the IBC were analytically modelled to determine the principal factors controlling the desip. The scoping studies that were performed determined the vital physical characteristics (i.e., size, shielding, pumps, etc.) of the MC conceptual design

  14. Conceptual evaluation of type B(U) casks for the nuclear power plants of Argentina

    International Nuclear Information System (INIS)

    Florido, P.C.; Isnardi, E.R.

    1993-01-01

    In Argentina two different nuclear power plants are in operation, Atucha I (PHWR-Siemens) and Embalse (PHWR-CANDU). Thus two very different fuel elements could be potentially transported. In order to optimize the research and development needed for the design and construction of the cask, the cost-benefit and flexibility of the engineering solutions are studied, for the two fuel elements. Different casks, for both types of existing fuel elements (Atucha I and Embalse), for different burnup-levels (regarding the advanced fuel cycle available), decay times, distances, and transported weight were studied. Three materials for shielding were used: uranium lead and steel. Only transport by road was considered, due to the reduced availability of the train. In this stage (conceptual design) small, easy and fast computer programs should be used. The principal issues that have to be fixed are shielding properties, thermal effects and mechanical behavior. As a result of the evaluation, different options for the casks were founded, as well as the importance of different parameters and the effect of two different designs of fuel elements. (author)

  15. COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.

    1986-01-01

    The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37 0 C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8 0 C (100 0 F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance

  16. Testing of the dual slab verification detector for attended measurements of the BN-350 dry storage casks

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A [Los Alamos National Laboratory; Browne, Michael C [Los Alamos National Laboratory; Williams, Richard B [Los Alamos National Laboratory; Parker, Robert F [Los Alamos National Laboratory

    2009-01-01

    The Dual Slab Verification Detector (DSVD) has been developed and built by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of {sup 3}He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. The DSVD will be used to perform measurements of the neutron flux emanating from inside the dry storage cask at several locations around each cask to establish a neutron 'fingerprint' that is sensitive to the contents of the cask. The sensitivity of the fingerprinting technique to the removal of specific amount of nuclear material from the cask is determined by the characteristics of the detector that is used to perform the measurements, the characteristics of the spent fuel being measured, and systematic uncertainties that are associated with the dry storage scenario. MCNPX calculations of the BN-350 dry storage asks and layout have shown that the neutron fingerprint verification technique using measurements from the DSVD would be sensitive to both the amount and location of material that is present within an individual cask. To confirm the performance of the neutron fingerprint technique in verifying the presence of BN-350 spent fuel in dry storage, an initial series of measurements have been performed to test the performance and characteristics of the DSVD. Results of these measurements will be presented and compared with MCNPX results.

  17. CASK/MSC/WP PREPARATION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. Drummond

    2005-01-01

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the Cask/MSC/WP preparation system and their bases to allow the design effort to proceed to license application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design, as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience and users are design engineers. This type of SDD both leads and trails the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. This SDD trails the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. This SDD addresses the ''Project Requirements Document'' (PRD) (Canori and Leitner 2003 [DIRS 166275]) requirements. Additional PRD requirements may be cited, as applicable, to drive the design of specific aspects of the system, with justifications provided in the basis. Functional and operational requirements applicable to this system are obtained from the ''Project Functional and Operational Requirements'' (F and OR) (Curry 2004 [DIRS 170557]) document. Other requirements to support the design process have been taken from higher-level requirements documents such as the ''Project Design Criteria Document'' (PDC) (BSC 2004 [DIRS 171599]) and the preclosure safety analyses

  18. CASK/MSC/WP PREPARATION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. Drummond

    2005-04-12

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the Cask/MSC/WP preparation system and their bases to allow the design effort to proceed to license application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design, as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience and users are design engineers. This type of SDD both leads and trails the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. This SDD trails the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. This SDD addresses the ''Project Requirements Document'' (PRD) (Canori and Leitner 2003 [DIRS 166275]) requirements. Additional PRD requirements may be cited, as applicable, to drive the design of specific aspects of the system, with justifications provided in the basis. Functional and operational requirements applicable to this system are obtained from the ''Project Functional and Operational Requirements'' (F&OR) (Curry 2004 [DIRS 170557]) document. Other requirements to support the design process have been taken from higher-level requirements documents such as the ''Project Design Criteria Document'' (PDC) (BSC 2004 [DIRS 171599]) and the preclosure safety analyses.

  19. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Control Technologies (MPACT) campaign. Under this project we looked at fingerprinting each cask's neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.

  20. Development of a transport cask for spent fuel elements of research reactors

    International Nuclear Information System (INIS)

    Quintana, F.; Saliba, R.O.; Furnari, J.C.; Mourao, R.P; Leite da Silva, L.; Novara, O.; Alexandre Miranda, C.; Mattar Neto, M.

    2012-01-01

    This article presents an overview of the development of a research reactor spent fuel transport cask. Through a project funded by the IAEA, Argentina, Brazil and Chile have collaborated to enhance regional capacity in the management of spent fuel elements from research reactors operated in the region. A packaging for the transport of research reactors spent fuel was developed. It was designed by a team of researchers from the countries mentioned and a 1:2 scale model for MTR type fuel was constructed in Argentina and subsequently tested in CDTN facilities in Belo Horizonte, Brazil. There were three test sequences to test the cask for normal transport and hypothetical accident conditions. It has successfully passed the tests and the overall performance was considered satisfactory. As part of the licensing process, a test sequence with the presence of regulatory authorities is scheduled for December, 2012 (author)

  1. Radiological Risk Assessment and Cask Materials Qualification for Disposed Sealed Radioactive Sources Transport

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Olteanu, G.; Bujoreanu, D.

    2009-01-01

    The hazardous waste problem imposes to respect national and international agreed regulations regarding their transport, taking into account both for maintaining humans, goods and environment exposure under specified limits, during transport and specific additional operations, and also to reduce impact on the environment. The paper follows to estimate the radiological risk and cask materials qualification according to the design specifications for disposed sealed radioactive sources normal transport situation. The shielding analysis has been performed by using Oak Ridge National Laboratory's SCALE 5 programs package. For thermal analysis and cask materials qualification ANSYS computer code has been used. Results have been obtained under the framework of Advanced system for monitoring of hazardous waste transport on the Romanian territory Research Project which main objective consists in implementation of a complex dual system for on-line monitoring both for transport special vehicle and hazardous waste packages, with data automatic transmission to a national monitoring center

  2. Preliminary assessment of the benefits of derating a cask for increasing age/burnup capability

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Parks, C.V.; Joy, D.S.; Tang, J.S.

    1992-01-01

    This paper discusses a study performed to determine the extent to which the age/burnup capability of the Babcock and Wilcox BR-100 rail cask could be extended by reducing the number of fuel assemblies. Only the shielding effects of derating are accounted for in this study. Separate analyses will be necessary to address the enhanced heat loads due to increased burnup or decreased age. The criterion used to assess the derating was the calculated dose 2 m from the rail car. The reference calculations were based on the 70% design of the BR-100 cask with 21 PWR fuel assemblies. Seven different basket/assembly loading configurations were investigated. The results indicate that both an alternative 18-assembly basket configuration and a 17-assembly/4-empty-hole configuration for the 21-element basket offer substantial gains over the fully loaded reference 21-element basket configuration

  3. Neutron multiplication and shielding problems in PWR spent-fuel shipping casks

    International Nuclear Information System (INIS)

    Devillers, C.

    1976-01-01

    In order to evaluate the degree of accuracy of computational methods used for the shield design of spent-fuel shipping casks, comparisons were made between biological dose rate calculations and measurements at the surface of a cask carrying three PWR fuel assemblies (the fuel being successively wet and dry). The experimental methods used provide ksub(eff) with an accuracy of 0.024. Neutron multiplication coefficients provided by the APOLLO and DOT-3 codes are located within the uncertainty range of the experimentally derived values. The APOLLO plus DOT codes for neutron source calculations and ANISN plus DOT codes for neutron transmission calculations provide neutron dose rate predictions in agreement with measurements to within 10%. The PEPIN 76 code used for deriving fission product γ-rays and the point kernel code MERCURE 4 treating the γ-ray transmission give γ dose rate predictions that generally differ from measurements by less than 25%

  4. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  5. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  6. Alternate approaches to verifying the structural adequacy of the Defense High Level Waste Shipping Cask

    International Nuclear Information System (INIS)

    Zimmer, A.; Koploy, M.

    1991-12-01

    In the early 1980s, the US Department of Energy/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as one that fully complies with all applicable DOE, Nuclear Regulatory Commission (NRC), and Department of Transportation (DOT) regulations. General Atomics (GA) designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Laboratories (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This topical report presents the results of the two analytical approaches and the model testing results. The purpose of this work is to show that there are two viable analytical alternatives to verify the structural adequacy of a Type B package and to obtain an NRC license. It addition, this data will help to support the future acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing

  7. Calculation of neutron spectra for a 252Cf transport cask using ANISN running on a PC

    International Nuclear Information System (INIS)

    West, L.; Akin, B.P.; Lemley, E.C.

    1995-01-01

    Neutron spectra have been calculated using the ANISN one-dimensional discrete ordinates code for the case of a 152 Cf source in a transport cask of a particular design. All computations were done on personal computers (PCs) (mostly 486 models) with the ANISN-ORNL (486 version) computer code. With a source of 252 Cf fission neutrons, the neutron flux spectrum in the cask cannot be characterized as open-quotes moderated.close quotes Concern about an appropriate choice for the cross-section data set has led to a comparison, for this application, of three different cross-section libraries: DABL, HILO, and BUGLE-80. Although the cross-section sets were not originally designed for PC use, the libraries have been successfully employed for PC computations. Work with yet another data library, BUGLE-93, is incomplete at this stage. From neutron flux spectra on the surface of the cask, personnel dosimetric quantities (such as dose equivalent) have been determined for the DABL, HILO, and BUGLE-80 ANISN calculations

  8. Credit concession through credit scoring: Analysis and application proposal

    Directory of Open Access Journals (Sweden)

    Oriol Amat

    2017-01-01

    Full Text Available Purpose: The study herein develops and tests a credit scoring model which can help financial institutions in assessing credit requests.  Design/methodology/approach: The empirical study has the objective of answering two questions: (1 Which ratios better discriminate the companies based on their being solvent or insolvent? and (2 What is the relative importance of these ratios? To do this, several statistical techniques with a multifactorial focus have been used (Multivariate Analysis of Variance, Linear Discriminant Analysis, Logit and Probit Models. Several samples of companies have been used in order to obtain and to test the model.  Findings: Through the application of several statistical techniques, the credit scoring model has been proved to be effective in discriminating between good and bad creditors.  Research limitations:  This study focuses on manufacturing, commercial and services companies of all sizes in Spain; Therefore, the conclusions may differ for other geographical locations. Practical implications:  Because credit is one of the main drivers of growth, a solid credit scoring model can help financial institutions assessing to whom to grant credit and to whom not to grant credit. Social implications: Because of the growing importance of credit for our society and the fear of granting it due to the latest financial turmoil, a solid credit scoring model can strengthen the trust toward the financial institutions assessment’s.  Originality/value: There is already a stream of literature related to credit scoring. However, this paper focuses on Spanish firms and proves the results of our model based on real data. The application of the model to detect the probability of default in loans is original.

  9. Nuclear Criticality Safety Evaluation of the 9965, 9968, 9972, 9973, 9974, and 9975 Shipping Casks

    International Nuclear Information System (INIS)

    Frost, R.L.

    1999-01-01

    A Nuclear Criticality Safety Evaluation (NCSE) has been performed for the 9965, 9968, 9972, 9973, 9974, and 9975 SRS-designed shipping casks. This was done in support of the recertification effort for the 9965 and 9968, and the certification of the newly designed 9972-9975 series. The analysis supports the use of these packages as Fissile Class I for shipment of fissionable material from the SRS FB-Line, HB-Line, and from Lawrence Livermore national Laboratory. six different types of material were analyzed with varying Isotopic composition, of both oxide and metallic form. The mass limits required to support the fissile Class I rating for each of the envelopes are given in the Table below. These mass limits apply if DOE approves an exception as described in 10 CFR 71.55(c), such that water leakage into the primary containment vessel does not need to be considered in the criticality analysis. If this exception is not granted, the mass limits are lower than those shown below. this issue is discussed in detail in sections 5 and 6 of the report.One finding from this work is important enough to highlight in the abstract. The fire tests performed for this family of shipping casks indicates only minimal charring of the Celotex thermal insulation. Analysis of the casks with no Celotex insulation (assuming it has all burned away), results in values of k-eff that exceed 1.0. Therefore, the Celotex insulation must remain intact in order to guarantee sub criticality of the 9972-9975 family of shipping casks

  10. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructve testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined. A comprehensive bibliography of current NDT methods for cask evaluation in the USA, Great Britain, Japan and West Germany was compiled for this study

  11. Facility handling and operational considerations with dry storage casks

    International Nuclear Information System (INIS)

    Moegling, J.; McCreery, P.N.

    1982-09-01

    The Tennessee Valley Authority, in conjunction with US DOE and Pacific Northwest Laboratory, is conducting the first US commercial demonstration of spent fuel storage in casks. The two casks selected for this study are the Castor Ic, on loan from Gesellschaft fur Nuklear Service of Essen, West Germany and the DOE supplied REA 2023, manufactured by Ridihalgh, Eggers, and Associates, of Columbus, Ohio. Preparations began in the spring of 1982. The casks are expected to be loaded with fuel at Brown's Ferry Nuclear Station early in 1984, and the test completed about two years later. NRC is issuing a two-year license for this test under 10 CFR 72

  12. Standard casks for the transport of LWR spent fuel

    International Nuclear Information System (INIS)

    Blum, P.

    1985-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks have been manufacturer under TRANSNUCLEAIRE supervision in different countries and are presently used for European and intercontinental transports. The main advantages of these casks are: - large payload for considered modes of transport, - moderate cost, - reliability due to the large experience gained by TRANSNUCLEAIRE as concerns fabrication and operation problems, - standardisation facilitating fabrication, operation and spare part supply [fr

  13. What drives Greek consumer preferences for cask wine?

    DEFF Research Database (Denmark)

    Chrysochou, Polymeros; Corsi, A. M.; Krystallis Krontalis, Athanasios

    2012-01-01

    Purpose – Cask wine (bag-in-box, soft pack) has not received considerable attention in wine marketing research, but interest among winemakers and consumers has been increasing steadily. However, little is known about what drives consumer preferences for cask wine and, furthermore, what the profile...... a sustainable eco-friendly positioning. Originality/value – This study contributes to the understanding of what drives consumers’ preferences for cask wine, something that few studies have done until now. Moreover, this is the first study to use the BWS method for this type of product....

  14. Development of dual-purpose metal cask for interim storage of spent nuclear fuel (1). Outline of cask structure

    International Nuclear Information System (INIS)

    Shimizu, Masashi; Hayashi, Makoto; Kashiwakura, Jun

    2003-01-01

    Spent fuels discharged from nuclear power plants in Japan are planed to be reprocessed at the nuclear fuel recycle plant under construction at Rokkasho-mura. Since the amount of the spent fuels exceeds that of recycled fuel, the spent fuels have to be properly stored and maintained as recycle fuel resource until the beginning of the reprocessing. For that sake, interim storage installations are being constructed outside the nuclear power plants by 2010. The storage dry casks have been practically used as the interim storage in the nuclear power plants. From this reason, the storage system using the storage dry casks is promising as the interim storage installations away form the reactors, which are under discussion. In the interim storage facilities, the storage using the dry cask of the storage metal cask with business showings, having the function of transportation is now under discussion. By employing transportation and storage dual-purpose cask, the repack equipments can be exhausted, and the reliability of the interim storage installations can be increased. Hitachi, Ltd. has been developing the high reliable and economical transportation and storage dry metal cask. In this report, the outline of our developing transportation and storage dry cask is described. (author)

  15. Criticality reference benchmark calculations for burnup credit using spent fuel isotopics

    International Nuclear Information System (INIS)

    Bowman, S.M.

    1991-04-01

    To date, criticality analyses performed in support of the certification of spent fuel casks in the United States do not take credit for the reactivity reduction that results from burnup. By taking credit for the fuel burnup, commonly referred to as ''burnup credit,'' the fuel loading capacity of these casks can be increased. One of the difficulties in implementing burnup credit in criticality analyses is that there have been no critical experiments performed with spent fuel which can be used for computer code validation. In lieu of that, a reference problem set of fresh fuel critical experiments which model various conditions typical of light water reactor (LWR) transportation and storage casks has been identified and used in the validation of SCALE-4. This report documents the use of this same problem set to perform spent fuel criticality benchmark calculations by replacing the actual fresh fuel isotopics from the experiments with six different sets of calculated spent fuel isotopics. The SCALE-4 modules SAS2H and CSAS4 were used to perform the analyses. These calculations do not model actual critical experiments. The calculated k-effectives are not supposed to equal unity and will vary depending on the initial enrichment and burnup of the calculated spent fuel isotopics. 12 refs., 11 tabs

  16. A conceptual redesign of an inter-building fuel transfer cask

    International Nuclear Information System (INIS)

    Klann, R.T.; Picker, B.A. Jr.

    1993-01-01

    The Inter-Building Fuel Transfer Cask, referred to as the IBC, is a lead shielded cask for transporting subassemblies between buildings on the Argonne National Laboratory-West site near Idaho Falls, Idaho. The cask transports both newly fabricated and spent reactor subassemblies between the Experimental Breeder Reactor-2 (EBR-2), the Fuel Cycle Facility (FCF) and the Hot Fuel Examination Facility (HFEF). The IBC will play a key role in the Integral Fast Reactor (IFR) fuel recycling demonstration project. The existing IBC technology, designed and fabricated in the late fifties, is outdated and is a source of personnel exposure at ANL-W. The current IBC system requires forced argon cooling and has extremely limited passive cooling capabilities due to existing design features. A conceptual redesign of the IBC has been performed. The objective of the conceptual design was to increase the passive heat removal capabilities, reduce the personnel radiation exposure and incorporate enhanced safety features into the design. The heat transfer, radiation and thermal-hydraulic properties of the IBC were analytically modeled to determine the principal factors controlling the design. The scoping studies that were performed determined the vital physical characteristics (i.e., size, shielding, pumps, etc.) of the IBC conceptual design. The conceptual design for the IBC allows subassemblies with up to 800 Watts of decay heat to be passively cooled, a significant increase over the existing system. The new design which incorporates better passive cooling mechanisms will prevent inadvertent damage to the subassembly during postulated loss-of-power and loss-of-flow accident scenarios. The new design also decreases the radiation hazard to personnel by having fewer external systems, a better shield plug design, and surfaces that are easier to decontaminate. The control and monitoring system will also be state-of-the-art technology

  17. Research and development of spent-fuel shipping casks and the criteria for sea-going vessels carrying them

    International Nuclear Information System (INIS)

    Aoki, S.; Ando, Y.

    1977-01-01

    Since the transport of spent fuel will increase rapidly and extensively in the near future, the Japanese Atomic Energy Committee enacted the Technical Standard for Transportation of Radioactive Materials, based on the IAEA Regulation for the Safe Transport of Radioactive Materials, 1973 Revised Edition. The authorities concerned have begun to review the former ordinances for transporting radioactive materials and to develop a unified system of relevant laws and standards. For ten years the Atomic Energy Bureau has invested in research and development to obtain data for the design and licence of a spent-fuel shipping cask. Different scale models of a prototype weighing 80t were used to clarify the scale effect of drop, puncture and fire tests, which are a feature of Japanese research and development. Also an immersion test in water at pressures up to about 500 bar is now carried out to investigate the integrity of the cask body and sealing structure to prevent leakage of radioactive contents to the surroundings should the cask fall into deep sea. In Japan, depending on the site of nuclear plants, almost all transport of unirradiated and spent fuels is by sea. Therefore, to secure safe transport, the design criteria of ships for the exclusive transport of spent-fuel shipping casks, namely full-load shipping, have been enacted, which aim to make the likelihood of sinking on collision, stranding, and other unforeseen accidents at sea highly improbable and also to keep radiation exposure of the crew as low as possible. (author)

  18. Credit Management System

    Data.gov (United States)

    US Agency for International Development — Credit Management System. Outsourced Internet-based application. CMS stores and processes data related to USAID credit programs. The system provides information...

  19. Development of tipping-over analysis of cask subjected to earthquake strong motion

    International Nuclear Information System (INIS)

    Shirai, Koji; Ito, Chihiro; Ryu, Hiroshi

    1993-01-01

    Since a cask is vertically oriented during loading in cask-storage, it is necessary to investigate the integrity of the cask against tipping-over during strong earthquakes. The rocking and sliding behavior of the cask during strong earthquakes can be analyzed as a dynamic vibration problem for a rigid cylinder. In this paper, in order to clarify the tipping-over characteristics of a cask during strong earthquakes, the authors applied the Distinct Element Method (DEM) to the seismic response analysis of the cask. DEM was introduced by Cundall P.A. in 1971. It is based on the use of an explicit numerical scheme. The cask was considered to be a rigid polygonal element, which satisfied the equation of motion and the law of action and reaction. They examined the applicability of this code by comparison with experimental results obtained from shaking table tests using scale model casks considering the dimension of a 100 ton class full-scale cask

  20. Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life

    International Nuclear Information System (INIS)

    Howard, Rob; Van den Akker, Bret

    2014-01-01

    Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF) storage when spent fuel pools reach their storage capacity and/or the plants are decommissioned. An important waste and materials disposition consideration arising from the increasing use of these systems is the management of the dry cask storage systems' materials after the UNF proceeds to disposition. Thermal analyses of repository design concepts currently under consideration internationally indicate that waste package sizes for the geologic media under consideration may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded into the dry storage canisters currently in use. In the United States, there are already over 1650 of these dry storage canisters deployed and approximately 200 canisters per year are being loaded at the current fleet of commercial nuclear power plants. There is about 10 cubic meters of material from each dry storage canister system that will need to be dispositioned. The concrete horizontal storage modules or vertical storage overpacks will need to be reused, re-purposed, recycled, or disposed of in some manner. The empty metal storage canister/cask would also have to be cleaned, and decontaminated for possible reuse or recycling or disposed of, likely as low-level radioactive waste. These material disposition options can have impacts of the overall used fuel management system costs. This paper will identify and explore some of the technical and interface considerations associated with managing the dry cask storage system materials. (authors)