Enzymatic Ligation Creates Discrete Multi-Nanoparticle Building Blocks for Self-Assembly
Energy Technology Data Exchange (ETDEWEB)
Claridge, Shelley A.; Mastroianni, Alexander J.; Au, Yeung B.; Liang, Huiyang W.; Micheel, Christine M.; Frechet, Jean M.J.; Alivisatos, A. Paul
2008-05-27
Enzymatic ligation of discrete nanoparticle?DNA conjugates creates nanoparticle dimer and trimer structures in which the nanoparticles are linked by single-stranded DNA, rather than double-stranded DNA as in previous experiments. Ligation is verified by agarose gel and small-angle X-ray scattering. This capability is utilized in two ways: first to create a new class of multiparticle building blocks for nanoscale self-assembly; second to develop a system which can amplify a population of discrete nanoparticle assemblies.
Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi
2017-09-01
Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed......The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...
DEFF Research Database (Denmark)
Busch, Peter Andre; Zinner Henriksen, Helle
2018-01-01
discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...
Directory of Open Access Journals (Sweden)
Augusto Hernández Vidal
2011-12-01
Full Text Available In order to strengthen the concept of municipal autonomy, this essay proposes an extensive interpretation of administrative discretion. Discretion is the exercise of free judgment given by law to authorities for performing official acts. This legislative technique seems to be suitable whenever the legislative is intended to legislate over the essential core of municipal autonomy. This way, an eventual abuse of that autonomy could be avoided, for the disproportional restriction of the local faculty to oversee the local issues. This alternative is presented as a tool to provide with dynamism the performing of administrative activities as well, aiming to assimilate public administration new practices.
Caltagirone, Jean-Paul
2014-01-01
This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling. The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H
Parker, R Gary
1988-01-01
This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o
Creating standards: Creating illusions?
DEFF Research Database (Denmark)
Linneberg, Mai Skjøtt
written standards may open up for the creation of illusions. These are created when written standards' content is not in accordance with the perception standard adopters and standard users have of the specific practice phenomenon's content. This general theoretical argument is exemplified by the specific...
Firth, Jean M
1992-01-01
The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
Reducing auto moiré in discrete line juxtaposed halftoning
Babaei, Vahid; Hersch, Roger
2013-01-01
Discrete line juxtaposed halftoning creates color halftones with discrete colorant lines of freely selectable rational thicknesses laid-out side by side. Screen elements are made of parallelogram screen tiles incorporating the discrete colorant lines. The repetition of discrete colorant lines from one screen element to the next may create auto moiré artifacts. By decomposing each supertile into screen element tiles having slightly different rational thicknesses, we ensure that successive disc...
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-06-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.
Mimetic discretization methods
Castillo, Jose E
2013-01-01
To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and
Discrete Wigner function dynamics
Energy Technology Data Exchange (ETDEWEB)
Klimov, A B; Munoz, C [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410, Guadalajara, Jalisco (Mexico)
2005-12-01
We study the evolution of the discrete Wigner function for prime and the power of prime dimensions using the discrete version of the star-product operation. Exact and semiclassical dynamics in the limit of large dimensions are considered.
Bivariate discrete Linnik distribution
Directory of Open Access Journals (Sweden)
Davis Antony Mundassery
2014-10-01
Full Text Available Christoph and Schreiber (1998a studied the discrete analogue of positive Linnik distribution and obtained its characterizations using survival function. In this paper, we introduce a bivariate form of the discrete Linnik distribution and study its distributional properties. Characterizations of the bivariate distribution are obtained using compounding schemes. Autoregressive processes are developed with marginals follow the bivariate discrete Linnik distribution.
Discrete port Hamiltonian systems
Talasila, V.; Clemente-Gallardo, J.; Clemente Gallardo, J.J.; van der Schaft, Arjan; Horacek, P; Simandl, M; Zitek, P
2005-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
Creative Visualization in Discrete Global Grid System
Etemad, K.; Samavati, F.; Sherlock, M. J.
2016-12-01
Discrete Global Grid System (DGGS) is a disruptive method for developing digital representation of the Earth. In DGGS, to create a multiresolution representation of the Earth, the surface of the Earth is discretized to a hierarchy of indexed (mostly) regular cells. In this talk, an overview of research projects and recent achievements from my group related to DGGS is provided. This covers example works in large geospatial data processing and streaming, as well as creative visualization and interaction in the context of DGGS.
Optimization and Discrete Mathematics
2012-03-06
Manager AFOSR/RSL Air Force Research Laboratory Optimization and Discrete Mathematics 6 Mar 2012 Report Documentation Page Form ApprovedOMB No...00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Optimization and Discrete Mathematics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...distribution is unlimited.. Optimization and Discrete Mathematics PM: Don Hearn BRIEF DESCRIPTION OF PORTFOLIO: Development of
A new discrete filled function algorithm for discrete global optimization
Yongjian, Yang; Yumei, Liang
2007-05-01
A definition of the discrete filled function is given in this paper. Based on the definition, a discrete filled function is proposed. Theoretical properties of the proposed discrete filled function are investigated, and an algorithm for discrete global optimization is developed from the new discrete filled function. The implementation of the algorithms on several test problems is reported with satisfactory numerical results.
Discrete Mathematics Re "Tooled."
Grassl, Richard M.; Mingus, Tabitha T. Y.
1999-01-01
Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)
Linearity stabilizes discrete breathers
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... Here we study the dynamics of highly localized excitations, or discrete breathers, which are known to be initiated by the quasistatic stretching of bonds between adjacent particles. We show via dynamical simulations that acoustic waves introduced by the harmonic term stabilize the discrete breather by ...
Drury, John
Encouraging exploration and practice, this book offers hundreds of exercises and numerous tips covering every step involved in creating poetry. Each chapter is a self-contained unit offering an overview of material in the chapter, a definition of terms, and poetry examples from well-known authors designed to supplement the numerous exercises.…
CERN. Geneva
2017-01-01
LHC Create is an upcoming 2-day workshop held at IdeaSquare in November. Participants from CERN and IPAC school of design will compete to design an exhibit that explains why CERN does what it does. The winner will have their exhibit fully realised and made available to experiments, institutes, and tourism agencies around the world.
Okuyama, Yoshifumi
2014-01-01
Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...
Symmetric, discrete fractional splines and Gabor systems
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2006-01-01
In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....
Finite Discrete Gabor Analysis
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2007-01-01
frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...
Pearls of Discrete Mathematics
Erickson, Martin
2009-01-01
Presents methods for solving counting problems and other types of problems that involve discrete structures. This work illustrates the relationship of these structures to algebra, geometry, number theory and combinatorics. It addresses topics such as information and game theories
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 1. Discrete Event Simulation. Matthew Jacob ... Keywords. Simulation; modelling; computer programming. Author Affiliations. Matthew Jacob1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012.
Discrete computational structures
Korfhage, Robert R
1974-01-01
Discrete Computational Structures describes discrete mathematical concepts that are important to computing, covering necessary mathematical fundamentals, computer representation of sets, graph theory, storage minimization, and bandwidth. The book also explains conceptual framework (Gorn trees, searching, subroutines) and directed graphs (flowcharts, critical paths, information network). The text discusses algebra particularly as it applies to concentrates on semigroups, groups, lattices, propositional calculus, including a new tabular method of Boolean function minimization. The text emphasize
A discrete fractional random transform
Liu, Zhengjun; Zhao, Haifa; Liu, Shutian
2006-01-01
We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.
How Triage Nurses Use Discretion: a Literature Review
Directory of Open Access Journals (Sweden)
Lars Emil Fagernes Johannessen
2016-02-01
Full Text Available Discretion is quintessential for professional work. This review aims to understand how nurses use discretion when they perform urgency assessments in emergency departments with formalised triage systems—systems that are intended to reduce nurses’ use of discretion. Because little research has dealt explicitly with this topic, this review addresses the discretionary aspects of triage by reinterpreting qualitative studies of how triage nurses perform urgency assessments. The review shows (a how inexhaustive guidelines and a hectic work environment are factors that necessitate nurses’ use of discretion and (b how nurses reason within this discretionary space by relying on their experience and intuition, judging patients according to criteria such as appropriateness and believability, and creating urgency ratings together with their patients. The review also offers a synthesis of the findings’ discretionary aspects and suggests a new interactionist dimension of discretion.Keywords: Triage, discretion, emergency department, meta-ethnography, review, decision-making
Directory of Open Access Journals (Sweden)
Prateek Sharma
2015-04-01
Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.
Discrete systems and integrability
Hietarinta, J; Nijhoff, F W
2016-01-01
This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...
DISCRETE MATHEMATICS/NUMBER THEORY
Mrs. Manju Devi*
2017-01-01
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...
Introductory discrete mathematics
Balakrishnan, V K
2010-01-01
This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv
Creating sustainable performance.
Spreitzer, Gretchen; Porath, Christine
2012-01-01
What makes for sustainable individual and organizational performance? Employees who are thriving-not just satisfied and productive but also engaged in creating the future. The authors found that people who fit this description demonstrated 16% better overall performance, 125% less burnout, 32% more commitment to the organization, and 46% more job satisfaction than their peers. Thriving has two components: vitality, or the sense of being alive and excited, and learning, or the growth that comes from gaining knowledge and skills. Some people naturally build vitality and learning into their jobs, but most employees are influenced by their environment. Four mechanisms, none of which requires heroic effort or major resources, create the conditions for thriving: providing decision-making discretion, sharing information about the organization and its strategy, minimizing incivility, and offering performance feedback. Organizations such as Alaska Airlines, Zingerman's, Quicken Loans, and Caiman Consulting have found that helping people grow and remain energized at work is valiant on its own merits-but it can also boost performance in a sustainable way.
Sharp, Karen Tobey
This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…
Indian Academy of Sciences (India)
systems, robots, space applications, farming, biotech- nology and even medicine. The disciplines of continuous-time and discrete-time sig- nals and systems have become increasingly entwined. Without any doubt, it is advantageous to process conti- nuous-time signals by sampling them. The computer control system for a ...
Difference Discrete Variational Principles
Baleanu, Dumitru; Jarad, Fahd
2006-05-01
The paper provides the discrete Lagrangian and Hamiltonian formulations of mechanical systems for both non-singular and singular cases. The Lagrangians with linear velocities and with higher velocities are investigated and the corresponding difference Euler-Lagrange equations and Hamiltonians are found.
Discretization of continuous frame
Indian Academy of Sciences (India)
which is a positive, self-adjoint, invertible operator on H with A · IdH ≤ SWω ≤ B · IdH. 2. Main result. For establishing a relationship between discrete and continuous frame of subspaces, we generalize the concept of continuous frame and resolution of identity to arbitrary Hilbert space H. For this purpose, we introduce the ...
Directory of Open Access Journals (Sweden)
Boštjan Kerbler
2006-01-01
Full Text Available The paper systematically describes special regression methods – discrete choice models – known as probability models. The meaning of models and their methodological characteristics are described, as well as different types of models, especially binary-choice models and censored regression models. We considered three most commonly used approaches to estimating such models – logit, probit and tobit model.
de Wild Propitius, M.; Bais, F.A.; Semenoff, G.; Vinet, L.
1999-01-01
In these lectures, we present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group $H$ via the Higgs mechanism. The main focus is on the discrete $H$ gauge theory describing the long distance physics of such a model. The spectrum features global $H$
Salinelli, Ernesto
2014-01-01
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economic...
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Discrete mathematics with applications
Koshy, Thomas
2003-01-01
This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects*...
Time Discretization Techniques
Gottlieb, S.
2016-10-12
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.
Indian Academy of Sciences (India)
net immigrants entering the country in year k. We leave it to the reader to model the vacillating mathe- matician problem [3] as a discrete-time system. General Forms of Difference Equations. An nth order difference equation may be written, typically, either as y(k + n) + an-l y(k + n - 1) + + aO y(k) = bm u(k + m) + bm-l u(k + m ...
Czech Academy of Sciences Publication Activity Database
Mesiar, Radko; Li, J.; Pap, E.
2013-01-01
Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo- multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals. pdf
A paradigm for discrete physics
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.
1987-01-01
An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity.
Discrete port-Hamiltonian systems
Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der
2006-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
Hamiltonian Mechanics on Discrete Manifolds
Talasila, V.; Clemente Gallardo, J.; Schaft, A.J. van der
2004-01-01
The mathematical/geometric structure of discrete models of systems, whether these models are obtained after discretization of a smooth system or as a direct result of modeling at the discrete level, have not been studied much. Mostly one is concerned regarding the nature of the solutions, but not
Hamiltonian mechanics on discrete manifolds
Talasila, V.; Clemente-Gallardo, J.; Clemente Gallardo, J.J.; van der Schaft, Arjan
2004-01-01
The mathematical/geometric structure of discrete models of systems, whether these models are obtained after discretization of a smooth system or as a direct result of modeling at the discrete level, have not been studied much. Mostly one is concerned regarding the nature of the solutions, but not
More about discrete gauge anomalies
Ibáñez, L E
1993-01-01
I discuss and extend several results concerning the cancellation of discrete gauge anomalies. I show how heavy fermions do not decouple in the presence of discrete gauge anomalies. As a consequence, in general, cancellation of discrete gauge anomalies cannot be described merely in terms of low energy operators involving only the light fermions. I also discuss cancellation of discrete gauge anomalies through a discrete version of the Green-Schwarz (GS) mechanism as well as the possibility of discrete gauge R-symmetries and their anomalies. Finally, some phenomenological applications are discussed. This includes symmetries guaranteeing absence of FCNC in two-Higgs models and generalized matter parities stabilizing the proton in the supersymmetric standard model. In the presence of a discrete GS mechanism or/and gauge R-symmetries, new possibilities for anomaly free such symmetries are found.
Brauer, Fred; Feng, Zhilan; Castillo-Chavez, Carlos
2010-01-01
The mathematical theory of single outbreak epidemic models really began with the work of Kermack and Mackendrick about decades ago. This gave a simple answer to the long-standing question of why epidemics woould appear suddenly and then disappear just as suddenly without having infected an entire population. Therefore it seemed natural to expect that theoreticians would immediately proceed to expand this mathematical framework both because the need to handle recurrent single infectious disease outbreaks has always been a priority for public health officials and because theoreticians often try to push the limits of exiting theories. However, the expansion of the theory via the inclusion of refined epidemiological classifications or through the incorporation of categories that are essential for the evaluation of intervention strategies, in the context of ongoing epidemic outbreaks, did not materialize. It was the global threat posed by SARS in that caused theoreticians to expand the Kermack-McKendrick single-outbreak framework. Most recently, efforts to connect theoretical work to data have exploded as attempts to deal with the threat of emergent and re-emergent diseases including the most recent H1N1 influenza pandemic, have marched to the forefront of our global priorities. Since data are collected and/or reported over discrete units of time, developing single outbreak models that fit collected data naturally is relevant. In this note, we introduce a discrete-epidemic framework and highlight, through our analyses, the similarities between single-outbreak comparable classical continuous-time epidemic models and the discrete-time models introduced in this note. The emphasis is on comparisons driven by expressions for the final epidemic size.
Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations
Mohamed, Mamdouh S.
2017-05-23
A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.
Discrete optimization in architecture extremely modular systems
Zawidzki, Machi
2017-01-01
This book is comprised of two parts, both of which explore modular systems: Pipe-Z (PZ) and Truss-Z (TZ), respectively. It presents several methods of creating PZ and TZ structures subjected to discrete optimization. The algorithms presented employ graph-theoretic and heuristic methods. The underlying idea of both systems is to create free-form structures using the minimal number of types of modular elements. PZ is more conceptual, as it forms single-branch mathematical knots with a single type of module. Conversely, TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. In physical space, TZ uses two types of modules that are mirror reflections of each other. The optimization criteria discussed include: the minimal number of units, maximal adherence to the given guide paths, etc.
Poisson hierarchy of discrete strings
Energy Technology Data Exchange (ETDEWEB)
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
McKenzie, Alan
2016-01-01
The Many Worlds Interpretation (MWI) famously avoids the issue of wave function collapse. Different MWI trees representing the same quantum events can have different topologies, depending upon the observer. However, they are all isomorphic to the group of block universes containing all of the outcomes of all of the events, and so, in that sense, the group of block universes is a more fundamental representation. Different branches of the MWI tree, representing different universes in MWI, ultimately share the same quantum state in a common ancestor branch. This branching topology is incompatible with that of the Minkowski block universe; the resolution is to replace the branches with discrete, parallel block universes, each of which extends from the trunk to the outermost twigs. The number of universes in a branch is proportional to its thickness which, in turn, depends upon the absolute square of the probability amplitude for the state in that branch. Every quantum event may be represented by a kernel of unive...
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Starson, S. (STARSON Corp. (USA))
1991-03-01
Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces fields'' with the relativistic Wheeler-Feynman action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs.
Immigration and Prosecutorial Discretion.
Apollonio, Dorie; Lochner, Todd; Heddens, Myriah
Immigration has become an increasingly salient national issue in the US, and the Department of Justice recently increased federal efforts to prosecute immigration offenses. This shift, however, relies on the cooperation of US attorneys and their assistants. Traditionally federal prosecutors have enjoyed enormous discretion and have been responsive to local concerns. To consider how the centralized goal of immigration enforcement may have influenced federal prosecutors in regional offices, we review their prosecution of immigration offenses in California using over a decade's worth of data. Our findings suggest that although centralizing forces influence immigration prosecutions, individual US attorneys' offices retain distinct characteristics. Local factors influence federal prosecutors' behavior in different ways depending on the office. Contrary to expectations, unemployment rates did not affect prosecutors' willingness to pursue immigration offenses, nor did local popular opinion about illegal immigration.
Discrete Pearson distributions
Energy Technology Data Exchange (ETDEWEB)
Bowman, K.O. [Oak Ridge National Lab., TN (United States); Shenton, L.R. [Georgia Univ., Athens, GA (United States); Kastenbaum, M.A. [Kastenbaum (M.A.), Basye, VA (United States)
1991-11-01
These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.
Principles of discrete time mechanics
Jaroszkiewicz, George
2014-01-01
Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.
A short course in discrete mathematics
Bender, Edward A
2004-01-01
What sort of mathematics do I need for computer science? In response to this frequently asked question, a pair of professors at the University of California at San Diego created this text. Its sources are two of the university's most basic courses: Discrete Mathematics, and Mathematics for Algorithm and System Analysis. Intended for use by sophomores in the first of a two-quarter sequence, the text assumes some familiarity with calculus. Topics include Boolean functions and computer arithmetic; logic; number theory and cryptography; sets and functions; equivalence and order; and induction, seq
Discrete Mathematics and Its Applications
Oxley, Alan
2010-01-01
The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…
Discrete Mathematics and Curriculum Reform.
Kenney, Margaret J.
1996-01-01
Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)
Multiscale expansions in discrete world
Indian Academy of Sciences (India)
... multiscale expansions discretely. The power of this manageable method is confirmed by applying it to two selected nonlinear Schrödinger evolution equations. This approach can also be applied to other nonlinear discrete evolution equations. All the computations have been made with Maple computer packet program.
Multiscale expansions in discrete world
Indian Academy of Sciences (India)
and third-order nonlinear Schrödinger equations, KdV equation is derived in §3 and 4, respectively. Finally, some conclusions are ... type to KdV-type equations in discrete world. For a given discrete nonlinear ..... Filiz Tascan and Mehmet Naci Özer. [2] M Toda, Theory of nonlinear lattices (Springer-Verlag, New York, 1981).
Modern approaches to discrete curvature
Romon, Pascal
2017-01-01
This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.
Self-assembled fibre optoelectronics with discrete translational symmetry.
Rein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F; Joannopoulos, John; Fink, Yoel
2016-10-04
Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ∼10 4 self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout.
Full Text Available ... A A A Listen En Español Create Your Plate Create Your Plate is a simple and effective ... and that your options are endless. Create Your Plate! Click on the plate sections below to add ...
Full Text Available ... Plate Create Your Plate is a simple and effective way to manage your blood glucose levels and ... Steps to Create Your Plate It's simple and effective for both managing diabetes and losing weight. Creating ...
Discrete dynamics versus analytic dynamics
DEFF Research Database (Denmark)
Toxværd, Søren
2014-01-01
For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent of such a......For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....
The origin of discrete particles
Bastin, T
2009-01-01
This book is a unique summary of the results of a long research project undertaken by the authors on discreteness in modern physics. In contrast with the usual expectation that discreteness is the result of mathematical tools for insertion into a continuous theory, this more basic treatment builds up the world from the discrimination of discrete entities. This gives an algebraic structure in which certain fixed numbers arise. As such, one agrees with the measured value of the fine-structure constant to one part in 10,000,000 (10 7 ). Sample Chapter(s). Foreword (56 KB). Chapter 1: Introduction
Discrete symmetries from hidden sectors
Energy Technology Data Exchange (ETDEWEB)
Anastasopoulos, Pascal [Institut für Theoretische Physik, Technische Universität Wien,A-1040 Vienna (Austria); Richter, Robert [II. Institut für Theoretische Physik, Hamburg University,Hamburg (Germany); Schellekens, A.N. [NIKHEF,Science Park 105, 1098 XG Amsterdam (Netherlands); IMAPP, Radboud Universiteit Nijmegen,Nijmegen (Netherlands); Instituto de Física Fundamental, CSIC,Madrid (Spain)
2015-06-29
We study the presence of abelian discrete symmetries in globally consistent orientifold compactifications based on rational conformal field theory. We extend previous work http://dx.doi.org/10.1016/j.nuclphysb.2012.08.008 by allowing the discrete symmetries to be a linear combination of U(1) gauge factors of the visible as well as the hidden sector. This more general ansatz significantly increases the probability of finding a discrete symmetry in the low energy effective action. Applied to globally consistent MSSM-like Gepner constructions we find multiple models that allow for matter parity or Baryon triality.
Exact discretization by Fourier transforms
Tarasov, Vasily E.
2016-08-01
A discretization of differential and integral operators of integer and non-integer orders is suggested. New type of differences, which are represented by infinite series, is proposed. A characteristic feature of the suggested differences is an implementation of the same algebraic properties that have the operator of differentiation (property of algebraic correspondence). Therefore the suggested differences are considered as an exact discretization of derivatives. These differences have a property of universality, which means that these operators do not depend on the form of differential equations and the parameters of these equations. The suggested differences operators allows us to have difference equations whose solutions are equal to the solutions of corresponding differential equations. The exact discretization of the derivatives of integer orders is given by the suggested differences of the same integer orders. Similarly, the exact discretization of the Riesz derivatives and integrals of integer and non-integer order is given by the proposed fractional differences of the same order.
Discrete geodesics and cellular automata
Arrighi, Pablo
2015-01-01
This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.
Exact analysis of discrete data
Hirji, Karim F
2005-01-01
Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...
Alfa, Attahiru S
2016-01-01
This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...
Discrete Curvature Theories and Applications
Sun, Xiang
2016-08-25
Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the
Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart- ...
Full Text Available ... treatments for those living with diabetes. Other Ways to Give Become a Member Vehicle Donation Planned Giving ... Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective for ...
Analysis of Discrete Mittag - Leffler Functions
Directory of Open Access Journals (Sweden)
N. Shobanadevi
2015-03-01
Full Text Available Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.
A Discrete-Continuous Method of Mechanical System Modelling
Directory of Open Access Journals (Sweden)
Hein Rafał
2017-04-01
Full Text Available The paper describes a discrete-continuous method of dynamic system modelling. The presented approach is hybrid in its nature, as it combines the advantages of spatial discretization methods with those of continuous system modelling methods. In the proposed method, a three-dimensional system is discretised in two directions only, with the third direction remaining continuous. The thus obtained discrete-continuous model is described by a set of coupled partial differential equations, derived using the rigid finite element method (RFEM. For this purpose, firstly the general differential equations are written. Then these equations are converted into difference equations. The derived equations, expressed in matrix form, allow to create a global matrix for the whole system. They are solved using the distributed transfer function method. The proposed approach is illustrated with the examples of a simple beam fixed at both ends and a simply supported plate.
Integrable structure in discrete shell membrane theory.
Schief, W K
2014-05-08
We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.
Nonlinear absorption in discrete systems
Energy Technology Data Exchange (ETDEWEB)
Spire, A; Leon, J [Physique Mathematique et Theorique, CNRS-UMR5825, Universite Montpellier 2, 34095 Montpellier (France)
2004-10-01
In the context of nonlinear scattering, a continuous wave incident onto a nonlinear discrete molecular chain of coupled oscillators can be partially absorbed as a result of a three-wave resonant interaction that couples two HF-waves of frequencies close to the edge of the Brillouin zone. Hence both nonlinearity and discreteness are necessary for generating this new absorption process which manifests itself by soliton generation in the medium. As a paradigm of this nonlinear absorption we consider here the Davydov model that describes exciton-phonon coupling in hydrogen-bonded molecular chains.
Some discrete multiple orthogonal polynomials
Arvesú, J.; Coussement, J.; Van Assche, W.
2003-01-01
27 pages, no figures.-- MSC2000 codes: 33C45, 33C10, 42C05, 41A28.-- Issue title: "Proceedings of the 6th International Symposium on Orthogonal Polynomials, Special Functions and their Applications" (OPSFA-VI, Rome, Italy, 18-22 June 2001). MR#: MR1985676 (2004g:33015) Zbl#: Zbl 1021.33006 In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First w...
Discrete Variational Approach for Modeling Laser-Plasma Interactions
Reyes, J. Paxon; Shadwick, B. A.
2014-10-01
The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.
Solving discrete zero point problems
van der Laan, G.; Talman, A.J.J.; Yang, Z.F.
2004-01-01
In this paper an algorithm is proposed to .nd a discrete zero point of a function on the collection of integral points in the n-dimensional Euclidean space IRn.Starting with a given integral point, the algorithm generates a .nite sequence of adjacent integral simplices of varying dimension and
Path integrals as discrete sums
Bitar, Khalil; Khuri, N. N.; Ren, H. C.
1991-08-01
We present a new formulation of Feynman's path integral, based on Voronin's theorems on the universality of the Riemann zeta function. The result is a discrete sum over ``paths,'' each given by a zeta function. A new measure which leads to the correct quantum mechanics is explicitly given.
Modules over discrete valuation domains
Tuganbaev, Askar A
2008-01-01
This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra.
Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...
Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...
Full Text Available ... Share: Print Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a simple and effective way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy veggies ...
Discrete Element Modeling for Mobility and Excavation
Knuth, M. A.; Hopkins, M. A.
2011-12-01
The planning and completion of mobility and excavation efforts on the moon requires a thorough understanding of the planetary regolith. In this work, a discrete element method (DEM) model is created to replicate those activities in the laboratory and for planning mission activities in the future. The crux of this work is developing a particle bed that best replicates the regolith tool/wheel interaction seen in the laboratory. To do this, a DEM geotechnical triaxial strength cell was created allowing for comparison of laboratory JSC-1a triaxial tests to DEM simulated soils. This model relies on a triangular lattice membrane covered triaxial cell for determining the macroscopic properties of the modeled granular material as well as a fast and efficient contact detection algorithm for a variety of grain shapes. Multiple grain shapes with increasing complexity (ellipsoid, poly-ellipsoid and polyhedra) have been developed and tested. This comparison gives us a basis to begin scaling DEM grain size and shape to practical values for mobility and excavation modeling. Next steps include development of a DEM scoop for percussive excavation testing as well as continued analysis of rover wheel interactions using a wide assortment of grain shape and size distributions.
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
Applied geometry and discrete mathematics
Sturm; Gritzmann, Peter; Sturmfels, Bernd
1991-01-01
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...
Discrete mathematics using a computer
Hall, Cordelia
2000-01-01
Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Dark energy from discrete spacetime.
Directory of Open Access Journals (Sweden)
Aaron D Trout
Full Text Available Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
Creating more effective graphs
Robbins, Naomi B
2012-01-01
A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr
The remarkable discreteness of being
Houchmandzadeh, Bahram
2013-01-01
Life is a discrete, stochastic phenomena : for a biological organism, the time of the two most important events of its life (reproduction and death) is random and these events change the number of individuals of the species by single units. These facts can have surprising, counter-intuitive consequences. I review here three examples where these facts play, or could play, important roles : the spatial distribution of species, the biodiversity and the (Darwinian) evolution of altruistic behavior.
Observability of discretized partial differential equations
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
Full Text Available ... Health Care Professionals Law Enforcement Driver's License For Lawyers Food & Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...
Full Text Available ... Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...
... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...
Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...
Full Text Available ... Pacific Islanders American Indian/Alaska Native Programs Older Adults Family Link Diabetes EXPO Upcoming Diabetes EXPOs EXPO ... Plate! Click on the plate sections below to add your food choices. Reset Plate Share Create Your ...
Full Text Available ... of Diabetes Research & Practice Home We Are Research Leaders World's Largest Diabetes Meeting Recent Advances Type 1 ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ...
Full Text Available ... Now - match-donate-now.html Match – Donate Now Make your year-end donation today and ... Tour Registration Is Open It starts with you. Sign up to ride in Tour de Cure and create ...
Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but changes the portion sizes so you are getting larger ...
Full Text Available ... this interactive tool. The healthy meal combinations are endless! Ready to try it at home? Just follow ... non-starchy vegetables and that your options are endless. Create Your Plate! Click on the plate sections ...
Full Text Available ... and Pacific Islanders American Indian/Alaska Native Programs Older Adults Family Link Diabetes EXPO Upcoming Diabetes EXPOs ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...
Full Text Available ... Plate! Click on the plate sections below to add your food choices. Reset Plate Share Create Your ... your protein. See this list of protein foods . Add a serving of fruit , a serving of dairy ...
Full Text Available ... losing weight. Creating your plate lets you still choose the foods you want, but changes the portion ... dairy or both as your meal plan allows. Choose healthy fats in small amounts. For cooking, use ...
Full Text Available ... Please Join Us in the Fight for a Cure Your tax-deductible gift today can fund critical ... you. Sign up to ride in Tour de Cure and create your team today! More from diabetes. ...
Full Text Available ... that your options are endless. Create Your Plate! Click on the plate sections below to add your ... down the middle of the plate. Then on one side, cut it again so you will have ...
Rudsengen, Mathias Flaten
2014-01-01
Creating unreal audio” refers to the act of designing a sound effect that is intended to sound like a completely fictional object. This thesis is a practical venture into digital audio design. During the process of creating a sound effect anchored in a specific thematic framework, I will describe my work process and the challenges and problems faced, showing my personal work process and how modern digital sound effect creation can be undertaken. To provide context, I will also describe and re...
Cuspidal discrete series for projective hyperbolic spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens
2013-01-01
Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series......, and at most finitely many non-cuspidal discrete series, including in particular the spherical discrete series. For the projective spaces, the spherical discrete series are the only non-cuspidal discrete series. Below, we extend these results to the other hyperbolic spaces, and we also study the question...
A non-linear discrete transform for pattern recognition of discrete chaotic systems
Karanikas, C
2003-01-01
It is shown, by an invertible non-linear discrete transform that any finite sequence or any collection of strings of any length can be presented as a random walk on trees. These transforms create the mathematical background for coding any information, for exploring its local variability and diversity. With the underlying computational algorithms, with several examples and applications we propose that these transforms can be used for pattern recognition of immune type. In other words we propose a mathematical platform for detecting self and non-self strings of any alphabet, based on a negative selection algorithms, for scouting data's periodicity and self-similarity and for measuring the diversity of chaotic strings with fractal dimension methods. In particular we estimate successfully the entropy and the ratio of chaotic data with self similarity. Moreover we give some applications of a non-linear denoising filter.
Domain Discretization and Circle Packings
DEFF Research Database (Denmark)
Dias, Kealey
, and the edges are geodesic segments (Euclidean, hyperbolic, or spherical) connecting centers of circles that are tangent to each other. Three circles that are mutually tangent form a face of the triangulation. Since circle packing is closely related to triangulation, circle packing methods can be applied...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...
Discrete geometric structures for architecture
Pottmann, Helmut
2010-06-13
The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This
Radiative transfer on discrete spaces
Preisendorfer, Rudolph W; Stark, M; Ulam, S
1965-01-01
Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran
Mathewson, Karyn
2014-03-01
This column describes the efforts of an agency to build a learning culture as part of changing their approach to service delivery, when adopting a focus on psychiatric rehabilitation and recovery. This example of one organization's challenges and successes in workforce development provides an alternative approach to the common single-session staff training that typically fails to change practice. This description draws from published material on communities of practice, technical consultation, and agency experience. Training alone is not enough to create change. An organizational commitment to ongoing quality improvement, along with available and accessible technical assistance for staff, creates an environment where change is anticipated, managed, and celebrated.
Wooldridge, Mike
2011-01-01
The easiest way to learn how to create a Web page for your family or organization Do you want to share photos and family lore with relatives far away? Have you been put in charge of communication for your neighborhood group or nonprofit organization? A Web page is the way to get the word out, and Creating Web Pages Simplified offers an easy, visual way to learn how to build one. Full-color illustrations and concise instructions take you through all phases of Web publishing, from laying out and formatting text to enlivening pages with graphics and animation. This easy-to-follow visual guide sho
Full Text Available ... Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets you still choose the ... Help Enroll in the Living WIth Type 2 Diabetes Program Food & Fitness Food Recipes Planning Meals What Can I Eat Weight Loss Fitness In My Community Calendar of Events ...
Full Text Available ... For Lawyers Food & Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create ... Become a Volunteer American Diabetes Month® American Diabetes Association Alert Day® Become a Member Advocacy Home Take ...
Branzburg, Jeffrey
2008-01-01
There are many ways to begin a PDF document using Adobe Acrobat. The easiest and most popular way is to create the document in another application (such as Microsoft Word) and then use the Adobe Acrobat software to convert it to a PDF. In this article, the author describes how he used Acrobat's many tools in his project--an interactive…
DEFF Research Database (Denmark)
Dahlberg, Rasmus; Guay, Fanny
2015-01-01
According to the EU, during the past five years, small and medium enterprises (SMEs) have created 85% of new jobs and two-thirds of private sector employment in the region. SMEs are considered the backbone of the economy in Europe and represent more than 95% of enterprises in USA and Australia...
Full Text Available ... meal-planning, In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ... your year-end donation today and help fight diabetes. Donate Today We Can Help - we-can-help. ...
Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...
Creating snags with explosives.
Evelyn L. Bull; Arthur D. Partridge; Wayne G. Williams
1981-01-01
The tops of ponderosa pine (Pinus ponderosa) trees were blown off with dynamite to create nest sites for cavity-nesting wildlife. The procedure included drilling a hole almost through the trunk, inserting the dynamite, and setting the charge with primacord and fuse. Trees were simultaneously innoculated with a decay organism. The average cost was $...
deLisle, Lee
2009-01-01
"Creating Special Events" is organized as a systematic approach to festivals and events for students who seek a career in event management. This book looks at the evolution and history of festivals and events and proceeds to the nuts and bolts of event management. The book presents event management as the means of planning, organizing, directing,…
DEFF Research Database (Denmark)
McLisky, Claire Louise; Carey, Jane
Vedtagelsen af White Australien som regeringens politik i 1901 viser, at hvidheden var afgørende for den måde, hvorpå den nye nation i Australien blev konstitueret. Og alligevel har historikere i vid udstrækning overset hvidhed i deres studier af Australiens race fortid. 'Creating White Australia...
Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning What Can I Eat? ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday ... Foods donate en -- Limited Time MATCH Offer - limited- ...
Fiorentino, Leah H.; Castelli, Darla
2005-01-01
Physical educators struggle with the challenges of assessing student performance, providing feedback about motor skills, and creating opportunities for all students to engage in game-play on a daily basis. The integration of technology in the gymnasium can address some of these challenges by improving teacher efficiency and increasing student…
Creating Pupils' Internet Magazine
Bognar, Branko; Šimic, Vesna
2014-01-01
This article presents an action research, which aimed to improve pupils' literary creativity and enable them to use computers connected to the internet. The study was conducted in a small district village school in Croatia. Creating a pupils' internet magazine appeared to be an excellent way for achieving the educational aims of almost all…
Hydrodynamics and Heat Transfer of Discrete Droplets in Microfluidic Devices
Weber, Robert; Shajiee, Shervin; Mohseni, Kamran
2009-11-01
Electrostatic manipulation of surfaces tension forces is now a standard fluid handling technique in microfluidic devices. In this investigation electrowetting on dielectric (EWOD) is employed in order to use discrete droplets for thermal management of compact micro systems. Both hydro- and thermodynamics of digitized droplets are investigated by experimental, theoretical and computational means. EWOD devices have been built on silicon substrates with highly doped layers replacing metal electrodes, and higher quality thermal oxides replacing the more expensive PECVD oxides. In parallel, an experimental test rig has been built to measure the heat transfer rate of the slug flow at a macro scale. Droplets at several length and speed are created systematically. Average heat transfer rates and Nusselt numbers in constant heat flux in a tube has been experimentally measured for continuous and discrete water flow cases and the results have been compared with numerical results.
Creating bulk nanocrystalline metal.
Energy Technology Data Exchange (ETDEWEB)
Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin
2008-10-01
Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.
Creating organizational cultures
DEFF Research Database (Denmark)
Mouton, Nicolaas T.O.; Just, Sine Nørholm; Gabrielsen, Jonas
2012-01-01
Purpose – The purpose of this paper is to re-conceptualize the relations between rhetorical strategies and material practices in the processes whereby leaders create or change organizational cultures. Design/methodology/approach – The authors compare and contrast two broad perspectives on cultural...... insights. The authors propose an integrated perspective in which material practices and rhetorical strategies are seen as two analytical sides of the same ontological coin. This enables a fuller and more detailed explanation of how organizational cultures are created or changed. A brief illustration...... is provided of the merits of this approach by revisiting the case of Enron. Originality/value – The paper constitutes an initial exploration of how social scientific and rhetorical perspectives on organizational change may be brought closer together. It may provide the first step towards the development...
Hertzmann, Aaron
2018-01-01
This paper discusses whether computers, using Artifical Intelligence (AI), could create art. The first part concerns AI-based tools for assisting with art making. The history of technologies that automated aspects of art is covered, including photography and animation. In each case, we see initial fears and denial of the technology, followed by a blossoming of new creative and professional opportunities for artists. The hype and reality of Artificial Intelligence (AI) tools for art making is ...
Creating product line architectures
Bayer, J.; Flege, O.; Gacek, C.
2000-01-01
The creation and validation of product line software architectures are inherently more complex than those of software architectures for single systems. This paper compares a process for creating and evaluating a traditional, one-of-a- kind software architecture with one for a reference software architecture. The comparison is done in the context of PuLSE-DSSA, a customizable process that integrates both product line architecture creation and evaluation.
Pratas, Antonio
2014-01-01
This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.
Buskop, J.; Buskop, W.
2013-12-01
The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.
Quantum evolution by discrete measurements
Energy Technology Data Exchange (ETDEWEB)
Roa, L [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Guevara, M L Ladron de [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Delgado, A [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Olivares-RenterIa, G [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)
2007-10-15
In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases.
Discrete calculus methods for counting
Mariconda, Carlo
2016-01-01
This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet ...
Discrete modelling of drapery systems
Thoeni, Klaus; Giacomini, Anna
2016-04-01
Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R
Modeling discrete competitive facility location
Karakitsiou, Athanasia
2015-01-01
This book presents an up-to-date review of modeling and optimization approaches for location problems along with a new bi-level programming methodology which captures the effect of competition of both producers and customers on facility location decisions. While many optimization approaches simplify location problems by assuming decision making in isolation, this monograph focuses on models which take into account the competitive environment in which such decisions are made. New insights in modeling, algorithmic and theoretical possibilities are opened by this approach and new applications are possible. Competition on equal term plus competition between market leader and followers are considered in this study, consequently bi-level optimization methodology is emphasized and further developed. This book provides insights regarding modeling complexity and algorithmic approaches to discrete competitive location problems. In traditional location modeling, assignment of customer demands to supply sources are made ...
A Discrete Modeling Approach for Buck Converter
Zhaoxia, Leng; Qingfeng, Liu; Jinkun, Sun; Huamin, Wang
In this paper, a discrete modeling approach for Buck converters based on continuous condition mode (CCM) and discontinuous condition mode (DCM) was presented. The unified coefficient matrixes of discrete model were described by building a mathematical function and the calculation methods of the parameters in coefficient matrixes were given. The working states of Buck converter on various work conditions were described adopting one discrete equation. The validity of the proposed modeling approach was proved by contrasting the output of discrete model with the operation result of Buck converter system in Simulink.
Cuspidal discrete series for semisimple symmetric spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik
2012-01-01
We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a ‘smooth’ model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente Gallardo, J.J.; Clemente-Gallardo, J.; van der Schaft, Arjan
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to
Quantum dynamical entropies in discrete classical chaos
Energy Technology Data Exchange (ETDEWEB)
Benatti, Fabio [Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Cappellini, Valerio [Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Zertuche, Federico [Instituto de Matematicas, UNAM, Unidad Cuernavaca, AP 273-3, Admon. 3, 62251 Cuernavaca, Morelos (Mexico)
2004-01-09
We discuss certain analogies between quantization and discretization of classical systems on manifolds. In particular, we will apply the quantum dynamical entropy of Alicki and Fannes to numerically study the footprints of chaos in discretized versions of hyperbolic maps on the torus.
Quantum-like diffusion over discrete sets
Energy Technology Data Exchange (ETDEWEB)
Battaglia, Demian; Rasetti, Mario
2003-06-23
In the present Letter, a discrete differential calculus is introduced and used to describe dynamical systems over arbitrary graphs. The discretization of space and time allows the derivation of Heisenberg-like uncertainty inequalities and of a Schroedinger-like equation of motion, without need of any quantization procedure.
Conservative discretization of the Landau collision integral
Hirvijoki, Eero
2016-01-01
We describe a density, momentum, and energy conserving discretization of the nonlinear Landau collision integral. Our algorithm is suitable for both the finite-element and discontinuous Galerkin methods and does not require structured meshes. The conservation laws for the discretization are proven algebraically and demonstrated numerically for an axially symmetric nonlinear relaxation problem.
On the geometry of discret Michell trusses
DEFF Research Database (Denmark)
Almegaard, Henrik
2011-01-01
given by Michell in 1904. A set of simple design rules are extracted and it is indicated how these rules can be used to construct discrete Michell truss geometries. A number of geometrical optimized discrete examples of known Michell trusses are presented and they meet these design rules very well....
Handbook on modelling for discrete optimization
Pitsoulis, Leonidas; Williams, H
2006-01-01
The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...
DEFF Research Database (Denmark)
Munar, Ana Maria
2011-01-01
study of social media sites and destination brands, relying on qualitative research methods, content analysis and field research. Findings – Tourists are largely contributing to destination image formation, while avoiding the use of the formal elements of the brands. The most popular strategies used...... by destination management organizations exhibit some crucial weaknesses. However, a strategy based on analytics brings new opportunities for destination branding. Originality/value – The study provides an innovative analysis of tourist-created content and its impact on destination branding and presents......Purpose – The purpose of this paper is to analyze the relationship between tourists' user-generated content on the web and destination branding, as well as to discuss the online strategies used by destination management organizations. Design/methodology/approach – The research adopts an exploratory...
Creating nanostars with buckyballs
Energy Technology Data Exchange (ETDEWEB)
Bae, Young K., E-mail: ykbae@ykbcorp.com
2013-12-17
We report creating superradiant quantum nanoplasmas (nanostars) by impacting buckyballs at hypervelocities (v>100 km/s) in an innovative tabletop apparatus. The nanostars are estimated to have ∼10 TPa transient pressures and convert ∼35% of impact energy into soft-X-ray energy. The ultrahigh-efficiency conversion is proposed to result from Dicke Superradiance of Metastable Innershell Molecular State, originally discovered by the author and his colleagues in 1994. The usage of buckyballs and successful orders-of-magnitude scaling down of the apparatus size and complexity establish an innovative tabletop method for generating, studying, and utilizing matter in planetary or stellar interiors and open doors to numerous unprecedented applications.
Cook, Anthony
2013-01-01
Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its
Bendapudi, Neeli; Bendapudi, Venkat
2005-05-01
It's easy to conclude from the literature and the lore that top-notch customer service is the province of a few luxury companies and that any retailer outside that rarefied atmosphere is condemned to offer mediocre service at best. But even companies that position themselves for the mass market can provide outstanding customer-employee interactions and profit from them, if they train employees to reflect the brand's core values. The authors studied the convenience store industry in depth and focused on two that have developed a devoted following: QuikTrip (QT) and Wawa. Turnover rates at QT and Wawa are 14% and 22% respectively, much lower than the typical rate in retail. The authors found six principles that both firms embrace to create a strong culture of customer service. Know what you're looking for: A focus on candidates' intrinsic traits allows the companies to hire people who will naturally bring the right qualities to the job. Make the most of talent: In mass-market retail, talent is generally viewed as a commodity, but that outlook becomes a self-fulfilling prophesy. Create pride in the brand: Service quality depends directly on employees' attachment to the brand. Build community: Wawa and QT have made concerted efforts to build customer loyalty through a sense of community. Share the business context: Employees need a clear understanding of how their company operates and how it defines success. Satisfy the soul: To win an employee's passionate engagement, a company must meet his or her needs for security, esteem, and justice.
Succinct Sampling from Discrete Distributions
DEFF Research Database (Denmark)
Bringmann, Karl; Larsen, Kasper Green
2013-01-01
We revisit the classic problem of sampling from a discrete distribution: Given n non-negative w-bit integers x_1,...,x_n, the task is to build a data structure that allows sampling i with probability proportional to x_i. The classic solution is Walker's alias method that takes, when implemented...... requirement of the classic solution for a fundamental sampling problem, on the other hand, they provide the strongest known separation between the systematic and non-systematic case for any data structure problem. Finally, we also believe our upper bounds are practically efficient and simpler than Walker...... on a Word RAM, O(n) preprocessing time, O(1) expected query time for one sample, and n(w+2 lg n+o(1)) bits of space. Using the terminology of succinct data structures, this solution has redundancy 2n lg n+o(n) bits, i.e., it uses 2n lg n+o(n) bits in addition to the information theoretic minimum required...
Discrete frequency slice wavelet transform
Yan, Zhonghong; Tao, Ting; Jiang, Zhongwei; Wang, Haibin
2017-11-01
This paper introduces a new kind of Time-Frequency Representation (TFR) method called Discrete Frequency Slice Wavelet Transform (DFSWT). It is an improved version of Frequency Slice Wavelet Transform (FSWT). The previous researches on FSWT show that it is a new efficient TFR in an easy way without strict limitation as traditional wavelet theory. DFSWT as well as FSWT are defined directly in frequency domain, and still keep its properties in time-frequency domain as FSWT decomposition, reconstruction and filter design, etc. However, the original signal is decomposed and reconstructed on a Chosen Frequency Domains (CFD) as need of application. CFD means that the decomposition and reconstruction are not completed on all frequency components. At first, it is important to discuss the necessary condition of CFD to reconstruct the original signal. And then based on norm l2, an optimization algorithm is introduced to reconstruct the original signal even accurately. Finally, for a test example, the TFR analysis of a real life signal is shown. Some conclusions are drawn that the concept of CFD is very useful to application, and the DFSWT can become a simple and easy tool of TFR method, and also provide a new idea of low speed sampling of high frequency signal in applications.
Odefy -- From discrete to continuous models
Directory of Open Access Journals (Sweden)
Wittmann Dominik M
2010-05-01
Full Text Available Abstract Background Phenomenological information about regulatory interactions is frequently available and can be readily converted to Boolean models. Fully quantitative models, on the other hand, provide detailed insights into the precise dynamics of the underlying system. In order to connect discrete and continuous modeling approaches, methods for the conversion of Boolean systems into systems of ordinary differential equations have been developed recently. As biological interaction networks have steadily grown in size and complexity, a fully automated framework for the conversion process is desirable. Results We present Odefy, a MATLAB- and Octave-compatible toolbox for the automated transformation of Boolean models into systems of ordinary differential equations. Models can be created from sets of Boolean equations or graph representations of Boolean networks. Alternatively, the user can import Boolean models from the CellNetAnalyzer toolbox, GINSim and the PBN toolbox. The Boolean models are transformed to systems of ordinary differential equations by multivariate polynomial interpolation and optional application of sigmoidal Hill functions. Our toolbox contains basic simulation and visualization functionalities for both, the Boolean as well as the continuous models. For further analyses, models can be exported to SQUAD, GNA, MATLAB script files, the SB toolbox, SBML and R script files. Odefy contains a user-friendly graphical user interface for convenient access to the simulation and exporting functionalities. We illustrate the validity of our transformation approach as well as the usage and benefit of the Odefy toolbox for two biological systems: a mutual inhibitory switch known from stem cell differentiation and a regulatory network giving rise to a specific spatial expression pattern at the mid-hindbrain boundary. Conclusions Odefy provides an easy-to-use toolbox for the automatic conversion of Boolean models to systems of ordinary
Compatible Spatial Discretizations for Partial Differential Equations
Energy Technology Data Exchange (ETDEWEB)
Arnold, Douglas, N, ed.
2004-11-25
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical
Discrete Event Simulation of Patient Admissions to a Neurovascular Unit
Directory of Open Access Journals (Sweden)
S. Hahn-Goldberg
2014-01-01
Full Text Available Evidence exists that clinical outcomes improve for stroke patients admitted to specialized Stroke Units. The Toronto Western Hospital created a Neurovascular Unit (NVU using beds from general internal medicine, Neurology and Neurosurgery to care for patients with stroke and acute neurovascular conditions. Using patient-level data for NVU-eligible patients, a discrete event simulation was created to study changes in patient flow and length of stay pre- and post-NVU implementation. Varying patient volumes and resources were tested to determine the ideal number of beds under various conditions. In the first year of operation, the NVU admitted 507 patients, over 66% of NVU-eligible patient volumes. With the introduction of the NVU, length of stay decreased by around 8%. Scenario testing showed that the current level of 20 beds is sufficient for accommodating the current demand and would continue to be sufficient with an increase in demand of up to 20%.
Paterson, Judy; Sneddon, Jamie
2011-01-01
This article reports on the learning conversations between a mathematician and a mathematics educator as they worked together to change the delivery model of a third year discrete mathematics course from a traditional lecture mode to team-based learning (TBL). This change prompted the mathematician to create team tasks which increasingly focused…
Higher dimensional discrete Cheeger inequalities
Directory of Open Access Journals (Sweden)
Anna Gundert
2015-01-01
Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.
Creating alternatives in science
2009-01-01
Traditional scientist training at the PhD level does not prepare students to be competitive in biotechnology or other non-academic science careers. Some universities have developed biotechnology-relevant doctoral programmes, but most have not. Forming a life science career club makes a statement to university administrators that it is time to rework the curriculum to include biotechnology-relevant training. A career club can supplement traditional PhD training by introducing students to available career choices, help them develop a personal network and teach the business skills that they will need to be competitive in science outside of academia. This paper is an instructional guide designed to help students create a science career club at their own university. These suggestions are based on the experience gained in establishing such a club for the Graduate School at the University of Colorado Denver. We describe the activities that can be offered, the job descriptions for the offices required and potential challenges. With determination, a creative spirit, and the guidance of this paper, students should be able to greatly increase awareness of science career options, and begin building the skills necessary to become competitive in non-academic science. PMID:20161069
Monaghan, Duncan
2011-07-01
Duncan Monaghan is 33 years old and in his second year of an Arts degree in Creative Writing. He is a published poet and is currently producing a music CD. Duncan has a history of bipolar disorder which was diagnosed when he was nineteen: "It worried me at first a lot. It played on my mind constantly. I felt different from everybody else--I did not understand what was happening to me." Drawing on his life experiences, Duncan has been enhancing his recovery through creativity--in poetry, lyrics, music and story. "Life for me was a constant battle of relying on medication and appointments with my case manager...until I realized I could combine my recovery with my passions as a tool to use as an outlet to many of the "mind traps" I so often found hindering my own recovery." Duncan is Aboriginal and has experience of the mental health systems in most states and territories and now lives in Brisbane. This is a shortened version of his presentation at Creating Futures 2010.
Hairs of discrete symmetries and gravity
Directory of Open Access Journals (Sweden)
Kang Sin Choi
2017-06-01
Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Nonanomalous discrete R symmetry decrees three generations.
Evans, Jason L; Ibe, Masahiro; Kehayias, John; Yanagida, Tsutomu T
2012-11-02
We show that more than two generations of quarks and leptons are required to have an anomaly free discrete R symmetry larger than R parity, provided that the supersymmetric standard model can be minimally embedded into a grand unified theory. This connects an explanation for the number of generations with seemingly unrelated problems such as supersymmetry breaking, proton decay, the μ problem, and the cosmological constant through a discrete R symmetry. We also show that three generations is uniquely required by a nonanomalous discrete R symmetry in classes of grand unified theories such as the ones based on (semi)simple gauge groups.
Discrete Tomography and Imaging of Polycrystalline Structures
DEFF Research Database (Denmark)
Alpers, Andreas
Laboratory for Sustainable Energy), for instance, we study polycrystalline materials via synchrotron X-ray diffraction. Several reconstruction problems arise, most of them exhibit inherently discrete aspects. In this talk I want to give a concise mathematical introduction to some of these reconstruction...... problems. Special focus is on their relationship to classical discrete tomography. Several open mathematical questions will be mentioned along the way.......High resolution transmission electron microscopy is commonly considered as the standard application for discrete tomography. While this has yet to be technically realized, new applications with a similar flavor have emerged in materials science. In our group at Ris� DTU (Denmark's National...
Discretization of quaternionic continuous wavelet transforms
Askari Hemmat, A.; Thirulogasanthar, K.; Krzyżak, A.
2017-07-01
A scheme to form a basis and a frame for a Hilbert space of quaternion valued square integrable function from a basis and a frame, respectively, of a Hilbert space of complex valued square integrable functions is introduced. Using the discretization techniques for 2D-continuous wavelet transform of the SIM(2) group, the quaternionic continuous wavelet transform, living in a complex valued Hilbert space of square integrable functions, of the quaternion wavelet group is discretized, and thereby, a discrete frame for quaternion valued Hilbert space of square integrable functions is obtained.
Discrete Flavour Symmetries from the Heisenberg Group
Floratos, E.G.
2016-01-01
Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular in the $PSL_2(p)$ groups which contain the phenomenologically interesting cases.
Hairs of discrete symmetries and gravity
Energy Technology Data Exchange (ETDEWEB)
Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)
2017-06-10
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Stochastic Kuramoto oscillators with discrete phase states
Jörg, David J.
2017-09-01
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
Breatherlike impurity modes in discrete nonlinear lattices
DEFF Research Database (Denmark)
Hennig, D.; Rasmussen, Kim; Tsironis, G. P.
1995-01-01
We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...
Comparing the Discrete and Continuous Logistic Models
Gordon, Sheldon P.
2008-01-01
The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)
Running Parallel Discrete Event Simulators on Sierra
Energy Technology Data Exchange (ETDEWEB)
Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-12-03
In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.
Multiscale Discrete Simulation of Complex Systems
National Research Council Canada - National Science Library
Xiong, Qingang; Ma, Jingsen; Zhou, Hao; Lorenzini, Giulio
2015-01-01
... the original work is properly cited. Discrete methods account for a large portion in the modeling of complex systems, whose advantages over traditional continuum methods are, for example, mathematical concision, easy implementation...
Memorized discrete systems and time-delay
Luo, Albert C J
2017-01-01
This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.
IS MANAGERIAL DISCRETION HIGHER IN MULTINATIONAL FIRMS?
National Research Council Canada - National Science Library
Dong Kyoon Kim;Myung soo Son;Zaman Zamanian
2007-01-01
The objective of this study is to investigate whether a firm's multinationality is associated with managerial discretion by examining accounting choices of multinational firms, surrounding Sarbanes-Oxley Act (SOX...
Discrete Surface Modelling Using Partial Differential Equations.
Xu, Guoliang; Pan, Qing; Bajaj, Chandrajit L
2006-02-01
We use various nonlinear partial differential equations to efficiently solve several surface modelling problems, including surface blending, N-sided hole filling and free-form surface fitting. The nonlinear equations used include two second order flows, two fourth order flows and two sixth order flows. These nonlinear equations are discretized based on discrete differential geometry operators. The proposed approach is simple, efficient and gives very desirable results, for a range of surface models, possibly having sharp creases and corners.
Dynamical Properties of Discrete Reaction Networks
Paulevé, Loïc; Craciun, Gheorghe; Koeppl, Heinz
2013-01-01
International audience; Reaction networks are commonly used to model the evolution of populations of species subject to transformations following an imposed stoichiometry. This paper focuses on the efficient characterisation of dynamical properties of Discrete Reaction Networks (DRNs). DRNs can be seen as modelling the underlying discrete nondeterministic transitions of stochastic models of reactions networks. In that sense, any proof of non-reachability in DRNs directly applies to any concre...
Center for Efficient Exascale Discretizations Software Suite
Energy Technology Data Exchange (ETDEWEB)
2017-08-30
The CEED Software suite is a collection of generally applicable software tools focusing on the following computational motives: PDE discretizations on unstructured meshes, high-order finite element and spectral element methods and unstructured adaptive mesh refinement. All of this software is being developed as part of CEED, a co-design Center for Efficient Exascale Discretizations, within DOE's Exascale Computing Project (ECP) program.
Fast Generation of Discrete Random Variables
Directory of Open Access Journals (Sweden)
George Marsaglia
2004-07-01
Full Text Available We describe two methods and provide C programs for generating discrete random variables with functions that are simple and fast, averaging ten times as fast as published methods and more than five times as fast as the fastest of those. We provide general procedures for implementing the two methods, as well as specific procedures for three of the most important discrete distributions: Poisson, binomial and hypergeometric.
Degrees of freedom in discrete geometry
Ariwahjoedi, Seramika; Rovelli, Carlo; Zen, Freddy P
2016-01-01
Following recent developments in discrete gravity, we study geometrical variables (angles and forms) of simplices in the discrete geometry point of view. Some of our relatively new results include: new ways of writing a set of simplices using vectorial (differential form) and coordinate-free pictures, and a consistent procedure to couple particles of space, together with a method to calculate the degrees of freedom of the system of 'quanta' of space in the classical framework.
Discrete quantum Drinfeld-Sokolov correspondence
Grunspan, Cyril
2001-01-01
We construct a discrete quantum version of the Drinfeld-Sokolov correspondence for the sine-Gordon system. The classical version of this correspondence is a birational Poisson morphism between the phase space of the discrete sine-Gordon system and a Poisson homogeneous space. Under this correspondence, the commuting higher mKdV vector fields correspond to the action of an Abelian Lie algebra. We quantize this picture (1) by quantizing this Poisson homogeneous space, together with the action o...
Mohamed, Mamdouh S; Samtaney, Ravi
2015-01-01
A conservative discretization of incompressible Navier-Stokes equations on simplicial meshes is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the contraction operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second ord...
Mohamed, Mamdouh S.
2016-02-11
A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
Theoretical Basics of Teaching Discrete Mathematics
Directory of Open Access Journals (Sweden)
Y. A. Perminov
2012-01-01
Full Text Available The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures plays the important role in modernization of vocational training. It is especially rele- vant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineer- ing and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in dis- crete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training.
SOA thresholds for the perception of discrete/continuous tactile stimulation
DEFF Research Database (Denmark)
Eid, Mohamad; Korres, Georgios; Jensen, Camilla Birgitte Falk
In this paper we present an experiment to measure the upper and lower thresholds of the Stimulus Onset Asynchrony (SOA) for continuous/discrete apparent haptic motion. We focus on three stimulation parameters: the burst duration, the SOA time, and the inter-actuator distance (between successive......-discrete boundary at lower SOA. Furthermore, the larger the inter-actuator distance, the more linear the relationship between the burst duration and the SOA timing. Finally, the large range between lower and upper thresholds for SOA can be utilized to create continuous movement stimulation on the skin at “varying...
Discrete Feature Model (DFM) User Documentation
Energy Technology Data Exchange (ETDEWEB)
Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))
2008-06-15
This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this
On discrete cosine transform | Zhou | Nigerian Journal of ...
African Journals Online (AJOL)
The discrete cosine transform (DCT), introduced by Ahmed, Natarajan and Rao, has been used in many applications of digital signal processing, data compression and information hiding. There are four types of the discrete cosine transform. In simulating the discrete cosine transform, we propose a generalized discrete ...
Continuum limit of discrete Sommerfeld problems on square lattice
Indian Academy of Sciences (India)
A low-frequency approximation of the discrete Sommerfeld diffraction problems, involving the scattering of a time harmonic lattice wave incident on square lattice by a discrete Dirichlet or a discrete Neumann half-plane, is investigated. It is established that the exact solution of the discrete model converges to the solution of ...
Positivity for Convective Semi-discretizations
Fekete, Imre
2017-04-19
We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations of 1D scalar hyperbolic conservation laws. This technique is a generalization of the approach suggested in Khalsaraei (J Comput Appl Math 235(1): 137–143, 2010). We give more relaxed conditions on the time-step for positivity preservation for slope-limited semi-discretizations integrated in time with explicit Runge–Kutta methods. We show that the step-size restrictions derived are sharp in a certain sense, and that many higher-order explicit Runge–Kutta methods, including the classical 4th-order method and all non-confluent methods with a negative Butcher coefficient, cannot generally maintain positivity for these semi-discretizations under any positive step size. We also apply the proposed technique to centered finite difference discretizations of scalar hyperbolic and parabolic problems.
Rosenstein, Joseph G., Ed.; Franzblau, Deborah S., Ed.; Roberts, Fred S., Ed.
This book is a collection of articles by experienced educators and explains why and how discrete mathematics should be taught in K-12 classrooms. It includes evidence for "why" and practical guidance for "how" and also discusses how discrete mathematics can be used as a vehicle for achieving the broader goals of the major…
Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.
1996-01-01
Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...... of the two-dimensional quasi-collapse of a moving intense pulse is the formation of pinned narrow spikes....
Optimal learning rules for discrete synapses.
Directory of Open Access Journals (Sweden)
Adam B Barrett
2008-11-01
Full Text Available There is evidence that biological synapses have a limited number of discrete weight states. Memory storage with such synapses behaves quite differently from synapses with unbounded, continuous weights, as old memories are automatically overwritten by new memories. Consequently, there has been substantial discussion about how this affects learning and storage capacity. In this paper, we calculate the storage capacity of discrete, bounded synapses in terms of Shannon information. We use this to optimize the learning rules and investigate how the maximum information capacity depends on the number of synapses, the number of synaptic states, and the coding sparseness. Below a certain critical number of synapses per neuron (comparable to numbers found in biology, we find that storage is similar to unbounded, continuous synapses. Hence, discrete synapses do not necessarily have lower storage capacity.
Is Fitts' law continuous in discrete aiming?
Directory of Open Access Journals (Sweden)
Rita Sleimen-Malkoun
Full Text Available The lawful continuous linear relation between movement time and task difficulty (i.e., index of difficulty; ID in a goal-directed rapid aiming task (Fitts' law has been recently challenged in reciprocal performance. Specifically, a discontinuity was observed at critical ID and was attributed to a transition between two distinct dynamic regimes that occurs with increasing difficulty. In the present paper, we show that such a discontinuity is also present in discrete aiming when ID is manipulated via target width (experiment 1 but not via target distance (experiment 2. Fitts' law's discontinuity appears, therefore, to be a suitable indicator of the underlying functional adaptations of the neuro-muscular-skeletal system to task properties/requirements, independently of reciprocal or discrete nature of the task. These findings open new perspectives to the study of dynamic regimes involved in discrete aiming and sensori-motor mechanisms underlying the speed-accuracy trade-off.
The ultimatum game: Discrete vs. continuous offers
Dishon-Berkovits, Miriam; Berkovits, Richard
2014-09-01
In many experimental setups in social-sciences, psychology and economy the subjects are requested to accept or dispense monetary compensation which is usually given in discrete units. Using computer and mathematical modeling we show that in the framework of studying the dynamics of acceptance of proposals in the ultimatum game, the long time dynamics of acceptance of offers in the game are completely different for discrete vs. continuous offers. For discrete values the dynamics follow an exponential behavior. However, for continuous offers the dynamics are described by a power-law. This is shown using an agent based computer simulation as well as by utilizing an analytical solution of a mean-field equation describing the model. These findings have implications to the design and interpretation of socio-economical experiments beyond the ultimatum game.
Reconditioning in Discrete Quantum Field Theory
Gudder, S.
2017-12-01
We consider a discrete scalar, quantum field theory based on a cubic 4-dimensional lattice. We mainly investigate a discrete scattering operator S( x 0, r) where x 0 and r are positive integers representing time and maximal total energy, respectively. The operator S( x 0, r) is used to define transition amplitudes which are then employed to compute transition probabilities. These probabilities are conditioned on the time-energy ( x 0, r). In order to maintain total unit probability, the transition probabilities need to be reconditioned at each ( x 0, r). This is roughly analogous to renormalization in standard quantum field theory, except no infinities or singularities are involved. We illustrate this theory with a simple scattering experiment involving a common interaction Hamiltonian. We briefly mention how discreteness of spacetime might be tested astronomically. Moreover, these tests may explain the existence of dark energy and dark matter.
Gap discrete breathers in strained boron nitride
Barani, Elham; Korznikova, Elena A.; Chetverikov, Alexander P.; Zhou, Kun; Dmitriev, Sergey V.
2017-11-01
Linear and nonlinear dynamics of hexagonal boron nitride (h-BN) lattice is studied by means of molecular dynamics simulations with the use of the Tersoff interatomic potentials. It is found that sufficiently large homogeneous elastic strain along zigzag direction opens a wide gap in the phonon spectrum. Extended vibrational mode with boron and nitrogen sublattices vibrating in-plane as a whole in strained h-BN has frequency within the phonon gap. This fact suggests that a nonlinear spatially localized vibrational mode with frequencies in the phonon gap, called discrete breather (also often termed as intrinsic localized mode), can be excited. Properties of the gap discrete breathers in strained h-BN are contrasted with that for analogous vibrational mode found earlier in strained graphene. It is found that h-BN modeled with the Tersoff potentials does not support transverse discrete breathers.
Semiparametric smoothing of discrete failure time data.
Patil, Prakash N; Bagkavos, Dimitrios
2012-01-01
An estimator of the hazard rate function from discrete failure time data is obtained by semiparametric smoothing of the (nonsmooth) maximum likelihood estimator, which is achieved by repeated multiplication of a Markov chain transition-type matrix. This matrix is constructed so as to have a given standard discrete parametric hazard rate model, termed the vehicle model, as its stationary hazard rate. As with the discrete density estimation case, the proposed estimator gives improved performance when the vehicle model is a good one and otherwise provides a nonparametric method comparable to the only purely nonparametric smoother discussed in the literature. The proposed semiparametric smoothing approach is then extended to hazard models with covariates and is illustrated by applications to simulated and real data sets. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An algebra of discrete event processes
Heymann, Michael; Meyer, George
1991-01-01
This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.
Formalising the Continuous/Discrete Modeling Step
Directory of Open Access Journals (Sweden)
Wen Su
2011-06-01
Full Text Available Formally capturing the transition from a continuous model to a discrete model is investigated using model based refinement techniques. A very simple model for stopping (eg. of a train is developed in both the continuous and discrete domains. The difference between the two is quantified using generic results from ODE theory, and these estimates can be compared with the exact solutions. Such results do not fit well into a conventional model based refinement framework; however they can be accommodated into a model based retrenchment. The retrenchment is described, and the way it can interface to refinement development on both the continuous and discrete sides is outlined. The approach is compared to what can be achieved using hybrid systems techniques.
Modeling discrete time-to-event data
Tutz, Gerhard
2016-01-01
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...
SHAREPOINT SITE CREATING AND SETTING
Directory of Open Access Journals (Sweden)
Oleksandr V. Tebenko
2011-02-01
Full Text Available Tools for sites building that offer users the ability to work together, an actual theme in information society and modern Web technologies. This article considers the SharePoint system, which enables to create sites of any complexity, including large portals with a complex structure of documents. Purpose of this article is to consider the main points of site creating and its setting with tools of SharePoint system, namely: a site template creating and configuring, web application environment to create and configure Web applications, change of existing and creation of new theme site, a web part setting.
Creating a family health history
Family health history; Create a family health history; Family medical history ... include your: Genes Diet and exercise habits Environment Family members tend to share certain behaviors, genetic traits, ...
Riemann-Hilbert problem and the discrete Bessel kernel
Borodin, Alexei
1999-01-01
We use discrete analogs of Riemann-Hilbert problem's methods to derive the discrete Bessel kernel which describes the poissonized Plancherel measures for symmetric groups. To do this we define discrete analogs of a Riemann-Hilbert problem and of an integrable integral operator and show that computing the resolvent of a discrete integrable operator can be reduced to solving a corresponding discrete Riemann-Hilbert problem. We also give an example, explicitly solvable in terms of classical spec...
Discrete quantum geometries and their effective dimension
Energy Technology Data Exchange (ETDEWEB)
Thuerigen, Johannes
2015-07-02
In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.
Cortical Neural Computation by Discrete Results Hypothesis.
Castejon, Carlos; Nuñez, Angel
2016-01-01
One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called "Discrete Results" (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of "Discrete Results" is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel "Discrete Results" concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS
Logic and discrete mathematics a concise introduction
Conradie, Willem
2015-01-01
A concise yet rigorous introduction to logic and discrete mathematics. This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy
Digital and discrete geometry theory and algorithms
Chen, Li
2014-01-01
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a
Model reduction for discrete bilinear systems
King, A. M.; Skelton, R. E.
1987-01-01
A model reduction method for discrete bilinear systems is developed which matches q sets of Volterra and covariance parameters. These parameters are shown to represent both deterministic and stochastic attributes of the discrete bilinear system. A reduced order model which matches these q sets of parameters is defined to be a q-Volterra covariance equivalent realization (q-Volterra COVER). An algorithm is presented which constructs a class of q-Volterra COVERs parameterized by solutions to a Hermitian, quadratic, matrix equation. The algorithm is applied to a bilinear model of a robot manipulator.
Discrete dispersion models and their Tweedie asymptotics
DEFF Research Database (Denmark)
Jørgensen, Bent; Kokonendji, Célestin C.
2016-01-01
in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, Pólya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models......-Tweedie asymptotic framework where Poisson-Tweedie models appear as dilation limits. This unifies many discrete convergence results and leads to Poisson and Hermite convergence results, similar to the law of large numbers and the central limit theorem, respectively. The dilation operator also leads to a duality...
Modeling and simulation of discrete event systems
Choi, Byoung Kyu
2013-01-01
Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on
DEFF Research Database (Denmark)
Andersen, Kristina Vaarst; Lorenzen, Mark; Laursen, Stine
2012-01-01
This unique book reveals the procedural aspects of knowledge-based urban planning, development and assessment. Concentrating on major knowledge city building processes, and providing state-of-the-art experiences and perspectives, this important compendium explores innovative models, approaches an...
Creating Our Own Online Community
Directory of Open Access Journals (Sweden)
Mihaela TUTUNEA
2006-01-01
Full Text Available Creating our own online community is easy to do, by welcoming those who have an active presence online; first of all, we must have a well developed strategy of our own "empire", starting from the idea of creating the final benefit for our cyber-consumers.
Creating Student-Friendly Tests
Salend, Spencer J.
2011-01-01
Creating a fair, reliable, teacher-made test is a challenge. Every year poorly designed tests fail to accurately measure many students' learning--and negatively affect their academic futures. Salend, a well-known writer on assessment for at-risk students who consults with schools on assessment procedures, offers guidelines for creating tests that…
Cluster analysis of European Y-chromosomal STR haplotypes using the discrete Laplace method
DEFF Research Database (Denmark)
Andersen, Mikkel Meyer; Eriksen, Poul Svante; Morling, Niels
2014-01-01
The European Y-chromosomal short tandem repeat (STR) haplotype distribution has previously been analysed in various ways. Here, we introduce a new way of analysing population substructure using a new method based on clustering within the discrete Laplace exponential family that models the probabi......The European Y-chromosomal short tandem repeat (STR) haplotype distribution has previously been analysed in various ways. Here, we introduce a new way of analysing population substructure using a new method based on clustering within the discrete Laplace exponential family that models...... the probability distribution of the Y-STR haplotypes. Creating a consistent statistical model of the haplotypes enables us to perform a wide range of analyses. Previously, haplotype frequency estimation using the discrete Laplace method has been validated. In this paper we investigate how the discrete Laplace...... method can be used for cluster analysis to further validate the discrete Laplace method. A very important practical fact is that the calculations can be performed on a normal computer. We identified two sub-clusters of the Eastern and Western European Y-STR haplotypes similar to results of previous...
Creating unorganised machines from memristors
Howard, Gerard; Bull, Larry; Costello, Ben De Lacy; Adamatzky, Andrew
2012-09-01
There is growing interest in memristive devices following their recent nanoscale fabrication. This paper describes initial consideration of the implementation of artificial intelligence within predominantly memristive hardware. In particular, versions of Alan Turing's discrete dynamical network formalism — the unorganised machine — are used as the knowledge representation scheme and a population-based search technique is used to design appropriate networks. Issues including memristor count and global network synchrony are compared for two memristive logic implementations (NAND and IMP) on a well-known simulated robotics benchmark task. It is shown that IMP networks are harder to design than NAND, but are simpler to implement and require fewer processor cycles.
Discrete groups, Mumford curves and Theta functions
Put, Marius van der
1992-01-01
A discrete group Γ given over some complete non archimedean valued field defines a curve X. The theta functions for Γ provide an analytic construction for the Jacobian variety of X. A theory of theta functions is developed with the help of currents on trees and graphs and the cohomology for Γ. In
Discrete element modeling of subglacial sediment deformation
DEFF Research Database (Denmark)
Damsgaard, Anders; Egholm, David L.; Piotrowski, Jan A.
2013-01-01
The Discrete Element Method (DEM) is used in this study to explore the highly nonlinear dynamics of a granular bed when exposed to stress conditions comparable to those at the bed of warm-based glaciers. Complementary to analog experiments, the numerical approach allows a detailed analysis...
Discrete optimization problems with random cost elements
Ghosh, D.; Das, S.
2000-01-01
In a general class of discrete optimization problems, some of the elements mayhave random costs associated with them. In such a situation, the notion of optimalityneeds to be suitably modified. In this work we define an optimal solutionto be a feasible solution with the minimum risk. We focus on the
Discrete elements in structural concrete design
Blaauwendraad, J.; Hoogenboom, P.C.J.
1997-01-01
In the sixties Prof. J. Witteveen introduced a discrete model for the elastic analysis of slabs (Heron 1966). This article presents a similar approach for the design of reinforced concrete walls and deep beams, with holes or otherwise. The model – which is called stringer-panel model – combines the
Discrete Mathematics and the Secondary Mathematics Curriculum.
Dossey, John
Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…
Web-Based Implementation of Discrete Mathematics
Love, Tanzy; Keinert, Fritz; Shelley, Mack
2006-01-01
The Department of Mathematics at Iowa State University teaches a freshman-level Discrete Mathematics course with total enrollment of about 1,800 students per year. The traditional format includes large lectures, with about 150 students each, taught by faculty and temporary instructors in two class sessions per week and recitation sections, with…
Discrete Mathematics Course Supported by CAS MATHEMATICA
Ivanov, O. A.; Ivanova, V. V.; Saltan, A. A.
2017-01-01
In this paper, we discuss examples of assignments for a course in discrete mathematics for undergraduate students majoring in business informatics. We consider several problems with computer-based solutions and discuss general strategies for using computers in teaching mathematics and its applications. In order to evaluate the effectiveness of our…
Applied Behavior Analysis: Beyond Discrete Trial Teaching
Steege, Mark W.; Mace, F. Charles; Perry, Lora; Longenecker, Harold
2007-01-01
We discuss the problem of autism-specific special education programs representing themselves as Applied Behavior Analysis (ABA) programs when the only ABA intervention employed is Discrete Trial Teaching (DTT), and often for limited portions of the school day. Although DTT has many advantages to recommend its use, it is not well suited to teach…
Discrete structures in F-theory compactifications
Energy Technology Data Exchange (ETDEWEB)
Till, Oskar
2016-05-04
In this thesis we study global properties of F-theory compactifications on elliptically and genus-one fibered Calabi-Yau varieties. This is motivated by phenomenological considerations as well as by the need for a deeper understanding of the set of consistent F-theory vacua. The global geometric features arise from discrete and arithmetic structures in the torus fiber and can be studied in detail for fibrations over generic bases. In the case of elliptic fibrations we study the role of the torsion subgroup of the Mordell-Weil group of sections in four dimensional compactifications. We show how the existence of a torsional section restricts the admissible matter representations in the theory. This is shown to be equivalent to inducing a non-trivial fundamental group of the gauge group. Compactifying F-theory on genus-one fibrations with multisections gives rise to discrete selection rules. In field theory the discrete symmetry is a broken U(1) symmetry. In the geometry the higgsing corresponds to a conifold transition. We explain in detail the origin of the discrete symmetry from two different M-theory phases and put the result into the context of torsion homology. Finally we systematically construct consistent gauge fluxes on genus-one fibrations and show that these induce an anomaly free chiral spectrum.
Discrete-time nonlinear sliding mode controller
African Journals Online (AJOL)
user
transformation is defined to transform the time-delay and stability is proven for nonlinear sliding surface, which leads to show the asymptotic ... description of the discrete –time plant with state delay and its transformation, section III illustrates proposed design of nonlinear ...... Lee H.J., Jin Bae Park and Guanrong Chen, 2001.
Constructing an automorphism with discrete spectrum | Isere ...
African Journals Online (AJOL)
This work is a desire to construct an automorphism with discrete spectrum using a numerical example. We briefly discuss how some of the definitions and theorems about its behaviour can be implemented and verified numerically. While it is not intended as a complete introduction to measure theory, only the definitions ...
Discrete dynamics on noncommutative CW complexes
Directory of Open Access Journals (Sweden)
Vida Milani
2013-09-01
Full Text Available The concept of discrete multivalued dynamical systems for noncommutative CW complexes is developed. Stable and unstable manifolds are introduced and their role in geometric and topological configurations of noncommutative CW complexes is studied. Our technique is illustrated by an example on the noncommutative CW complex decomposition of the algebra of continuous functions on two dimensional torus.
Enriched vibrational resonance in certain discrete systems
Indian Academy of Sciences (India)
We wish to report the occurrence of vibrational resonance in certain discrete systems like sine square map and sine circle map, in a unique fashion, comprising of multiple resonant peaks which pave the way for enrichment. As the systems of our choice are capable of exhibiting vibrational resonance behaviour unlike the ...
Radiation forces in the discrete dipole approximation
Hoekstra, A.G.; Frijlink, M.O.; Waters, L.B.F.M.; Sloot, P.M.A.
2001-01-01
The theory of the discrete-dipole approximation (DDA) for light scattering is extended to allow for the calculation of radiation forces on each dipole in the DDA model. Starting with the theory of Draine and Weingartner [Astrophys. J. 470, 551 (1996)] we derive an expression for the radiation force
Discrete homology theory for metric spaces
H. Barcelo (Hélène); V. Capraro (Valerio); J. A. White; H. Barcelo (Hélène)
2014-01-01
htmlabstractWe define and study a notion of discrete homology theory for metric spaces. Instead of working with simplicial homology, our chain complexes are given by Lipschitz maps from an n n -dimensional cube to a fixed metric space. We prove that the resulting homology theory satisfies a
DISCRETE ELEMENT MODELLING OF THE COMPRESSIVE ...
African Journals Online (AJOL)
Having developed and validated a code based on the Discrete Element Method principle with physical experiments the code was used to study and predict the behaviour (parametric changes) during compression of four bulk systems of particulates with the properties of canola seed, palm kernel and soyabean. The porosity ...
Imposing det E > 0 in discrete
Loll, R.
1997-01-01
We point out that the inequality detE > 0 distinguishes the kinematical phase space of canonical connection gravity from that of a gauge field theory, and characterize the eigen- vectors with positive, negative and zero-eigenvalue of the corresponding quantum operator in a lattice-discretized
Neutrino mass and mixing with discrete symmetry
King, Stephen F.; Luhn, Christoph
2013-05-01
This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A4, S4 and Δ(96).
Discrete dislocation modelling of submicron indentation
Widjaja, A; Van der Giessen, E; Needleman, A
2005-01-01
Indentation of a planar single crystal by a circular rigid indenter is analyzed using discrete dislocation plasticity. The crystal has three slip systems and is initially dislocation-free, but edge dislocations can nucleate from point sources inside the crystal. The lattice resistance to dislocation
Chaos in discrete fractional difference equations
Indian Academy of Sciences (India)
2016-09-07
Sep 7, 2016 ... Abstract. Recently, the discrete fractional calculus (DFC) is receiving attention due to its potential applica- tions in the mathematical modelling of real-world phenomena with memory effects. In the present paper, the chaotic behaviour of fractional difference equations for the tent map, Gauss map and 2x(mod ...
Discrete simulation of behavioural hybrid process calculus
Krilavicius, T.; Schonenberg, Helen; Romijn, J.M.T.; Smith, G.P.; van de Pol, J.C.
2005-01-01
Hybrid systems combine continuous-time and discrete behaviours. Simulation is one of the tools to obtain insight in dynamical systems behaviour. Simulation results provide information on performance of system and are helpful in detecting potential weaknesses and errors. Moreover, the results are
Dynamic Discrete Choice Structural Models: A Survey
Victor Aguirregabiria; Pedro mira
2007-01-01
This paper reviews methods for the estimation of dynamic discrete choice structural models and discusses related econometric issues. We consider single agent models, competitive equilibrium models and dynamic games. The methods are illustrated with descriptions of empirical studies which have applied these techniques to problems in different areas of economics. Programming codes for the estimation methods will be available in a companion web page.
Aggregation in hierarchical discrete-event systems
Al-Falou, AA; Van Schuppen, JH
2003-01-01
We propose an algorithm for the hierarchical decomposition of a large automaton-based discrete-event system. We also provide an estimation of the numerical cost in terms of the size of the system. Our hierarchical decomposition is illustrated with simple examples from dynamical ST-control and
Geometric phases in discrete dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)
2016-10-14
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
Adaptive Grid Refinement for Discrete Tomography
T. van Leeuwen (Tristan); K.J. Batenburg (Joost)
2014-01-01
htmlabstractDiscrete tomography has proven itself as a powerful approach to image reconstruction from limited data. In recent years, algebraic reconstruction methods have been applied successfully to a range of experimental data sets. However, the computational cost of such reconstruction techniques
Adaptive Grid Refinement for Discrete Tomography
Batenburg, K.Joost; van Leeuwen, Tristan
2014-01-01
Discrete tomography has proven itself as a powerful approach to image reconstruction from limited data. In recent years, algebraic reconstruction methods have been applied successfully to a range of experimental data sets. However, the computational cost of such reconstruction techniques currently
About Multi-Heston SDE Discretization
Directory of Open Access Journals (Sweden)
Tiberiu Socaciu
2013-07-01
Full Text Available Abstract: in this paper we show how can estimate a financial derivative based on a support if assume for the support a Multi-Heston model.Keywords: Euler Maruyama discretization method, Monte Carlo simulation, Heston model, Double-Heston model, Multi-Heston model.
Hybrid discrete-time neural networks.
Cao, Hongjun; Ibarz, Borja
2010-11-13
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
Infant differential behavioral responding to discrete emotions.
Walle, Eric A; Reschke, Peter J; Camras, Linda A; Campos, Joseph J
2017-10-01
Emotional communication regulates the behaviors of social partners. Research on individuals' responding to others' emotions typically compares responses to a single negative emotion compared with responses to a neutral or positive emotion. Furthermore, coding of such responses routinely measure surface level features of the behavior (e.g., approach vs. avoidance) rather than its underlying function (e.g., the goal of the approach or avoidant behavior). This investigation examined infants' responding to others' emotional displays across 5 discrete emotions: joy, sadness, fear, anger, and disgust. Specifically, 16-, 19-, and 24-month-old infants observed an adult communicate a discrete emotion toward a stimulus during a naturalistic interaction. Infants' responses were coded to capture the function of their behaviors (e.g., exploration, prosocial behavior, and security seeking). The results revealed a number of instances indicating that infants use different functional behaviors in response to discrete emotions. Differences in behaviors across emotions were clearest in the 24-month-old infants, though younger infants also demonstrated some differential use of behaviors in response to discrete emotions. This is the first comprehensive study to identify differences in how infants respond with goal-directed behaviors to discrete emotions. Additionally, the inclusion of a function-based coding scheme and interpersonal paradigms may be informative for future emotion research with children and adults. Possible developmental accounts for the observed behaviors and the benefits of coding techniques emphasizing the function of social behavior over their form are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Algebro-Geometric Solutions for a Discrete Integrable Equation
Directory of Open Access Journals (Sweden)
Mengshuang Tao
2017-01-01
Full Text Available With the assistance of a Lie algebra whose element is a matrix, we introduce a discrete spectral problem. By means of discrete zero curvature equation, we obtain a discrete integrable hierarchy. According to decomposition of the discrete systems, the new differential-difference integrable systems with two-potential functions are derived. By constructing the Abel-Jacobi coordinates to straighten the continuous and discrete flows, the Riemann theta functions are proposed. Based on the Riemann theta functions, the algebro-geometric solutions for the discrete integrable systems are obtained.
On the Duality of Discrete and Periodic Functions
Directory of Open Access Journals (Sweden)
Jens V. Fischer
2015-04-01
Full Text Available Although versions of Poisson’s Summation Formula (PSF have already been studied extensively, there seems to be no theorem that relates discretization to periodization and periodization to discretization in a simple manner. In this study, we show that two complementary formulas, both closely related to the classical Poisson Summation Formula, are needed to form a reciprocal Discretization-Periodization Theorem on generalized functions. We define discretization and periodization on generalized functions and show that the Fourier transform of periodic functions are discrete functions and, vice versa, the Fourier transform of discrete functions are periodic functions.
Comparison of Discrete Klystron Produced RF to Two-Beam Produced RF for Large Accelerator Systems
Energy Technology Data Exchange (ETDEWEB)
Pitthan, Rainer
2000-08-22
The authors compare here some technical aspects, and with it the cost, of constructing a 500 GeV center of mass Linear Collider with either Discrete Klystron or with Two-Beam (relativistic Klystron) technology using X-band for the main linac. A comparison concept is applied to CLIC and NLC technologies, but not to a particular CLIC or NLC design. The methodology created can be extended to higher c.m.s. energies, if the reader so desires.
Industrial Engineering: creating a network!
Prado-Prado, José Carlos
2016-01-01
[EN] This paper presents a brief history of the Industrial Engineering Conference (CIO), and specially reinforces the role of the CIOs as a forum for building a network and creating log-term relationships Prado-Prado, JC. (2016). Industrial Engineering: creating a network!. International Journal of Production Management and Engineering. 4(2):41-42. doi:10.4995/ijpme.2016.5964. 41 42 4 2
Creating visual explanations improves learning.
Bobek, Eliza; Tversky, Barbara
2016-01-01
Many topics in science are notoriously difficult for students to learn. Mechanisms and processes outside student experience present particular challenges. While instruction typically involves visualizations, students usually explain in words. Because visual explanations can show parts and processes of complex systems directly, creating them should have benefits beyond creating verbal explanations. We compared learning from creating visual or verbal explanations for two STEM domains, a mechanical system (bicycle pump) and a chemical system (bonding). Both kinds of explanations were analyzed for content and learning assess by a post-test. For the mechanical system, creating a visual explanation increased understanding particularly for participants of low spatial ability. For the chemical system, creating both visual and verbal explanations improved learning without new teaching. Creating a visual explanation was superior and benefitted participants of both high and low spatial ability. Visual explanations often included crucial yet invisible features. The greater effectiveness of visual explanations appears attributable to the checks they provide for completeness and coherence as well as to their roles as platforms for inference. The benefits should generalize to other domains like the social sciences, history, and archeology where important information can be visualized. Together, the findings provide support for the use of learner-generated visual explanations as a powerful learning tool.
Application of an efficient Bayesian discretization method to biomedical data
Directory of Open Access Journals (Sweden)
Gopalakrishnan Vanathi
2011-07-01
Full Text Available Abstract Background Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD method for optimal discretization of variables that runs efficiently on high-dimensional biomedical datasets. The EBD method consists of two components, namely, a Bayesian score to evaluate discretizations and a dynamic programming search procedure to efficiently search the space of possible discretizations. We compared the performance of EBD to Fayyad and Irani's (FI discretization method, which is commonly used for discretization. Results On 24 biomedical datasets obtained from high-throughput transcriptomic and proteomic studies, the classification performances of the C4.5 classifier and the naïve Bayes classifier were statistically significantly better when the predictor variables were discretized using EBD over FI. EBD was statistically significantly more stable to the variability of the datasets than FI. However, EBD was less robust, though not statistically significantly so, than FI and produced slightly more complex discretizations than FI. Conclusions On a range of biomedical datasets, a Bayesian discretization method (EBD yielded better classification performance and stability but was less robust than the widely used FI discretization method. The EBD discretization method is easy to implement, permits the incorporation of prior knowledge and belief, and is sufficiently fast for application to high-dimensional data.
Supporting scalable Bayesian networks using configurable discretizer actuators
CSIR Research Space (South Africa)
Osunmakinde, I
2009-04-01
Full Text Available The authors propose a generalized model with configurable discretizer actuators as a solution to the problem of the discretization of massive numerical datasets. Their solution is based on a concurrent distribution of the actuators and uses dynamic...
Is Discrete Mathematics the New Math of the Eighties?
Hart, Eric W.
1985-01-01
Considered are what discrete mathematics includes, some parallels and differences between new math and discrete mathematics (listed in a table), and lessons to be learned. A list of references is included. (MNS)
Dimension Reduction and Discretization in Stochastic Problems by Regression Method
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
1996-01-01
The chapter mainly deals with dimension reduction and field discretizations based directly on the concept of linear regression. Several examples of interesting applications in stochastic mechanics are also given.Keywords: Random fields discretization, Linear regression, Stochastic interpolation...
Multiplication Symmetric Convolution Property for Discrete Trigonometric Transforms
Do Nyeon Kim; Rao, K.R.
2009-01-01
The symmetric-convolution multiplication (SCM) property of discrete trigonometric transforms (DTTs) based on unitary transform matrices is developed. Then as the reciprocity of this property, the novel multiplication symmetric-convolution (MSC) property of discrete trigonometric transforms, is developed.
On some properties of the discrete Lyapunov exponent
Energy Technology Data Exchange (ETDEWEB)
Amigo, Jose M. [Centro de Investigacion Operativa, Universidad Miguel Hernandez Avda. de la Universidad s/n. 03202 Elche (Spain)], E-mail: jm.amigo@umh.es; Kocarev, Ljupco [Macedonian Academy of Sciences and Arts, Skopje (Macedonia, The Former Yugoslav Republic of); Institute for Nonlinear Science, University of California San Diego, 9500 Gilman Drive. La Jolla, CA 92093-0402 (United States)], E-mail: lkocarev@ucsd.edu; Szczepanski, Janusz [Institute of Fundamental Technological Research, Polish Academy of Sciences, Swietokrzyska 21, 00-049 Warsaw, and Kazimierz Wielki University in Bydgoszcz (Poland)], E-mail: jszczepa@ippt.gov.pl
2008-10-06
One of the possible by-products of discrete chaos is the application of its tools, in particular of the discrete Lyapunov exponent, to cryptography. In this Letter we explore this question in a very general setting.
Convergence of posteriors for discretized log Gaussian Cox processes
DEFF Research Database (Denmark)
Waagepetersen, Rasmus Plenge
2004-01-01
In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations...
Discrete shaped strain sensors for intelligent structures
Andersson, Mark S.; Crawley, Edward F.
Design of discrete, highly distributed sensor systems for intelligent structures has been studied. Data obtained indicate that discrete strain-averaging sensors satisfy the functional requirements for distributed sensing of intelligent structures. Bartlett and Gauss-Hanning sensors, in particular, provide good wavenumber characteristics while meeting the functional requirements. They are characterized by good rolloff rates and positive Fourier transforms for all wavenumbers. For the numerical integration schemes, Simpson's rule is considered to be very simple to implement and consistently provides accurate results for five sensors or more. It is shown that a sensor system that satisfies the functional requirements can be applied to a structure that supports mode shapes with purely sinusoidal curvature.
Discrete event systems diagnosis and diagnosability
Sayed-Mouchaweh, Moamar
2014-01-01
Discrete Event Systems: Diagnosis and Diagnosability addresses the problem of fault diagnosis of Discrete Event Systems (DES). This book provides the basic techniques and approaches necessary for the design of an efficient fault diagnosis system for a wide range of modern engineering applications. The different techniques and approaches are classified according to several criteria such as: modeling tools (Automata, Petri nets) that is used to construct the model; the information (qualitative based on events occurrences and/or states outputs, quantitative based on signal processing and data analysis) that is needed to analyze and achieve the diagnosis; the decision structure (centralized, decentralized) that is required to achieve the diagnosis. The goal of this classification is to select the efficient method to achieve the fault diagnosis according to the application constraints. This book focuses on the centralized and decentralized event based diagnosis approaches using formal language and automata as mode...
Testing Preference Axioms in Discrete Choice experiments
DEFF Research Database (Denmark)
Hougaard, Jens Leth; Østerdal, Lars Peter; Tjur, Tue
Recent studies have tested the preference axioms of completeness and transitivity, and have detected other preference phenomena such as unstability, learning- and tiredness effects, ordering effects and dominance, in stated preference discrete choice experiments. However, it has not been explicitly...... addressed in these studies which preference models are actually being tested, and the connection between the statistical tests performed and the relevant underlying models of respondent behavior has not been explored further. This paper tries to fill that gap. We specifically analyze the meaning and role...... of the preference axioms and other preference phenomena in the context of stated preference discrete choice experiments, and examine whether or how these can be subject to meaningful (statistical) tests...
Hydraulically controlled discrete sampling from open boreholes
Harte, Philip T.
2013-01-01
Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.
Discrete and continuous simulation theory and practice
Bandyopadhyay, Susmita
2014-01-01
When it comes to discovering glitches inherent in complex systems-be it a railway or banking, chemical production, medical, manufacturing, or inventory control system-developing a simulation of a system can identify problems with less time, effort, and disruption than it would take to employ the original. Advantageous to both academic and industrial practitioners, Discrete and Continuous Simulation: Theory and Practice offers a detailed view of simulation that is useful in several fields of study.This text concentrates on the simulation of complex systems, covering the basics in detail and exploring the diverse aspects, including continuous event simulation and optimization with simulation. It explores the connections between discrete and continuous simulation, and applies a specific focus to simulation in the supply chain and manufacturing field. It discusses the Monte Carlo simulation, which is the basic and traditional form of simulation. It addresses future trends and technologies for simulation, with par...
Discrete PID Tuning Using Artificial Intelligence Techniques
Directory of Open Access Journals (Sweden)
Petr DOLEŽEL
2009-06-01
Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.
Special relativity in a discrete quantum universe
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2016-10-01
The hypothesis of a discrete fabric of the universe, the "Planck scale," is always on stage since it solves mathematical and conceptual problems in the infinitely small. However, it clashes with special relativity, which is designed for the continuum. Here, we show how the clash can be overcome within a discrete quantum theory where the evolution of fields is described by a quantum cellular automaton. The reconciliation is achieved by defining the change of observer as a change of representation of the dynamics, without any reference to space-time. We use the relativity principle, i.e., the invariance of dynamics under change of inertial observer, to identify a change of inertial frame with a symmetry of the dynamics. We consider the full group of such symmetries, and recover the usual Lorentz group in the relativistic regime of low energies, while at the Planck scale the covariance is nonlinearly distorted.
Hyponormal differential operators with discrete spectrum
Directory of Open Access Journals (Sweden)
Zameddin I. Ismailov
2010-01-01
Full Text Available In this work, we first describe all the maximal hyponormal extensions of a minimal operator generated by a linear differential-operator expression of the first-order in the Hilbert space of vector-functions in a finite interval. Next, we investigate the discreteness of the spectrum and the asymptotical behavior of the modules of the eigenvalues for these maximal hyponormal extensions.
Exponential-modified discrete Lindley distribution.
Yilmaz, Mehmet; Hameldarbandi, Monireh; Acik Kemaloglu, Sibel
2016-01-01
In this study, we have considered a series system composed of stochastically independent M-component where M is a random variable having the zero truncated modified discrete Lindley distribution. This distribution is newly introduced by transforming on original parameter. The properties of the distribution of the lifetime of above system have been examined under the given circumstances and also parameters of this new lifetime distribution are estimated by using moments, maximum likelihood and EM-algorithm.
Adaptive Filter Design Using Discrete Orthogonal Functions
1992-03-01
polynomials; Iaguerre polynomials. Jacobi polynom ia Is: aelait .%l:1 tal ilters; lattice filter 19 ABSTRACT (continue on reverse if necessary and identify by...Advisor i C.- / . . / .- - Roberto Cristi, Second Reader Michael A. Morgan. Chairniai l)ep:irtment of Electrical and Computer Engineering ii ABSTRACT...discrete Legendre, Laguerre, and Jacobi polynomials, and backward prediction-error polynomials from a lattice structure. The adaptive filter weights
Discrete Tolerance Allocation for Product Families
2011-01-01
Abstract This paper extends earlier research on the discrete tolerance allocation problem in order to optimize an entire product family simultaneously. This methodology enables top-down tolerancing approach where requirements on assembly level on products within a family are allocated to single part requirements. The proposed solution has been implemented as an interface with an optimization algorithm coupled with a variation simulation software. The paper also consists of an exten...
On the ranges of discrete exponentials
Directory of Open Access Journals (Sweden)
Florin Caragiu
2004-01-01
Full Text Available Let a>1 be a fixed integer. We prove that there is no first-order formula ϕ(X in one free variable X, written in the language of rings, such that for any prime p with gcd(a,p=1 the set of all elements in the finite prime field Fp satisfying ϕ coincides with the range of the discrete exponential function t↦at(modp.
On the ranges of discrete exponentials
Florin Caragiu; Mihai Caragiu
2004-01-01
Let a>1 be a fixed integer. We prove that there is no first-order formula ϕ(X) in one free variable X, written in the language of rings, such that for any prime p with gcd(a,p)=1 the set of all elements in the finite prime field Fp satisfying ϕ coincides with the range of the discrete exponential function t↦at(modp).
Nonparametric Probability Density Estimation by Discrete Maximum Penalized- Likelihood Criteria
SCOTT, D. W.; Tapia, R. A.; Thompson, J. R.
1980-01-01
A nonparametric probability density estimator is proposed that is optimal with respect to a discretized form of a continuous penalized-likelihood criterion functional. Approximation results relating the discrete estimator to the estimate obtained by solving the corresponding infinite-dimensional problem are presented. The discrete estimator is shown to be consistent. The numerical implementation of this discrete estimator is outlined and examples displayed. A simulation study compares the int...
On adaptive refinements in discrete probabilistic fracture models
Directory of Open Access Journals (Sweden)
J. Eliáš
2017-01-01
Full Text Available The possibility to adaptively change discretization density is a well acknowledged and used feature of many continuum models. It is employed to save computational time and increase solution accuracy. Recently, adaptivity has been introduced also for discrete particle models. This contribution applies adaptive technique in probabilistic discrete modelling where material properties are varying in space according to a random field. The random field discretization is adaptively refined hand in hand with the model geometry.
Single-crossover recombination in discrete time.
von Wangenheim, Ute; Baake, Ellen; Baake, Michael
2010-05-01
Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.
Inferring gene networks from discrete expression data
Zhang, L.
2013-07-18
The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.
New formulation of the discrete element method
Rojek, Jerzy; Zubelewicz, Aleksander; Madan, Nikhil; Nosewicz, Szymon
2018-01-01
A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.
Meshes optimized for discrete exterior calculus (DEC).
Energy Technology Data Exchange (ETDEWEB)
Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.
An essay on discrete foundations for physics
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.; McGoveran, D.O.
1988-07-01
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.
An essay on discrete foundations for physics
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.; McGoveran, D.O.
1988-10-05
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.
Entropic Phase Maps in Discrete Quantum Gravity
Directory of Open Access Journals (Sweden)
Benjamin F. Dribus
2017-06-01
Full Text Available Path summation offers a flexible general approach to quantum theory, including quantum gravity. In the latter setting, summation is performed over a space of evolutionary pathways in a history configuration space. Discrete causal histories called acyclic directed sets offer certain advantages over similar models appearing in the literature, such as causal sets. Path summation defined in terms of these histories enables derivation of discrete Schrödinger-type equations describing quantum spacetime dynamics for any suitable choice of algebraic quantities associated with each evolutionary pathway. These quantities, called phases, collectively define a phase map from the space of evolutionary pathways to a target object, such as the unit circle S 1 ⊂ C , or an analogue such as S 3 or S 7 . This paper explores the problem of identifying suitable phase maps for discrete quantum gravity, focusing on a class of S 1 -valued maps defined in terms of “structural increments” of histories, called terminal states. Invariants such as state automorphism groups determine multiplicities of states, and induce families of natural entropy functions. A phase map defined in terms of such a function is called an entropic phase map. The associated dynamical law may be viewed as an abstract combination of Schrödinger’s equation and the second law of thermodynamics.
A Baecklund transformation between two integrable discrete hungry systems
Energy Technology Data Exchange (ETDEWEB)
Fukuda, Akiko, E-mail: j1409704@ed.kagu.tus.ac.j [Department of Mathematical Information Science, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Yamamoto, Yusaku [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Iwasaki, Masashi [Department of Informatics and Environmental Science, Kyoto Prefectural University, 1-5, Nakaragi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522 (Japan); Ishiwata, Emiko [Department of Mathematical Information Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nakamura, Yoshimasa [Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)
2011-01-17
The discrete hungry Toda (dhToda) equation and the discrete hungry Lotka-Volterra (dhLV) system are known as integrable discrete hungry systems. In this Letter, through finding the LR transformations associated with the dhToda equation and the dhLV system, we present a Baecklund transformation between these integrable systems.
Mittag-Leffler function for discrete fractional modelling
Directory of Open Access Journals (Sweden)
Guo-Cheng Wu
2016-01-01
Full Text Available From the difference equations on discrete time scales, this paper numerically investigates one discrete fractional difference equation in the Caputo delta’s sense which has an explicit solution in form of the discrete Mittag-Leffler function. The exact numerical values of the solutions are given in comparison with the truncated Mittag-Leffler function.
Process algebra with timing: Real time and discrete time
Baeten, J.C.M.; Middelburg, C.A.
1999-01-01
We present real time and discrete time versions of ACP with absolute timing and relative timing. The startingpoint is a new real time version with absolute timing, called ACPsat , featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete
Creating an Innovative Learning Organization
Salisbury, Mark
2010-01-01
This article describes how to create an innovative learning (iLearning) organization. It begins by discussing the life cycle of knowledge in an organization, followed by a description of the theoretical foundation for iLearning. Next, the article presents an example of iLearning, followed by a description of the distributed nature of work, the…
On Creating and Sustaining Alternatives
DEFF Research Database (Denmark)
Kyng, Morten
2015-01-01
(PD) as well as from innovation theory and software ecosystems. Last, but not least, the ongoing debate on public finances/economy versus tax evasion by major private companies has been an important element in shaping the vision and creating support for the initiative. This vision is about democratic...
SPECIAL REPORT: Creating Conference Video
Directory of Open Access Journals (Sweden)
Noel F. Peden
2008-12-01
Full Text Available Capturing video at a conference is easy. Doing it so the product is useful is another matter. Many subtle problems come into play so that video and audio obtained can be used to create a final product. This article discusses what the author learned in the two years of shooting and editing video for Code4Lib conference.
Creating Space for Children's Literature
Serafini, Frank
2011-01-01
As teachers struggle to balance the needs of their students with the requirements of commercial reading materials, educators need to consider how teachers will create space for children's literature in today's classrooms. In this article, 10 practical recommendations for incorporating children's literature in the reading instructional framework…
2003-01-01
" Yes, we create our own reality. This is one of the most fundamental tenets of the ancient oriental religions, such as Buddhism. And during the last century, modern particle physics or quantum mechanics has discovered exactly the same thing" (1 page).
Creating legitimacy across international contexts
DEFF Research Database (Denmark)
Andersen, Poul Houman; Rask, Morten
2014-01-01
in Denmark, Israel, Canada, and Australia using expert interviews as well as content analysis of newspaper articles and other secondary sources. Storytelling, which is found to be central to the legitimacy-creating efforts of international business ventures, interacts with existing discourses in the diverse...
Creating Presentations on ICT Classes
Marchis, Iuliana
2010-01-01
The article focuses on the creation of presentations on ICT classes. The first part highlights the most important steps when creating a presentation. The main idea is, that the computer presentation shouldn't consist only from the technological part, i.e. the editing of the presentation in a computer program. There are many steps before and after…
Creating speech-synchronized animation.
King, Scott A; Parent, Richard E
2005-01-01
We present a facial model designed primarily to support animated speech. Our facial model takes facial geometry as input and transforms it into a parametric deformable model. The facial model uses a muscle-based parameterization, allowing for easier integration between speech synchrony and facial expressions. Our facial model has a highly deformable lip model that is grafted onto the input facial geometry to provide the necessary geometric complexity needed for creating lip shapes and high-quality renderings. Our facial model also includes a highly deformable tongue model that can represent the shapes the tongue undergoes during speech. We add teeth, gums, and upper palate geometry to complete the inner mouth. To decrease the processing time, we hierarchically deform the facial surface. We also present a method to animate the facial model over time to create animated speech using a model of coarticulation that blends visemes together using dominance functions. We treat visemes as a dynamic shaping of the vocal tract by describing visemes as curves instead of keyframes. We show the utility of the techniques described in this paper by implementing them in a text-to-audiovisual-speech system that creates animation of speech from unrestricted text. The facial and coarticulation models must first be interactively initialized. The system then automatically creates accurate real-time animated speech from the input text. It is capable of cheaply producing tremendous amounts of animated speech with very low resource requirements.
Projected discrete ordinates methods for numerical transport problems
Energy Technology Data Exchange (ETDEWEB)
Larsen, E.W.
1985-01-01
A class of Projected Discrete-Ordinates (PDO) methods is described for obtaining iterative solutions of discrete-ordinates problems with convergence rates comparable to those observed using Diffusion Synthetic Acceleration (DSA). The spatially discretized PDO solutions are generally not equal to the DSA solutions, but unlike DSA, which requires great care in the use of spatial discretizations to preserve stability, the PDO solutions remain stable and rapidly convergent with essentially arbitrary spatial discretizations. Numerical results are presented which illustrate the rapid convergence and the accuracy of solutions obtained using PDO methods with commonplace differencing methods.
Verna, Emeline; Piercecchi-Marti, Marie-Dominique; Chaumoitre, Kathia; Adalian, Pascal
2015-08-01
In forensic anthropology, identification begins by determining the sex, age, ancestry and stature of the individuals. Asymptomatic variations present on the skeleton, known as discrete traits, can be useful to identify individuals, or at least contribute to complete their biological profile. We decided to focus our work on the upper part of the skeleton, from the first vertebra to the pelvic girdle, and we chose to present 8 discrete traits (spina bifida occulta, butterfly vertebra, supraclavicular nerve foramen, coracoclavicular joint, os acromiale, suprascapular foramen, manubrium foramen and pubic spine), because they show a frequency lower than 10%. We examined 502 anonymous CT scans from polytraumatized individuals, aged 15 to 65 years, in order to detect the selected discrete traits. Age and sex were known for each subject. Thin sections in the axial, coronal and sagittal planes and 3D volume rendering images were created and examined for the visualization of the selected discrete traits. Supraclavicular foramina were found only in males and only on the left clavicle. Coracoclavicular joints were observed only in males. The majority of individuals with a suprascapular foramen were older than 50 years of age. Pubic spines were observed mostly in females. Other traits did not present significant association with sex, age and laterality. No association between traits was highlighted. Better knowledge of human skeletal variations will help anthropologists come closer to a positive identification, especially if these variations are rare, therefore making them more discriminant. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Hiroshi Miki
2012-02-01
Full Text Available Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the (2+1-dimensional case, the corresponding system can be extended to 2×2 matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.
Quantum cosmology based on discrete Feynman paths
Energy Technology Data Exchange (ETDEWEB)
Chew, Geoffrey F.
2002-10-10
Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''.
Ordinal Welfare Comparisons with Multiple Discrete Indicators
DEFF Research Database (Denmark)
Arndt, Channing; Distante, Roberta; Hussain, M. Azhar
We develop an ordinal method for making welfare comparisons between populations with multidimensional discrete well-being indicators observed at the micro level. The approach assumes that, for each well-being indicator, the levels can be ranked from worse to better; however, no assumptions are ma...... another on the basis of available binary indicators by drawing upon linear programming theory. These approaches are applied to household survey data from Vietnam and Mozambique with a focus on child poverty comparisons over time and between regions....
Discrete choice models with multiplicative error terms
DEFF Research Database (Denmark)
Fosgerau, Mogens; Bierlaire, Michel
2009-01-01
The conditional indirect utility of many random utility maximization (RUM) discrete choice models is specified as a sum of an index V depending on observables and an independent random term ε. In general, the universe of RUM consistent models is much larger, even fixing some specification of V due...... differences. We develop some properties of this type of model and show that in several cases the change from an additive to a multiplicative formulation, maintaining a specification of V, may lead to a large improvement in fit, sometimes larger than that gained from introducing random coefficients in V....
Compartmentalization analysis using discrete fracture network models
Energy Technology Data Exchange (ETDEWEB)
La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)
1997-08-01
This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.
An Einstein equation for discrete quantum gravity
Gudder, Stan
2012-01-01
The basic framework for this article is the causal set approach to discrete quantum gravity (DQG). Let $Q_n$ be the collection of causal sets with cardinality not greater than $n$ and let $K_n$ be the standard Hilbert space of complex-valued functions on $Q_n$. The formalism of DQG presents us with a decoherence matrix $D_n(x,y)$, $x,y\\in Q_n$. There is a growth order in $Q_n$ and a path in $Q_n$ is a maximal chain relative to this order. We denote the set of paths in $Q_n$ by $\\Omega_n$. For...
A discrete transition to advanced mathematics
Richmond, Bettina
2009-01-01
As the title indicates, this book is intended for courses aimed at bridging the gap between lower-level mathematics and advanced mathematics. The text provides a careful introduction to techniques for writing proofs and a logical development of topics based on intuitive understanding of concepts. The authors utilize a clear writing style and a wealth of examples to develop an understanding of discrete mathematics and critical thinking skills. While including many traditional topics, the text offers innovative material throughout. Surprising results are used to motivate the reader. The last thr
Angular Distributions of Discrete Mesoscale Mapping Functions
Kroszczyński, Krzysztof
2015-08-01
The paper presents the results of analyses of numerical experiments concerning GPS signal propagation delays in the atmosphere and the discrete mapping functions defined on their basis. The delays were determined using data from the mesoscale non-hydrostatic weather model operated in the Centre of Applied Geomatics, Military University of Technology. A special attention was paid to investigating angular characteristics of GPS slant delays for low angles of elevation. The investigation proved that the temporal and spatial variability of the slant delays depends to a large extent on current weather conditions.
Discrete variable representation for singular Hamiltonians
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...... solely on an orthogonal polynomial basis is adequate, provided the Gauss-Lobatto or Gauss-Radau quadrature rule is used. This ensures that the mesh contains the singular points and by simply discarding the DVR functions corresponding to those points, all matrix elements become well behaved. the boundary...
Discrete Choice Models - Estimation of Passenger Traffic
DEFF Research Database (Denmark)
Sørensen, Majken Vildrik
2003-01-01
for data, a literature review follows. Models applied for estimation of discrete choice models are described by properties and limitations, and relations between these are established. Model types are grouped into three classes, Hybrid choice models, Tree models and Latent class models. Relations between...... for estimation of choice models). For application of the method an algorithm is provided with a case. Also for the second issue, estimation of Mixed Logit models, a method was proposed. The most commonly used approach to estimate Mixed Logit models, is to employ the Maximum Simulated Likelihood estimation (MSL...
Newnes passive and discrete circuits pocket book
MARSTON, R M
2000-01-01
Newnes Passive and Discrete Circuits Pocket Book is aimed at all engineers, technicians, students and experimenters who can build a design directly from a circuit diagram. In a highly concise form Ray Marston presents a huge compendium of circuits that can be built as they appear, adapted or used as building blocks. The devices used have been carefully chosen for their ease of availability and reasonable price. The selection of devices has been thoroughly updated for the second edition, which has also been expanded to cover the latest ICs.The three sections of the book cover: Moder
Discrete analogues in harmonic analysis: Spherical averages
Magyar, A; Stein, E. M.; Wainger, S.
2004-01-01
In this paper we prove an analogue in the discrete setting of \\Bbb Z^d, of the spherical maximal theorem for \\Bbb R^d. The methods used are two-fold: the application of certain "sampling" techniques, and ideas arising in the study of the number of representations of an integer as a sum of d squares in particular, the "circle method". The results we obtained are by necessity limited to d \\ge 5, and moreover the range of p for the L^p estimates differs from its analogue in \\Bbb R^d.
Discrete solitons in coupled active lasing cavities
Prilepsky, Jaroslaw E; Johansson, Magnus; Derevyanko, Stanislav A
2012-01-01
We examine the existence and stability of discrete spatial solitons in coupled nonlinear lasing cavities (waveguide resonators), addressing the case of active media, where the gain exceeds damping in the linear limit. A zoo of stable localized structures is found and classified: these are bright and grey cavity solitons with different symmetry. It is shown that several new types of solitons with a nontrivial intensity distribution pattern can emerge in the coupled cavities due to the stability of a periodic extended state. The latter can be stable even when a bistability of homogenous states is absent.
Creating a climate for excellence.
Lancaster, J
1985-01-01
Some people are motivated to achieve in a manner consistent with the goals of their organization while others pursue individual goals. The attitudes people hold determine their behavior. Therefore, the manager is charged with creating an environment that fosters employee commitment to organizational goals. To create a climate for achievement, managers must recognize that all employees want recognition. Employees perform more effectively when they understand the goals of the organization, know what is expected of them, and are part of a system that includes feedback and reinforcement. Generally, people perform more effectively in an environment with minimal threat and punishment; individual responsibility should be encouraged, rewards based on results, and a climate of trust and open communication should prevail.
Creating advanced health informatics certification.
Gadd, Cynthia S; Williamson, Jeffrey J; Steen, Elaine B; Fridsma, Douglas B
2016-07-01
In 2005, AMIA leaders and members concluded that certification of advanced health informatics professionals would offer value to individual practitioners, organizations that hire them, and society at large. AMIA's work to create advanced informatics certification began by leading a successful effort to create the clinical informatics subspecialty for American Board of Medical Specialties board-certified physicians. Since 2012, AMIA has been working to establish advanced health informatics certification (AHIC) for all health informatics practitioners regardless of their primary discipline. In November 2015, AMIA completed the first of 3 key tasks required to establish AHIC, with the AMIA Board of Directors' endorsement of proposed eligibility requirements. This AMIA Board white paper describes efforts to establish AHIC, reports on the current status of AHIC components, and provides a context for the proposed AHIC eligibility requirements. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Leadership Networking Connect, Collaborate, Create
(CCL), Center for Creative Leadership; Baldwin, David
2011-01-01
Networking is essential to effective leadership in today's organizations. Leaders who are skilled networkers have access to people, information, and resources to help solve problems and create opportunities. Leaders who neglect their networks are missing out on a critical component of their role as leaders. This book will help leaders take a new view of networking and provide insight into how to enhance their networks and become effective at leadership networking.
Creating a Mobile Library Website
Cutshall, Tom C.; Blake, Lindsay; Bandy, Sandra L.
2011-01-01
The overwhelming results were iPhones and Android devices. Since the library wasn't equipped technologically to develop an in-house application platform and because we wanted the content to work across all mobile platforms, we decided to focus on creating a mobile web-based platform. From the NLM page of mobile sites we chose the basic PubMed/…
Creating and Sustaining Competitive Advantage
Lage Hansen, Jakob
2010-01-01
The paper provides a general framework for examining how governance choice affects competitive advantage. I argue that firms rely on assets for competing, and that these assets can be accessed by different governance structures (i.e., they can be in- or outsourced). The transaction cost economics framework is used to expose strengths and weaknesses of governance structures with respect to creating and sustaining competitive advantage. The result is a tradeoff to consider when choosing how to ...
Creating a Servitude to solve an encroachment Dispute: A Solution or creating another Problem?
Directory of Open Access Journals (Sweden)
Zsa-Zsa Temmers Boggenpoel
2013-12-01
Full Text Available The main focus of this note is the case of Roseveare v Katmer, Katmer v Roseveare 2013 ZAGPJHC 18, which provides an interesting (though possibly constitutionally problematic perspective to the encroachment problem. The decision in this case has opened the door for courts to create servitudes in instances where encroachments are left intact based on policy reasons. Concerning these policy reasons, the note investigates the reasonableness standard as it was applied in the case. It is argued that it is important to differentiate between the applications of reasonableness in encroachment cases and alleged nuisance disputes. The decision in this case creates the impression that courts may now order that a servitude be registered in favour of the encroacher against the affected landowner’s property. It seems as though the court had in mind the creation of a praedial servitude to justify the continued existence of the encroachment. The servitude is created by court order against the will of the affected landowner. At common law, the creation of a servitude in this respect does not exist, and the authority from which the power derives to make an order like this is not entirely clear. The court also does not provide any authority for the creation of the servitude in favour of the encroacher. Consequently, it is argued that this may have serious constitutional implications. For one, lack of authority for the deprivation that results may be unconstitutional because there is no law of general application that authorises the deprivation in terms of section 25(1. The creation of a servitude to explain the continued existence of the encroachment is not automatically included in the general discretion to replace removal with compensation. It is contended that an order that forces the affected landowner to register a servitude in favour of the encroacher to preserve the existing encroachment situation will be in conflict with section 25(1 as far as the common
Discrete Fractional COSHAD Transform and Its Application
Directory of Open Access Journals (Sweden)
Hongqing Zhu
2014-01-01
Full Text Available In recent years, there has been a renewed interest in finding methods to construct orthogonal transforms. This interest is driven by the large number of applications of the orthogonal transforms in image analysis and compression, especially for colour images. Inspired by this motivation, this paper first introduces a new orthogonal transform known as a discrete fractional COSHAD (FrCOSHAD using the Kronecker product of eigenvectors and the eigenvalues of the COSHAD kernel functions. Next, this study discusses the properties of the FrCOSHAD kernel function, such as angle additivity. Using the algebra of quaternions, the study presents quaternion COSHAD/FrCOSHAD transforms to represent colour images in a holistic manner. This paper also develops an inverse polynomial reconstruction method (IPRM in the discrete COSHAD/FrCOSHAD domains. This method can effectively recover a piecewise smooth signal from the finite set of its COSHAD/FrCOSHAD coefficients, with high accuracy. The convergence theorem has proved that the partial sum of COSHAD provides a spectrally accurate approximation to the underlying piecewise smooth signal. The experimental results verify the numerical stability and accuracy of the proposed methods.
Focusing properties of discrete RF quadrupoles
Li, Zhi-Hui; Wang, Zhi-Jun
2017-08-01
The particle motion equation for a Radio Frequency (RF) quadrupole is derived. The motion equation shows that the general transform matrix of a RF quadrupole with length less than or equal to 0.5βλ (β is the relativistic velocity of particles and λ is wavelength of radio frequency electromagnetic field) can describe the particle motion in an arbitrarily long RF quadrupole. By iterative integration, the general transform matrix of a discrete RF quadrupole is derived from the motion equation. The transform matrix is in form of a power series of focusing parameter B. It shows that for length less than βλ, the series up to the 2nd order of B agrees well with the direct integration results for B up to 30, while for length less than 0.5βλ, the series up to 1st order is already a good approximation of the real solution for B less than 30. The formula of the transform matrix can be integrated into linac or beam line design code to deal with the focusing of discrete RF quadrupoles. Supported by National Natural Science Foundation of China (11375122, 11511140277) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03020705)
Compressor Stability Enhancement Using Discrete Tip Injection
Suder, Kenneth L.; Hathaway, Michael D.; Thorp, Scott A.; Strazisar, Anthony J.; Bright, Michelle B.
2001-01-01
Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing small in tip-critical rotors. This process is examined in a transonic axial compressor rotor through experiments and time-averaged Navier-Stokes CFD simulations. Measurements and simulations for discrete injection are presented for a range of injection rates and distributions of injectors around the annulus. The simulations indicate that tip injection increases stability by unloading the rotor tip and that increasing injection velocity improves the effectiveness of tip injection. For the tested rotor, experimental results demonstrate that at 70 percent speed the stalling flow coefficient can be reduced by 30 percent using an injected mass- flow equivalent to 1 percent of the annulus flow. At design speed, the stalling flow coefficient was reduced by 6 percent using an injected mass-fiow equivalent to 2 percent of the annulus flow. The experiments show that stability enhancement is related to the mass-averaged axial velocity at the tip. For a given injected mass-flow, the mass-averaged axial velocity at the tip is increased by injecting flow over discrete portions of the circumference as opposed to full-annular injection. The implications of these results on the design of recirculating casing treatments and other methods to enhance stability will be discussed.
Discretization analysis of bifurcation based nonlinear amplifiers
Directory of Open Access Journals (Sweden)
S. Feldkord
2017-09-01
Full Text Available Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov–Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov–Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge–Kutta methods transform the truncated normalform equation of the Andronov–Hopf bifurcation into the normalform equation of the Neimark–Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark–Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov–Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark–Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Discrete quantum spectrum of black holes
Energy Technology Data Exchange (ETDEWEB)
Lochan, Kinjalk, E-mail: kinjalk@iucaa.in; Chakraborty, Sumanta, E-mail: sumanta@iucaa.in
2016-04-10
The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos–Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.
A Discrete Model for Color Naming
Menegaz, G.; Le Troter, A.; Sequeira, J.; Boi, J. M.
2006-12-01
The ability to associate labels to colors is very natural for human beings. Though, this apparently simple task hides very complex and still unsolved problems, spreading over many different disciplines ranging from neurophysiology to psychology and imaging. In this paper, we propose a discrete model for computational color categorization and naming. Starting from the 424 color specimens of the OSA-UCS set, we propose a fuzzy partitioning of the color space. Each of the 11 basic color categories identified by Berlin and Kay is modeled as a fuzzy set whose membership function is implicitly defined by fitting the model to the results of an ad hoc psychophysical experiment (Experiment 1). Each OSA-UCS sample is represented by a feature vector whose components are the memberships to the different categories. The discrete model consists of a three-dimensional Delaunay triangulation of the CIELAB color space which associates each OSA-UCS sample to a vertex of a 3D tetrahedron. Linear interpolation is used to estimate the membership values of any other point in the color space. Model validation is performed both directly, through the comparison of the predicted membership values to the subjective counterparts, as evaluated via another psychophysical test (Experiment 2), and indirectly, through the investigation of its exploitability for image segmentation. The model has proved to be successful in both cases, providing an estimation of the membership values in good agreement with the subjective measures as well as a semantically meaningful color-based segmentation map.
Dynamical Localization for Discrete Anderson Dirac Operators
Prado, Roberto A.; de Oliveira, César R.; Carvalho, Silas L.
2017-04-01
We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d\\in { 1, 2, 3} , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.
Discretization analysis of bifurcation based nonlinear amplifiers
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2017-09-01
Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Discrete Pathophysiology is Uncommon in Patients with Nonspecific Arm Pain.
Kortlever, Joost T P; Janssen, Stein J; Molleman, Jeroen; Hageman, Michiel G J S; Ring, David
2016-06-01
Nonspecific symptoms are common in all areas of medicine. Patients and caregivers can be frustrated when an illness cannot be reduced to a discrete pathophysiological process that corresponds with the symptoms. We therefore asked the following questions: 1) Which demographic factors and psychological comorbidities are associated with change from an initial diagnosis of nonspecific arm pain to eventual identification of discrete pathophysiology that corresponds with symptoms? 2) What is the percentage of patients eventually diagnosed with discrete pathophysiology, what are those pathologies, and do they account for the symptoms? We evaluated 634 patients with an isolated diagnosis of nonspecific upper extremity pain to see if discrete pathophysiology was diagnosed on subsequent visits to the same hand surgeon, a different hand surgeon, or any physician within our health system for the same pain. There were too few patients with discrete pathophysiology at follow-up to address the primary study question. Definite discrete pathophysiology that corresponded with the symptoms was identified in subsequent evaluations by the index surgeon in one patient (0.16% of all patients) and cured with surgery (nodular fasciitis). Subsequent doctors identified possible discrete pathophysiology in one patient and speculative pathophysiology in four patients and the index surgeon identified possible discrete pathophysiology in four patients, but the five discrete diagnoses accounted for only a fraction of the symptoms. Nonspecific diagnoses are not harmful. Prospective randomized research is merited to determine if nonspecific, descriptive diagnoses are better for patients than specific diagnoses that imply pathophysiology in the absence of discrete verifiable pathophysiology.
Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect
DEFF Research Database (Denmark)
Stamate, Eugen; Draghici, Mihai
2010-01-01
with high current densities that can treat surfaces placed adjacent to the extraction region. This work introduces a new phenomenology for ion beam extraction using the discrete ion-focusing effect associated with three-dimensional plasma-sheath-lenses [1, 2]. Experiments are performed in a matrix......Torr and plasma densities around 1016 m-3. A rectangular plasma-sheath-lens is created by an electrode-insulator interface designed by finite element simulations. The discrete ion-focusing effect deflects the ions to and extraction aperture on the electrode. A linearly distributed positive ion beam is extracted......Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...
Energy Technology Data Exchange (ETDEWEB)
Mishchenko, Michael I., E-mail: michael.i.mishchenko@nasa.gov [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Dlugach, Janna M. [Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str., 03680, Kyiv (Ukraine); Yurkin, Maxim A. [Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Institutskaya str. 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Bi, Lei [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Cairns, Brian [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Liu, Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Columbia University, 2880 Broadway, New York, NY 10025 (United States); Panetta, R. Lee [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Travis, Larry D. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Yang, Ping [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Zakharova, Nadezhda T. [Trinnovim LLC, 2880 Broadway, New York, NY 10025 (United States)
2016-05-16
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development
Discrete Mesh Approach in Morphogenesis Modelling: the Example of Gastrulation.
Demongeot, J; Lontos, A; Promayon, E
2016-12-01
Morphogenesis is a general concept in biology including all the processes which generate tissue shapes and cellular organizations in a living organism. Many hybrid formalizations (i.e., with both discrete and continuous parts) have been proposed for modelling morphogenesis in embryonic or adult animals, like gastrulation. We propose first to study the ventral furrow invagination as the initial step of gastrulation, early stage of embryogenesis. We focus on the study of the connection between the apical constriction of the ventral cells and the initiation of the invagination. For that, we have created a 3D biomechanical model of the embryo of the Drosophila melanogaster based on the finite element method. Each cell is modelled by an elastic hexahedron contour and is firmly attached to its neighbouring cells. A uniform initial distribution of elastic and contractile forces is applied to cells along the model. Numerical simulations show that invagination starts at ventral curved extremities of the embryo and then propagates to the ventral medial layer. Then, this observation already made in some experiments can be attributed uniquely to the specific shape of the embryo and we provide mechanical evidence to support it. Results of the simulations of the "pill-shaped" geometry of the Drosophila melanogaster embryo are compared with those of a spherical geometry corresponding to the Xenopus lævis embryo. Eventually, we propose to study the influence of cell proliferation on the end of the process of invagination represented by the closure of the ventral furrow.
Preventive Indicators for Creating Brownfields
Directory of Open Access Journals (Sweden)
Marija Burinskienė
2015-05-01
Full Text Available Although the problem of brownfields in urban territories is successfully limited, it is a negative phenomenon of a sustainable city. Moreover, the number of recently created brownfield territories has become higher than that of the regenerated ones. Such territories reduce the quality of the social and economic setting of a city as well as visually and physically affect the life quality of city residents. Unfortunately, methods for the revitalization of brownfield land have been applied to deal with the consequences of the problem rather than to limit the problem itself. The authors of the article have investigated the aspects to be avoided to not create brownfields. The indicators that enable predicting the probability of a territory becoming a brownfield have been analyzed in this paper. Countries develop and exist under different social and economic conditions. Therefore, there is no uniform and universally accepted system of indicators for brownfield prevention that can be applied in any country or city. The authors have attempted to implement a recently developed idea of indicators for prevention under Lithuanian conditions and have selected those facilitating the identification of brownfields with an aim of identifying the most significant ones warning about the potential harm from the creation of brownfields in Lithuania. The selected indicators have been grouped, taking into account social, economic, natural, building and infrastructure settings of the city and ranked by a group of experts in urban planning. The established hierarchy of indicators in the groups of urban setting has allowed the authors to select the most significant preventive indicators for brownfields. The created system of indicators could be applied in practice as a basis for monitoring pertinent data and tracking their change.
Creating a digital medical illustration.
Culley, Joanna
2016-01-01
This paper covers the steps required to complete a medical illustration in a digital format using Adobe Illustrator and Photoshop. The project example is the surgical procedure for the release of the glenohumeral joint for the condition known as 'frozen shoulder'. The purpose is to demonstrate one method which an artist can use within digital media to create a colour illustration such as the release of the glenohumeral joint. Included is a general overview as how to deal with the administration of a medical illustration commission through the experience of a professional freelance artist.
Discrete-Time Nonlinear Control of VSC-HVDC System
Directory of Open Access Journals (Sweden)
TianTian Qian
2015-01-01
Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.
NAFASS: Discrete spectroscopy of random signals
Energy Technology Data Exchange (ETDEWEB)
Nigmatullin, R.R., E-mail: nigmat@knet.r [Institute of Physics, Kazan (Volga Region) Federal University, Kremlevskaya str.18, Kazan, Tatarstan 420008 (Russian Federation); Osokin, S.I. [Institute of Physics, Kazan (Volga Region) Federal University, Kremlevskaya str.18, Kazan, Tatarstan 420008 (Russian Federation); Toboev, V.A. [Department of Mathematics, Chuvash State University, Moskovskiy pr., 15, Cheboksary 428015 (Russian Federation)
2011-04-15
Research highlights: The successful solution of the Prony's problem has been obtained. It means that for any random signal its amplitude-frequency response can be found. This solution opens quite new possibilities in creation of new discrete spectroscopy in analysis of different nanoscopic and intermolecular signals. Real NIR spectra and biological data were considered and analyzed as examples. The conception of the pseudo-ergodic noise is introduced. It helps to fit the auto-correlation function that is related to remnant function. The three basic principles of the fluctuation metrology are formulated. - Abstract: In this paper we suggest a new discrete spectroscopy for analysis of random signals and fluctuations. This discrete spectroscopy is based on successful solution of the modified Prony's problem for the strongly-correlated random sequences. As opposed to the general Prony's problem where the set of frequencies is supposed to be unknown in the new approach suggested the distribution of the unknown frequencies can be found for the strongly-correlated random sequences. Preliminary information about the frequency distribution facilitates the calculations and attaches an additional stability in the presence of a noise. This spectroscopy uses only the informative-significant frequency band that helps to fit the given signal with high accuracy. It means that any random signal measured in t-domain can be 'read' in terms of its amplitude-frequency response (AFR) without model assumptions related to the behavior of this signal in the frequency region. The method overcomes some essential drawbacks of the conventional Prony's method and can be determined as the non-orthogonal amplitude frequency analysis of the smoothed sequences (NAFASS). In this paper we outline the basic principles of the NAFASS procedure and show its high potential possibilities based on analysis of some actual NIR data. The AFR obtained serves as a specific
Creating your own leadership brand.
Kerfoot, Karlene
2002-01-01
Building equity in a brand happens through many encounters. The initial attraction must be followed by the meeting of expectations. This creates a loyalty that is part of an emotional connection to that brand. This is the same process people go through when they first meet a leader and decide if this is a person they want to buy into. People will examine your style, your competence, and your standards. If you fail on any of these fronts, your ability to lead will be severely compromised. People expect more of leaders now, because they know and recognize good leaders. And, predictably, people are now more cynical of leaders because of the well-publicized excess of a few leaders who advanced their own causes at the expense of their people and their financial future. This will turn out to be a good thing, because it will create a higher standard of leadership that all must aspire to achieve. When the bar is raised for us, our standards of performance are also raised.
OPPOSITIONS CREATING HOMOUR IN JOKES
Directory of Open Access Journals (Sweden)
Umral Deveci
2016-12-01
Full Text Available Human beings, who perceive the reality of death however who do not know when it will happen, begin their life with this deficiency. Therefore, throughout their lives, they struggle to consummate and make up for the things that they perceive as deficiency or shortcomings through different ways. Humor is one of these means. The fact that deficiencies are eliminated results in superiority and relaxation. The sense of humor and relaxation simultaneously provide laughter. When theories of humor such as superiority, incongruous and relief are taken into consideration, it seems that these theories are related and support each other. Each text is whole with its form and content, which should be evaluated as a whole as much as possible. Hence this study dwells on shortcomings in jokes and in the lights of these shortcomings and theories of humor, it is intended tomake humor in stories, in terms of structural and semantic context, more concrete. Five stories/jokes randomly selected through samples are analyzed in this article. There are two basic types of opposition. The firstone is opposition that creates situation, the second one is thatcreates laughter. The first opposition depicts the shortcomings of knowledge, skill, patience arrogance and jealousyand prepares the second opposition. The opposition that creates laughter make up for shortcomings through cause and effect relationship and laughter comes out.
A positive definiteness preserving discretization method for Lyapunov differential equations
Gillis, Joris; Diehl, Moritz
2013-01-01
Periodic Lyapunov differential equations can be used to formulate robust optimal periodic control problems for nonlinear systems. Typically, the added Lyapunov states are discretized in the same manner as the original states. This straightforward technique fails to guarantee conservation of positive-semidefiniteness of the Lyapunov matrix under discretization. This paper describes a discretization method, coined PDPLD, that does come with such a guarantee. The applicability is demonstrated at...
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz......-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated....
A Discrete Theory of Connections on Principal Bundles
Leok, M; Marsden, JE; Weinstein, AD
2017-01-01
Connections on principal bundles play a fundamental role in expressing the equations of motion for mechanical systems with symmetry in an intrinsic fashion. A discrete theory of connections on principal bundles is constructed by introducing the discrete analogue of the Atiyah sequence, with a connection corresponding to the choice of a splitting of the short exact sequence. Equivalent representations of a discrete connection are considered, and an extension of the pair groupoid composition, t...
MC CDMA PAPR Reduction Techniques using Discrete Transforms and Companding
Sarala, B.; S Venkateswarulu
2011-01-01
High Peak to Average Power Ratio (PAPR) of the transmitted signal is a serious problem in multicarrier modulation systems. In this paper a new technique for reduction in PAPR of the Multicarrier Code Division Multiple Access (MC CDMA) signals based on combining the Discrete Transform either Discrete Cosine Transform (DCT) or multi-resolution Discrete Wavelet Transform (DWT) with companding is proposed. It is analyzed and implemented using MATLAB. Simulation results of reduction in PAPR and po...
Studies on the discrete integrable equations over finite fields
Kanki, Masataka
2013-01-01
Discrete dynamical systems over finite fields are investigated and their integrability is discussed. In particular, the discrete Painlev\\'{e} equations and the discrete KdV equation are defined over finite fields and their special solutions are obtained. Their investigation over the finite fields has not been done thoroughly, partly because of the indeterminacies that appear in defining the equations. In this paper we introduce two methods to well-define the equations over the finite fields a...
Almost Periodic Solution of a Discrete Commensalism System
Directory of Open Access Journals (Sweden)
Yalong Xue
2015-01-01
Full Text Available A nonautonomous discrete two-species Lotka-Volterra commensalism system with delays is considered in this paper. Based on the discrete comparison theorem, the permanence of the system is obtained. Then, by constructing a new discrete Lyapunov functional, a set of sufficient conditions which guarantee the system global attractivity are obtained. If the coefficients are almost periodic, there exists an almost periodic solution and the almost periodic solution is globally attractive.
A note on inconsistent families of discrete multivariate distributions
Ghosh, Sugata
2017-07-05
We construct a d-dimensional discrete multivariate distribution for which any proper subset of its components belongs to a specific family of distributions. However, the joint d-dimensional distribution fails to belong to that family and in other words, it is ‘inconsistent’ with the distribution of these subsets. We also address preservation of this ‘inconsistency’ property for the symmetric Binomial distribution, and some discrete distributions arising from the multivariate discrete normal distribution.
Emergent diffeomorphism invariance in a discrete loop quantum gravity model
Gambini, Rodolfo; Pullin, Jorge
2008-01-01
Several approaches to the dynamics of loop quantum gravity involve discretizing the equations of motion. The resulting discrete theories are known to be problematic since the first class algebra of constraints of the continuum theory becomes second class upon discretization. If one treats the second class constraints properly, the resulting theories have very different dynamics and number of degrees of freedom than those of the continuum theory. It is therefore questionable how these theories...
Discrete motor coordinates for vowel production.
Directory of Open Access Journals (Sweden)
María Florencia Assaneo
Full Text Available Current models of human vocal production that capture peripheral dynamics in speech require large dimensional measurements of the neural activity, which are mapped into equally complex motor gestures. In this work we present a motor description for vowels as points in a discrete low-dimensional space. We monitor the dynamics of 3 points at the oral cavity using Hall-effect transducers and magnets, describing the resulting signals during normal utterances in terms of active/inactive patterns that allow a robust vowel classification in an abstract binary space. We use simple matrix algebra to link this representation to the anatomy of the vocal tract and to recent reports of highly tuned neuronal activations for vowel production, suggesting a plausible global strategy for vowel codification and motor production.
R parity violation from discrete R symmetries
Directory of Open Access Journals (Sweden)
Mu-Chun Chen
2015-02-01
Full Text Available We consider supersymmetric extensions of the standard model in which the usual R or matter parity gets replaced by another R or non-R discrete symmetry that explains the observed longevity of the nucleon and solves the μ problem of MSSM. In order to identify suitable symmetries, we develop a novel method of deriving the maximal ZN(R symmetry that satisfies a given set of constraints. We identify R parity violating (RPV and conserving models that are consistent with precision gauge unification and also comment on their compatibility with a unified gauge symmetry such as the Pati–Salam group. Finally, we provide a counter-example to the statement found in the recent literature that the lepton number violating RPV scenarios must have μ term and the bilinear κLHu operator of comparable magnitude.
Energy-pointwise discrete ordinates transport methods
Energy Technology Data Exchange (ETDEWEB)
Williams, M.L.; Asgari, M.; Tashakorri, R.
1997-06-01
A very brief description is given of a one-dimensional code, CENTRM, which computes a detailed, space-dependent flux spectrum in a pointwise-energy representation within the resolved resonance range. The code will become a component in the SCALE system to improve computation of self-shielded cross sections, thereby enhancing the accuracy of codes such as KENO. CENTRM uses discrete-ordinates transport theory with an arbitrary angular quadrature order and a Legendre expansion of scattering anisotropy for moderator materials and heavy nuclides. The CENTRM program provides capability to deterministically compute full energy range, space-dependent angular flux spectra, rigorously accounting for resonance fine-structure and scattering anisotropy effects.
Choice certainty in Discrete Choice Experiments
DEFF Research Database (Denmark)
Uggeldahl, Kennet Christian; Jacobsen, Catrine; Lundhede, Thomas
2016-01-01
In this study, we conduct a Discrete Choice Experiment (DCE) using eye tracking technology to investigate if eye movements during the completion of choice sets reveal information about respondents’ choice certainty. We hypothesise that the number of times that respondents shift their visual...... attention between the alternatives in a choice set reflects their stated choice certainty. Based on one of the largest samples of eye tracking data in a DCE to date, we find evidence in favor of our hypothesis. We also link eye tracking observations to model-based choice certainty through parameterization...... of the scale function in a random parameters logit model. We find that choices characterized by more frequent gaze shifting do indeed exhibit a higher degree of error variance, however, this effects is insignificant once response time is controlled for. Overall, findings suggest that eye tracking can provide...
Discrete optimization in architecture architectural & urban layout
Zawidzki, Machi
2016-01-01
This book presents three projects that demonstrate the fundamental problems of architectural design and urban composition – the layout design, evaluation and optimization. Part I describes the functional layout design of a residential building, and an evaluation of the quality of a town square (plaza). The algorithm for the functional layout design is based on backtracking using a constraint satisfaction approach combined with coarse grid discretization. The algorithm for the town square evaluation is based on geometrical properties derived directly from its plan. Part II introduces a crowd-simulation application for the analysis of escape routes on floor plans, and optimization of a floor plan for smooth crowd flow. The algorithms presented employ agent-based modeling and cellular automata.
Discrete computational mechanics for stiff phenomena
Michels, Dominik L.
2016-11-28
Many natural phenomena which occur in the realm of visual computing and computational physics, like the dynamics of cloth, fibers, fluids, and solids as well as collision scenarios are described by stiff Hamiltonian equations of motion, i.e. differential equations whose solution spectra simultaneously contain extremely high and low frequencies. This usually impedes the development of physically accurate and at the same time efficient integration algorithms. We present a straightforward computationally oriented introduction to advanced concepts from classical mechanics. We provide an easy to understand step-by-step introduction from variational principles over the Euler-Lagrange formalism and the Legendre transformation to Hamiltonian mechanics. Based on such solid theoretical foundations, we study the underlying geometric structure of Hamiltonian systems as well as their discrete counterparts in order to develop sophisticated structure preserving integration algorithms to efficiently perform high fidelity simulations.
Noise in time-discrete analog filters
Kroemer, B.; Mueller, R.; Stegherr, M.; Klar, H.; Ulbrich, W.
The most important noise sources in time-discrete analog filters which can be monolithically integrated as CCD and switched-capacitor structures are described. In CCD filters, these sources are thermal kTC noise of the input and output levels and unloading processes at the surface attraction sites. Attainable signal-to-noise ratios and optimization possibilities are stated. For SC filters, the most important noise sources are kTC noise and l/f noise. On-chip clock jitter noise can be suppressed by differential processing. The present measurements on integrated MOS switching transistors with small areas confirm the thermal kTC noise limit and show that there is no additional l/f contribution to the noise from the switches. For the integrator, good agreement is obtained between theory and experiment when an operational amplifier with finite unity-gain frequency is included.
Stochastic discrete model of karstic networks
Jaquet, O.; Siegel, P.; Klubertanz, G.; Benabderrhamane, H.
Karst aquifers are characterised by an extreme spatial heterogeneity that strongly influences their hydraulic behaviour and the transport of pollutants. These aquifers are particularly vulnerable to contamination because of their highly permeable networks of conduits. A stochastic model is proposed for the simulation of the geometry of karstic networks at a regional scale. The model integrates the relevant physical processes governing the formation of karstic networks. The discrete simulation of karstic networks is performed with a modified lattice-gas cellular automaton for a representative description of the karstic aquifer geometry. Consequently, more reliable modelling results can be obtained for the management and the protection of karst aquifers. The stochastic model was applied jointly with groundwater modelling techniques to a regional karst aquifer in France for the purpose of resolving surface pollution issues.
Discrete Line Congruences for Shading and Lighting
Wang, Jun
2013-07-01
Two-parameter families of straight lines (line congruences) are implicitly present in graphics and geometry processing in several important ways including lighting and shape analysis. In this paper we make them accessible to optimization and geometric computing, by introducing a general discrete version of congruences based on piecewise-linear correspondences between triangle meshes. Our applications of congruences are based on the extraction of a so-called torsion-free support structure, which is a procedure analogous to remeshing a surface along its principal curvature lines. A particular application of such structures are freeform shading and lighting systems for architecture. We combine interactive design of such systems with global optimization in order to satisfy geometric constraints. In this way we explore a new area where architecture can greatly benefit from graphics.
Item diagnostics in multivariate discrete data.
Maydeu-Olivares, Alberto; Liu, Yang
2015-06-01
Researchers who evaluate the fit of psychometric models to binary or multinomial items often look at univariate and bivariate residuals to determine how a poorly fitting model can be improved. There is a class of z statistics and also a class of generalized X₂ statistics that can be used for examining these marginal fits. We describe these statistics and compare them with regard to the control of Type I error and statistical power. We show how the class of z statistics can be extended to accommodate items with multinomial response options. We provide guidelines for the use of these statistics, including how to control for multiple testing, and present 2 detailed examples. Using the root mean square error of approximation (RMSEA) for discrete data to adjudge fit, the examples illustrate how the use of these methods can dramatically improve the fit of item response theory models to widely used measures in personality and clinical psychology. (c) 2015 APA, all rights reserved).
Attribute Exploration of Discrete Temporal Transitions
Wollbold, Johannes
2007-01-01
Discrete temporal transitions occur in a variety of domains, but this work is mainly motivated by applications in molecular biology: explaining and analyzing observed transcriptome and proteome time series by literature and database knowledge. The starting point of a formal concept analysis model is presented. The objects of a formal context are states of the interesting entities, and the attributes are the variable properties defining the current state (e.g. observed presence or absence of proteins). Temporal transitions assign a relation to the objects, defined by deterministic or non-deterministic transition rules between sets of pre- and postconditions. This relation can be generalized to its transitive closure, i.e. states are related if one results from the other by a transition sequence of arbitrary length. The focus of the work is the adaptation of the attribute exploration algorithm to such a relational context, so that questions concerning temporal dependencies can be asked during the exploration pr...
Ensemble simulations with discrete classical dynamics
DEFF Research Database (Denmark)
Toxværd, Søren
2013-01-01
{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics...... for the $(NV\\tilde{T}(h))$ ensemble and determine the relations between the energies and temperatures for the different ensembles, including the $(NVE_0(h))$ and $(NVT_0(h))$ ensembles. The differences in the energies and temperatures are proportional with $h^2$ and they are of the order a few tenths...... of a percent for a traditional value of $h$. The relations between $(NV\\tilde{E}(h))$ and $(NVE)$, and $(NV\\tilde{T}(h))$ and $(NVT)$ are easily determined for a given density and temperature, and allows for using larger time increments in MD. The accurate determinations of the energies are used to determine...
Discrete and Continuous Models for Partitioning Problems
Lellmann, Jan
2013-04-11
Recently, variational relaxation techniques for approximating solutions of partitioning problems on continuous image domains have received considerable attention, since they introduce significantly less artifacts than established graph cut-based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider in depth the consequences of a recent theoretical result concerning the optimality of solutions obtained using a particular relaxation method. Since the employed regularizer is quite tight, the considered relaxation generally involves a large computational cost. We propose a method to significantly reduce these costs in a fully automatic way for a large class of metrics including tree metrics, thus generalizing a method recently proposed by Strekalovskiy and Cremers (IEEE conference on computer vision and pattern recognition, pp. 1905-1911, 2011). © 2013 Springer Science+Business Media New York.
An integrable semi-discrete Degasperis-Procesi equation
Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro
2017-06-01
Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota’s bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.
Discrete-event control of stochastic networks multimodularity and regularity
Altman, Eitan; Hordijk, Arie
2003-01-01
Opening new directions in research in both discrete event dynamic systems as well as in stochastic control, this volume focuses on a wide class of control and of optimization problems over sequences of integer numbers. This is a counterpart of convex optimization in the setting of discrete optimization. The theory developed is applied to the control of stochastic discrete-event dynamic systems. Some applications are admission, routing, service allocation and vacation control in queueing networks. Pure and applied mathematicians will enjoy reading the book since it brings together many disciplines in mathematics: combinatorics, stochastic processes, stochastic control and optimization, discrete event dynamic systems, algebra.
A discrete version of the Darboux transform for isothermic surfaces
Hertrich-Jeromin, U J; Pinkall, U; Hertrich-Jeromin, Udo; Hoffmann, Tim; Pinkall, Ulrich
1996-01-01
We study Christoffel and Darboux transforms of discrete isothermic nets in 4-dimensional Euclidean space: definitions and basic properties are derived. Analogies with the smooth case are discussed and a definition for discrete Ribaucour congruences is given. Surfaces of constant mean curvature are special among all isothermic surfaces: they can be characterized by the fact that their parallel constant mean curvature surfaces are Christoffel and Darboux transforms at the same time. This characterization is used to define discrete nets of constant mean curvature. Basic properties of discrete nets of constant mean curvature are derived.
Discrete element analysis methods of generic differential quadratures
Chen, Chang-New
2008-01-01
Presents generic differential quadrature, the extended differential quadrature and the related discrete element analysis methods. This book demonstrated their ability for solving generic scientific and engineering problems.
Discrete Wavelet Transform-Partial Least Squares Versus Derivative ...
African Journals Online (AJOL)
Discrete Wavelet Transform-Partial Least Squares Versus Derivative Ratio Spectrophotometry for Simultaneous Determination of Chlorpheniramine Maleate and Dexamethasone in the Presence of Parabens in Pharmaceutical Dosage Form.
Distributed discrete event simulation. Final report
Energy Technology Data Exchange (ETDEWEB)
De Vries, R.C. [Univ. of New Mexico, Albuquerque, NM (United States). EECE Dept.
1988-02-01
The presentation given here is restricted to discrete event simulation. The complexity of and time required for many present and potential discrete simulations exceeds the reasonable capacity of most present serial computers. The desire, then, is to implement the simulations on a parallel machine. However, certain problems arise in an effort to program the simulation on a parallel machine. In one category of methods deadlock care arise and some method is required to either detect deadlock and recover from it or to avoid deadlock through information passing. In the second category of methods, potentially incorrect simulations are allowed to proceed. If the situation is later determined to be incorrect, recovery from the error must be initiated. In either case, computation and information passing are required which would not be required in a serial implementation. The net effect is that the parallel simulation may not be much better than a serial simulation. In an effort to determine alternate approaches, important papers in the area were reviewed. As a part of that review process, each of the papers was summarized. The summary of each paper is presented in this report in the hopes that those doing future work in the area will be able to gain insight that might not otherwise be available, and to aid in deciding which papers would be most beneficial to pursue in more detail. The papers are broken down into categories and then by author. Conclusions reached after examining the papers and other material, such as direct talks with an author, are presented in the last section. Also presented there are some ideas that surfaced late in the research effort. These promise to be of some benefit in limiting information which must be passed between processes and in better understanding the structure of a distributed simulation. Pursuit of these ideas seems appropriate.
Can the Universe create itself?
Gott, J. Richard, III; Li, Li-Xin
1998-07-01
The question of first-cause has troubled philosophers and cosmologists alike. Now that it is apparent that our universe began in a big bang explosion, the question of what happened before the big bang arises. Inflation seems like a very promising answer, but as Borde and Vilenkin have shown, the inflationary state preceding the big bang could not have been infinite in duration-it must have had a beginning also. Where did it come from? Ultimately, the difficult question seems to be how to make something out of nothing. This paper explores the idea that this is the wrong question-that that is not how the Universe got here. Instead, we explore the idea of whether there is anything in the laws of physics that would prevent the Universe from creating itself. Because spacetimes can be curved and multiply connected, general relativity allows for the possibility of closed timelike curves (CTCs). Thus, tracing backwards in time through the original inflationary state we may eventually encounter a region of CTCs-giving no first-cause. This region of CTCs may well be over by now (being bounded toward the future by a Cauchy horizon). We illustrate that such models-with CTCs-are not necessarily inconsistent by demonstrating self-consistent vacuums for Misner space and a multiply connected de Sitter space in which the renormalized energy-momentum tensor does not diverge as one approaches the Cauchy horizon and solves Einstein's equations. Some specific scenarios (out of many possible ones) for this type of model are described. For example, a metastable vacuum inflates producing an infinite number of (big-bang-type) bubble universes. In many of these, either by natural causes or by action of advanced civilizations, a number of bubbles of metastable vacuum are created at late times by high energy events. These bubbles will usually collapse and form black holes, but occasionally one will tunnel to create an expanding metastable vacuum (a baby universe) on the other side of the
Creating Interdisciplinarity within Monodisciplinary Structures
DEFF Research Database (Denmark)
Lindvig, Katrine
The objectives of the PhD project were to explore the linkages between interdisciplinary research and education, and to follow the concrete development and execution of interdisciplinary educational activities. In order to meet these objectives, an extensive literature study and a two......-year ethnographic fieldwork were conducted. The PhD project was part of the development project ‘Interdisciplinary education at UCPH’, with the aim of improving and supporting interdisciplinary teaching and learning at the University of Copenhagen (UCPH). The findings of the PhD study point towards wide...... discrepancies in the use of the term interdisciplinarity, which have repercussions for the practices and incentives of creating interdisciplinary education, research and collaboration. Overall, the thesis shows that interdisciplinary teaching and learning practices have to engage in a continuous balancing...
Creating Genetic Resistance to HIV
Burnett, John C.; Zaia, John A.; Rossi, John J.
2012-01-01
HIV/AIDS remains a chronic and incurable disease, in spite of the notable successes of highly active antiretroviral therapy. Gene therapy offers the prospect of creating genetic resistance to HIV that supplants the need for antiviral drugs. In sight of this goal, a variety of anti-HIV genes have reached clinical testing, including gene-editing enzymes, protein-based inhibitors, and RNA-based therapeutics. Combinations of therapeutic genes against viral and host targets are designed to improve the overall antiviral potency and reduce the likelihood of viral resistance. In cell-based therapies, therapeutic genes are expressed in gene modified T lymphocytes or in hematopoietic stem cells that generate an HIV-resistant immune system. Such strategies must promote the selective proliferation of the transplanted cells and the prolonged expression of therapeutic genes. This review focuses on the current advances and limitations in genetic therapies against HIV, including the status of several recent and ongoing clinical studies. PMID:22985479
Jørgensen, Jakob H; Pan, Xiaochuan
2011-01-01
Discrete-to-discrete imaging models for computed tomography (CT) are becoming increasingly ubiquitous as the interest in iterative image reconstruction algorithms has heightened. Despite this trend, all the intuition for algorithm and system design derives from analysis of continuous-to-continuous models such as the X-ray and Radon transform. While the similarity between these models justifies some crossover, questions such as what are sufficient sampling conditions can be quite different for the two models. This sampling issue is addressed extensively in the first half of the article using singular value decomposition analysis for determining sufficient number of views and detector bins. The question of full sampling for CT is particularly relevant to current attempts to adapt compressive sensing (CS) motivated methods to application in CT image reconstruction. The second half goes in depth on this subject and discusses the link between object sparsity and sufficient sampling for accurate reconstruction. Par...
Odake, Satoru
2017-12-01
In our previous papers [S. Odake and R. Sasaki, J. Phys. A 46, 245201 (2013) and S. Odake and R. Sasaki, J. Approx. Theory 193, 184 (2015)], the Wronskian identities for the Hermite, Laguerre, and Jacobi polynomials and the Casoratian identities for the Askey-Wilson polynomial and its reduced-form polynomials were presented. These identities are naturally derived through quantum-mechanical formulation of the classical orthogonal polynomials: ordinary quantum mechanics for the former and discrete quantum mechanics with pure imaginary shifts for the latter. In this paper we present the corresponding identities for the discrete quantum mechanics with real shifts. Infinitely many Casoratian identities for the q-Racah polynomial and its reduced-form polynomials are obtained.
Horstmann, Jan Tobias; Le Garrec, Thomas; Mincu, Daniel-Ciprian; Lévêque, Emmanuel
2017-11-01
Despite the efficiency and low dissipation of the stream-collide scheme of the discrete-velocity Boltzmann equation, which is nowadays implemented in many lattice Boltzmann solvers, a major drawback exists over alternative discretization schemes, i.e. finite-volume or finite-difference, that is the limitation to Cartesian uniform grids. In this paper, an algorithm is presented that combines the positive features of each scheme in a hybrid lattice Boltzmann method. In particular, the node-based streaming of the distribution functions is coupled with a second-order finite-volume discretization of the advection term of the Boltzmann equation under the Bhatnagar-Gross-Krook approximation. The algorithm is established on a multi-domain configuration, with the individual schemes being solved on separate sub-domains and connected by an overlapping interface of at least 2 grid cells. A critical parameter in the coupling is the CFL number equal to unity, which is imposed by the stream-collide algorithm. Nevertheless, a semi-implicit treatment of the collision term in the finite-volume formulation allows us to obtain a stable solution for this condition. The algorithm is validated in the scope of three different test cases on a 2D periodic mesh. It is shown that the accuracy of the combined discretization schemes agrees with the order of each separate scheme involved. The overall numerical error of the hybrid algorithm in the macroscopic quantities is contained between the error of the two individual algorithms. Finally, we demonstrate how such a coupling can be used to adapt to anisotropic flows with some gradual mesh refinement in the FV domain.
ON THE CROSSING NUMBER OF THE JOIN OF FIVE VERTEX GRAPH WITH THE DISCRETE GRAPH Dn
Directory of Open Access Journals (Sweden)
Štefan BEREŽNÝ
2017-09-01
Full Text Available In this paper, we show the values of crossing numbers for join products of graph G on five vertices with the discrete graph Dn and the path Pn on n vertices. The proof is done with the help of software. The software generates all cyclic permutations for a given number n. For cyclic permutations, P1 – Pm will create a graph in which to calculate the distances between all vertices of the graph. These distances are used in proof of crossing numbers of presented graphs.
Heavy ion deep inelastic collisions studied by discrete gamma ray spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Krolas, W. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)
1996-05-01
The discrete gamma ray spectroscopy has been used as a tool to investigate the heavy ion collision. It has been shown that such experimental information supplemented by results of additional of-line radioactivity measurements is complete enough to reconstruct distributions of products of very complex nuclear reactions. Three experiments have been performed in which the {sup 208}Pb + {sup 64}Ni, {sup 130}Te + {sup 64}Ni and {sup 208}Pb + {sup 58}Ni systems have been created. The production cross sections of fragment isotopes have been determined and compared with existing model predictions 64 refs, 59 figs, 19 tabs
A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback
Gwaltney, David A.; Dutton, Kenneth
2005-01-01
The design of an Evolvable Machine VHDL Core is presented, representing a discrete-time processing structure capable of supporting control system applications. This VHDL Core is implemented in an FPGA and is interfaced with an evolutionary algorithm implemented in firmware on a Digital Signal Processor (DSP) to create an evolvable system platform. The salient features of this architecture are presented. The capability to implement IIR filter structures is presented along with the results of the intrinsic evolution of a filter. The robustness of the evolved filter design is tested and its unique characteristics are described.
Creating and Recreating. Microcomputing Working Paper Series.
Arms, Valarie
This document describes a software program, CREATE, which was developed at Drexel University to guide students in creating English compositions. A second program, ReCREATE, guides students in reading their finished papers and making global revisions. CREATE asks 20 questions that a teacher might ask a student in a pre-writing conference. Unlike…
Creating responsible partnerships in tourism
Directory of Open Access Journals (Sweden)
Ana Spitzer
2012-06-01
Full Text Available RQ: Organisations do not provide sufficient time and effort to seek out companies for partners that would, with the assistance of responsible cooperation, contribute to better quality offers and consequently to increased income and the good reputation of both companies. Responsibilities and ethics is where organizations on bothsides would take on and accept their own norms, tasks, obligations and be aware that in a relationship there is a need to give explanations and justify one’s actions, such partnerships will be long and prosperous. This requires a great deal of knowledge and maturity together with a very important personal characteristic that is care. This study examines whether the creation of long term partnerships through responsible and more personal (friendlyrelations brings the organization to greater success.Purpose: The purpose of this research is to determine how important it is for organizations in the tourism industry to build long term relationships, what it should be based on and whether companies are willing to change the current methods of operations.Method: The method of research was an interview with individuals that had a certain position within a tourism company and had contacts with partners and were obligated to see out new ones. A paradigm model was built and the responses analysed.Results: The survey results are encouraging. The interviews showed that respondents were aware that it is necessary to have long term and responsible partnerships. They recognized that in today’s world there is a lack of collaboration that is based on understanding andthat there should be more relations on a personal level. It isrequired that this changes in the future. The participants specifically highlight financial irresponsibility in many companies that destroys collaboration.Organization: With the help of this study, the author attempts to contribute ideas to organizations on how to create solid collaboration with partners, as
Preservation properties for the discrete mean residual life ordering
Directory of Open Access Journals (Sweden)
Abdulhakim Al-Babtain
2015-04-01
Full Text Available The purpose of this paper is to prove several preservation properties of stochastic comparisons based on the discrete mean residual life ordering d-MRL under the reliability operations of convolutions, mixtures. Fi nally we introduce a discrete renewal process application
Finite Mathematics and Discrete Mathematics: Is There a Difference?
Johnson, Marvin L.
Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…
How Bob Barker Would (Probably) Teach Discrete Mathematics
Urness, Timothy
2010-01-01
This article proposes a discrete mathematics course in which games from "The Price Is Right" are used to engage students in a deeper, practical study of discrete mathematics. The games themselves are not the focus of the course; rather, the mathematical principles of the games give motivation for the concepts being taught. The game examples are…
Discrete Volterra equation via Exp-function method
Energy Technology Data Exchange (ETDEWEB)
Zhu, S-d [College of Mathematics and Physics, Zhejiang Lishui University, Lishui 323000 (China)], E-mail: zhusd1965@sina.com
2008-02-15
In this paper, we utilize the Exp-function method to construct three families of new generalized solitary solutions for the discrete Volterra equation. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving typical discrete nonlinear evolution equations in physics.
Absolute Stability of Discrete-Time Systems with Delay
Directory of Open Access Journals (Sweden)
Medina Rigoberto
2008-01-01
Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the "freezing" technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.
Preservation properties for the discrete mean residual life ordering
Directory of Open Access Journals (Sweden)
Abdulhakim Al-Babtain
2015-04-01
Full Text Available The purpose of this paper is to prove several preservation properties of stochastic comparisons based on the discrete mean residual life ordering d-MRL under the reliability operations of convolutions, mixtures . nally we introduce a discrete renewalprocess application
On Sumudu Transform Method in Discrete Fractional Calculus
Directory of Open Access Journals (Sweden)
Fahd Jarad
2012-01-01
Full Text Available In this paper, starting from the definition of the Sumudu transform on a general time scale, we define the generalized discrete Sumudu transform and present some of its basic properties. We obtain the discrete Sumudu transform of Taylor monomials, fractional sums, and fractional differences. We apply this transform to solve some fractional difference initial value problems.
Discrete variational principles for lagrangians linear in velocities
Jarad, Fahd; Baleanu, Dumitru
2007-02-01
The discrete Hamiltonian formulation of Lagrangian linear in velocities is investigated andthe equivalence of Hamilton and Euler-Lagrange equations is obtained. The role of Lagrange multipliers is discussed within discrete Lagrangian and Hamiltonian formulations for some systems with constraints. Three illustrative examples are investigated in details.
GENERATION ALGORITHM OF DISCRETE LINE IN MULTI-DIMENSIONAL GRIDS
Directory of Open Access Journals (Sweden)
L. Du
2017-09-01
Full Text Available Discrete Global Grids System (DGGS is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.
Discretion in Student Discipline: Insight into Elementary Principals' Decision Making
Findlay, Nora M.
2015-01-01
Little research exists that examines the exercise of discretion by principals in their disciplinary decision making. This study sought to understand the application of values by principals as they engage in student disciplinary decision making within legally fixed parameters of their administrative discretion. This qualitative methodology used…
A general framework for statistical inference on discrete event systems.
R.P. Nicolai (Robin); A.J. Koning (Alex)
2006-01-01
textabstractWe present a framework for statistical analysis of discrete event systems which combines tools such as simulation of marked point processes, likelihood methods, kernel density estimation and stochastic approximation to enable statistical analysis of the discrete event system, even if
Discreteness criteria in PU(1,n;C)
Indian Academy of Sciences (India)
Introduction. The discreteness of Möbius groups is a fundamental problem, which have been discussed by many authors. In 1976, Jørgensen [10] proved a necessary condition for a non-elementary two generator subgroup of SL(2,C) to be discrete, which is called Jørgensen's inequality. By using this inequality, Jørgensen ...
Discrete wavelet transforms over finite sets which are translation invariant
L. Kamstra
2001-01-01
textabstractThe discrete wavelet transform was originally a linear operator that works on signals that are modeled as functions from the integers into the real or complex numbers. However, many signals have discrete function values. This paper builds on two recent developments: the extension of
On approximation of Lie groups by discrete subgroups
Indian Academy of Sciences (India)
voila.fr; salah.suissi@yahoo.fr. MS received 11 August 2012; revised 27 January 2013. Abstract. A locally compact group G is said to be approximated by discrete sub- groups (in the sense of Tôyama) if there is a sequence of discrete subgroups ...
Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata
L. Sella (Lorenzo); P.J. Collins (Pieter)
2008-01-01
htmlabstractIn this paper, we develop an algorithm to compute under- and over-approximations to the discrete dynamics of a hybrid automaton. We represent the approximations to the dynamics as \\emph{sofic shifts}, which can be generated by a discrete automaton. We restrict to two-dimensional
Generation Algorithm of Discrete Line in Multi-Dimensional Grids
Du, L.; Ben, J.; Li, Y.; Wang, R.
2017-09-01
Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.
CDM: Teaching Discrete Mathematics to Computer Science Majors
Sutner, Klaus
2005-01-01
CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…
Adolescents and HIV: creating partnerships.
Tierney, S
1998-05-01
Despite the President's directive on youth and HIV in 1997 to focus the nation's attention on adolescents and the battle against AIDS, prevention programs continue to be ineffective. The number of seropositive youth, ages 13 to 24 years old, is unclear due to inconsistent definitions of age ranges and inadequate access to testing. Youth have not sought testing for many reasons, including failing to perceive their vulnerability to HIV, confidentiality concerns, and not realizing the effectiveness of early treatment. Adolescents are creating independence, establishing relationships, and learning about drugs and alcohol. Young gay and bisexual men, drug-using youth, and youth of color are at high risk of HIV transmission. Identifying the population involved in risk-taking behavior and eliminating the behavior is an ineffective strategy for adolescent HIV prevention programs. Complicating the issue further, the goals and expectations of adolescents differ from the adults who design and deliver prevention programs. HIV education and prevention efforts need to address solutions to hopelessness, isolation, and violence, rather than focusing on the negative effects risky behaviors will have in the future. Effective programs combine a youth/adult partnership to take advantage of the strengths of each individual. Strategies for implementing prevention programs that address the specific needs of adolescents are suggested.
Creating healthy and just bioregions.
Pezzoli, Keith; Leiter, Robert Allen
2016-03-01
Dramatic changes taking place locally, regionally, globally, demand that we rethink strategies to improve public health, especially in disadvantaged communities where the cumulative impacts of toxicant exposure and other environmental and social stressors are most damaging. The emergent field of Sustainability Science, including a new bioregionalism for the 21st Century, is giving rise to promising place-based (territorially rooted) approaches. Embedded in this bioregional approach is an integrated planning framework (IPF) that enables people to map and develop plans and strategies that cut across various scales (e.g. from regional to citywide to neighborhood scale) and various topical areas (e.g. urban land use planning, water resource planning, food systems planning and "green infrastructure" planning) with the specific intent of reducing the impacts of toxicants to public health and the natural environment. This paper describes a case of bioregionally inspired integrated planning in San Diego, California (USA). The paper highlights food-water-energy linkages and the importance of "rooted" community-university partnerships and knowledge-action collaboratives in creating healthy and just bioregions.
Laser Created Relativistic Positron Jets
Energy Technology Data Exchange (ETDEWEB)
Chen, H; Wilks, S C; Meyerhofer, D D; Bonlie, J; Chen, C D; Chen, S N; Courtois, C; Elberson, L; Gregori, G; Kruer, W; Landoas, O; Mithen, J; Murphy, C; Nilson, P; Price, D; Scheider, M; Shepherd, R; Stoeckl, C; Tabak, M; Tommasini, R; Beiersdorder, P
2009-10-08
Electron-positron jets with MeV temperature are thought to be present in a wide variety of astrophysical phenomena such as active galaxies, quasars, gamma ray bursts and black holes. They have now been created in the laboratory in a controlled fashion by irradiating a gold target with an intense picosecond duration laser pulse. About 10{sup 11} MeV positrons are emitted from the rear surface of the target in a 15 to 22-degree cone for a duration comparable to the laser pulse. These positron jets are quasi-monoenergetic (E/{delta}E {approx} 5) with peak energies controllable from 3-19 MeV. They have temperatures from 1-4 MeV in the beam frame in both the longitudinal and transverse directions. Positron production has been studied extensively in recent decades at low energies (sub-MeV) in areas related to surface science, positron emission tomography, basic antimatter science such as antihydrogen experiments, Bose-Einstein condensed positronium, and basic plasma physics. However, the experimental tools to produce very high temperature positrons and high-flux positron jets needed to simulate astrophysical positron conditions have so far been absent. The MeV temperature jets of positrons and electrons produced in our experiments offer a first step to evaluate the physics models used to explain some of the most energetic phenomena in the universe.
Creating experimental color harmony map
Chamaret, Christel; Urban, Fabrice; Lepinel, Josselin
2014-02-01
Starting in the 17th century with Newton, color harmony is a topic that did not reach a consensus on definition, representation or modeling so far. Previous work highlighted specific characteristics for color harmony on com- bination of color doublets or triplets by means of a human rating on a harmony scale. However, there were no investigation involving complex stimuli or pointing out how harmony is spatially located within a picture. The modeling of such concept as well as a reliable ground-truth would be of high value for the community, since the applications are wide and concern several communities: from psychology to computer graphics. We propose a protocol for creating color harmony maps from a controlled experiment. Through an eye-tracking protocol, we focus on the identification of disharmonious colors in pictures. The experiment was composed of a free viewing pass in order to let the observer be familiar with the content before a second pass where we asked "to search for the most disharmonious areas in the picture". Twenty-seven observers participated to the experiments that was composed of a total of 30 different stimuli. The high inter-observer agreement as well as a cross-validation confirm the validity of the proposed ground-truth.
Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo
2017-12-01
A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.
Discrete-time optimal control and games on large intervals
Zaslavski, Alexander J
2017-01-01
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...
Use Cases of Discrete Event Simulation Appliance and Research
2012-01-01
Over the last decades Discrete Event Simulation has conquered many different application areas. This trend is, on the one hand, driven by an ever wider use of this technology in different fields of science and on the other hand by an incredibly creative use of available software programs through dedicated experts. This book contains articles from scientists and experts from 10 countries. They illuminate the width of application of this technology and the quality of problems solved using Discrete Event Simulation. Practical applications of simulation dominate in the present book. The book is aimed to researchers and students who deal in their work with Discrete Event Simulation and which want to inform them about current applications. By focusing on discrete event simulation, this book can also serve as an inspiration source for practitioners for solving specific problems during their work. Decision makers who deal with the question of the introduction of discrete event simulation for planning support and o...
Ray effect and false scattering in the discrete ordinates method
Energy Technology Data Exchange (ETDEWEB)
Chai, J.C.; Patankar, S.V. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Mechanical Engineering; Lee, H.S. [NASA, Cleveland, OH (United States). Lewis Research Center
1993-12-01
A discussion on the ray effect and false scattering occurring in discrete ordinates solution of the radiative transfer equation is presented in this article. Ray effect arises from the approximation of a continuously varying angular nature of radiation by a specified set of discrete angular directions. It is independent of the spatial discretization practice. False scattering, on the other hand, is a consequence of the spatial discretization practice and is independent of the angular discretization practice. In multidimensional computations, when a beam is not aligned with the grid line, false scattering smears the radiative intensity field. It reduces the appearance of unwanted bumps, but does not eliminate ray effect. An inappropriate view of false scattering is also presented. Four sample problems are used to explain these two effects.
String constraints on discrete symmetries in MSSM type II quivers
Energy Technology Data Exchange (ETDEWEB)
Anastasopoulos, Pascal [Technische Univ. Wien (Austria). Inst. fur Theor. Phys.; Cvetic, Mirjam [Univ. of Pennsylvania, Philadelphia PA (United States). Dept. of Physics and Astronomy; Univ. of Maribor (Slovenia). Center for Applied Mathematics and Theoretical Physics; Richter, Robert [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
We study the presence of discrete gauge symmetries in D-brane semirealistic compactifications. After establishing the constraints on the transformation behaviour of the chiral matter for the presence of a discrete gauge symmetry we perform a systematic search for discrete gauge symmetries within semi-realistic D-brane realizations, based on four D-brane stacks, of the MSSM and the MSSM with three right-handed neutrinos. The systematic search reveals that Proton hexality, a discrete symmetry which ensures the absence of R-parity violating terms as well as the absence of dangerous dimension 5 proton decay operators, is only rarely realized. Moreover, none of the semi-realistic local D-brane configurations exhibit any family dependent discrete gauge symmetry.
Discretized representations of harmonic variables by bilateral Jacobi operators
Directory of Open Access Journals (Sweden)
Andreas Ruffing
2000-01-01
Full Text Available Starting from a discrete Heisenberg algebra we solve several representation problems for a discretized quantum oscillator in a weighted sequence space. The Schrödinger operator for a discrete harmonic oscillator is derived. The representation problem for a q-oscillator algebra is studied in detail. The main result of the article is the fact that the energy representation for the discretized momentum operator can be interpreted as follows: It allows to calculate quantum properties of a large number of non-interacting harmonic oscillators at the same time. The results can be directly related to current research on squeezed laser states in quantum optics. They reveal and confirm the observation that discrete versions of continuum Schrodinger operators allow more structural freedom than their continuum analogs do.
Better relaxations of classical discrete optimization problems.
Energy Technology Data Exchange (ETDEWEB)
Lancia, Giuseppe; Konjevod, Goran; Carr, Robert D.; Parehk, Ojas
2008-08-01
A mathematical program is an optimization problem expressed as an objective function of multiple variables subject to set of constraints. When the optimization problem has specific structure, the problem class usually has a special name. A linear program is the optimization of a linear objective function subject to linear constraints. An integer program is a linear program where some of the variables must take only integer values. A semidefinite program is a linear program where the variables are arranged in a matrix and for all feasible solutions, this matrix must be positive semidefinite. There are general-purpose solvers for each of these classes of mathematical program. There are usually many ways to express a problem as a correct, say, linear program. However, equivalent formulations can have significantly different practical tractability. In this poster, we present new formulations for two classic discrete optimization problems, maximum cut (max cut) and the graphical traveling salesman problem (GTSP), that are significantly stronger, and hence more computationally tractable, than any previous formulations of their class. Both partially answer longstanding open theoretical questions in polyhedral combinatorics.
Translating Discrete Time SIMULINK to SIGNAL
Directory of Open Access Journals (Sweden)
Safa Messaoud
2015-11-01
Full Text Available As Cyber Physical Systems (CPS are getting more complex and safety critical, Model Based Design (MBD, which consists of building formal models of a system in order to be used in verification and correct-by-construction code generation, is becoming a promising methodology for the development of the embedded software of such systems. This design paradigm significantly reduces the development cost and time while guaranteeing better robustness and correctness with respect to the original specifications, when compared with the traditional ad-hoc design methods. SIMULINK has been the most popular tool for embedded control design in research as well as in industry, for the last decades. As SIMULINK does not have formal semantics, the application of the model based design methodology and tools to its models is very limited. In this paper, we present a semantic translator that transforms discrete time SIMULINK models into SIGNAL programs. The choice of SIGNAL is motivated by its polychronous formalism that enhances synchronous programming with asynchronous concurrency, as well as, by the ability of its compiler of generating deterministic multi thread code. Our translation involves three major steps: clock inference, type inference and hierarchical top-down translation. We validate our prototype tool by testing it on different SIMULINK models.
A discrete structure of the brain waves.
Dabaghian, Yuri; Perotti, Luca; oscillons in biological rhythms Collaboration; physics of biological rhythms Team
A physiological interpretation of the biological rhythms, e.g., of the local field potentials (LFP) depends on the mathematical approaches used for the analysis. Most existing mathematical methods are based on decomposing the signal into a set of ``primitives,'' e.g., sinusoidal harmonics, and correlating them with different cognitive and behavioral phenomena. A common feature of all these methods is that the decomposition semantics is presumed from the onset, and the goal of the subsequent analysis reduces merely to identifying the combination that best reproduces the original signal. We propose a fundamentally new method in which the decomposition components are discovered empirically, and demonstrate that it is more flexible and more sensitive to the signal's structure than the standard Fourier method. Applying this method to the rodent LFP signals reveals a fundamentally new structure of these ``brain waves.'' In particular, our results suggest that the LFP oscillations consist of a superposition of a small, discrete set of frequency modulated oscillatory processes, which we call ``oscillons''. Since these structures are discovered empirically, we hypothesize that they may capture the signal's actual physical structure, i.e., the pattern of synchronous activity in neuronal ensembles. Proving this hypothesis will help to advance our principal understanding of the neuronal synchronization mechanisms and reveal new structure within the LFPs and other biological oscillations. NSF 1422438 Grant, Houston Bioinformatics Endowment Fund.
Two clinically discrete syndromes of transsexualism.
Buhrich, N; McConaghy, N
1978-07-01
Transsexuals are defined as subjects who have a sustained feminine gender identity combined with a wish to alter their bodily appearance towards the feminine. The results of this study indicate that they can be differentiated into two clinically discrete groups. In an investigation of 29 transsexuals who sought a change of sex operation it was found that those who had experienced fetishistic arousal were significantly more likely to be older, to have experienced heterosexual intercourse, to be married and to show penile responses to pictures of men and women indicative of a more heterosexual orientation. They had less experience of homosexual contact to orgasm as compared transsexuals who had not experiennced fetishistic arousal , but this difference was not statistically significant. Frequency of cross-dressing, strenght of feminine gender identity and intensity of desire for a sex change operation did not discriminate the two groups. The fact that desire for a sex change operation may be associated with experience of fetishistic arousal could be one reason for the higher incidence transsexualism in men than in women.
Lectures on financial mathematics discrete asset pricing
Anderson, Greg
2010-01-01
This is a short book on the fundamental concepts of the no-arbitrage theory of pricing financial derivatives. Its scope is limited to the general discrete setting of models for which the set of possible states is finite and so is the set of possible trading times--this includes the popular binomial tree model. This setting has the advantage of being fairly general while not requiring a sophisticated understanding of analysis at the graduate level. Topics include understanding the several variants of "arbitrage", the fundamental theorems of asset pricing in terms of martingale measures, and applications to forwards and futures. The authors' motivation is to present the material in a way that clarifies as much as possible why the often confusing basic facts are true. Therefore the ideas are organized from a mathematical point of view with the emphasis on understanding exactly what is under the hood and how it works. Every effort is made to include complete explanations and proofs, and the reader is encouraged t...
Coherence number as a discrete quantum resource
Chin, Seungbeom
2017-10-01
We introduce a discrete coherence monotone named the coherence number, which is a generalization of the coherence rank to mixed states. After defining the coherence number in a manner similar to that of the Schmidt number in entanglement theory, we present a necessary and sufficient condition of the coherence number for a coherent state to be converted to an entangled state of nonzero k concurrence (a member of the generalized concurrence family with 2 ≤k ≤d ). As an application of the coherence number to a practical quantum system, Grover's search algorithm of N items is considered. We show that the coherence number remains N and falls abruptly when the success probability of a searching process becomes maximal. This phenomenon motivates us to analyze the depletion pattern of Cc(N ) (the last member of the generalized coherence concurrence, nonzero when the coherence number is N ), which turns out to be an optimal resource for the process since it is completely consumed to finish the searching task. The generalization of the original Grover algorithm with arbitrary (mixed) initial states is also discussed, which reveals the boundary condition for the coherence to be monotonically decreasing under the process.
Improved Discrete Approximation of Laplacian of Gaussian
Shuler, Robert L., Jr.
2004-01-01
An improved method of computing a discrete approximation of the Laplacian of a Gaussian convolution of an image has been devised. The primary advantage of the method is that without substantially degrading the accuracy of the end result, it reduces the amount of information that must be processed and thus reduces the amount of circuitry needed to perform the Laplacian-of- Gaussian (LOG) operation. Some background information is necessary to place the method in context. The method is intended for application to the LOG part of a process of real-time digital filtering of digitized video data that represent brightnesses in pixels in a square array. The particular filtering process of interest is one that converts pixel brightnesses to binary form, thereby reducing the amount of information that must be performed in subsequent correlation processing (e.g., correlations between images in a stereoscopic pair for determining distances or correlations between successive frames of the same image for detecting motions). The Laplacian is often included in the filtering process because it emphasizes edges and textures, while the Gaussian is often included because it smooths out noise that might not be consistent between left and right images or between successive frames of the same image.
India creates social marketing organization.
1984-01-01
India, in a major policy shift toward reversible birth controls methods, will form a new organization to promote private sector contraceptive sales. The government, through a recently signed agreement with the Agency for International Development (AID), plans to establish a private nonprofit Contraceptive Marketing Organization (CMO) in fiscal year 1984. This momentous move marks a full circle return to a 1969 proposal by AID and Ford Foundation consultants. Funded at about $500 million over a 7 year period, the CMO will function as a semi-autonomous entity run by a board of governors representing government and such public and public sectors as health, communications, management, manufacturing, marketing, advertising, and market research. According to the agreement called the India Family Planning Communications and Marketing Plan, the CMO's activities will cover procurement and distribution of condoms, oral contraceptives (OCs), and other yet to be determined contraceptive methods. Of the $500 million in funds, the government of India has pledged 2/3, AID roughly $50 million in grants and loans, with the balance expected from such sources as the UN Fund for Population Activities. The CMO's goal is a marked increase in contraceptive use by married couples of reproductive age from the current 6% rate to 20% by 1990. As of 1982, India has 122 million such couples, with 1% purchasing commercial products, 2% buying Nirodh Marketing Program condoms and 3% relying on free government contraceptives. Besides creating the CMO, the India/AID pact outlines intensified public sector family planning promotions and activities. Some Indian health experts believe the government's decision to expand social marketing's role rests with a significant decade long decline in the popularity of such permanent birth control measures as vasectomy and tubal ligation.
Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling
Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya
2014-06-01
We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.
Evaluating alternate discrete outcome frameworks for modeling crash injury severity.
Yasmin, Shamsunnahar; Eluru, Naveen
2013-10-01
This paper focuses on the relevance of alternate discrete outcome frameworks for modeling driver injury severity. The study empirically compares the ordered response and unordered response models in the context of driver injury severity in traffic crashes. The alternative modeling approaches considered for the comparison exercise include: for the ordered response framework-ordered logit (OL), generalized ordered logit (GOL), mixed generalized ordered logit (MGOL) and for the unordered response framework-multinomial logit (MNL), nested logit (NL), ordered generalized extreme value logit (OGEV) and mixed multinomial logit (MMNL) model. A host of comparison metrics are computed to evaluate the performance of these alternative models. The study provides a comprehensive comparison exercise of the performance of ordered and unordered response models for examining the impact of exogenous factors on driver injury severity. The research also explores the effect of potential underreporting on alternative frameworks by artificially creating an underreported data sample from the driver injury severity sample. The empirical analysis is based on the 2010 General Estimates System (GES) data base-a nationally representative sample of road crashes collected and compiled from about 60 jurisdictions across the United States. The performance of the alternative frameworks are examined in the context of model estimation and validation (at the aggregate and disaggregate level). Further, the performance of the model frameworks in the presence of underreporting is explored, with and without corrections to the estimates. The results from these extensive analyses point toward the emergence of the GOL framework (MGOL) as a strong competitor to the MMNL model in modeling driver injury severity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Parallel discrete vortex methods for viscous flow simulation
Takeda, Kenji
In this thesis a parallel discrete vortex method is developed in order to investigate the long-time behaviour of bluff body wakes. The method is based on inviscid theory, and its extension to include viscous effects is a far from trivial problem. In this work four grid-free viscous models are directly compared to assess their accuracy and efficiency. The random walk, diffusion velocity, corrected core-spreading and vorticity redistribution methods are compared for simulating unbounded fluid flows, and for flows past an impulsively started cylinder at Reynolds numbers between 550 and 9500. The code uses a common core, so that the only free parameters are those directly related to the viscous models. The vorticity redistribution method encompasses all of the advantages of a purely Lagrangian method and incorporates a dynamic regridding scheme to maintain accurate discretisation of the vorticity field. This is used to simulate long-time flow past an impulsively started cylinder for Reynolds numbers 100, 150 and 1000. The code is fully parallel and achieves good speedup on both commodity and proprietary supercomputer systems. At Reynolds numbers below 150 the breakdown of the primary vortex street has been simulated. Results reveal a merging process, causing relaxation to a parallel shear flow. This itself sheds vortices, creating a secondary wake of increased wavelength. At Reynolds number 1000 the cylinder wake becomes chaotic, forming distinct vortex couples. These couples self-convect and can travel upstream. This has a destabilising effect on the vortex street, inducing merging, formation of tripolar and quadrupolar structures and, ultimately, spontaneous ejection of vortex couples upstream of the initial disturbance.
RECONFIGURABLE CONTROL SYSTEM WITH DISCRETE-TIME CONTROLLERS
Directory of Open Access Journals (Sweden)
A. G. Strizhnev
2015-01-01
Full Text Available The paper considers a synthesis problem for automatic control systems, which operate in various modes, for example, tracking step-wise effects and slowly changing input signals. Generally, one controller cannot ensure the required qualitative characteristics in all operational modes. One of the methods to solve this problem is to create a reconfigurable control system. The authors propose a reconfigurable control system with two discrete-time controllers. The first one is placed in series with the forward path and the second one is connected in parallel with the reverse path having additional gain and unity feedback. Such system structure is characterized by its simplicity and qualitative operational ability to track step-wise and sinusoidal inputs with different amplitudes.The paper presents a developed block diagram of the reconfigurable system and describes its operational principle. Three various plants have been chosen with the purpose to check the operation of the system. Digital controllers have been selected and their parameters have been determined in accordance with the requirements to qualitative operational characteristics of the system. Mathematical modeling has been executed in order to check the operation of the proposed system with various plants and digital controllers. The modeling confirms good –speed performance of the automatic control system while tracking stepwise signals, provision of minimum dynamic error for the given controllers and time delay while tracking harmonic signals with various amplitudes. The obtained results have been successfully tested and can be used for development of automatic control systems that contain other plants and digital controllers, if there are various and occasionally contradictory requirements to their operational quality.
Airborne Lidar: Advances in Discrete Return Technology for 3D Vegetation Mapping
Directory of Open Access Journals (Sweden)
Valerie Ussyshkin
2011-02-01
Full Text Available Conventional discrete return airborne lidar systems, used in the commercial sector for efficient generation of high quality spatial data, have been considered for the past decade to be an ideal choice for various mapping applications. Unlike two-dimensional aerial imagery, the elevation component of airborne lidar data provides the ability to represent vertical structure details with very high precision, which is an advantage for many lidar applications focusing on the analysis of elevated features such as 3D vegetation mapping. However, the use of conventional airborne discrete return lidar systems for some of these applications has often been limited, mostly due to relatively coarse vertical resolution and insufficient number of multiple measurements in vertical domain. For this reason, full waveform airborne sensors providing more detailed representation of target vertical structure have often been considered as a preferable choice in some areas of 3D vegetation mapping application, such as forestry research. This paper presents an overview of the specific features of airborne lidar technology concerning 3D mapping applications, particularly vegetation mapping. Certain key performance characteristics of lidar sensors important for the quality of vegetation mapping are discussed and illustrated by the advanced capabilities of the ALTM-Orion, a new discrete return sensor manufactured by Optech Incorporated. It is demonstrated that advanced discrete return sensors with enhanced 3D mapping capabilities can produce data of enhanced quality, which can represent complex structures of vegetation targets at the level of details equivalent in some aspects to the content of full waveform data. It is also shown that recent advances in conventional airborne lidar technology bear the potential to create a new application niche, where high quality dense point clouds, enhanced by fully recorded intensity for multiple returns, may provide sufficient
Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter
Labra, Carlos; Rojek, Jerzy; Oñate, Eugenio
2017-03-01
This paper presents advanced computer simulation of rock cutting process typical for excavation works in civil engineering. Theoretical formulation of the hybrid discrete/finite element model has been presented. The discrete and finite element methods have been used in different subdomains of a rock sample according to expected material behaviour, the part which is fractured and damaged during cutting is discretized with the discrete elements while the other part is treated as a continuous body and it is modelled using the finite element method. In this way, an optimum model is created, enabling a proper representation of the physical phenomena during cutting and efficient numerical computation. The model has been applied to simulation of the laboratory test of rock cutting with a single TBM (tunnel boring machine) disc cutter. The micromechanical parameters have been determined using the dimensionless relationships between micro- and macroscopic parameters. A number of numerical simulations of the LCM test in the unrelieved and relieved cutting modes have been performed. Numerical results have been compared with available data from in-situ measurements in a real TBM as well as with the theoretical predictions showing quite a good agreement. The numerical model has provided a new insight into the cutting mechanism enabling us to investigate the stress and pressure distribution at the tool-rock interaction. Sensitivity analysis of rock cutting performed for different parameters including disc geometry, cutting velocity, disc penetration and spacing has shown that the presented numerical model is a suitable tool for the design and optimization of rock cutting process.
Directory of Open Access Journals (Sweden)
M. P. Menguc
2011-09-01
Full Text Available We embark on this preliminary study of the suitability of the discrete dipole approximation with surface interaction (DDA-SI method to model electric field scattering from noble metal nano-structures on dielectric substrates. The refractive index of noble metals, particularly due to their high imaginary components, require smaller lattice spacings and are especially sensitive to the shape integrity and the volume of the dipole model. The results of DDA-SI method are validated against those of the well-established finite element method (FEM and the finite difference time domain (FDTD method.
An integrable semi-discretization of the Boussinesq equation
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yingnan, E-mail: ynzhang@njnu.edu.cn [Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu (China); Tian, Lixin, E-mail: tianlixin@njnu.edu.cn [Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu (China); Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu (China)
2016-10-23
Highlights: • A new integrable semi-discretization of the Boussinesq equation is present. • A Bäcklund transformation and a Lax pair for the differential-difference system is derived by using Hirota's bilinear method. • The soliton solutions of 'good' Boussinesq equation and numerical algorithms are investigated. - Abstract: In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the ‘time’ variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of ‘good’ Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.
Fast and Accurate Learning When Making Discrete Numerical Estimates.
Directory of Open Access Journals (Sweden)
Adam N Sanborn
2016-04-01
Full Text Available Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room. While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates.
Microrobotics surveillance: discrete and continuous starbot
Mayyas, M.; Lee, W. H.; Stephanou, Harry
2011-05-01
This paper focuses on robotic technologies and operational capabilities of multiscale robots that demonstrate a unique class of Microsystems with the ability to navigate diverse terrains and environments. We introduce two classes of robots which combine multiple locomotion modalities including centimeter scale Discrete and Continuous robots which are referred here by D-Starbot and C-Starbot, respectively. The first generation of the robots were obtained to allow rapid shape reconfiguration and flipping recovery to accomplish tasks such as lowering and raising to dexterously go over and under obstacles, deform to roll over hostile location as well as squeezing through opening smaller than its sizes. The D-Starbot is based on novel mechanisms that allow shape reconfiguration to accomplish tasks such as lowering and raising to go over and under obstacles as well as squeezing through small voids. The CStarbot is a new class of foldable robots that is generally designed to provide a high degree of manufacturability. It consists of flexible structures that are built out of composite laminates with embedded microsystems. The design concept of C-Starbot are suitable for robots that could emulate and combine multiple locomotion modalities such as walking, running, crawling, gliding, clinging, climbing, flipping and jumping. The first generation of C-Starbot has centimeter scale structure consisting of flexible flaps, each being coupled with muscle-like mechanism. Untethered D-Starbot designs are prototyped and tested for multifunctional locomotion capabilities in indoor and outdoor environments. We present foldable mechanism and initial prototypes of C-Starbot capable of hopping and squeezing at different environments. The kinematic performance of flexible robots is thoroughly presented using the large elastic deflection of a single arm which is actuated by pulling force acting at variable angles and under payload and friction forces.
Creating Shared Value by Combatting Corruption
National Research Council Canada - National Science Library
Philip M Nichols
2016-01-01
Creating Shared Value The creating shared value strategy is similar to corporate social responsibility and to social impact in that it focusses on the intersection between business and the rest of society...
Anomalous discrete symmetries in three dimensions and group cohomology.
Kapustin, Anton; Thorngren, Ryan
2014-06-13
We study 't Hooft anomalies for a global discrete internal symmetry G. We construct examples of bosonic field theories in three dimensions with a nonvanishing 't Hooft anomaly for a discrete global symmetry. We also construct field theories in three dimensions with a global discrete internal symmetry G(1) × G(2) such that gauging G(1) necessarily breaks G(2) and vice versa. This is analogous to the Adler-Bell-Jackiw axial anomaly in four dimensions and parity anomaly in three dimensions.
Geometry of the Borel - de Siebenthal discrete series
DEFF Research Database (Denmark)
Ørsted, Bent; Wolf, Joseph A
Let G0 be a connected, simply connected real simple Lie group. Suppose that G0 has a compact Cartan subgroup T0, so it has discrete series representations. Relative to T0 there is a distinguished positive root system + for which there is a unique noncompact simple root , the “Borel – de Siebenthal...... system”. There is a lot of fascinating geometry associated to the corresponding “Borel – de Siebenthal discrete series” representations of G0. In this paper we explore some of those geometric aspects and we work out the K0–spectra of the Borel – de Siebenthal discrete series representations. This has...
A curvature theory for discrete surfaces based on mesh parallelity
Bobenko, Alexander Ivanovich
2009-12-18
We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces\\' areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature. We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards. © 2009 Springer-Verlag.
Discrete-time model reduction in limited frequency ranges
Horta, Lucas G.; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A mathematical formulation for model reduction of discrete time systems such that the reduced order model represents the system in a particular frequency range is discussed. The algorithm transforms the full order system into balanced coordinates using frequency weighted discrete controllability and observability grammians. In this form a criterion is derived to guide truncation of states based on their contribution to the frequency range of interest. Minimization of the criterion is accomplished without need for numerical optimization. Balancing requires the computation of discrete frequency weighted grammians. Close form solutions for the computation of frequency weighted grammians are developed. Numerical examples are discussed to demonstrate the algorithm.
Discretizing the transcritical and pitchfork bifurcations – conjugacy results
Lóczi, Lajos
2015-01-07
© 2015 Taylor & Francis. We present two case studies in one-dimensional dynamics concerning the discretization of transcritical (TC) and pitchfork (PF) bifurcations. In the vicinity of a TC or PF bifurcation point and under some natural assumptions on the one-step discretization method of order (Formula presented.) , we show that the time- (Formula presented.) exact and the step-size- (Formula presented.) discretized dynamics are topologically equivalent by constructing a two-parameter family of conjugacies in each case. As a main result, we prove that the constructed conjugacy maps are (Formula presented.) -close to the identity and these estimates are optimal.
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Discrete linear canonical transform computation by adaptive method.
Zhang, Feng; Tao, Ran; Wang, Yue
2013-07-29
The linear canonical transform (LCT) describes the effect of quadratic phase systems on a wavefield and generalizes many optical transforms. In this paper, the computation method for the discrete LCT using the adaptive least-mean-square (LMS) algorithm is presented. The computation approaches of the block-based discrete LCT and the stream-based discrete LCT using the LMS algorithm are derived, and the implementation structures of these approaches by the adaptive filter system are considered. The proposed computation approaches have the inherent parallel structures which make them suitable for efficient VLSI implementations, and are robust to the propagation of possible errors in the computation process.
Multilevel Fast Multipole Method for Higher Order Discretizations
DEFF Research Database (Denmark)
Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik
2014-01-01
The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower...... order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined....
Gauge origin of discrete flavor symmetries in heterotic orbifolds
Directory of Open Access Journals (Sweden)
Florian Beye
2014-09-01
Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.
Implementing the Standards. Teaching Discrete Mathematics in Grades 7-12.
Hart, Eric W.; And Others
1990-01-01
Discrete mathematics are defined briefly. A course in discrete mathematics for high school students and teaching discrete mathematics in grades 7 and 8 including finite differences, recursion, and graph theory are discussed. (CW)
Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation
DEFF Research Database (Denmark)
Rasmussen, Kim; Henning, D.; Gabriel, H.
1996-01-01
We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interes...
PREFACE: DISCRETE 2012 - Third Symposium on Prospects in the Physics of Discrete Symmetries
Branco, G. C.; Emmanuel-Costa, D.; González Felipe, R.; Joaquim, F. R.; Lavoura, L.; Palomares-Ruiz, S.; Rebelo, M. N.; Romão, J. C.; Silva, J. P.
2013-07-01
The Third Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2012) was held at Instituto Superior Técnico, Portugal, from 3-7 December 2012 and was organised by Centro de Física Teórica de Partículas (CFTP) of Instituto Superior Técnico, Universidade Técnica de Lisboa. This is the sequel to the Symposia that was successfully organised in Valéncia in 2008 and in Rome in 2010. The topics covered included: T, C, P, CP symmetries CPT symmetry, decoherence, Lorentz symmetry breaking Discrete symmetries and models of flavour mixing Baryogenesis, leptogenesis Neutrino physics Electroweak symmetry breaking and physics beyond the Standard Model Accidental symmetries (B, L conservation) Experimental prospects at LHC Dark matter searches Super flavour factories, and other new experimental facilities The Symposium was organised in plenary sessions with a total of 24 invited talks, and parallel sessions with a total of 70 talks, including both invited and selected contributions from the submitted abstracts. The speakers of the plenary sessions were: Ignatios Antoniadis, Abdelhak Djouadi, Rabindra Mohapatra, André Rubbia, Alexei Yu Smirnov, José Bernabéu, Marco Cirelli, Apostolos Pilaftsis, Antonio Di Domenico, Robertus Potting, João Varela, Frank Rathmann, Michele Gallinaro, Dumitru Ghilencea, Neville Harnew, John Walsh, Patrícia Conde Muíño, Juan Aguilar-Saavedra, Nick Mavromatos, Ulrich Nierste, Ferruccio Feruglio, Vasiliki Mitsou, Masanori Yamauchi, and Marcello Giorgi. The Symposium was attended by about 140 participants. Among the social events, there was a social dinner in the historical Associação Comercial de Lisboa, which included a musical performance of 'Fado', the traditional music from Lisbon. The next symposium of the series will be organised by King's College, London University, UK, from 1-5 December 2014. Guest Editors G C Branco, D Emmanuel-Costa, R González Felipe, F R Joaquim, L Lavoura, S Palomares-Ruiz, M N Rebelo, J C
Discrete Element Modeling of Complex Granular Flows
Movshovitz, N.; Asphaug, E. I.
2010-12-01
Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes
Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement
Energy Technology Data Exchange (ETDEWEB)
Dershowitz, William S.; Curran, Brendan; Einstein, Herbert; LaPointe, Paul; Shuttle, Dawn; Klise, Kate
2002-07-26
The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.
Implementation of quantum and classical discrete fractional Fourier transforms
Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander
2016-01-01
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089
On periodic orbits in discrete-time cascade systems
Directory of Open Access Journals (Sweden)
Huimin Li
2006-01-01
Full Text Available We present some results on existence, minimum period, number of periodic orbits, and stability of periodic orbits in discrete-time cascade systems. Some examples are presented to illustrate these results.
Random discrete Morse theory and a new library of triangulations
DEFF Research Database (Denmark)
Benedetti, Bruno; Lutz, Frank Hagen
2014-01-01
We introduce random discrete Morse theory as a computational scheme to measure the complexity of a triangulation. The idea is to try to quantify the frequency of discrete Morse matchings with few critical cells. Our measure will depend on the topology of the space, but also on how nicely the space...... is triangulated. The scheme we propose looks for optimal discrete Morse functions with an elementary random heuristic. Despite its naiveté, this approach turns out to be very successful even in the case of huge inputs. In our view, the existing libraries of examples in computational topology are “too easy......” for testing algorithms based on discrete Morse theory. We propose a new library containing more complicated (and thus more meaningful) test examples....
Existence for a class of discrete hyperbolic problems
Directory of Open Access Journals (Sweden)
Luca Rodica
2006-01-01
Full Text Available We investigate the existence and uniqueness of solutions to a class of discrete hyperbolic systems with some nonlinear extreme conditions and initial data, in a real Hilbert space.
Models for the Discrete Berth Allocation Problem: A Computational Comparison
DEFF Research Database (Denmark)
Buhrkal, Katja; Zuglian, Sara; Røpke, Stefan
In this paper we consider the problem of allocating arriving ships to discrete berth locations at container terminals. This problem is recognized as one of the most important processes for any container terminal. We review and describe the three main models of the discrete dynamic berth allocatio...... problem, improve the performance of one model, and, through extensive numerical tests, compare all models from a computational perspective. The results indicate that a generalized setpartitioning model outperforms all other existing models.......In this paper we consider the problem of allocating arriving ships to discrete berth locations at container terminals. This problem is recognized as one of the most important processes for any container terminal. We review and describe the three main models of the discrete dynamic berth allocation...
General optical discrete z transform: design and application.
Ngo, Nam Quoc
2016-12-20
This paper presents a generalization of the discrete z transform algorithm. It is shown that the GOD-ZT algorithm is a generalization of several important conventional discrete transforms. Based on the GOD-ZT algorithm, a tunable general optical discrete z transform (GOD-ZT) processor is synthesized using the silica-based finite impulse response transversal filter. To demonstrate the effectiveness of the method, the design and simulation of a tunable optical discrete Fourier transform (ODFT) processor as a special case of the synthesized GOD-ZT processor is presented. It is also shown that the ODFT processor can function as a real-time optical spectrum analyzer. The tunable ODFT has an important potential application as a tunable optical demultiplexer at the receiver end of an optical orthogonal frequency-division multiplexing transmission system.
On the physical relevance of the discrete Fourier transform
CSIR Research Space (South Africa)
Greben, JM
1991-11-01
Full Text Available This paper originated from the author's dissatisfaction with the way the discrete Fourier transform is usually presented in the literature. Although mathematically correct, the physical meaning of the common representation is unsatisfactory...
On utility maximization in discrete-time financial market models
Miklos Rasonyi; Lukasz Stettner
2005-01-01
We consider a discrete-time financial market model with finite time horizon and give conditions which guarantee the existence of an optimal strategy for the problem of maximizing expected terminal utility. Equivalent martingale measures are constructed using optimal strategies.
Existence results for anisotropic discrete boundary value problems
Directory of Open Access Journals (Sweden)
Avci Avci
2016-06-01
Full Text Available In this article, we prove the existence of nontrivial weak solutions for a class of discrete boundary value problems. The main tools used here are the variational principle and critical point theory.
Discrete calculus applied analysis on graphs for computational science
Grady, Leo J
2010-01-01
This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.
Discrete-to-continuous transition in quantum phase estimation
Rządkowski, Wojciech; Demkowicz-Dobrzański, Rafał
2017-09-01
We analyze the problem of quantum phase estimation in which the set of allowed phases forms a discrete N -element subset of the whole [0 ,2 π ] interval, φn=2 π n /N , n =0 ,⋯,N -1 , and study the discrete-to-continuous transition N →∞ for various cost functions as well as the mutual information. We also analyze the relation between the problems of phase discrimination and estimation by considering a step cost function of a given width σ around the true estimated value. We show that in general a direct application of the theory of covariant measurements for a discrete subgroup of the U(1 ) group leads to suboptimal strategies due to an implicit requirement of estimating only the phases that appear in the prior distribution. We develop the theory of subcovariant measurements to remedy this situation and demonstrate truly optimal estimation strategies when performing a transition from discrete to continuous phase estimation.
Interference effects in learning similar sequences of discrete movements
Koedijker, J.M.; Oudejans, R.R.D.; Beek, P.J.
2010-01-01
Three experiments were conducted to examine proactive and retroactive interference effects in learning two similar sequences of discrete movements. In each experiment, the participants in the experimental group practiced two movement sequences on consecutive days (1 on each day, order
Implementation of quantum and classical discrete fractional Fourier transforms.
Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander
2016-03-23
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.
Implementation of quantum and classical discrete fractional Fourier transforms
Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander
2016-03-01
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.
A Discretization of the Nonholonomic Chaplygin Sphere Problem
Directory of Open Access Journals (Sweden)
Yuri N. Fedorov
2007-03-01
Full Text Available The celebrated problem of a non-homogeneous sphere rolling over a horizontal plane was proved to be integrable and was reduced to quadratures by Chaplygin. Applying the formalism of variational integrators (discrete Lagrangian systems with nonholonomic constraints and introducing suitable discrete constraints, we construct a discretization of the n-dimensional generalization of the Chaplygin sphere problem, which preserves the same first integrals as the continuous model, except the energy. We then study the discretization of the classical 3-dimensional problem for a class of special initial conditions, when an analog of the energy integral does exist and the corresponding map is given by an addition law on elliptic curves. The existence of the invariant measure in this case is also discussed.
In Superintendent Searches, Discretion Is the Better Part of Valor.
Chopra, Raj K.
1989-01-01
Confidentiality during a superintendent search is essential in order to attract the best candidates. Board members should use confidentiality as a selling tool; use discretion during onsite visits; and make their decision quickly. (MLF)
Cryptanalysis of a discrete-time synchronous chaotic encryption system
Energy Technology Data Exchange (ETDEWEB)
Arroyo, David [Instituto de Fisica Aplicada, Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain)], E-mail: david.arroyo@iec.csic.es; Alvarez, Gonzalo [Instituto de Fisica Aplicada, Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain)], E-mail: gonzalo@iec.csic.es; Li Shujun [FernUniversitaet in Hagen, Lehrgebiet Informationstechnik, Universitaetsstrasse 27, 58084 Hagen (Germany); Li Chengqing [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Nunez, Juana [Instituto de Fisica Aplicada, Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain)
2008-02-11
Recently a chaotic cryptosystem based on discrete-time synchronization has been proposed. Some weaknesses of that new encryption system are addressed and exploited in order to successfully cryptanalyze the system.
Discrete Element Modeling of Dike-induced Deformation
Wyrick, D. Y.; Smart, K. J.
2009-03-01
Discrete element models of dike-induced deformation suggest the most distinctive topographic signature of an underlying dike are parallel ridges formed by contractional folding bounding a trough rather than an extensional fault-bounded graben.
PREFACE: DISCRETE '08: Symposium on Prospects in the Physics of Discrete Symmetries
Bernabéu, José; Botella, Francisco J.; Mavromatos, Nick E.; Mitsou, Vasiliki A.
2009-07-01
The Symposium DISCRETE'08 on Prospects in the Physics of Discrete Symmetries was held at the Instituto de Física Corpuscular (IFIC) in Valencia, Spain from 11 to 16 December 2008. IFIC is a joint centre of the Consejo Superior de Investigaciones Científicas (CSIC) and the Universitat de València (UVEG). The aim of the Symposium was to bring together experts on the field of Discrete Symmetries in order to discuss its prospects on the eve of the LHC era. The general state of the art for CP, T and CPT symmetries was reviewed and their interplay with Baryogenesis, Early Cosmology, Quantum Gravity, String Theory and the Dark Sector of the Universe was emphasised. Connections with physics beyond the Standard Model, in particular Supersymmetry, were investigated. Experimental implications in current and proposed facilities received particular attention. The scientific programme consisted of 24 invited Plenary Talks and 93 contributions selected among the submitted papers. Young researchers, in particular, were encouraged to submit an abstract. The Special Lecture on ''CERN and the Future of Particle Physics'', given by the CERN Director General Rolf-Dieter Heuer to close the Symposium, was of particular relevance. On the last day of the Symposium, an open meeting took place between Professor Heuer and the Spanish community of particle physics. The Symposium covered recent developments on the subject of Discrete Symmetries in the following topics: Quantum Vacuum Entanglement, Symmetrisation Principle CPT in Quantum Gravity and String Theory, Decoherence, Lorentz Violation Ultra-high-energy Messengers Time Reversal CP violation in the SM and beyond Neutrino Mass, Mixing and CP Baryogenesis, Leptogenesis Family Symmetries Supersymmetry and other searches Experimental Prospects: LHC, Super-B Factories, DAΦNE-2, Neutrino Beams The excellence of most of the presentations during the Symposium was pointed out by many participants. The broad spectrum of topics under the
Existence and multiplicity of solutions for nonlinear discrete inclusions
Directory of Open Access Journals (Sweden)
Nicu Marcu
2012-11-01
Full Text Available A non-smooth abstract result is used for proving the existence of at least one nontrivial solution of an algebraic discrete inclusion. Successively, a multiplicity theorem for the same class of discrete problems is also established by using a locally Lipschitz continuous version of the famous Brezis-Nirenberg theoretical result in presence of splitting. Some applications to tridiagonal, fourth-order and partial difference inclusions are pointed out.
Approximate Controllability of Abstract Discrete-Time Systems
Directory of Open Access Journals (Sweden)
Cuevas Claudio
2010-01-01
Full Text Available Approximate controllability for semilinear abstract discrete-time systems is considered. Specifically, we consider the semilinear discrete-time system , , where are bounded linear operators acting on a Hilbert space , are -valued bounded linear operators defined on a Hilbert space , and is a nonlinear function. Assuming appropriate conditions, we will show that the approximate controllability of the associated linear system implies the approximate controllability of the semilinear system.
Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement
Energy Technology Data Exchange (ETDEWEB)
Dershowitz, William S.; Cladouhos, Trenton
2001-09-06
This progress report describes activities during the period January 1, 1999 to June 30, 1999. Work was carried out on 21 tasks. The major activity during the reporting period was the development and preliminary application of discrete fracture network (DFN) models for Stoney Point, South Oregon Basin, and North Oregon Basins project study sites. In addition, research was carried out on analysis algorithms for discrete future orientation.
Riesz Riemann-Liouville difference on discrete domains
Wu, Guo-Cheng; Baleanu, Dumitru; Xie, He-Ping
2016-08-01
A Riesz difference is defined by the use of the Riemann-Liouville differences on time scales. Then the definition is considered for discrete fractional modelling. A lattice fractional equation method is proposed among which the space variable is defined on discrete domains. Finite memory effects are introduced into the lattice system and the numerical formulae are given. Adomian decomposition method is adopted to solve the fractional partial difference equations numerically.
Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity
2015-08-13
AFRL-AFOSR-VA-TR-2015-0232 Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity Arash Yavari GEORGIA TECH RESEARCH...01-06-2012 to 31-05-2015 4. TITLE AND SUBTITLE Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity 5a. CONTRACT...STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT We introduced a smooth complex for nonlinear elasticity
Discrete Variational Derivative Methods for the EPDiff equation
LARSSON, STIG; Matsuo, Takayasu; Modin, Klas; Molteni, Matteo
2016-01-01
The aim of this paper is the derivation of structure preserving schemes for the solution of the EPDiff equation, with particular emphasis on the two dimensional case. We develop three different schemes based on the Discrete Variational Derivative Method (DVDM) on a rectangular domain discretized with a regular, structured, orthogonal grid. We present numerical experiments to support our claims: we investigate the preservation of energy and linear momenta, the reversibility, and the empirical ...
Models for the discrete berth allocation problem: A computational comparison
DEFF Research Database (Denmark)
Buhrkal, Katja Frederik; Zuglian, Sara; Røpke, Stefan
2011-01-01
In this paper we consider the problem of allocating arriving ships to discrete berth locations at container terminals. This problem is recognized as one of the most important processes for any container terminal. We review and describe three main models of the discrete dynamic berth allocation...... problem, improve the performance of one model, and, through extensive numerical tests, compare all models from a computational perspective. The results indicate that a generalized set-partitioning model outperforms all other existing models....
Extinction in Two-Species Nonlinear Discrete Competitive System
Directory of Open Access Journals (Sweden)
Liqiong Pu
2016-01-01
Full Text Available We propose a nonlinear discrete system of two species with the effect of toxic substances. By constructing a suitable Lyapunov-type function, we obtain the sufficient conditions which guarantee that one of the components will be driven to extinction while the other will be globally attractive with any positive solution of a discrete equation. Two examples together with their numerical simulations illustrate the feasibility of our main results. The results not only improve but also complement some known results.
Classification of actions of discrete Kac algebras on injective factors
Masuda, Toshihiko
2017-01-01
The authors study two kinds of actions of a discrete amenable Kac algebra. The first one is an action whose modular part is normal. They construct a new invariant which generalizes a characteristic invariant for a discrete group action, and we will present a complete classification. The second is a centrally free action. By constructing a Rohlin tower in an asymptotic centralizer, the authors show that the Connes-Takesaki module is a complete invariant.
Discrete optimization in architecture building envelope
Zawidzki, Machi
2017-01-01
This book explores the extremely modular systems that meet two criteria: they allow the creation of structurally sound free-form structures, and they are comprised of as few types of modules as possible. Divided into two parts, it presents Pipe-Z (PZ) and Truss-Z (TZ) systems. PZ is more fundamental and forms spatial mathematical knots by assembling one type of unit (PZM). The shape of PZ is controlled by relative twists of a sequence of congruent PZMs. TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. TZ structures are composed of four variations of a single basic unit subjected to affine transformations (mirror reflection, rotation and combination of both). .
Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.
Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao
2015-04-01
Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discrete Pseudo-SINR-Balancing Nonlinear Recurrent System
Directory of Open Access Journals (Sweden)
Zekeriya Uykan
2013-01-01
system and extend the results in Uykan (2009, which are for autonomous linear systems, to nonlinear case. The proposed system can be viewed as a discrete-time realization of a recently proposed continuous-time network in Uykan (2013. In this paper, we focus on discrete-time analysis and provide various novel key results concerning the discrete-time dynamics of the proposed system, some of which are as follows: (i the proposed system is shown to be stable in synchronous and asynchronous work mode in discrete time; (ii a novel concept called Pseudo-SINR (pseudo-signal-to-interference-noise ratio is introduced for discrete-time nonlinear systems; (iii it is shown that when the system states approach an equilibrium point, the instantaneous Pseudo-SINRs are balanced; that is, they are equal to a target value. The simulation results confirm the novel results presented and show the effectiveness of the proposed discrete-time network as applied to various associative memory systems and clustering problems.
Creating a Systems Engineering Distance Learning Experience
2014-12-01
conveying basic material where there are discrete right and wrong answers, be it chemical formulas, math problems, proper grammar for English and...it, by trading with other units, the Greeks and the local businessmen. Hawkeye calls it the black market. Honestly, I know I am trading for some of...not get them sometimes. Major Houlihan was complaining that all we get is orange juice, so we traded some fresh vegetables last week to the Greeks
Introduction to COFFE: The Next-Generation HPCMP CREATE-AV CFD Solver
Glasby, Ryan S.; Erwin, J. Taylor; Stefanski, Douglas L.; Allmaras, Steven R.; Galbraith, Marshall C.; Anderson, W. Kyle; Nichols, Robert H.
2016-01-01
HPCMP CREATE-AV Conservative Field Finite Element (COFFE) is a modular, extensible, robust numerical solver for the Navier-Stokes equations that invokes modularity and extensibility from its first principles. COFFE implores a flexible, class-based hierarchy that provides a modular approach consisting of discretization, physics, parallelization, and linear algebra components. These components are developed with modern software engineering principles to ensure ease of uptake from a user's or developer's perspective. The Streamwise Upwind/Petrov-Galerkin (SU/PG) method is utilized to discretize the compressible Reynolds-Averaged Navier-Stokes (RANS) equations tightly coupled with a variety of turbulence models. The mathematics and the philosophy of the methodology that makes up COFFE are presented.
Energy Technology Data Exchange (ETDEWEB)
Deluzarche, R.
2004-12-15
In this study, a discrete numerical model for rock-fill is built up and validated. This model is based upon the definition of bidimensional clusters that can break in different ways. The resistance of the inner bonds of the clusters are calibrated by reproducing the size-dependant resistance of rock blocks submitted to crushing tests. Numerical simulations of laboratory tests are performed on samples made of the different clusters. Tests on crushable clusters emphasize the utmost importance of particle crushing on the behaviour. A dam is modelled. The role of the placed-rock face on the stabilisation is underlined. The deformation of the dam during reservoir filling, as well as its good seismic behaviour is well reproduced by the model. The model makes it possible to show the influence of particle breakage on the settlements. (author)
Creating the Environment for Continuous Competition
2012-09-01
The Limits of Competition in Defense Acquisition Defense Acquisition University Research Symposium, September 2012 CREATING THE ENVIRONMENT FOR...3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Creating the Environment for Continuous Competition 5a. CONTRACT NUMBER 5b...Information Technology (IT) Box A Primer. Retrieved from http: www.dau.mil/IT_Box_Primer_RDT_02142012.pptx. Creating the Environment for Continuous
Institutionalism and Commissions Executive Discretion: an Empirical Analysis
Directory of Open Access Journals (Sweden)
Fabio Franchino
1998-07-01
Full Text Available Theory: The adoption of EC secondary legislation can be analyzed from the perspective of agency theory whereby Member States and the Parliament delegate policy authority to the Commission and design ex-post control procedures (i.e. Comitology. Rational choice and sociological institutionalisms differ in their predictions on the way rules and norms affect the extent of executive discretion. Hypothesis: Three institutionalist hypotheses are tested. The rationalist one derives from a Bayesian game developed by the author. It posits that Commissions executive discretion in non amending secondary legislation is a function of: 1 formal legislative procedure, 2 information asymmetry and 3 distribution of principals preferences. A fourth variable, legislative instrument, is also included. The diluted rationalist hypothesis substitutes formal with informal procedure in one policy area. The socio-rational hypothesis adds two new variables, that is the opinions of the Parliament and the Economic and Social Committee. A final co-graduation test is conducted on whether more discretion leads to more stringent ex-post control. Methods: Given the bimodal error structure of the regression model, I have bootstrapped the regression coefficients and computed the 95% confidence intervals of the null hypothesis. Bootstrapping has also been used to test the role of the European Parliament, of opinions and the co-graduation between discretion and ex-post control. A stratified sample of non amending secondary legislation adopted from 1987 to 1993 has been drawn to test the hypotheses. Results: The diluted rationalist hypothesis is the most accurate. Information asymmetry, informal legislative procedures and legislative instruments are statistically and substantively relevant in explaining executive discretion. Distribution of preferences has weak explanatory power probably because of the lack of reliable data and appropriate measurement. The Parliament and opinions do
Process to create simulated lunar agglutinate particles
Gustafson, Robert J. (Inventor); Gustafson, Marty A. (Inventor); White, Brant C. (Inventor)
2011-01-01
A method of creating simulated agglutinate particles by applying a heat source sufficient to partially melt a raw material is provided. The raw material is preferably any lunar soil simulant, crushed mineral, mixture of crushed minerals, or similar material, and the heat source creates localized heating of the raw material.
ICT and Pragmatism: Creating sustainable Employment for ...
African Journals Online (AJOL)
Thus, unless there is effort to create self employment, this can galvanize unexpected revolution whose consequences will be very grave. The reading public will have to apply the advice provided in this article to create self employment. Key Words: e-commerce, online transaction, broadband stimulus, unemployment.
Creating Safe Spaces for Music Learning
Hendricks, Karin S.; Smith, Tawnya D.; Stanuch, Jennifer
2014-01-01
This article offers a practical model for fostering emotionally safe learning environments that instill in music students a positive sense of self-belief, freedom, and purpose. The authors examine the implications for music educators of creating effective learning environments and present recommendations for creating a safe space for learning,…
Distinct timing mechanisms produce discrete and continuous movements.
Directory of Open Access Journals (Sweden)
Raoul Huys
2008-04-01
Full Text Available The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems to accomplish varying behavioral functions such as speed constraints.
Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling
Hackett-Jones, Emily J.
2012-04-17
Conservation equations governed by a nonlocal interaction potential generate aggregates from an initial uniform distribution of particles. We address the evolution and formation of these aggregating steady states when the interaction potential has both attractive and repulsive singularities. Currently, no existence theory for such potentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse method and a discrete stochastic lattice approach, and formally show a connection between the two. Interesting aggregation patterns involving multiple peaks for a simple doubly singular attractive-repulsive potential are determined. For a swarming Morse potential, characteristic slow-fast dynamics in the scaled inverse energy is observed in the evolution to steady state in both the continuous and discrete approaches. The discrete approach is found to be remarkably robust to modifications in movement rules, related to the potential function. The comparable evolution dynamics and steady states of the discrete model with the continuum model suggest that the discrete stochastic approach is a promising way of probing aggregation patterns arising from two- and three-dimensional nonlocal interaction conservation equations. © 2012 American Physical Society.
Weight-lattice discretization of Weyl-orbit functions
Energy Technology Data Exchange (ETDEWEB)
Hrivnák, Jiří, E-mail: jiri.hrivnak@fjfi.cvut.cz, E-mail: walton@uleth.ca [Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, CZ-115 19 Prague (Czech Republic); Walton, Mark A., E-mail: jiri.hrivnak@fjfi.cvut.cz, E-mail: walton@uleth.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada)
2016-08-15
Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.
Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem
Directory of Open Access Journals (Sweden)
S Sarathambekai
2017-03-01
Full Text Available Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.
Discrete Space-Time: History and Recent Developments
Crouse, David
2017-01-01
Discussed in this work is the long history and debate of whether space and time are discrete or continuous. Starting from Zeno of Elea and progressing to Heisenberg and others, the issues with discrete space are discussed, including: Lorentz contraction (time dilation) of the ostensibly smallest spatial (temporal) interval, maintaining isotropy, violations of causality, and conservation of energy and momentum. It is shown that there are solutions to all these issues, such that discrete space is a viable model, yet the solution require strict non-absolute space (i.e., Mach's principle) and a re-analysis of the concept of measurement and the foundations of special relativity. In developing these solutions, the long forgotten but important debate between Albert Einstein and Henri Bergson concerning time will be discussed. Also discussed is the resolution to the Weyl tile argument against discrete space; however, the solution involves a modified version of the typical distance formula. One example effect of discrete space is then discussed, namely how it necessarily imposes order upon Wheeler's quantum foam, changing the foam into a gravity crystal and yielding crystalline properties of bandgaps, Brilluoin zones and negative inertial mass for astronomical bodies.
3D Discrete Element Model with 1 Million Particles: an Example of Hydro-fracturing
Liu, C.; Pollard, D. D.
2013-12-01
The Discrete Element Method (DEM) permits large relative motion and breakage of elements, and does not require re-meshing, for example as would the Finite Element Method. DEM has a wide range of applications in the fields of solid-earth geophysics, geomechanics, mining engineering, and structural geology. However, due to the computational cost, particle numbers of discrete element models are generally less than a few tens of thousands, which limits the applications. A new 3D DEM system 'MatDEM' can complete dynamic simulations of one million particles. The conversion formulas between particle parameters and model mechanical properties were derived, and the conversion of energy in DEM can be simulated. In a recent paper (Liu et al., 2013, JGR), the analytical solutions of elastic properties and failure modes of a 2D close-packed discrete element model were proposed. Based on these theoretical results, it is easy to create materials using DEM, which have similar mechanical properties to rock. Given the mechanical properties and state of stress, geologists and engineers can investigate the characteristics of rock deformation and failure under different conditions. MatDEM provides an alternative way to study the micro-macro relationships of rock and soil, and the evolution of geologic structures. As an example, MatDEM was used to investigate the generation and development of fluid driven fractures around a micro pore. The simulation result of fractures of an anisotropic 3D model, which includes 1 million particles, is demonstrated. Via parallel computing technology, MatDEM may handle tens of millions of particles in near future. Left: Fluid pressure is applied in the pore to generate fractures. Right: Simulation results (black segments represent fractures).
Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter
Directory of Open Access Journals (Sweden)
Enrique Vidal
2013-08-01
Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.
Bell-Curve Genetic Algorithm for Mixed Continuous and Discrete Optimization Problems
Kincaid, Rex K.; Griffith, Michelle; Sykes, Ruth; Sobieszczanski-Sobieski, Jaroslaw
2002-01-01
In this manuscript we have examined an extension of BCB that encompasses a mix of continuous and quasi-discrete, as well as truly-discrete applications. FVe began by testing two refinements to the discrete version of BCB. The testing of midpoint versus fitness (Tables 1 and 2) proved inconclusive. The testing of discrete normal tails versus standard mutation showed was conclusive and demonstrated that the discrete normal tails are better. Next, we implemented these refinements in a combined continuous and discrete BCB and compared the performance of two discrete distance on the hub problem. Here we found when "order does matter" it pays to take it into account.
Obstruction detection comparison of small-footprint full-waveform and discrete return lidar
Magruder, Lori A.; Neuenschwander, Amy L.; Marmillion, Scott P.; Tweddale, Scott A.
2010-04-01
Laser Radar, also referred to as lidar, has become widely available and is an established contributor to the military and intelligence community by providing precise elevation data using 3-dimensional measurements. The utilization of customized algorithms designed for lidar data exploitation provides the capability to determine corridors or gaps in areas of vegetation cover. These capabilities lend themselves as geospatial tools for mobility applications and tactical planning. This effort uses elevations derived from small-footprint (airborne) lidar surveys to create accurate surface models and corresponding canopy characterization maps. The canopy height models are based on elevation voxels above ground level and are used as input into a tree finding algorithm. Corridors under the canopy are then predicted using the obstruction identification technique and neighboring point characteristics. Path determination can also be performed using the obstruction maps and a modified A-star algorithm. A lidar survey over Camp Shelby, MS was chosen as the test case for the obstruction detection utilities as it provides fairly dense vegetation cover and interesting topographic features. The survey was completed using both a full-waveform lidar and a discrete return system which offers a coincident comparison of the obstruction methodology for differing data types. It is determined that the fullwaveform data provides a more complete and accurate assessment of the surface, the canopy and potential obstruction detection than the discrete return system.
Discrete event simulation tool for analysis of qualitative models of continuous processing systems
Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)
1990-01-01
An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.
Template-Guided Self-Assembly of Discrete Optoplasmonic Molecules and Extended Optoplasmonic Arrays
Directory of Open Access Journals (Sweden)
Reinhard Björn M.
2015-01-01
Full Text Available The integration of metallic and dielectric building blocks into optoplasmonic structures creates new electromagnetic systems in which plasmonic and photonic modes can interact in the near-, intermediate- and farfield. The morphology-dependent electromagnetic coupling between the different building blocks in these hybrid structures provides a multitude of opportunities for controlling electromagnetic fields in both spatial and frequency domain as well as for engineering the phase landscape and the local density of optical states. Control over any of these properties requires, however, rational fabrication approaches for well-defined metal-dielectric hybrid structures. Template-guided self-assembly is a versatile fabrication method capable of integrating metallic and dielectric components into discrete optoplasmonic structures, arrays, or metasurfaces. The structural flexibility provided by the approach is illustrated by two representative implementations of optoplasmonic materials discussed in this review. In optoplasmonic atoms or molecules optical microcavities (OMs serve as whispering gallery mode resonators that provide a discrete photonic mode spectrum to interact with plasmonic nanostructures contained in the evanescent fields of the OMs. In extended hetero-nanoparticle arrays in-plane scattered light induces geometry-dependent photonic resonances that mix with the localized surface plasmon resonances of the metal nanoparticles.We characterize the fundamental electromagnetic working principles underlying both optoplasmonic approaches and review the fabrication strategies implemented to realize them.
Phase Chaos and Multistability in the Discrete Kuramoto Model
DEFF Research Database (Denmark)
Maistrenko, V. L.; Vasylenko, A. A.; Maistrenko, Y. L.
2008-01-01
The paper describes the appearance of a novel high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear interact......The paper describes the appearance of a novel high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear...... interaction of the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional discrete Kuramoto model, we outline the region of phase chaos in the parameter plane, distinguish the region where the phase chaos coexists with other periodic attractors...
Image Restoration Technology Based on Discrete Neural network
Directory of Open Access Journals (Sweden)
Zhou Duoying
2015-01-01
Full Text Available With the development of computer science and technology, the development of artificial intelligence advances rapidly in the field of image restoration. Based on the MATLAB platform, this paper constructs a kind of image restoration technology of artificial intelligence based on the discrete neural network and feedforward network, and carries out simulation and contrast of the restoration process by the use of the bionic algorithm. Through the application of simulation restoration technology, this paper verifies that the discrete neural network has a good convergence and identification capability in the image restoration technology with a better effect than that of the feedforward network. The restoration technology based on the discrete neural network can provide a reliable mathematical model for this field.
CONSTITUTIONALIZATION OF ADMINISTRATIVE LAW AND REVIEWABILITY OF THE ADMINISTRATIVE DISCRETION
Directory of Open Access Journals (Sweden)
Luiz Henrique Urquhart Cademartori
2016-07-01
Full Text Available The aim of this article is to conduct an analysis of the constitutionalization of Administrative Law, which results from changes in the rule of law and, under a theoretical standpoint, from the paradigm shift of legal exegesis followed by the advent of neo-constitutionalism, which poses the Constitution as the parameter for the interpretation of the other legal branches. Within this context, considering that the concept of administrative discretion goes through interpretation changes and that administrative activity is performed within the boundaries of discretion, this power/duty must always be used with substantial regulatory criteria in order to get the maximum effectiveness of the constitutional rules, thus being subjected to review. In this sense, it is demonstrated that a public official cannot in any way deviate from the realization of the fundamental rights guaranteed by the Constitution, hence stating the reviewability of the administrative discretion.
Influence of discretization method on the digital control system performance
Directory of Open Access Journals (Sweden)
Futás József
2003-12-01
Full Text Available The design of control system can be divided into two steps. First the process or plant have to be convert into mathematical model form, so that its behavior can be analyzed. Then an appropriate controller have to be design in order to get the desired response of the controlled system. In the continuous time domain the system is represented by differential equations. Replacing a continuous system into discrete time form is always an approximation of the continuous system. The different discretization methods give different digital controller performance. The methods presented on the paper are Step Invariant or Zero Order Hold (ZOH Method, Matched Pole-Zero Method, Backward difference Method and Bilinear transformation. The above mentioned discretization methods are used in developing PI position controller of a dc motor. The motor model was converted by the ZOH method. The performances of the different methods are compared and the results are presented.
Monotonicity, thinning and discrete versions of the Entropy Power Inequality
Johnson, Oliver
2009-01-01
We consider the entropy of sums of independent discrete random variables, in analogy with Shannon's Entropy Power Inequality, where equality holds for normals. In our case, infinite divisibility suggests that equality should hold for Poisson variables. We show that some natural analogues of the Entropy Power Inequality do not in fact hold, but propose an alternative formulation which does always hold. The key to many proofs of Shannon's Entropy Power Inequality is the behaviour of entropy on scaling of continuous random variables. We believe that R\\'{e}nyi's operation of thinning discrete random variables plays a similar role to scaling, and give a sharp bound on how the entropy of ultra log-concave random variables behaves on thinning. In the spirit of the monotonicity results established by Artstein, Ball, Barthe and Naor, we prove a stronger version of concavity of entropy, which implies a strengthened form of our discrete Entropy Power Inequality.
A distortional semi-discretized thin-walled beam element
DEFF Research Database (Denmark)
Andreassen, Michael Joachim; Jönsson, Jeppe
2013-01-01
Due to the increased consumption of thin-walled structural elements there has been increasing focus and need for more detailed calculations as well as development of new approaches. In this paper a thin-walled beam element including distortion of the cross section is formulated. The formulation...... is based on a generalized beam theory (GBT), in which the classic Vlasov beam theory for analysis of open and closed thin-walled cross sections is generalized by including distortional displacements. The beam element formulation utilizes a semi-discretization approach in which the cross section...... is discretized into wall elements and the analytical solutions of the related GBT beam equations are used as displacement functions in the axial direction. Thus the beam element contains the semi-analytical solutions. In three related papers the authors have recently presented the semi-discretization approach...
Stability analysis of the Euler discretization for SIR epidemic model
Energy Technology Data Exchange (ETDEWEB)
Suryanto, Agus [Department of Mathematics, Faculty of Sciences, Brawijaya University, Jl. Veteran Malang 65145 (Indonesia)
2014-06-19
In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaos phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.
Social Work Discretion between Professionalism and Managerialism in Denmark
DEFF Research Database (Denmark)
Skals, Anette
Professionalism and managerialism are important and conflicting concepts in the study of professionals working in public service organizations. By focusing on street-level social workers and social work discretion, it is possible to see how welfare-to-work policies are practiced as well as how...... organizational articulations opens or closes for discretion in social work. This paper seeks on an empirical basis to account for how management organizes, supervises and seeks control over social work discretion and, consequently, influences the discretionary powers of social workers in a Danish municipality...... attention or intervention before returning to work after ill health. Here professionalism is institutionalized in bureaucratic organizations. Hence the social workers must control clients’ legal access to sick leave programmes and at the same time deliver individualized services in order to remove barriers...
Discrete Dirac equation on a finite half-integer lattice
Smalley, L. L.
1986-01-01
The formulation of the Dirac equation on a discrete lattice with half-integer spacing and periodic boundary conditions is investigated analytically. The importance of lattice formulations for problems in field theory and quantum mechanics is explained; the concept of half-integer Fourier representation is introduced; the discrete Dirac equation for the two-dimensional case is derived; dispersion relations for the four-dimensional case are developed; and the spinor formulation for the Dirac fields on the half-integer lattice and the discrete time variable for the four-dimensional time-dependent Dirac equation are obtained. It is argued that the half-integer lattice, because it takes the Dirac Lagrangian into account, is more than a mere relabeling of the integer lattice and may have fundamental physical meaning (e.g., for the statistics of fermions). It is noted that the present formulation does not lead to species doubling, except in the continuum limit.
Relativity and the question of discretization in astronomy
Edelen, Dominic G B
1970-01-01
Theoretical researches in general relativity and observational data from galactic astronomy combine in this volume in contributions to one of the oldest questions of natural philosophy: Is the structure of the physical world more adequately described by a continuous or a discrete mode of representation? Since the days of the Pythagoreans, this question has surfaced from time to time in various guises in science as well as in philosophy. One of the most bitterly contested and illuminating controversies between the continuous and the discrete viewpoints is to be found in the wave versus corpuscular description of optical phenom enae. This controversy was not resolved to the satisfaction of most of its protaganists until the development of the quantum theory. However, several obscurities that still becloud the question suggest that some deeper formulation may be necessary before more satisfactory answers can be given 1. The firm establishment of the validity of quantized structure and discrete energy distribut...
International Conference eXtended Discretization MethodS
Benvenuti, Elena
2016-01-01
This book gathers selected contributions on emerging research work presented at the International Conference eXtended Discretization MethodS (X-DMS), held in Ferrara in September 2015. It highlights the most relevant advances made at the international level in the context of expanding classical discretization methods, like finite elements, to the numerical analysis of a variety of physical problems. The improvements are intended to achieve higher computational efficiency and to account for special features of the solution directly in the approximation space and/or in the discretization procedure. The methods described include, among others, partition of unity methods (meshfree, XFEM, GFEM), virtual element methods, fictitious domain methods, and special techniques for static and evolving interfaces. The uniting feature of all contributions is the direct link between computational methodologies and their application to different engineering areas.
An Efficient Approach for Identifying Stable Lobes with Discretization Method
Directory of Open Access Journals (Sweden)
Baohai Wu
2013-01-01
Full Text Available This paper presents a new approach for quick identification of chatter stability lobes with discretization method. Firstly, three different kinds of stability regions are defined: absolute stable region, valid region, and invalid region. Secondly, while identifying the chatter stability lobes, three different regions within the chatter stability lobes are identified with relatively large time intervals. Thirdly, stability boundary within the valid regions is finely calculated to get exact chatter stability lobes. The proposed method only needs to test a small portion of spindle speed and cutting depth set; about 89% computation time is savedcompared with full discretization method. It spends only about10 minutes to get exact chatter stability lobes. Since, based on discretization method, the proposed method can be used for different immersion cutting including low immersion cutting process, the proposed method can be directly implemented in the workshop to promote machining parameters selection efficiency.