WorldWideScience

Sample records for crater mars formation

  1. Crater Mound Formation by Wind Erosion on Mars

    Science.gov (United States)

    Steele, L. J.; Kite, E. S.; Michaels, T. I.

    2018-01-01

    Most of Mars' ancient sedimentary rocks by volume are in wind-eroded sedimentary mounds within impact craters and canyons, but the connections between mound form and wind erosion are unclear. We perform mesoscale simulations of different crater and mound morphologies to understand the formation of sedimentary mounds. As crater depth increases, slope winds produce increased erosion near the base of the crater wall, forming mounds. Peak erosion rates occur when the crater depth is ˜2 km. Mound evolution depends on the size of the host crater. In smaller craters mounds preferentially erode at the top, becoming more squat, while in larger craters mounds become steeper sided. This agrees with observations where smaller craters tend to have proportionally shorter mounds and larger craters have mounds encircled by moats. If a large-scale sedimentary layer blankets a crater, then as the layer recedes across the crater it will erode more toward the edges of the crater, resulting in a crescent-shaped moat. When a 160 km diameter mound-hosting crater is subject to a prevailing wind, the surface wind stress is stronger on the leeward side than on the windward side. This results in the center of the mound appearing to "march upwind" over time and forming a "bat-wing" shape, as is observed for Mount Sharp in Gale crater.

  2. Synthesis of Akaganeite in the Presence of Sulfate: Implications for Akaganeite Formation in Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Fox, A.; Sutter, B.; Niles, P. B.; Adams, M.; Morris, R. V.; Ming, D. W.

    2016-01-01

    Akaganeite (beta-FeOOH) is an Fe(III) (hydr)oxide with a tunnel structure usually occupied by chloride. Akaganeite has been recently discovered in a mudstone on the surface of Mars by the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments onboard the Mars Science Laboratory (MSL) Curiosity Rover in Gale crater [1, 2]. Akaganeite was detected together with sulfate minerals [anhydrite (CaSO4) and basanite (2CaSO4·2H2O)] in the drilled Cumberland and John Clein mudstone samples at Yellowknife Bay [2]. Discovery of akaganeite and sulfates in the same samples suggests that sulfate ions could be present in aqueous solution during akaganeite formation. However, mechanism and aqueous environmental conditions of akaganeite formation (e.g., pH and range of sulfate concentration) in Yellowknife Bay remain unknown. The objective of our work was to perform synthesis of akaganeite without or with sulfate addition at variable pHs in order to constrain formation conditions of akaganeite in Yellowknife Bay, Gale crater on Mars.

  3. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  4. Noachian and more recent phyllosilicates in impact craters on Mars.

    Science.gov (United States)

    Fairén, Alberto G; Chevrier, Vincent; Abramov, Oleg; Marzo, Giuseppe A; Gavin, Patricia; Davila, Alfonso F; Tornabene, Livio L; Bishop, Janice L; Roush, Ted L; Gross, Christoph; Kneissl, Thomas; Uceda, Esther R; Dohm, James M; Schulze-Makuch, Dirk; Rodríguez, J Alexis P; Amils, Ricardo; McKay, Christopher P

    2010-07-06

    Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times.

  5. 100 New Impact Crater Sites Found on Mars

    Science.gov (United States)

    Kennedy, M. R.; Malin, M. C.

    2009-12-01

    Recent observations constrain the formation of 100 new impact sites on Mars over the past decade; 19 of these were found using the Mars Global Surveyor Mars Orbiter Camera (MOC), and the other 81 have been identified since 2006 using the Mars Reconnaissance Orbiter Context Camera (CTX). Every 6 meter/pixel CTX image is examined upon receipt and, where they overlap images of 0.3-240 m/pixel scale acquired by the same or other Mars-orbiting spacecraft, we look for features that may have changed. New impact sites are initially identified by the presence of a new dark spot or cluster of dark spots in a CTX image. Such spots may be new impact craters, or result from the effect of impact blasts on the dusty surface. In some (generally rare) cases, the crater is sufficiently large to be resolved in the CTX image. In most cases, however, the crater(s) cannot be seen. These are tentatively designated as “candidate” new impact sites, and the CTX team then creates an opportunity for the MRO spacecraft to point its cameras off-nadir and requests that the High Resolution Imaging Science Experiment (HiRISE) team obtain an image of ~0.3 m/pixel to confirm whether a crater or crater cluster is present. It is clear even from cursory examination that the CTX observations are areographically biased to dusty, higher albedo areas on Mars. All but 3 of the 100 new impact sites occur on surfaces with Lambert albedo values in excess of 23.5%. Our initial study of MOC images greatly benefited from the initial global observations made in one month in 1999, creating a baseline date from which we could start counting new craters. The global coverage by MRO Mars Color Imager is more than a factor of 4 poorer in resolution than the MOC Wide Angle camera and does not offer the opportunity for global analysis. Instead, we must rely on partial global coverage and global coverage that has taken years to accumulate; thus we can only treat impact rates statistically. We subdivide the total data

  6. Gully formation in terrestrial simple craters: Meteor Crater, USA and Lonar Crater, India

    Science.gov (United States)

    Kumar, P.; Head, J. W.; Kring, D. A.

    2007-12-01

    Geomorphic features such as gullies, valley networks, and channels on Mars have been used as a proxy to understand the climate and landscape evolution of Mars. Terrestrial analogues provide significant insight as to how the various exogenic and endogenic processes might contribute to the evolution of these martian landscapes. We describe here a terrestrial example from Meteor Crater, which shows a spectacular development of gullies throughout the inner wall in response to rainwater precipitation, snow melting and groundwater discharge. As liquid water has been envisaged as one of the important agents of landscape sculpturing, Meteor Crater remains a useful landmark, where planetary geologists can learn some lessons. We also show here how the lithology and structural framework of this crater controls the gully distribution. Like many martian impact craters, it was emplaced in layered sedimentary rocks with an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels and fans. Some of the gullies originate from the rim crest and others from the middle crater wall, where a lithologic transition occurs. Deeply incised alcoves are well-developed on the soft sandstones of the Coconino Formation exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of groundwater flow and discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing degradation. Like martian craters, channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when groundwater seeped from springs on the crater wall. Caves exposed on the lower crater level may point to percolation of surface runoff

  7. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    Science.gov (United States)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our

  8. Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars

    Science.gov (United States)

    Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.

    2018-06-01

    On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.

  9. Crater Lakes on Mars: Development of Quantitative Thermal and Geomorphic Models

    Science.gov (United States)

    Barnhart, C. J.; Tulaczyk, S.; Asphaug, E.; Kraal, E. R.; Moore, J.

    2005-01-01

    Impact craters on Mars have served as catchments for channel-eroding surface fluids, and hundreds of examples of candidate paleolakes are documented [1,2] (see Figure 1). Because these features show similarity to terrestrial shorelines, wave action has been hypothesized as the geomorphic agent responsible for the generation of these features [3]. Recent efforts have examined the potential for shoreline formation by wind-driven waves, in order to turn an important but controversial idea into a quantitative, falsifiable hypothesis. These studies have concluded that significant wave-action shorelines are unlikely to have formed commonly within craters on Mars, barring Earth-like weather for approx.1000 years [4,5,6].

  10. Paleo-environmental Setting of the Murray Formation of Aeolis Mons, Gale Crater, Mars, as Explored by the Curiosity Rover

    Science.gov (United States)

    Lewis, K. W.; Fedo, C.; Grotzinger, J. P.; Gupta, S.; Stein, N.; Rivera-Hernandez, F.; Watkins, J. A.; Banham, S.; Edgett, K. S.; Minitti, M. E.; Schieber, J.; Edgar, L. A.; Siebach, K. L.; Stack, K.; Newsom, H. E.; House, C. H.; Sumner, D. Y.; Vasavada, A. R.

    2017-12-01

    Since landing, the Mars Science Laboratory Curiosity rover climbed 300 meters in elevation from the floor of north Gale crater up the lower northwest flank of Aeolis Mons ("Mount Sharp"). Nearly 200 meters of this ascent was accomplished in the 1.5 years alone, as the rover was driven up-section through the sedimentary rocks of the informally designated "Murray" formation. This unit comprises a large fraction of the lower strata of Mt. Sharp along the rover traverse. Our exploration of the Murray formation reveals a diverse suite of fine-grained facies. Grain sizes range from finer grains than can be resolved by the MAHLI imager (particles bearing Vera Rubin Ridge, continues to reveal the complex and long-lived depositional history of the Gale crater basin.

  11. Dune-Yardang Interactions in Becquerel Crater, Mars

    Science.gov (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A.

    2018-02-01

    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr-1) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  12. Dune-Yardang Interactions in Becquerel Crater, Mars.

    Science.gov (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A

    2018-01-01

    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr -1 ) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  13. Clastic patterned ground in Lomonosov crater, Mars: examining fracture controlled formation mechanisms

    Science.gov (United States)

    Barrett, Alexander M.; Balme, Matthew R.; Patel, Manish R.; Hagermann, Axel

    2017-10-01

    The area surrounding Lomonosov crater on Mars has a high density of seemingly organised boulder patterns. These form seemingly sorted polygons and stripes within kilometre scale blockfields, patches of boulder strewn ground which are common across the Martian high latitudes. Several hypotheses have been suggested to explain the formation of clastic patterned ground on Mars. It has been proposed that these structures could have formed through freeze-thaw sorting, or conversely by the interaction of boulders with underlying fracture polygons. In this investigation a series of sites were examined to evaluate whether boulder patterns appear to be controlled by the distribution of underlying fractures and test the fracture control hypotheses for their formation. It was decided to focus on this suite of mechanisms as they are characterised by a clear morphological relationship, namely the presence of an underlying fracture network which can easily be evaluated over a large area. It was found that in the majority of examples at these sites did not exhibit fracture control. Although fractures were present at many sites there were very few sites where the fracture network appeared to be controlling the boulder distribution. In general these were not the sites with the best examples of organization, suggesting that the fracture control mechanisms are not the dominant geomorphic process organising the boulders in this area.

  14. Clastic polygonal networks around Lyot crater, Mars: Possible formation mechanisms from morphometric analysis

    Science.gov (United States)

    Brooker, L. M.; Balme, M. R.; Conway, S. J.; Hagermann, A.; Barrett, A. M.; Collins, G. S.; Soare, R. J.

    2018-03-01

    Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (>100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became

  15. Atypical pit craters on Mars: new insights from THEMIS, CTX and HiRISE observations

    Science.gov (United States)

    Cushing, Glen; Okubo, Chris H.; Titus, Timothy N.

    2015-01-01

    More than 100 pit craters in the Tharsis region of Mars exhibit morphologies, diameters and thermal behaviors that diverge from the much larger bowl-shaped pit craters that occur in most regions across Mars. These Atypical Pit Craters (APCs) generally have sharp and distinct rims, vertical or overhanging walls that extend down to their floors, surface diameters of ~50-350 m, and high depth-to-diameter (d/D) ratios that are usually greater than 0.3 (which is an upper-range value for impacts and bowl-shaped pit craters), and can exceed values of 1.8. Observations by the Mars Odyssey THermal Emission Imaging System (THEMIS) show that APC floor temperatures are warmer at night, and fluctuate with much lower diurnal amplitudes than nearby surfaces or adjacent bowl-shaped pit craters. Kīlauea volcano, Hawai'i, hosts pit craters that formed through subsurface collapse into active volcanic dikes, resulting in pits that can appear morphologically analogous to either APCs or bowl-shaped pit craters. Partially-drained dikes are sometimes exposed within the lower walls and floors of these terrestrial APC analogs and can form extensive cave systems with unique microclimates. Similar caves in martian pit craters are of great interest for astrobiology. This study uses new observations by the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) to refine previous work where seven APCs were described from lower-resolution THEMIS visible-wavelength (VIS) observations. Here, we identify locations of 115 APCs, map their distribution across the Tharsis region, characterize their internal morphologies with high-resolution observations, and discuss possible formation mechanisms.

  16. Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: crater hopping at Meridiani Planum

    Science.gov (United States)

    R.E. Arvidson,; Bell, J.F.; Catalano, J.G.; Clark, B. C.; Fox, V.K.; Gellert, Ralf; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Knoll, A.H.; Lapotre, M.G.A.; McLennan, S.M.; Ming, D. W.; Morris, R.V.; Murchie, S.L.; Powell, K. E.; Smith, M.D.; Squyres, S. W.; Wolff, M.J.; J.J. Wray,

    2015-01-01

    Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral (1.0–2.65 µm) along-track oversampled observations covering Victoria, Santa Maria, Endeavour, and Ada craters were processed to 6 m/pixel and used in combination with Opportunity observations to detect and map hydrated Mg and Ca sulfate minerals in the Burns formation. The strongest spectral absorption features were found to be associated with outcrops that are relatively young and fresh (Ada) or preferentially scoured of dust, soil, and coatings by prevailing winds. At Victoria and Santa Maria, the scoured areas are on the southeastern rims and walls, opposite to the sides where wind-blown sands extend out of the craters. At Endeavour, the deepest absorptions are in Botany Bay, a subdued and buried rim segment that exhibits high thermal inertias, extensive outcrops, and is interpreted to be a region of enhanced wind scour extending up and out of the crater. Ada, Victoria, and Santa Maria outcrops expose the upper portion of the preserved Burns formation and show spectral evidence for the presence of kieserite. In contrast, gypsum is pervasive spectrally in the Botany Bay exposures. Gypsum, a relatively insoluble evaporative mineral, is interpreted to have formed close to the contact with the Noachian crust as rising groundwaters brought brines close to and onto the surface, either as a direct precipitate or during later diagenesis. The presence of kieserite at the top of the section is hypothesized to reflect precipitation from evaporatively concentrated brines or dehydration of polyhydrated sulfates

  17. Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede

    Science.gov (United States)

    Fink, J. H.; Greeley, R.; Gault, D. E.

    1982-01-01

    Results from a series of laboratory impacts into clay slurry targets are compared with photographs of impact craters on Mars and Ganymede. The interior and ejecta lobe morphology of rampart-type craters, as well as the progression of crater forms seen with increasing diameter on both Mars and Ganymede, are equalitatively explained by a model for impact into Bingham materials. For increasing impact energies and constant target rheology, laboratory craters exhibit a morphologic progression from bowl-shaped forms that are typical of dry planetary surfaces to craters with ejecta flow lobes and decreasing interior relief, characteristic of more volatile-rich planets. A similar sequence is seen for uniform impact energy in slurries of decreasing yield strength. The planetary progressions are explained by assuming that volatile-rich or icy planetary surfaces behave locally in the same way as Bingham materials and produce ejecta slurries with yield strenghs and viscosities comparable to terrestrial debris flows. Hypothetical impact into Mars and Ganymede are compared, and it is concluded that less ejecta would be produced on Ganymede owing to its lower gravitational acceleration, surface temperature, and density of surface materials.

  18. Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars

    Science.gov (United States)

    Banham, Steve G.; Gupta, Sanjeev; Rubin, David M.; Watkins, Jessica A.; Sumner, Dawn Y.; Edgett, Kenneth S.; Grotzinger, John P.; Lewis, Kevin W.; Edgar, Lauren; Stack, Kathryn M.; Barnes, Robert; Bell, Jame F. III; Day, Mackenzie D.; Ewing, Ryan C.; Lapotre, Mathieu G.A.; Stein, Nathan T.; Rivera-Hernandez, Frances; Vasavada, Ashwin R.

    2018-01-01

    Reconstruction of the palaeoenvironmental context of Martian sedimentary rocks is central to studies of ancient Martian habitability and regional palaeoclimate history. This paper reports the analysis of a distinct aeolian deposit preserved in Gale crater, Mars, and evaluates its palaeomorphology, the processes responsible for its deposition, and its implications for Gale crater geological history and regional palaeoclimate. Whilst exploring the sedimentary succession cropping out on the northern flank of Aeolis Mons, Gale crater, the Mars Science Laboratory rover Curiosity encountered a decametre‐thick sandstone succession, named the Stimson formation, unconformably overlying lacustrine deposits of the Murray formation. The sandstone contains sand grains characterized by high roundness and sphericity, and cross‐bedding on the order of 1 m in thickness, separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops. The cross‐beds are composed of uniform thickness cross‐laminations interpreted as wind‐ripple strata. Cross‐sets are separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops that are interpreted as dune migration surfaces. Grain characteristics and presence of wind‐ripple strata indicate deposition of the Stimson formation by aeolian processes. The absence of features characteristic of damp or wet aeolian sediment accumulation indicate deposition in a dry aeolian system. Reconstruction of the palaeogeomorphology suggests that the Stimson dune field was composed largely of simple sinuous crescentic dunes with a height of ca10 m, and wavelengths of ca 150 m, with local development of complex dunes. Analysis of cross‐strata dip‐azimuths indicates that the general dune migration direction and hence net sediment transport was towards the north‐east. The juxtaposition of a dry aeolian system unconformably above the lacustrine Murray formation represents starkly

  19. Moon/Mars Landing Commemorative Release: Gusev Crater and Ma'adim Vallis

    Science.gov (United States)

    1998-01-01

    On July 20, 1969, the first human beings landed on the Moon. On July 20, 1976, the first robotic lander touched down on Mars. This July 20th-- 29 years after Apollo 11 and 22 years since the Viking 1 Mars landing-- we take a look forward toward one possible future exploration site on the red planet.One of the advantages of the Mars Global Surveyor Mars Orbiter Camera (MOC) over its predecessors on the Viking and Mariner spacecraft is resolution. The ability to see-- resolve--fine details on the martian surface is key to planning future landing sites for robotic and, perhaps, human explorers that may one day visit the planet.At present, NASA is studying potential landing sites for the Mars Surveyor landers, rovers, and sample return vehicles that are scheduled to be launched in 2001, 2003, and 2005. Among the types of sites being considered for these early 21st Century landings are those with 'exobiologic potential'--that is, locations on Mars that are in some way related to the past presence of water.For more than a decade, two of the prime candidates suggested by various Mars research scientists are Gusev Crater and Ma'adim Vallis. Located in the martian southern cratered highlands at 14.7o S, 184.5o W, Gusev Crater is a large, ancient, meteor impact basin that--after it formed--was breached by Ma'adim Vallis.Viking Orbiter observations provided some evidence to suggest that a fluid--most likely, water--once flowed through Ma'adim Vallis and into Gusev Crater. Some scientists have suggested that there were many episodes of flow into Gusev Crater (as well as flow out of Gusev through its topographically-lower northwestern rim). Some have also indicated that there were times when Ma'adim Vallis, also, was full of water such that it formed a long, narrow lake.The possibility that water flowed into Gusev Crater and formed a lake has led to the suggestion that the materials seen on the floor of this crater--smooth-surfaced deposits, buried craters, and huge mesas near

  20. Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Ming, D. W.; Bristow, T. F.; Morris, R. V.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Treiman, A. H.; Rampe, E. B.; Rice, M.; Achilles, C. N.; Grotzinger, J. P.; McLennan, S. M.; Williams, J.; Bell, J. F.; Newsom, H. E.; Downs, R. T.; Maurice, S.; Sarrazin, P.; Yen, A. S.; Morookian, J. M.; Farmer, J. D.; Stack, K.; Milliken, R. E.; Ehlmann, B. L.; Sumner, D. Y.; Berger, G.; Crisp, J. A.; Hurowitz, J. A.; Anderson, R.; Des Marais, D. J.; Stolper, E. M.; Edgett, K. S.; Gupta, S.; Spanovich, N.; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Atreya, Sushil; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Jeff; Berman, Daniel; Blanco Avalos, Juan J.; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John “Iain”; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie “Kenzie”; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; Dietrich, William; Dingler, Robert; Donny, Christophe; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M. Darby; Edgar, Lauren; Edwards, Christopher; Edwards, Laurence; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Flesch, Greg; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Franz, Heather; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Guillemot, Philippe; Guo, Jingnan; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Jones, John; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Malvitte, Alain Lepinette; Leshin, Laurie; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Mahaffy, Paul; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Mauchien, Patrick; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Nikiforov, Sergey; Niles, Paul; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; Owen, Tobias; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Pepin, Robert; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J.; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel “Dan”; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spray, John; Squyres, Steven; Stalport, Fabien; Steele, Andrew; Stein, Thomas; Stern, Jennifer; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Webster, Chris; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Rebecca; Williams, Richard B. “Mouser”; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2014-01-01

    Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.

  1. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars.

    Science.gov (United States)

    Vaniman, D T; Bish, D L; Ming, D W; Bristow, T F; Morris, R V; Blake, D F; Chipera, S J; Morrison, S M; Treiman, A H; Rampe, E B; Rice, M; Achilles, C N; Grotzinger, J P; McLennan, S M; Williams, J; Bell, J F; Newsom, H E; Downs, R T; Maurice, S; Sarrazin, P; Yen, A S; Morookian, J M; Farmer, J D; Stack, K; Milliken, R E; Ehlmann, B L; Sumner, D Y; Berger, G; Crisp, J A; Hurowitz, J A; Anderson, R; Des Marais, D J; Stolper, E M; Edgett, K S; Gupta, S; Spanovich, N

    2014-01-24

    Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.

  2. Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John

    2014-05-01

    The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).

  3. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NARCIS (Netherlands)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G.; François, P.; Grotzinger, J. P.; Kashyap, S.; ten Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin-Torres, F. J.; Mcadam, A. C.; Ming, D. W.; Navarro-González, R.; Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M. P.

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater.

  4. Role of impact cratering for Mars sample return

    International Nuclear Information System (INIS)

    Schultz, P.H.

    1988-01-01

    The preserved cratering record of Mars indicates that impacts play an important role in deciphering Martian geologic history, whether as a mechanism to modify the lithosphere and atmosphere or as a tool to sample the planet. The various roles of impact cratering in adding a broader understanding of Mars through returned samples are examined. Five broad roles include impact craters as: (1) a process in response to a different planetary localizer environment; (2) a probe for excavating crustal/mantle materials; (3) a possible localizer of magmatic and hydrothermal processes; (4) a chronicle of changes in the volcanic, sedimentary, atmospheric, and cosmic flux history; and (5) a chronometer for extending the geologic time scale to unsampled regions. The evidence for Earth-like processes and very nonlunar styles of volcanism and tectonism may shift the emphasis of a sampling strategy away from equally fundamental issues including crustal composition, unit ages, and climate history. Impact cratering not only played an important active role in the early Martian geologic history, it also provides an important tool for addressing such issues

  5. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  6. Episodic vein formation in Gale crater, Mars: evidence for an extended history of liquid water

    Science.gov (United States)

    Kronyak, R. E.; Fedo, C.; Banham, S.; Edgett, K. S.; Newsom, H. E.; Nachon, M.; Kah, L. C.

    2017-12-01

    The sedimentary rock record of Gale crater is consistent with deposition in an ancient lake basin. These strata represent aqueous and potentially habitable past conditions that existed over a relatively small part of Mars' geologic history. Post-depositional fluid migration is recorded by the presence of veins, which have been prevalent features throughout Curiosity's mission. These veins record later episodes of fluid flow and represent an extended history of liquid water stability, and perhaps habitability. White Ca-sulfate veins are observed in the Bradbury (Yellowknife Bay), Mount Sharp (Murray formation), and Siccar Point (Stimson formation) groups across a range of lithologies. At Yellowknife Bay and in the Stimson, Ca-sulfate veins characteristically exhibit mm-scale thicknesses. In the Pahrump Hills (PH) area, 62% of measured veins in the Murray formation are material occurs along the interface between wall rock and Ca-sulfate and is interpreted as a precursor vein fill. Gray veins at PH are more erosionally resistant relative to Ca-sulfate and average 1 mm in width. Additionally, gray veins exhibit elevated Mg and depleted Ca, distinguishing them compositionally from Ca-sulfate veins. Veins continue locally throughout the stratigraphic section. The lowermost Stimson sandstones at the Missoula outcrop contain white clasts and elevated Ca-sulfate, suggesting the formation of Murray veins prior to the deposition of the Stimson formation. Near the Old Soaker outcrop, bedding-parallel sulfate may represent syndepositional gypsum precipitation. In the context of time, the multiple vein systems identified in the Gale crater sedimentary fill shed light on the sequence and evolution of fluids responsible for their deposition. It is envisioned that sulfates first precipitated contemporaneously with the deposition of the Murray formation, followed by burial, lithification, and fracturing to form the earliest gray and sulfate veins. The Murray was then exhumed and

  7. Anatomy of an ancient aeolian sandstone on Mars: the Stimson formation, Gale crater, Mars

    Science.gov (United States)

    Gupta, Sanjeev; Banham, Steven; Rubin, David; Watkins, Jessica; Sumner, Dawn; Grotzinger, John P.; Lewis, Kevin; Edgett, Kenneth S.; Edgar, Lauren; Stack, Kathryn; Day, McKenzie; Ewing, Ryan; Lapotre, Mathieu

    2016-10-01

    Since landing in 2012, the Mars Science Laboratory's (MSL) rover Curiosity has traversed the plains and foothills of Aeolis Mons (informally known as Mt. Sharp) investigating the environments preserved in the stratigraphic record of Gale crater. Recently, the Curiosity team has been investigating the Stimson formation, a sandstone exhibiting abundant crossbedding that drapes the underlying Murray formation mudstones. The contact between the Stimson and underlying Murray formation exhibits several meters relief over several 100 m hundred metres where encountered thus far. The Stimson is observed to onlap onto this contact, indicating that accumulating Stimson sandstones unconformably onlapped or buried local palaeotopography.Facies and architectural elements observed within the Stimson are interpreted to represent deposition within an ancient dune field. The Stimson formation is typically composed of decimeter-scale and meter-scale crossbedded sandstones, (exhibiting wind-ripple lamination and well rounded particles up to granule size). Architectural elements are visible in outcrops oriented perpendicular to the regional northwest dip. These consist of undulating surfaces parallel to the regional dip with observed lateral extents up to 30 m that truncate underlying cross-sets and commonly act as basal surfaces to overlying cross-sets. Undulating surfaces are interpreted possibly to be deflationary supersurfaces, which formed in response to deflation or dune-field stabilisation across a regional extent. Surfaces inclined relative to the regional dip ascend between supersurfaces towards the north east at an observed angle of 3-4°. These surfaces are interpreted to be dune bounding surfaces, which are preserved when dunes climb as a result of dune-field aggradation. Aggradation of the system during the duration of the dune field's existence possibly occurred as a response to episodic increases of sediment supply into the basin, allowing dunes to climb and preserving

  8. Geologic map of Tooting crater, Amazonis Planitia region of Mars

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2015-01-01

    Tooting crater has a diameter of 27.2 km, and formed on virtually flat lava flows within Amazonis Planitia ~1,300 km west of the summit of Olympus Mons volcano, where there appear to have been no other major topographic features prior to the impact. The crater formed in an area ~185 x 135 km that is at an elevation between −3,870 m and −3,874 m relative to the Mars Orbiter Laser Altimeter (MOLA) Mars datum. This fortuitous situation (for example, a bland, horizontal target) allows the geometry of the crater and the thickness of the ejecta blanket to be accurately determined by subtracting the appropriate elevation of the surrounding landscape (−3,872 m) from the individual MOLA measurements across the crater. Thus, for the first time, it is possible to determine the radial decrease of ejecta thickness as a function of distance away from the rim crest. On the basis of the four discrete ejecta layers surrounding the crater cavity, Tooting crater is classified as a Multiple-Layered Ejecta (MLE) crater. By virtue of the asymmetric distribution of secondary craters and the greater thickness of ejecta to the northeast, Morris and others (2010) proposed that Tooting crater formed by an oblique impact from the southwest. The maximum range of blocks that produced identifiable secondary craters is ~500 km (~36.0 crater radii) from the northeast rim crest. In contrast, secondary craters are only identifiable ~215 km (15.8 radii) to the southeast and 225 km (16.5 radii) to the west.

  9. Open Access Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters

    Science.gov (United States)

    Ehlmann, Bethany L.; Swayze, Gregg A.; Milliken, Ralph E.; Mustard, John F.; Clark, Roger N.; Murchie, Scott L.; Breit, George N.; Wray, James J.; Gondet, Brigitte; Poulet, Francois; Carter, John; Calvin, Wendy M.; Benzel, William M.; Seelos, Kimberly D.

    2016-01-01

    Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la Minéralogie, L’Eau, les Glaces et l’Activitié (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km × 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H2S- and/or SO2-bearing) waters in contact with a magmatic source, upwelling

  10. Wind-Eroded Crater Floors and Intercrater Plains, Terra Sabaea, Mars

    Science.gov (United States)

    Irwin, Rossman P.; Wray, James J.; Mest, Scott C.; Maxwell, Ted A.

    2018-02-01

    Ancient impact craters with wind-eroded layering on their floors provide a record of resurfacing materials and processes on early Mars. In a 54 km Noachian crater in Terra Sabaea (20.2°S, 42.6°E), eolian deflation of a friable, dark-toned layer up to tens of meters thick has exposed more resistant, underlying light-toned material. These layers differ significantly from strata of similar tone described in other regions of Mars. The light-toned material has no apparent internal stratification, and visible/near-infrared spectral analysis suggests that it is rich in feldspar. Its origin is ambiguous, as we cannot confidently reject igneous, pyroclastic, or clastic alternatives. The overlying dark-toned layer is probably a basaltic siltstone or sandstone that was emplaced mostly by wind, although its weak cementation and inverted fluvial paleochannels indicate some modification by water. Negative-relief channels are not found on the crater floor, and fluvial erosion is otherwise weakly expressed in the study area. Small impacts onto this crater's floor have exposed deeper friable materials that appear to contain goethite. Bedrock outcrops on the crater walls are phyllosilicate bearing. The intercrater plains contain remnants of a post-Noachian thin, widespread, likely eolian mantle with an indurated surface. Plains near Hellas-concentric escarpments to the north are more consistent with volcanic resurfacing. A 48 km crater nearby contains similar dark-over-light outcrops but no paleochannels. Our findings indicate that dark-over-light stratigraphy has diverse origins across Mars and that some dark-toned plains with mafic mineralogy are not of igneous origin.

  11. Machine cataloging of impact craters on Mars

    Science.gov (United States)

    Stepinski, Tomasz F.; Mendenhall, Michael P.; Bue, Brian D.

    2009-09-01

    This study presents an automated system for cataloging impact craters using the MOLA 128 pixels/degree digital elevation model of Mars. Craters are detected by a two-step algorithm that first identifies round and symmetric topographic depressions as crater candidates and then selects craters using a machine-learning technique. The system is robust with respect to surface types; craters are identified with similar accuracy from all different types of martian surfaces without adjusting input parameters. By using a large training set in its final selection step, the system produces virtually no false detections. Finally, the system provides a seamless integration of crater detection with its characterization. Of particular interest is the ability of our algorithm to calculate crater depths. The system is described and its application is demonstrated on eight large sites representing all major types of martian surfaces. An evaluation of its performance and prospects for its utilization for global surveys are given by means of detailed comparison of obtained results to the manually-derived Catalog of Large Martian Impact Craters. We use the results from the test sites to construct local depth-diameter relationships based on a large number of craters. In general, obtained relationships are in agreement with what was inferred on the basis of manual measurements. However, we have found that, in Terra Cimmeria, the depth/diameter ratio has an abrupt decrease at ˜38°S regardless of crater size. If shallowing of craters is attributed to presence of sub-surface ice, a sudden change in its spatial distribution is suggested by our findings.

  12. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars

    Science.gov (United States)

    Bristow, T.F.; Blake, D. F..; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W..; Morrison, S. M.; Yen, A. S.; hide

    2017-01-01

    The CheMin XRD instrument aboard Mars Science Laboratory (MSL) has documented clay minerals in various drill samples during its traverse of Gale Crater's floor and ascent of Mt. Sharp. The most recent samples, named Marimba, Quela and Sebina were acquired from the Murray Formation in the Murray Buttes region of lower Mt. Sharp. Marimba and Quela come from a approx. 30 m package of finely laminated lacustrine mudstones. Sebina comes from an overlying package of heterolithic mudstone-sandstones. Clay minerals make up approx.15-25 wt.% of the bulk rock with similar contributions to XRD patterns in all three samples. Broad basal reflections at approx. 10deg 2(theta) CoK(alpha) indicate the presence of 2:1 group clay minerals. The 02(lambda) clay mineral band lies at approx. 22.9deg 2(theta), a region typically occupied by Fe-bearing dioctahedral 2:1 clay minerals like nontronite or Fe-illite. The low humidity within the CheMin instrument, which is open to the martian atmosphere, promotes loss of interlayer H2O and collapse of smectite interlayers making them difficult to distinguish from illites. However, based on the low K content of the bulk samples, it appears that smectitic clay minerals are dominant. Peak dehydroxylation of the Marimba sample measured by the SAM instrument on MSL occurred at 610C and 780C. Fe-bearing smectites are not consistent with these dehydroxylation temperatures. Thus, we suggest that a mixture of dioctahedral and trioctahedral smectite phases are present giving the appearance of intermediate octahedral occupancy in XRD. Dioctahedral smectites have not previously been reported in Gale Crater by MSL. Earlier in the mission, relatively clay mineral rich samples (approx. 20 wt.%) from lacustrine mudstones in Yellowknife Bay (YKB) were found to contain ferrian saponites. It is proposed that YKB saponites formed via isochemical aqueous alteration of detrital olivine close to the time of sediment deposition, under anoxic to poorly oxidizing

  13. Continued monitoring of aeolian activity within Herschel Crater, Mars

    Science.gov (United States)

    Cardinale, Marco; Pozzobon, Riccardo; Michaels, Timothy; Bourke, Mary C.; Okubo, Chris H.; Chiara Tangari, Anna; Marinangeli, Lucia

    2017-04-01

    In this work, we study a dark dune field on the western side of Herschel crater, a 300 km diameter impact basin located near the Martian equator (14.4°S, 130°E), where the ripple and dune motion reflects the actual atmospheric wind conditions. We develop an integrated analysis using (1) automated ripple mapping that yields ripple orientations and evaluates the spatial variation of actual atmospheric wind conditions within the dunes, (2) an optical cross-correlation that allows us to quantify an average ripple migration rate of 0.42 m per Mars year, and (3) mesoscale climate modeling with which we compare the observed aeolian changes with modeled wind stresses and directions. Our observations are consistent with previous work [1] [2] that detected aeolian activity in the western part of the crater. It also demonstrates that not only are the westerly Herschel dunes movable, but that predominant winds from the north are able to keep the ripples and dunes active within most (if not all) of Herschel crater in the current atmospheric conditions. References: [1] Cardinale, M., Silvestro, S., Vaz, D.A., Michaels, T., Bourke, M.C., Komatsu, G., Marinangeli, L., 2016. Present-day aeolian activity in Herschel Crater, Mars. Icarus 265, 139-148. doi:10.1016/j.icarus.2015.10.022. [2] Runyon, K.D., Bridges, N.T., Ayoub, F., Newman, C.E. and Quade, J.J., 2017. An integrated model for dune morphology and sand fluxes on Mars. Earth and Planetary Science Letters, 457, pp.204-212.

  14. The central uplift of Ritchey crater, Mars

    Science.gov (United States)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-01-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  15. The central uplift of Ritchey crater, Mars

    Science.gov (United States)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-05-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  16. Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars

    Science.gov (United States)

    Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Ewing, R. C.; Chipera, S. J.; Yen, A. S.; Bristow, T. F.; Ehlmann, B. L.; Gellert, R.; Hazen, R. M.; Fendrich, K. V.; Craig, P. I.; Grotzinger, J. P.; Des Marais, D. J.; Farmer, J. D.; Sarrazin, P. C.; Morookian, J. M.

    2017-11-01

    The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the history of the dune material and offers an important opportunity for ground truth of orbital observations. CheMin's analysis of the mineralogy and phase chemistry of modern and ancient Gale crater dune fields, together with other measurements by Curiosity's science payload, provides new insights into present and past eolian processes on Mars.

  17. Evolved Gas Analyses of Sedimentary Materials in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Stimson Formation

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 10 samples from Gale Crater. All SAM evolved gas analyses have yielded a multitude of volatiles (e.g, H2O, SO2, H2S, CO2, CO, NO, O2, HC1). The objectives of this work are to 1) Characterize the evolved H2O, SO2, CO2, and O2 gas traces of sediments analyzed by SAM through sol 1178, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results releative to understanding the geochemical history of Gale Crater.

  18. Detection of Crater Rims by Image Analysis in Very High Resolution Images of Mars, Mercury and the Moon

    Science.gov (United States)

    Pina, P.; Marques, J. S.; Bandeira, L.

    2013-12-01

    The adaptive nature of automated crater detection algorithms permits achieving a high level of autonomous detections in different surfaces and consequently becoming an important tool in the update of crater catalogues. Nevertheless, the available approaches assume all craters as circular and only provide as output the radius and location of each crater. However, the delineation of impact craters following the local variability of the rims is also important to, among others, evaluate their degree of degradation or preservation, namely those studies related to ancient climate analysis. This contour determination is normally prepared in a manual way but can advantageously be done by image analysis methods, eliminating subjectivity and allowing large scale delineations. We have recently proposed a pair of independent approaches to tackle with this problem, one based on processing the crater image in polar coordinates [1], the other using morphological operators [2], which achieved a good degree of success on very high resolution images from Mars [3-4], but where enough room for improvement was still available. Thus, the integration of both approaches into a single one, suppressing the individual drawbacks of the previous approaches, permitted to strength the detection procedure. We describe now the novel sequence of processing that we have built and test it intensively in a wider variety of planetary surfaces, namely, those of Mars, Mercury and the Moon, using the very high resolution images provided by HiRISE, MDIS and LROC cameras. The automated delineations of the craters are compared to a ground-truth reference (manually delineated contours), so a quantitative evaluation can be performed; on a dataset constituted by more than one thousand impact craters we have obtained a global high delineation rate. The breakdown by crater size on each surface is performed. The whole processing procedure works on raster images and also delivers the output in the same image format

  19. Mineralogy of Rocks and Sediments at Gale Crater, Mars

    Science.gov (United States)

    Achilles, Cherie; Downs, Robert; Blake, David; Vaniman, David; Ming, Doug; Rampe, Elizabeth; Morris, Dick; Morrison, Shaunna; Treiman, Allan; Chipera, Steve; Yen, Albert; Bristow, Thomas; Craig, Patricia; Hazen, Robert; Crisp, Joy; Grotzinger, John; Des Marias, David; Farmer, Jack; Sarrazin, Philippe; Morookian, John Michael

    2017-04-01

    formation is the most sampled stratigraphic unit in Gale crater. Composed mainly of finely laminated mudstones and interpreted as lacustrine deposits, the mineralogy of Murray rocks reveals a complex aqueous history. Within the lower Murray strata, CheMin identified clay minerals, crystalline and amorphous silica, hematite, magnetite, and jarosite. The mineralogy suggests a paleolake that experienced variable redox conditions and sediment influx from multiple sources. Younger Murray strata have high abundances of clay minerals, hematite, and calcium sulfate but show lower variability in mineralogy compared to the older bedforms. CheMin's identification of tridymite in one of the Murray mudstone samples led to the first in situ identification of silicic volcanism on Mars. This presentation will discuss the mineralogy of sedimentary samples analyzed by CheMin and how these data are used to characterize the depositional and diagenetic environment of Gale crater's long-lived lake system.

  20. Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars

    OpenAIRE

    Banham, Steven G.; Gupta, Sanjeev; Rubin, David M.; Watkins, Jessica A.; Sumner, Dawn Y.; Edgett, Kenneth S.; Grotzinger, John P.; Lewis, Kevin W.; Edgar, Lauren A.; Stack-Morgan, Kathryn M.; Barnes, Robert; Bell, James F., III; Day, Mackenzie D.; Ewing, Ryan C.; Lapotre, Mathieu G. A.

    2018-01-01

    Reconstruction of the palaeoenvironmental context of Martian sedimentary rocks is central to studies of ancient Martian habitability and regional palaeoclimate history. This paper reports the analysis of a distinct aeolian deposit preserved in Gale crater, Mars, and evaluates its palaeomorphology, the processes responsible for its deposition, and its implications for Gale crater geological history and regional palaeoclimate. Whilst exploring the sedimentary succession cropping out on the nort...

  1. Sulfate-rich eolian and wet interdune deposits, erebus crater, meridiani Planum, Mars

    Science.gov (United States)

    Metz, J.M.; Grotzinger, J.P.; Rubin, D.M.; Lewis, K.W.; Squyres, S. W.; Bell, J.F.

    2009-01-01

    This study investigates three bedrock exposures at Erebus crater, an ?? 300 m diameter crater approximately 4 km south of Endurance crater on Mars. These outcrops, called Olympia, Payson, and Yavapai, provide additional evidence in support of the dune-interdune model proposed for the formation of the deposits at the Opportunity landing site in Meridiani Planum. There is evidence for greater involvement of liquid water in the Olympia outcrop exposures than was observed in Eagle or Endurance craters. The Olympia outcrop likely formed in a wet interdune and sand sheet environment. The facies observed within the Payson outcrop, which is likely stratigraphically above the Olympia outcrop, indicate that it was deposited in a damp-wet interdune, sand sheet, and eolian dune environment. The Yavapai outcrop, which likely stratigraphically overlies the Payson outcrop, indicates that it was deposited in primarily a sand sheet environment and also potentially in an eolian dune environment. These three outcrop exposures may indicate an overall drying-upward trend spanning the stratigraphic section from its base at the Olympia outcrop to its top at the Yavapai outcrop. This contrasts with the wetting-upward trend seen in Endurance and Eagle craters. Thus, the series of outcrops seen at Meridiani by Opportunity may constitute a full climatic cycle, evolving from dry to wet to dry conditions. ?? 2009, SEPM (Society for Sedimentary Geology).

  2. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow

    Science.gov (United States)

    Blake, D. F.; Morris, R. V.; Kocurek, G.; Morrison, S. M.; Downs, R. T.; Bish, D.; Ming, D. W.; Edgett, K. S.; Rubin, D.; Goetz, W.; Madsen, M. B.; Sullivan, R.; Gellert, R.; Campbell, I.; Treiman, A. H.; McLennan, S. M.; Yen, A. S.; Grotzinger, J.; Vaniman, D. T.; Chipera, S. J.; Achilles, C. N.; Rampe, E. B.; Sumner, D.; Meslin, P.-Y.; Maurice, S.; Forni, O.; Gasnault, O.; Fisk, M.; Schmidt, M.; Mahaffy, P.; Leshin, L. A.; Glavin, D.; Steele, A.; Freissinet, C.; Navarro-González, R.; Yingst, R. A.; Kah, L. C.; Bridges, N.; Lewis, K. W.; Bristow, T. F.; Farmer, J. D.; Crisp, J. A.; Stolper, E. M.; Des Marais, D. J.; Sarrazin, P.; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Atreya, Sushil; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Blanco Avalos, Juan Jose; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Brinckerhoff, William; Brinza, David; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Cantor, Bruce; Caplinger, Michael; Rodríguez, Javier Caride; Carmosino, Marco; Blázquez, Isaías Carrasco; Charpentier, Antoine; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; Juarez, Manuel de la Torre; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; Dietrich, William; Dingler, Robert; Donny, Christophe; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M. Darby; Edgar, Lauren; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fitzgibbon, Mike; Flesch, Greg; Floyd, Melissa; Flückiger, Lorenzo; Fraeman, Abby; Francis, Raymond; François, Pascaline; Franz, Heather; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Geffroy, Claude; Genzer, Maria; Godber, Austin; Goesmann, Fred; Golovin, Dmitry; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Jones, John; Joseph, Jonathan; Jun, Insoo; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Mauchien, Patrick; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McNair, Sean; Melikechi, Noureddine; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Niles, Paul; Nixon, Brian; Dobrea, Eldar Noe; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; Owen, Tobias; Pablo, Hernández; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Pepin, Robert; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J.; Rowland, Scott; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stern, Jennifer; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Sucharski, Bob; Summons, Roger; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge Loes; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Webster, Chris; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B.; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-09-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

  3. Planetary boundary layer and circulation dynamics at Gale Crater, Mars

    Science.gov (United States)

    Fonseca, Ricardo M.; Zorzano-Mier, María-Paz; Martín-Torres, Javier

    2018-03-01

    The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace gas content within the crater. Our results show that the average time when the PBL height is deeper than the crater rim increases and decreases with the same rate and pattern as Curiosity's observations of the line-of-sight of dust within the crater and that the season when maximal (minimal) mixing is produced is Ls 225°-315° (Ls 90°-110°). Thus the diurnal and seasonal variability of the PBL depth seems to be the driver of the changes in the local dust content within the crater. A comparison with the available methane measurements suggests that changes in the PBL depth may also be one of the factors that accounts for the observed variability, with the model results pointing towards a local source to the north of the MSL site. The interaction between regional and local flows at Gale Crater is also investigated assuming that the meridional wind, the dynamically important component of the horizontal wind at Gale, anomalies with respect to the daily mean can be approximated by a sinusoidal function as they typically oscillate between positive (south to north) and negative (north to south) values that correspond to upslope/downslope or downslope/upslope regimes along the crater rim and Mount Sharp slopes and the dichotomy boundary. The smallest magnitudes are found in the northern crater floor in a region that

  4. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  5. Shallow and deep fresh impact craters in Hesperia Planum, Mars

    Science.gov (United States)

    Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1993-01-01

    The depths of 109 impact craters about 2-16 km in diameter, located on the ridged plains materials of Hesperia Planum, Mars, have been measured from their shadow lengths using digital Viking Orbiter images (orbit numbers 417S-419S) and the PICS computer software. On the basis of their pristine morphology (very fresh lobate ejecta blankets, well preserved rim crests, and lack of superposed impact craters), 57 of these craters have been selected for detailed analysis of their spatial distribution and geometry. We find that south of 30 deg S, craters less than 6.0 km in diameter are markedly shallower than similar-sized craters equatorward of this latitude. No comparable relationship is observed for morphologically fresh craters greater than 6.0 km diameter. We also find that two populations exist for older craters less than 6.0 km diameter. When craters that lack ejecta blankets are grouped on the basis of depth/diameter ratio, the deeper craters also typically lie equatorward of 30 S. We interpret the spatial variation in crater depth/diameter ratios as most likely due to a poleward increase in volatiles within the top 400 m of the surface at the times these craters were formed.

  6. Turbulent flow over craters on Mars: Vorticity dynamics reveal aeolian excavation mechanism

    Science.gov (United States)

    Anderson, William; Day, Mackenzie

    2017-10-01

    Impact craters are scattered across Mars. These craters exhibit geometric self-similarity over a spectrum of diameters, ranging from tens to thousands of kilometers. The late Noachian-early Hesperian boundary marks a dramatic shift in the role of mid-latitude craters, from depocenter sedimentary basins to aeolian source areas. At present day, many craters contain prominent layered sedimentary mounds with maximum elevations comparable to the rim height. The mounds are remnants of Noachian deposition and are surrounded by a radial moat. Large-eddy simulation has been used to model turbulent flows over synthetic craterlike geometries. Geometric attributes of the craters and the aloft flow have been carefully matched to resemble ambient conditions in the atmospheric boundary layer of Mars. Vorticity dynamics analysis within the crater basin reveals the presence of counterrotating helical vortices, verifying the efficacy of deflationary models put forth recently by Bennett and Bell [K. Bennett and J. Bell, Icarus 264, 331 (2016)], 10.1016/j.icarus.2015.09.041 and Day et al. [M. Day et al., Geophys. Res. Lett. 43, 2473 (2016)], 10.1002/2016GL068011. We show how these helical counterrotating vortices spiral around the outer rim, gradually deflating the moat and carving the mound; excavation occurs faster on the upwind side, explaining the radial eccentricity of the mounds relative to the surrounding crater basin.

  7. Turbulent flow over craters on Mars: Vorticity dynamics reveal aeolian excavation mechanism.

    Science.gov (United States)

    Anderson, William; Day, Mackenzie

    2017-10-01

    Impact craters are scattered across Mars. These craters exhibit geometric self-similarity over a spectrum of diameters, ranging from tens to thousands of kilometers. The late Noachian-early Hesperian boundary marks a dramatic shift in the role of mid-latitude craters, from depocenter sedimentary basins to aeolian source areas. At present day, many craters contain prominent layered sedimentary mounds with maximum elevations comparable to the rim height. The mounds are remnants of Noachian deposition and are surrounded by a radial moat. Large-eddy simulation has been used to model turbulent flows over synthetic craterlike geometries. Geometric attributes of the craters and the aloft flow have been carefully matched to resemble ambient conditions in the atmospheric boundary layer of Mars. Vorticity dynamics analysis within the crater basin reveals the presence of counterrotating helical vortices, verifying the efficacy of deflationary models put forth recently by Bennett and Bell [K. Bennett and J. Bell, Icarus 264, 331 (2016)]ICRSA50019-103510.1016/j.icarus.2015.09.041 and Day et al. [M. Day et al., Geophys. Res. Lett. 43, 2473 (2016)]GPRLAJ0094-827610.1002/2016GL068011. We show how these helical counterrotating vortices spiral around the outer rim, gradually deflating the moat and carving the mound; excavation occurs faster on the upwind side, explaining the radial eccentricity of the mounds relative to the surrounding crater basin.

  8. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

    OpenAIRE

    Grotzinger, JP; Gupta, S; Malin, MC; Rubin, DM; Schieber, J; Siebach, K; Sumner, DY; Stack, KM; Vasavada, AR; Arvidson, RE; Calef, F; Edgar, L; Fischer, WF; Grant, JA; Griffes, J

    2015-01-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittentl...

  9. Mars Climate History: Insights From Impact Crater Wall Slope Statistics

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.

    2018-02-01

    We use the global distribution of the steepest slopes on crater walls derived from Mars Orbiter Laser Altimeter profile data to assess the magnitudes of degradational processes with latitude, altitude, and time. We independently confirm that Amazonian polar/high-latitude crater slope modification is substantial, but that craters in the low latitudes have essentially escaped significant slope modification since the Early Hesperian. We find that the total amount of crater wall degradation in the Late Noachian is very small in comparison to the circumpolar regions in the Late Amazonian, an observation that we interpret to mean that the Late Noachian climate was not characterized by persistent and continuous warm and wet conditions. A confirmed elevational zonality in degradation in the Early Hesperian is interpreted to mean that the atmosphere was denser than today.

  10. Stratigraphic architecture of bedrock reference section, Victoria Crater, Meridiani Planum, Mars

    Science.gov (United States)

    Edgar, Lauren A.; Grotzinger, John P.; Hayes, Alex G.; Rubin, David M.; Squyres, Steve W.; Bell, James F.; Herkenhoff, Ken E.

    2012-01-01

    The Mars Exploration Rover Opportunity has investigated bedrock outcrops exposed in several craters at Meridiani Planum, Mars, in an effort to better understand the role of surface processes in its geologic history. Opportunity has recently completed its observations of Victoria crater, which is 750 m in diameter and exposes cliffs up to ~15 m high. The plains surrounding Victoria crater are ~10 m higher in elevation than those surrounding the previously explored Endurance crater, indicating that the Victoria crater exposes a stratigraphically higher section than does the Endurance crater; however, Victoria strata overlap in elevation with the rocks exposed at the Erebus crater. Victoria crater has a well-developed geomorphic pattern of promontories and embayments that define the crater wall and that reveal thick bedsets (3–7m) of large-scale cross-bedding, interpreted as fossil eolian dunes. Opportunity was able to drive into the crater at Duck Bay, located on the western margin of Victoria crater. Data from the Microscopic Imager and Panoramic Camera reveal details about the structures, textures, and depositional and diagenetic events that influenced the Victoria bedrock. A lithostratigraphic subdivision of bedrock units was enabled by the presence of a light-toned band that lines much of the upper rim of the crater. In ascending order, three stratigraphic units are named Lyell, Smith, and Steno; Smith is the light-toned band. In the Reference Section exposed along the ingress path at Duck Bay, Smith is interpreted to represent a zone of diagenetic recrystallization; however, its upper contact also coincides with a primary erosional surface. Elsewhere in the crater the diagenetic band crosscuts the physical stratigraphy. Correlation with strata present at nearby promontory Cape Verde indicates that there is an erosional surface at the base of the cliff face that corresponds to the erosional contact below Steno. The erosional contact at the base of Cape Verde

  11. Visible and Near-Infrared Spectroscopy of Hephaestus Fossae Cratered Cones, Mars

    Science.gov (United States)

    Dapremont, A.; Wray, J. J.

    2017-12-01

    Hephaestus Fossae are a system of sub-parallel fractures on Mars (> 500 km long) interpreted as near-surface tensional cracks [1]. Images of the Martian surface from the High Resolution Imaging Science Experiment have revealed cratered cones within the Hephaestus Fossae region. A volcanic origin (cinder/tuff cones) has been proposed for these features based on morphometric measurements and fine-scale surface characteristics [2]. In an effort to further constrain the origin of these cones as the products of igneous or sedimentary volcanism, we use data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We take advantage of CRISM's S (0.4 - 1.0 microns) and L (1.0 - 3.9 microns) detector wavelength ranges to investigate the presence or absence of spectral signatures consistent with previous identifications of igneous and mud volcanism products on Mars [3,4]. Hephaestus Fossae cratered cone rims exhibit a consistent nanophase ferric oxide signature. We also identify ferrous phases and 3-micron absorptions (attributed to fundamental vibrational stretch frequencies in H2O) on the crater rims of several cones. Mafic signatures on cratered cone rims support an igneous provenance for these features. The 3-micron absorptions are consistent with the presence of structurally bound or adsorbed water. Our CRISM observations are similar to those of small edifice features in Chryse Planitia, which were interpreted as mud volcanism products based on their enrichment of nanophase ferric minerals and 3-micron absorptions on summit crater rims [3]. Hydrothermal activity was invoked for a Coprates Chasma pitted cone (scoria/tuff cone) based on CRISM identification of partially dehydrated opaline silica, which we do not observe in Hephaestus Fossae [4]. Our spectral observations are more consistent with mud volcanism, but we do not definitively rule out an igneous volcanic origin for the cones in our study region. We demonstrate that VNIR spectroscopy is a valuable

  12. Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars

    OpenAIRE

    Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Ewing, R. C.; Chipera, S. J.; Yen, A. S.; Bristow, T. F.; Ehlmann, B. L.; Gellert, R.

    2017-01-01

    The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the

  13. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images

    Science.gov (United States)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  14. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars

    NARCIS (Netherlands)

    Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; Rice, M.; Achilles, C.N.; Grotzinger, J.P.; McLennan, S.M.; Williams, J.; Bell III, J.F.; Newsom, H.E.; Downs, R.T.; Maurice, S.; Sarrazin, P.; Yen, A.S.; Morookian, J.M.; Farmer, J.D.; Stack, K.; Milliken, R.E.; Ehlmann, B.L.; Sumner, D.Y.; Berger, G.; Crisp, J.A.; Hurowitz, J.A.; Anderson, R.; Des Marais, D.J.; Stolper, E.M.; Edgett, K.S.; Gupta, S.; Spanovich, N.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John

  15. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

    Science.gov (United States)

    Grotzinger, J. P.; Gupta, S.; Malin, M. C.; Rubin, D. M.; Schieber, J.; Siebach, K.; Sumner, D. Y.; Stack, K. M.; Vasavada, A. R.; Arvidson, R. E.; Calef, F.; Edgar, L.; Fischer, W. F.; Grant, J. A.; Griffes, J.; Kah, L. C.; Lamb, M. P.; Lewis, K. W.; Mangold, N.; Minitti, M. E.; Palucis, M.; Rice, M.; Williams, R. M. E.; Yingst, R. A.; Blake, D.; Blaney, D.; Conrad, P.; Crisp, J.; Dietrich, W. E.; Dromart, G.; Edgett, K. S.; Ewing, R. C.; Gellert, R.; Hurowitz, J. A.; Kocurek, G.; Mahaffy, P.; McBride, M. J.; McLennan, S. M.; Mischna, M.; Ming, D.; Milliken, R.; Newsom, H.; Oehler, D.; Parker, T. J.; Vaniman, D.; Wiens, R. C.; Wilson, S. A.

    2015-10-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).

  16. High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars

    Science.gov (United States)

    Arvidson, Raymond E.; Squyres, Steven W.; Morris, Richard V.; Knoll, Andrew H.; Gellert, Ralf; Clark, Benton C.; Catalano, Jeffrey G.; Jolliff, Bradley L.; McLennan, Scott M.; Herkenhoff, Kenneth E.; VanBommel, Scott; Mittelfehldt, David W.; Grotzinger, John P.; Guinness, Edward A.; Johnson, Jeffrey R.; Bell, James F.; Farrand, William H.; Stein, Nathan; Fox, Valerie K.; Golombek, Matthew P.; Hinkle, Margaret A. G.; Calvin, Wendy M.; de Souza, Paulo A.

    2016-01-01

    Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the ~22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. Fractures have also propagated upward into the overlying Burns formation sandstones. Opportunity’s observations show that the western crater rim segment, called Murray Ridge, is composed of impact breccias with basaltic compositions, as well as occasional fracture-filling calcium sulfate veins. Cook Haven, a gentle depression on Murray Ridge, and the site where Opportunity spent its sixth winter, exposes highly fractured, recessive outcrops that have relatively high concentrations of S and Cl, consistent with modest aqueous alteration. Opportunity’s rover wheels serendipitously excavated and overturned several small rocks from a Cook Haven fracture zone. Extensive measurement campaigns were conducted on two of them: Pinnacle Island and Stuart Island. These rocks have the highest concentrations of Mn and S measured to date by Opportunity and occur as a relatively bright sulfate-rich coating on basaltic rock, capped by a thin deposit of one or more dark Mn oxide phases intermixed with sulfate minerals. We infer from these unique Pinnacle Island and Stuart Island rock measurements that subsurface precipitation of sulfate-dominated coatings was followed by an interval of partial dissolution and reaction with one or more strong oxidants (e.g., O2) to produce the Mn oxide mineral(s) intermixed with sulfate-rich salt coatings. In contrast to arid regions on Earth, where Mn oxides are widely incorporated into coatings on surface rocks, our results demonstrate that on Mars the most likely place to deposit and preserve Mn oxides was in fracture zones where migrating fluids intersected surface oxidants, forming precipitates shielded from subsequent physical erosion.

  17. Mineral Trends in Early Hesperian Lacustrine Mudstone at Gale Crater, Mars

    Science.gov (United States)

    Rampe, E. B.; Ming, D. W.; Grotzinger, J. P.; Morris, R. V.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Morrison, S. M.; Yen, A. S.; Chipera, S. J.; hide

    2017-01-01

    The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to study the layered sediments of lower Aeolis Mons (i.e., Mount Sharp), which have signatures of phyllosilicates, hydrated sulfates, and iron oxides in orbital visible/near-infrared observations. The observed mineralogy within the stratigraphy, from phyllosilicates in lower units to sulfates in higher units, suggests an evolution in the environments in which these secondary phases formed. Curiosity is currently investigating the sedimentary structures, geochemistry, and mineralogy of the Murray formation, the lowest exposed unit of Mount Sharp. The Murray formation is dominated by laminated lacustrine mudstone and is approx.200 m thick. Curiosity previously investigated lacustrine mudstone early in the mission at Yellowknife Bay, which represents the lowest studied stratigraphic unit. Here, we present the minerals identified in lacus-trine mudstone from Yellowknife Bay and the Murray formation. We discuss trends in mineralogy within the stratigraphy and the implications for ancient lacustrine environments, diagenesis, and sediment sources.

  18. The Links Between Target Properties and Layered Ejecta Craters in Acidalia and Utopia Planitiae Mars

    Science.gov (United States)

    Jones, E.; Osinski, G. R.

    2013-08-01

    Layered ejecta craters on Mars may form from excavation into subsurface volatiles. We examine a new catalogue of martian craters to decipher differences between the single- and double-layered ejecta populations in Acidalia and Utopia.

  19. Deformed barchans under alternating flows: Flume experiments and comparison with barchan dunes within Proctor Crater, Mars

    Science.gov (United States)

    Taniguchi, Keisuke; Endo, Noritaka

    2007-10-01

    It is generally considered that barchans, isolated crescentic-shaped dunes, develop where wind is unidirectional and the available sand is insufficient to cover the entire dune field; however, Bishop [Bishop, M.A., 2001. Seasonal variation of crescentic dune morphology and morphometry, Strzelecki Simpson desert, Australia. Earth Surface Process and Landforms 26, 783 791.] observed barchans that developed in areas where winds blow seasonally in opposite directions and described a peculiar deformation feature, the “rear slipface,” that is not found in ordinary barchans. Barchans under such bidirectional flows are poorly understood, and it is necessary to study barchans that formed under many different flow conditions. We conducted flume experiments to investigate the deformation of barchans under alternating water flow, and observed new deformation features in addition to rear slipfaces. We conclude that the deformation of barchans can be categorized into four types, one of which shows morphologies similar to barchans within Proctor Crater, Mars. The deformation type depends on the strength of the reverse flow relative to the forward flow and the absolute velocity of the forward flow. Comparison of our results with barchan dunes within Proctor Crater enable us to qualitatively estimate the wind strength and direction related to dune formation on Mars. These results are in agreement with those of Fenton et al. [Fenton, L.K., Toigo, A.D., Richardson, M.I., 2005. Aeolian processes in Proctor Crater on Mars: Mesoscale modeling of dune-forming winds. Journal of Geophysical Research 110 (E6), E06005.].

  20. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars.

    Science.gov (United States)

    Grotzinger, J P; Gupta, S; Malin, M C; Rubin, D M; Schieber, J; Siebach, K; Sumner, D Y; Stack, K M; Vasavada, A R; Arvidson, R E; Calef, F; Edgar, L; Fischer, W F; Grant, J A; Griffes, J; Kah, L C; Lamb, M P; Lewis, K W; Mangold, N; Minitti, M E; Palucis, M; Rice, M; Williams, R M E; Yingst, R A; Blake, D; Blaney, D; Conrad, P; Crisp, J; Dietrich, W E; Dromart, G; Edgett, K S; Ewing, R C; Gellert, R; Hurowitz, J A; Kocurek, G; Mahaffy, P; McBride, M J; McLennan, S M; Mischna, M; Ming, D; Milliken, R; Newsom, H; Oehler, D; Parker, T J; Vaniman, D; Wiens, R C; Wilson, S A

    2015-10-09

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp). Copyright © 2015, American Association for the Advancement of Science.

  1. Influence of Fault-Controlled Topography on Fluvio-Deltaic Sedimentary Systems in Eberswalde Crater, Mars

    Science.gov (United States)

    Rice, Melissa S.; Gupta, Sanjeev; Bell, James F., III; Warner, Nicholas H.

    2011-01-01

    Eberswalde crater was selected as a candidate landing site for the Mars Science Laboratory (MSL) mission based on the presence of a fan-shaped sedimentary deposit interpreted as a delta. We have identified and mapped five other candidate fluvio -deltaic systems in the crater, using images and digital terrain models (DTMs) derived from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX). All of these systems consist of the same three stratigraphic units: (1) an upper layered unit, conformable with (2) a subpolygonally fractured unit, unconformably overlying (3) a pitted unit. We have also mapped a system of NNE-trending scarps interpreted as dip-slip faults that pre-date the fluvial -lacustrine deposits. The post-impact regional faulting may have generated the large-scale topography within the crater, which consists of a Western Basin, an Eastern Basin, and a central high. This topography subsequently provided depositional sinks for sediment entering the crater and controlled the geomorphic pattern of delta development.

  2. Aqueous alteration detection in Tikhonravov crater, Mars

    Science.gov (United States)

    Mancarella, F.; Fonti, S.; Alemanno, G.; Orofino, V.; Blanco, A.

    2018-03-01

    The existence of a wet period lasting long enough to allow the development of elementary forms of life on Mars has always been a very interesting issue. Given this perspective, the research for geological markers of such occurrences has been continually pursued. Once a favorable site is detected, effort should be spent to get as much information as possible aimed at a precise assessment of the genesis and evolution of the areas showing the selected markers. In this work, we discuss the recent finding of possible deposits pointing to the past existence of liquid water in Tikhonravov crater located in Arabia Terra. Comparison of CRISM spectra and those of laboratory minerals formed by aqueous alteration has led us to the conclusion that the studied areas within the impact crater host phyllosilicates deposits. In addition, analysis of the CRISM spectra has resulted in the tentative identification of carbonates mixed with phyllosilicates.

  3. Mars atmosphere. Mars methane detection and variability at Gale crater.

    Science.gov (United States)

    Webster, Christopher R; Mahaffy, Paul R; Atreya, Sushil K; Flesch, Gregory J; Mischna, Michael A; Meslin, Pierre-Yves; Farley, Kenneth A; Conrad, Pamela G; Christensen, Lance E; Pavlov, Alexander A; Martín-Torres, Javier; Zorzano, María-Paz; McConnochie, Timothy H; Owen, Tobias; Eigenbrode, Jennifer L; Glavin, Daniel P; Steele, Andrew; Malespin, Charles A; Archer, P Douglas; Sutter, Brad; Coll, Patrice; Freissinet, Caroline; McKay, Christopher P; Moores, John E; Schwenzer, Susanne P; Bridges, John C; Navarro-Gonzalez, Rafael; Gellert, Ralf; Lemmon, Mark T

    2015-01-23

    Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. Copyright © 2015, American Association for the Advancement of Science.

  4. Geology and mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A possible post impact-induced hydrothermal system

    Science.gov (United States)

    Carrozzo, F. G.; Di Achille, G.; Salese, F.; Altieri, F.; Bellucci, G.

    2017-01-01

    A variety of hydrothermal environments have been documented in terrestrial impact structures. Due to both past water interactions and meteoritic bombardment on the surface of Mars, several authors have predicted various scenarios that include the formation of hydrothermal systems. Geological and mineralogical evidence of past hydrothermal activity have only recently been found on Mars. Here, we present a geological and mineralogical study of the Auki Crater using the spectral and visible imagery data acquired by the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars), CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) instruments on board the NASA MRO mission. The Auki Crater is a complex crater that is ∼38 km in diameter located in Tyrrhena Terra (96.8°E and 15.7°S) and shows a correlation between its mineralogy and morphology. The presence of minerals, such as smectite, silica, zeolite, serpentine, carbonate and chlorite, associated with morphological structures, such as mounds, polygonal terrains, fractures and veins, suggests that the Auki Crater may have hosted a post impact-induced hydrothermal system. Although the distribution of hydrated minerals in and around the central uplift and the stratigraphic relationships of some morphological units could also be explained by the excavation and exhumation of carbonate-rich bedrock units as a consequence of crater formation, we favor the hypothesis of impact-induced hydrothermal circulation within fractures and subsequent mineral deposition. The hydrothermal system could have been active for a relatively long period of time after the impact, thus producing a potential transient habitable environment. It must be a spectrally neutral component to emphasize the spectral features; It is an average of spectra taken in the same column of the numerator spectra to correct the residual instrument artifacts and reduce detector noise that changes from column to column; It must be taken in

  5. Overview of the Atmosphere and Environment within Gale Crater on Mars

    Science.gov (United States)

    Vasavada, A. R.; Grotzinger, J. P.; Crisp, J. A.; Gomez-Elvira, J.; Mahaffy, P. R.; Webster, C. R.

    2012-12-01

    Curiosity's mission at Gale Crater places a number of highly capable atmospheric and environmental sensors within a dynamic setting: next to a 5-km mountain within a 150-km diameter impact crater whose floor is -4.5 km. Curiosity's scientific payload was chosen primarily to allow a geologic and geochemical investigation of Mars' environmental history and habitability, as preserved in the layered sediments on the crater floor and mound. Atmospheric and environmental sensors will contribute by measuring the bulk atmospheric chemical and isotopic composition, the flux of high-energy particle and ultraviolet radiation after modification by the atmosphere, and modern processes related to meteorology and climate over at least one Mars year. The Sample Analysis at Mars instrument will analyze the atmosphere with its mass spectrometer and tunable laser spectrometer. The former is capable of providing bulk composition and isotopic ratios of relevance to planetary evolution, such as nitrogen and noble gases. The latter is designed to acquire high-precision measurements of atmospheric species including CH4, CO2, and H2O, and key isotope ratios in H, C, and O. An important goal will be to compare CH4 abundance and time variability over the mission with the reported detections from the Mars Express orbiter and ground-based observations. The Radiation Assessment Detector (RAD) measures a broad spectrum of high-energy radiation incident at the surface, including secondary particles created via interactions of galactic cosmic rays and solar protons with Mars' atmospheric constituents. Curiosity's Rover Environmental Monitoring Station (REMS) carries six ultraviolet sensors, spanning 200-380 nm. For the first time, both the high-energy and ultraviolet radiation measured at the surface can be compared with measurements above the atmosphere, acquired by other platforms. Modern meteorology and the climatology of dust and water will be studied using the rover's cameras and REMS

  6. Effect of Sulfur Concentration and PH Conditions on Akaganeite Formation: Understanding Akaganeite Formation Conditions in Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Fox, A.; Peretyazhko, T.; Sutter, B.; Niles, P.; Ming, D. W.; Morris, R. V.

    2015-01-01

    The Chemistry and Mineralogy Instrument (CHEMIN) on board the Mars Science Laboratory (MSL) Curiosity Rover identified minor amounts of akaganeite (beta-FeOOH) at Yellowknife Bay, Mars. There is also evidence for akaganeite at other localities on Mars from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Akaganeite is an iron(III) hydroxide with a hollandite- like structure and Cl in its tunnels. Terrestrial akaganeite usually forms in Cl-rich environments under acidic, oxidizing conditions. Previous studies of akaganeite have revealed that akaganeite formation is affected by the presence of sulfate (hereafter denoted as S. The prediction of circumneutral pH coupled with the detection of S at Yellowknife Bay dictate that work is needed to determine how S and pH together affect akaganeite formation. The goal of this work is to study how changes in both S concentration and pH influence akaganeite precipitation. Akaganeite formation was investigated at S/Cl molar ratios of 0, 0.017, 0.083, 0.17 and 0.33 at pH 1.5, 2, and 4. Results are anticipated to provide combined S concentration and pH constraints on akaganeite formation in Yellowknife Bay and elsewhere on Mars. Knowledge of solution pH and S concentrations can be utilized in understanding microbial habitability potential on the Martian surface.

  7. Buried Craters of Utopia

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-365, 19 May 2003Beneath the northern plains of Mars are numerous buried meteor impact craters. One of the most heavily-cratered areas, although buried, occurs in Utopia Planitia, as shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The history of Mars is complex; impact craters provide a tool by which to understand some of that history. In this case, a very ancient, cratered surface was thinly-buried by younger material that is not cratered at all. This area is near 48.1oN, 228.2oW; less than 180 km (112 mi) west of the Viking 2 lander site. Sunlight illuminates the scene from the lower left.

  8. Atmospheric Tides in Gale Crater, Mars

    Science.gov (United States)

    Guzewich, Scott D,; Newman, C. E; de la Torre Juarez, M.; Wilson, R. J.; Lemmon, M.; Smith, M. D.; Kahanpaa, H.; Harri, A.-M.

    2015-01-01

    Atmospheric tides are the primary source of daily air pressure variation at the surface of Mars. These tides are forced by solar heating of the atmosphere and modulated by the presence of atmospheric dust, topography, and surface albedo and thermal inertia. This results in a complex mix of sun-synchronous and nonsun- synchronous tides propagating both eastward and westward around the planet in periods that are integer fractions of a solar day. The Rover Environmental Monitoring Station on board the Mars Science Laboratory has observed air pressure at a regular cadence for over 1 Mars year and here we analyze and diagnose atmospheric tides in this pressure record. The diurnal tide amplitude varies from 26 to 63 Pa with an average phase of 0424 local true solar time, while the semidiurnal tide amplitude varies from 5 to 20 Pa with an average phase of 0929. We find that both the diurnal and semidiurnal tides in Gale Crater are highly correlated to atmospheric opacity variations at a value of 0.9 and to each other at a value of 0.77, with some key exceptions occurring during regional and local dust storms. We supplement our analysis with MarsWRF general circulation modeling to examine how a local dust storm impacts the diurnal tide in its vicinity. We find that both the diurnal tide amplitude enhancement and regional coverage of notable amplitude enhancement linearly scales with the size of the local dust storm. Our results provide the first long-term record of surface pressure tides near the martian equator.

  9. Constraining the Source Craters of the Martian Meteorites: Implications for Prioritiziation of Returned Samples from Mars

    Science.gov (United States)

    Herd, C. D. K.; Tornabene, L. L.; Bowling, T. J.; Walton, E. L.; Sharp, T. G.; Melosh, H. J.; Hamilton, J. S.; Viviano, C. E.; Ehlmann, B. L.

    2018-04-01

    We have made advances in constraining the potential source craters of the martian meteorites to a relatively small number. Our results have implications for Mars chronology and the prioritization of samples for Mars Sample Return.

  10. Cratering record in the inner solar system: Implications for earth

    International Nuclear Information System (INIS)

    Barlow, N.G.

    1988-01-01

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters

  11. Mars methane detection and variability at Gale crater

    Science.gov (United States)

    Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Flesch, Gregory J.; Mischna, Michael A.; Meslin, Pierre-Yves; Farley, Kenneth A.; Conrad, Pamela G.; Christensen, Lance E.; Pavlov, Alexander A.; Martín-Torres, Javier; Zorzano, María-Paz; McConnochie, Timothy H.; Owen, Tobias; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Steele, Andrew; Malespin, Charles A.; Archer, P. Douglas; Sutter, Brad; Coll, Patrice; Freissinet, Caroline; McKay, Christopher P.; Moores, John E.; Schwenzer, Susanne P.; Bridges, John C.; Navarro-Gonzalez, Rafael; Gellert, Ralf; Lemmon, Mark T.; MSL Science Team; Abbey, William; Achilles, Cherie; Agard, Christophe; Alexandre Alves Verdasca, José; Anderson, Dana; Anderson, Robert C.; Anderson, Ryan B.; Appel, Jan Kristoffer; Archer, Paul Douglas; Arevalo, Ricardo; Armiens-Aparicio, Carlos; Arvidson, Raymond; Atlaskin, Evgeny; Atreya, Andrew Sushil; Azeez, Aubrey Sherif; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Battalio, Michael; Beach, Michael; Bean, Keri; Beck, Pierre; Becker, Richard; Beegle, Luther; Behar, Alberto; Belgacem, Inès; Bell, James F., III; Bender, Steven; Benna, Mehdi; Bentz, Jennifer; Berger, Jeffrey; Berger, Thomas; Berlanga, Genesis; Berman, Daniel; Bish, David; Blacksberg, Jordana; Blake, David F.; José Blanco, Juan; Blaney, Ávalos Diana; Blank, Jennifer; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Bonnet, Jean-Yves; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, William; Braswell, Shaneen; Breves, Elly; Bridges, John C.; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Burton, John; Buz, Jennifer; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John L.; Cantor, Bruce; Caplinger, Michael; Clifton, Carey, Jr.; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Cavanagh, Patrick; Charpentier, Antoine; Chipera, Steve; Choi, David; Christensen, Lance; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Coman, Ecaterina I.; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy A.; Cropper, Kevin; Cros, Alain; Cucinotta, Francis; d'Uston, Claude; Davis, Scott; Day, Mackenzie; Daydou, Yves; DeFlores, Lauren; Dehouck, Erwin; Delapp, Dorothea; DeMarines, Julia; Dequaire, Tristan; Des Marais, David; Desrousseaux, Roch; Dietrich, William; Dingler, Robert; Domagal-Goldman, Shawn; Donny, Christophe; Downs, Robert; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason P.; Dyar, M. Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher S.; Edwards, Laurence; Edwards, Peter; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jennifer; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Fairén, Alberto; Farley, Kenneth; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Fendrich, Kim; Fischer, Erik; Fisk, Martin; Fitzgibbon, Mike; Flesch, Gregory; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fox, Valerie; Fraeman, Abigail; Francis, Raymond; François, Pascaline; Franz, Heather; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Getty, Stephanie; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Graham, Heather; Grant, John; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Victoria; Hand, Kevin; Hardgrove, Craig; Hardy, Keian; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alexander; Herkenhoff, Kenneth; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Stephen; Israël, Guy; Jackson, Ryan Steele; Jacob, Samantha; Jakosky, Bruce; Jean-Rigaud, Laurent; Jensen, Elsa; Kløvgaard Jensen, Jaqueline; Johnson, Jeffrey R.; Johnson, Micah; Johnstone, Stephen; Jones, Andrea; Jones, John H.; Joseph, Jonathan; Joulin, Mélissa; Jun, Insoo; Kah, Linda C.; Kahanpää, Henrik; Kahre, Melinda; Kaplan, Hannah; Karpushkina, Natalya; Kashyap, Srishti; Kauhanen, Janne; Keely, Leslie; Kelley, Simon; Kempe, Fabian; Kemppinen, Osku; Kennedy, Megan R.; Keymeulen, Didier; Kharytonov, Alexander; Kim, Myung-Hee; Kinch, Kjartan; King, Penelope; Kirk, Randolph; Kirkland, Laurel; Kloos, Jacob; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kotrc, Benjamin; Kozyrev, Alexander; Krau, Johannes; Krezoski, ß. Gillian; Kronyak, Rachel; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean-Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lapôtre, Mathieu; Larif, Marie-France; Lasue, Jérémie; Le Deit, Laetitia; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lee, Rebekka; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette, Alain; Lepore, Malvitte Kate; Leshin, Laurie; Léveillé, Richard; Lewin, Éric; Lewis, Kevin; Li, Shuai; Lichtenberg, Kimberly; Lipkaman, Leslie; Lisov, Denis; Little, Cynthia; Litvak, Maxim; Liu, Lu; Lohf, Henning; Lorigny, Eric; Lugmair, Günter; Lundberg, Angela; Lyness, Eric; Madsen, Morten Bo; Magee, Angela; Mahaffy, Paul; Maki, Justin; Mäkinen, Teemu; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gerard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, David K.; Martin, Mildred; Martin, Peter; Martínez Martínez, Germán; Martínez-Frías, Jesús; Martín-Sauceda, Jaime; Martín-Soler, Martín Javier; Martín-Torres, F. Javier; Mason, Emily; Matthews, Tristan; Matthiä, Daniel; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McBride, Marie; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLain, Hannah; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Mendaza de Cal, Teresa; Merikallio, Sini; Merritt, Sean; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Milkovich, Sarah; Millan, Maëva; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitchell, Julie; Mitrofanov, Igor; Moersch, Jeffrey; Mokrousov, Maxim; Molina, Antonio; Moore, Jurado Casey; Moores, John E.; Mora-Sotomayor, Luis; Moreno, Gines; Morookian, John Michael; Morris, Richard V.; Morrison, Shaunna; Mousset, Valérie; Mrigakshi, Alankrita; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Nastan, Abbey; Navarro López, Sara; Navarro González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nikitczuk, Matthew; Niles, Paul; Nixon, Brian; Noblet, Audrey; Noe, Eldar; Nolan, Dobrea Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; Orthen, Tobias; Owen, Tobias; Ozanne, Marie; de Pablo Hernández, Miguel Ángel; Pagel, Hannah; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Parra, Alex; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alexander; Pavri, Betina; Peinado-González, Verónica; Pepin, Robert; Peret, Laurent; Pérez, René; Perrett, Glynis; Peterson, Joseph; Pilorget, Cedric; Pinet, Patrick; Pinnick, Veronica; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Rapin, William; Raulin, François; Ravine, Michael; Reitz, Günther; Ren, Jun; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Ritter, Birgit; Rivera-Hernández, Frances; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; José Romeral-Planelló, Julio; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Said, David; Salamon, Andrew; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne P.; Sciascia Borlina, Cauê; Scodary, Anthony; Sebastián Martínez, Eduardo; Sengstacken, Aaron; Shechet, Jennifer Griffes; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, John J.; Sirven, Jean-Baptiste; Slavney, Susan; Sletten, Ronald; Smith, Michael D.; Sobron Sanchez, Pablo; Spanovich, Nicole; Spray, John; Spring, Justin; Squyres, Steven; Stack, Katie; Stalport, Fabien; Starr, Richard; Stein, Andrew Steele Thomas; Stern, Jennifer; Stewart, Noel; Stewart, Wayne; Stipp, Svane Susan Louise; Stoiber, Kevin; Stolper, Edward; Sucharski, Robert; Sullivan, Robert; Summons, Roger; Sumner, Dawn Y.; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge Loes; Thomas, Alicia; Thomas, Peter; Thompson, Lucy; Thuillier, Franck; Thulliez, Emmanual; Tokar, Robert; Toplis, Michael; de la Torre Juárez, Manuel; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Ullán-Nieto, Aurora; Urqui-O'Callaghan, Roser; Valentín-Serrano, Patricia; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin R.; Vasconcelos, Paulo; de Vicente-Retortillo Rubalcaba, Álvaro; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Watkins, Jessica; Webster, Christopher R.; Weigle, Gerald; Wellington, Danika; Westall, Frances; Wiens, Roger; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B.; Williford, Kenneth; Wilson, Michael A.; Wilson, Sharon A.; Wimmer-Schweingruber, Robert; Wolff, Michael; Wong, Michael; Wray, James; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2015-01-01

    Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source.

  12. Remote Sensing of Mars: Detection of Impact Craters on the Mars Global Surveyor DTM by Integrating Edge- and Region-Based Algorithms

    Science.gov (United States)

    Athanassas, C. D.; Vaiopoulos, A.; Kolokoussis, P.; Argialas, D.

    2018-03-01

    This study integrates two different computer vision approaches, namely the circular Hough transform (CHT) and the determinant of Hessian (DoH), to detect automatically the largest number possible of craters of any size on the digital terrain model (DTM) generated by the Mars Global Surveyor mission. Specifically, application of the standard version of CHT to the DTM captured a great number of craters with diameter smaller than 50 km only, failing to capture larger craters. On the other hand, DoH was successful in detecting craters that were undetected by CHT, but its performance was deterred by the irregularity of the topographic surface encompassed: strongly undulated and inclined (trended) topographies hindered crater detection. When run on a de-trended DTM (and keeping the topology unaltered) DoH scored higher. Current results, although not optimal, encourage combined use of CHT and DoH for routine crater detection undertakings.

  13. From lakes to sand seas: a record of early Mars climate change explored in northern Gale crater, Mars

    Science.gov (United States)

    Gupta, S.; Banham, S.; Rubin, D. M.; Watkins, J. A.; Edgett, K. S.; Sumner, D. Y.; Grotzinger, J. P.; Lewis, K. W.; Edgar, L. A.; Stack, K.; Day, M.; Lapôtre, M. G. A.; Bell, J. F., III; Ewing, R. C.; Stein, N.; Rivera-Hernandez, F.; Vasavada, A. R.

    2017-12-01

    While traversing the northern flank of Aeolis Mons, Gale crater, Mars Science Laboratory rover Curiosity encountered a decametre-thick sandstone unit unconformably overlying the lacustrine Murray formation. This sandstone contains cross-bed sets on the order of 1 m thick, composed of uniform mm-thick laminations of uniform thickness, and lacks silt- or mud-grade sediments. Cross sets are separated by sub-horizontal bounding surfaces which extend for tens of metres across outcrops. Dip-azimuths of cross-laminations are predominantly toward the north-east, which is oblique to the north-west slope of the unconformity on which the sandstone accumulated. This sandstone was designated the Stimson formation after Mt. Stimson, where it was delineated from the Murray formation. Textural analysis of this sandstone revealed a bi-modal sorting with well-rounded grains, typical of particles transported by aeolian processes. Stacked cross-bedded sets, representing the migration of aeolian dune-scale bedforms, combined with the absence of finer-grained facies characteristic of interdune deposits, suggest that the Stimson accumulated by aerodynamic processes and that the depositional surface was devoid of moisture which could have attracted dust to form interdune deposits. Reconstruction of this "dry" dune-field based on architectural measurements suggest that cross sets were emplaced by the migration of dunes with minimum heights of 10m, that were spaced 160 m apart. The dune field covered an area of 30-45 km2, and was confined to the break-in-slope at the base of Aeolis Mons. Cross-set dips suggest that the palaeowind drove these dunes toward the north east, oblique to the slope of the unconformity on which these sandstones accumulated. Construction of a dry dune field in Gale crater required an environment of extreme aridity with absence of water at the surface and within the shallow sub-surface. This is in stark contrast to the lacustrine environment in which the underlying

  14. Landscape evolution on Mars - A model of aeolian denudation in Gale Crater

    Science.gov (United States)

    Day, M. D.; Kocurek, G.; Grotzinger, J. P.

    2015-12-01

    Aeolian erosion has been the dominant geomorphic agent to shape the surface of Mars for the past ~3.5 billion years. Although individual geomorphic features evidencing aeolian activity are well understood (e.g., yardangs, dune fields, and wind streaks), landscapes formed by aeolian erosion remain poorly characterized. Intra-crater sedimentary mounds are hypothesized to have formed by wind deflation of craters once filled with flat-lying strata, and, therefore, should be surrounded by landscapes formed by aeolian erosion. Here we present a landscape evolution model that provides both an initial characterization of aeolian landscapes, and a mechanism for large-scale excavation. Wind excavation of Gale Crater to form the 5 km high Mount Sharp would require removal of 6.4 x 104 km3 of sediment. Imagery in Gale Crater from satellites and the Mars Science Laboratory rover Curiosity shows a surface characterized by first-cycle aeolian erosion of bedrock. The overall landscape is interpreted to represent stages in a cycle of aeolian deflation and excavation, enhanced by physical weathering (e.g., thermal fracturing, cratering). Initial wind erosion of bedrock is enhanced along fractures, producing retreating scarps. Underlying less resistant layers then erode faster than the armoring cap rock, increasing relief in scarps to form retreating mesas. As scarp retreat continues, boulders from the armoring cap unit break away and cover the hillslopes of less resistant material below the scarps. Eventually all material from the capping unit is eroded away and a boulder-capped hill remains. Winnowing of fine material flattens hillslope topography, leaving behind a desert pavement. Over long enough time, this pavement is breached and the cycle begins anew. This cycle of landscape denudation by the wind is similar to that of water, but lacks characteristic subaqueous features such as dendritic drainage networks.

  15. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow

    Science.gov (United States)

    Blake, David F.; Morris, Richard V.; Kocurek, G.; Morrison, S. M.; Downs, R. T.; Bish, D.; Ming, D. W.; Edgett, K. S.; Rubin, D.; Goetz, W.; hide

    2013-01-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand <150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.

  16. Polygons on Crater Floor

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-357, 11 May 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a pattern of polygons on the floor of a northern plains impact crater. These landforms are common on crater floors at high latitudes on Mars. Similar polygons occur in the arctic and antarctic regions of Earth, where they indicate the presence and freeze-thaw cycling of ground ice. Whether the polygons on Mars also indicate water ice in the ground is uncertain. The image is located in a crater at 64.8oN, 292.7oW. Sunlight illuminates the scene from the lower left.

  17. A Tale of 3 Craters

    Science.gov (United States)

    2004-01-01

    11 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image captures some of the complexity of the martian upper crust. Mars does not simply have an impact-cratered surface, it's upper crust is a cratered volume. Over time, older craters on Mars have been eroded, filled, buried, and in some cases exhumed and re-exposed at the martian surface. The crust of Mars is layered to depths of 10 or more kilometers, and mixed in with the layered bedrock are a variety of ancient craters with diameters ranging from a few tens of meters (a few tens of yards) to several hundred kilometers (more than one or two hundred miles). The picture shown here captures some of the essence of the layered, cratered volume of the upper crust of Mars in a very simple form. The image shows three distinct circular features. The smallest, in the lower right quarter of the image, is a meteor crater surrounded by a mound of material. This small crater formed within a layer of bedrock that once covered the entire scene, but today is found only in this small remnant adjacent to the crater. The intermediate-sized crater, west (left) of the small one, formed either in the next layer down--that is, below the layer in which the small crater formed--or it formed in some layers that are now removed, but was big enough to penetrate deeply into the rock that is near the surface today. The largest circular feature in the image, in the upper right quarter of the image, is still largely buried. It formed in layers of rock that are below the present surface. Erosion has brought traces of its rim back to the surface of Mars. This picture is located near 50.0oS, 77.8oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this October 2004 image from the upper left.

  18. Slope activity in Gale crater, Mars

    Science.gov (United States)

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  19. Dynamics of crater formations in immersed granular materials

    Science.gov (United States)

    Varas, G.; Vidal, V.; Géminard, J.

    2009-12-01

    Craters are part of the widespread phenomena observed in nature. Among the main applications to natural phenomena, aside from meteorite impact craters, are the formation and growth of volcanic edifices, by successive ejecta emplacement and/or erosion. The time evolution and dynamics play a crucial role here, as the competition between volcanic-jet mass-flux (degassing and ejecta) and crater-size evolution may control directly the eruptive regime. Crater morphology in dry granular material has been extensively studied, both experimentally and theoretically. Most of these studies investigate the final, steady crater shape resulting from the collision of solid bodies with the material surface and scaling laws are derived. In immersed granular material, craters generated by an underwater vortex ring, or underwater impact craters generated by landslide, have been reported. In a previous experimental study, Gostiaux et al. [Gran. Matt., 2002] have investigated the dynamics of air flowing through an immersed granular layer. They reported that, depending on the flow rate, the system exhibits two qualitatively different regimes: At small flow rate, the bubbling regime during which bubbles escape the granular layer independently one from another; At large flow rate, the open-channel regime which corresponds to the formation of a channel crossing the whole thickness of the granular bed through which air escapes almost continuously. At intermediate flow rate, a spontaneous alternation between these two regimes is observed. Here, we report the dynamics of crater formations at the free surface of an immersed granular bed, locally crossed by an ascending gas flow. We reproduce the experimental conditions of Gostiaux et al. (2002) in two dimensions: In a vertical Hele-Shaw cell, the crater consists of two sand piles which develop around the location of the gas emission. We observe that the typical size of the crater increases logarithmically with time, independently of the gas

  20. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater

    Science.gov (United States)

    Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Sarrazin, P.; Morrison, S. M.; Downs, R. T.; Achilles, C. N.; Yen, A. S.; Bristow, T. F.; Crisp, J. A.; Morookian, J. M.; Farmer, J. D.; Rampe, E. B.; Stolper, E. M.; Spanovich, N.; Achilles, Cherie; Agard, Christophe; Verdasca, José Alexandre Alves; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Atreya, Sushil; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F.; Avalos, Juan J. Blanco; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John "Iain"; Cantor, Bruce; Caplinger, Michael; Rodríguez, Javier Caride; Carmosino, Marco; Blázquez, Isaías Carrasco; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie "Kenzie"; Juarez, Manuel de la Torre; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M. Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Flesch, Greg; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Franz, Heather; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Jones, John; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Malvitte, Alain Lepinette; Leshin, Laurie; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Mahaffy, Paul; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Jiménez, Mercedes Marín; García, César Martín; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Jurado, Antonio Molina; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Caro, Guillermo Muñoz; Nachon, Marion; López, Sara Navarro; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Niles, Paul; Nixon, Brian; Dobrea, Eldar Noe; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; Owen, Tobias; Hernández, Miguel Ángel de Pablo; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Pepin, Robert; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio J.; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Fuentes, Sara Alejandra Sans; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel "Dan"; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Martinez, Eduardo Sebastian; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sánchez, Pablo Sobrón; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Steele, Andrew; Stein, Thomas; Stern, Jennifer; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Redondo, Josefina Torres; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Webster, Chris; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B. "Mouser"; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Mier, María-Paz Zorzano

    2013-09-01

    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe3+- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.

  1. The Mineralogical and Chemical Case for Habitability at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Blake, David Frederick; Vaniman, David; Grotzinger, John P.; Conrad, Pamela Gales; Ming, Douglas W.; Bish, David L.; Farmer, Jack D.; Bristow, Thomas

    2013-01-01

    Sediments of the Yellowknife Bay formation (Gale crater) include the Sheepbed member, a mudstone cut by light-toned veins. Two drill samples, John Klein and Cumberland, were collected and analyzed by the CheMin XRD/XRF instrument and the Sample Analysis at Mars (SAM) evolved gas and isotopic analysis suite of instruments. Drill cuttings were also analyzed by the Alpha Particle X-ray Spectrometer (APXS) for bulk composition. The CheMin XRD analysis shows that the mudstone contains basaltic minerals (Fe-forsterite, augite, pigeonite, plagioclase), as well as Fe-oxide/hydroxides, Fe-sulfides, amorphous materials, and trioctahedral phyllosilicates. SAM evolved gas analysis of higher-temperature OH matches the CheMin XRD estimate of 20% clay minerals in the mudstone. The light-toned veins contain Ca-sulfates; anhydrite and bassanite are detected by XRD but gypsum is also indicated from Mastcam spectral mapping. These sulfates appear to be almost entirely restricted to late-diagenetic veins. The sulfate content of the mudstone matrix itself is lower than other sediments analyzed on Mars. The presence of phyllosilicates indicates that the activity of water was high during their formation and/or transport and deposition (should they have been detrital). Lack of chlorite places limits on the maximum temperature of alteration (likely habitable environment: Aqueous deposition at clement conditions of P, T, pH, Eh and ionic strength, plus the availability of sources of chemical energy.

  2. Redox stratification of an ancient lake in Gale crater, Mars.

    Science.gov (United States)

    Hurowitz, J A; Grotzinger, J P; Fischer, W W; McLennan, S M; Milliken, R E; Stein, N; Vasavada, A R; Blake, D F; Dehouck, E; Eigenbrode, J L; Fairén, A G; Frydenvang, J; Gellert, R; Grant, J A; Gupta, S; Herkenhoff, K E; Ming, D W; Rampe, E B; Schmidt, M E; Siebach, K L; Stack-Morgan, K; Sumner, D Y; Wiens, R C

    2017-06-02

    In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized. Copyright © 2017, American Association for the Advancement of Science.

  3. Stratigraphy and Evolution of Delta Channel Deposits, Jezero Crater, Mars

    Science.gov (United States)

    Goudge, T. A.; Mohrig, D.; Cardenas, B. T.; Hughes, C. M.; Fassett, C. I.

    2017-01-01

    The Jezero impact crater hosted an open-basin lake that was active during the valley network forming era on early Mars. This basin contains a well exposed delta deposit at the mouth of the western inlet valley. The fluvial stratigraphy of this deposit provides a record of the channels that built the delta over time. Here we describe observations of the stratigraphy of the channel deposits of the Jezero western delta to help reconstruct its evolution.

  4. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars

    Science.gov (United States)

    Frydenvang, Jens; Gasda, Patrick J.; Hurowitz, Joel A.; Grotzinger, John P.; Wiens, Roger C.; Newsom, Horton E.; Edgett, Ken S.; Watkins, Jessica; Bridges, John C.; Maurice, Sylvestre; Fisk, Martin R.; Johnson, Jeffrey R.; Rapin, William; Stein, Nathan; Clegg, Sam M.; Schwenzer, S. P.; Bedford, C.; Edwards, P.; Mangold, Nicolas; Cousin, Agnes; Anderson, Ryan; Payre, Valerie; Vaniman, David; Blake, David; Lanza, Nina L.; Gupta, Sanjeev; Van Beek, Jason; Sautter, Violaine; Meslin, Pierre-Yves; Rice, Melissa; Milliken, Ralf; Gellert, Ralf; Thompson, Lucy; Clark, Ben C.; Sumner, Dawn Y.; Fraeman, Abigail A.; Kinch, Kjartan M; Madsen, Morten B.; Mitofranov, Igor; Jun, Insoo; Calef, Fred J.; Vasavada, Ashwin R.

    2017-01-01

    Diagenetic silica enrichment in fracture-associated halos that crosscut lacustrine and unconformably overlying aeolian sedimentary bedrock is observed on the lower north slope of Aeolis Mons in Gale crater, Mars. The diagenetic silica enrichment is colocated with detrital silica enrichment observed in the lacustrine bedrock yet extends into a considerably younger, unconformably draping aeolian sandstone, implying that diagenetic silica enrichment postdates the detrital silica enrichment. A causal connection between the detrital and diagenetic silica enrichment implies that water was present in the subsurface of Gale crater long after deposition of the lacustrine sediments and that it mobilized detrital amorphous silica and precipitated it along fractures in the overlying bedrock. Although absolute timing is uncertain, the observed diagenesis likely represents some of the most recent groundwater activity in Gale crater and suggests that the timescale of potential habitability extended considerably beyond the time that the lacustrine sediments of Aeolis Mons were deposited.

  5. Compositions of Bedrock Containing Craters on Mars as Viewed by TES, THEMIS, and CRISM

    Science.gov (United States)

    Edwards, C. S.; Rogers, D.; Bandfield, J. L.; Christensen, P. R.

    2009-12-01

    An investigation of Martian high thermal inertia crater surfaces has been made using derived THEMIS thermal inertia data. High thermal inertia surfaces or interpreted bedrock are defined as any pixel in a THEMIS image with a thermal inertia over 1200 J K-1m-2s-1/2 and may refer to in situ rock exposures or rock-dominated surfaces. While three different surface morphologies (valley and crater walls, crater floors, and plains surface) were originally identified [Edwards et al., in press], the focus of this study is to better characterize the compositional, thermophysical, and geological characteristics of the crater floors surface. These surfaces may be related to impact-associated volcanism that often occurs in conjunction with large energetic impacts. These craters are commonly modified, lack a central peak, have shallow sloped walls, and little to no visible ejecta, indicating the relatively old ages of these impacts. They are generally large, ranging in size from 18.5 to 179km in diameter, with an average of ~52km [Edwards et al., in press]. Boulders are also observed in high-resolution imagery (e.g. HiRISE) along with fine scale randomly oriented cracks and fractures. TES spectra for ~60 of the 92 originally identified sites have been examined in detail and can be broken down into two distinctive spectral groups, olivine bearing (~80%, with >10% olivine and often >20%) and non-olivine bearing craters (~20%, with inertia crater floors. In this case, magma is likely derived from decompression melting of the mantle due to the removal of overlying material. This magma reaches the surface through fractures and cracks in the basement rock likely caused by the impact event. This is consistent with the observed compositions, as material derived directly from the Martian mantle is expected to be significantly more mafic than the surrounding country rock. These sites are likely locations where the some of the most primitive material on Mars is observed and can be used to

  6. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam Onboard Curiosity

    Science.gov (United States)

    Le Deit, Laetitia; Mangold, Nicolas; Forni, Olivier; Cousin, Agnes; Lasue, Jeremie; Schröder, Susanne; Wiens, Roger C.; Sumner, Dawn Y.; Fabre, Cecile; Stack, Katherine M.; Anderson, Ryan; Blaney, Diana L.; Clegg, Samuel M.; Dromart, Gilles; Fisk, Martin; Gasnault, Olivier; Grotzinger, John P.; Gupta, Sanjeev; Lanza, Nina; Le Mouélic, Stephane; Maurice, Sylvestre; McLennan, Scott M.; Meslin, Pierre-Yves; Nachon, Marion; Newsom, Horton E.; Payre, Valerie; Rapin, William; Rice, Melissa; Sautter, Violaine; Treiman, Alan H.

    2016-01-01

    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.

  7. Calcium Sulfate Characterized by Chemcam/Curiousity at Gale Crater, Mars

    Science.gov (United States)

    Nachon, M.; Clegg, S. M.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R; Oehler, D. Z.; Bridges, J. C.; hide

    2014-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material occur. ChemCam analysis demonstrates that those fracture fills consist of calcium sulfates.[

  8. Global Distribution of On-Set Diameters of Rampart Ejecta Craters on Mars: Their Implication to the History of Martian Water

    Science.gov (United States)

    Boyce, Joseph M.; Roddy, David J.; Soderblom, Lawrence A.; Hare, Trent

    2000-01-01

    A global map is presented of on-set diameters of rampart craters. These craters are proposed to result from impact into wet targets. This map shows both global latitudinal and regional trends that are consistent with the climate and geologic history of Mars.

  9. Crater in Utopia

    Science.gov (United States)

    2004-01-01

    23 March 2004 Craters of the martian northern plains tend to be somewhat shallow because material has filled them in. Their ejecta blankets, too, are often covered by younger materials. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example--a crater in Utopia Planitia near 43.7oN, 227.3oW. Erosion has roughened some of the surfaces of the material that filled the crater and covered its ejecta deposit. The picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  10. Wind-blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars

    Science.gov (United States)

    Milliken, R. E.; Ewing, R. C.; Fischer, W. W.; Hurowitz, J.

    2014-02-01

    Gale Crater contains Mount Sharp, a ~5 km thick stratigraphic record of Mars' early environmental history. The strata comprising Mount Sharp are believed to be sedimentary in origin, but the specific depositional environments recorded by the rocks remain speculative. We present orbital evidence for the occurrence of eolian sandstones within Gale Crater and the lower reaches of Mount Sharp, including preservation of wind-blown sand dune topography in sedimentary strata—a phenomenon that is rare on Earth and typically associated with stabilization, rapid sedimentation, transgression, and submergence of the land surface. The preserved bedforms in Gale are associated with clay minerals and elsewhere accompanied by typical dune cross stratification marked by bounding surfaces whose lateral equivalents contain sulfate salts. These observations extend the range of possible habitable environments that may be recorded within Gale Crater and provide hypotheses that can be tested in situ by the Curiosity rover payload.

  11. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars

    NARCIS (Netherlands)

    Ming, D.W.; Archer Jr., P.D.; Glavin, D.P.; Eigenbrode, J.L.; Franz, H.B.; Sutter, B.; Brunner, A.E.; Stern, J.C.; Freissinet, C.; McAdam, A.C.; Mahaffy, P.R.; Cabane, M.; Coll, P.; Campbell, J.L.; Atreya, S.K.; Niles, P.B.; Bell III, J.F.; Bish, D.L.; Brinckerhoff, W.B.; Buch, A.; Conrad, P.G.; Des Marais, D.J.; Ehlmann, B.L.; Fairén, A.G.; Farley, K.; Flesch, G.J.; Francois, P.; Gellert, R.; Grant, J.A.; Grotzinger, J.P.; Gupta, S.; Herkenhoff, K.E.; Hurowitz, J.A.; Leshin, L.A.; Lewis, K.W.; McLennan, S.M.; Miller, K.E.; Moersch, J.; Morris, R.V.; Navarro-González, R.; Pavlov, A.A.; Perrett, G.M.; Pradler, I.; Squyres, S.W.; Summons, R.E.; Steele, A.; Stolper, E.M.; Sumner, D.Y.; Szopa, C.; Teinturier, S.; Trainer, M.G.; Treiman, A.H.; Vaniman, D.T.; Vasavada, A.R.; Webster, C.R.; Wray, J.J.; Yingst, R.A.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and

  12. Alumina+Silica+/-Germanium Alteration in Smectite-Bearing Marathon Valley, Endeavour Crater Rim, Mars

    Science.gov (United States)

    Mittlefehldt, D. W.; Gellert, R.; Van Bommel, S.; Arvidson, R. E.; Clark, B. C.; Ming, D. W.; Schroeder, C.; Yen, A. S.; Fox, V. K.; Farrand, W. H.; hide

    2016-01-01

    Mars Exploration Rover Opportunity has been exploring Mars for 12+ years, and is presently investigating the geology of a western rim segment of 22 kilometers diameter, Noachian- aged Endeavour crater. The Alpha Particle X-ray Spectrometer has determined the compositions of a pre-impact lithology, the Matijevic fm., and polymict impact breccias ejected from the crater, the Shoemaker fm. Opportunity is now investigating a region named Marathon Valley that cuts southwest-northeast through the central portion of the rim segment and provides a window into the lower stratigraphic record. (Geographic names used here are informal.) At the head of Marathon Valley, referred to here as Upper Marathon Valley, is a shallow, ovoid depression approximately 25×35 millimeters in size, named Spirit of Saint Louis. Layering inside Spirit of Saint Louis appears continuous with the Upper Marathon Valley rocks outside, indicating they are coeval. Spirit of Saint Louis is partly bounded by approximately 10-20 centimeters wide zone containing reddish altered rocks (red zone). Red zones also form prominent curvilinear features in Marathon Valley. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra provide evidence for a really extensive Fe-Mg smectite in the Marathon Valley region, indicating distinct styles of aqueous alteration. The CRISM detections of smectites are based on metal-OH absorptions at approximately 2.3 and 2.4 micron that are at least two times the background noise level.

  13. The origin of Phobos grooves from ejecta launched from impact craters on Mars: Tests of the hypothesis

    Science.gov (United States)

    Ramsley, Kenneth R.; Head, James W.

    2013-01-01

    The surface of the martian moon Phobos is characterized by parallel and intersecting grooves that bear resemblance to secondary crater chains observed on planetary surfaces. Murray (2011) has hypothesized that the main groove-forming process on Phobos is the intersection of Phobos with ejecta from primary impact events on Mars to produce chains of secondary craters. The hypothesis infers a pattern of parallel jets of ejecta, either fluidized or solidified, that break into equally-spaced fragments and disperse uniformly along-trajectory during the flight from Mars to Phobos. At the moment of impact with Phobos the dispersed fragments emplace secondary craters that are aligned along strike corresponding to the flight pattern of ejecta along trajectory. The aspects of the characteristics of grooves on Phobos cited by this hypothesis that might be explained by secondary ejecta include: their observed linearity, parallelism, planar alignment, pitted nature, change in character along strike, and a "zone of avoidance" where ejecta from Mars is predicted not to impact (Murray, 2011). To test the hypothesis we plot precise Keplerian orbits for ejecta from Mars (elliptical and hyperbolic with periapsis located below the surface of Mars). From these trajectories we: (1) set the fragment dispersion limits of ejecta patterns required to emplace the more typically well-organized parallel grooves observed in returned images from Phobos; (2) plot ranges of the ejecta flight durations from Mars to Phobos and map regions of exposure; (3) utilize the same exposure map to observe trajectory-defined ejecta exposure shadows; (4) observe hemispheric exposure in response to shorter and longer durations of ejecta flight; (5) assess the viability of ejecta emplacing the large family of grooves covering most of the northern hemisphere of Phobos; and (6) plot the arrival of parallel lines of ejecta emplacing chains of craters at oblique incident angles. We also assess the bulk volume of

  14. Mars: Stratigraphy of Western Highlands and Polar Regions

    Science.gov (United States)

    Tanaka, K. L.; Scott, D. H.; Tuesink, M. F.

    1985-01-01

    Geologic mapping and stratigraphic studies of Mars based on Viking images improved knowledge of the relative age and occurrence of geologic units on a global scale. Densities of geologic units or features during the Noarchian, Hesperian, and Amazonian periods are indicated for the North and South polar regions as well as the equatorial region of Mars. Cumulative counts of crater size frequencies for craters larger than 2 km in diameter on plateau units mapped in the western region of Mars counts indicate that the plateau terrain as a whole was thinly resurfaced during the Hesperian Period, and a large proportion of pre-existing craters less than 10 to 15 km in diameter was buried. The formation of northern plains, subpolar highlands, and both polar regions is also described.

  15. Mapping Variability in the Medusae Fossae Formation: Yardang Morphologies, Fluvial Reworking, and Crater Depth to Diameter Ratios

    Science.gov (United States)

    Khuller, A. R.; Kerber, L.

    2017-12-01

    The Medusae Fossae Formation (MFF) is a voluminous, fine-grained deposit thought to be of pyroclastic origin. While it contains widespread, well-preserved inverted fluvial features, its pervasive cover of dust means that little is known about its composition, and indirect means must be used to characterize its material properties. This project aims to correlate fluvial features in the Western MFF with other indicators of material strength: yardang morphology and crater depth-to-diameter ratios. For this work, Context Camera (CTX) images were used to map features of fluvial origin (inverted channels, sinuous ridges, alluvial fans). The presence of rounded, meso-yardangs in close proximity to fluvial features was also mapped. Crater depth-diameter (d/D) ratios (for craters 1-512km) were analyzed using a global Mars crater database (Robbins and Hynek, 2012) as a proxy for material strength. Approximately 1400 fluvial segments were mapped, with the most populous cluster located in Aeolis and Zephyria Plana. Rounded meso-yardangs were found to be common in areas that also have fluvial features. In agreement with previous work (Barlow, 1993), MFF craters were found to have a greater d/D ratio (0.0523) than the global mean (0.0511). Ratios between MFF lobes differ significantly, providing insight into the heterogeneity of induration within the formation. The deepest craters are found in Eumenides Dorsum and the shallowest in Aeolis Planum, consistent with a greater degree of induration and reworking in the western part of the formation where the fluvial features and "salt-playa" meso-yardangs are found. It also suggests that Eumenides, which is the tallest MFF outcrop, could also be the least compacted. The presence of long, complex, and sometimes overlapping branching networks imply multiple relative episodes of channel formation. Rounded meso-yardangs, which are associated with salt playa surfaces on Earth, provide additional evidence for the presence of liquid water

  16. Microbial Habitability in Gale Crater: Sample Analysis at Mars (SAM) Instrument Detection of Microbial Essential Carbon and Nitrogen

    Science.gov (United States)

    Sutter, B.; Ming, D. W.; Eigenbrode, J. E.; Steele, A.; Stern, J. C.; Gonzalez, R. N.; McAdam, A. C.; Mahaffy, P. R.

    2016-01-01

    Chemical analyses of Mars soils and sediments from previous landed missions have demonstrated that Mars surface materials possessed major (e.g., P, K, Ca, Mg, S) and minor (e.g., Fe, Mn, Zn, Ni, Cl) elements essential to support microbial life. However, the detection of microbial essential organic-carbon (C) and nitrate have been more elusive until the Mars Science Laboratory (MSL) rover mission. Nitrate and organic-C in Gale Crater, Mars have been detected by the Sample Analysis at Mars (SAM) instrument onboard the MSL Curiosity rover. Eolian fines and drilled sedimentary rock samples were heated in the SAM oven from approximately 30 to 860 degrees Centigrade where evolved gases (e.g., nitrous oxide (NO) and CO2) were released and analyzed by SAM’s quadrupole mass spectrometer (MS). The temperatures of evolved NO was assigned to nitrate while evolved CO2 was assigned to organic-C and carbonate. The CO2 releases in several samples occurred below 450 degrees Centigrade suggesting organic-C dominated in those samples. As much as 7 micromoles NO3-N per gram and 200 micromoles CO2-C per gram have been detected in the Gale Crater materials. These N and C levels coupled with assumed microbial biomass (9 x 10 (sup -7) micrograms per cell) C (0.5 micrograms C per micrograms cell) and N (0.14 micrograms N per micrograms cell) requirements, suggests that less than 1 percent and less than 10 percent of Gale Crater C and N, respectively, would be required if available, to accommodate biomass requirements of 1 by 10 (sup 5) cells per gram sediment. While nitrogen is the limiting nutrient, the potential exists that sufficient N and organic-C were present to support limited heterotrophic microbial populations that may have existed on ancient Mars.

  17. The Sample at Mars Analysis (SAM) Detections of CO2 and CO in Sedimentary Material from Gale Crater, Mars: Implications for the Presence of Organic Carbon and Microbial Habitability on Mars

    Science.gov (United States)

    Sutter, Brad; Eigenbrode, Jennifer L.; Steele, Andrew; Ming, Douglas W.

    2016-01-01

    Sedimentary rock samples heated to 860 degrees Centigrade in the SAM (Sample at Mars) instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 degrees Centigrade), complex refractory organics/amorphous carbon (300-600 degrees Centigrade), and/or magmatic carbon (greater than 600 degrees Centigrade) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 degrees Centigrade) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2-), and oxalates (C2O42-)] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 parts per million C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worst-case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1 percent of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 by 10 (sup 5) cells per gram sediment (assumes 9 by 10 (sup -7) microgram per cell and 0.5 micrograms C per microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on

  18. Potential Cement Phases in Sedimentary Rocks Drilled by Curiosity at Gale Crater, Mars

    Science.gov (United States)

    Rampe, E. B.; Morris, R. V.; Bish, D. L.; Chipera, S. J.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Cavanagh, P.; Farmer, J. D.; hide

    2015-01-01

    The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.

  19. Usability of small impact craters on small surface areas in crater count dating: Analysing examples from the Harmakhis Vallis outflow channel, Mars

    Science.gov (United States)

    Kukkonen, S.; Kostama, V.-P.

    2018-05-01

    The availability of very high-resolution images has made it possible to extend crater size-frequency distribution studies to small, deca/hectometer-scale craters. This has enabled the dating of small and young surface units, as well as recent, short-time and small-scale geologic processes that have occurred on the units. Usually, however, the higher the spatial resolution of space images is, the smaller area is covered by the images. Thus the use of single, very high-resolution images in crater count age determination may be debatable if the images do not cover the studied region entirely. Here we compare the crater count results for the floor of the Harmakhis Vallis outflow channel obtained from the images of the ConTeXt camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO). The CTX images enable crater counts for entire units on the Harmakhis Vallis main valley, whereas the coverage of the higher-resolution HiRISE images is limited and thus the images can only be used to date small parts of the units. Our case study shows that the crater count data based on small impact craters and small surface areas mainly correspond with the crater count data based on larger craters and more extensive counting areas on the same unit. If differences between the results were founded, they could usually be explained by the regional geology. Usually, these differences appeared when at least one cratering model age is missing from either of the crater datasets. On the other hand, we found only a few cases in which the cratering model ages were completely different. We conclude that the crater counts using small impact craters on small counting areas provide useful information about the geological processes which have modified the surface. However, it is important to remember that all the crater counts results obtained from a specific counting area always primarily represent the results from the counting area-not the whole

  20. Pervasive aeolian activity along Curiosity's traverse in Gale Crater on Mars

    Science.gov (United States)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Rossi, A.; Flahaut, J.; Fenton, L. K.; Geissler, P. E.; Michaels, T. I.

    2012-12-01

    The NASA Mars Science Laboratory (MSL) has safely landed in Gale Crater (Mars). This crater has been severely modified by the action of the wind which has led to the development of several dark dune fields. One of these fields crosses the landing ellipse from the NE to the SW, and despite its fresh appearance, no evidence of sand movement has been detected until recently. Here we present evidence of current aeolian activity in the form of ripple and dune migration close to the expected traverse of the MSL rover, Curiosity. We calculate a minimum ripple displacement of 1.16 m and a dune migration rate of 0.4 meters/Earth year. Both ripples and dunes migrated toward the SW, suggesting winds above the saltation threshold from the NE. Such winds are predicted by the MRAMS atmospheric model (Fig. 1). The dunes are undergoing changes on a timescale of weeks to a few years that should be detectable by rover instruments. Using theoretical and experimental considerations, we calculate a wind gust velocity of 35 m/s at 1.5 m of height. In addition, we estimate that saltating grains would reach a distance of ~27 m and extend a maximum height of 2 m above the surface. Our constraints on the wind regime provide a unique opportunity to use ground measurements from MSL to test the accuracy of winds predicted from orbital data.RAMS modeled winds in the MSL landing site

  1. Calcium Sulfate Characterized by ChemCam/Curiosity at Gale Crater, Mars

    Science.gov (United States)

    Nachon, M.; Clegg, S. N.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R.; Oehler, D. Z.; Bridges, J. C.; hide

    2014-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of :(1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets [1;2] and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis [3]. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material were seen [4;5]. ChemCam analysis demonstrate that those fracture fills consist of calcium sulfates [6].

  2. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters.

    Science.gov (United States)

    Adcock, Christopher T; Hausrath, Elisabeth M

    2015-12-01

    Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.

  3. Stratigraphic distribution of veins in the Murray and Stimson formations, Gale crater, Mars: Implications for ancient groundwater circulation

    Science.gov (United States)

    Nachon, M.; Sumner, D. Y.; Borges, S. R.; Stack, K.; Stein, N.; Watkins, J. A.; Banham, S.; Rivera-Hernandez, F.; Wiens, R. C.; l'Haridon, J.; Rapin, W.; Kronyak, R. E.

    2017-12-01

    Since landing at Gale crater, Mars, in August 2012, the Curiosity rover has driven through more than 300m of stratigraphy. From the first to the most recent sedimentary rocks explored, light-toned veins have been observed cutting the host-rock and were interpreted as diagenetic features emplaced by hydraulic fracturing. Chemical and mineralogical analyses show they consist of Ca-sulfate. Here we report on the veins' distribution within two geological formations explored more recently by the rover: (a) the Murray Formation that consists mainly of fine-grained laminated rocks that have been interpreted as having been deposited in a former lacustrine environment [1], and (b) the Stimson Formation, which lies unconformably above the Murray, and consists of cross bedded sandstones interpreted as being deposited in a aeolian environment [2]. We have performed a systematic observation of the veins within the MastCam images, from the base of the Murray (Sol 750) up to Sol 1515 [3], described their main geometrical characteristics (e.g. orientation to laminae, relative density, branching). Five veins facies were defined based on veins' geometrical properties, abundance, and host-rock grain size. The distribution of veins facies was placed within the broader stratigraphic context. The distribution of veins within the Murray and Stimson Formations shows strong rheological controls. In the Murray, light-toned veins are present from the basal part of the section up to the most recently explored exposures. Several dense vein outcrops are associated with local variations in host-rock type, suggesting rheological control of fluid circulation. In Stimson sandstones, light-toned veins are also present though much rarer, again possibly due to rheological properties. The light-toned veins represent post depositional fluid circulation, occurring after accumulation of the lacustrine Murray rocks; at least some veins formed after Murray's burial, erosion, and the deposition and

  4. Tafoni - A Llink Between Mars and Earth

    Science.gov (United States)

    Iacob, R. H.; Iacob, C. E.

    2013-12-01

    that no longer exist. NASA's current Mars Science Laboratory mission offers exceptional opportunities to perform a comparative study between tafoni formations on Mars and those on Earth. The present mission of Curiosity at Gale Crater, benefiting not only from the most advanced technology for in-situ investigations but also from a terrain rich in rock breakdown features, was able to reveal new tafoni formations. Gale Crater's landscape presents a variety of surface erosion elements, witnesses of major planetary transformations suffered by Mars during the past 3 billion years. While the wind and sand-blasting erosion are the most recent causes of the surface erosion at Gale Crater, leading to the smoothing, thinning, exfoliation and piercing of various rock layers, other geological formations such as alluvial fans, moat areas, gravel sediments, round shaped mounds and toadstool formations demonstrate that liquid water was vigorously shaping the surface of Mars billions of years ago. In such a context, the study of tafoni formations revealed during Curiosity's trek from Bradbury Landing through the Glenelg area of Gale Crater, will help advance the understanding of the Martian past and present environment, providing scenarios for the evolution of the Red Planet. The presentation contains various images of tafoni samples from Mars and Earth, explaining by similitude presumptive weathering mechanisms on Mars.

  5. The alkaline volcanic rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars

    Science.gov (United States)

    Neakrase, L. D.; Lim, D. S. S.; Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Christensen, P. R.

    2016-12-01

    Idaho's Eastern Snake River Plain (ESRP) is host to extensive expressions of basaltic volcanism dominated by non evolved olivine tholeiites (NEOT) with localized occurrences of evolved lavas. Craters of the Moon National Monument (COTM) is a polygenetic lava field comprised of more than 60 lava flows emplaced during 8 eruptive periods spanning the last 15 kyrs. The most recent eruptive period (period A; 2500-2000 yr B.P.) produced flows with total alkali vs. silica classifications spanning basalt to trachyte. Coeval with the emplacement of the COTM period A volcanic pile was the emplacement of the Wapi and King's Bowl NEOT 70 km SSE of COTM along the Great Rift. Previous investigations have determined a genetic link between these two compositionally distinct volcanic centers where COTM compositions can be generated from NEOT melts through complex ascent paths and variable degrees of fractionation and assimilation of lower-middle crustal materials. The Mars Exploration Rover, Spirit, conducted a robotic investigation of Gusev crater from 2004-2010. Spirit was equipped with the Athena science payload enabling the determination of mineralogy (mini-Thermal Emission Spectrometer, Pancam multispectral camera, and Mössbauer spectrometer), bulk chemistry (Alpha Particle X-ray Spectrometer) and context (Pancam and Microscopic Imager). During sol 32 Spirit investigated an olivine basalt named Adirondack, the type specimen for a class of rock that composes much of the plains material within Gusev Crater and embays the Columbia Hills. Following the characterization of the plains material, Spirit departed the plains targeting the Columbia Hills and ascending at Husband Hill. During Spirit's ascent of Husband Hill three additional classes of volcanic rock were identified as distinct by their mini-TES spectra; Wishstone, Backstay and Irvine. These rocks are classified as tephrite, trachy-basalt and basalt, respectively, and are the first alkaline rocks observed on Mars. These

  6. Mars Methane at Gale Crater Shows Strong Seasonal Cycle: Updated Results from TLS-SAM on Curiosity

    Science.gov (United States)

    Webster, C. R.; Mahaffy, P. R.; Atreya, S. K.; Flesch, G.; Malespin, C.; McKay, C.; Martinez, G.; Moores, J.; Smith, C. L.; Martin-Torres, F. J.; Gomez-Elvira, J.; Zorzano, M. P.; Wong, M. H.; Trainer, M. G.; Eigenbrode, J. L.; Glavin, D. P.; Steele, A.; Archer, D., Jr.; Sutter, B.; Coll, P. J.; Freissinet, C.; Meslin, P. Y.; Pavlov, A.; Keymeulen, D.; Christensen, L. E.; Gough, R. V.; Schwenzer, S. P.; Navarro-Gonzalez, R.; Pla-García, J.; Rafkin, S. C.; Vicente-Retortillo, Á.; Kahanpää, H.; Viudez-Moreiras, D.; Smith, M. D.; Harri, A. M.; Genzer, M.; Hassler, D.; Lemmon, M. T.; Crisp, J. A.; Zurek, R. W.; Vasavada, A. R.

    2017-12-01

    In situ measurements of atmospheric methane have been made over a 5-year period at Gale Crater on Mars using the Tunable Laser Spectrometer (TLS) instrument in the Sample Analysis at Mars (SAM) suite on the Curiosity rover. We report two important observations: (i) a background level of mean value of 0.41 ±0.11 (2sem) that is about 5 times lower than some model predictions based on generation from UV degradation of micro-meteorites or interplanetary dust delivered to the martian surface; (ii) "spikes" of elevated levels of 7 ppbv attributed to episodic releases from small local sources, probably to the north of Gale crater1. Reports of plumes, patches or episodic releases of methane in the Martian atmosphere have to date eluded explanation in part because of their lack of repeatability in time or location. Our in situ measurements of the background methane levels exhibit a strong, repeatable seasonal variability. The amplitude of the observed seasonal cycle is 3 times greater than both that expected from the annual sublimation and freezing of polar carbon dioxide and that expected from methane production from ultraviolet (UV) degradation of exogenously-delivered surface material. The observed large seasonal variation in the background, and sporadic observations of higher pulses of 7 ppbv appear consistent with localized small sources of methane release from Martian surface reservoirs that may be occurring throughout the planet. We will present our updated data set, correlations of Mars methane with various other measurements from SAM, REMS, RAD and ChemCam instruments on Curiosity, as well as empirical models of UV surface insolation, and provide preliminary interpretation of results. 1 "Mars Methane Detection and Variability at Gale Crater", C. R. Webster et al., Science, 347, 415-417 (2015) and references therein. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the

  7. Testing models for the formation of the equatorial ridge on Iapetus via crater counting

    Science.gov (United States)

    Damptz, Amanda L.; Dombard, Andrew J.; Kirchoff, Michelle R.

    2018-03-01

    Iapetus's equatorial ridge, visible in global views of the moon, is unique in the Solar System. The formation of this feature is likely attributed to a key event in the evolution of Iapetus, and various models have been proposed as the source of the ridge. By surveying imagery from the Cassini and Voyager missions, this study aims to compile a database of the impact crater population on and around Iapetus's equatorial ridge, assess the relative age of the ridge from differences in cratering between on ridge and off ridge, and test the various models of ridge formation. This work presents a database that contains 7748 craters ranging from 0.83 km to 591 km in diameter. The database includes the study area in which the crater is located, the latitude and longitude of the crater, the major and minor axis lengths, and the azimuthal angle of orientation of the major axis. Analysis of crater orientation over the entire study area reveals that there is no preference for long-axis orientation, particularly in the area with the highest resolution. Comparison of the crater size-frequency distributions show that the crater distribution on the ridge appears to be depleted in craters larger than 16 km with an abruptly enhanced crater population less than 16 km in diameter up to saturation. One possible interpretation is that the ridge is a relatively younger surface with an enhanced small impactor population. Finally, the compiled results are used to examine each ridge formation hypothesis. Based on these results, a model of ridge formation via a tidally disrupted sub-satellite appears most consistent with our interpretation of a younger ridge with an enhanced small impactor population.

  8. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars.

    Science.gov (United States)

    Gainey, Seth R; Hausrath, Elisabeth M; Adcock, Christopher T; Tschauner, Oliver; Hurowitz, Joel A; Ehlmann, Bethany L; Xiao, Yuming; Bartlett, Courtney L

    2017-11-01

    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe 3+ with small amounts of aqueous Mg 2+ . Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.

  9. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Gainey, Seth R.; Hausrath, Elisabeth M.; Adcock, Christopher T.; Tschauner, Oliver; Hurowitz, Joel A.; Ehlmann, Bethany L.; Xiao, Yuming; Bartlett, Courtney L. (CIW); (UNLV); (CIT); (SBU)

    2017-11-01

    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe3+ with small amounts of aqueous Mg2+. Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.

  10. Floor-fractured craters on Ceres and implications for interior processes

    Science.gov (United States)

    Buczkowski, Debra; Schenk, Paul M.; Scully, Jennifer E. C.; Park, Ryan; Preusker, Frank; Raymond, Carol; Russell, Christopher T.

    2016-10-01

    Several of the impact craters on Ceres have patterns of fractures on their floors. These fractures appear similar to those found within a class of lunar craters referred to as Floor-Fractured Craters (FFCs) [Schultz, 1976].Lunar FFCs are characterized by anomalously shallow floors cut by radial, concentric, and/or polygonal fractures, and have been classified into crater classes, Types 1 through 6, based on their morphometric properties [Schultz, 1976; Jozwiak et al, 2012, 2015]. Models for their formation have included both floor uplift due to magmatic intrusion below the crater or floor shallowing due to viscous relaxation. However, the observation that the depth versus diameter (d/D) relationship of the FFCs is distinctly shallower than the same association for other lunar craters supports the hypotheses that the floor fractures form due to shallow magmatic intrusion under the crater [Jozwiak et al, 2012, 2015].FFCs have also been identified on Mars [Bamberg et al., 2014]. Martian FFCs exhibit morphological characteristics similar to the lunar FFCs, and analyses suggest that the Martian FCCs also formed due to volcanic activity, although heavily influenced by interactions with groundwater and/or ice.We have cataloged the Ceres FFCs according to the classification scheme designed for the Moon. Large (>50 km) Ceres FFCs are most consistent with Type 1 lunar FFCs, having deep floors, central peaks, wall terraces, and radial and/or concentric fractures. Smaller craters on Ceres are more consistent with Type 4 lunar FFCs, having less-pronounced floor fractures and a v-shaped moats separating the wall scarp from the crater interior.An analysis of the d/D ratio for Ceres craters shows that, like lunar FFCs, the Ceres FFCs are anomalously shallow. This suggests that the fractures on the floor of Ceres FFCs may be due the intrusion of a low-density material below the craters that is uplifting their floors. While on the Moon and Mars the intrusive material is hypothesized

  11. What We Might Know About Gusev Crater if the Mars Exploration Rover Spirit Mission were Coupled with a Mars Sample Return Mission

    Science.gov (United States)

    Morris, Richard V.

    2008-01-01

    The science instruments on the Mars Exploration Rover (MER) Spirit have provided an enormous amount of chemical and mineralogical data during more than 1450 sols of exploration at Gusev crater. The Moessbauer (MB) instrument identified 10 Fe-bearing phases at Gusev Crater: olivine, pyroxene, ilmenite, chromite, and magnetite as primary igneous phases and nanophase ferric oxide (npOx), goethite, hematite, a ferric sulfate, and pyrite/marcusite as secondary phases. The Miniature Thermal Emission Spectrometer (Mini-TES) identified some of these Fe-bearing phases (olivine and pyroxene), non- Fe-bearing phases (e.g., feldspar), and an amorphous high-SiO2 phase near Home Plate. Chemical data from the Alpha Particle X-Ray Spectrometer (APXS) provided the framework for rock classification, chemical weathering/alteration, and mineralogical constraints. APXS-based mineralogical constraints include normative calculations (with Fe(3+)/FeT from MB), elemental associations, and stoichiometry (e.g., 90% SiO2 implicates opalline silica). If Spirit had cached a set of representative samples and if those samples were returned to the Earth for laboratory analysis, what value is added by Mars Sample return (MSR) over and above the mineralogical and chemical data provided by MER?

  12. Possible crater-based pingos, paleolakes and periglacial landscapes at the high latitudes of Utopia Planitia, Mars

    Science.gov (United States)

    Soare, R. J.; Conway, S. J.; Pearce, G. D.; Dohm, J. M.; Grindrod, P. M.

    2013-08-01

    Closed-system pingos (CSPs) are perennial ice-cored mounds that evolve in relatively deep and continuous permafrost. They occur where thermokarst lakes either have lost or are losing their water by drainage or evaporation and by means of freeze-thaw cycling, permafrost aggradation and pore-water migration. The presence of CSPs on Mars, particularly on late-Amazonian Epoch terrain at near-polar latitudes, would indicate: (1) the antecedent occurrence of ponded water at the mound-formation sites; (2) freeze-thaw cycling of this water; and (3) boundary-conditions of pressure and temperature at or above the triple point of water much more recently and further to the north than has been thought possible. In 2005 we studied two crater-floor landscapes in northern Utopia Planitia and used MOC narrow-angle images to describe mounds within these landscapes that shared a suite of geological characteristics with CSPs on Earth. Here, we show the results of a circum-global search for similar crater-floor landscapes at latitudes >˜55°N. The search incorporates all relevant MOC and HiRISE images released since 2005. In addition to the two periglacially suggestive crater-floor landscapes observed by us earlier, we have identified three other crater floors with similar landscapes. Interestingly, each of the five mound-bearing craters occur within a tight latitudinal-band (˜64-69°N); this could be a marker of periglacial landscape-modification on a regional scale. Just to the north of the crater-based pingo-like mounds Conway et al. have identified large (km-scale) crater-based perennial ice-domes. They propose that the ice domes develop when regional polar-winds transport and precipitate icy material onto the floor of their host craters. Under a slightly different obliquity-solution ice domes could have accumulated at the lower latitudes where the putative CSPs have been observed. Subsequently, were temperatures to have migrated close to or at 0 °C the ice domes could have

  13. Preliminary Geological Map of the Peace Vallis Fan Integrated with In Situ Mosaics From the Curiosity Rover, Gale Crater, Mars

    Science.gov (United States)

    Sumner, D. Y.; Palucis, M.; Dietrich, B.; Calef, F.; Stack, K. M.; Ehlmann, B.; Bridges, J.; Dromart, J.; Eigenbrode, J.; Farmer, J.; hide

    2013-01-01

    A geomorphically defined alluvial fan extends from Peace Vallis on the NW wall of Gale Crater, Mars into the Mars Science Laboratory (MSL) Curiosity rover landing ellipse. Prior to landing, the MSL team mapped the ellipse and surrounding areas, including the Peace Vallis fan. Map relationships suggest that bedded rocks east of the landing site are likely associated with the fan, which led to the decision to send Curiosity east. Curiosity's mast camera (Mastcam) color images are being used to refine local map relationships. Results from regional mapping and the first 100 sols of the mission demonstrate that the area has a rich geological history. Understanding this history will be critical for assessing ancient habitability and potential organic matter preservation at Gale Crater.

  14. The Investigation of Chlorates as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Archer, D. P.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P; Stern, J. C.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander’s Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate does cause O2 release temperatures to be closer match to the SAM O2 release data but more work is required in evaluating the catalytic effects of Fe mineralogy on perchlorate decomposition. Chlorates (ClO3-) are relevant Mars materials and potential O2 and Cl sources. The objective of this work is to evaluate the thermal decomposition of select chlorate (ClO3-) salts as possible sources of the O2 and HCl releases in the Gale Crater materials.

  15. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    Science.gov (United States)

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-03

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  16. Mass Movement on Vesta at Steep Scarps and Crater Rims

    Science.gov (United States)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; hide

    2014-01-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  17. Mass movement on Vesta at steep scarps and crater rims

    Science.gov (United States)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.

    2014-12-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  18. Modelling of crater formation on anode surface by high-current vacuum arcs

    Science.gov (United States)

    Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura

    2016-11-01

    Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.

  19. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars

    Science.gov (United States)

    Golombek, M.P.; Warner, N.H.; Ganti, V.; Lamb, M.P.; Parker, T.J.; Fergason, Robin L.; Sullivan, R.

    2014-01-01

    A morphometric and morphologic catalog of ~100 small craters imaged by the Opportunity rover over the 33.5 km traverse between Eagle and Endeavour craters on Meridiani Planum shows craters in six stages of degradation that range from fresh and blocky to eroded and shallow depressions ringed by planed off rim blocks. The age of each morphologic class from Mars over ~100 Myr and 3 Gyr timescales from the Amazonian and Hesperian are of order <0.01 m/Myr, which is 3–4 orders of magnitude slower than typical terrestrial rates. Erosion rates during the Middle-Late Noachian averaged over ~250 Myr, and ~700 Myr intervals are around 1 m/Myr, comparable to slow terrestrial erosion rates calculated over similar timescales. This argues for a wet climate before ~3 Ga in which liquid water was the erosional agent, followed by a dry environment dominated by slow eolian erosion.

  20. Tactile Earth and Space Science Materials for Students with Visual Impairments: Contours, Craters, Asteroids, and Features of Mars

    Science.gov (United States)

    Rule, Audrey C.

    2011-01-01

    New tactile curriculum materials for teaching Earth and planetary science lessons on rotation=revolution, silhouettes of objects from different views, contour maps, impact craters, asteroids, and topographic features of Mars to 11 elementary and middle school students with sight impairments at a week-long residential summer camp are presented…

  1. A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2017-09-01

    A novel thermo-hydraulic coupling model was proposed in this study to investigate the crater formation in electrical discharge machining (EDM). The temperature distribution of workpiece materials was included, and the crater formation process was explained from the perspective of hydrodynamic characteristics of the molten region. To better track the morphology of the crater and the movement of debris, the level-set method was introduced in this study. Simulation results showed that the crater appears shortly after the ignition of the discharge, and the molten material is removed by vaporizing in the initial stage, then by splashing at the following time. The driving force for the detachment of debris in the splashing removal stage comes from the extremely large pressure difference in the upper part of the molten region, and the morphology of the crater is also influenced by the shearing flow of molten material. It was found that the removal ratio of molten material is only about 7.63% under the studied conditions, leaving most to form the re-solidification layer on the surface of the crater. The size of the crater reaches the maximum at the end of discharge duration then experiences a slight reduction because of the reflux of molten material after the discharge. The results of single pulse discharge experiments showed that the morphologies and sizes between the simulation crater and actual crater are good at agreement, verifying the feasibility of the proposed thermo-hydraulic coupling model in explaining the mechanisms of crater formation in EDM.

  2. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean

    Science.gov (United States)

    Ivanov, Mikhail A.; Hiesinger, H.; Erkeling, G.; Reiss, D.

    2014-01-01

    Results of our detailed geological mapping and interpretation of the nature and relative and absolute model ages of units and structures in the SW portion of Utopia Planitia (20-45°N, 100-120°E) suggest the following. (1) The size-frequency distribution (SFD) of craters that both are buried by materials of the Vastitas Borealis units (VB) and superpose its surface indicate that the absolute model ages of terrain predating the emplacement of the VB is ˜3.7 Ga. (2) Lack of craters that are partly embayed by materials of the VB in the SW portion of Utopia Planitia implies that the emplacement of the VB was faster than the rate of accumulation of impact craters and is consistent with the geologically short time of emplacement of the VB due to catastrophic release of water from outflow channels (e.g., Carr, M.H. [1996]. Water on Mars. Oxford University Press, New York, p. 229). (3) The SFD of craters that superpose the surface of the VB indicates an absolute model age of ˜3.6-3.5 Ga. The absolute model ages of etched flows, which represent the upper stratigraphic limit of the VB, are estimated to be ˜3.5 Ga. (4) The majority of the larger (i.e., >1 km) impact craters show ejecta morphologies (rampart and pancake-like ejecta) that are indicative of the presence of ice/water in the target materials. The distal portions of the pancake-like ejecta are heavily degraded (not due to embayment). This suggests that these craters formed in targets that contained higher abundances of volatiles. (5) The diameter ranges of the craters with either rampart- or pancake-like ejecta are overlapping (from ˜2 to ˜60 km). Craters with pancake-like ejecta are concentrated within the central portion of the Utopia basin (less than ˜1000 km from the basin center) and rampart craters occur at the periphery of the basin. This pattern of the crater spatial distribution suggests that materials within the center of Utopia Planitia contained more ice/water. (6) Etched flows around the central

  3. The Topography of Mars: Understanding the Surface of Mars Through the Mars Orbiter Laser Altimeter

    Science.gov (United States)

    Derby, C. A.; Neumann, G. A.; Sakimoto, S. E.

    2001-12-01

    The Mars Orbiter Laser Altimeter has been orbiting Mars since 1997 and has measured the topography of Mars with a meter of vertical accuracy. This new information has improved our understanding of both the surface and the interior of Mars. The topographic globe and the labeled topographic map of Mars illustrate these new data in a format that can be used in a classroom setting. The map is color shaded to show differences in elevation on Mars, presenting Mars with a different perspective than traditional geological and geographic maps. Through the differences in color, students can see Mars as a three-dimensional surface and will be able to recognize features that are invisible in imagery. The accompanying lesson plans are designed for middle school science students and can be used both to teach information about Mars as a planet and Mars in comparison to Earth, fitting both the solar system unit and the Earth science unit in a middle school curriculum. The lessons are referenced to the National Benchmark standards for students in grades 6-8 and cover topics such as Mars exploration, the Mars Orbiter Laser Altimeter, resolution and powers of 10, gravity, craters, seismic waves and the interior structure of a planet, isostasy, and volcanoes. Each lesson is written in the 5 E format and includes a student content activity and an extension showing current applications of Mars and MOLA data. These activities can be found at http://ltpwww.gsfc.nasa.gov/education/resources.html. Funding for this project was provided by the Maryland Space Grant Consortium and the MOLA Science Team, Goddard Space Flight Center.

  4. AN INVESTIGATION OF THE HYPOTHESES FOR FORMATION OF THE PLATY-RIDGED-POLYGONIZED TERRAIN IN ELYSIUM PLANITIA, MARS

    Directory of Open Access Journals (Sweden)

    Z. Yue

    2017-07-01

    Full Text Available The origin of the platy-ridged-polygonized (PRP terrains on Martian surface has long been debated. The terrain has generally been classified as water, pack ice, or basalt lava related flow. The crater counting results of the PRP terrains suggest they are geologically very young; therefore, they are significant in understanding the recent evolution of Mars. This work evaluated the current hypotheses through detailed analysis of the distribution and microtopographies with the High Resolution Imaging Science Experiment (HiRISE images for the PRP terrains in Elysium Planitia, Mars. Quantitative measurements and statistics of the typical features of the PRP terrains were also made. In addition, we also found an analog site in Tarim Basin in Xinjiang, China. Our results suggest that mud flow is responsible for the formation of the PRP terrains on the Mars surface, although the hypothesis of low-viscosity basalt lava floods cannot be completely excluded. This finding implies that a regional environment suitable for liquid water may have existed in recent geologic time, which has great importance for future Mars scientific exploration.

  5. The Mechanics of Peak-Ring Impact Crater Formation from the IODP-ICDP Expedition 364

    Science.gov (United States)

    Melosh, H.; Collins, G. S.; Morgan, J. V.; Gulick, S. P. S.

    2017-12-01

    The Chicxulub impact crater is one of very few peak-ring impact craters on Earth. While small (less than 3 km on Earth) impact craters are typically bowl-shaped, larger craters exhibit central peaks, which in still larger (more than about 100 km on Earth) craters expand into mountainous rings with diameters close to half that of the crater rim. The origin of these peak rings has been contentious: Such craters are far too large to create in laboratory experiments and remote sensing of extraterrestrial examples has not clarified the mechanics of their formation. Two principal models of peak ring formation are currently in vogue, the "nested crater" model, in which the peak ring originates at shallow depths in the target, and the "dynamic collapse" model in which the peak ring is uplifted at the base of a collapsing, over-steepened central peak and its rocks originate at mid-crustal depths. IODP-ICDP Expedition 364 sought to elucidate, among other important goals, the mechanics of peak ring formation in the young (66 Myr), fresh, but completely buried Chicxulub impact crater. The cores from this borehole now show unambiguously that the rocks in the Chicxulub peak ring originated at mid-crustal depths, apparently ruling out the nested crater model. These rocks were shocked to pressures on the order of 10-35 GPa and were so shattered that their densities and seismic velocities now resemble those of sedimentary rocks. The morphology of the final crater, its structure as revealed in previous seismic imaging, and the results from the cores are completely consistent with modern numerical models of impact crater excavation and collapse that incorporate a model for post-impact weakening. Subsequent to the opening of a ca. 100 km diameter and 30 km deep transient crater, this enormous hole in the crust collapsed over a period of about 10 minutes. Collapse was enabled by movement of the underlying rocks, which briefly behaved in the manner of a high-viscosity fluid, a brittle

  6. Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods

    Science.gov (United States)

    Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.

    2010-01-01

    Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.

  7. Drainage systems of Lonar Crater, India: Contributions to Lonar Lake hydrology and crater degradation

    Science.gov (United States)

    Komatsu, Goro; Senthil Kumar, P.; Goto, Kazuhisa; Sekine, Yasuhito; Giri, Chaitanya; Matsui, Takafumi

    2014-05-01

    Lonar, a 1.8-km-diameter impact crater in India, is a rare example of terrestrial impact craters formed in basaltic bedrock. The estimated age of the crater ranges widely from less than 12 ka to over 600 ka, but the crater preserves a relatively pristine morphology. We conducted a study of various drainage systems of Lonar Crater. The crater floor hosts a shallow 5-m-deep lake, which fluctuates seasonally. Our investigation reveals that the lake level is influenced by surface runoff that is active during the monsoon and groundwater input effective during both the rainy and the dry seasons. The groundwater discharge is observed as springs on the inner rim walls corresponding to weathered vesicular basalt and/or proximal ejecta, which are underlain by thick massive basalt layers. This observation indicates that groundwater movement is lithologically controlled: it passes preferentially through permeable vesicular basalt or proximal ejecta but is hindered in less permeable massive basalt. It is hypothesized that groundwater is also structurally controlled by dipping of basalt layers, interconnectivity of the permeable lithologic units through fractures, and preferential pathways such as fractures within the permeable lithologic units. Investigation on hydrological processes at Lonar Crater and its lake could provide useful insights into purported paleo-crater lakes presumably formed in the basaltic crust of Mars. The Lonar Crater interior shows signs of degradation in the forms of gullies and debris flows, and the Dhar valley incising in the rim leading to form a fan delta. The ejecta surface is characterized by the presence of channels, originating from the rim area and extending radially away from the crater center. The channels probably resulted from surface runoff, and its erosion contributes to the removal of the ejecta. Lonar Crater is a valuable analog site for studying degradation processes with potential application to impact craters occurring on

  8. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    Science.gov (United States)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; hide

    2015-01-01

    One of the most compelling features of the Gale landing site is its age. Based on crater counts, the formation of Gale crater is dated to be near the beginning of the Hesperian near the pivotal Hesperian/Noachian transition. This is a time period on Mars that is linked to increased fluvial activity through valley network formation and also marks a transition from higher erosion rates/clay mineral formation to lower erosion rates with mineralogies dominated by sulfate minerals. Results from the Curiosity mission have shown extensive evidence for fluvial activity within the crater suggesting that sediments on the floor of the crater and even sediments making up Mt. Sharp itself were the result of longstanding activity of liquid water. Warm/wet conditions on early Mars are likely due to a thicker atmosphere and increased abundance of greenhouse gases including the main component of the atmosphere, CO2. Carbon dioxide is minor component of the Earth's atmosphere yet plays a major role in surface water chemistry, weathering, and formation of secondary minerals. An ancient martian atmosphere was likely dominated by CO2 and any waters in equilibrium with this atmosphere would have different chemical characteristics. Studies have noted that high partial pressures of CO2 would result in increased carbonic acid formation and lowering of the pH so that carbonate minerals are not stable. However, if there were a dense CO2 atmosphere present at the Hesperian/Noachian transition, it would have to be stored in a carbon reservoir on the surface or lost to space. The Mt. Sharp sediments are potentially one of the best places on Mars to investigate these CO2 reservoirs as they are proposed to have formed in the early Hesperian, from an alkaline lake, and record the transition to an aeolian dominated regime near the top of the sequence. The total amount of CO2 in the Gale crater soils and sediments is significant but lower than expected if a thick atmosphere was present at the

  9. Basaltic caves at Craters of the Moon National Monument and Preserve as analogs for Mars

    Science.gov (United States)

    Hinman, N. W.; Richardson, C. D.; McHenry, L.; Scott, J. R.

    2010-12-01

    Basaltic caves and lava tubes offer stable physicochemical conditions for formation of secondary minerals. Such features, putatively observed on Mars, intercept groundwater to weather country rock, leading to formation of secondary minerals. Further, caves are stable environments to search for evidence of past life, as they could offer protection from the oxidizing martian atmosphere. Searching for signs of life in a cave that could protect bio/organic compounds would preclude the need for risky drilling on Mars. Craters of the Moon National Monument (COM) offers an opportunity to study caves in Holocene iron-rich basalt flows to characterize secondary mineral deposits and search for organic compounds associated with secondary minerals; COM basalts are a good analog for martian basalts because of their high iron but other elements are higher at COM than on Mars. The Blue Dragon flow (~2.1 ka) contains the majority of the accessible caves and lava tubes. Two types of secondary mineral deposits were observed in these caves: ceiling coatings and crack or floor precipitates. Hematite, silica, and calcite comprise ceiling coatings. The crack and floor precipitates are white, efflorescent deposits in cavities along cave walls and ceilings or in localized mounds on cave floors. The secondary minerals in crack and floor precipitates are mainly thenardite and mirabilite with some minor concentrations of trona and/or burkeite. Organic compounds were found associated with the efflorescent deposits. Formation of the deposits is likely due to chemical leaching of basalt by meteoritic water. To test this, fluids collected from the ceiling and walls of the caves were analyzed. Solutions were modeled with the geochemical code, PHREEQC. The model tracked composition as water evaporated. Selected minerals were allowed to precipitate as they became oversaturated. Among the first minerals to become oversaturated were quartz and calcite, which are observed in ceiling deposits. Iron

  10. Virtual Astronaut for Scientific Visualization—A Prototype for Santa Maria Crater on Mars

    Directory of Open Access Journals (Sweden)

    Edward A. Guinness

    2012-12-01

    Full Text Available To support scientific visualization of multiple-mission data from Mars, the Virtual Astronaut (VA creates an interactive virtual 3D environment built on the Unity3D Game Engine. A prototype study was conducted based on orbital and Opportunity Rover data covering Santa Maria Crater in Meridiani Planum on Mars. The VA at Santa Maria provides dynamic visual representations of the imaging, compositional, and mineralogical information. The VA lets one navigate through the scene and provides geomorphic and geologic contexts for the rover operations. User interactions include in-situ observations visualization, feature measurement, and an animation control of rover drives. This paper covers our approach and implementation of the VA system. A brief summary of the prototype system functions and user feedback is also covered. Based on external review and comments by the science community, the prototype at Santa Maria has proven the VA to be an effective tool for virtual geovisual analysis.

  11. The Present Habitability Potential of Gale Crater: What We Have Learned So Far From Mars Science Laboratory

    Science.gov (United States)

    Conrad, P. G.; Archer, P. D.; Domagal-Goldman, S.; Eigenbrode, J.; Fisk, M.; Gupta, S.; Hamilton, V.; Kah, L.; Kahanpaa, Henrik; Martin-Torres, J.; hide

    2014-01-01

    The Mars Science Laboratory mission has comprehensively interrogated the surface environment of Mars as it explores Gale Crater. Both chemical and physical attributes of the present environment have been measured over the course of the mission, enabling us to compare the present state of the martian surface with the environmental requirements of prokaryotic microbes. While this approach does not exclude the possibility of martian life that may have evolved to adapt to the present conditions, it is advantageous in that it allows us to evaluate environmental requirements of known life and also provide insight into the likelihood of forward contamination by Earth organisms with the comparison of their environmental requirements with the measured attributes of the environment at Gale Crater. We have already modeled a paleoenvironment with high habitability potential (HP) based upon chemistry, mineralogy and other geological evidence such as sedimentary structures and larger scale geomorphology [1]. In this report, we turn our attention to the present HP of the Yellowknife Bay area, including the importance of the physical environmental metrics such as atmospheric pressure, air and ground temperature, ionizing radiation, wind speed and direction, slope, etc.

  12. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage

    Science.gov (United States)

    Kenkmann, T.; Artemieva, N. A.; Wünnemann, K.; Poelchau, M. H.; Elbeshausen, D.; Núñez Del Prado, H.

    2009-08-01

    The recent Carancas meteorite impact event caused a worldwide sensation. An H4-5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye-witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter-sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100-1000 MJ (0.024- 0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12- 14 kms-1) and shallow entry angles (<20°) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40-60°), and an impact velocity of 350-600 ms-1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of

  13. The Nitrate/(Per)Chlorate Relationship on Mars

    Science.gov (United States)

    Stern, Jennifer C.; Sutter, Brad; Jackson, W. Andrew; Navarro-Gonzalez, Rafael; McKay, Christopher P.; Ming, Douglas W.; Archer, P. Douglas; Mahaffy, Paul R.

    2017-01-01

    Nitrate was recently detected in Gale Crater sediments on Mars at abundances up to approximately 600 mg/kg, confirming predictions of its presence at abundances consistent with models based on impact-generated nitrate and other sources of fixed nitrogen. Terrestrial Mars analogs, Mars meteorites, and other solar system materials help establish a context for interpreting in situ nitrate measurements on Mars, particularly in relation to other cooccuring salts. We compare the relative abundance of nitrates to oxychlorine (chlorate and/or perchlorate, hereafter (per)chlorate) salts on Mars and Earth. The nitrate/(per)chlorate ratio on Mars is greater than 1, significantly lower than on Earth (nitrate/(per)chlorate greater than 10(exp.3)), suggesting not only the absence of biological activity but also different (per)chlorate formation mechanisms on Mars than on Earth.

  14. 3D structure of the Gusev Crater region

    NARCIS (Netherlands)

    van Kan - Parker, M.; Zegers, T.E.; kneissl, T.; Ivanov, B.; Neukum, G.; Foing, B.

    2010-01-01

    Gusev Crater lies within the Aeolis Quadrangle of Mars at the boundary between the northern lowlands and southern highlands. The ancient valley Ma'adim Vallis dissects the highlands south of Gusev Crater and is thought to have fed the crater with sediments.High Resolution Stereo Camera data and

  15. Fresh Impact Crater and Rays in Tharsis

    Science.gov (United States)

    2002-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission has included dozens of opportunities to point the spacecraft directly at features of interest so that pictures of things not seen during the earlier Mapping Mission can be obtained. The example shown here is a small meteorite impact crater in northern Tharsis near 17.2oN, 113.8oW. Viking Orbiter images from the late 1970's showed at this location what appeared to be a dark patch with dark rays emanating from a brighter center. The MOC team surmised that the dark rays may be indicating the location of afresh crater formed by impact sometime in the past few centuries (since dark ray are quickly covered by dust falling out of the martian atmosphere). All through MOC's Mapping Mission in 1999 and 2000, attempts were made to image the crater as predictions indicated that the spacecraft would pass over the site, but the crater was never seen. Finally, in June 2001, Extended Mission operations allowed the MOC team to point the spacecraft (and hence the camera, which is fixed to the spacecraft)directly at the center of the dark rays, where we expected to find the crater.The picture on the left (above, A) is a mosaic of three MOC high resolution images and one much lower-resolution Viking image. From left to right, the images used in the mosaic are: Viking 1 516A55, MOC E05-01904, MOCM21-00272, and MOC M08-03697. Image E05-01904 is the one taken in June 2001 by pointing the spacecraft. It captured the impact crater responsible for the rays. A close-up of the crater, which is only 130 meters (427 ft)across, is shown on the right (above, B). This crater is only one-tenth the size of the famous Meteor Crater in northern Arizona.The June 2001 MOC image reveals many surprises about this feature. For one, the crater is not located at the center of the bright area from which the dark rays radiate. The rays point to the center of this bright area, not the crater. Further, the dark material ejected from the

  16. Polygons and Craters

    Science.gov (United States)

    2005-01-01

    3 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygons enhanced by subliming seasonal frost in the martian south polar region. Polygons similar to these occur in frozen ground at high latitudes on Earth, suggesting that perhaps their presence on Mars is also a sign that there is or once was ice in the shallow subsurface. The circular features are degraded meteor impact craters. Location near: 72.2oS, 310.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  17. Crater formation by single ions, cluster ions and ion "showers"

    CERN Document Server

    Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

    2011-01-01

    The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...

  18. Photosynthesis within Mars' volcanic craters?: Insights from Cerro Negro Volcano, Nicaragua

    Science.gov (United States)

    Rogers, K. L.; Hynek, B. M.; McCollom, T. M.

    2011-12-01

    Discrete locales of sulfate-rich bedrocks exist on Mars and in many cases represent the products of acid-sulfate alteration of martian basalt. In some places, the products have been attributed to hydrothermal processes from local volcanism. In order to evaluate the habitability of such an environment, we are investigating the geochemical and biological composition of active fumaroles at Cerro Negro Volcano, Nicaragua, where fresh basaltic cinders similar in composition to martian basalts are altered by acidic, sulfur-bearing gases. Temperatures at active fumaroles can reach as high as 400°C and the pH of the steam ranges from Cyanobacteria and Ktedonobacteria, however Actinobacteria, alpha-Proteobacteria and Acidobacteria were also identified. Many of the cyanobacterial sequences were similar to those of the eukaryotic Cyanidiales, red algae that inhabit acidic, geothermal environments. Many of sequences related to Ktedonobacteria and Actinobacteria have also been found in acid mine drainage environments. The Archaeal community was far less diverse, with sequences matching those of unclassified Desulfurococcales and unclassified Thermoprotei. These sequences were more distant from isolated species than the bacterial sequences. Similar bacterial and archaeal communities have been found in hot spring environments in Yellowstone National Park, Greenland, Iceland, New Zealand and Costa Rica. Some of Mars' volcanoes were active for billions of years and by analogy to Cerro Negro, may have hosted photosynthetic organisms that could have been preserved in alteration mineral assemblages. Even on a generally cold and dry Mars, volcanic craters likely provided long-lived warm and wet conditions and should be a key target for future exploration assessing habitability.

  19. Ancient aqueous environments at Endeavour crater, Mars

    Science.gov (United States)

    Arvidson, R. E.; Squyres, S. W.; Bell, J.F.; Catalano, J.G.; Clark, B. C.; Crumpler, L.S.; de Souza, P.A.; Fairén, A.G.; Farrand, W. H.; Fox, V.K.; Gellert, Ralf; Ghosh, A.; Golombeck, M.P.; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Moore, Johnnie N.; Morris, R.V.; Murchie, S.L.; Parker, T.J.; Paulsen, G.; Rice, J.W.; Ruff, S.W.; Smith, M.D.; Wolff, M.J.

    2014-01-01

    Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.

  20. Remote Sensing Observations and Numerical Simulation for Martian Layered Ejecta Craters

    Science.gov (United States)

    Li, L.; Yue, Z.; Zhang, C.; Li, D.

    2018-04-01

    To understand past Martian climates, it is important to know the distribution and nature of water ice on Mars. Impact craters are widely used ubiquitous indicators for the presence of subsurface water or ice on Mars. Remote sensing observations and numerical simulation are powerful tools for investigating morphological and topographic features on planetary surfaces, and we can use the morphology of layered ejecta craters and hydrocode modeling to constrain possible layering and impact environments. The approach of this work consists of three stages. Firstly, the morphological characteristics of the Martian layered ejecta craters are performed based on Martian images and DEM data. Secondly, numerical modeling layered ejecta are performed through the hydrocode iSALE (impact-SALE). We present hydrocode modeling of impacts onto targets with a single icy layer within an otherwise uniform basalt crust to quantify the effects of subsurface H2O on observable layered ejecta morphologies. The model setup is based on a layered target made up of a regolithic layer (described by the basalt ANEOS), on top an ice layer (described by ANEOS equation of H2O ice), in turn on top of an underlying basaltic crust. The bolide is a 0.8 km diameter basaltic asteroid hitting the Martian surface vertically at a velocity of 12.8 km/s. Finally, the numerical results are compared with the MOLA DEM profile in order to analyze the formation mechanism of Martian layered ejecta craters. Our simulations suggest that the presence of an icy layer significantly modifies the cratering mechanics, and many of the unusual features of SLE craters may be explained by the presence of icy layers. Impact cratering on icy satellites is significantly affected by the presence of subsurface H2O.

  1. Dissolution Rates of Allophane, FE-Containing Allophane, and Hisingerite and Implications for Gale Crater, Mars

    Science.gov (United States)

    Ralston, S. J.; Hausrath, E. M.; Tschauner, O.; Rampe, E. B.; Christoffersen, R.

    2018-01-01

    Investigations with the CheMin Xray Diffractometer (XRD) onboard the Curiosity rover in Gale Crater demonstrate that all rock and soil samples measured to date contain approximately 15-70 weight percentage X-ray amorphous materials. The diffuse scattering hump from the X-ray amorphous materials in CheMin XRD patterns can be fit with a combination of allophane, ferrihydrite, and rhyolitic and basaltic glass. Because of the iron-rich nature of Mars' surface, Fe-rich poorly-crystalline phases, such as hisingerite, may be present in addition to allophane.

  2. Landscapes of Mars A Visual Tour

    CERN Document Server

    Vogt, Gregory L

    2008-01-01

    Landscapes of Mars is essentially a picture book that provides a visual tour of Mars. All the major regions and topographical features will be shown and supplemented with chapter introductions and extended captions. In a way, think of it as a visual tourist guide. Other topics covered are Martian uplands on the order of the elevation of Mt. Everest, Giant volcanoes and a rift system, the Grand Canyon of Mars, craters and the absence of craters over large regions (erosion), and wind shadows around craters, sand dunes, and dust devils. The book includes discussions on the search for water (braided channels, seepage, sedimentary layering, etc.) as well as on the Viking mission search for life, Mars meteorite fossil bacteria controversy, and planetary protection in future missions. The book concludes with an exciting gallery of the best 3D images of Mars making the book a perfect tool for understanding Mars and its place in the solar system.

  3. Exploring Regolith Depth and Cycling on Mars

    Science.gov (United States)

    Fassett, C.; Needham, D. H.; Watters, W. A.; Hundal, C.

    2017-12-01

    Regolith or loose sediment is ubiquitous on the surface of Mars, but our understanding of how this fragmental layer forms and evolves with time is limited. In particular, how regolith thickness varies spatially on Mars is not well known. A common perspective is to start from the canonical model for lunar regolith, which is not unreasonable, given that both Mars and the Moon are heavily cratered surfaces. However, this lunar-like paradigm is not supported by observations of Mars from recent missions. On Mars, bedrock exposures are more common and bedrock is generally closer to the surface than on the Moon, and the processes modifying the regolith differ substantially on the two bodies. Moreover, boulders on the Moon have much shorter lifetimes than on Mars, so boulders are much less common on the lunar surface. The sediment transport processes infilling craters differs dramatically on these two bodies as well. On Mars, fine-grained sediment is efficiently transported (advectively) by wind and trapped in craters rapidly after they form. Lateral transport of lunar regolith is comparatively inefficient and dominated by slow impact-driven (diffusive) transport of regolith. The goal of this contribution is to discuss observational constraints on Mars' regolith depth, and to place observations into a model for Mars landform evolution and regolith cycle. Our operating hypothesis is that the inter-crater surface on Mars is comparatively starved of fine-grained sediment (compared to the Moon), because transport and trapping of fines in craters out-competes physical weathering. Moreover, thick sedimentary bodies on Mars often get (weakly) cemented and lithified due to interactions with fluids, even in the most recent, Amazonian epoch. This is consistent with what is observed at the MER and MSL landing sites and what is known from the SNC meteorites.

  4. Degraded Crater Rim

    Science.gov (United States)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  5. Paleoenvironmental Implications of Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Bristow, Thomas F.; Blake, David F.

    2014-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx. 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx. 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at approx. 10A with a slight inflexion at approx. 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and

  6. Diagenetic Features Analyzed by ChemCam/Curiosity at Pahrump Hills, Gale Crater, Mars

    Science.gov (United States)

    Nachon, M.; Mangold, N.; Cousin, A.; Forni, O.; Anderson, R. B.; Blank, J. G.; Calef, F.; Clegg, S.; Fabre, C.; Fisk, M.; hide

    2015-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of targets and (2) a Remote Micro Imager (RMI), which provides imaging context for the LIBS. The LIBS/ChemCam performs analysis typically of spot sizes 350-550 micrometers in diameter, up to 7 meters from the rover. Within Gale crater, Curiosity traveled from Bradbury Landing toward the base of Mount Sharp, reaching Pahrump Hills outcrop circa sol 750. This region, as seen from orbit, represents the first exposures of lower Mount Sharp. In this abstract we focus on two types of features present within the Pahrump Hills outcrop: concretion features and light-toned veins.

  7. Smectite Formation in Acid Sulfate Environments on Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Clark, J. V.; Morris, R. V.; Ming, D. W.

    2017-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under aqueous conditions that were globally neutral to alkaline. These pH conditions and the presence of a CO2-rich atmosphere should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. We hypothesized that smectite deposits are consistent with perhaps widespread acidic aqueous conditions that prevented carbonate precipitation. The objective of our work was to investigate smectite formation under acid sulfate conditions in order to provide insight into the possible geochemical conditions required for smectite formation on Mars. Hydrothermal batch incubation experiments were performed with Mars-analogue, glass-rich, basalt simulant in the presence of sulfuric acid of variable concentration.

  8. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars

    Science.gov (United States)

    Maurice, Sylvestre; Clegg, Samuel M.; Wiens, Roger C.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, Agnes; Sautter, V.; Mangold, Nicolas; Le Deit, L.; Nachon, Marion; Anderson, Ryan; Lanza, Nina; Fabre, Cecile; Payre, Valerie; Lasue, Jeremie; Meslin, Pierre-Yves; LeVeille, Richard A.; Barraclough, Bruce; Beck, Pierre; Bender, Steven C.; Berger, Gilles; Bridges, John C.; Bridges, Nathan; Dromert, Gilles; Dyar, M. Darby; Francis, Raymond; Frydenvang, Jens; Gondet, B.; Ehlmann, Bethany L.; Herkenhoff, Kenneth E.; Johnson, Jeffrey R.; Langevin, Yves; Madsen Morten B.,; Melikechi, N.; Lacour, J.-L.; Le Mouelic, Stephane; Lewin, Eric; Newsom, Horton E.; Ollila, Ann M.; Pinet, Patrick; Schroder, S.; Sirven, Jean-Baptiste; Tokar, Robert L.; Toplis, M.J.; d'Uston, Claude; Vaniman, David; Vasavada, Ashwin R.

    2016-01-01

    At Gale crater, Mars, ChemCam acquired its first laser-induced breakdown spectroscopy (LIBS) target on Sol 13 of the landed portion of the mission (a Sol is a Mars day). Up to Sol 800, more than 188000 LIBS spectra were acquired on more than 5800 points distributed over about 650 individual targets. We present a comprehensive review of ChemCam scientific accomplishments during that period, together with a focus on the lessons learned from the first use of LIBS in space. For data processing, we describe new tools that had to be developed to account for the uniqueness of Mars data. With regard to chemistry, we present a summary of the composition range measured on Mars for major-element oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O) based on various multivariate models, with associated precisions. ChemCam also observed H, and the non-metallic elements C, O, P, and S, which are usually difficult to quantify with LIBS. F and Cl are observed through their molecular lines. We discuss the most relevant LIBS lines for detection of minor and trace elements (Li, Rb, Sr, Ba, Cr, Mn, Ni, and Zn). These results were obtained thanks to comprehensive ground reference datasets, which are set to mimic the expected mineralogy and chemistry on Mars. With regard to the first use of LIBS in space, we analyze and quantify, often for the first time, each of the advantages of using stand-off LIBS in space: no sample preparation, analysis within its petrological context, dust removal, sub-millimeter scale investigation, multi-point analysis, the ability to carry out statistical surveys and whole-rock analyses, and rapid data acquisition. We conclude with a discussion of ChemCam performance to survey the geochemistry of Mars, and its valuable support of decisions about selecting where and whether to make observations with more time and resource-intensive tools in the rover's instrument suite. In the end, we present a bird's-eye view of the many scientific results: discovery of felsic

  9. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

    Science.gov (United States)

    Stern, Jennifer C.; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P.; Archer, P. Douglas; Buch, Arnaud; Brunner, Anna E.; Coll, Patrice; Eigenbrode, Jennifer L.; Fairen, Alberto G.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Martín-Torres, F. Javier; Zorzano, Maria-Paz; Conrad, Pamela G.; Mahaffy, Paul R.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; - Torres, F. Javier Martín; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d’Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2015-01-01

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. PMID:25831544

  10. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars.

    Science.gov (United States)

    Stern, Jennifer C; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P; Archer, P Douglas; Buch, Arnaud; Brunner, Anna E; Coll, Patrice; Eigenbrode, Jennifer L; Fairen, Alberto G; Franz, Heather B; Glavin, Daniel P; Kashyap, Srishti; McAdam, Amy C; Ming, Douglas W; Steele, Andrew; Szopa, Cyril; Wray, James J; Martín-Torres, F Javier; Zorzano, Maria-Paz; Conrad, Pamela G; Mahaffy, Paul R

    2015-04-07

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.

  11. Fluids, evaporation and precipitates at Gale Crater

    OpenAIRE

    Schwenzer, S. P.; Bridges, J. C.; Leveille, R.; Wiens, R. C.; Mangold, N.; McAdam, A.; Conrad, P.; Kelley, S. P.; Westall, F.; Martín-Torres, F.; Zorzano, M.-P.

    2015-01-01

    The Mars Science Laboratory (MSL) mission landed in Gale Crater, Mars, on 6th August 2012, and has explored the Yellowknife Bay area. The detailed mineralogical and sedimentological studies provide a unique opportunity to characterise the secondary fluids associated with this habitable environment.

  12. Age of the Mars Global Northerly Slope: Evidence From Utopia Planitia

    Science.gov (United States)

    McGill, George E.

    2002-01-01

    Recent results from the Mars Orbiter Laser Altimeter (MOLA) experiment on Mars Global Surveyor (MGS) indicate that most of Mars is characterized by a very gentle, roughly northerly slope. Detailed mapping in north-central Arabia Terra combined with superposition relations and crater counts indicate that, in that region at least, this northerly slope must have been formed no later than Late Hesperian, with the most likely time of formation being Late Hesperian. Current research in Utopia Planitia intended as a test of extant models for the formation of giant polygons has turned up good evidence for a Late Hesperian age for the northerly tilt in this region as well, as will be discussed.

  13. Confidence Hills Mineralogy and Chemin Results from Base of Mt. Sharp, Pahrump Hills, Gale Crater, Mars

    Science.gov (United States)

    Cavanagh, P. D.; Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Morris, R. V.; Ming, D. W.; Rampe, E. B.; Achilles, C. N.; Chipera, S. J.; Treiman, A. H.; hide

    2015-01-01

    The Mars Science Laboratory (MSL) rover Curiosity recently completed its fourth drill sampling of sediments on Mars. The Confidence Hills (CH) sample was drilled from a rock located in the Pahrump Hills region at the base of Mt. Sharp in Gale Crater. The CheMin X-ray diffractometer completed five nights of analysis on the sample, more than previously executed for a drill sample, and the data have been analyzed using Rietveld refinement and full-pattern fitting to determine quantitative mineralogy. Confidence Hills mineralogy has several important characteristics: 1) abundant hematite and lesser magnetite; 2) a 10 angstrom phyllosilicate; 3) multiple feldspars including plagioclase and alkali feldspar; 4) mafic silicates including forsterite, orthopyroxene, and two types of clinopyroxene (Ca-rich and Ca-poor), consistent with a basaltic source; and 5) minor contributions from sulfur-bearing species including jarosite.

  14. LU60645GT and MA132843GT Catalogues of Lunar and Martian Impact Craters Developed Using a Crater Shape-based Interpolation Crater Detection Algorithm for Topography Data

    Science.gov (United States)

    Salamuniccar, Goran; Loncaric, Sven; Mazarico, Erwan Matias

    2012-01-01

    For Mars, 57,633 craters from the manually assembled catalogues and 72,668 additional craters identified using several crater detection algorithms (CDAs) have been merged into the MA130301GT catalogue. By contrast, for the Moon the most complete previous catalogue contains only 14,923 craters. Two recent missions provided higher-quality digital elevation maps (DEMs): SELENE (in 1/16° resolution) and Lunar Reconnaissance Orbiter (we used up to 1/512°). This was the main motivation for work on the new Crater Shape-based interpolation module, which improves previous CDA as follows: (1) it decreases the number of false-detections for the required number of true detections; (2) it improves detection capabilities for very small craters; and (3) it provides more accurate automated measurements of craters' properties. The results are: (1) LU60645GT, which is currently the most complete (up to D>=8 km) catalogue of Lunar craters; and (2) MA132843GT catalogue of Martian craters complete up to D>=2 km, which is the extension of the previous MA130301GT catalogue. As previously achieved for Mars, LU60645GT provides all properties that were provided by the previous Lunar catalogues, plus: (1) correlation between morphological descriptors from used catalogues; (2) correlation between manually assigned attributes and automated measurements; (3) average errors and their standard deviations for manually and automatically assigned attributes such as position coordinates, diameter, depth/diameter ratio, etc; and (4) a review of positional accuracy of used datasets. Additionally, surface dating could potentially be improved with the exhaustiveness of this new catalogue. The accompanying results are: (1) the possibility of comparing a large number of Lunar and Martian craters, of e.g. depth/diameter ratio and 2D profiles; (2) utilisation of a method for re-projection of datasets and catalogues, which is very useful for craters that are very close to poles; and (3) the extension of the

  15. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  16. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  17. Interfacial liquid water on Mars and its potential role in formation of hill and dune gullies

    Science.gov (United States)

    Kossacki, Konrad J.; Markiewicz, Wojciech J.

    2010-11-01

    Gullies are among the most intriguing structures identified on the surface of Mars. Most common are gullies located on the slopes of craters which are probably formed by liquid water transported by shallow aquifers (Heldmann, J.L., Carlsson, E., Johansson, H., Mellon, M.T., Toon, O.B. [2007]. Icarus 188, 324-344). Two particular types of gullies are found on slopes of isolated hills and dunes. The hill-slope gullies are located mostly at 50°S, which is at the high end of latitudes of bulk of the gullies found so far. The dune gullies are found in several locations up to 65°S (Reiss, D., Jaumann, R., Kereszturi, A., Sik, A., Neukum, G. [2007]. Lunar Planet. Sci. XXXVIII. Abstract 1993), but the best known are those in Russel crater at 54°S. The hill and dune gullies are longer than others making the aquifers explanation for their formation unlikely (Balme, M., Mangold, N., Baratoux, D., Costard, F., Gosselin, M., Masson, P., Pnet, P., Neukum, G. [2006]. J. Geophys. Res. 111. doi:10.1029/2005JE002607). Recently it has been noted that thin liquid films of interfacial water can play a role in rheological processes on the surface of Mars (Moehlmann, D. [2008]. Icarus 195, 131-139. Kereszturi, A., Moehlmann, D., Berczi, Sz., Ganti, T., Kuti, A., Sik, A., Horvath, A. [2009]. Icarus 201, 492-503.). Here we try to answer the question whether interfacial liquid water may occur on Mars in quantities large enough to play a role in formation of gullies. To verify this hypothesis we have calculated thermal models for hills and dunes of various steepness, orientation and physical properties. We find that within a range of average expected values of parameters it is not possible to have more than a few monolayers of liquid water at depths greater than a centimeter. To create subsurface interfacial water film significantly thicker and hence to produce conditions for the slope instability, parameters have to be chosen to have their extreme realistic values or an additional source

  18. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  19. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.

  20. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

    International Nuclear Information System (INIS)

    Treiman, Allan H.; Bish, David L.; Chipera, Steve J.; Blake, David F.

    2015-01-01

    The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or 95 ); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K 2 O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na 2 O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. Finally, the presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.

  1. Tectonic evolution of Mars

    International Nuclear Information System (INIS)

    Wise, D.U.; Golombek, M.P.; McGill, G.E.

    1979-01-01

    Any model for the tectonic evolution of Mars must account for two major crustal elements: the Tharsis bulge and the topographically low and lightly crated northern third of the planet. Ages determined by crater density indicate that both of these elements came into existence very early in Martian history, a conclusion that holds no matter which of the current crater density versus age curves is used. The size of these two major crustal elements and their sequential development suggest that both may be related to a global-scale internal process. It is proposed that the resurfacing of the northern third of Mars is related to subcrustal erosion and isostatic foundering during the life of a first-order convection cell. With the demise of the cell, denser segregations of metallic materials began to coalesce as a gravitatively unstable layer which finally overturned to form the core. In the overturn, lighter crustal materials was shifted laterally and underplated beneath Tharsis to cause rapid and permanent isostatic rise. This was followed by a long-lived thermal phase produced by the hot underplate and by the gravitative energy of core formation slowly making its way to the surface to produce the Tharsis volcanics

  2. Basalt-trachybasalt samples in Gale Crater, Mars

    International Nuclear Information System (INIS)

    Edwards, Peter H.; Anderson, Ryan B.; Dyar, Darby

    2017-01-01

    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO 2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO 2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg# = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. Finally, the Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.

  3. Wildfires Caused by Formation of Small Impact Craters: A Kaali Crater Case

    Science.gov (United States)

    Losiak, Anna; Belcher, Claire; Hudspith, Victoria; Zhu, Menghua; Bronikowska, Malgorzata; Jõeleht, Argo; Plado, Juri

    2016-04-01

    Formation of ~200-km Chicxulub 65 Ma ago was associated with release of significant amount of thermal energy [1,2,3] which was sufficient to start wildfires that had either regional [4] or global [5] range. The evidence for wildfires caused by impacts smaller than Chicxulub is inconclusive. On one hand, no signs of fires are associated with the formation of 24-km Ries crater [6]. On the other hand, the Tunguska site was burned after the impact and the numerical models of the bolide-produced thermal radiation suggest that the Tunguska-like event would produce a thermal flux to the surface that is sufficient to ignite pine needles [7]. However, in case of Tunguska the only proof for the bolide starting the fire comes from an eyewitness description collected many years after the event. Some authors [8] suggest that this fire might have been caused "normaly" later during the same year, induced on dead trees killed by the Tunguska fall. More recently it was observed that the Chelyabinsk meteor [9] - smaller than Tunguska event - did not produced a fire. In order to explore this apparent relationship in more detail, we have studied the proximal ejecta from a 100-m in diameter, ~3500 years old [10] Kaali crater (Estonia) within which we find pieces of charred organic material. Those pieces appear to have been produced during the impact, according to their stratigraphic location and following 14C analysis [19] as opposed to pre- or post-impact forest fires. In order to determine the most probable formation mechanism of the charred organic material found within Kaali proximal ejecta blanket, we: 1) Analyzed charcoal under SEM to identify the charred plants and determine properties of the charcoal related to the temperature of its formation [11]. Detected homogenization of cell walls suggests that at least some pieces of charcoal were formed at >300 °C [11]. 2) Analyzed the reflectance properties of the charred particles in order to determine the intensity with which

  4. Dune and ripple migration along Curiosity's traverse in Gale Crater on Mars

    Science.gov (United States)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Fenton, L. K.; Michaels, T. I.; Ayoub, F.; Bridges, N. T.

    2013-12-01

    The NASA Mars Science Laboratory (MSL) rover, Curiosity, has safely landed near a 35-km-long dark dune field in Gale Crater on Mars. This dune field lies along Curiosity's traverse to Aeolis Mons (Mt. Sharp). Here we present new evidence of aeolian activity and further estimate wind directions within the dune field through analysis of ripple migration with the COSI-Corr technique, which provides precise measurements of ripple displacement at the sub-pixel scale.The area analyzed is located ~10 km southwest of rover Curiosity's current position and ~4 km SW of its selected path through Aeolis Mons (Mt. Sharp) (Fig. 1a). Here barchan dunes with elongated horns and seif dunes coexist with more typical barchan and dome dunes (Fig. 1a, b), with slopes sculpted by two intersecting ripple crestline orientations trending at 45° and 330°. The range of dune types and ripple orientations indicate the dune field morphology is influenced by at least two winds from the NW and the NE. The direction of migration is toward the SW, suggesting the most recent sand transporting winds were from the NE (Fig. 1c). These results match previous predictions and can be used to forecast the wind conditions close to the entry point to Mt. Sharp. Fig. 1: a-b) Study area c) Ripple migration direction computed using the COSI-Corr technique

  5. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  6. The Effect of Gamma Radiation on Mars Mineral Matrices: Implications for Perchlorate Formation on Mars

    Science.gov (United States)

    Fox, A. C.; Eigenbrode, J. L.; Pavlov, A.; Lewis, J.

    2017-12-01

    Observations by the Phoenix Wet Chemistry Lab of the Martian surface indicate the presence of perchlorate in high concentrations. Additional observations by the Sample Analysis at Mars and the Viking Landers indirectly support the presence of perchlorate at other localities on Mars. The evidence for perchlorate at several localities on Mars coupled with its detection in Martian meteorite EETA79001 suggests that perchlorate is present globally on Mars. The presence of perchlorate on Mars further complicates the search for organic molecules indicative of past life. While perchlorate is kinetically limited in Martian conditions, the intermediate species associated with its formation or decomposition, such as chlorate or chlorite, could oxidize Martian organic species. As a result, it is vital to understand the mechanism of perchlorate formation on Mars in order to determine its role in the degradation of organics. Here, we explore an alternate mechanism of formation of perchlorate by bombarding Cl-salts and Mars-relevant mineral mixtures with gamma radiation both with and without the presence of liquid water, under vacuum. Previous work has shown that OClO can form from both UV radiation and energetic electrons bombardment of Cl-ices or Cl-salts, which then reacts with either OH- or O-radicals to produce perchlorate. Past research has suggested that liquid water or ice is the source of these hydroxyl and oxygen radicals, which limits the location of perchlorate formation on Mars. We demonstrate that trace amounts of perchlorate are potentially formed in samples containing silica dioxide or iron oxide and Cl-salts both with and without liquid water. Perchlorate was also detected in a portion of samples that were not irradiated, suggesting possible contamination. We did not detect perchlorate in samples that contained sulfate minerals. If perchlorate was formed without liquid water, it is possible that oxide minerals could be a potential source of oxygen radicals

  7. Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars

    Science.gov (United States)

    Ruff, S.W.; Farmer, J.D.; Calvin, W.M.; Herkenhoff, K. E.; Johnson, J. R.; Morris, R.V.; Rice, M.S.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Squyres, S. W.

    2011-01-01

    The presence of outcrops and soil (regolith) rich in opaline silica (???65-92 wt % SiO2) in association with volcanic materials adjacent to the "Home Plate" feature in Gusev crater is evidence for hydrothermal conditions. The Spirit rover has supplied a diverse set of observations that are used here to better understand the formation of silica and the activity, abundance, and fate of water in the first hydrothermal system to be explored in situ on Mars. We apply spectral, chemical, morphological, textural, and stratigraphic observations to assess whether the silica was produced by acid sulfate leaching of precursor rocks, by precipitation from silica-rich solutions, or by some combination. The apparent lack of S enrichment and the relatively low oxidation state of the Home Plate silica-rich materials appear inconsistent with the originally proposed Hawaiian analog for fumarolic acid sulfate leaching. The stratiform distribution of the silica-rich outcrops and their porous and brecciated microtextures are consistent with sinter produced by silica precipitation. There is no evidence for crystalline quartz phases among the silica occurrences, an indication of the lack of diagenetic maturation following the production of the amorphous opaline phase. Copyright ?? 2011 by the American Geophysical Union.

  8. The Gale Crater Mound in a Regional Geologic Setting: Comparison Study of Wind Erosion in Gale Crater and Within a 1000 KM Radius

    Science.gov (United States)

    Dapremont. A.; Allen, C.; Runyon, C.

    2014-01-01

    Gale is a Late Noachian/Early Hesperian impact crater located on the dichotomy boundary separating the southern highlands and the northern lowlands of Mars. NASA's Curiosity Rover is currently exploring Gale, searching for evidence of habitability early in Mars history. With an approximate diameter of 155 km, and a approx. 5 km central mound informally titled Mt. Sharp, Gale represents a region of geologic interest due to the abundance of knowledge that can be derived, through its sedimentary deposits, pertaining to the environmental evolution of Mars. This study was undertaken to compare wind erosional features in Gale Crater and within sediments in a 1000 km radial area. The ultimate objective of this comparison was to determine if or how Gale relates to the surrounding region.

  9. Evolved Gas Measurements Planned for the Lower Layers of the Gale Crater Mound with the Sample Analysis at Mars Instrument Suite

    Science.gov (United States)

    Mahaffy, P. R.; Franz, H.; McAdam, A.; Conrad, P. G.; Brunner, A.; Cabane, M.; Webster, C. R.

    2011-12-01

    The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at Mars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-70s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will

  10. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact

  11. The central uplift of Elorza Crater: Insights into its geology and possible relationships to the Valles Marineris and Tharsis regions

    Science.gov (United States)

    Hopkins, R. T.; Tornabene, L. L.; Osinski, G. R.

    2017-03-01

    The majority of hydrated silicate occurrences on Mars are associated with impact craters (Ehlmann et al., 2011; Carter et al., 2013). Three formation mechanisms have been suggested to account for this correlation: (1) aqueous alteration occurred pre-impact, and was subsequently exposed via the impact (pre-impact; Bibring et al., 2006; Ehlmann et al., 2011), (2) heat generated from the impact facilitated the formation of a hydrothermal system, leading to alteration products (syn-impact; e.g. Marzo et al., 2010; Osinski et al., 2013), and/or (3) altered materials were deposited after crater formation, or formed within the crater well after the impact had taken place (post-impact). In this study, we analyze the central uplift of Elorza Crater, a ∼40 km diameter impact crater located ∼300 km north of Valles Marineris. To determine whether hydrated minerals found within the uplift were generated pre-, syn-, or post-impact, we used a data synthesis approach, utilizing High Resolution Imaging Science Experiment (HiRISE), Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Context Camera (CTX), and Thermal Emission Imaging System (THEMIS) imagery. Opaline silica is observed in two locations on the southwestern side of the uplift and is interpreted to have been pre-existing or formed via hydrothermal alteration due to stratigraphic relationships with the overlying impact melt unit. Both Fe/Mg smectite and low-calcium pyroxene (LCP) are found throughout the uplift. Bedrock exposures on the northern wall of Coprates Chasma containing Fe/Mg smectite and LCP suggest an uplifted origin for these units. In all cases, although a pre-existing origin is probable, it is difficult to rule out the possibility of an impact-generated hydrothermal origin. Using the observed stratigraphy exposed in Coprates Chasma and bedrock exposures analyzed in nearby craters, we were able to constrain the pre-impact stratigraphy around Elorza. The near-subsurface consists of Hesperian

  12. Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Ming, D. W.; Archer, P. D.; Glavin, D. P.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.; Brunner, A. E.; Stern, J. C.; Freissinet, C.; McAdam, A. C.; Mahaffy, P. R.; Cabane, M.; Coll, P.; Campbell, J. L.; Atreya, S. K.; Niles, P. B.; Bell, J. F.; Bish, D. L.; Brinckerhoff, W. B.; Buch, A.; Conrad, P. G.; Des Marais, D. J.; Ehlmann, B. L.; Fairén, A. G.; Farley, K.; Flesch, G. J.; Francois, P.; Gellert, R.; Grant, J. A.; Grotzinger, J. P.; Gupta, S.; Herkenhoff, K. E.; Hurowitz, J. A.; Leshin, L. A.; Lewis, K. W.; McLennan, S. M.; Miller, K. E.; Moersch, J.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Perrett, G. M.; Pradler, I.; Squyres, S. W.; Summons, R. E.; Steele, A.; Stolper, E. M.; Sumner, D. Y.; Szopa, C.; Teinturier, S.; Trainer, M. G.; Treiman, A. H.; Vaniman, D. T.; Vasavada, A. R.; Webster, C. R.; Wray, J. J.; Yingst, R. A.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Griffes, Jennifer; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Hayes, Alexander; Joseph, Jonathan; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Coscia, David; Israël, Guy; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Stalport, Fabien; Raulin, François; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Choi, David; Dworkin, Jason P.; Floyd, Melissa; Garvin, James; Harpold, Daniel; Jones, Andrea; Martin, David K.; Raaen, Eric; Smith, Michael D.; Tan, Florence; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Yen, Albert; Cucinotta, Francis; Jones, John H.; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Williams, Rebecca M. E.; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Bower, Hannah; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.

  13. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars

    Science.gov (United States)

    Ming, D. W.; Archer, P.D.; Glavin, D.P.; Eigenbrode, J.L.; Franz, H.B.; Sutter, B.; Brunner, A.E.; Stern, J.C.; Freissinet, C.; McAdam, A.C.; Mahaffy, P.R.; Cabane, M.; Coll, P.; Campbell, J.L.; Atreya, S.K.; Niles, P.B.; Bell, J.F.; Bish, D.L.; Brinckerhoff, W.B.; Buch, A.; Conrad, P.G.; Des Marais, D.J.; Ehlmann, B.L.; Fairén, A.G.; Farley, K.; Flesch, G.J.; Francois, P.; Gellert, Ralf; Grant, J. A.; Grotzinger, J.P.; Gupta, S.; Herkenhoff, K. E.; Hurowitz, J.A.; Leshin, L.A.; Lewis, K.W.; McLennan, S.M.; Miller, Karl E.; Moersch, J.; Morris, R.V.; Navarro- González, R.; Pavlov, A.A.; Perrett, G.M.; Pradler, I.; Squyres, S. W.; Summons, Roger E.; Steele, A.; Stolper, E.M.; Sumner, D.Y.; Szopa, C.; Teinturier, S.; Trainer, M.G.; Treiman, A.H.; Vaniman, D.T.; Vasavada, A.R.; Webster, C.R.; Wray, J.J.; Yingst, R.A.

    2014-01-01

    H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.

  14. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars.

    Science.gov (United States)

    Ming, D W; Archer, P D; Glavin, D P; Eigenbrode, J L; Franz, H B; Sutter, B; Brunner, A E; Stern, J C; Freissinet, C; McAdam, A C; Mahaffy, P R; Cabane, M; Coll, P; Campbell, J L; Atreya, S K; Niles, P B; Bell, J F; Bish, D L; Brinckerhoff, W B; Buch, A; Conrad, P G; Des Marais, D J; Ehlmann, B L; Fairén, A G; Farley, K; Flesch, G J; Francois, P; Gellert, R; Grant, J A; Grotzinger, J P; Gupta, S; Herkenhoff, K E; Hurowitz, J A; Leshin, L A; Lewis, K W; McLennan, S M; Miller, K E; Moersch, J; Morris, R V; Navarro-González, R; Pavlov, A A; Perrett, G M; Pradler, I; Squyres, S W; Summons, R E; Steele, A; Stolper, E M; Sumner, D Y; Szopa, C; Teinturier, S; Trainer, M G; Treiman, A H; Vaniman, D T; Vasavada, A R; Webster, C R; Wray, J J; Yingst, R A

    2014-01-24

    H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.

  15. Use of Geochemistry Data Collected by the Mars Exploration Rover Spirit in Gusev Crater to Teach Geomorphic Zonation through Principal Components Analysis

    Science.gov (United States)

    Rodrigue, Christine M.

    2011-01-01

    This paper presents a laboratory exercise used to teach principal components analysis (PCA) as a means of surface zonation. The lab was built around abundance data for 16 oxides and elements collected by the Mars Exploration Rover Spirit in Gusev Crater between Sol 14 and Sol 470. Students used PCA to reduce 15 of these into 3 components, which,…

  16. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

    Science.gov (United States)

    Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, Ralf; Golombek, M.P.; Grotzinger, J.P.; Guinness, E.A.; Haberle, R.M.; Herkenhoff, K. E.; Herman, J.A.; Iagnemma, K.D.; Jolliff, B.L.; Johnson, J. R.; Klingelhofer, G.; Knoll, A.H.; Knudson, A.T.; Li, R.; McLennan, S.M.; Mittlefehldt, D. W.; Morris, R.V.; Parker, T.J.; Rice, M.S.; Schroder, C.; Soderblom, L.A.; Squyres, S. W.; Sullivan, R.J.; Wolff, M.J.

    2011-01-01

    Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date. Copyright 2011 by the American Geophysical Union.

  17. Updating the planetary time scale: focus on Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Quantin-Nataf, Cathy

    2013-01-01

    Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.

  18. The New Mars Synthesis: A New Concept Of Mars Geo-Chemical History

    Science.gov (United States)

    Brandenburg, J. E.

    2005-02-01

    A new concept of Mars climatic and geo-chemical evolution is proposed, called the NMS (New Mars Synthesis) drawing on the full spectrum of available Mars data. The proposed synthesis is that Mars and Earth, having begun with similar surface conditions, did not strongly diverge from their similar paths 4.0 Billion years ago, in the Early Noachian, instead, under the NMS, they diverged much more recently in geologic time, in the Early Amazonian. Under the NMS, biology strongly affected the geo-chemical evolution of Mars, and allowed a stable and persistent greenhouse by producing a large oxygen component in the atmosphere. The NMS assumes Mars held biology form early on, has been geologically active throughout its history, that it had a northern paleo-ocean, that it has high, approximately, 4xLunar, cratering rates and that its climate changed recently in geologic time from being basically terrestrial to its present conditions. The proposed mechanism for the stability of the Mars greenhouse was a large oxygen component in the atmosphere that created acidic and highly oxidized conditions that prevented formation of Carbonates, and the thermal and gas buffering of the paleo-ocean. The greenhouse was thus biologically and hydrologically stabilized. The greenhouse was terminated by a large atmospheric cooling event in the Early Amazonian that killed the biosphere and froze the ocean stabilizing the greenhouse. This cooling event was probably caused by the formation of the Lyot impact basin. Given the long duration of this terrestrial biosphere in this NMS, the possible appearance of fossils in some rover images is not to be unexpected and the colonization of Mars by humanity may be aided extensive fossil biomass to use as raw material.

  19. Martian Low-Aspect-Ratio Layered Ejecta (LARLE) craters: Distribution, characteristics, and relationship to pedestal craters

    Science.gov (United States)

    Barlow, Nadine G.; Boyce, Joseph M.; Cornwall, Carin

    2014-09-01

    Low-Aspect-Ratio Layered Ejecta (LARLE) craters are a unique landform found on Mars. LARLE craters are characterized by a crater and normal layered ejecta pattern surrounded by an extensive but thin outer deposit which terminates in a sinuous, almost flame-like morphology. We have conducted a survey to identify all LARLE craters ⩾1-km-diameter within the ±75° latitude zone and to determine their morphologic and morphometric characteristics. The survey reveals 140 LARLE craters, with the majority (91%) located poleward of 40°S and 35°N and all occurring within thick mantles of fine-grained deposits which are likely ice-rich. LARLE craters range in diameter from the cut-off limit of 1 km up to 12.2 km, with 83% being smaller than 5 km. The radius of the outer LARLE deposit displays a linear trend with the crater radius and is greatest at higher polar latitudes. The LARLE deposit ranges in length between 2.56 and 14.81 crater radii in average extent, with maximum length extending up to 21.4 crater radii. The LARLE layer is very sinuous, with lobateness values ranging between 1.45 and 4.35. LARLE craters display a number of characteristics in common with pedestal craters and we propose that pedestal craters are eroded versions of LARLE craters. The distribution and characteristics of the LARLE craters lead us to propose that impact excavation into ice-rich fine-grained deposits produces a dusty base surge cloud (like those produced by explosion craters) that deposits dust and ice particles to create the LARLE layers. Salts emplaced by upward migration of water through the LARLE deposit produce a surficial duricrust layer which protects the deposit from immediate removal by eolian processes.

  20. Experimental Alteration of Basalt to Support Interpretation of Remote Sensing and In Situ Meausrements from Mars

    Science.gov (United States)

    Bell, M. S.

    2014-01-01

    Major occurrences of hydrous alteration minerals on Mars have been found in Noachian impact craters formed in basaltic targets and detected using visible/near infrared (VNIR) spectroscopy. Until recently phyllosilicates were detected only in craters in the southern hemisphere [1, 2]. However, it has been reported that at least nine craters in the northern plains apparently excavated thick layers of lava and sediment to expose phyllosilicates [3] as well. The MER (Mars Exploration Rovers) rovers previously reported results of in situ measurement indicating the presence of alteration minerals on Mars [4,5] and it was recently reported that the Mars Curiosity rover has detected alteration phases in situ at Yellowknife Bay in Gale crater as well [6,7]. An important discovery for Mars geochronology is that the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument on Curiosity detected phyllosilicates indicating that phyllosilicate formation on Mars extended beyond the Noachian Epoch [8]. These discoveries indicate that Mars was globally altered by water in the past but does not constrain formation conditions for alteration phase occurrences, which have important implications for the evolution of the surface and the biological potential on Mars. Understanding the alteration assemblages produced by a range of conditions is vital for the interpretation of phyllosilicate spectral signatures as well as in situ measurements and to decipher the environment and evolution of early Mars. The martian surface has been intensely altered by meteorite impacts whose effects include brecciation and melting of target materials as well as the initiation of hydrothermal circulation in a hydrous target [9,10,11,12]. Impact effects may facilitate aqueous alteration of a basaltic target because the rate of silicate dissolution is a function of the degree of crystallinity, surface area, and temperature. The resultant alteration mineralogies from shocked basaltic target material

  1. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    Science.gov (United States)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  2. Investigation of Secondary Craters in the Saturnian System

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.; White, O. L.

    2012-03-01

    To derive accurate ages using impact craters, the impact source must be determined. We investigate secondary crater size, frequency, distribution, formation, and crater chain formation on icy satellites throughout the Jupiter and Saturn systems.

  3. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  4. MEVTV workshop on tectonic features on Mars

    International Nuclear Information System (INIS)

    Watters, T.R.; Golombek, M.P.

    1989-01-01

    The state of knowledge of tectonic features on Mars was determined and kinematic and mechanical models were assessed for their origin. Three sessions were held: wrinkle ridges and compressional structure; strike-slip faults; and extensional structures. Each session began with an overview of the features under discussion. In the case of wrinkle ridges and extensional structures, the overview was followed by keynote addresses by specialists working on similar structures on the Earth. The first session of the workshop focused on the controversy over the relative importance of folding, faulting, and intrusive volcanism in the origin of wrinkle ridges. The session ended with discussions of the origin of compressional flank structures associated with Martian volcanoes and the relationship between the volcanic complexes and the inferred regional stress field. The second day of the workshop began with the presentation and discussion of evidence for strike-slip faults on Mars at various scales. In the last session, the discussion of extensional structures ranged from the origin of grabens, tension cracks, and pit-crater chains to the origin of Valles Marineris canyons. Shear and tensile modes of brittle failure in the formation of extensional features and the role of these failure modes in the formation of pit-crater chains and the canyons of Valles Marineris were debated. The relationship of extensional features to other surface processes, such as carbonate dissolution (karst) were also discussed

  5. Formation of Valley Networks in a Cold and Icy Early Mars Climate: Predictions for Erosion Rates and Channel Morphology

    Science.gov (United States)

    Cassanelli, J.

    2017-12-01

    Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars

  6. Medusae Fossae Formation

    Science.gov (United States)

    2002-01-01

    (Released 10 April 2002) The Science This THEMIS visible image was acquired near 7o S, 172o W (188o E) and shows a remarkable martian geologic deposit known as the Medusae Fossae Formation. This Formation, seen here as the raised plateau in the upper two-thirds of the image, is a soft, easily eroded deposit that extends for nearly 1,000 km along the equator of Mars. In this region the deposit has been heavily eroded by the wind to produce a series of linear ridges called yardangs. These parallel ridges point in direction of the prevailing winds that carved them, and demonstrate the power of martian winds to sculpt the dry landscape of Mars. The Medusae Fossae Formation has been completely stripped from the surface in the lower third of the image, revealing a harder layer below that is more resistant to wind erosion. The easily eroded nature of the Medusae Fossae Formation suggests that it is composed of weakly cemented particles, and was most likely formed by the deposition of wind-blown dust or volcanic ash. Several ancient craters that were once completely buried by this deposit are being exposed, or exhumed, as the overlying Medusae Formation is removed. Very few impact craters are visible on this Formation, indicating that the surface seen today is relatively young, and that the processes of erosion are likely to be actively occurring. The Story Medusa of Greek mythology fame, the name-giver to this region, had snaky locks of hair that could turn a person to stone. Wild and unruly, this monster of the underworld could certainly wreak havoc on the world of the human imagination. As scary as she was, Medusa would have no advantage over the fierce, masterful winds blowing across Mars, which once carved the streaky, terrain at the top of this image. Wild and whipping, these winds have slowly eroded away the 'topsoil,' revealing ancient craters and other surface features they once covered. The loosely cemented particles of this 'topsoil' are likely made up of dust

  7. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    Science.gov (United States)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale

  8. Probing the Hidden Geology of Isidis Planitia (Mars with Impact Craters

    Directory of Open Access Journals (Sweden)

    Graziella Caprarelli

    2015-02-01

    Full Text Available In this study we investigated Isidis Planitia, a 1325 km diameter multi-ring impact basin intersecting the Martian hemispheric dichotomy, located in the eastern hemisphere, between Syrtis Major and Utopia Planitia. From Mars Orbiter Laser Altimeter gridded data we observed that in the center of Isidis the −3700 m and −3800 m isolines strike NW-SE, being quasi-parallel to the diameter of the basin. We interpreted this as evidence that the basement of Isidis Planitia was faulted prior to being completely covered by layers of sediments and volcanic rocks. Plotting the morphometric data of impact craters located on the floor of the basin in a measured depths vs. predicted depths diagram (MPD, we concluded that the fault planes should dip SW, which is consistent with the location of the most topographically depressed sector of Isidis Planitia. We also estimated a minimum vertical displacement of ~1–2 km. Considering that the crust under Isidis Planitia is only a few km thick, our estimate implies brittle behavior of the lithosphere under the basin, suggesting that a low geothermal gradient and rheologically strong material characterize this Martian location.

  9. Spiders from Mars?

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-426, 19 July 2003No, this is not a picture of a giant, martian spider web. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a plethora of polygonal features on the floor of a northern hemisphere impact crater near 65.6oN, 327.7oW. The picture was acquired during spring, after the seasonal carbon dioxide frost cap had largely migrated through the region. At the time the picture was taken, remnants of seasonal frost remained on the crater rim and on the edges of the troughs that bound each of the polygons. Frost often provides a helpful hint as to where polygons and patterned ground occur. The polygons, if they were on Earth, would indicate the presence of freeze-thaw cycles in ground ice. Although uncertain, the same might be true of Mars. Sunlight illuminates the scene from the lower left.

  10. Mars Hand Lens Imager (MAHLI) Efforts and Observations at the Rocknest Eolian Sand Shadow in Curiosity's Gale Crater Field Site

    Science.gov (United States)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Goetz, W.; Kah, L. C.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Beegle, L. W.; hide

    2013-01-01

    The Mars Science Laboratory (MSL) mission is focused on assessing the past or present habitability of Mars, through interrogation of environment and environmental records at the Curiosity rover field site in Gale crater. The MSL team has two methods available to collect, process and deliver samples to onboard analytical laboratories, the Chemistry and Mineralogy instrument (CheMin) and the Sample Analysis at Mars (SAM) instrument suite. One approach obtains samples by drilling into a rock, the other uses a scoop to collect loose regolith fines. Scooping was planned to be first method performed on Mars because materials could be readily scooped multiple times and used to remove any remaining, minute terrestrial contaminants from the sample processing system, the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA). Because of this cleaning effort, the ideal first material to be scooped would consist of fine to very fine sand, like the interior of the Serpent Dune studied by the Mars Exploration Rover (MER) Spirit team in 2004 [1]. The MSL team selected a linear eolian deposit in the lee of a group of cobbles they named Rocknest (Fig. 1) as likely to be similar to Serpent Dune. Following the definitions in Chapter 13 of Bagnold [2], the deposit is termed a sand shadow. The scooping campaign occurred over approximately 6 weeks in October and November 2012. To support these activities, the Mars Hand Lens Imager (MAHLI) acquired images for engineering support/assessment and scientific inquiry.

  11. Planetesimal Sizes and Mars Formation in the Magnetized Solar Nebula

    Science.gov (United States)

    Hasegawa, Yasuhiro; Morishima, Ryuji

    2017-10-01

    The Hf-W chronology inferred from Martian meteorites suggests that Mars should be a stranded planetary embryo formed within a very short (about 2 Myr) accretion timescale. Previous studies show that such rapid growth can be realized when small (nebular evolution. Under this circumstance, impact velocity of planetesimals can be very high due to nebular density fluctuations caused by turbulence, and hence collisions between small planetesimals can become destructive, rather than mergers. Here, we investigate how Mars formed in the magnetized solar nebula, focusing on MHD turbulence. We demonstrate what mass of planetesimals can contribute to Mars formation and what value of the nebular mass is needed to satisfy the rapid accretion timescale. We therefore derive a more realistic condition of the solar nebula under which Mars formation took place. While this study is based on the standard picture of runaway and oligarchic growth, we also discuss other formation mechanisms in order to compare how our results would be consistent with the properties of the solar system. These mechanisms are a hypothesis that Mars formed from a narrow ring of planetesimals, and the pebble accretion scenario.

  12. APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average

    Science.gov (United States)

    O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J.

    2017-12-01

    We present Alpha-Particle X-ray Spectrometer (APXS) data for the active Bagnold dune field within the Gale impact crater (Mars Science Laboratory (MSL) mission). We derive an APXS-based average basaltic soil (ABS) composition for Mars based on past and recent data from the MSL and Mars Exploration Rover (MER) missions. This represents an update to the Taylor and McLennan (2009) average Martian soil and facilitates comparison across Martian data sets. The active Bagnold dune field is compositionally distinct from the ABS, with elevated Mg, Ni, and Fe, suggesting mafic mineral enrichment and uniformly low levels of S, Cl, and Zn, indicating only a minimal dust component. A relationship between decreasing grain size and increasing felsic content is revealed. The Bagnold sands possess the lowest S/Cl of all Martian unconsolidated materials. Gale soils exhibit relatively uniform major element compositions, similar to Meridiani Planum and Gusev Crater basaltic soils (MER missions). However, they show minor enrichments in K, Cr, Mn, and Fe, which may signify a local contribution. The lithified eolian Stimson Formation within the Gale impact crater is compositionally similar to the ABS and Bagnold sands, which provide a modern analogue for these ancient eolian deposits. Compilation of APXS-derived soil data reveals a generally homogenous global composition for Martian soils but one that can be locally modified due to past or extant geologic processes that are limited in both space and time.

  13. Implications of Martian Phyllosilicate Formation Conditions to the Early Climate on Mars

    Science.gov (United States)

    Bishop, J. L.; Baker, L.; Fairén, A. G.; Michalski, J. R.; Gago-Duport, L.; Velbel, M. A.; Gross, C.; Rampe, E. B.

    2017-12-01

    We propose that short-term warmer and wetter environments, occurring sporadically in a generally cold early Mars, enabled formation of phyllosilicate-rich outcrops on the surface of Mars without requiring long-term warm and wet conditions. We are investigating phyllosilicate formation mechanisms including CO2 and H2O budgets to provide constraints on the early martian climate. We have evaluated the nature and stratigraphy of phyllosilicate-bearing surface units on Mars based on i) phyllosilicate-forming environments on Earth, ii) phyllosilicate reactions in the lab, and iii) modeling experiments involving phyllosilicates and short-range ordered (SRO) materials. The type of phyllosilicates that form on Mars depends on temperature, water/rock ratio, acidity, salinity and available ions. Mg-rich trioctahedral smectite mixtures are more consistent with subsurface formation environments (crustal, hydrothermal or alkaline lakes) up to 400 °C and are not associated with martian surface environments. In contrast, clay profiles dominated by dioctahedral Al/Fe-smectites are typically formed in subaqueous or subaerial surface environments. We propose models describing formation of smectite-rich outcrops and laterally extensive vertical profiles of Fe/Mg-smectites, sulfates, and Al-rich clay assemblages formed in surface environments. Further, the presence of abundant SRO materials without phyllosilicates could mark the end of the last warm and wet episode on Mars supporting smectite formation. Climate Implications for Early Mars: Clay formation reactions proceed extremely slowly at cool temperatures. The thick smectite outcrops observed on Mars through remote sensing would require standing water on Mars for hundreds of millions of years if they formed in waters 10-15 °C. However, warmer temperatures could have enabled faster production of these smectite-rich beds. Sporadic warming episodes to 30-40 °C could have enabled formation of these smectites over only tens or

  14. Technical problems and future cratering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, J B [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    This paper reviews some of the key technical problems that remain to be solved in nuclear cratering technology. These include: (1) developing a broader understanding of the effects that material properties and water content of the earth materials around the shot have on cratering behavior, (2) extending the experimental investigation of retarc formation to include intermediate yields and various materials, and (3) improving our ability to predict the escape of radioactive material to the atmosphere to form the cloud source responsible for fallout. The formation processes of ejecta craters, retarcs, and subsidence craters are described in the light of our present understanding, and the major gaps in our understanding are indicated. Methods of calculating crater and retarc formation are discussed, with particular reference to the input information needed. Methods for calculating fallout are presented, and their shortcomings are discussed. A preliminary analysis of the safety factors associated with the presently proposed nuclear excavation concepts is presented. (author)

  15. Technical problems and future cratering experiments

    International Nuclear Information System (INIS)

    Knox, J.B.

    1969-01-01

    This paper reviews some of the key technical problems that remain to be solved in nuclear cratering technology. These include: (1) developing a broader understanding of the effects that material properties and water content of the earth materials around the shot have on cratering behavior, (2) extending the experimental investigation of retarc formation to include intermediate yields and various materials, and (3) improving our ability to predict the escape of radioactive material to the atmosphere to form the cloud source responsible for fallout. The formation processes of ejecta craters, retarcs, and subsidence craters are described in the light of our present understanding, and the major gaps in our understanding are indicated. Methods of calculating crater and retarc formation are discussed, with particular reference to the input information needed. Methods for calculating fallout are presented, and their shortcomings are discussed. A preliminary analysis of the safety factors associated with the presently proposed nuclear excavation concepts is presented. (author)

  16. Nanophase Carbonates on Mars: Implications for Carbonate Formation and Habitability

    Science.gov (United States)

    Archer, P. Douglas, Jr.; Lauer, H. Vern; Ming, Douglas W.; Niles, Paul B.; Morris, Richard V.; Rampe, Elizabeth B.; Sutter, Brad

    2014-01-01

    Despite having an atmosphere composed primarily of CO2 and evidence for abundant water in the past, carbonate minerals have only been discovered in small amounts in martian dust [1], in outcrops of very limited extent [2, 3], in soils in the Northern Plains (the landing site of the 2007 Phoenix Mars Scout Mission) [4] and may have recently been detected in aeolian material and drilled and powdered sedimentary rock in Gale Crater (the Mars Science Laboratory [MSL] landing site) [5]. Thermal analysis of martian soils by instruments on Phoenix and MSL has demonstrated a release of CO2 at temperatures as low as 250-300 degC, much lower than the traditional decomposition temperatures of calcium or magnesium carbonates. Thermal decomposition temperature can depend on a number of factors such as instrument pressure and ramp rate, and sample particle size [6]. However, if the CO2 released at low temperatures is from carbonates, small particle size is the only effect that could have such a large impact on decomposition temperature, implying the presence of extremely fine-grained (i.e., "nanophase" or clay-sized) carbonates. We hypothesize that this lower temperature release is the signature of small particle-sized (clay-sized) carbonates formed by the weathering of primary minerals in dust or soils through interactions with atmospheric water and carbon dioxide and that this process may persist under current martian conditions. Preliminary work has shown that clay-sized carbonate grains can decompose at much lower temperatures than previously thought. The first work took carbonate, decomposed it to CaO, then flowed CO2 over these samples held at temperatures >100 degC to reform carbonates. Thermal analysis confirmed that carbonates were indeed formed and transmission electron microsopy was used to determine crystal sized were on the order of 10 nm. The next step used minerals such as diopside and wollastonite that were sealed in a glass tube with a CO2 and H2O source. After

  17. The Mars Science Laboratory Mission: Early Results from Gale Crater Landing Site

    Science.gov (United States)

    Flatow, I.; Grotzinger, J. P.; Blake, D.; Crisp, J. A.; Edgett, K. S.; Gellert, R.; Gomez-Elvira, J.; Hassler, D. M.; Mahaffy, P. R.; Malin, M. C.; Meyer, M. A.; Mitrofanov, I.; Vasavada, A. R.; Wiens, R. C.

    2012-12-01

    The Mars Science Laboratory rover, Curiosity, landed at Gale Crater on August 5th (PDT) and initiated an investigation of modern and ancient environments. The 155-km diameter Gale Crater was chosen as Curiosity's field site based on several attributes: the interior Mount Sharp preserves a succession of flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mound show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Gale's regional context and strong evidence for a progression through multiple potentially habitable environments, represented by a stratigraphic record of extraordinary extent, ensure preservation of a rich record of the environmental history of early Mars. Curiosity has an expected lifetime of at least one Mars year (~23 months), and drive capability of at least 20 km. The MSL science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM); an x-ray diffractometer that will determine mineralogical diversity (CheMin); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, Mastcam); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam); an active/passive neutron spectrometer designed to search for water in rocks/regolith (DAN); a weather station to measure modern-day environmental variables (REMS); and a sensor designed for continuous monitoring of

  18. Mars on Earth: Analog basaltic soils and particulates from Lonar Crater, India, include Deccan soil, shocked soil, reworked lithic and glassy ejecta, and both shocked and unshocked baked zones

    Science.gov (United States)

    Wright, S. P.

    2017-12-01

    "There is no perfect analog for Mars on Earth" [first line of Hipkin et al. (2013) Icarus, 261-267]. However, fieldwork and corresponding sample analyses from laboratory instrumentation (to proxy field instruments) has resulted in the finding of unique analog materials that suggest that detailed investigations of Lonar Crater, India would be beneficial to the goals of the Mars Program. These are briefly described below as Analog Processes, Materials, and Fieldwork. Analog Processes: The geologic history of Lonar Crater emulates localities on Mars with 1.) flood basaltic volcanism with interlayer development of 2.) baked zones or "boles" and 3.) soil formation. Of six flows, the lower three are aqueously altered by groundwater to produce a range of 4.) alteration products described below. The impact event 570 ka produced a range of 5.) impactites including shocked baked zones, shocked soils, and altered basalt shocked to a range of shock pressures [Kieffer et al., 1976]. Analog Materials: 65 Ma Deccan basalt contains augite and labradorite. Baked zones are higher in hematite and other iron oxides. Soil consists of calcite and organic matter. Several basalts with secondary alteration are listed here and these mirror alteration on Mars: hematite, chlorite, serpentine, zeolite, and palagonite, with varying combinations of these with primary igneous minerals. All of these materials (#1 through 4 above) are shocked to a range of shocked pressures to produce maskelynite, flowing plagioclase glass, vesiculated plagioclase glass, and complete impact melts. Shocked soils contain schlieren calcite amidst comminuted grains of augite, labradorite, and these glasses. Shocked baked zones unsurprisingly have a petrographic texture similar to hornfels, another product of contact metamorphism. Analog Fieldwork: The ejecta consists of two layers: 8 m of lithic breccia with unshocked and fractured basalts under a 1 m suevite consisting of all ranges of shock pressure described above

  19. Sub-kilometre (intra-crater) mounds in Utopia Planitia, Mars: character, occurrence and possible formation hypotheses

    Science.gov (United States)

    Soare, Richard J.; Conway, Susan J.; Pearce, Geoffrey D.; Costard, François; Séjourné, Antoine

    2013-08-01

    At the middle latitudes of Utopia Planitia (˜35-45°N; ˜65-101°E) hundreds of small-sized mounds located in sub-kilometre impact craters dot the landscape. Their shape varies from circular to crescentic and their height ranges from ˜10 to 50 m. Often, metre to decametre pitting is observed, as is metres-thick banding or stratification. Mound albedo is relatively high, i.e. ˜0.16. The plain's terrain in the region, previously linked to the latitude-dependent mantle (LDM) of ice-dust, displays pitting and albedo similar to the small intra-crater mounds. Some workers have suggested that the mounds and the plain's terrain share a common ice-dust origin. If so, then scrutinising the mounds could provide analogical insight on the key geological characteristics and spatial distribution of the LDM itself. Other workers have hypothesised that the mounds are eroded sedimentary landforms or periglacial mounds underlain by a perennial ice-core (closed-system pingos). In this article we develop and then discuss each of the three mound-hypotheses in a much more substantial manner than has been done hitherto. Towards this end we use high-resolution images, present a detailed regional-map of mound distribution and establish a regional platform of topographical analysis using MOLA data superposed on a large-scale CTX mosaic. Although the ice-dust hypothesis is consistent with some observations and measurements, we find that a (loess-based) sedimentary hypothesis shows greater plausibility. Of the three hypotheses evaluated, the pingo or periglacial one is the weakest.

  20. Study of crater formation and its characteristics due to impact of a cluster projectile on a metal surface by molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Naspoori, Srujan Kumar; Kammara, Kishore K.; Kumar, Rakesh, E-mail: rkm@iitk.ac.in

    2017-04-01

    Impingement of energetic particles/ions on material surfaces is of great interest as these impacts give rise to various interesting phenomena, such as sputtering, back-scattering, crater formation, emission of electrons and photons from material surfaces etc. Surface erosion occurring in the plasma-facing material of nuclear fusion reactors reduce their performance and this motivated the course of the current work in understanding the underlying physics of solid–particle interactions. In the present work, we have studied sputtering, crater formation and its characteristics on the surface of a plasma-facing material due to the impact of a low to high energy dust particle (a conglomerate of a few to a thousand atoms) using the molecular dynamics method. Sputtering yield, excavated atoms from the crater, crater depth, height of crater rim, radius and aspect ratio of the crater are calculated for a range of incident energies (10 eV to 10 keV), and the variation of these parameters with varying size (formed of 14, 32, 64 atoms) of dust particle at different temperatures of the target material are computed.

  1. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    Science.gov (United States)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  2. Characterizing the Phyllosilicate Component of the Sheepbed Mudstone in Gale Crater, Mars Using Laboratory XRD and EGA

    Science.gov (United States)

    Rampe, E. B.; Morris, R. V.; Ming, D. W.; Archer, P. D.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Blake, D. F.; Bristow, T. F.; Sutter, B.; hide

    2014-01-01

    The Curiosity rover investigated the mineralogy of the Sheepbed mudstone member of the Yellowknife Bay formation in Gale crater. Data from the Chemistry and Mineralogy (CheMin) X-ray diffractometer (XRD) helped identify phyllosilicates in the two drilled samples, John Klein and Cumberland. These patterns showed peaks at low angles, consistent with (001) peaks in 2:1 swelling phyllosilicates [1]. Evolved gas analyses (EGA) by the Sample Analysis at Mars (SAM) instrument of these samples confirmed the presence of phyllosilicates through the release of H2O at high temperatures, consistent with dehydroxylation of octahedral OH in phyllosilicates [2]. CheMin data for the phyllosilicates at John Klein and Cumberland show that they are structurally similar in that their (02l) peaks are near 22.5 deg 2theta, suggesting both samples contain trioctahedral 2:1 phyllosilicates [1]. However, the positions of the (001) peaks differ: the phyllosilicate at John Klein has its (001) peak at 10 Angstroms, whereas the phyllosilicate at Cumberland has an (001) peak at 14 Angstroms. Such differences in (001) dspacings can be ascribed to the type of cation in the interlayer site [3]. For example, large monovalent cations (e.g., K(+)) have low hydration energies and readily lose their H2O of hydration, whereas small divalent cations (e.g., Mg(2+)) have high energies of hydration and retain H2O in the phyllosilicate interlayers [3,4]. The goal of this study is to determine whether differences in the interlayer cation composition can explain the CheMin data from John Klein and Cumberland and to use this knowledge to better understand phyllosilicate formation mechanisms.

  3. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Izidoro, A.; Winter, O. C. [UNESP, Univ. Estadual Paulista - Grupo de Dinâmica Orbital and Planetologia, Guaratinguetá, CEP 12.516-410, São Paulo (Brazil); Haghighipour, N. [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Tsuchida, M., E-mail: izidoro@feg.unesp.br, E-mail: nader@ifa.hawaii.edu [UNESP, Univ. Estadual Paulista, DCCE-IBILCE, São José do Rio Preto, CEP 15.054-000, São Paulo (Brazil)

    2014-02-10

    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.

  4. Constraints on early events in Martian history as derived from the cratering record

    International Nuclear Information System (INIS)

    Barlow, N.G.

    1990-01-01

    The shapes and densities of crater size-frequency distribution curves are used to constrain two major events early in Martian history: termination of high obliteration rates and viability of the multiple impact origin of the crustal dichotomy. Distribution curves of fresh craters superposed on uplands, intercrater plains, and ridged plains display shapes and densities indicative of formation prior to the end of heavy bombardment. This observation correlates with other geologic evidence, suggesting a major change in the erosional regime following the last major basin size impact (i.e., Argrye). In addition, the multisloped nature of the curves supports the idea that the downturn in the crater size-frequency distribution curves reflects the size-frequency distribution of the impactors rather than being the result of erosion. The crustal dichotomy formed prior to the heavy bombardment intermediate epoch based on distribution curves of knobby terrain; if the dichotomy resulted from a single gigantic impact, this observation places constraints on when this event happened. An alternate theory for dichotomy formation, the multiple-impact basin idea, is questioned: since distribution curves of large basins as well as heavy bombardment era units are not represented by a -3 differential power law function, this study finds fewer basins missing on Mars compare to the Moon and Mercury than previously reported. The area covered by these missing basins is less than that covered the northern plains

  5. Iron-Rich Carbonates as the Potential Source of Evolved CO2 Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    Science.gov (United States)

    Sutter, B.; Heil, E.; Rampe, E. B.; Morris, R. V.; Ming, D. W.; Archer, P. D.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument detected at least 4 distinct CO2 release during the pyrolysis of a sample scooped from the Rocknest (RN) eolian deposit. The highest peak CO2 release temperature (478-502 C) has been attributed to either a Fe-rich carbonate or nano-phase Mg-carbonate. The objective of this experimental study was to evaluate the thermal evolved gas analysis (T/EGA) characteristics of a series of terrestrial Fe-rich carbonates under analog SAM operating conditions to compare with the RN CO2 releases. Natural Fe-rich carbonates (<53 microns) with varying Fe amounts (Fe(0.66)X(0.34)- to Fe(0.99)X(0.01)-CO3, where X refers to Mg and/or Mn) were selected for T/EGA. The carbonates were heated from 25 to 715 C (35 C/min) and evolved CO2 was measured as a function of temperature. The highest Fe containing carbonates (e.g., Fe(0.99)X(0.01)-CO3) yielded CO2 peak temperatures between 466-487 C, which is consistent with the high temperature RN CO2 release. The lower Fe-bearing carbonates (e.g., Fe(0.66)X(0.34)CO3) did not have peak CO2 release temperatures that matched the RN peak CO2 temperatures; however, their entire CO2 releases did occur within RN temperature range of the high temperature CO2 release. Results from this laboratory analog analysis demonstrate that the high temperature RN CO2 release is consistent with Fe-rich carbonate (approx.0.7 to 1 wt.% FeCO3). The similar RN geochemistry with other materials in Gale Crater and elsewhere on Mars (e.g., Gusev Crater, Meridiani) suggests that up to 1 wt. % Fe-rich carbonate may occur throughout the Gale Crater region and could be widespread on Mars. The Rocknest Fe-carbonate may have formed from the interaction of reduced Fe phases (e.g., Fe2+ bearing olivine) with atmospheric CO2 and transient water. Alternatively, the Rocknest Fe-carbonate could be derived by eolian processes that have eroded distally exposed deep crustal material that possesses Fe-carbonate that may have formed through

  6. Geomorphology of crater and basin deposits - Emplacement of the Fra Mauro formation

    Science.gov (United States)

    Morrison, R. H.; Oberbeck, V. R.

    1975-01-01

    Characteristics of continuous deposits near lunar craters larger than about 1 km wide are considered, and it is concluded that (1) concentric dunes, radial ridges, and braided lineations result from deposition of the collision products of ejecta from adjacent pairs of similarly oriented secondary-crater chains and are, therefore, concentrations of secondary-crater ejecta; (2) intracrater ridges are produced within preexisting craters surrounding a fresh primary crater by ricocheting and focusing of secondary-crater ejecta from the preexisting craters' walls; and (3) secondary cratering has produced many of the structures of the continuous deposits of relatively small lunar craters and is the dominant process for emplacement of most of the radial facies of the continuous deposits of large lunar craters and basins. The percentages of Imbrium ejecta in deposits and the nature of Imbrium sculpturing are investigated.

  7. A revised surface age for the North Polar Layered Deposits of Mars

    Science.gov (United States)

    Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.

    2016-01-01

    The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been suggested to retain a record of past eccentricity- and obliquity-forced climate changes. The surface accumulation rate in the current climate can be constrained by the crater retention age. We scale NPLD crater diameters to account for icy target strength and compare surface age using a new production function for recent small impacts on Mars to the previously used model of Hartmann (2005). Our results indicate that ice is accumulating in these craters several times faster than previously thought, with a 100 m diameter crater being completely infilled within centuries. Craters appear to have a diameter-dependent lifetime, but the data also permit a complete resurfacing of the NPLD at ~1.5 ka.

  8. Clays and Carbonates in a Groundwater-Fed 3.8 Ga Martian Lake: Insights to Subsurface Habitability on Mars

    Science.gov (United States)

    Michalski, Joseph; Niles, Paul

    2015-01-01

    On Earth, the deep biosphere remains a largely unexplored, but clearly important carbon reservoir. Results from some uplifted central peaks in craters on Mars indicate that substantial carbon was also present at depth and might have helped sustain a deep biosphere. In fact, many factors relevant to deep biosphere habitability are more favorable on Mars than on Earth (e.g. porosity of the crust, geothermal gradient). Future exploration of Mars should include landing sites where materials have been exhumed from depth by meteor impact or basins where subsurface fluids have emerged, carrying clues to subsurface habitability. One of the most astrobiologically interesting sites on Mars McLaughlin Crater, a 93 km-diameter impact crater that formed approximately 4 b.y. ago. On the floor of the crater is a stratigraphic section of subhorizontal, layered sedimentary rocks with strong spectroscopic evidence for Fe-rich clay minerals and Mg-rich carbonates, which we interpret as ancient lacustrine deposits. The fluids that formed these materials likely originated in the subsurface, based on the paucity of channels leading into the crater basin and the fact that this is one of the deepest basins on Mars - a good candidate to have experienced upwelling of subsurface fluids. Therefore, the deposits within McLaughlin crater provide insight into subsurface processes on Mars. In this presentation, we will discuss the habitability of the martian subsurface as well as the geology of McLaughlin Crater and the possibility to detect biomarkers at that site with a future landed mission.

  9. Morphological indicators of a mascon beneath Ceres' largest crater, Kerwan

    Science.gov (United States)

    Bland, Michael T.; Ermakov, Anton; Raymond, Carol A.; Williams, David A.; Bowling, Tim J.; Preusker, F.; Park, Ryan S.; Marchi, Simone; Castillo-Rogez, Julie C.; Fu, R.R.; Russell, Christopher T.

    2018-01-01

    Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long‐term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact‐induced uplift of the high‐density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest‐degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin‐associated gravity anomalies, although their origin may differ substantially.

  10. Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan

    Science.gov (United States)

    Bland, M. T.; Ermakov, A. I.; Raymond, C. A.; Williams, D. A.; Bowling, T. J.; Preusker, F.; Park, R. S.; Marchi, S.; Castillo-Rogez, J. C.; Fu, R. R.; Russell, C. T.

    2018-02-01

    Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long-term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact-induced uplift of the high-density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest-degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin-associated gravity anomalies, although their origin may differ substantially.

  11. Crater Degradation on Mercury: A Global Perspective

    Science.gov (United States)

    Kinczyk, M. J.; Byrne, P. K.; Prockter, L. M.; Susorney, H. C. M.; Chapman, C. R.; Barnouin, O. S.

    2017-12-01

    On geologic timescales, initially fresh craters are subjected to many weathering mechanisms. Whereas water and wind are, or were, effective erosive mechanisms such as on Earth and Mars, micrometeorite bombardment and modification due to subsequent impacts are the dominant processes that degrade craters and crater rays on airless bodies like the Moon and Mercury. Classifying craters based on their state of degradation can help determine the relative ages of landforms proximal to, and crosscut by, these craters. However, this method is most effective when used together with statistical analysis of crater distributions. Pre-MESSENGER degradation classification schemes lacked sufficient detail to be consistently applied to craters of various sizes and morphological types—despite evidence suggesting that the ejecta deposits of large basins persist much longer than those of smaller craters, for instance—yet broad assumptions have been made regarding the correlation of crater class to the planet's time-stratigraphic sequence. Moreover, previous efforts to categorize craters by degradation state have either been restricted to regional study sites or applied only to a subset of crater age or size. As a result, numerous interpretations of crater degradation state persist for Mercury, challenging a complete understanding of this process on the innermost planet. We report on the first global survey of crater degradation on Mercury. By modifying an established 5-class scheme, we have systematically applied a rigorous set of criteria to all craters ≥40 km in diameter on the planet. These criteria include the state and morphology of crater deposits separately (e.g., rim, floor, wall, ejecta) and degradation classes were assigned as the collection of these individual attributes. This approach yields a consistent classification of craters of different sizes. Our results provide the first comprehensive assessment of how craters of various states of degradation are distributed

  12. Observations of an aeolian landscape: From surface to orbit in Gale Crater

    Science.gov (United States)

    Day, Mackenzie; Kocurek, Gary

    2016-12-01

    Landscapes derived solely from aeolian processes are rare on Earth because of the dominance of subaqueous processes. In contrast, aeolian-derived landscapes should typify Mars because of the absence of liquid water, the long exposure times of surfaces, and the presence of wind as the default geomorphic agent. Using the full range of available orbital and Mars Science Laboratory rover Curiosity images, wind-formed features in Gale Crater were cataloged and analyzed in order to characterize the aeolian landscape and to derive the evolution of the crater wind regime over time. Inferred wind directions show a dominance of regional northerly winds over geologic time-scales, but a dominance of topography-driven katabatic winds in modern times. Landscapes in Gale Crater show a preponderance of aeolian features at all spatial scales. Interpreted processes forming these features include first-cycle aeolian abrasion of bedrock, pervasive deflation, organization of available sand into bedforms, abundant cratering, and gravity-driven wasting, all of which occur over a background of slow physical weathering. The observed landscapes are proposed to represent a spectrum of progressive surface denudation from fractured bedrock, to retreating bedrock-capped mesas, to remnant hills capped by bedrock rubble, to desert pavement plains. This model of landscape evolution provides the mechanism by which northerly winds acting over ∼3 Ga excavated tens of thousands of cubic kilometers of material from the once sediment-filled crater, thus carving the intra-crater moat and exhuming Mount Sharp (Aeolis Mons). The current crater surface is relatively sand-starved, indicating that potential sediment deflation from the crater is greater than sediment production, and that most exhumation of Mount Sharp occurred in the ancient geologic past.

  13. Hollow Nodules Gas Escape Sedimentary Structures in Lacustrine Deposits on Earth and Gale Crater

    Science.gov (United States)

    Bonaccorsi, R.; Willson, D.; Fairen, A. G.; Baker, L.; McKay, C.; Zent, A.; Mahaffy, P. R.

    2015-12-01

    Curiosity's Mastcam and MAHLI instruments in Gale Crater (GC) imaged mm-sized circular rimmed hollow nodules (HNs) (Figure 1A), pitting the Sheepbed mudstone of Yellowknife Bay Formation [1,2]. HNs are significantly smaller than the solid nodules within the outcrop, with an external mean diameter of 1.2 mm and an interior one of 0.7 mm [2] Several formation mechanisms of HNs have been discussed, such as: (1) Diagenetic dissolution of soluble mineral phases; or, (2) Gas bubbles released shortly after sediment deposition [1-3]. In an ephemeral pond in Ubehebe Crater (Death Valley, CA) we observed the formation of hollow nodule sedimentary structures produced by gas bubbles (Figure 1C) preserved in smectite-rich mud that are strikingly similar to those imaged in GC (Figure 1A). This finding supports the gas bubble hypothesis [2]. Ubehebe Crater (UC) surface sediment hollow nodules were sampled, imaged, and their internal diameter measured (200 hollow structures) showing similar shape, distribution, and composition to those imaged by Curiosity in GC. UC in-situ observations suggest the gas bubbles were generated within the slightly reducing ephemerally submerged mud. These intra-crater deposits remain otherwise extremely dry year round, i.e., Air_rH ~2-5%; ground H2O wt%: 1-2%; Summer air/ground T: 45-48ºC/67-70ºC [4-5]. Data from the Sample Analysis at Mars (SAM), CheMin, and ChemCam instruments onboard the rover revealed that HNs-bearing mudstone are rich in smectite clay e.g., ~18-20% [6,7] deposited in a neutral to mildly alkaline environment, capturing a period when the surface was potentially habitable [1]. The UC HNs-hosting deposits are also rich in smectite clays (~30%) and occur in an ephemeral shallow freshwater setting [4-5]. If present, surface hollow nodules are easy to find in dry clay-rich mud in lacustrine sediments, so they could represent a new indicator of ephemeral but habitable/inhabited environments on both Earth and early Mars. References: [1

  14. Polygons near Lyot Crater

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-564, 4 December 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows patterned ground, arranged in the form of polygons, on the undulating plains associated with ejecta from the Lyot impact crater on the martian northern plains. This picture was acquired in October 2003 and shows that the polygon margins are ridges with large boulders--shown here as dark dots--on them. On Earth, polygon patterns like this are created in arctic and antarctic regions where there is ice in the ground. The seasonal and longer-term cycles of freezing and thawing of the ice-rich ground cause these features to form over time. Whether the same is true for Mars is unknown. The polygons are located near 54.6oN, 326.6oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  15. 'Endurance' Courtesy of Mars Express

    Science.gov (United States)

    2004-01-01

    NASA's Mars Exploration Rover Opportunity used its panoramic camera to capture this false-color image of the interior of 'Endurance Crater' on the rover's 188th martian day (Aug. 4, 2004). The image data were relayed to Earth by the European Space Agency's Mars Express orbiter. The image was generated from separate frames using the cameras 750-, 530- and 480-nanometer filters.

  16. Geomorphometric analysis of selected Martian craters using polar coordinate transformation

    Science.gov (United States)

    Magyar, Zoltán; Koma, Zsófia; Székely, Balázs

    2016-04-01

    Centrally symmetric landform elements are very common features on the surface of the planet Mars. The most conspicuous ones of them are the impact craters of various size. However, a closer look on these features reveals that they show often asymmetric patterns as well. These are partially related to the geometry of the trajectory of the impacting body, but sometimes it is a result of surface processes (e.g., freeze/thaw cycles, mass movements). Geomorphometric studies have already been carried out to reveal these pecularities. Our approach, the application of polar coordinate transformation (PCT) very sensitively enhances the non-radial and non-circular shapes. We used digital terrain models (DTMs) derived from the ESA Mars Express HRSC imagery. The original DTM or its derivatives (e.g. slope angle or aspect) are PCT transformed. We analyzed the craters inter alia with scattergrams in polar coordinates. The resulting point cloud can be used directly for the analysis, but in some cases an interpolation should be applied to enhance certain non-circular features (especially in case of smaller craters). Visual inspection of the crater slopes, coloured by the aspect, reveals smaller features. Some of them are processing artefacts, but many of them are related to local undulations in the topography or indications of mass movements. In many cases the undulations of the crater rim are due to erosional processes. The drawbacks of the technology are related to the uneven resolution of the projected image: features in the crater centre should be left out from the analysis because PCT has a low resolution around the projection center. Furthermore, the success of the PCT depends on the correct definition of the projection centre: erroneously centered images are not suitable for analysis. The PCT transformed images are also suitable for radial averaging and calculation of standard deviations, resulting in typical, comparable craters shapes. These studies may lead to a deeper

  17. On the possibility of life on early Mars

    Science.gov (United States)

    Oberbeck, V. R.; Fogleman, G.

    1990-01-01

    Prebiotic reactants, liquid water, and temperatures low enough for organic compounds to be stable are requirements for the origination of life as we know it. Prebiotic reactants and sufficiently low temperatures were present on Mars before liquid water vanished. Early in this time period, however, large planetesimal impacts may have periodically sterilized Mars, pyrolyzed organic compounds, and interrupted chemical origination of life. However, the calculated time interval between such impacts on Mars was larger just before liquid water vanished 3.8 Gyr (billion years) ago than it was on earth just before life originated. Therefore, there should have been sufficient time for life to originate on Mars. Ideal sites to search for microfossils are in the heavily cratered terrain of Upper Noachian age. Craters and channels in this terrain may have been the sites of ancient lakes and streams that could have provided habitats for the first microorganisms.

  18. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    Science.gov (United States)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  19. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  20. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    Science.gov (United States)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size

  1. Mars: Noachian hydrology by its statistics and topology

    Science.gov (United States)

    Cabrol, N. A.; Grin, E. A.

    1993-01-01

    Discrimination between fluvial features generated by surface drainage and subsurface aquifer discharges will provide clues to the understanding of early Mars' climatic history. Our approach is to define the process of formation of the oldest fluvial valleys by statistical and topological analyses. Formation of fluvial valley systems reached its highest statistical concentration during the Noachian Period. Nevertheless, they are a scarce phenomenom in Martian history, localized on the craterized upland, and subject to latitudinal distribution. They occur sparsely on Noachian geological units with a weak distribution density, and appear in reduced isolated surface (around 5 x 10(exp 3)(sq km)), filled by short streams (100-300 km length). Topological analysis of the internal organization of 71 surveyed Noachian fluvial valley networks also provides information on the mechanisms of formation.

  2. Rock Abrasion and Ventifact Formation on Mars from Field Analog, Theoretical, and Experimental Studies

    Science.gov (United States)

    Bridges, N. T.; Laity, J. E.

    2001-01-01

    rocks on Mars should erode at a rate of 7.7 to 210 micrometers/yr. These rates cannot have operated over the entire history of the Pathfinder site or elsewhere on Mars, because craters, knobs, and other obstacles would be quickly worn away. More likely, rock abrasion occurs over short time periods when sand supplies are sufficient and saltation friction speeds are frequently reached. Depletion or exhaustion of sand and a decline in wind fluxes at speeds greater than that of saltation friction will then act to reduce the rate of further abrasion. We are currently engaged in a new set of wind tunnel experiments coupled with theoretical models and field studies that address rock abrasion and ventifact formation on Mars and Earth. These studies have implications for the Noachian, when sand supplies were probably more plentiful and the threshold friction speed was possibly lower because of a more dense atmosphere. Under these conditions, erosion rates from the wind could have been much greater than to day, contributing, along with probable fluvial erosion, to the Noachian landscape that is in limited preservation today.

  3. Moon - 'Ghost' craters formed during Mare filling.

    Science.gov (United States)

    Cruikshank, D. P.; Hartmann, W. K.; Wood, C. A.

    1973-01-01

    This paper discusses formation of 'pathological' cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D less than 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.

  4. VNIR Multispectral Observations of Rocks at Spirit of St. Louis Crater and Marathon Valley on Th Rim of Endeavour Crater Made by the Opportunity Rover Pancam

    Science.gov (United States)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D.W.

    2016-01-01

    The Mars Exploration Rover Opportunity has been exploring the western rim of the 22 km diameter Endeavour crater since August, 2011. Recently, Opportunity has reached a break in the Endeavour rim that the rover team has named Mara-thon Valley. This is the site where orbital observations from the MRO CRISM imaging spectrometer indicated the presence of iron smectites. On the outer western portion of Marathon Valley, Opportunity explored the crater-form feature dubbed Spirit of St. Louis (SoSL) crater. This presentation describes the 430 to 1009 nm (VNIR) reflectance, measured by the rover's Pancam, of rock units present both at Spirit of St. Louis and within Marathon Valley.

  5. Pancam Peek into 'Victoria Crater' (Stereo)

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Left-eye view of a stereo pair for PIA08776 [figure removed for brevity, see original site] Right-eye view of a stereo pair for PIA08776 A drive of about 60 meters (about 200 feet) on the 943rd Martian day, or sol, of Opportunity's exploration of Mars' Meridiani Planum region (Sept. 18, 2006) brought the NASA rover to within about 50 meters (about 160 feet) of the rim of 'Victoria Crater.' This crater has been the mission's long-term destination for the past 21 Earth months. Opportunity reached a location from which the cameras on top of the rover's mast could begin to see into the interior of Victoria. This stereo anaglyph was made from frames taken on sol 943 by the panoramic camera (Pancam) to offer a three-dimensional view when seen through red-blue glasses. It shows the upper portion of interior crater walls facing toward Opportunity from up to about 850 meters (half a mile) away. The amount of vertical relief visible at the top of the interior walls from this angle is about 15 meters (about 50 feet). The exposures were taken through a Pancam filter selecting wavelengths centered on 750 nanometers. Victoria Crater is about five times wider than 'Endurance Crater,' which Opportunity spent six months examining in 2004, and about 40 times wider than 'Eagle Crater,' where Opportunity first landed. The great lure of Victoria is the expectation that a thick stack of geological layers will be exposed in the crater walls, potentially several times the thickness that was previously studied at Endurance and therefore, potentially preserving several times the historical record.

  6. Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects

    International Nuclear Information System (INIS)

    Papernov, S.; Schmid, A.W.

    2005-01-01

    Atomic force microscopy was employed to investigate the morphology of ultraviolet nanosecond-pulsed-laser damage in SiO 2 thin films. Gold nanoparticles, 18.5-nm diameter, embedded in the film were used as calibrated absorbing defects. Damage-crater diameter, depth, and cross-sectional profiles were measured as a function of laser fluence and the lodging depth of gold nanoparticles. The results indicate that, at laser fluences close to the crater-formation threshold and for lodging depths of a few particle diameters, the dominating regime of the material removal is melting and evaporation. The morphology of craters initiated by deep absorbing defects, with a lodging depth larger than ∼10 particle diameters, clearly points to a two-stage material-removal mechanism. The process starts with the material melting within the narrow channel volume and, upon temperature and pressure buildup, film fracture takes place. Crater-diameter variation with lodging depth and laser fluence is compared with theoretical predictions

  7. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    Science.gov (United States)

    Sutter, B.; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars suggests that neutral to mildly alkaline conditions prevailed during the early history of Mars. If early Mars surface geochemical conditions were neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. Why have so few carbonate deposits been detected compared to Fe/Mg smectites? Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would preclude the extensive formation of carbonate deposits. The goal of the proposed work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions.

  8. Sulfur-Bearing Phases Detected by Evolved Gas Analysis of the Rocknest Aeolian Deposit, Gale Crater, Mars

    Science.gov (United States)

    Mcadam, Amy Catherine; Franz, Heather Bryant

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from approx.450 to 800 C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2(approx. 3-22 micro-mol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (approx.41-109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (approx.1-5 nmol) and CS2(approx.0.2-1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.

  9. Geological mapping of lunar highland crater Lalande: Topographic configuration, morphology and cratering process

    Science.gov (United States)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Liu, ChangQing; Bi, Xiangyu

    2018-02-01

    Highland crater Lalande (4.45°S, 8.63°W; D = 23.4 km) is located on the PKT area of the lunar near side, southeast of the Mare Insularum. It is a complex crater in Copernican era and has three distinguishing features: high silicic anomaly, the highest Th abundance and special landforms on its floor. There are some low-relief bulges on the left of Lalande's floor with regular circle or ellipse shapes. They are ∼250-680 m wide and ∼30-91 m high with maximum flank slopes >20°. There are two possible scenarios for the formation of these low-relief bulges which are impact melt products or young silicic volcanic eruptions. We estimated the absolute model ages of the ejecta deposits, several melt ponds and the hummocky floor and determined the ratio of diameter and depth of the crater Lalande. In addition, we found some similar bugle features within other Copernican-aged craters and there were no volcanic source vents on Lalande's floor. Thus, we hypothesized that these low-relief bulges were most consistent with an origin of impact melts during the crater formation instead of small and young volcanic activities occurring on the floor. Based on Kaguya Terrain Camera (TC) ortho-mosaic and Digital Terrain Model (DTM) data produced by TC imagery in stereo, geological units and some linear features on the floor and wall of Lalande have been mapped. Eight geological units are organized by crater floor units: hummocky floor, central peak and low-relief bulges; and crater wall units: terraced walls, channeled and veneered walls, interior walls, mass wasting areas, blocky areas, and melt ponds. These geological units and linear features provided us a chance to understand some details of the cratering process and elevation differences on the floor. We proposed that subsidence due to melt cooling, late-stage wall collapse and rocks uplifted from beneath the surface could be the possible causes of the observed elevation differences on Lalande's floor.

  10. Land degradation of Taleghan drainage basin, Iran from saline and alkaline marly formations

    International Nuclear Information System (INIS)

    Zakikhani, K.; Feiznia, S.; Hosseini, S. H.

    2009-01-01

    In Iran fine-grained, saline, alkaline and erodible Tertiary marly formations are exposed in many geological zones and play important role in the formation of present landforms. They also play important role in degradation of water resources and soils as diffuse sources, they are the main sources of suspension loads of many rivers and are endless sources of sediments for sand dunes. These marly formations are present in Zagros, Central Iran, Alborz and Kopeh Dagh geological Zones and consists of different geological formations such as Gachsaran, Mishan and Razak Formations ( in Zagros), Lower Red and Upper Red Formations ( in Central Iran) and Neogene Red Beds (in Albords and Kopeh Dagh). (Author)

  11. Land degradation of Taleghan drainage basin, Iran from saline and alkaline marly formations

    Energy Technology Data Exchange (ETDEWEB)

    Zakikhani, K.; Feiznia, S.; Hosseini, S. H.

    2009-07-01

    In Iran fine-grained, saline, alkaline and erodible Tertiary marly formations are exposed in many geological zones and play important role in the formation of present landforms. They also play important role in degradation of water resources and soils as diffuse sources, they are the main sources of suspension loads of many rivers and are endless sources of sediments for sand dunes. These marly formations are present in Zagros, Central Iran, Alborz and Kopeh Dagh geological Zones and consists of different geological formations such as Gachsaran, Mishan and Razak Formations ( in Zagros), Lower Red and Upper Red Formations ( in Central Iran) and Neogene Red Beds (in Albords and Kopeh Dagh). (Author)

  12. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10/sup 8/ kg, with a corresponding kinetic energy of 1.88 x 10/sup 16/ J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references.

  13. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10 8 kg, with a corresponding kinetic energy of 1.88 x 10 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references

  14. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    Science.gov (United States)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  15. Mars Global Digital Dune Database; MC-1

    Science.gov (United States)

    Hayward, R.K.; Fenton, L.K.; Tanaka, K.L.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

    2010-01-01

    beyond the scope of this report to measure all slipfaces. We attempted to include enough slipface measurements to represent the general circulation (as implied by gross dune morphology) and to give a sense of the complex nature of aeolian activity on Mars. The absence of slipface measurements in a given direction should not be taken as evidence that winds in that direction did not occur. When a dune field was located within a crater, the azimuth from crater centroid to dune field centroid was calculated, as another possible indicator of wind direction. Output from a general circulation model (GCM) is also included. In addition to polygons locating dune fields, the database includes THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA) images that were used to build the database. The database is presented in a variety of formats. It is presented as an ArcReader project which can be opened using the free ArcReader software. The latest version of ArcReader can be downloaded at http://www.esri.com/software/arcgis/arcreader/download.html. The database is also presented in an ArcMap project. The ArcMap project allows fuller use of the data, but requires ESRI ArcMap(Registered) software. A fuller description of the projects can be found in the NP_Dunes_ReadMe file (NP_Dunes_ReadMe folder_ and the NP_Dunes_ReadMe_GIS file (NP_Documentation folder). For users who prefer to create their own projects, the data are available in ESRI shapefile and geodatabase formats, as well as the open Geography Markup Language (GML) format. A printable map of the dunes and craters in the database is available as a Portable Document Format (PDF) document. The map is also included as a JPEG file. (NP_Documentation folder) Documentation files are available in PDF and ASCII (.txt) files. Tables are available in both Excel and ASCII (.txt)

  16. Layers of 'Cabo Frio' in 'Victoria Crater'

    Science.gov (United States)

    2006-01-01

    This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is an approximately true color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.

  17. Ceres' intriguing Occator crater and its faculae: formation and evolution

    Science.gov (United States)

    Buczkowski, D.; Scully, J. E. C.; Bowling, T.; Bu, C.; Castillo, J. C.; Jaumann, R.; Longobardo, A.; Nathues, A.; Neesemann, A.; Palomba, E.; Platz, T.; Quick, L. C.; Raponi, A.; Raymond, C. A.; Ruesch, O.; Russell, C. T.; Schenk, P.; Stein, N.

    2017-12-01

    Since March 2015, the Dawn spacecraft has orbited and explored Ceres, which is a dwarf planet and the largest object in the asteroid belt (radius 470 km). One of the most intriguing features on Ceres' surface is Occator crater, a 92-km-diameter impact crater that contains distinctive bright spots, called faculae, within its floor (Nathues et al., 2015; Russell et al., 2016; Schenk et al., 2017). Occator crater has been dated to 20-30 million years old (Nathues et al., 2017; Neesemann et al., 2017). The single scattering albedo of Occator's faculae is 0.67-0.80, which is greater than Ceres' average single scattering albedo of 0.09-0.11 (Li et al., 2016). The central facula is named Cerealia Facula, and is located in a 9 km wide and 700 m deep pit. There are also multiple additional faculae in the eastern crater floor, which are named the Vinalia Faculae. The faculae are mostly composed of sodium carbonate, are distinct from Ceres' average surface composition and are proposed to be the solid residues of crystallized brines (De Sanctis et al., 2016). The presence of such bright, apparently fresh, material on the surface of a dwarf planet that is billions of years old is intriguing, and indicates that active processes involving brines occurred within the geologically recent past. The Dawn Science Team has investigated whether the processes that formed the crater and the faculae are entirely endogenic, entirely exogenic or a combination of both. For example, the extensive lobate materials within the crater floor have been proposed to be impact melt, mass wasting deposits or cryolava flows (e.g. Buczkowski et al., 2017; Jaumann et al., 2017; Nathues et al., 2017; Schenk et al., 2017). Each possibility has the potential to provide fascinating insights into Ceres' evolution, including the potential for liquids within Ceres' interior today. The team's in-depth investigation of Occator crater will be presented in an upcoming special issue of the journal Icarus. This special

  18. Candidate cave entrances on Mars

    Science.gov (United States)

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  19. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    Science.gov (United States)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form craters in a geologic instant. The question examined in this manuscript is how fast these craters erode after their formation. To simplify the problem, we examined craters of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of craters on both bodies that met these criteria. Our results suggest that craters on Mercury become shallower much more quickly than craters on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.

  20. Combining meteorites and missions to explore Mars.

    Science.gov (United States)

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K

    2011-11-29

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young ( 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  1. Impact cratering on porous targets in the strength regime

    Science.gov (United States)

    Nakamura, Akiko M.

    2017-12-01

    Cratering on small bodies is crucial for the collision cascade and also contributes to the ejection of dust particles into interplanetary space. A crater cavity forms against the mechanical strength of the surface, gravitational acceleration, or both. The formation of moderately sized craters that are sufficiently larger than the thickness of the regolith on small bodies, in which mechanical strength plays the dominant role rather than gravitational acceleration, is in the strength regime. The formation of microcraters on blocks on the surface is also within the strength regime. On the other hand, the formation of a crater of a size comparable to the thickness of the regolith is affected by both gravitational acceleration and cohesion between regolith particles. In this short review, we compile data from the literature pertaining to impact cratering experiments on porous targets, and summarize the ratio of spall diameter to pit diameter, the depth, diameter, and volume of the crater cavity, and the ratio of depth to diameter. Among targets with various porosities studied in the laboratory to date, based on conventional scaling laws (Holsapple and Schmidt, J. Geophys. Res., 87, 1849-1870, 1982) the cratering efficiency obtained for porous sedimentary rocks (Suzuki et al., J. Geophys. Res. 117, E08012, 2012) is intermediate. A comparison with microcraters formed on a glass target with impact velocities up to 14 km s-1 indicates a different dependence of cratering efficiency and depth-to-diameter ratio on impact velocity.

  2. Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars

    Science.gov (United States)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.

    2010-01-01

    Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.

  3. Recent flood lavas in the Elysium region of Mars

    International Nuclear Information System (INIS)

    Plescia, J.B.

    1990-01-01

    A volcanic origin is presently suggested for the Cerberus Formation region of smooth plains in the southeastern Elysium region of Mars, on the basis of its surface morphology, lobate edges, vents, and an embayment relation of the unit with adjacent, older units. The low viscosity lavas that filled a topographic depression in southeastern Elysium subsequently flowed into western Amazonic Planitia via channels formed by an earlier fluvial episode. A young, upper Amazonian dating is indicated by crater frequencies and stratigraphic relations, implying that large-scale eruptions of low-viscosity lava were still possible late in Martian history. 34 refs

  4. Mars At Opposition

    Science.gov (United States)

    1995-01-01

    These NASA Hubble Space Telescope views provide the most detailed complete global coverage of the red planet Mars ever seen from Earth. The pictures were taken on February 25, 1995, when Mars was at a distance of 65 million miles (103 million km).To the surprise of researchers, Mars is cloudier than seen in previous years. This means the planet is cooler and drier, because water vapor in the atmosphere freezes out to form ice-crystal clouds. Hubble resolves Martian surface features with a level of detail only exceeded by planetary probes, such as impact craters and other features as small as 30 miles (50 kilometers) across.[Tharsis region] - A crescent-shaped cloud just right of center identifies the immense shield volcano Olympus Mons, which is 340 miles (550 km) across at its base. Warm afternoon air pushed up over the summit forms ice-crystal clouds downwind from the volcano. Farther to the east (right) a line of clouds forms over a row of three extinct volcanoes which are from north to south: Ascraeus Mons, Pavonis Mons, Arsia Mons. It's part of an unusual, recurring 'W'-shaped cloud formation that once mystified earlier ground-based observers.[Valles Marineris region] - The 16 mile-high volcano Ascraeus Mons pokes through the cloud deck along the western (left) limb of the planet. Other interesting geologic features include (lower left) Valles Marineris, an immense rift valley the length of the continental United States. Near the image center lies the Chryse basin made up of cratered and chaotic terrain. The oval-looking Argyre impact basin (bottom) appears white due to clouds or frost.[Syrtis Major region] - The dark 'shark fin' feature left of center is Syrtis Major. Below it the giant impact basin Hellas. Clouds cover several great volcanos in the Elysium region near the eastern (right) limb. As clearly seen in the Hubble images, past dust storms in Mars' southern hemisphere have scoured the plains of fine light dust and transported the dust northward. This

  5. Wrinkle Ridges and Young Fresh Crater

    Science.gov (United States)

    2002-01-01

    (Released 10 May 2002) The Science Wrinkle ridges are a very common landform on Mars, Mercury, Venus, and the Moon. These ridges are linear to arcuate asymmetric topographic highs commonly found on smooth plains. The origin of wrinkle ridges is not certain and two leading hypotheses have been put forth by scientists over the past 40 years. The volcanic model calls for the extrusion of high viscosity lavas along linear conduits. This thick lava accumulated over these conduits and formed the ridges. The other model is tectonic and advocates that the ridges are formed by compressional faulting and folding. Today's THEMIS image is of the ridged plains of Lunae Planum located between Kasei Valles and Valles Marineris in the northern hemisphere of the planet. Wrinkle ridges are found mostly along the eastern side of the image. The broadest wrinkle ridges in this image are up to 2 km wide. A 3 km diameter young fresh crater is located near the bottom of the image. The crater's ejecta blanket is also clearly seen surrounding the sharp well-defined crater rim. These features are indicative of a very young crater that has not been subjected to erosional processes. The Story The great thing about the solar system is that planets are both alike and different. They're all foreign enough to be mysterious and intriguing, and yet familiar enough to be seen as planetary 'cousins.' By comparing them, we can learn a lot about how planets form and then evolve geologically over time. Crinkled over smooth plains, the long, wavy raised landforms seen here are called 'wrinkle ridges,' and they've been found on Mars, Mercury, Venus, and the Moon - that is, on rocky bodies that are a part of our inner solar system. We know from this observation that planets (and large-enough moons) follow similar processes. What we don't know for sure is HOW these processes work. Scientists have been trying to understand how wrinkle ridges form for 40 years, and they still haven't reached a conclusion. That

  6. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars

    Science.gov (United States)

    Kestay, Laszlo P.; Jaeger, Windy L.

    2015-01-01

    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The “Odessa Craters,” near Odessa, WA, are 50–500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., “rootless”) cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  7. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-04-01

    A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago [Roddy (1977)]. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements

  8. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  9. Detection of lunar floor-fractured craters using machine learning methods

    Science.gov (United States)

    Thorey, C.

    2015-10-01

    About 200 Floor Fractured Craters (FFCs) have been identified by Schultz (1976) on the Moon, mainly around the lunar maria. These craters are a class of impact craters that are distinguished by having radi-ally and concentric floor-fractured networks and ab-normally shallow floors. In some cases, the uplift of the crater floor can be as large as 50% of the initial crater depth. These impact craters are interpreted to have undergone endogenous deformations after their formation.

  10. Maghemite Formation via Organics and the Prospect for Maghemite as a Biomarker Mineral on Mars

    Science.gov (United States)

    Bishop, Janice; Mancinelli, R. L.; Madsen, M. B.; Zent, A. P.

    2000-01-01

    One of the major questions on Mars is the origin of the magnetic component in the surface material. Our work on maghemite formation suggests that alteration of femhydrite in the presence of organics would provide a plausible formation scenario for this magnetic soil component and further suggests that maghemite might be an important biomarker mineral on Mars. Identification of biomarker minerals is an important aspect of Astrobiology . The iron oxide mineral maghemite is thought to be one of the magnetic components in the Martian surface material; however, it is a rare mineral on the Earth and requires a reducing agent for synthesis. Organic material serves as a reductant in maghemite formation during forest fires on Earth and may play an important role in maghemite formation on Mars through low-temperature heating (e.g., volcanism, impacts). This study involves analysis of magnetite, maghemite and hematite formation under Martian environmental conditions from femhydrite in the presence and absence of organics. A dehydrated version of the mineral femhydrite is thought to be present in Martian soil/dust grains and could have formed at an earlier time on Mars when water was present. Our work indicates that low-temperature alteration of femhydrite in the presence of organic material could be an important mechanism on Mars.

  11. Magnetic Properties Experiments on the Mars exploration Rover Spirit at Gusev crater

    DEFF Research Database (Denmark)

    Bertelsen, Pernille; Goetz, W.; Madsen, M.B.

    2004-01-01

    The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars-and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere...... must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of similar to2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit....

  12. Areal and time distributions of volcanic formations on Mars

    International Nuclear Information System (INIS)

    Katterfeld, G.N.; Vityaz, V.I.

    1987-01-01

    The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations

  13. Areal and time distributions of volcanic formations on Mars

    Science.gov (United States)

    Katterfeld, G. N.; Vityaz, V. I.

    1987-01-01

    The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations.

  14. The Context of Carbonates in Gusev and Jezero Craters

    Science.gov (United States)

    Ruff, S. W.; Hamilton, V. E.

    2017-12-01

    Gusev and Jezero are Noachian-aged craters with evidence of a lake in early Mars history. Both are among three remaining candidates for the Mars 2020 rover mission, which is intended to collect and cache rock samples for possible future return to Earth. Gusev was explored by the Spirit rover from 2004 to 2010, revealing outcrops dubbed Comanche composed of olivine-rich volcanic tephra that hosts up to 30% Mg-Fe carbonate, clear evidence for the role of near-neutral pH fluids [1]. Jezero also displays evidence for olivine- and carbonate-bearing materials, likely Mg-carbonate based on orbital spectral observations [2]. In both craters, the carbonates occur in materials that are among the oldest stratigraphic units in each, perhaps an indication of more clement climatic conditions on early Mars compared to those that prevailed for most of its history. We are undertaking investigations of various rover-based and orbital measurements of the carbonates in Gusev to better understand their geologic context and origin. In doing so, the results shed light on carbonate occurrences in Jezero. The Comanche outcrops are contained in the Columbia Hills, which represent a kipuka or island of eroded older terrain fully encircled by lava flows, here with a crater retention age of 3.65 Ga (Fig. 1). In situ and orbital observations [3] demonstrate that carbonate-bearing outcrops extend beyond those visited by Spirit. The distinctive morphology and thermal inertia signature of these outcrops and their unaltered host rocks are recognizable in other kipukas on the floor of Gusev [4]. Carbonate also occurs in kipukas in Jezero (Fig. 2), but larger occurrences extend beyond the crater rim and in isolated places among the delta fan deposits [2]. The presence of carbonates outside of the crater suggests an origin unrelated to a former lake, unlike the Comanche carbonates, which may have arisen through evaporation of dilute brines from an ephemeral lake in Gusev [4]. In both cases, the clear

  15. Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate

    Science.gov (United States)

    McKeown, N.K.; Bishop, J.L.; Noe Dobrea, E.Z.; Ehlmann, B.L.; Parente, M.; Mustard, J.F.; Murchie, S.L.; Swayze, G.A.; Bibring, J.-P.; Silver, E.A.

    2009-01-01

    Mawrth Vallis contains one of the largest exposures of phyllosilicates on Mars. Nontronite, montmorillonite, kaolinite, and hydrated silica have been identified throughout the region using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). In addition, saponite has been identified in one observation within a crater. These individual minerals are identified and distinguished by features at 1.38-1.42, ???1.91, and 2.17-2.41 ??m. There are two main phyllosilicate units in the Mawrth Vallis region. The lowermost unit is nontronite bearing, unconformably overlain by an Al-phyllosilicate unit containing montmorillonite plus hydrated silica, with a thin layer of kaolinite plus hydrated silica at the top of the unit. These two units are draped by a spectrally unremarkable capping unit. Smectites generally form in neutral to alkaline environments, while kaolinite and hydrated silica typically form in slightly acidic conditions; thus, the observed phyllosilicates may reflect a change in aqueous chemistry. Spectra retrieved near the boundary between the nontronite and Al-phyllosilicate units exhibit a strong positive slope from 1 to 2 ??m, likely from a ferrous component within the rock. This ferrous component indicates either rapid deposition in an oxidizing environment or reducing conditions. Formation of each of the phyllosilicate minerals identified requires liquid water, thus indicating a regional wet period in the Noachian when these units formed. The two main phyllosilicate units may be extensive layers of altered volcanic ash. Other potential formational processes include sediment deposition into a marine or lacustrine basin or pedogenesis. Copyright 2009 by the American Geophysical Union.

  16. Cutting Craters

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 12 November 2003The rims of two old and degraded impact craters are intersected by a graben in this THEMIS image taken near Mangala Fossa. Yardangs and low-albedo wind streaks are observed at the top of the image as well as interesting small grooves on the crater floor. The origin of these enigmatic grooves may be the result of mud or lava and volatile interactions. Variable surface textures observed in the bottom crater floor are the result of different aged lava flows.Image information: VIS instrument. Latitude -15.2, Longitude 219.2 East (140.8 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Layers of 'Cabo Frio' in 'Victoria Crater' (Stereo)

    Science.gov (United States)

    2006-01-01

    This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is a red-blue stereo anaglyph generated from images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 430-nanometer filters.

  18. The stratigraphy of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.

    1986-01-01

    A global stratigraphy of Mars was developed from a global geologic map series derived from Viking images; the stratigraphy is composed of three maps. A new chronostratigraphic classification system which consists of lower, middle, and upper Noachian, Hesperian, and Amazonian systems is described. The crater-density boundaries of the chronostratigraphic units and the absolute ages of the Martian epochs aer estimated. The relative ages of major geologic units and featues are calculated and analyzed. The geologic history of Mars is summarized on the maps in terms of epochs.

  19. Determining long-term regional erosion rates using impact craters

    Science.gov (United States)

    Hergarten, Stefan; Kenkmann, Thomas

    2015-04-01

    More than 300,000 impact craters have been found on Mars, while the surface of Moon's highlands is even saturated with craters. In contrast, only 184 impact craters have been confirmed on Earth so far with only 125 of them exposed at the surface. The spatial distribution of these impact craters is highly inhomogeneous. Beside the large variation in the age of the crust, consumption of craters by erosion and burial by sediments are the main actors being responsible for the quite small and inhomogeneous crater record. In this study we present a novel approach to infer long-term average erosion rates at regional scales from the terrestrial crater inventory. The basic idea behind this approach is a dynamic equilibrium between the production of new craters and their consumption by erosion. It is assumed that each crater remains detectable until the total erosion after the impact exceeds a characteristic depth depending on the crater's diameter. Combining this model with the terrestrial crater production rate, i.e., the number of craters per unit area and time as a function of their diameter, allows for a prediction of the expected number of craters in a given region as a function of the erosion rate. Using the real crater inventory, this relationship can be inverted to determine the regional long-term erosion rate and its statistical uncertainty. A limitation by the finite age of the crust can also be taken into account. Applying the method to the Colorado Plateau and the Deccan Traps, both being regions with a distinct geological history, yields erosion rates in excellent agreement with those obtained by other, more laborious methods. However, these rates are formally exposed to large statistical uncertainties due to the small number of impact craters. As higher crater densities are related to lower erosion rates, smaller statistical errors can be expected when large regions in old parts of the crust are considered. Very low long-term erosion rates of less than 4

  20. Griffith Saponite as an Analog for Clay Minerals at Yellowknife Bay in Gale Crater, Mars: A Marker for Low-temperature Hydrothermal Processes

    Science.gov (United States)

    Morris, R.V.; Treiman, A. H.; Agresti, D. G.; Graff, T. G.; Achilles, C. N.; Rampe, E. B.; Bristow, T. F.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; hide

    2014-01-01

    The CheMin X-ray diffraction (XRD) instrument onboard the Mars Science Laboratory rover Curiosity in Gale Crater, Mars, discovered smectite in drill fines of the Sheepbed mudstone at Yellowknife Bay (YNB). The mudstone has a basaltic composition, and the XRD powder diffraction pattern shows smectite 02l diffraction bands peaking at 4.59 A for targets John Klein and Cumberland, consistent with tri-octahedral smectites (saponite). From thermal analysis, the saponite abundance is 20 wt. %. Among terrestrial analogues we have studied, ferrian saponite from Griffith Park (Los Angeles, CA) gives the best match to the position of the 02l diffraction band of YNB saponites. Here we describe iron-rich saponites from a terrestrial perspective, with a focus on Griffith saponite, and discuss their implications for the mineralogy of Sheepbed saponite and its formation pathways. Iron-rich saponite: Iron-rich saponite on the Earth is recognized as a low-temperature (oxidize on the timescale of days when removed from their natural environment and not protected from oxidation. The Griffith saponite is Mg-rich ferrian saponite, and sample AMNH 89172 has an 02l spacing of 4.59 A (same as the Sheepbed saponites) and Fe3+/?Fe = 0.64 [3]. This similarity suggests that Sheepbed saponites are ferrian (incompletely oxidized ferrosaponite). More oxidized Griffith saponites (Fe3+/?Fe > 0.90) have somewhat smaller 02l d-spacings and also show Mossbauer evidence for an XRD amorphous Fe-bearing phase (e.g., ferrihydrite, hisingerite, superparamagnetic ferric oxides, etc.). The Griffith saponite occurs as vesicle fills, as replacements of olivine, and as replacements of mesostasis (basaltic glass). Similar occurrence modes are reported elsewhere. Hisingerite has been proposed by [13] as the alteration product of ferrian saponite whose precursor by oxidation was ferrosaponite.

  1. Analysis of the environmental conditions at Gale Crater from MSL/REMS measurements

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G.; Torre-Juarez, M. de la; Vicente-Retortillo, A.; Kemppinen, O.; Renno, N.; Lemmon, M.

    2016-07-01

    The environmental conditions at Gale Crater during the first 1160 sols of the Mars Science Laboratory (MSL) mission are assessed using measurements taken by the Rover Environmental Monitoring Station (REMS) on-board the MSL Curiosity rover. REMS is a suite of sensors developed to assess the environmental conditions along the rover traverse. In particular, REMS has been measuring atmospheric pressure, atmospheric and ground temperature, relative humidity, UV radiation flux and wind speed. Here we analyze processed data with the highest confidence possible of atmospheric pressure, atmospheric and ground temperature and relative humidity. In addition, we estimate the daily UV irradiation at the surface of Gale Crater using dust opacity values derived from the Mastcam instrument. REMS is still in operation, but it has already provided the most comprehensive coverage of surface environmental conditions recorded by a spacecraft landed on Mars. (Author)

  2. Distribution of Early, Middle, and Late Noachian cratered surfaces in the Martian highlands: Implications for resurfacing events and processes

    Science.gov (United States)

    Irwin, Rossman P.; Tanaka, Kenneth L.; Robbins, Stuart J.

    2013-02-01

    Most of the geomorphic changes on Mars occurred during the Noachian Period, when the rates of impact crater degradation and valley network incision were highest. Fluvial erosion around the Noachian/Hesperian transition is better constrained than the longer-term landscape evolution throughout the Noachian Period, when the highland intercrater geomorphic surfaces developed. We interpret highland resurfacing events and processes using a new global geologic map of Mars (at 1:20,000,000 scale), a crater data set that is complete down to 1 km in diameter, and Mars Orbiter Laser Altimeter topography. The Early Noachian highland (eNh) unit is nearly saturated with craters of 32-128 km diameter, the Middle Noachian highland (mNh) unit has a resurfacing age of ~4 Ga, and the Late Noachian highland unit (lNh) includes younger composite surfaces of basin fill and partially buried cratered terrain. These units have statistically distinct ages, and their distribution varies with elevation. The eNh unit is concentrated in the high-standing Hellas basin annulus and in highland terrain that was thinly mantled by basin ejecta near 180° longitude. The mNh unit includes most of Arabia Terra, the Argyre vicinity, highland plateau areas between eNh outcrops, and the Thaumasia range. The lNh unit mostly occurs within highland basins. Crater depth/diameter ratios do not vary strongly between the eNh and mNh units, although crater losses to Noachian resurfacing appear greater in lower lying areas. Noachian resurfacing was spatially non-uniform, long-lived, and gravity-driven, more consistent with arid-zone fluvial and aeolian erosion and volcanism than with air fall mantling or mass wasting.

  3. Mineral Fractionation during Sediment Comminution and Transport in Fluvio-Deltaic and Lacustrine Rocks of the Bradbury Group, Gale Crater, Mars

    Science.gov (United States)

    Siebach, K. L.; Baker, M. B.; Grotzinger, J. P.; McLennan, S. M.; Gellert, R.; Thompson, L. M.; Hurowitz, J.

    2017-12-01

    Mineral distribution patterns in sediments of the Bradbury group in Gale crater, interpreted from observations by the Mars Science Laboratory rover Curiosity, show the importance of transport mechanics in source-to-sink processes on Mars. The Bradbury group is comprised of basalt-derived mudstones to conglomerates exposed along the modern floor of Gale crater and analyzed along a 9-km traverse of the Curiosity rover. Over 110 bulk chemistry analyses of the rocks were acquired, along with two XRD mineralogical analyses of the mudstone. These rocks are uniquely suited for analysis of source-to-sink processes because they exhibit a wide range of compositions, but (based on multiple chemical weathering proxies) they appear to have experienced negligible cation-loss during weathering and erosion. Chemical variations between analyses correlate with sediment grain sizes, with coarser-grained rocks enriched in plagioclase components SiO2, Al2O3, and Na2O, and finer-grained rocks enriched in components of mafic minerals, consistent with grain-size sorting of mineral fractions during sediment transport. Further geochemical and mineralogical modeling supports the importance of mineral fractionation: even though the limited XRD data suggests that some fraction (if not all) of the rocks contain clays and an amorphous component, models show that 90% of the compositions measured are consistent with sorting of primary igneous minerals from a plagioclase-phyric subalkaline basalt (i.e., no corrections for cation-loss are required). The distribution of K2O, modeled as a potassium feldspar component, is an exception to the major-element trends because it does not correlate with grain size, but has an elevation-dependent signal likely correlated with the introduction of a second source material. However, the dominant compositional trends within the Bradbury group sedimentary rocks are correlated with grain size and consistent with mineral fractionation of minimally

  4. Crater populations in the early history of Mercury

    International Nuclear Information System (INIS)

    Guest, J.E.; Gault, D.E.

    1976-01-01

    Crater populations on two major geologic units of Mercury have been classified into three morphologic types which characterize their state of degradation. The results indicate that one or more processes either prior to or contemporary with the formation of the 1300 km diameter Caloris Planitia reduced the population of fresh craters smaller than 70--80 km diameter and totally erased the population of fresh craters smaller than 20--30 km

  5. Wind-blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars

    OpenAIRE

    Milliken, R. E.; Ewing, Ryan C.; Fischer, W. W.; Hurowitz, J.

    2014-01-01

    Gale Crater contains Mount Sharp, a ~5km thick stratigraphic record of Mars’ early environmental history. The strata comprising Mount Sharp are believed to be sedimentary in origin, but the specific depositional environments recorded by the rocks remain speculative. We present orbital evidence for the occurrence of eolian sandstones within Gale Crater and the lower reaches of Mount Sharp, including preservation of wind-blown sand dune topography in sedimentary strata—a phenomenon ...

  6. The Global Contribution of Secondary Craters on the Icy Satellites

    Science.gov (United States)

    Hoogenboom, T.; Johnson, K. E.; Schenk, P.

    2014-12-01

    At present, surface ages of bodies in the Outer Solar System are determined only from crater size-frequency distributions (a method dependent on an understanding of the projectile populations responsible for impact craters in these planetary systems). To derive accurate ages using impact craters, the impactor population must be understood. Impact craters in the Outer Solar System can be primary, secondary or sesquinary. The contribution of secondary craters to the overall population has recently become a "topic of interest." Our objective is to better understand the contribution of dispersed secondary craters to the small crater populations, and ultimately that of small comets to the projectile flux on icy satellites in general. We measure the diameters of obvious secondary craters (determined by e.g. irregular crater shape, small size, clustering) formed by all primary craters on Ganymede for which we have sufficiently high resolution data to map secondary craters. Primary craters mapped range from approximately 40 km to 210 km. Image resolution ranges from 45 to 440 m/pixel. Bright terrain on Ganymede is our primary focus. These resurfaced terrains have relatively low crater densities and serve as a basis for characterizing secondary populations as a function of primary size on an icy body for the first time. Although focusing on Ganymede, we also investigate secondary crater size, frequency, distribution, and formation, as well as secondary crater chain formation on icy satellites throughout the Saturnian and Jovian systems principally Rhea. We compare our results to similar studies of secondary cratering on the Moon and Mercury. Using Galileo and Voyager data, we have identified approximately 3,400 secondary craters on Ganymede. In some cases, we measured crater density as a function of distance from a primary crater. Because of the limitations of the Galileo data, it is necessary to extrapolate from small data sets to the global population of secondary craters

  7. Oxychlorine Detections on Mars: Implications for Cl Cycling

    Science.gov (United States)

    Sutter, B.; Jackson, W. A.; Ming, D. W.; Archer, P. D.; Stern, J. C.; Mahaffy, P. R.; Gellert, R.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument has detected evolved O2 and HCl indicating the presence of perchlorate and/or chlorate (oxychlorine) in all 11 sediments analyzed to date. The hyperarid martian climate is believed to have allowed accumulation of oxychlorine and assumed chloride contents similar to those in hyperarid terrestrial settings. The linear correlation of oxychlorine and chloride of Gale Crater sediments is low (r (sup 2) equals 0.64). Correlations present in hyperarid Antarctica and the Atacama Desert are attributed to unaltered atmospheric source coupled with minimal redox cycling by biological activity. Terrestrial semi-arid to arid settings have low correlations similar to Gale Crater and are attributed to additional inputs of Cl minus from sea salt, dust, and/or proximal playa settings, and possible reduction of oxychlorine phases during wetter periods. While microbiological processes could contribute to low oxychlorine/chloride correlations on Mars, several abiotic mechanisms are more likely, such as changing oxychlorine production rates with time and/or post-depositional geochemical redox processes that altered the Gale Crater oxychlorine and chloride contents.

  8. Experimental investigation of crater growth dynamics

    Science.gov (United States)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.; Holsapple, K. A.

    1985-01-01

    This work is a continuation of an ongoing program whose objective is to perform experiments and to develop scaling relationships for large-body impacts onto planetary surfaces. The centrifuge technique is used to provide experimental data for actual target materials of interest. With both power and gas guns mounted on the rotor arm, it is possible to match various dimensionless similarity parameters, which have been shown to govern the behavior of large-scale impacts. The development of the centrifuge technique has been poineered by the present investigators and is documented by numerous publications, the most recent of which are listed below. Understanding the dependence of crater size upon gravity has been shown to be key to the complete determination of the dynamic and kinematic behavior of crater formation as well as ejecta phenomena. Three unique time regimes in the formation of an impact crater have been identified.

  9. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars

    Science.gov (United States)

    Goudge, Timothy A.; Mohrig, David; Cardenas, Benjamin T.; Hughes, Cory M.; Fassett, Caleb I.

    2018-02-01

    The Jezero crater open-basin lake contains two well-exposed fluvial sedimentary deposits formed early in martian history. Here, we examine the geometry and architecture of the Jezero western delta fluvial stratigraphy using high-resolution orbital images and digital elevation models (DEMs). The goal of this analysis is to reconstruct the evolution of the delta and associated shoreline position. The delta outcrop contains three distinct classes of fluvial stratigraphy that we interpret, from oldest to youngest, as: (1) point bar strata deposited by repeated flood events in meandering channels; (2) inverted channel-filling deposits formed by avulsive distributary channels; and (3) a valley that incises the deposit. We use DEMs to quantify the geometry of the channel deposits and estimate flow depths of ∼7 m for the meandering channels and ∼2 m for the avulsive distributary channels. Using these estimates, we employ a novel approach for assessing paleohydrology of the formative channels in relative terms. This analysis indicates that the shift from meandering to avulsive distributary channels was associated with an approximately four-fold decrease in the water to sediment discharge ratio. We use observations of the fluvial stratigraphy and channel paleohydrology to propose a model for the evolution of the Jezero western delta. The delta stratigraphy records lake level rise and shoreline transgression associated with approximately continuous filling of the basin, followed by outlet breaching, and eventual erosion of the delta. Our results imply a martian surface environment during the period of delta formation that supplied sufficient surface runoff to fill the Jezero basin without major drops in lake level, but also with discrete flooding events at non-orbital (e.g., annual to decadal) timescales.

  10. Mineralogical Results from the Mars Science Laboratory Rover Curiosity

    Science.gov (United States)

    Blake, David Frederick.

    2017-01-01

    NASA's CheMin instrument, the first X-ray Diffractometer flown in space, has been operating on Mars for nearly five years. CheMin was first to establish the quantitative mineralogy of the Mars global soil (1). The instrument was next used to determine the mineralogy of a 3.7 billion year old lacustrine mudstone, a result that, together with findings from other instruments on the MSL Curiosity rover, documented the first habitable environment found on another planet (2). The mineralogy of this mudstone from an ancient playa lake was also used to derive the maximum concentration of CO2 in the early Mars atmosphere, a surprisingly low value that calls into question the current theory that CO2 greenhouse warming was responsible for the warm and wet environment of early Mars. CheMin later identified the mineral tridymite, indicative of silica-rich volcanism, in mudstones of the Murray formation on Mt. Sharp. This discovery challenges the paradigm of Mars as a basaltic planet and ushers in a new chapter of comparative terrestrial planetology (3). CheMin is now being used to systematically sample the sedimentary layers that comprise the lower strata of Mt. Sharp, a 5,000 meter sequence of sedimentary rock laid down in what was once a crater lake, characterizing isochemical sediments that through their changing mineralogy, document the oxidation and drying out of the Mars in early Hesperian time.

  11. Layers of 'Cabo Frio' in 'Victoria Crater' (False Color)

    Science.gov (United States)

    2006-01-01

    This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is an enhanced false color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.

  12. Curiosity: the Mars Science Laboratory Project

    Science.gov (United States)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  13. Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

    Science.gov (United States)

    Archer, Paul Douglas; Franz, Heather B.; Sutter, Brad; Arevalo, Ricardo D.; Coll, Patrice; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Jones, John J.; Leshin, Laurie A.; Mahaffy, Paul R.; McAdam, Amy C.; McKay, Christopher P.; Ming, Douglas W.; Morris, Richard V.; Navarro-González, Rafael; Niles, Paul B.; Pavlov, Alex; Squyres, Steven W.; Stern, Jennifer C.; Steele, Andrew; Wray, James J.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H2O, SO2, CO2, and O2, all at the µmol level, with HCl, H2S, NH3, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H2O sources), carbonates (CO2), perchlorates (O2 and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH3, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.

  14. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars.

    Science.gov (United States)

    Niles, Paul B; Michalski, Joseph; Ming, Douglas W; Golden, D C

    2017-10-17

    Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as -60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.

  15. Modification history of the Harmakhis Vallis outflow channel, Mars, based on CTX-scale photogeologic mapping and crater count dating

    Science.gov (United States)

    Kukkonen, S.; Kostama, V.-P.

    2018-01-01

    Harmakhis Vallis is one of the four major outflow channel systems (Dao, Niger, Harmakhis, and Reull Valles) that cut the eastern rim region of the Hellas basin, the largest well-preserved impact structure on Mars. The structure of Harmakhis Vallis and the volume of its head depression, as well as earlier dating studies of the region, suggest that the outflow channel formed in the Hesperian period by collapsing when a large amount of subsurface fluid was released. Thus Harmakhis Vallis, as well as the other nearby outflow channels, represents a significant stage of the fluvial activity in the regional history. On the other hand, the outflow channel lies in the Martian mid-latitude zone, where there are several geomorphologic indicators of past and possibly also contemporary ground ice. The floor of Harmakhis also displays evidence of a later-stage ice-related activity, as the outflow channel has been covered by lineated valley fill deposits and debris apron material. The eastern rim region of the Hellas impact basin has been the subject of numerous geologic mapping studies at various scales and based on different imaging data sets. However, Harmakhis Vallis itself has received less attention and the studies on the outflow channel have focused only on limited parts of the outflow channel or on separated different geologic events. In this work, the Harmakhis Vallis floor is mapped and dated from the head depression to the beginning of the terminus based on the Mars Reconnaissance Orbiter's ConTeXt camera images (CTX; ∼ 6 m/pixel). Our results show that Harmakhis Vallis has been modified by several processes after its formation. Age determinations on the small uncovered parts of the outflow channel, which possibly represent the original floor of Harmakhis, imply that Harmakhis may have experienced fluvial activity only 780-850 ( ± 400-600) Ma ago. The discovered terrace structure instead shows that the on-surface activity of the outflow channel has been periodic

  16. Relating sedimentary processes in the Bagnold Dunes to the development of crater basin aeolian stratification

    Science.gov (United States)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M. D.; Stein, N.; Rubin, D. M.; Sullivan, R. J., Jr.; Banham, S.; Thomas, N. M.; Lamb, M. P.; Gupta, S.; Fischer, W. W.

    2017-12-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under martian conditions. Exploration of the Bagnold Dunes by the Curiosity Rover in Gale Crater, Mars provided the first opportunity to make in situ observations of martian dunes from the grain-to-dune scale. We used the suite of cameras on Curiosity, including Navigation Camera, Mast Camera, and Mars Hand Lens Imager. We measured grainsize and identified sedimentary processes similar to processes on terrestrial dunes, such as grainfall, grainflow, and impact ripples. Impact ripple grainsize had a median of 0.103 mm. Measurements of grainflow slopes indicate a relaxation angle of 29° and grainfall slopes indicate critical angles of at least 32°. Dissimilar to terrestrial dunes, large, meter-scale ripples form on all slopes of the dunes. The ripples form both sinuous and linear crestlines, have symmetric and asymmetric profiles, range in height between 12cm and 28cm, and host grainfall, grainflow, and impact ripples. The largest ripples are interpreted to integrate the annual wind cycle within the crater, whereas smaller large ripples and impact ripples form or reorient to shorter term wind cycling. Assessment of sedimentary processes in combination with dune type across the Bagnold Dunes shows that dune-field pattern development in response to a complex crater-basin wind regime dictates the distribution of geomorphic processes. From a stratigraphic perspective, zones of highest potential accumulation correlate with zones of wind convergence, which produce complex winds and dune field patterns thereby

  17. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars

    Science.gov (United States)

    Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.

    2018-03-01

    The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.

  18. Formation of Fe/mg Smectite Under Acidic Conditions from Synthetic Adirondack Basaltic Glass: an Analog to Fe/mg Smectite Formation on Mars

    Science.gov (United States)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-01-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550 C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Angstroms (02l) and 1.54Angstroms (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200 C for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060 peaks. Moessbauer analysis coupled with future experiments are planned to verify if nontronite can be formed under mildly acidic and oxic conditions. Results of this work demonstrate that acidic conditions could have occurred on an early Mars, which allowed for smectite formation but inhibited carbonate formation.

  19. Simulation on three dimensional bubble formation using MARS

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki

    1997-01-01

    This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)

  20. Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs

    Science.gov (United States)

    2004-01-01

    The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at

  1. Are pre-crater mounds gas-inflated?

    Science.gov (United States)

    Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Babkina, Elena; Arefiev, Stanislav; Khairullin, Rustam

    2017-04-01

    Gas-emission craters (GEC) on Yamal peninsula, which occupied minds of researches for the last couple of years since first discovered in 2014, appeared to form on the place of specifically shaped mounds. There was a number of hypotheses involving pingo as an origin of these mounds. This arouse an interest in mapping pingo thus marking the areas of GEC formation risk. Our field research allows us to suggest that remote-sensing-based mapping of pingo may result in mix up of mounds of various origin. Thus, we started with classification of the mounds based on remote-sensing, field observations and survey from helicopter. Then we compared indicators of mounds of various classes to the properties of pre-crater mounds to conclude on their origin. Summarizing field experience, there are three main mound types on Yamal. (1) Outliers (remnant hills), separated from the main geomorphic landform by erosion. Often these mounds comprise polygonal blocks, kind of "baydzherakh". Their indicators are asymmetry (short gentle slope towards the main landform, and steep slope often descending into a small pond of thermokarst-nivation origin), often quadrangle or conic shape, and large size. (2) Pingo, appear within the khasyrei (drain lake basin); often are characterized by open cracks resulting from expansion of polygonal network formed when re-freezing of lake talik prior to pingo formation; old pingo may bear traces of collapse on the top, with depression which differs from the GEC by absence of parapet. (3) Frost-heave mounds (excluding pingo) may form on deep active layer, reducing due to moss-peat formation and forming ice lenses from an active layer water, usually they appear in the drainage hollows, valley bottoms, drain-lake basins periphery. These features are smaller than the first two types of mounds. Their tops as a rule are well vegetated. We were unable to find a single or a set of indicators unequivocally defining any specific mound type, thus indicators of pre-crater

  2. Taking the pulse of Mars via dating of a plume-fed volcano.

    Science.gov (United States)

    Cohen, Benjamin E; Mark, Darren F; Cassata, William S; Lee, Martin R; Tomkinson, Tim; Smith, Caroline L

    2017-10-03

    Mars hosts the solar system's largest volcanoes. Although their size and impact crater density indicate continued activity over billions of years, their formation rates are poorly understood. Here we quantify the growth rate of a Martian volcano by 40 Ar/ 39 Ar and cosmogenic exposure dating of six nakhlites, meteorites that were ejected from Mars by a single impact event at 10.7 ± 0.8 Ma (2σ). We find that the nakhlites sample a layered volcanic sequence with at least four discrete eruptive events spanning 93 ± 12 Ma (1416 ± 7 Ma to 1322 ± 10 Ma (2σ)). A non-radiogenic trapped 40 Ar/ 36 Ar value of 1511 ± 74 (2σ) provides a precise and robust constraint for the mid-Amazonian Martian atmosphere. Our data show that the nakhlite-source volcano grew at a rate of ca. 0.4-0.7 m Ma -1 -three orders of magnitude slower than comparable volcanoes on Earth, and necessitating that Mars was far more volcanically active earlier in its history.Mars hosts the solar system's largest volcanoes, but their formation rates remain poorly constrained. Here, the authors have measured the crystallization and ejection ages of meteorites from a Martian volcano and find that its growth rate was much slower than analogous volcanoes on Earth.

  3. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  4. Volatile and Isotopic Imprints of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.; Conrad, Pamela G.

    2015-01-01

    The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.

  5. The Imprint of Atmospheric Evolution in the D/H of Hesperian Clay Minerals on Mars

    Science.gov (United States)

    Mahaffy, P. R.; Webster, C. R.; Stern, J. C.; Brunner, A. E.; Atreya, S. K.; Conrad, P. G.; Domagal-Goldman, S.; Eigenbrode, J. L.; Flesch, G. J.; Christensen, L. E.; hide

    2014-01-01

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient Martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550 degrees Centigrade and 950 degrees Centigrade from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (plus or minus 0.2) times the ratio in standard mean ocean water. The D/H ratio in this approximately 3-billion-year-old mudstone, which is half that of the present Martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  6. What Really Happened to Earth's Older Craters?

    Science.gov (United States)

    Bottke, William; Mazrouei, Sara; Ghent, Rebecca; Parker, Alex

    2017-10-01

    Most assume the Earth’s crater record is heavily biased, with erosion/tectonics destroying older craters. This matches expectations, but is it actually true? To test this idea, we compared Earth’s crater record, where nearly all D ≥ 20 km craters are pick out from older craters with eroded fragments. Moreover, an inverse relationship between rock abundance (RA) and crater age exists. Using measured RA values, we computed ages for 111 rocky craters with D ≥ 10 km that formed between 80°N and 80°S over the last 1 Gyr.We found several surprising results. First, the production rate of D ≥ 10 km lunar craters increased by a factor of 2.2 [-0.9, +4.4; 95% confidence limits] over the past 250 Myr compared to the previous 750 Myr. Thus, the NEO population is higher now than it has been for the last billion years. Second, the size and age distributions of lunar and terrestrial craters for D ≥ 20 km over the last 650 Myr have similar shapes. This implies that crater erasure must be limited on stable terrestrial terrains; in an average sense, for a given region, the Earth either keeps all or loses all of its D ≥ 20 craters at the same rate, independent of size. It also implies the observed deficit of large terrestrial craters between 250-650 Myr is not preservation bias but rather reflects a distinctly lower impact flux. We predict 355 ± 86 D ≥ 20 km craters formed on Earth over the last 650 Myr. Only 38 ± 6 are known, so the ratio, 10.7 ± 3.1%, is a measure of the Earth’s surface that is reasonably stable to large crater formation over 650 Myr. If erosion had dominated, the age distribution of terrestrial craters would be strongly skewed toward younger ages, which is not observed. We predict Chicxulub-type impacts were rare over the last Gyr, with the event 66 Ma a probable byproduct of the current high terrestrial impact flux.

  7. Recent Compositional Trends within the Murray Formation, Gale Crater, Mars, as seen by APXS: Implications for Sedimentary, Diagenetic and Alteration History.

    Science.gov (United States)

    Thompson, L. M.; Yen, A.; Spray, J. G.; Johnson, J. R.; Fraeman, A. A.; Berger, J. A.; Gellert, R.; Boyd, N.; Desouza, E.; O'Connell-Cooper, C.; VanBommel, S.

    2017-12-01

    -4330 m elevation and how this pertains to the history and evolution of the Murray Formation as a whole, climatic conditions during the formation of the Murray and the nature of Gale crater lake. Also, what do the trends imply about how circulating fluids have evolved within the Murray sediments and pH, redox, salinity conditions of these fluids?

  8. Geologic Map of MTM 35337, 40337, and 45337 Quadrangles, Deuteronilus Mensae Region of Mars

    Science.gov (United States)

    Chuang, Frank C.; Crown, David A.

    2009-01-01

    present time. Several scenarios for its formation, including single and multiple large impact events, have been proposed and debated in the literature. Endogenic processes whereby crust is thinned by internal mantle convection and tectonic processes have also been proposed. Planetary accretion models and isotopic data from Martian meteorites suggest that the crust formed very early in Martian history. Using populations of quasi-circular depressions extracted from the topography of Mars, other studies suggest that the age difference between the highlands and lowlands could be ~100 m.y.. Furthermore, understanding the origin and age of the dichotomy boundary has been made more complicated due to significant erosion and deposition that have modified the boundary and its adjacent regions. The resulting diversity of terrains and features is likely a combined result of ancient and recent events. Detailed geologic analyses of dichotomy boundary zones are important for understanding the spatial and temporal variations in highland evolution. This information, and comparisons to other highland regions, can help elucidate the scale of potential environmental changes. Previous geomorphic and geologic mapping investigations of the Deuteronilus Mensae region have been completed at local to global scales. The regional geology was first mapped by Lucchitta (1978) at 1:5,000,000 scale using Mariner 9 data. This study concluded that high crater flux early in Martian history formed overlapping craters and basins that were later filled by voluminous lava flows that buried the impacted surface, creating the highlands. After this period of heavy bombardment, fluvial erosion of the highlands formed the canyons and valleys, followed by dissection that created the small mesas and buttes, and later, formation of the steep escarpment marking the present-day northern highland margin. After valley dissection, mass wasting and eolian processes caused lateral retreat of mesas and buttes

  9. Compaction and sedimentary basin analysis on Mars

    Science.gov (United States)

    Gabasova, Leila R.; Kite, Edwin S.

    2018-03-01

    Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.

  10. Soft Rock Yields Clues to Mars' Past

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 This image taken by the Mars Exploration Rover Spirit shows the rock outcrop dubbed 'Clovis.' The rock was discovered to be softer than other rocks studied so far at Gusev Crater after the rover easily ground a hole into it with its rock abrasion tool. Spirit's solar panels can be seen in the foreground. This image was taken by the rover's navigation camera on sol 205 (July 31, 2004). Elemental Trio Found in 'Clovis' Figure 1 above shows that the interior of the rock dubbed 'Clovis' contains higher concentrations of sulfur, bromine and chlorine than basaltic, or volcanic, rocks studied so far at Gusev Crater. The data were taken by the Mars Exploration Rover Spirit's alpha particle X-ray spectrometer after the rover dug into Clovis with its rock abrasion tool. The findings might indicate that this rock was chemically altered, and that fluids once flowed through the rock depositing these elements.

  11. X-Ray Amorphous Phases in Antarctica Dry Valley Soils: Insight into Aqueous Alteration Processes on Mars?

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.; Rampe, E. B.; Golden, D. C.; Quinn, J. E.

    2015-01-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials

  12. High-Temperature, Perhaps Silicic, Volcanism on Mars Evidenced by Tridymite Detection in High-SiO2 Sedimentary Rock at Gale Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Vaniman, D. T.; Blake, D. F.; Gellert, R.; Chipera, S. J.; Rampe, E. B.; Ming, D. W.; Morrison, S. M.; Downs, R. T.; Treiman, A. H.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, has been exploring sedimentary rocks within Gale crater since landing in August, 2012. On the lower slopes of Aeolis Mons (a.k.a. Mount Sharp), drill powder was collected from a high-silica (74 wt% SiO2) outcrop named Buckskin (BK). It was a surprise to find that the Buckskin sample contained significant amounts of the relatively rare silica polymorph tridymite. We describe the setting of the Buckskin sample, the detection of tridymite by the MSL Chemistry and Mineralogy (CheMin) X-ray diffraction instrument, and detection implications. Geologic setting: The Buckskin outcrop is part of the Murray formation exposed in the Marias Pass area. The formation was previously studied by CheMin in the Pahrump Hills member [1] where three samples of drill fines were analyzed (Confidence Hills (CH), Mojave2 (MJ) and Telegraph Peak (TP) [2]). Assuming approximately horizontal bedding, the Buckskin outcrop is approx.15 m stratigraphically above the bottom of the Pahrump Hills member. Mudstone, generally characterized by fine lamination, is the dominant depositional facies [1]. Buckskin Mineralogical and Chemical Composition: The CheMin instrument and XRD pattern analysis procedures have been previously discussed [3-6]. The diffraction pattern used for quantitative XRD analysis (Fig. 1) is the sum of the first 4 of 45 diffraction images. The remaining images are all characterized by both on-ring and off-ring diffraction spots that we attributed to poor grain motion and particle clumping. Coincident with particle clumping was a significant decrease in the intensity of the tridymite diffraction peaks (Fig. 2a). The derived mineralogical composition of the crystalline component (derived from the first 4 diffraction images) is given in Table 1. The tridymite is well-crystalline and its pattern is refined as monoclinic tridymite (Fig 1). Mineral chemical compositions were derived from XRD unit cell parameters or obtained from

  13. The Surface of Mars: A Post-Viking View.

    Science.gov (United States)

    Carr, Michael H.

    1983-01-01

    Highlights current information on the martian surface. Topics include a planetary overview (atmosphere, dust storms, water vapor/ice, soil analysis) and surface features (craters, volcanoes, canyons/channels, polar regions, wind-related features). Similarities/differences between Mars and Earth are also discussed. (JN)

  14. Martian Cratering 7: The Role of Impact Gardening

    Science.gov (United States)

    Hartmann, William K.; Anguita, Jorge; de la Casa, Miguel A.; Berman, Daniel C.; Ryan, Eileen V.

    2001-01-01

    Viking-era researchers concluded that impact craters of diameter Dduricrust at Viking and Pathfinder sites demonstrates the cementing process. These results affect lander/rover searches for intact ancient deposits. The upper tens of meters of exposed Noachian units cannot survive today in a pristine state. Intact Noachian deposits might best be found in cliffside strata, or in recently exhumed regions. The hematite-rich areas found in Terra Meridiani by the Mars Global Surveyor are probably examples of the latter.

  15. Temperature dependence of the quadrupole splitting of olivine and pyroxene from the Plains of Gusev Crater on Mars

    International Nuclear Information System (INIS)

    Agresti, David G.

    2012-01-01

    In the present work, we report application of simultaneous fitting procedures to Mössbauer data acquired on the Plains of Gusev Crater by the MIMOS II spectrometer on board the Mars Exploration Rover Spirit. Based on a quantitative measure of spectrum quality, the 34 best of the ∼126 spectra acquired on the Plains are grouped together for a single simultaneous fit with a common least-squares criterion. Fitted values for the quadrupole splitting (QS) of olivine (Ol) from 200 K to 260 K are shown to lie between reported trend lines for Fo50 and Fo30 olivine, with a temperature gradient of (−11.2 ± 1.2) × 10  − 4 mm/s/K, a nearly five-fold improvement in precision over the previously reported value, enabling extrapolation to QS(Ol) = (2.93 ± 0.01) mm/s at 295 K. QS of pyroxene fit as a single doublet exhibits a temperature gradient of (−7.3 ± 2.3) × 10  − 4 mm/s/K.

  16. Habitability Assessment at Gale Crater: Implications from Initial Results

    Science.gov (United States)

    Conrad, Pamela G.; Archer, D.; Atreya, S.; Blake, D.; Coll, P.; delaTorre, M.; Edgett, K.; Eigenbrode, J.; Fisk, M.; Freissent, C.; hide

    2013-01-01

    Mars Science Laboratory has made measurements that contribute to our assessment of habitability potential at Gale Crater. Campaign organization into a consistent set of measurable parameters allows us to rank the relative habitability potential of sites we study, ultimately laying a foundation for a global context inclusive of past and future Mars mission observations. Chemical, physical, geological and geographic attributes shape environments. Isolated measurements of these factors may be insufficient to deem an environment habitable, but the sum of measurements can help predict locations with greater or lesser habitability potential. Metrics for habitability assessment based on field work at sites sharing features analogous to Mars have previously been suggested. Grouping these metrics helps us to develop an index for their application to habitability assessment. The index is comprised of the weighted values for four groups of parameters, the habitability threshold for each is to be determined.

  17. Meteor Crater (Barringer Meteorite Crater), Arizona: Summary of Impact Conditions

    Science.gov (United States)

    Roddy, D. J.; Shoemaker, E. M.

    1995-09-01

    Meteor Crater in northern Arizona represents the most abundant type of impact feature in our Solar System, i.e., the simple bowl-shaped crater. Excellent exposures and preservation of this large crater and its ejecta blanket have made it a critical data set in both terrestrial and planetary cratering research. Recognition of the value of the crater was initiated in the early 1900's by Daniel Moreau Barringer, whose 27 years of exploration championed its impact origin [1]. In 1960, Shoemaker presented information that conclusively demonstrated that Meteor Crater was formed by hypervelocity impact [2]. This led the U.S. Geological Survey to use the crater extensively in the 1960-70's as a prime training site for the Apollo astronauts. Today, Meteor Crater continues to serve as an important research site for the international science community, as well as an educational site for over 300,000 visitors per year. Since the late 1950's, studies of this crater have presented an increasingly clearer view of this impact and its effects and have provided an improved view of impact cratering in general. To expand on this data set, we are preparing an upgraded summary on the Meteor Crater event following the format in [3], including information and interpretations on: 1) Inferred origin and age of the impacting body, 2) Inferred ablation and deceleration history in Earth's atmosphere, 3) Estimated speed, trajectory, angle of impact, and bow shock conditions, 4) Estimated coherence, density, size, and mass of impacting body, 5) Composition of impacting body (Canyon Diablo meteorite), 6) Estimated kinetic energy coupled to target rocks and atmosphere, 7) Terrain conditions at time of impact and age of impact, 8) Estimated impact dynamics, such as pressures in air, meteorite, and rocks, 9) Inferred and estimated material partitioning into vapor, melt, and fragments, 10) Crater and near-field ejecta parameters, 11) Rock unit distributions in ejecta blanket, 12) Estimated far

  18. Where on Mars Should We Search for Life?

    Science.gov (United States)

    McKay, Christopher P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1996-01-01

    There is persuasive evidence that liquid water has been a significant geological processes on Mars. In particular, evidence suggests that one of the major epochs of liquid water on Mars was during and after the late heavy bombardment. During this time life originated on Earth and may have originated on Mars as well. Liquid water per se, independent of models for the temperature or atmospheric pressure, motivate the question of life. Promising sites for searching for evidence of life on Mars include dry lake beds, the ancient cratered terrain, and the South Polar permafrost. Life on Earth in environments that are analogous to those that might have provided the final refuge for life on Mars provide clues to where and how to search for evidence of past life.

  19. Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2018-01-01

    The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (∼200 °C). Smectites were analyzed by X-ray diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH ≤ 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH ∼3 and trioctahedral smectite saponite at final pH ∼4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model

  20. Sulfate Formation on Mars by Volcanic Aerosols: A New Look

    Science.gov (United States)

    Blaney, D. L.

    1996-03-01

    Sulfur was measured at both Viking Lander sites in abundances of 5-9 wt % SO3. Because the sulfur was more concentrated in clumps which disintegrated and the general oxidized nature of the Martian soil, these measurements led to the assumption that a sulfate duricrust existed. Two types of models for sulfate formation have been proposed. One is a formation by upwardly migrating ground water. The other is the formation of sulfates by the precipitation of volcanic aerosols. Most investigators have tended to favor the ground water origin of sulfates on Mars. However, evidence assemble since Viking may point to a volcanic aerosol origin.

  1. Using GRIDVIEW to Better Understand the Early Bombardment History of the Moon, Mars and Earth

    Science.gov (United States)

    Frey, Herbert

    2012-01-01

    For more than a decade we have used GRIDVIEW to help analyze topographic and related data for Mars and more recently for the Moon. Our focus has been to employ the stretching, contouring, profiling, circle-fitting and other capabilities of GRIDVIEW to search for Quasi-Circular Depressions (CTAs) in MOLA, LOLA and other topographic data, and for Circular Thin Areas (CTAs) in Mars and Moon model crustal thickness data. Both QCDs and CTAs likely represent buried or obscured impact craters not readily visible in image data. We found clear evidence for a much larger population of buried impact craters in the northern lowlands of Mars (Frey et al. 2002), suggesting that part of the Red Planet is not significantly younger than the southern highlands. Edgar and Frey (2008) found that the N(300) crater retention ages of both areas were essentially identical, a conclusion confirmed by Wyatt (unpublished data) using more recent crustal thickness data for Mars. MOLA topographic data and MOLA-derived crustal thickness data were used to both identify a large number of previously unrecognized very large impact basins (D> 1000 km) on Mars and to determine relative crater retention ages for them (Frey, 2008). The distribution of N(300) CRAs suggested most formed in a relatively short interval of time. This dating also suggested the main magnetic field of Mars disappeared during this period (Lillis et al., 2008), because only the youngest basins systematically lack a remagnetized signature. Similar QCD and CTA analysis of first Clementine (Frey, 2011) and more recently LOLA topographic and LOLA-derived crustal thickness data for the Moon (Frey et al., 2011) revealed a significantly larger population of impact basins > 300 km in diameter than previously known. N(50) CRAs suggest a two-peak distribution of ages (Frey, 2012). An improved counting process confirms the two peaks, perhaps indicating both a pre-Nectaris Early Heavy Bombardment (EHB) as well as a Late Heavy Bombardment (LHB

  2. Terrestrial Planet Formation: Dynamical Shake-up and the Low Mass of Mars

    Science.gov (United States)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2017-05-01

    We consider a dynamical shake-up model to explain the low mass of Mars and the lack of planets in the asteroid belt. In our scenario, a secular resonance with Jupiter sweeps through the inner solar system as the solar nebula depletes, pitting resonant excitation against collisional damping in the Sun’s protoplanetary disk. We report the outcome of extensive numerical calculations of planet formation from planetesimals in the terrestrial zone, with and without dynamical shake-up. If the Sun’s gas disk within the terrestrial zone depletes in roughly a million years, then the sweeping resonance inhibits planet formation in the asteroid belt and substantially limits the size of Mars. This phenomenon likely occurs around other stars with long-period massive planets, suggesting that asteroid belt analogs are common.

  3. Subsurface water and clay mineral formation during the early history of Mars.

    Science.gov (United States)

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-02

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  4. How old is Autolycus crater?

    Science.gov (United States)

    Hiesinger, Harald; Pasckert, Jan Henrik; van der Bogert, Carolyn H.; Robinson, Mark S.

    2016-04-01

    Accurately determining the lunar cratering chronology is prerequisite for deriving absolute model ages (AMAs) across the lunar surface and throughout the Solar System [e.g., 1]. However, the lunar chronology is only constrained by a few data points over the last 1 Ga and there are no calibration data available between 1 and 3 Ga and beyond 3.9 Ga [2]. Rays from Autolycus and Aristillus cross the Apollo 15 landing site and presumably transported material to this location [3]. [4] proposed that at the Apollo 15 landing site about 32% of any exotic material would come from Autolycus crater and 25% would come from Aristillus crater. [5,6] proposed that the 39Ar-40Ar age of 2.1 Ga derived from three petrologically distinct, shocked Apollo 15 KREEP basalt samples, date Autolycus crater. Grier et al. [7] reported that the optical maturity (OMAT) characteristics of these craters are indistinguishable from the background values despite the fact that both craters exhibit rays that were used to infer relatively young, i.e., Copernican ages [8,9]. Thus, both OMAT characteristics and radiometric ages of 2.1 Ga and 1.29 Ga for Autolycus and Aristillus, respectively, suggest that these two craters are not Copernican in age. [10] interpreted newer U-Pb ages of 1.4 and 1.9 Ga from sample 15405 as the formation ages of Aristillus and Autolycus. If Autolycus is indeed the source of the dated exotic material collected at the Apollo 15 landing site, than performing crater size frequency distribution (CSFD) measurements for Autolycus offers the possibility to add a new calibration point to the lunar chronology, particularly in an age range that was previously unconstrained. We used calibrated and map-projected LRO NAC images to perform CSFD measurements within ArcGIS, using CraterTools [11]. CSFDs were then plotted with CraterStats [12], using the production and chronology functions of [13]. We determined ages of 3.72 and 3.85 Ga for the interior (Ai1) and ejecta area Ae3, which we

  5. A Comparative Analysis of the Magnetic Field Signals over Impact Structures on the Earth, Mars and the Moon

    Science.gov (United States)

    Isac, Anca; Mandea, Mioara; Purucker, Michael; Langlais, Benoit

    2015-01-01

    An improved description of magnetic fields of terrestrial bodies has been obtained from recent space missions, leading to a better characterization of the internal fields including those of crustal origin. One of the striking differences in their crustal magnetic field is the signature of large impact craters. A comparative analysis of the magnetic characteristics of these structures can shed light on the history of their respective planetary-scale magnetic dynamos. This has motivated us to identify impact craters and basins, first by their quasi-circular features from the most recent and detailed topographic maps and then from available global magnetic field maps. We have examined the magnetic field observed above 27 complex craters on the Earth, 34 impact basins on Mars and 37 impact basins on the Moon. For the first time, systematic trends in the amplitude and frequency of the magnetic patterns, inside and outside of these structures are observed for all three bodies. The demagnetization effects due to the impact shock wave and excavation processes have been evaluated applying the Equivalent Source Dipole forward modeling approach. The main characteristics of the selected impact craters are shown. The trends in their magnetic signatures are indicated, which are related to the presence or absence of a planetary-scale dynamo at the time of their formation and to impact processes. The low magnetic field intensity at center can be accepted as the prime characteristic of a hypervelocity impact and strongly associated with the mechanics of impact crater formation. In the presence of an active internal field, the process of demagnetization due to the shock impact is associated with post-impact remagnetization processes, generating a more complex magnetic signature.

  6. Evolved Gas Measurements Planned for the Lower Layers of the Gale Crater Mound with the Sample Analysis at Mars Instrument Suite

    Science.gov (United States)

    Mahaffy, Paul; Brunner, Anna; McAdam, Amy; Franz, Heather; Conrad, Pamela; Webster, Chris; Cabane, Michel

    2009-01-01

    The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at aMars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-60s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000 C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will

  7. Low-velocity impact cratering experiments in granular slopes

    Science.gov (United States)

    Hayashi, Kosuke; Sumita, Ikuro

    2017-07-01

    Low-velocity impact cratering experiments are conducted in sloped granular targets to study the effect of the slope angle θ on the crater shape and its scales. We use two types of granular matter, sand and glass beads, former of which has a larger friction coefficient μs = tanθr , where θr is the angle of repose. Experiments show that as θ increases, the crater becomes shallower and elongated in the direction of the slope. Furthermore the crater floor steepens in the upslope side and a thick rim forms in the downslope side, thus forming an asymmetric profile. High-speed images show that these features are results of ejecta being dispersed farther towards the downslope side and the subsequent avalanche which buries much of the crater floor. Such asymmetric ejecta dispersal can be explained by combining the Z-model and a ballistic model. Using the topographic maps of the craters, we classify crater shape regimes I-III, which transition with increasing θ : a full-rim crater (I), a broken-rim crater (II), and a depression (III). The critical θ for the regime transitions are larger for sand compared to glass beads, but collapse to close values when we use a normalized slope θ^ = tanθ / tanθr . Similarly we derive θ^-dependences of the scaled crater depth, length, width and their ratios which collapse the results for different targets and impact energies. We compare the crater profiles formed in our experiments with deep craters on asteroid Vesta and find that some of the scaled profiles nearly overlap and many have similar depth / length ratios. This suggests that these Vestan craters may also have formed in the gravity regime and that the formation process can be approximated by a granular flow with a similar effective friction coefficient.

  8. The Investigation of Chlorate and Perchlorate/Saponite Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    Science.gov (United States)

    Clark, J.; Sutter, B.; Min, D. W.; Mahaffy, P.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected O2 and HCl gas releases from all analyzed Gale Crater sediments, which are attributed to the presence of perchlorates and/or chlorates in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates release O2 and HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce significant HCl releases comparable to those detected by the SAM instrument. In order to better explain the Gale Crater HCl releases, perchlorates and chlorates were mixed with Gale Crater analog saponite, which is found at abundances from 8 to 20 wt % in the John Klein and Cumberland drill samples. Mixtures of chlorates or perchlorates with calcium-saponite or ferrian-saponite were heated to 1000 deg C in a Labsys EVO differential scanning calorimeter/mass spectrometer configured to operate similarly to the SAM oven/quadrupole mass spectrometer system. Our results demonstrate that all chlorate and perchlorate mixtures produce significant HCl releases below 1000 deg C as well as depressed oxygen peak release temperatures when mixed with saponite. The type of saponite (calcium or ferrian saponite) did not affect the evolved gas results significantly. Saponite/Mg-perchlorate mixtures produced two HCl releases similar to the Cumberland drilled sample. Mg-chlorate mixed with saponite produced HCl releases similar to the Big Sky drilled sample in an eolian sandstone. A mixture of Ca-perchlorate and saponite produced HCl and oxygen releases similar to the Buckskin mudstone drilled sample and the Gobabeb 2 eolian dune material. Ca-chlorate mixed with saponite produced both

  9. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    Science.gov (United States)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  10. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses

    Science.gov (United States)

    Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard, J. F.; Christensen, P. R.

    2018-02-01

    We investigated the area to the northwest of the Isidis impact basin (hereby referred to as "NW Isidis") using thermal infrared emission datasets to characterize and quantify bulk surface mineralogy throughout this region. This area is home to Jezero crater and the watershed associated with its two deltaic deposits in addition to NE Syrtis and the strong and diverse visible/near-infrared spectral signatures observed in well-exposed stratigraphic sections. The spectral signatures throughout this region show a diversity of primary and secondary surface mineralogies, including olivine, pyroxene, smectite clays, sulfates, and carbonates. While previous thermal infrared investigations have sought to characterize individual mineral groups within this region, none have systematically assessed bulk surface mineralogy and related these observations to visible/near-infrared studies. We utilize an iterative spectral unmixing method to statistically evaluate our linear thermal infrared spectral unmixing models to derive surface mineralogy. All relevant primary and secondary phases identified in visible/near-infrared studies are included in the unmixing models and their modeled spectral contributions are discussed in detail. While the stratigraphy and compositional diversity observed in visible/near-infrared spectra are much better exposed and more diverse than most other regions of Mars, our thermal infrared analyses suggest the dominance of basaltic compositions with less observed variability in the amount and diversity of alteration phases. These results help to constrain the mineralogical context of these previously reported visible/near-infrared spectral identifications. The results are also discussed in the context of future in situ investigations, as the NW Isidis region has long been promoted as a region of paleoenvironmental interest on Mars.

  11. Rim Structure, Stratigraphy, and Aqueous Alteration Exposures Along Opportunity Rover's Traverse of the Noachian Endeavour Crater

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Golombek, M.; Grant, J. A.; Jolliff, B. L.; Mittlefehldt, D. W.

    2017-01-01

    The Mars Exploration Rover Opportunity has traversed 10.2 kilometers along segments of the west rim of the 22-kilometer-diameter Noachian Endeavour impact crater as of sol 4608 (01/09/17). The stratigraphy, attitude of units, lithology, and degradation state of bedrock outcrops exposed on the crater rim have been examined in situ and placed in geologic context. Structures within the rim and differences in physical properties of the identified lithologies have played important roles in localizing outcrops bearing evidence of aqueous alteration.

  12. In situ detection of boron by ChemCam on Mars

    Science.gov (United States)

    Gasda, Patrick J.; Haldeman, Ethan B.; Wiens, Roger C.; Rapin, William; Bristow, Thomas F.; Bridges, John C.; Schwenzer, Susanne P.; Clark, Benton; Herkenhoff, Kenneth; Frydenvang, Jens; Lanza, Nina L.; Maurice, Sylvestre; Clegg, Samuel; Delapp, Dorothea M.; Sanford, Veronica L.; Bodine, Madeleine R.; McInroy, Rhonda

    2017-09-01

    We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater.

  13. Mars Exploration Rover Spirit End of Mission Report

    Science.gov (United States)

    Callas, John L.

    2015-01-01

    The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Mars on January 4, 2004, for a prime mission designed to last three months (90 sols). After more than six years operating on the surface of Mars, the last communication received from Spirit occurred on Sol 2210 (March 22, 2010). Following the loss of signal, the Mars Exploration Rover Project radiated over 1400 commands to Mars in an attempt to elicit a response from the rover. Attempts were made utilizing Deep Space Network X-Band and UHF relay via both Mars Odyssey and the Mars Reconnaissance Orbiter. Search and recovery efforts concluded on July 13, 2011. It is the MER project's assessment that Spirit succumbed to the extreme environmental conditions experienced during its fourth winter on Mars. Focusing on the time period from the end of the third Martian winter through the fourth winter and end of recovery activities, this report describes possible explanations for the loss of the vehicle and the extent of recovery efforts that were performed. It offers lessons learned and provides an overall mission summary.

  14. Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites

    Science.gov (United States)

    Chojnacki, Matthew; Banks, Maria; Urso, Anna

    2018-02-01

    Aeolian processes have likely been the predominant geomorphic agent for most of Mars' history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low.

  15. Multivariate analyses of crater parameters and the classification of craters

    Science.gov (United States)

    Siegal, B. S.; Griffiths, J. C.

    1974-01-01

    Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.

  16. Magma genesis at Gale Crater: Evidence for Pervasive Mantle Metasomatism

    Science.gov (United States)

    Filiberto, J.

    2017-12-01

    Basaltic rocks have been analyzed at Gale Crater with a larger range in bulk chemistry than at any other landing site [1]. Therefore, the rocks may have experienced significantly different formation conditions than those experienced by magmas at Gusev Crater or Meridiani Planum. Specifically, the rocks at Gale Crater have higher potassium than other Martian rocks, with a potential analog of the Nakhlite parental magma, and are consistent with forming from a metasomatized mantle source [2-4]. Mantle metasomatism would not only affect the bulk chemistry but mantle melting conditions, as metasomatism fluxes fluids into the source region. Here I will combine differences in bulk chemistry between Martian basalts to calculate formation conditions in the interior and investigate if the rocks at Gale Crater experienced magma genesis conditions consistent with metasomatism - lower temperatures and pressures of formation. To calculate average formation conditions, I rely on experimental results, where available, and silica-activity and Mg-exchange thermometry calculations for all other compositions following [5, 6]. The results show that there is a direct correlation between the calculated mantle potential temperature and the K/Ti ratio of Gale Crater rocks. This is consistent with fluid fluxed metasomatism introducing fluids to the system, which depressed the melting temperature and fluxed K but not Ti to the system. Therefore, all basalts at Gale Crater are consistent with forming from a metasomatized mantle source, which affected not only the chemistry of the basalts but also the formation conditions. References: [1] Cousin A. et al. (2017) Icarus. 288: 265-283. [2] Treiman A.H. et al. (2016) Journal of Geophysical Research: Planets. 121: 75-106. [3] Treiman A.H. and Medard E. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10.1130/abs/2016AM-285851. [4] Schmidt M.E. et al. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10

  17. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    Science.gov (United States)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; hide

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and

  18. Crater ejecta scaling laws: fundamental forms based on dimensional analysis

    International Nuclear Information System (INIS)

    Housen, K.R.; Schmidt, R.M.; Holsapple, K.A.

    1983-01-01

    A model of crater ejecta is constructed using dimensional analysis and a recently developed theory of energy and momentum coupling in cratering events. General relations are derived that provide a rationale for scaling laboratory measurements of ejecta to larger events. Specific expressions are presented for ejection velocities and ejecta blanket profiles in two limiting regimes of crater formation: the so-called gravity and strength regimes. In the gravity regime, ejectra velocities at geometrically similar launch points within craters vary as the square root of the product of crater radius and gravity. This relation implies geometric similarity of ejecta blankets. That is, the thickness of an ejecta blanket as a function of distance from the crater center is the same for all sizes of craters if the thickness and range are expressed in terms of crater radii. In the strength regime, ejecta velocities are independent of crater size. Consequently, ejecta blankets are not geometrically similar in this regime. For points away from the crater rim the expressions for ejecta velocities and thickness take the form of power laws. The exponents in these power laws are functions of an exponent, α, that appears in crater radius scaling relations. Thus experimental studies of the dependence of crater radius on impact conditions determine scaling relations for ejecta. Predicted ejection velocities and ejecta-blanket profiles, based on measured values of α, are compared to existing measurements of velocities and debris profiles

  19. Drilling Automation Tests At A Lunar/Mars Analog Site

    Science.gov (United States)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  20. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    NARCIS (Netherlands)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-01-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated

  1. Pleistocene Lake Bonneville and Eberswalde Crater of Mars: Quantitative Methods for Recognizing Poorly Developed Lacustrine Shorelines

    Science.gov (United States)

    Jewell, P. W.

    2014-12-01

    The ability to quantify shoreline features on Earth has been aided by advances in acquisition of high-resolution topography through laser imaging and photogrammetry. Well-defined and well-documented features such as the Bonneville, Provo, and Stansbury shorelines of Late Pleistocene Lake Bonneville are recognizable to the untrained eye and easily mappable on aerial photos. The continuity and correlation of lesser shorelines must rely quantitative algorithms for processing high-resolution data in order to gain widespread scientific acceptance. Using Savitsky-Golay filters and the geomorphic methods and criteria described by Hare et al. [2001], minor, transgressive, erosional shorelines of Lake Bonneville have been identified and correlated across the basin with varying degrees of statistical confidence. Results solve one of the key paradoxes of Lake Bonneville first described by G. K. Gilbert in the late 19th century and point the way for understanding climatically driven oscillations of the Last Glacial Maximum in the Great Basin of the United States. Similar techniques have been applied to the Eberswalde Crater area of Mars using HRiSE DEMs (1 m horizontal resolution) where a paleolake is hypothesized to have existed. Results illustrate the challenges of identifying shorelines where long term aeolian processes have degraded the shorelines and field validation is not possible. The work illustrates the promises and challenges of indentifying remnants of a global ocean elsewhere on the red planet.

  2. Landing Site Studies Using High Resolution MGS Crater Counts and Phobos-2 Termoskan Data

    Science.gov (United States)

    Hartmann, Willian K.; Berman, Daniel C.; Betts, Bruce H.

    1999-06-01

    We have examined a number of potential landing sites to study effects associated with impact crater populations. We used Mars Global Surveyor high resolution MOC images, and emphasized "ground truth" by calibrating with the MOC images of Viking 1 and Pathfinder sites. An interesting result is that most of Mars (all surfaces with model ages older than 100 My) have small crater populations in saturation equilibrium below diameters D approx. = 60 meters (and down to the smallest resolvable, countable sizes, approx. = 15 m). This may have consequences for preservation of surface bedrock exposures accessible to rovers. In the lunar maria, a similar saturation equilibrium is reached for crater diameters below about 300 meters, and this has produced a regolith depth of about 10-20 meters in those areas. Assuming linear scaling, we infer that saturation at D approx. = 60 m would produce gardening and Martian regolith, or fragmental layers, about 2 to 4 meters deep over all but extremely young surfaces (such as the very fresh thin surface flows in southern Elysium Planitia, which have model ages around 10 My or less). This result may explain the global production of ubiquitous dust and fragmental material on Mars. Removal of fines may leave the boulders that have been seen at all three of the first landing sites. Accumulation of the fines elsewhere produces dunes. Due to these effects, it may be difficult to set down rovers in areas where bedrock is well preserved at depths of centimeters, unless we find cliff sides or areas of deflation where wind has exposed clean surfaces (among residual boulders?) We have also surveyed the PHOBOS 2 Termoskan data to look for regions of thermal anomalies that might produce interesting landing sites. For landing site selection, two of the more interesting types of features are thermally distinct ejecta blankets and thermally distinct channels and valleys. Martian "thermal features" such as these that correlate closely with nonaeolian

  3. Gale Crater - Why are We There and What do We Hope to Learn?

    Science.gov (United States)

    Allen, Carlton C.

    2012-01-01

    The Mars Science Laboratory Rover Curiosity is commencing a two-year investigation of Gale crater and Mt. Sharp, the craters prominent central mound. Gale is a 155 km, late Noachian/early Hesperian impact crater located near the dichotomy boundary separating the southern highlands from the northern plains. The central mound is composed of layered sedimentary rock, with upper and lower mound units separated by a prominent erosional unconformity. The lower mound is of particular interest, as it contains secondary minerals indicative of a striking shift from water-rich to water-poor conditions on early Mars. A key unknown in the history of Gale is the relationship between the sedimentary units in the mound and sedimentary sequences in the surrounding region. We employed orbital remote sensing data to determine if areas within a 1,000 km radius of Gale match the characteristics of sedimentary units in Mt. Sharp. Regions of interest were defined based on: the mound s inferred age, altitude range, and THEMIS nighttime brightness (a proxy for thermal inertia). Using orbital CTX, MOC and HiRISE images we examined all areas within our regions of interest for analogous geomorphic units in the same altitude ranges as the corresponding units in Mt. Sharp. The results are consistent with the hypothesis that sedimentary units in both the upper and lower sections of the Gale mound are related to nearby regional units located along the dichotomy boundary. This relationship supports an inferred geologic history that includes several episodes of widespread sedimentary deposition and erosion in the martian mid-latitudes. In this model Mt. Sharp is the remnant of regional sedimentary deposits that partially or completely filled the crater, became lithified, and were subsequently deeply eroded. Key questions that will be addressed by Curiosity include the compositions of the sediments, the modes of deposition, the mechanisms of lithification, and the nature of the erosion.

  4. Late Hesperian plains formation and degradation in a low sedimentation zone of the northern lowlands of Mars

    Science.gov (United States)

    Rodriguez, J.A.P.; Tanaka, K.L.; Berman, D.C.; Kargel, J.S.

    2010-01-01

    The plains materials that form the martian northern lowlands suggest large-scale sedimentation in this part of the planet. The general view is that these sedimentary materials were transported from zones of highland erosion via outflow channels and other fluvial systems. The study region, the northern circum-polar plains south of Gemini Scopuli on Planum Boreum, comprises the only extensive zone in the martian northern lowlands that does not include sub-basin floors nor is downstream from outflow channel systems. Therefore, within this zone, the ponding of fluids and fluidized sediments associated with outflow channel discharges is less likely to have taken place relative to sub-basin areas that form the other northern circum-polar plains surrounding Planum Boreum. Our findings indicate that during the Late Hesperian sedimentary deposits produced by the erosion of an ancient cratered landscape, as well as via sedimentary volcanism, were regionally emplaced to form extensive plains materials within the study region. The distribution and magnitude of surface degradation suggest that groundwater emergence from an aquifer that extended from the Arabia Terra cratered highlands to the northern lowlands took place non-catastrophically and regionally within the study region through faulted upper crustal materials. In our model the margin of the Utopia basin adjacent to the study region may have acted as a boundary to this aquifer. Partial destruction and dehydration of these Late Hesperian plains, perhaps induced by high thermal anomalies resulting from the low thermal conductivity of these materials, led to the formation of extensive knobby fields and pedestal craters. During the Early Amazonian, the rates of regional resurfacing within the study region decreased significantly; perhaps because the knobby ridges forming the eroded impact crater rims and contractional ridges consisted of thermally conductive indurated materials, thereby inducing freezing of the tectonically

  5. In plain sight: the Chesapeake Bay crater ejecta blanket

    Science.gov (United States)

    Griscom, D. L.

    2012-02-01

    idealized calculation of the CBIS ejecta-blanket elevation profile minutes after the impact was carried out founded on well established rules for explosion and impact-generated craters. This profile is shown here to match the volume of the upland deposits ≥170 km from the crater center. Closer to the crater, much of the "postdicted" ejecta blanket has clearly been removed by erosion. Nevertheless the Shirley and fossil-free Bacons Castle Formations, located between the upland deposits and the CBIS interior and veneering the present day surface with units ∼10-20 m deep, are respectively identified as curtain- and excavation-phase ejecta. The neritic-fossil-bearing Calvert Formation external to the crater is deduced to be of Eocene age (as opposed to early Miocene as currently believed), preserved by the armoring effects of the overlying CBIS ejecta composed of the (distal) upland deposits and the (proximal) Bacons Castle Formation. The lithofacies of the in-crater Calvert Formation can only have resulted from inward mass wasting of the postdicted ejecta blanket, vestiges of which (i.e. the Bacons Castle and Shirley Formations) still overlap the crater rim and sag into its interior, consistent with this expectation. Because there appear to be a total of ∼10 000 km2 of CBIS ejecta lying on the present-day surface, future research should center the stratigraphic, lithologic, and petrologic properties of these ejecta versus both radial distance from the crater center (to identify ejecta from different ejection stages) and circumferentially at fixed radial distances (to detect possible anisotropies relating the impact angle and direction of approach of the impactor). The geological units described here may comprise the best preserved, and certainly the most accessible, ejecta blanket of a major crater on the Earth's surface and therefore promise to be a boon to the field of impact geology. As a corollary, a major revision of the current stratigraphic column of the M

  6. Venus tectonics: another Earth or another Mars

    International Nuclear Information System (INIS)

    McGill, G.E.

    1979-01-01

    The presence of presumably primordial large craters has led to the suggestion that Venus may have a thick lithosphere like that of Mars despite its similarities to Earth in size and density. However, crust and upper mantle temperatures on Venus are very likely higher than on Earth so that a dry Venus could have a lithosphere with a thickness similar to that of Earth. If a trace of volatiles is present in the mantle, the lithosphere of Venus could be thinner. Due to the absence of liquid water, erosion and deposition will be much slower on Venus than on Earth, favoring retention of primordial cratered surfaces on portions of the crust that have not been destroyed or buried by tectonic and volcanic activity. Geochemical models of solar system origin and petrological considerations suggest that K is about as abundant in Venus as in Earth. The abundance of 40 Ar in the atmosphere of Venus lies somewhere between the Earth value and one-tenth of the Earth value. Because erosional liberation of 40 Ar on Venus will be relatively inefficient, this range for 40 Ar abundance at least permits an active tectonic history, and if the 40 Ar abundance is towards the high end of the range, it may well require an active tectonic history. Thus we are not constrained to a Mars-like model of Venus tectonics by craters and possible mantle dryness; an Earth-like model is equally probable

  7. Terrestrial Analogs for Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Treiman, Allan H; Morris, Richard V.; Bristow, Thomas; Ming, Douglas W.; Achillies, Cherie; Bish, David L.; Blake, David; Vaniman, David; Chipera, Steve

    2013-01-01

    Sediments of the Sheepbed unit, Gale Crater, were analyzed by the CheMin X-ray diffraction instrument on the Curiosity Rover. The sediments consist of typical basalt minerals (Fe-forsterite, augite, pigeonite, plagioclase), as well as Fe oxide/hydroxides, Fesulfides, amorphous material, and a phyllosilicate. The phyllosilicate has a broad 001 peak at approx 1.0 nm, consistent with a poorly ordered smectite. However, in the absence of diagnostic tests possible on Earth, its identity is not clear. The position of the 06L diffraction band is generally used to distinguish dioctahedral from trioctahedral smectite, but it is beyond CheMin's range of 2 Theta. The measured position of the 02L diffraction band (approx 22.5deg 2 Theta by CheMin), implies that the smectite is trioctahedral. The exact position and shape of the 02L band is determined by the cations in the 'M' sites of the smectite; to constrain those cations, we sought analogs among terrestrial smectites, emphasizing those developed from basaltic precursors. A potential analog for the Sheepbed smectite is 'griffithite,' a variety of trioctahedral smectite in altered basalt of the Topanga formation, Griffith Park, Los Angeles. 'Griffithite' has an 02L diffraction band that is close in position and shape to that of the Sheepbed smectite, although 'griffithite' has a very sharp 001 peak, indicating a high degree of layer ordering not seen in the Sheepbed smectite. A typical chemical formula for 'griffithite,' determined by electron microprobe, is (Ca0.59 Na0.03) (Mg4.28 Fe1.83) (Si6.64 Al1.36) O20 (OH)4, normalized to Si+Al=8. This formula is consistent with a fully trioctahedral Fe-Mg smectite with Ca and Na as interlayer cations. In the Topanga basalt, four types of 'griffithite' are present: fine-grained, filling cracks and vesicles; coarse-grained, filling vesicles; coarse-grained, replacing olivine phenocrysts; and coarse-grained, replacing glassy mesostasis. The fine-grained 'griffithite' formed first, and

  8. Hydrological evolution of Atlantis basin, Sirenum Terrae, Mars. Preliminar analysis of MOC and THEMIS images.

    Science.gov (United States)

    de Pablo, M. A.; Márquez, A.; Centeno, J. D.

    The Atlantis basin is one of the martian highlands areas where there was proposed the existence of an ancient lake during the early geological history of Mars [1] [2] [3] [4]. The existence of some morphological features inside the basin and in the surrounding area, allow to check the existence of liquid water in the past of the planet. On the other hand, other morphological features indicate the existence of snow and liquid groundwater in recent times. The detailed study of the geomorphologic features allows to make an approach to the hydrological evolution of the Atlantis basin. The study of the geomorphology of this region has been carried out by means of the analysis of MOC high resolution images obtained by the Mars Global Surveyor mission and the THEMIS images, in the visible spectrum, sent by Mars Odyssey spacecrafts. The most clearly morphological feature indicative of the existence of water in the surface of Mars in the past are the numerous channels that end into Atlantis basin from the highest terrains. In addiction to these fluvial channels, the existence of mass flow deposits is also indicative of the existence of water in the area. Some of these slumps are in the internal slopes of impact craters, but others cover huge extensions around the chaotic terrains of the studied area. The lobated ejecta deposits observed in the Atlantis basin region are indicative of the existence of groundwater (solid or liquid) [5]. Serrated reliefs and tables in the borders of the basins are indicative of the existence of a water sheet. Beneath this water sheet some deposits was formed which was eroded, due to the gradual desiccation of the basin, forming the tables and serrated reliefs. The existence of different chaotic terrains in the area implies the existence of huge amounts of water under the surface according to the different models of chaotic terrain formation [6] [7]. The existence of groundwater could be decided by the existence of collapses in the near to the

  9. History of Mars

    International Nuclear Information System (INIS)

    Lewis, J.S.

    1988-01-01

    The origin and early history of Mars and the relationship between Mars and the other planets are reviewed. The solar system formation and planetary differentiation are examined using data from planetary missions. Different views of Mars are presented, showing how ideas about the planet have changed as the amount of available observational data has increased. Viking aerography and surface characterization are discussed, including the nature of specific atmospheric components and the implications of surface phenomena. Models for the planetary formation and accretion processes are considered. The value of future missions to Mars is stressed

  10. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    Science.gov (United States)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  11. Saying Goodbye to 'Bonneville' Crater

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Annotated Image NASA's Mars Exploration Rover Spirit took this panoramic camera image on sol 86 (March 31, 2004) before driving 36 meters (118 feet) on sol 87 toward its future destination, the Columbia Hills. This is probably the last panoramic camera image that Spirit will take from the high rim of 'Bonneville' crater, and provides an excellent view of the ejecta-covered path the rover has journeyed thus far. The lander can be seen toward the upper right of the frame and is approximately 321 meters (1060 feet) away from Spirit's current location. The large hill on the horizon is Grissom Hill. The Colombia Hills, located to the left, are not visible in this image.

  12. The Nitrate/Perchlorate Ratio on Mars as an Indicator for Habitability

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; McKay, C. P.; Navarro-Gonzalex, R.; Freissinet, C.; Conrad, P. G.; Mahaffy, P. R.; Archer, P. D., Jr.; Ming, D. W.; Niles, P. B.; hide

    2015-01-01

    Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and the potential development of a nitrogen cycle at some point in martian history. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected evolved nitric oxide (NO) gas during pyrolysis of scooped aeolian sediments and drilled mudstone acquired in Gale Crater. The detection of NO suggests an indigenous source of fixed N, and may indicate a mineralogical sink for atmospheric N2 in the form of nitrate. The ratio of nitrate to oxychlorine species (e.g. perchlorate) may provide insight into the extent of development of a nitrogen cycle on Mars.

  13. Simulation of cathode spot crater formation and development on CuCr alloy in vacuum arc

    Science.gov (United States)

    Wang, Lijun; Zhang, Xiao; Wang, Yuan; Yang, Ze; Jia, Shenli

    2018-04-01

    The two-dimensional (2D) rotary axisymmetric model is used to describe the formation and development of a cathode spot on a copper-chromium alloy (CuCr) in a vacuum arc. The model includes hydrodynamic equations and the heat transfer equation. Parameters used in this model come from experiments and other researchers' work. The influence of parameters is analyzed, and the simulation results are compared with pure metal simulation results. In simulation, the depth of the cathode crater is from 0.5 μm to 1.1 μm, the radius of the cathode crater is from 1.6 μm to 2.6 μm, the maximum velocity of the droplet is from 200 m/s to 600 m/s, and the maximum temperature is from 3500 K to 5000 K which is located in the area with a radius of 0.5-1.5 μm. The simulation results show that a smooth cathode surface is advantageous for reducing ablation, the ablation on the CuCr alloy is smaller than that on the pure metal cathode electrode, and the cathode spot appears on the chromium grain only on CuCr. The simulation results are in good agreement with the experiment.

  14. Detection of Northern Hemisphere transient eddies at Gale Crater Mars

    Science.gov (United States)

    Haberle, Robert M.; Juárez, Manuel de la Torre; Kahre, Melinda A.; Kass, David M.; Barnes, Jeffrey R.; Hollingsworth, Jeffery L.; Harri, Ari-Matti; Kahanpää, Henrik

    2018-06-01

    The Rover Environmental Monitoring Station (REMS) on the Curiosity Rover is operating in the Southern Hemisphere of Mars and is detecting synoptic period oscillations in the pressure data that we attribute to Northern Hemisphere transient eddies. We base this interpretation on the similarity in the periods of the eddies and their seasonal variations with those observed in northern midlatitudes by Viking Lander 2 (VL-2) 18 Mars years earlier. Further support for this interpretation comes from global circulation modeling which shows similar behavior in the transient eddies at the grid points closest to Curiosity and VL-2. These observations provide the first in situ evidence that the frontal systems often associated with "Flushing Dust Storms" do cross the equator and extend into the Southern Hemisphere.

  15. Hailar crater - A possible impact structure in Inner Mongolia, China

    Science.gov (United States)

    Xiao, Zhiyong; Chen, Zhaoxu; Pu, Jiang; Xiao, Xiao; Wang, Yichen; Huang, Jun

    2018-04-01

    Hailar crater, a probable impact structure, is a circular depression about 300 m diameter in Inner Mongolia, northeast China. With broad elevated rims, the present rim-to-floor depth is 8-20 m. Regional geological background and geomorphological comparison suggest that this feature is likely not formed by surface processes such as salt diapir, karst, aeolian, glacial, or volcanic activity. Its unique occurrence in this region and well-preserved morphology are most consistent with it being a Cenozoic impact crater. Two field expeditions in 2016 and 2017 investigated the origin of this structure, recognizing that (1) no additional craters were identified around Hailar crater in the centimeter-scale digital topography models that were constructed using a drone imaging system and stereo photogrammetry; (2) no bedrock exposures are visible within or adjacent to the crater because of thick regolith coverage, and only small pieces of angular unconsolidated rocks are present on the crater wall and the gently-sloped crater rim, suggesting recent energetic formation of the crater; (3) most samples collected from the crater have identical lithology and petrographic characteristics with the background terrain, but some crater samples contain more abundant clasts and silicate hydrothermal veins, indicating that rocks from depths have been exposed by the crater; (4) no shock metamorphic features were found in the samples after thin section examinations; and (5) a systematic sample survey and iron detector scan within and outside of the crater found no iron-rich meteorites larger than 2 cm in size in a depth of 30 cm. Although no conclusive evidence for an impact origin is found yet, Hailar crater was most likely formed by an impact based on its unique occurrence and comparative geomorphologic study. We suggest that drilling in the crater center is required to verify the impact origin, where hypothesized melt-bearing impactites may be encountered.

  16. Study of ice-related flow features around Tanaica Montes, Mars: Implications for late amazonian debris-covered glaciation

    Science.gov (United States)

    Sinha, Rishitosh K.; Vijayan, S.; Bharti, Rajiv R.

    2017-11-01

    Lobate debris aprons (LDA) and lineated valley fill (LVF) have been broadly recognized in the mid-latitudes of Mars and their subsequent analyses using data from the SHAllow RADar (SHARAD) instrument has suggested evidence for contemporary ice preserved beneath these features. In this study, we conduct detailed characterization of newly identified LDA flow units within the Tanaica Montes region (39.55˚ N, 269.17˚ E) of Mars to assess and understand the similarities in their emplacement with respect to LDA flow units mapped in other regions of Mars. We utilize the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images and SHAllow RADar (SHARAD) datasets for geomorphic and subsurface analysis and Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) point tracks for topographic analysis. Geomorphic observation of LDA flow units surrounding the montes flanks and massif walls reveal integrated pattern of convergence and divergence and evidence of bending and deflection within the flow lines that resulted in concentric, loop-like flow patterns in the downslope. Brain-terrain texture and craters with varying morphological characteristics (ring-mold type) is suggestive that LDAs may be similar to ice-rich, debris-covered glaciers. MOLA point track based convex-up topographic profiles of LDAs suggest that their thickness vary in the range of ∼100-200 m in both the northwestern and southeastern portions of study region. Further, the slope values of mapped LDA surfaces within the study region are within ∼0.1˚-4˚. The extent of mapped LDAs within the study region is such that some of the low elevation (∼0.8-1.3 km) portions of montes flanks are surrounded by relatively less extent (up to ∼0.5-0.8 km) of LDA flow units. Geomorphic and topographic evidence for flow units that appear to be superposed on the main LDA body collectively suggest the possibility of episodic glacial activity in the region. Furthermore, based on the alignment of subsurface

  17. Paragenesis of thermal denudation with gas-emission crater and lake formation, Yamal Peninsula, Russia

    Science.gov (United States)

    Babkina, Elena; Khomutov, Artem; Leibman, Marina; Dvornikov, Yury; Kizyakov, Alexander; Babkin, Evgeny

    2017-04-01

    Gas-emission craters (GECs) found in the North of West Siberia in 2014 occur in an area of wide tabular ground ice (TGI) distribution. TGI observed in the GEC walls also provokes thermal denudation: a complex of processes responsible for formation of thermocirques (TCs). TCs are semi-circle shaped depressions resulting from TGI thaw and removal of detached material downslope. Shores of many lakes are terraced and have ancient to recent traces of thermal denudation activity. TCs are numerous in the GEC area giving reason to assume that GEC, TGI, TC, and lakes are interrelated. First found Yamal crater (GEC-1) expanded from initial 18 m wide deep hole in 2013 to an irregularly-shaped lake up to 85 meters wide in 2016. Expansion of the GEC was controlled by TGI thaw. This can be considered in terms of thermal denudation and analyzed on the basis of TC study in the adjacent area. In summer 2014 and 2015 (the lifetime of the GEC-1) its wall retreat covered the area of 1730 square meters, which gives 865 square meters per year. In 2016, which was the warmest for the period of observation at weather station Marre-Sale, retreat area increased to 2200 square meters per year. TC, which exposed TGI similar to that in the walls of GEC-1, is observed on the nearest lakeshore. TC activation probably started in 2012 as elsewhere on Yamal. In 2015 its area according to GPS survey reached 4400 square meters (a four-year average 1100 square meters). Since September 2015 and till October 2016 its area expanded by 2600 square meters, thus increased by 59%, and more than twice compared to previous annual average. Lake adjacent to GEC-1 in 2016 was separated from crater edge by only a 13 meter wide isthmus, most likely both GEC-1 lake and adjacent lake merge in few years. Therefore, single basis of erosion for thermal denudation appear. After lakes merge, it would become hard to determine what the initial process for the lake formation was if not for the occasional discovery of the GEC

  18. Floor-Fractured Craters on Ceres and Implications for Internal Composition and Processes

    Science.gov (United States)

    Buczkowski, D.; Schenk, P.; Scully, J. E. C.; Park, R. S.; Preusker, F.; Raymond, C. A.; Russell, C. T.

    2016-12-01

    Several of the impact craters on Ceres have patterns of fractures on their floors. These fractures appear similar to those found within a class of lunar craters referred to as Floor-Fractured Craters (FFCs) [1]. Lunar FFCs are characterized by anomalously shallow floors cut by radial, concentric, and/or polygonal fractures, and have been classified into crater classes, Types 1 through 6, based on their morphometric properties [1,2]. Models for their formation have included both floor uplift due to magmatic intrusion below the crater or floor shallowing due to viscous relaxation. However, the observation that the depth versus diameter (d/D) relationship of the FFCs is distinctly shallower than the same association for other lunar craters supports the hypotheses that the floor fractures form due to shallow magmatic intrusion under the crater [2]. We have cataloged the Ceres FFCs according to the classification scheme designed for the Moon. Large (>50 km) Ceres FFCs are most consistent with Type 1 lunar FFCs, having deep floors, central peaks, wall terraces, and radial and/or concentric fractures. Smaller craters on Ceres are more consistent with Type 4 lunar FFCs, having less-pronounced floor fractures and v-shaped moats separating the wall scarp from the crater interior. An analysis of the d/D ratio for Ceres craters shows that, like lunar FFCs, the Ceres FFCs are anomalously shallow. This suggests that the fractures on the floor of Ceres FFCs may be due the intrusion of a low-density material below the craters that is uplifting their floors. While on the Moon the intrusive material is hypothesized to be silicate magma, this is unlikely for Ceres. However, a cryovolcanic extrusive edifice has been identified on Ceres [3], suggesting that cryomagmatic intrusions could be responsible for the formation of the Ceres FFCs. References: [1] Schultz P. (1976) Moon, 15, 241-273 [2] Jozwiak L.M. et al (2015) JGR 117, doi: 10.1029/2012JE004134 [3] Ruesch O. et al (2016

  19. The Ricor K508 cryocooler operational experience on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-01-29

    The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluid loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data.

  20. The Ricor K508 cryocooler operational experience on Mars

    International Nuclear Information System (INIS)

    Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael

    2014-01-01

    The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluid loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data

  1. The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars.

    Science.gov (United States)

    Fairén, Alberto G; Dohm, James M; Rodríguez, J Alexis P; Uceda, Esther R; Kargel, Jeffrey; Soare, Richard; Cleaves, H James; Oehler, Dorothy; Schulze-Makuch, Dirk; Essefi, Elhoucine; Banks, Maria E; Komatsu, Goro; Fink, Wolfgang; Robbins, Stuart; Yan, Jianguo; Miyamoto, Hideaki; Maruyama, Shigenori; Baker, Victor R

    2016-02-01

    At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows.

  2. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    Science.gov (United States)

    Payré, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R. C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.-Y.; Lasue, J.; Ollila, A.; Rapin, W.; Maurice, S.; Nachon, M.; Le Deit, L.; Lanza, N.; Clegg, S.

    2017-03-01

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantifications of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. These observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.

  3. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.

    1995-01-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff

  4. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Las Vegas, NV (United States)

    1995-07-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff.

  5. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  6. Hydrothermal Alteration Products as Key to Formation of Duricrust and Rock Coatings on Mars

    Science.gov (United States)

    Bishop, J. L.

    1999-03-01

    A model is presented for the formation of duricrust and rock coatings on Mars. Hydrothermal alteration of volcanic tephra may produce a corrosive agent that attacks rock surfaces and binds dust particles to form duricrust.

  7. Summary of results of cratering experiments

    International Nuclear Information System (INIS)

    Toman, J.

    1969-01-01

    The use of nuclear excavation as a construction technique for producing harbors, canals, highway cuts, and other large excavations requires a high assurance that the yield and depth of burst selected for the explosive will produce the desired configuration within an acceptable degree of tolerance. Nuclear excavation technology advanced significantly during 1968 as a result of the successful execution of Projects Cabriolet, Buggy, and Schooner. Until these experiments were conducted, the only nuclear data available for designing large excavations were derived from Sedan (100 kt in alluvium), Danny Boy (0.42 kt in basalt), and Sulky (0.090 kt in basalt). Applicable experience has now been extended to include two additional rock types: tuff and porphyritic trachyte, non-homogeneous formations with severe geologic layering, and a nuclear row in hard rock. The continued development of cratering calculations using in situ geophysical measurements and high-pressure test data have provided a means for predicting the cratering characteristics of untested materials. Chemical explosive cratering experiments conducted in the pre-Gondola series during the past several years have been directed toward determining the behavior of weak, wet clay shales. This material is important to nuclear excavation because of potential long-term stability problems which may affect the cratered slopes. (author)

  8. Summary of results of cratering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Toman, J [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    The use of nuclear excavation as a construction technique for producing harbors, canals, highway cuts, and other large excavations requires a high assurance that the yield and depth of burst selected for the explosive will produce the desired configuration within an acceptable degree of tolerance. Nuclear excavation technology advanced significantly during 1968 as a result of the successful execution of Projects Cabriolet, Buggy, and Schooner. Until these experiments were conducted, the only nuclear data available for designing large excavations were derived from Sedan (100 kt in alluvium), Danny Boy (0.42 kt in basalt), and Sulky (0.090 kt in basalt). Applicable experience has now been extended to include two additional rock types: tuff and porphyritic trachyte, non-homogeneous formations with severe geologic layering, and a nuclear row in hard rock. The continued development of cratering calculations using in situ geophysical measurements and high-pressure test data have provided a means for predicting the cratering characteristics of untested materials. Chemical explosive cratering experiments conducted in the pre-Gondola series during the past several years have been directed toward determining the behavior of weak, wet clay shales. This material is important to nuclear excavation because of potential long-term stability problems which may affect the cratered slopes. (author)

  9. Crystal-Chemical Analysis Martian Minerals in Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2015-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analyses on scooped soil at Rocknest and on drilled rock fines at Yellowknife Bay (John Klein and Cumberland samples), The Kimberley (Windjana sample), and Pahrump (Confidence Hills sample) in Gale crater, Mars. Samples were analyzed with the Rietveld method to determine the unit-cell parameters and abundance of each observed crystalline phase. Unit-cell parameters were used to estimate compositions of the major crystalline phases using crystal-chemical techniques. These phases include olivine, plagioclase and clinopyroxene minerals. Comparison of the CheMin sample unit-cell parameters with those in the literature provides an estimate of the chemical compositions of the major crystalline phases. Preliminary unit-cell parameters, abundances and compositions of crystalline phases found in Rocknest and Yellowknife Bay samples were reported in. Further instrument calibration, development of 2D-to- 1D pattern conversion corrections, and refinement of corrected data allows presentation of improved compositions for the above samples.

  10. Dome craters on Ganymede

    International Nuclear Information System (INIS)

    Moore, J.M.; Malin, M.C.

    1987-01-01

    Voyager observations reveal impact craters on Ganymede that are characterized by the presence of broad, high albedo, topographic domes situated within a central pit. Fifty-seven craters with central domes were identified in images covering approx. 50% of the surface. Owing to limitations in resolution, and viewing and illumination angles, the features identified are most likely a subset of dome craters. The sample appears to be sufficiently large to infer statistically meaningful trends. Dome craters appear to fall into two distinct populations on plots of the ratio of dome diameter to crater rim diameter, large-dome craters and small-dome craters. The two classes are morphologically distinct from one another. In general, large dome craters show little relief and their constituent landforms appear subdued with respect to fresh craters. The physical attributes of small-dome craters are more sharply defined, a characteristic they share with young impact craters of comparable size observed elsewhere in the solar system. Both types of dome craters exhibit central pits in which the dome is located. As it is difficult to produce domes by impact and/or erosional processes, an endogenic origin for the domes is reasonably inferred. Several hypotheses for their origin are proposed. These hypotheses are briefly reviewed

  11. Scientific Results of the Mars Exploration Rovers Spirit and Opportunity

    Science.gov (United States)

    Banerdt, W. B.

    2006-08-01

    NASA's Mars Exploration Rover project launched two robotic geologists, Spirit and Opportunity, toward Mars in June and July of 2003, reaching Mars the following January. The science objectives for this mission are focused on delineating the geologic history for two locations on Mars, with an emphasis on the history of water. Although they were designed for a 90-day mission, both rovers have lasted more than two years on the surface and each has covered more than four miles while investigating Martian geology. Spirit was targeted to Gusev Crater, a 300-km diameter impact basin that was suspected to be the site of an ancient lake. Initial investigations of the plains in the vicinity of the landing site found no evidence of such a lake, but were instead consistent with unaltered (by water) basaltic plains. But after a 3-km trek to an adjacent range of hills it found a quite different situation, with abundant chemical and morphological evidence for a complex geological history. Opportunity has been exploring Meridiani Planum, which was known from orbital data to contain the mineral hematite, which generally forms in the presence of water. The rocks exposed in Meridiani are highly chemically altered, and appear to have been exposed to significant amounts of water. By descending into the 130-m diameter Endurance Crater, Opportunity was able to analyze a 10-m vertical section of this rock unit, which showed significant gradations in chemistry and morphology.

  12. Hints of Habitable Environments on Mars Challenge Our Studies of Mars-Analog Sites on Earth

    Science.gov (United States)

    desMarais, David J

    2009-01-01

    Life as we know it requires water with a chemical activity (alpha) >or approx.0.6 and sources of nutrients and useful energy. Some biota can survive even if favorable conditions occur only intermittently, but the minimum required frequency of occurrences is poorly understood. Recent discoveries have vindicated the Mars exploration strategy to follow the water. Mars Global Surveyor s Thermal Emission Spectrometer (TES) found coarse-grained hematite at Meridiani Planum. Opportunity rover confirmed this and also found evidence of ancient sulfate-rich playa lakes and near-surface groundwater. Elsewhere, TES found evidence of evaporitic halides in topographic depressions. But alpha might not have approached 0.6 in these evaporitic sulfate- and halide-bearing waters. Mars Express (MEX) and Mars Reconnaissance Orbiter (MRO) found extensive sulfate evaporites in Meridiani and Valles Marineris. MEX found phyllosilicates at several sites, most notably Mawrth Valles and Nili Fossae. MRO's CRISM near-IR mapper extended the known diversity and geographic distribution of phyllosilicates to include numerous Noachian craters. Phyllosilicates typically occur at the base of exposed ancient rock sections or in sediments in early Hesperian craters. It is uncertain whether the phyllosilicates developed in surface or subsurface aqueous environments and how long aqueous conditions persisted. Spirit rover found remarkably pure ferric sulfate, indicating oxidation and transport of Fe and S, perhaps in fumaroles or hot springs. Spirit also found opaline silica, consistent with hydrothermal activity. CRISM mapped extensive silica deposits in the Valles Marineris region, consistent with aqueous weathering and deposition. CRISM also found ultramafic rocks and magnesite at Nili Fossae, consistent with serpentinization, a process that can sustain habitable environments on Earth. The report of atmospheric methane implies subsurface aqueous conditions. A working hypothesis is that aqueous

  13. Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars

    Science.gov (United States)

    Horgan, Briony; Scudder, Noel; Rampe, Elizabeth; Rutledge, Alicia

    2016-01-01

    Soil crystallinity is largely determined by leaching rates, as high leaching rates favor the rapid precipitation of short order or poorly-crystalline phases like the aluminosilicate allophane. High leaching rates can occur due to high precipitation rates, seasonal monsoons, or weathering of glass, but are also caused by the rapid onset of seasonal melting of snow and ice in cold environments. Thus, cold climate soils are commonly dominated by poorly crystalline phases, which mature into kaolin minerals over time. Thus, we hypothesize that, in some contexts, soils with high abundances of poorly crystalline phases could indicate formation under cold climatic conditions. This model could be helpful in interpreting the poorly-constrained paleoclimate of ancient Mars, as the crystallinity of ancient soils and soil-derived sediments appears to be highly variable in time and space. While strong signatures of crystalline phyllosilicates have been identified in possible ancient paleosols on Mars, Mars Science Laboratory rover investigations of diverse ancient sediments at Gale Crater has shown that they can contain very high abundances (40-50 wt%) of poorly crystalline phases. We hypothesize that these poorly crystalline phases could be the result of weathering by ice/snow melt, perhaps providing support for sustained cold climates on early Mars punctuated by more limited warm climates. Furthermore, such poorly crystalline soils could be highly fertile growth media for future human exploration and colonization on Mars. To test this hypothesis, we are currently using rover-like instrumentation to investigate the mineralogy and chemistry of weathering products generated by snow and ice melt in a Mars analog alpine environment: the glaciated Three Sisters volcanic complex in central Oregon. Alteration in this glacial environment generates high abundances of poorly crystalline phases, many of which have compositions distinct from those identified in previous terrestrial

  14. Ice Lens Formation and Frost Heave at the Phoenix Landing Site

    Science.gov (United States)

    Zent, A. P.; Sizemore, H. G.; Remple, A. W.

    2011-01-01

    Several lines of evidence indicate that the volume of shallow ground ice in the martian high latitudes exceeds the pore volume of the host regolith. Boynton et al. found an optimal fit to the Mars Odyssey Gamma Ray Spectrometer (GRS) data at the Phoenix landing site by modeling a buried layer of 50-75% ice by mass (up to 90% ice by volume). Thermal and optical observations of recent impact craters in the northern hemisphere have revealed nearly pure ice. Ice deposits containing only 1-2% soil by volume were excavated by Phoenix. The leading hypothesis for the origin of this excess ice is that it developed in situ by a mechanism analogous to the formation of terrestrial ice lenses and needle ice. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycling and the movement of bulk water, neither of which are expected to have occurred in the geologically recent past on Mars. If however ice lens formation is possible at temperatures less than 273 K, there are possible implications for the habitability of Mars permafrost, since the same thin films of unfrozen water that lead to ice segregation are used by terrestrial psychrophiles to metabolize and grow down to temperatures of at least 258 K.

  15. Kasei Vallis of Mars: Dating the Interplay of Tectonics and Geomorphology

    Science.gov (United States)

    Wise, D. U.

    1985-01-01

    Crater density age dates on more than 250 small geomorphic surfaces in the Kasei Region of Mars show clusterings indicative of times of peak geomorphic and tectonic activity. Kasei Vallis is part of a 300 km wide channel system breaching a N-S trending ancient basement high (+50,000 crater age) separating the Chryse Basin from the Tharsis Volcanic Province of Mars. The basement high was covered by a least 3 groups of probable volcanic deposits. Major regional fracturing took place at age 4,000 to 5,000 and was immediately followed by deposition of regional volcanics of the Fesenkov Plains (age 3,000 to 4,200). Younger clusterings of dates in the 900 to 1,500 and 500 to 700 range represent only minor modification of the basic tectonic geomorphic landform. The data suggest that Kasei gap is a structurally controlled breach of a buried ridge by a rather brief episode of fluvial activity.

  16. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations.

    Science.gov (United States)

    Ehlmann, B L; Edgett, K S; Sutter, B; Achilles, C N; Litvak, M L; Lapotre, M G A; Sullivan, R; Fraeman, A A; Arvidson, R E; Blake, D F; Bridges, N T; Conrad, P G; Cousin, A; Downs, R T; Gabriel, T S J; Gellert, R; Hamilton, V E; Hardgrove, C; Johnson, J R; Kuhn, S; Mahaffy, P R; Maurice, S; McHenry, M; Meslin, P-Y; Ming, D W; Minitti, M E; Morookian, J M; Morris, R V; O'Connell-Cooper, C D; Pinet, P C; Rowland, S K; Schröder, S; Siebach, K L; Stein, N T; Thompson, L M; Vaniman, D T; Vasavada, A R; Wellington, D F; Wiens, R C; Yen, A S

    2017-12-01

    The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H 2 O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H 2 O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H 2 O.

  17. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars

    Science.gov (United States)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.

    2018-01-01

    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  18. EU-FP7-iMARS: analysis of Mars multi-resolution images using auto-coregistration, data mining and crowd source techniques

    Science.gov (United States)

    Ivanov, Anton; Muller, Jan-Peter; Tao, Yu; Kim, Jung-Rack; Gwinner, Klaus; Van Gasselt, Stephan; Morley, Jeremy; Houghton, Robert; Bamford, Steven; Sidiropoulos, Panagiotis; Fanara, Lida; Waenlish, Marita; Walter, Sebastian; Steinkert, Ralf; Schreiner, Bjorn; Cantini, Federico; Wardlaw, Jessica; Sprinks, James; Giordano, Michele; Marsh, Stuart

    2016-07-01

    Understanding planetary atmosphere-surface and extra-terrestrial-surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 15 years, especially in 3D imaging of surface shape. This has led to the ability to be able to overlay different epochs back in time to the mid 1970s, to examine time-varying changes, such as the recent discovery of mass movement, tracking inter-year seasonal changes and looking for occurrences of fresh craters. Within the EU FP-7 iMars project, UCL have developed a fully automated multi-resolution DTM processing chain, called the Co-registration ASP-Gotcha Optimised (CASP-GO), based on the open source NASA Ames Stereo Pipeline (ASP), which is being applied to the production of planetwide DTMs and ORIs (OrthoRectified Images) from CTX and HiRISE. Alongside the production of individual strip CTX & HiRISE DTMs & ORIs, DLR have processed HRSC mosaics of ORIs and DTMs for complete areas in a consistent manner using photogrammetric bundle block adjustment techniques. A novel automated co-registration and orthorectification chain has been developed and is being applied to level-1 EDR images taken by the 4 NASA orbital cameras since 1976 using the HRSC map products (both mosaics and orbital strips) as a map-base. The project has also included Mars Radar profiles from Mars Express and Mars Reconnaissance Orbiter missions. A webGIS has been developed for displaying this time sequence of imagery and a demonstration will be shown applied to one of the map-sheets. Automated quality control techniques are applied to screen for suitable images and these are extended to detect temporal changes in features on the surface such as mass movements, streaks, spiders, impact craters, CO2 geysers and Swiss Cheese terrain. These data mining techniques are then being employed within a citizen science project within the Zooniverse family

  19. Meteoric water alteration of soil and landscapes at Meridiani Planum, Mars

    Science.gov (United States)

    Amundson, Ronald

    2018-04-01

    The geomorphology and geochemistry data gathered by the MER Opportunity at Meridiani Planum is a rich data set relevant to soil research on Mars. Many of the data, particularly with respect to outcrops at Victoria Crater, have been only partially analyzed. Here, the previously published geochemical profile of Endurance Crater is compared to that of Victoria Crater, to understand aspects of the post-depositional aqueous and chemical alteration of the Meridiani land surface. The landsurface bears cracking patterns similar to those produced by multiple episodes of wetting and drying in expansive materials on Earth. The geochemical profiles at both craters are nearly identical, suggesting (using mass balance methods) that a very chemically homogenous sedimentary deposit has been engulfed by the apparent surficial addition of S, Cl, and Br (and associated cations) since exposure to the atmosphere. The chemistry and mineralogy at both locations is one where the most insoluble of the added components resides near the land surface (Ca sulfates), and the more soluble components are concentrated at greater depths in a vertical pattern consistent with their solubility in water. The profiles, when compared to those on Earth (and to physical constraints), are most similar those generated by the downward movement of meteoric water. When this aqueous alteration and soil formation occurred is not well constrained, but the processes occurred between late Noachian (?) to late Amazonian times. The exposure of the Victoria crater walls, which occurred likely less than 107 y ago (late Amazonian), shows the accumulation of dust as well as evidence for aqueous concentration of NaBr and/or CaBr, possibly by deliquescence. By direct comparison to Earth, the regional soil at Meridiani Planum is a Typic Petrogypsid (a sulfate cemented arid soil), bearing similarities to very ancient soils formed in the Atacama Desert of Chile. The amount of water required to produce the soils ranges from a

  20. Large sulfur isotope fractionations in Martian sediments at Gale crater

    Science.gov (United States)

    Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.

    2017-09-01

    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.

  1. Aqueous Alteration of Endeavour Crater Rim Apron Rocks

    Science.gov (United States)

    Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; Grant, J. A., III; Jolliff, B. L.; Parker, T. J.; Peretyazhko, T.

    2014-12-01

    Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis

  2. Investigation of small scale roughness properties of Martian terrains using Mars Reconnaissance Orbiter data.

    Science.gov (United States)

    Ivanov, A. B.; Rossi, A.

    2009-04-01

    Studies of layered terrains in polar regions as well as inside craters and other areas on Mars often require knowledge of local topography at much finer resolution than global MOLA topography allows. For example, in the polar layered deposits spatial relationships are important to understand unconformities that are observed on the edges of the layered terrains [15,3]. Their formation process is not understood at this point, yet fine scale topography, joint with ground penetrating radar like SHARAD and MARSIS may shed light on their 3D structure. Landing site analysis also requires knowledge of local slopes and roughness at scales from 1 to 10 m [1,2]. Mars Orbiter Camera [13] has taken stereo images at these scales, however interpretation was difficult due to unstable behavior of the Mars Global Surveyor spacecraft during image take (wobbling effect). Mars Reconnaissance Orbiter (MRO) is much better stabilized, since it is required for optimal operation of its high resolution camera. In this work we have utilized data from MRO sensors (CTX camera [11] and HIRISE camera [12] in order to derive digital elevation models (DEM) from images targeted as stereo pairs. We employed methods and approaches utilized for the Mars Orbiter Camera (MOC) stereo data [4,5]. CTX data varies in resolution and stereo pairs analyzed in this work can be derived at approximately 10m scale. HIRISE images allow DEM post spacing at around 1 meter. The latter are very big images and our computer infrastructure was only able to process either reduced resolution images, covering larger surface or working with smaller patches at the original resolution. We employed stereo matching technique described in [5,9], in conjunction with radiometric and geometric image processing in ISIS3 [16]. This technique is capable of deriving tiepoint co-registration at subpixel precision and has proven itself when used for Pathfinder and MER operations [8]. Considerable part of this work was to accommodate CTX and

  3. Martian Fluvial Conglomerates at Gale Crater

    Science.gov (United States)

    Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.; Gupta, S.; Sumner, D. Y.; Wiens, R. C.; Mangold, N.; Malin, M. C.; Edgett, K. S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, H. E.; Dromart, G.; Palucis, M. C.; Yingst, R. A.; Anderson, R. B.; Herkenhoff, K. E.; Le Mouélic, S.; Goetz, W.; Madsen, M. B.; Koefoed, A.; Jensen, J. K.; Bridges, J. C.; Schwenzer, S. P.; Lewis, K. W.; Stack, K. M.; Rubin, D.; Kah, L. C.; Bell, J. F.; Farmer, J. D.; Sullivan, R.; Van Beek, T.; Blaney, D. L.; Pariser, O.; Deen, R. G.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Edgar, Lauren; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sobrón Sánchez, Pablo; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Aparicio, Carlos Armiens; Caride Rodríguez, Javier; Carrasco Blázquez, Isaías; Gómez Gómez, Felipe; Elvira, Javier Gómez; Hettrich, Sebastian; Lepinette Malvitte, Alain; Marín Jiménez, Mercedes; Frías, Jesús Martínez; Soler, Javier Martín; Torres, F. Javier Martín; Molina Jurado, Antonio; Sotomayor, Luis Mora; Muñoz Caro, Guillermo; Navarro López, Sara; González, Verónica Peinado; García, Jorge Pla; Rodriguez Manfredi, José Antonio; Planelló, Julio José Romeral; Alejandra Sans Fuentes, Sara; Sebastian Martinez, Eduardo; Torres Redondo, Josefina; O'Callaghan, Roser Urqui; Zorzano Mier, María-Paz; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; Uston, Claude d.; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Szopa, Cyril; Robert, François; Sautter, Violaine; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; de la Torre Juarez, Manuel; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Blanco Ávalos, Juan José; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; González, Rafael Navarro; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Kortmann, Onno; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Jakosky, Bruce; Zunic, Tonci Balic; Frydenvang, Jens; Kinch, Kjartan; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mellin, Reinhold Mueller; Schweingruber, Robert Wimmer; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-05-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  4. On a possible parent crater for Australasian tektites: Geochemical, isotopic, geographical and other constraints

    Czech Academy of Sciences Publication Activity Database

    Mizera, Jiří; Řanda, Zdeněk; Kameník, Jan

    2016-01-01

    Roč. 154, MAR (2016), s. 123-137 ISSN 0012-8252 R&D Projects: GA ČR GA13-22351S; GA MŠk(CZ) LM2011019 Institutional support: RVO:67985891 ; RVO:61389005 Keywords : Australasian tektite * Parent crater * Geochemical analysis * Isotope analysis * Chinese loess * Badain Jaran Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; DD - Geochemistry (USMH-B) Impact factor: 7.051, year: 2016

  5. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    Science.gov (United States)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; hide

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts

  6. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    International Nuclear Information System (INIS)

    Payre, Valerie; Fabre, Cecile; Cousin, Agnes; Sautter, Violaine; Wiens, Roger Craig

    2017-01-01

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantifications of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. Here, these observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.

  7. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars

    Science.gov (United States)

    Mangold, Nicolas; Forni, Olivier; Dromart, G.; Stack, K.M.; Wiens, Roger C.; Gasnault, Olivier; Sumner, Dawn Y.; Nachon, Marion; Meslin, Pierre-Yves; Anderson, Ryan B.; Barraclough, Bruce; Bell, J.F.; Berger, G.; Blaney, D.L.; Bridges, J.C.; Calef, F.; Clark, Brian R.; Clegg, Samuel M.; Cousin, Agnes; Edgar, L.; Edgett, Kenneth S.; Ehlmann, B.L.; Fabre, Cecile; Fisk, M.; Grotzinger, John P.; Gupta, S.C.; Herkenhoff, Kenneth E.; Hurowitz, J.A.; Johnson, J. R.; Kah, Linda C.; Lanza, Nina L.; Lasue, Jeremie; Le Mouélic, S.; Lewin, Eric; Malin, Michael; McLennan, Scott M.; Maurice, S.; Melikechi, Noureddine; Mezzacappa, Alissa; Milliken, Ralph E.; Newsome, H.L.; Ollila, A.; Rowland, Scott K.; Sautter, Violaine; Schmidt, M.E.; Schroder, S.; D'Uston, C.; Vaniman, Dave; Williams, R.A.

    2015-01-01

    The Yellowknife Bay formation represents a ~5 m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (~1 m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.

  8. Sulfate Deposition in Regolith Exposed in Trenches on the Plains Between the Spirit Landing Site and Columbia Hills in Gusev Crater, Mars

    Science.gov (United States)

    Wang, Alian; Haskin, L. A.; Squyres, S. W.; Arvidson, R.; Crumpler, L.; Gellert, R.; Hurowitz, J.; Schroeder, C.; Tosca, N.; Herkenhoff, K.

    2005-01-01

    During its exploration within Gusev crater between sol 01 and sol 158, the Spirit rover dug three trenches (Fig. 1) to expose the subsurface regolith [1, 2, 9]. Laguna trench (approx. 6 cm deep, approx.203 m from the rim of Bonneville crater) was dug in Laguna Hollow at the boundary of the impact ejecta from Bonneville crater and the surrounding plains. The Big Hole trench (approx. 6-7 cm deep) and The Boroughs trench (approx. 11 cm deep) were dug in the plains between the Bonneville crater and the Columbia Hills (approx.556 m and approx.1698 m from the rim of Bonneville crater respectively). The top, wall and floor regolith of the three trenches were investigated using the entire set of Athena scientific instruments [10].

  9. Moderate resolution thermal mapping of mars: The channel terrain around the Chryse basin

    International Nuclear Information System (INIS)

    Christensen, P.R.; Kieffer, H.H.

    1979-01-01

    Moderate resolution (approx.30 km) thermal inertia estimates have been made for several regions in the northern hemosphere of Mars. Examples of these maps are presented here for the region O 0 -45 0 N, O 0 -90 0 W. The thermal inertia of Kasei Vallis is found to be significantly higher than that of the surrounding terrain. The assumption of a uniform grain size surface gives maximum diameters of 1.0 mm inside and 0.05mm outside Kasei Vallis for the surface materials. high inertia regions are well correlated with low albedo (Aapprox.0.14) regions. Three large channels in the Oxia Palus quandrangle also have high inertia floors. There is some indication that the thermal inertia increases toward the mouth of one of these channels. The Chryse and Acidalia basins have uniform high inertia surfaces with no decrease in inertia as distance increases from the major channels. There are numerous craters in the region which have high inertia-low albedo features on the crater floor. This correlation has been observed for many other craters on Mars, both from Mariner 9 and Viking data. A possible explanation is the accumulation of coarse-grained, windblown material within the craters. Average grain sizes of these materials range from 0.5 to 1.1. mm, corresponding to medium to coarse sand. The Viking 1 landing site is located in the lowest inertia region within the area studied which met the latitude and elevation capabilities of that vehicle

  10. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars

    OpenAIRE

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.

    2017-01-01

    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were pre...

  11. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars

    OpenAIRE

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.

    2017-01-01

    Abstract The Mars Science Laboratory rover Curiosity visited two active wind‐blown sand dunes within Gale crater, Mars, which provided the first ground‐based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial‐like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples...

  12. MARS: A protein family involved in the formation of vertical skeletal elements.

    Science.gov (United States)

    Abehsera, Shai; Peles, Shani; Tynyakov, Jenny; Bentov, Shmuel; Aflalo, Eliahu D; Li, Shihao; Li, Fuhua; Xiang, Jianhai; Sagi, Amir

    2017-05-01

    Vertical organizations of skeletal elements are found in various vertebrate teeth and invertebrate exoskeletons. The molecular mechanism behind the development of such structural organizations is poorly known, although it is generally held that organic matrix proteins play an essential role. While most crustacean cuticular organizations exhibit horizontal chitinous layering, a typical vertical organization is found towards the surface of the teeth in the mandibles of the crayfish Cherax quadricarinatus. Candidate genes encoding for mandible-forming structural proteins were mined in C. quadricarinatus molt-related transcriptomic libraries by using a binary patterning approach. A new protein family, termed the Mandible Alanine Rich Structural (MARS) protein family, with a modular sequence design predicted to form fibers, was found. Investigations of spatial and temporal expression of the different MARS genes suggested specific expression in the mandibular teeth-forming epithelium, particularly during the formation of the chitinous vertical organization. MARS loss-of-function RNAi experiments resulted in the collapse of the organization of the chitin fibers oriented vertically to the surface of the crayfish mandibular incisor tooth. A general search of transcriptomic libraries suggested conservation of MARS proteins across a wide array of crustaceans. Our results provide a first look into the molecular mechanism used to build the complex crustacean mandible and into the specialized vertical structural solution that has evolved in skeletal elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Evaluation of the Orogenic Belt Hypothesis for the Formation of Thaumasia, Mars

    Science.gov (United States)

    Nahm, A. L.; Schultz, R. A.

    2008-12-01

    The Thaumasia Highlands (TH) and Solis Planum are two of the best-known examples of compressional tectonics on Mars. The TH is a region of high topography located in the southern portion of the Tharsis Province, Mars. Solis Planum is located in eastern Thaumasia. Two hypotheses for the formation of this region have been suggested: sliding on a weak horizon or thrusting analogous to orogenic wedges on Earth. Both hypotheses require a shallowly dipping to sub-horizontal weak horizon below Thaumasia. Wrinkle ridges in Solis Planum are also inferred to sole into a décollement. If Thaumasia formed by thrusting related to sliding on a décollement, then certain conditions must be met as in critical taper wedge mechanics (CTWM) theory. If the angle between the surface slope and the basal décollement is less than predicted by the critical taper equation, the 'subcritical' wedge will deform internally until critical taper is achieved. Once the critical taper has been achieved, internal deformation ceases and the wedge will slide along its base. Formation of orogenic belts on Earth (such as the Central Mountains in Taiwan) can be described using CTWM. This method is applied here to the Thaumasia region on Mars. The surface slope (alpha) was measured in three locations: Syria Planum-Thaumasia margin, Solis Planum, and the TH. Topographic slopes were compared to the results from the critical taper equation. Because the dip of the basal décollement (beta) cannot be measured directly as on Earth, the dip angle was varied at 0 - 10 degrees; these values span the range of likely values based on terrestrial wedges. Pore fluid pressure (lambda) was varied between 0 (dry) and 0.9 (overpressured); these values span the full range of this important unknown parameter. Material properties, such as the coefficients of internal friction and of the basal décollement, were varied using reasonable values. Preliminary results show that for both reasonable (such as lambda = 0, mu b = 0

  14. Crater topography on Titan: Implications for landscape evolution

    Science.gov (United States)

    Neish, C.; Kirk, R.; Lorenz, R.; Bray, V.; Schenk, P.; Stiles, B.; Turtle, E.; Cassini Radar Team

    2012-04-01

    craters on Titan (gray diamonds) compared to similarly sized, fresh craters on Ganymede (central peaks, +; central pits, *) and a handful of relaxed craters (black squares) from Bray et al. (2012). References: Bray, V., et al.: "Ganymede crater dimensions - implications for central peak and central pit formation and development". Icarus, Vol. 217, pp. 115-129, 2012. Neish, C.D., Lorenz, R.D.: "Titan’s global crater population: A new assessment". Planetary and Space Science, Vol. 60, pp. 26-33, 2012. Schenk, P.M., et al.: "Ages and interiors: the cratering record of the Galilean satellites". In: Bagenal, F., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004. Stiles, B.W., et al.: "Determining Titan surface topography from Cassini SAR data". Icarus, Vol. 202, pp. 584-598, 2009. Wood, C.A., et al.: "Impact craters on Titan". Icarus, Vol. 206, pp. 334-344, 2010.

  15. X-Ray Diffraction on Mars: Scientific Discoveries Made by the CheMin Instrument

    Science.gov (United States)

    Rampe, E. B.; Blake, D. F.; Ming, D. W.; Bristow, T. F.

    2017-01-01

    The Mars Science Laboratory Curiosity landed in Gale crater in August 2012 with the goal to identify and characterize habitable environments on Mars. Curiosity has been studying a series of sedimentary rocks primarily deposited in fluviolacustrine environments approximately 3.5 Ga. Minerals in the rocks and soils on Mars can help place further constraints on these ancient aqueous environments, including pH, salinity, and relative duration of liquid water. The Chemistry and Mineralogy (CheMin) X-ray diffraction and X-ray fluorescence instrument on Curiosity uses a Co X-ray source and charge-coupled device detector in transmission geometry to collect 2D Debye-Scherrer ring patterns of the less than 150 micron size fraction of drilled rock powders or scooped sediments. With an angular range of approximately 2.52deg 20 and a 20 resolution of approximately 0.3deg, mineral abundances can be quantified with a detection limit of approximately 1-2 wt. %. CheMin has returned quantitative mineral abundances from 16 mudstone, sandstone, and aeolian sand samples so far. The mineralogy of these samples is incredibly diverse, suggesting a variety of depositional and diagenetic environments and different source regions for the sediments. Results from CheMin have been essential for reconstructing the geologic history of Gale crater and addressing the question of habitability on ancient Mars.

  16. Spectral characteristics of banded iron formations in Singhbhum craton, eastern India: Implications for hematite deposits on Mars

    Directory of Open Access Journals (Sweden)

    Mahima Singh

    2016-11-01

    Full Text Available Banded iron formations (BIFs are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada and Carajas (Brazil have been studied by planetary scientists to trace the evolution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposition is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine environment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (<4 mm are occasionally observed in the hand-specimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 μm, in which 0.56 and 0.86 μm absorption bands are due to ferric iron and 1.4 and 1.9 μm bands are due to OH/H2O. To validate the mineralogical results obtained from VIS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has

  17. On the in situ aqueous alteration of soils on Mars

    Science.gov (United States)

    Amundson, Ronald; Ewing, Stephanie; Dietrich, William; Sutter, Brad; Owen, Justine; Chadwick, Oliver; Nishiizumi, Kunihiko; Walvoord, Michelle; McKay, Christopher

    2008-08-01

    Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO 4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.

  18. Peripheral Faulting of Eden Patera: Potential Evidence in Support of a New Volcanic Construct on Mars

    Science.gov (United States)

    Harlow, J.

    2016-12-01

    Arabia Terra's (AT) pock-marked topography in the expansive upland region of Mars Northern Hemisphere has been assumed to be the result of impact crater bombardment. However, examination of several craters by researchers revealed morphologies inconsistent with neighboring craters of similar size and age. These 'craters' share features with terrestrial super-eruption calderas, and are considered a new volcanic construct on Mars called `plains-style' caldera complexes. Eden Patera (EP), located on the northern boundary of AT is a reference type for these calderas. EP lacks well-preserved impact crater morphologies, including a decreasing depth to diameter ratio. Conversely, Eden shares geomorphological attributes with terrestrial caldera complexes such as Valles Caldera (New Mexico): arcuate caldera walls, concentric fracturing/faulting, flat-topped benches, irregular geometric circumferences, etc. This study focuses on peripheral fractures surrounding EP to provide further evidence of calderas within the AT region. Scaled balloon experiments mimicking terrestrial caldera analogs have showcased fracturing/faulting patterns and relationships of caldera systems. These experiments show: 1) radial fracturing (perpendicular to caldera rim) upon inflation, 2) concentric faulting (parallel to sub-parallel to caldera rim) during evacuation, and 3) intersecting radial and concentric peripheral faulting from resurgence. Utilizing Mars Reconnaissance Orbiter Context Camera (CTX) imagery, peripheral fracturing is analyzed using GIS to study variations in peripheral fracture geometries relative to the caldera rim. Visually, concentric fractures dominate within 20 km, radial fractures prevail between 20 and 50 km, followed by gradation into randomly oriented and highly angular intersections in the fretted terrain region. Rose diagrams of orientation relative to north expose uniformly oriented mean regional stresses, but do not illuminate localized caldera stresses. Further

  19. Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images

    Science.gov (United States)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2017-04-01

    Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and

  20. Morphometry and Morphology of Fresh Craters on Titan

    Science.gov (United States)

    Kirk, R. L.; Wood, C. A.; Neish, C.; Lucas, A.; Hayes, A. G.; Cassini Radar Team

    2011-12-01

    -bright ejecta to a distance of 15-20 km (0.3-0.5 diameters) beyond the rim. Compared to the ejecta blankets of Ksa and Sinlap, this deposit has been encroached upon only slightly by dunes and thus appears more nearly symmetrical. We initially interpreted the ejecta as having a thickness of several hundred meters (which would be unique on Titan) based on apparent shading at the northern edge, but close inspection shows this to be an optical illusion caused by a thin band of dark plains showing between the edge of the ejecta and nearby bright flow fields that encircle about 3/4 of the circumference. Although these flows may predate the impact crater, they bear a striking resemblance to melt flows associated with crater ejecta on Venus (Asimow and Wood, 1992, JGR 97, 13643; Chadwick and Schubert, 1993, JGR 98, 20891), reinforcing the intriguing possibility of low viscosity impact melt formation on Titan, as Soderblom et al. (2010, JGR 208, 905) argue occurred at Selk crater.

  1. Centrifuge impact cratering experiment 5

    Science.gov (United States)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  2. Craters on comets

    Science.gov (United States)

    Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.

    2014-07-01

    This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous

  3. Experimental impact crater morphology

    Science.gov (United States)

    Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The research group MEMIN (Multidisciplinary Experimental and Impact Modelling Research Network) is conducting impact experiments into porous sandstones, examining, among other parameters, the influence of target pore-space saturation with water, and projectile velocity, density and mass, on the cratering process. The high-velocity (2.5-7.8 km/s) impact experiments were carried out at the two-stage light-gas gun facilities of the Fraunhofer Institute EMI (Germany) using steel, iron meteorite (Campo del Cielo IAB), and aluminium projectiles with Seeberg Sandstone as targets. The primary objectives of this study within MEMIN are to provide detailed morphometric data of the experimental craters, and to identify trends and characteristics specific to a given impact parameter. Generally, all craters, regardless of impact conditions, have an inner depression within a highly fragile, white-coloured centre, an outer spallation (i.e. tensile failure) zone, and areas of arrested spallation (i.e. spall fragments that were not completely dislodged from the target) at the crater rim. Within this general morphological framework, distinct trends and differences in crater dimensions and morphological characteristics are identified. With increasing impact velocity, the volume of craters in dry targets increases by a factor of ~4 when doubling velocity. At identical impact conditions (steel projectiles, ~5km/s), craters in dry and wet sandstone targets differ significantly in that "wet" craters are up to 76% larger in volume, have depth-diameter ratios generally below 0.19 (whereas dry craters are almost consistently above this value) at significantly larger diameters, and their spallation zone morphologies show very different characteristics. In dry craters, the spall zone surfaces dip evenly at 10-20° towards the crater centre. In wet craters, on the other hand, they consist of slightly convex slopes of 10-35° adjacent to the inner depression, and of sub-horizontal tensile

  4. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    Science.gov (United States)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; hide

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  5. Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies

    Science.gov (United States)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel

    2015-03-01

    Lunar floor-fractured craters are a class of 170 lunar craters with anomalously shallow, fractured floors. Two end-member processes have been proposed for the floor formation: viscous relaxation, and subcrater magmatic intrusion and sill formation. Recent morphometric analysis with new Lunar Reconnaissance Orbiter Laser Altimeter (LOLA) and image (LROC) data supports an origin related to shallow magmatic intrusion and uplift. We find that the distribution and characteristics of the FFC population correlates strongly with crustal thickness and the predicted frequency distribution of overpressurization values of magmatic dikes. For a typical nearside lunar crustal thickness, dikes with high overpressurization values favor surface effusive eruptions, medium values favor intrusion and sill formation, and low values favor formation of solidified dikes concentrated lower in the crust. We develop a model for this process, make predictions for the morphologic, morphometric, volcanic, and geophysical consequences of the process and then compare these predictions with the population of observed floor-fractured craters. In our model, the process of magmatic intrusion and sill formation begins when a dike propagates vertically towards the surface; as the dike encounters the underdense brecciated region beneath the crater, the magmatic driving pressure is insufficient to continue vertical propagation, but pressure in the stalled dike exceeds the local lithostatic pressure. The dike then begins to propagate laterally forming a sill which does not propagate past the crater floor region because increased overburden pressure from the crater wall and rim crest pinch off the dike at this boundary; the sill then continues to inflate, further raising and fracturing the brittle crater floor. When the intrusion diameter to intrusion depth ratio is smaller than a critical value, the intrusion assumes a laccolith shape with a domed central region. When the ratio exceeds a critical value

  6. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    McLennan, S. M.; Anderson, R. B.; Bell, J. F.; Bridges, J. C.; Calef, F.; Campbell, J. L.; Clark, B. C.; Clegg, S.; Conrad, P.; Cousin, A.; Des Marais, D. J.; Dromart, G.; Dyar, M. D.; Edgar, L. A.; Ehlmann, B. L.; Fabre, C.; Forni, O.; Gasnault, O.; Gellert, R.; Gordon, S.; Grant, J. A.; Grotzinger, J. P.; Gupta, S.; Herkenhoff, K. E.; Hurowitz, J. A.; King, P. L.; Le Mouélic, S.; Leshin, L. A.; Léveillé, R.; Lewis, K. W.; Mangold, N.; Maurice, S.; Ming, D. W.; Morris, R. V.; Nachon, M.; Newsom, H. E.; Ollila, A. M.; Perrett, G. M.; Rice, M. S.; Schmidt, M. E.; Schwenzer, S. P.; Stack, K.; Stolper, E. M.; Sumner, D. Y.; Treiman, A. H.; VanBommel, S.; Vaniman, D. T.; Vasavada, A.; Wiens, R. C.; Yingst, R. A.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; Blank, Jennifer; Weigle, Gerald; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Siebach, Kirsten; Brunet, Claude; Hipkin, Victoria; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Robert, François; Sautter, Violaine; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Fassett, Caleb; Blake, David F.; Bristow, Thomas; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Williams, Rebecca M. E.; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Wolff, Michael; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Pradler, Irina; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.

  7. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars.

    Science.gov (United States)

    McLennan, S M; Anderson, R B; Bell, J F; Bridges, J C; Calef, F; Campbell, J L; Clark, B C; Clegg, S; Conrad, P; Cousin, A; Des Marais, D J; Dromart, G; Dyar, M D; Edgar, L A; Ehlmann, B L; Fabre, C; Forni, O; Gasnault, O; Gellert, R; Gordon, S; Grant, J A; Grotzinger, J P; Gupta, S; Herkenhoff, K E; Hurowitz, J A; King, P L; Le Mouélic, S; Leshin, L A; Léveillé, R; Lewis, K W; Mangold, N; Maurice, S; Ming, D W; Morris, R V; Nachon, M; Newsom, H E; Ollila, A M; Perrett, G M; Rice, M S; Schmidt, M E; Schwenzer, S P; Stack, K; Stolper, E M; Sumner, D Y; Treiman, A H; VanBommel, S; Vaniman, D T; Vasavada, A; Wiens, R C; Yingst, R A

    2014-01-24

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.

  8. Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites

    Science.gov (United States)

    Chojnacki, Matthew; Banks, Maria; Urso, Anna

    2018-01-01

    Aeolian processes have likely been the predominant geomorphic agent for most of Mars’ history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low. PMID:29568719

  9. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars

    NARCIS (Netherlands)

    McLennan, S.M.; Anderson, R.B.; Bell III, J.F.; Bridges, J.C.; Calef III, F.; Campbell, J.L.; Clark, B.C.; Clegg, S.; Conrad, P.; Cousin, A.; Des Marais, D.J.; Dromart, G.; Dyar, M.D.; Edgar, L.A.; Ehlmann, B.L.; Fabre, C.; Forni, O.; Gasnault, O.; Gellert, R.; Gordon, S.; Grant, J.A.; Grotzinger, J.P.; Gupta, S.; Herkenhoff, K.E.; Hurowitz, J.A.; King, P.L.; Mouélic, S.L.; Leshin, L.A.; Léveillé, R.; Lewis, K.W.; Mangold, N.; Maurice, S.; Ming, D.W.; Morris, R.V.; Nachon, M.; Newsom, H.E.; Ollila, A.M.; Perrett, G.M.; Rice, M.S.; Schmidt, M.E.; Schwenzer, S.P.; Stack, K.; Stolper, E.M.; Sumner, D.Y.; Treiman, A.H.; VanBommel, S.; Vaniman, D.T.; Vasavada, A.; Wiens, R.C.; Yingst, R.A.; ten Kate, Inge Loes|info:eu-repo/dai/nl/292012217

    2014-01-01

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold,

  10. BASALT A: Basaltic Terrains in Idaho and Hawaii as Planetary Analogs for Mars Geology and Astrobiology

    Science.gov (United States)

    Hughes, Scott S.; Haberle, Christopher W.; Nawotniak, Shannon E. Kobs; Sehlke, Alexander; Garry, W. Brent; Elphic, Richard C.; Payler, Sam J.; Stevens, Adam H.; Cockell, Charles S.; Brady, Allyson L.; hide

    2018-01-01

    Assessments of field research target regions are described within two notably basaltic geologic provinces as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawaii, USA, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provide rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho; and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawaii. Our evaluation of compositional and textural differences, as well as the effects of syn- and post-eruptive rock alteration, shows that the basaltic terrains in Idaho and Hawaii provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.

  11. Geologic map of the Nepenthes Planum Region, Mars

    Science.gov (United States)

    Skinner, James A.; Tanaka, Kenneth L.

    2018-03-26

    This map product contains a map sheet at 1:1,506,000 scale that shows the geology of the Nepenthes Planum region of Mars, which is located between the cratered highlands that dominate the southern hemisphere and the less-cratered sedimentary plains that dominate the northern hemisphere.  The map region contains cone- and mound-shaped landforms as well as lobate materials that are morphologically similar to terrestrial igneous or mud vents and flows. This map is part of an informal series of small-scale (large-area) maps aimed at refining current understanding of the geologic units and structures that make up the highland-to-lowland transition zone. The map base consists of a controlled Thermal Emission Imaging System (THEMIS) daytime infrared image mosaic (100 meters per pixel resolution) supplemented by a Mars Orbiter Laser Altimeter (MOLA) digital elevation model (463 meters per pixel resolution). The map includes a Description of Map Units and a Correlation of Map Units that describes and correlates units identified across the entire map region. The geologic map was assembled using ArcGIS software by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS project, geodatabase, base map, and all map components are included online as supplemental data.

  12. In Situ Measurement of Atmospheric Krypton and Xenon on Mars with Mars Science Laboratory

    Science.gov (United States)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; hide

    2016-01-01

    Mars Science Laboratorys Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking missions krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  13. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 2: Crater Size-frequency Distribution Curves and Geomorphic Unit Ages

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    In assessing the relative ages of the geomorphic/geologic units, crater counts of the entire unit or nearly the entire unit were made and summed in order to get a more accurate value than obtainable by counts of isolated sections of each unit. Cumulative size-frequency counts show some interesting relationships. Most of the units show two distinct crater populations with a flattening out of the distribution curve at and below 10 km diameter craters. Above this crater size the curves for the different units diverge most notably. In general, the variance may reflect the relative ages of these units. At times, however, in the larger crater size range, these curves can overlap and cross on another. Also the error bars at these larger sizes are broader (and thus more suspect), since counts of larger craters show more scatter, whereas the unit areas remain constant. Occasional clusters of relatively large craters within a given unit, particularly one of limited areal extent, can affect the curve so that the unit might seem to be older than units which it overlies or cuts.

  14. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter

    Science.gov (United States)

    Murchie, S.L.; Mustard, J.F.; Ehlmann, B.L.; Milliken, R.E.; Bishop, J.L.; McKeown, N.K.; Noe Dobrea, E.Z.; Seelos, F.P.; Buczkowski, D.L.; Wiseman, S.M.; Arvidson, R. E.; Wray, J.J.; Swayze, G.; Clark, R.N.; Des Marais, D.J.; McEwen, A.S.; Bibring, J.-P.

    2009-01-01

    Martian aqueous mineral deposits have been examined and characterized using data acquired during Mars Reconnaissance Orbiter's (MRO) primary science phase, including Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral images covering the 0.4-3.9 ??m wavelength range, coordinated with higher-spatial resolution HiRISE and Context Imager images. MRO's new high-resolution measurements, combined with earlier data from Thermal Emission Spectrometer; Thermal Emission Imaging System; and Observatoire pour la Min??ralogie, L'Eau, les Glaces et l'Activiti?? on Mars Express, indicate that aqueous minerals are both diverse and widespread on the Martian surface. The aqueous minerals occur in 9-10 classes of deposits characterized by distinct mineral assemblages, morphologies, and geologic settings. Phyllosilicates occur in several settings: in compositionally layered blankets hundreds of meters thick, superposed on eroded Noachian terrains; in lower layers of intracrater depositional fans; in layers with potential chlorides in sediments on intercrater plains; and as thousands of deep exposures in craters and escarpments. Carbonate-bearing rocks form a thin unit surrounding the Isidis basin. Hydrated silica occurs with hydrated sulfates in thin stratified deposits surrounding Valles Marineris. Hydrated sulfates also occur together with crystalline ferric minerals in thick, layered deposits in Terra Meridiani and in Valles Marineris and together with kaolinite in deposits that partially infill some highland craters. In this paper we describe each of the classes of deposits, review hypotheses for their origins, identify new questions posed by existing measurements, and consider their implications for ancient habitable environments. On the basis of current data, two to five classes of Noachian-aged deposits containing phyllosilicates and carbonates may have formed in aqueous environments with pH and water activities suitable for life. Copyright 2009 by the American

  15. Origin of the outer layer of martian low-aspect ratio layered ejecta craters

    Science.gov (United States)

    Boyce, Joseph M.; Wilson, Lionel; Barlow, Nadine G.

    2015-01-01

    Low-aspect ratio layered ejecta (LARLE) craters are one of the most enigmatic types of martian layered ejecta craters. We propose that the extensive outer layer of these craters is produced through the same base surge mechanism as that which produced the base surge deposits generated by near-surface, buried nuclear and high-explosive detonations. However, the LARLE layers have higher aspect ratios compared with base surge deposits from explosion craters, a result of differences in thicknesses of these layers. This characteristics is probably caused by the addition of large amounts of small particles of dust and ice derived from climate-related mantles of snow, ice and dust in the areas where LARLE craters form. These deposits are likely to be quickly stabilized (order of a few days to a few years) from eolian erosion by formation of duricrust produced by diffusion of water vapor out of the deposits.

  16. Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analysis on Martian soil [1] at Rocknest in Gale Crater. In particular, crystalline phases from scoop 5 were identified and analyzed with the Rietveld method [2]. Refined unit-cell parameters are reported in Table 1. Comparing these unit-cell parameters with those in the literature provides an estimate of the chemical composition of the crystalline phases. For instance, Fig. 1 shows the Mg-content of Fa-Fo olivine as a function of the b unit-cell parameter using literature data. Our refined b parameter is indicated by the black triangle.

  17. Mid-IR Reflectance (DRIFT) Spectral Variations in Basaltic Mineralogy with Direction of Impact at Lonar Crater, India

    Science.gov (United States)

    Basavaiah, N.; Chavan, R. S.; Arif, M.

    2012-12-01

    Identification of spectral changes with the direction of impact has important implications for understanding the impact cratering phenomenon occurring on both terrestrial and extraterrestrial planets and also for geology of the crater. Fortuitously, Lonar Impact Crater (India) is the only well-preserved terrestrial simple crater excavated on Deccan basalts and serves as an excellent analogue to craters on Mars and Moon. An ~570 ka old Lonar crater was suggested to be formed by an oblique impact of a chondritic impactor that struck the pre-impact target from the east into a sequence of six basaltic Deccan flows and created a 1.88 km diameter crater with two layers of ejecta blanket. Here we report preliminary laboratory studies of spectral results on fine-grained rock powers (IR (4000-400 cm-1) Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy. The basalts were collected from two profiles in the east and south sections of the crater wall and the upper most crater rim, which later subdivided into sector-wise samples to carry out a systematic study of spectral properties of Lonar basalts, together with impact related samples of breccias and impact melts. For the first time, data of the shock metamorphism of Lonar basalt is examined using DRIFT spectroscopy. Infrared spectra of rock powders of relatively unshocked and shocked basalts are obtained to document the mineralogical variations and the distribution of primary (e.g. Plagioclase Feldspar, Pyroxene), and secondary Phyllosilicate minerals (e.g. Illite, Smectite, Montmorillonite, Saponite, Serpentine) with direction of impact. The spectral data between pre-impact unshocked and post-impact shocked basalts are interpreted to reflect the effect of shock pressure and alteration that rock have undergone. On western crater rim sector, typical silicate spectral features in 900-1200 cm-1 which attributed to Si-O stretching, are observed to change slightly in the width and shift in position as a result of

  18. Geology of Mars after the first 40 years of exploration

    International Nuclear Information System (INIS)

    Rossi, Angelo Pio; Van Gasselt, Stephan

    2010-01-01

    The knowledge of Martian geology has increased enormously in the last 40 yr. Several missions orbiting or roving Mars have revolutionized our understanding of its evolution and geological features, which in several ways are similar to Earth, but are extremely different in many respects. The impressive dichotomy between the two Martian hemispheres is most likely linked to its impact cratering history, rather than internal dynamics such as on Earth. Mars' volcanism has been extensive, very long-lived and rather constant in its setting. Water was available in large quantities in the distant past of Mars, when a magnetic field and more vigorous tectonics were active. Exogenic forces have been shaping Martian landscapes and have led to a plethora of landscapes shaped by wind, water and ice. Mars' dynamical behavior continues, with its climatic variation affecting climate and geology until very recent times. This paper tries to summarize major highlights in Mars' Geology, and points to deeper and more extensive sources of important scientific contributions and future exploration. (invited reviews)

  19. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the

  20. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon

  1. Methane Seepage on Mars: Where to Look and Why.

    Science.gov (United States)

    Oehler, Dorothy Z; Etiope, Giuseppe

    2017-12-01

    Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available. Key

  2. Lunar and Planetary Science Conference, 20th, Houston, TX, Mar. 13-17, 1989, Proceedings

    International Nuclear Information System (INIS)

    Sharpton, V.L.; Ryder, G.

    1990-01-01

    Topics discussed include the petrology and geochemistry of the moon, the geology of the moon, lunar regolith processes and resources, the petrology and geochemistry of achondrites, comets and interplanetary dust, shock and terrestrial cratering, the geology of Mars, and the geology of Venus. Papers are presented on silicate liquid immiscibility in isothermal crystallization experiments; highly evolved and ultramafic lithologies from Apollo 14 soils; the relationship between orbital, earth-based, and sample data for lunar landing sites; and the volcanotectonic evolution of Mare Frigoris. Attention is also given to glass variants and multiple HASP trends in Apollo 14 regolith breccias, the characterization of lunar ilmenite resources, the U-Th-Pb systematics of the Estherville mesosiderite, and the extraterrestrial halogen and sulfur contents of the stratosphere. Other papers are on argon-40/argon-39 dating of impact craters; the outliers of dust along the southern margin of the Tharsis region, Mars; and the geology of southern Guinevere Planitia, Venus, based on analyses of Goldstone radar data

  3. Centrifuge Impact Cratering Experiments

    Science.gov (United States)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.

    1985-01-01

    The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.

  4. Diversity of Rock Compositions at Gale Crater Observed by ChemCam and APXS on Curiosity, and Comparison to Meteorite and Orbital Observations

    Science.gov (United States)

    Wiens, R. C.; Maurice, S.; Grotzinger, J. P.; Gellert, R.; Mangold, N.; Sautter, V.; Ollila, A.; Dyar, M. D.; Le Mouelic, S.; Ehlmann, B. L.; Clegg, S. M.; Lanza, N.; Cousin, A.; Forni, O.; Gasnault, O.; Lasue, J.; Blaney, D. L.; Newsom, H. E.; Herkenhoff, K. E.; Anderson, R. B.; D'Uston, L.; Bridges, N. T.; Fabre, C.; Meslin, P.; Johnson, J.; Vaniman, D.; Bridges, J.; Dromart, G.; Schmidt, M. E.; Team, M.

    2013-12-01

    Gale crater was selected as the Curiosity landing site because of the apparent sedimentary spectral signatures seen from orbit. Sedimentary materials on Mars have to this point showed very little expression of major element mobility, so compositions of precursor igneous minerals play a strong role in the compositions of sediments. In addition, pebbles and float rocks on Bradbury Rise (sols 0-50, > 324) appear to be mostly igneous in origin, and are assumed to have been carried down from the crater rim. Overall in the first year on Mars ChemCam obtained >75,000 LIBS spectra on > 2,000 observation points, supported by > 1,000 RMI images, and APXS obtained a significant number of observations. These show surprisingly variable compositions. The mean ChemCam compositions for Bradbury Rise dust-free rocks and pebbles (62 locations) give SiO2 = 56%, FeOT = 16% and show high alkalis consistent with Jake Matijevic (sol ~47) APXS Na2O ~6.6 wt%. ChemCam observations on the conglomerate Link (sol 27) gave Rb > 150 ppm and Sr > 1500 ppm. These compositions imply the presence of abundant alkali feldspars in the material infilling the lower parts of Gale crater. They are generally consistent with the more feldspar-rich SNC meteorites but show a radical departure from larger scale orbital observations, e.g., GRS, raising the question of how widespread these compositions are outside of Gale crater. Sedimentary materials at Yellowknife Bay encompassing the Sheepbed (sols 125-300) and Shaler (sols 121, 311-324) units, potentially including Point Lake (sols 301-310) and Rocknest (sols 57-97), appear to have incorporated varying amounts of igneous source materials. Seven rocks investigated at Rocknest show significant additions of Fe, with mean FeOT = 25% (154 locations), suggesting that FeO was a cementing agent. ChemCam observations at Shaler show varying amounts of alkali feldspar (i.e., related to Bradbury Rise), Fe-rich material (Rocknest-like), and potassium-rich material

  5. Mercury's Densely Cratered Surface

    Science.gov (United States)

    1974-01-01

    Mariner 10 took this picture (FDS 27465) of the densely cratered surface of Mercury when the spacecraft was 18,200 kilometers (8085 miles) from the planet on March 29. The dark line across top of picture is a 'dropout' of a few TV lines of data. At lower left, a portion of a 61 kilometer (38 mile) crater shows a flow front extending across the crater floor and filling more than half of the crater. The smaller, fresh crater at center is about 25 kilometers (15 miles) in diameter. Craters as small as one kilometer (about one-half mile) across are visible in the picture.The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.Image Credit: NASA/JPL/Northwestern University

  6. Brightening and Volatile Distribution Within Shackleton Crater Observed by the LRO Laser Altimeter.

    Science.gov (United States)

    Smith, D. E.; Zuber, M. T.; Head, J. W.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Aharonson, O.; Tye, A. R.; Fassett, C. I.; Rosengurg, M. A.; hide

    2012-01-01

    Shackleton crater, whose interior lies largely in permanent shadow, is of interest due to its potential to sequester volatiles. Observations from the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter have enabled an unprecedented topographic characterization, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting little floor deposition since crater formation over 3 billion years ago. At 1064 nm the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explainable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a 1-mm-thick layer containing approx 20% surficial ice is an alternative possibility.

  7. ChemCam Passive Sky Spectroscopy at Gale Crater, Mars: Interannual Variability in Dust Aerosol Particle Size, Missing Water Vapor, and the Molecular Oxygen Problem

    Science.gov (United States)

    McConnochie, T. H.; Smith, M. D.; Wolff, M. J.; Bender, S. C.; Lemmon, M. T.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lasue, J.; Meslin, P. Y.; Harri, A. M.; Genzer, M.; Kemppinen, O.; Martinez, G.; DeFlores, L. P.; Blaney, D. L.; Johnson, J. R.; Bell, J. F., III; Trainer, M. G.; Lefèvre, F.; Atreya, S. K.; Mahaffy, P. R.; Wong, M. H.; Franz, H. B.; Guzewich, S.; Villanueva, G. L.; Khayat, A. S.

    2017-12-01

    The Mars Science Laboratory's (MSL) ChemCam spectrometer measures atmospheric aerosol properties and gas abundances by operating in passive mode and observing scattered sky light at two different elevation angles. We have previously [e. g. 1, 2] presented the methodology and results of these ChemCam Passive Sky observations. Here we will focus on three of the more surprising results that we have obtained: (1) depletion of the column water vapor at Gale Crater relative to that of the surrounding region combined with a strong enhancement of the local column water vapor relative to pre-dawn in-situ measurements, (2) an interannual change in the effective particle size of dust aerosol during the aphelion season, and (3) apparent seasonal and interannual variability in molecular oxygen that differs significantly from the expected behavior of a non-condensable trace gas and differs significantly from global climate model expectations. The ChemCam passive sky water vapor measurements are quite robust but their interpretation depends on the details of measurements as well as on the types of water vapor vertical distributions that can be produced by climate models. We have a high degree of confidence in the dust particle size changes but since aerosol results in general are subject to a variety of potential systematic effects our particle size results would benefit from confirmation by other techniques [c.f. 3]. For the ChemCam passive sky molecular oxygen results we are still working to constrain the uncertainties well enough to confirm the observed surprising behavior, motivated by similarly surprising atmospheric molecular oxygen variability observed by MSL's Sample Analysis at Mars (SAM) instrument [4]. REFERENCES: [1] McConnochie, et al. (2017), Icarus (submitted). [2] McConnochie, et al. (2017), abstract # 3201, The 6th International Workshop on the Mars Atmosphere: Granada, Spain. [3] Vicente-Retortillo et al. (2017), GRL, 44. [4] Trainer et al. (2017), 2017 AGU Fall

  8. Scaling of cratering experiments: an analytical and heuristic approach to the phenomenology

    International Nuclear Information System (INIS)

    Killian, B.G.; Germain, L.S.

    1977-01-01

    The phenomenology of cratering can be thought of as consisting of two phases. The first phase, where the effects of gravity are negligible, consists of the energy source dynamically imparting its energy to the surroundings, rock and air. As illustrated in this paper, the first phase can be scaled if: radiation effects are negligible, experiments are conducted in the same rock material, time and distance use the same scaling factor, and distances scale as the cube root of the energy. The second phase of cratering consists of the rock, with its already developed velocity field, being thrown out. It is governed by the ballistics equation, and gravity is of primary importance. This second phase of cratering is examined heuristically by examples of the ballistics equation which illustrate the basic phenomena in crater formation. When gravity becomes significant, in addition to the conditions for scaling imposed in the first phase, distances must scale inversely as the ratio of gravities. A qualitative relationship for crater radius is derived and compared with calculations and experimental data over a wide range of energy sources and gravities

  9. Emplacement of Widespread Fe/Mg Phyllosilicate Layer in West Margaritifer Terra, Mars

    Science.gov (United States)

    Seelos, K. D.; Maxwell, R. E.; Seelos, F. P.; Buczkowski, D.; Viviano-Beck, C. E.

    2017-12-01

    West Margaritifer Terra is located at the eastern end of Valles Marineris at the complex intersection of chaos terrains, cratered highlands, and multiple generations of outflow channels. Adjacent regions host layered phyllosilicates thought to indicate early Mars pedogenic and/or ground water-based alteration (e.g., Le Deit et al., 2012), and indeed, hydrologic modeling supports prolonged aqueous activity in the Noachian and Hesperian eras (Andrews-Hanna and Lewis, 2011). The remnant high-standing plateaus in West Margaritifer (0-15°S, 325-345°E) host numerous phyllosilicate-bearing outcrops as well and are the focus of this study. Here, we performed a systematic mapping and characterization of mineralogy and morphology of these deposits in order to assess similarity to other layered phyllosilicates and evaluate potential formation mechanisms. Utilizing multiple remote sensing datasets, we identified three types of phyllosilicate exposures distributed throughout the region: 1) along upper chaos fracture walls, 2) in erosional windows on the plains, and 3) in crater walls and ejecta. Outcrops are spectrally indicative of Fe/Mg smectite (most similar to saponite) and only rare, isolated occurrences of Al-phyllosilicate were observed. Morphologically, the layer is a few to 10 m thick, light-toned, polygonally fractured at decameter scales, and vertical subparallel banding is evident in places. These characteristics were used along with spatial distribution, elevation, and geologic context to evaluate 4 potential formation mechanisms: fluvio-lacustrine, pedogenesis, diagenesis, and hydrothermal alteration. We find that the widespread distribution and spectral homogeneity of the layer favors formation via groundwater alteration and/or pedogenic weathering. This is consistent with interpretations of similar layered phyllosilicates in NW Noachis Terra and the Valles Marineris plains to the west, and significantly extends the area over which these aqueous processes

  10. Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012

    Science.gov (United States)

    Quinn, Philip R.; Schwadron, Nathan A.; Townsend, Larry W.; Wimmer-Schweingruber, Robert F.; Case, Anthony W.; Spence, Harlan E.; Wilson, Jody K.; Joyce, Colin J.

    2017-08-01

    Radiation in the form of solar energetic particles (SEPs) presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth's protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements) is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon and from the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm-2 and 5.0 g cm-2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.

  11. Poás volcano in Costa Rica as a hydrothermal analog for Mars

    Science.gov (United States)

    Elmaarry, M. R.; Hynek, B. M.

    2017-12-01

    Mars has experienced intensive volcanic and impact activity early in its history, coinciding with a similarly extensive hydrologic activity on a global scale. These activities constitute the main ingredients of hydrothermal activity. Data acquired from the study of Martian meteorites, remote sensing spectral observations, and robotic rovers has shown the surface of Mars to be mineralogically diverse including mineral assemblages that resemble those of analogous hydrothermal systems on Earth. In particular, evidence for extensive acid-sulfate weathering has been observed by the MERs at Gusev and Meridiani, as well as by MSL at Gale crater. Furthermore, there is growing evidence for silicic volcanism on Mars as indicated by the detection of silica-rich mudstone at Gale containing tridymite and cristobalite coupled with spectral observations indicative of felsic rocks in geographically disparate locations on Mars. For that, the Poás volcano in Costa Rica offers a geologic setting that can be analogous to similar environments on Mars. The Poás volcano is a basaltic andesite stratovolcano in central Costa Rica. Its caldera houses a highly acidic lake inside the caldera 130 m below the crater rim. The volcano has been active in recent historical times, and is currently displaying intensive activity since Apr 2017. Unaltered andesitic basalts collected from the 1953-1955 magmatic activity are mainly composed of plagioclase and minor amounts of orthopyroxene and olivine. We collected samples during our fieldwork in March 2017 (few weeks before its eruption) from fumaroles inside the caldera. The fumaroles were emitting gases at 92°C, and the acidic lake minor abundances of hematite, anatase, and amorphous silica. Most of these minerals have been observed on Mars under potentially similar settings. We plan to continue our investigation by carrying out additional analyses and compare to samples collected from earlier campaigns to gain a better understanding of how the

  12. Textures of the soils and rocks at Gusev crater from Spirit's Microscopic Imager

    DEFF Research Database (Denmark)

    Herkenhoff, K.E.; Squyres, S.W.; Arvidson, R.

    2004-01-01

    The Microscopic Imager on the Spirit rover analyzed the textures of the soil and rocks at Gusev crater on Mars at a resolution of 100 micrometers. Weakly bound agglomerates of dust are present in the soil near the Columbia Memorial Station. Some of the brushed or abraded rock surfaces show igneous...... textures and evidence for alteration rinds, coatings, and veins consistent with secondary mineralization. The rock textures are consistent with a volcanic origin and subsequent alteration and/or weathering by impact events, wind, and possibly water....

  13. Leakage of active crater lake brine through the north flank at Rincon de la Vieja volcano, northwest Costa Rica, and implications for crater collapse

    Science.gov (United States)

    Kempter, K.A.; Rowe, G.L.

    2000-01-01

    de la Vieja. The distribution of thermal water types at Rincon de la Vieja strongly indicates that formation of the north-flank ACS waters is not due to mixing of shallow, steam-heated AS water with deep-seated NC water. More likely, hyper-acidic brines formed in the Active Crater area are migrating through permeable zones in the volcanic strata that make up the Active Crater's north flank. Dissolution and shallow subsurface alteration of north-flank volcanoclastic material by interaction with acidic lake brine, particularly in the more permeable tephra units, could weaken the already oversteepened north flank of the Active Crater. Sector collapse of the Active Crater, with or without a volcanic eruption, represents a potential threat to human lives, property, and ecosystems at Rincon de la Vieja volcano.

  14. Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime

    Science.gov (United States)

    Ivanov, B. A.

    2018-01-01

    The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.

  15. Ballistic Performance Model of Crater Formation in Monolithic, Porous Thermal Protection Systems

    Science.gov (United States)

    Miller, J. E.; Christiansen, E. L.; Deighton, K. D.

    2014-01-01

    Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.

  16. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    Science.gov (United States)

    Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.

    2008-01-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater

  17. Global survey of lunar wrinkle ridge formation times

    Science.gov (United States)

    Yue, Z.; Michael, G. G.; Di, K.; Liu, J.

    2017-11-01

    Wrinkle ridges are a common feature of the lunar maria and record subsequent contraction of mare infill. Constraining the timing of wrinkle ridge formation from crater counts is challenging because they have limited areal extent and it is difficult to determine whether superposed craters post-date ridge formation or have alternatively been uplifted by the deformation. Some wrinkle ridges do allow determination to be made. This is possible where a ridge shows a sufficiently steep boundary or scarp that can be identified as deforming an intersecting crater or the crater obliterates the relief of the ridge. Such boundaries constitute only a small fraction of lunar wrinkle ridge structures yet they are sufficiently numerous to enable us to obtain statistically significant crater counts over systems of structurally related wrinkle ridges. We carried out a global mapping of mare wrinkle ridges, identifying appropriate boundaries for crater identification, and mapping superposed craters. Selected groups of ridges were analyzed using the buffered crater counting method. We found that, except for the ridges in mare Tranquilitatis, the ridge groups formed with average ages between 3.5 and 3.1 Ga ago, or 100-650 Ma after the oldest observable erupted basalts where they are located. We interpret these results to suggest that local stresses from loading by basalt fill are the principal agent responsible for the formation of lunar wrinkle ridges, as others have proposed. We find a markedly longer interval before wrinkle ridge formation in Tranquilitatis which likely indicates a different mechanism of stress accumulation at this site.

  18. Transfer of impact ejecta material from the surface of Mars to Phobos and Deimos.

    Science.gov (United States)

    Chappaz, Loïc; Melosh, Henry J; Vaquero, Mar; Howell, Kathleen C

    2013-10-01

    The Russian Phobos-Grunt spacecraft originally planned to return a 200 g sample of surface material from Phobos to Earth. Although it was anticipated that this material would mainly be from the body of Phobos, there is a possibility that such a sample may also contain material ejected from the surface of Mars by large impacts. An analysis of this possibility is completed by using current knowledge of aspects of impact cratering on the surface of Mars and the production of high-speed ejecta that might reach Phobos or Deimos.

  19. The CheMin XRD on the Mars Science Laboratory Rover Curiosity: Construction, Operation, and Quantitative Mineralogical Results from the Surface of Mars

    Science.gov (United States)

    Blake, David F.

    2015-01-01

    The Mars Science Laboratory mission was launched from Cape Canaveral, Florida on Nov. 26, 2011 and landed in Gale crater, Mars on Aug. 6, 2012. MSL's mission is to identify and characterize ancient "habitable" environments on Mars. MSL's precision landing system placed the Curiosity rover within 2 km of the center of its 20 X 6 km landing ellipse, next to Gale's central mound, a 5,000 meter high pile of laminated sediment which may contain 1 billion years of Mars history. Curiosity carries with it a full suite of analytical instruments, including the CheMin X-ray diffractometer, the first XRD flown in space. CheMin is essentially a transmission X-ray pinhole camera. A fine-focus Co source and collimator transmits a 50µm beam through a powdered sample held between X-ray transparent plastic windows. The sample holder is shaken by a piezoelectric actuator such that the powder flows like a liquid, each grain passing in random orientation through the beam over time. Forward-diffracted and fluoresced X-ray photons from the sample are detected by an X-ray sensitive Charge Coupled Device (CCD) operated in single photon counting mode. When operated in this way, both the x,y position and the energy of each photon are detected. The resulting energy-selected Co Kalpha Debye-Scherrer pattern is used to determine the identities and amounts of minerals present via Rietveld refinement, and a histogram of all X-ray events constitutes an X-ray fluorescence analysis of the sample.The key role that definitive mineralogy plays in understanding the Martian surface is a consequence of the fact that minerals are thermodynamic phases, having known and specific ranges of temperature, pressure and composition within which they are stable. More than simple compositional analysis, definitive mineralogical analysis can provide information about pressure/temperature conditions of formation, past climate, water activity and the like. Definitive mineralogical analyses are necessary to establish

  20. Large-scale impact cratering on the terrestrial planets

    International Nuclear Information System (INIS)

    Grieve, R.A.F.

    1982-01-01

    The crater densities on the earth and moon form the basis for a standard flux-time curve that can be used in dating unsampled planetary surfaces and constraining the temporal history of endogenic geologic processes. Abundant evidence is seen not only that impact cratering was an important surface process in planetary history but also that large imapact events produced effects that were crucial in scale. By way of example, it is noted that the formation of multiring basins on the early moon was as important in defining the planetary tectonic framework as plate tectonics is on the earth. Evidence from several planets suggests that the effects of very-large-scale impacts go beyond the simple formation of an impact structure and serve to localize increased endogenic activity over an extended period of geologic time. Even though no longer occurring with the frequency and magnitude of early solar system history, it is noted that large scale impact events continue to affect the local geology of the planets. 92 references

  1. Evolution of iron crust and clayey Ferralsol in deeply weathered sandstones of Marília Formation (Western Minas Gerais State, Brazil)

    Science.gov (United States)

    Rosolen, Vania; Bueno, Guilherme Taitson; Melfi, Adolpho José; Montes, Célia Regina; de Sousa Coelho, Carla Vanessa; Ishida, Débora Ayumi; Govone, José Silvio

    2017-11-01

    Extensive flat plateaus are typical landforms in the cratonic compartment of tropical regions. Paleoclimate, pediplanation, laterization, and dissection have created complex and distinct geological, geomorphological, and pedological features in these landscapes. In the Brazilian territory, the flat plateau sculpted in sandstone of Marília Formation (Neocretaceous) belonging to the Sul-Americana surface presents a very clayey and pisolitic Ferralsol (Red and Yellow Latossolo in the Brazilian soil classification). The clayey texture of soil and the pisolites have been considered as weathering products of a Cenozoic detritical formation which is believed to overlay the Marília Formation sandstones. Using data of petrography (optical microscopy and SEM), mineralogy (RXD), and macroscopic structures (description in the field of the arrangement of horizons and layers), a complete profile of Ferralsol with ferricrete and pisolites was studied. The complex succession of facies is in conformity with a sedimentary structure of Serra da Galga member (uppermost member of Marília Formation). The hardening hematite concentration appears as layered accretions in the subparallel clayey lenses of sandstone saprolite, preserving its structure. Iron contents varied according to different soil fabrics. Higher concentrations of iron are found in the massive ferricrete or in pisolites in the mottled horizon. Kaolinite is a dominant clay mineral and shows two micro-organizations: (1) massive fabric intrinsic to the sedimentary rock, and (2) reworked in pisolites and illuviated features. The pisolites are relicts of ferricrete in the soft bioturbated topsoil. The continuous sequence of ferricrete from saprolite to the Ferralsol indicates that the regolith is autochthonous, developed directly from sandstones of Marília Formation, through a long and intense process of laterization.

  2. Carbonate Mineral Formation on Mars: Clues from Stable Isotope Variation Seen in Cryogenic Laboratory Studies of Carbonate Salts

    Science.gov (United States)

    Socki, Richard; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K.

    2013-01-01

    The geologic history of water on the planet Mars is intimately connected to the formation of carbonate minerals through atmospheric CO2 and its control of the climate history of Mars. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms readily when a rise in pH occurs as a result of carbon dioxide degassing quickly from freezing Ca-bicarbonate-rich water solutions. This is a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lakebeds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. We report here the results of a series of laboratory experiments that were conducted to simulate potential cryogenic carbonate formation on the planet Mars. These results indicate that carbonates grown under martian conditions (controlled atmospheric pressure and temperature) show enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values with average delta13C(DIC-CARB) values of 20.5%0 which exceed the expected equilibrium fractionation factor of [10(sup 3) ln alpha = 13%0] at 0 degC. Oxygen isotopes showed a smaller enrichment with delta18O(H2O-CARB) values of 35.5%0, slightly exceeding the equilibrium fractionation factor of [10(sup 3) ln alpha = 34%0 ] at 0degC. Large kinetic carbon isotope effects during carbonate precipitation could substantially affect the carbon isotope evolution of CO2 on Mars allowing for more efficient removal of 13C from the Noachian atmosphere enriched by atmospheric loss. This mechanism would be consistent with the observations of large carbon isotope variations in martian materials despite the

  3. A model for the dynamics of crater-centered intrusion: Application to lunar floor-fractured craters

    Science.gov (United States)

    Thorey, Clément; Michaut, Chloé

    2014-01-01

    Lunar floor-fractured craters are a class of craters modified by post-impact mechanisms. They are defined by distinctive shallow floors that are convex or plate-like, sometimes with a wide floor moat bordering the wall region. Radial, concentric, and polygonal floor fractures suggest an endogenous process of modification. Two mechanisms have been proposed to account for such deformations: viscous relaxation and spreading of a magma intrusion at depth below the crater. To test the second assumption and bring more constraints on the intrusion process, we develop a model for the dynamics of magma spreading below an elastic overlying layer with a crater-like topography. As predicted in earlier more qualitative studies, the increase in lithostatic pressure at the crater wall zone prevents the intrusion from spreading laterally, leading to the thickening of the intrusion. Additionally, our model shows that the final crater floor appearance after the uplift, which can be convex or flat, with or without a circular moat bordering the wall zone, depends on the elastic thickness of the layer overlying the intrusion and on the crater size. Our model provides a simple formula to derive the elastic thickness of the overlying layer hence a minimum estimate for the intrusion depth. Finally, our model suggests that crust redistribution by cratering must have controlled magma ascent below most of these craters.

  4. The UV Sensor Onboard the Mars Science Laboratory Mission: Correction and Generation of UV Fluxes

    Science.gov (United States)

    Vicente-Retortillo, Á.; Martinez, G.; Renno, N. O.; Lemmon, M. T.; Gomez-Elvira, J.

    2017-12-01

    The Rover Environmental Monitoring Station UV sensor (UVS) onboard the Mars Science Laboratory mission has completed more than 1750 sols of measurements, providing an unprecedented coverage ranging from diurnal to interannual times scales [1,2]. The UVS is comprised of six photodiodes to measure the UV flux in the ranges 200-380, 320-380, 280-320, 200-280, 230-290 and 300-350 nm [3]. UV fluxes in units of W/m2 can be found in the NASA Planetary Data System (PDS). However, dust deposition on the UVS and a non-physical discontinuity in the calibration functions when the solar zenith angle is above 30º cause errors in these fluxes that increase with time. We have developed a technique to correct UV fluxes from the effects of dust degradation and inconsistencies in the angular response of the UVS. The photodiode output currents (available in the PDS as lower-level TELRDR products), ancillary data records (available in the PDS as ADR products) and dust opacity values derived from Mastcam observations are used for performing the corrections. The corrections have been applied to the UVA band (320-380 nm) for the first 1000 sols of the mission, providing excellent results [4]. We plan to correct the UV fluxes on each of the six UVS bands and to make these results available in the PDS. Data products generated by this study will allow comparisons of the UV radiation environment at Gale crater with that at the locations of the future missions ExoMars 2020 and Mars 2020, as well as the assessment of the potential survivability of biological contaminants brought to Mars from Earth. References: [1] Smith, M. D., et al. (2016), Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes, Icarus, 280, 234-248. [2] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, Geophys. Res. Lett., 44, 3502-3508. [3] Gómez-Elvira, J., et al. (2012), REMS: The environmental sensor

  5. Mapping and dating based evolution studies of the Niger Vallis outflow channel, Mars

    Science.gov (United States)

    Kukkonen, S.; Kostama, V.-P.

    2018-04-01

    Niger Vallis is one of the four large outflow channel systems in the eastern Hellas rim region of Mars. Niger, as well as the other nearby valles, is assumed to have been carved by water and later covered by ice-rich deposits. Thus, it plays a significant role both in the fluvial and glacial evolution of the region. This work presents the photogeological mapping and crater count dating results of the Niger Vallis system achieved based on the images of the ConTeXt (CTX) and High Resolution Imaging Science Experiment (HiRISE) cameras of Mars Reconnaissance Orbiter (MRO). The results show that Niger Vallis formed in at least two stages. The southern branch of Niger Vallis originated from Ausonia Cavus, ∼3.7-3.9 Ga ago, whereas the northern branch formed from Peraea Cavus, ∼3.3-3.4 Ga ago. Both of the time scales correspond to the volcanic activity phases of the nearby highland volcanoes of Tyrrhenus and Hadriacus Montes. The fluvial activity of Niger Vallis was not, however, as intense as the activity of the other nearby outflow channels, and it seems to have weakened soon after the formation of the northern branch. The outflow channel was resurfaced again ∼0.9-1.5 Ga ago, probably by regional fluvial activity. After that, the floor of Niger Vallis was covered by lineated valley fills and corresponding ice-rich deposits, the formation of which ended ∼220-470 Ma ago, or not later than ∼110 Ma ago. Although the origin of the deposits was probably related to contemporary climate conditions, the emplacement of some deposits, or even their formation, may have been contributed by impact events. After lineated valley fill formation, the region was resurfaced several times, probably because of changes in regional climatic or endogenic circumstances.

  6. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  7. The isostatic state of Mead crater

    Science.gov (United States)

    Banerdt, W. B.; Konopliv, A. S.; Rappaport, N. J.; Sjogren, W. L.; Grimm, R. E.; Ford, P. G.

    1994-01-01

    We have analyzed high-resolution Magellan Doppler tracking data over Mead crater, using both line-of-sight and spherical harmonic methods, and have found a negative gravity anomaly of about 4-5 mgal (at spacecraft altitude, 182 km). This is consistent with no isostatic compensation of the present topography; the uncertainty in the analysis allows perhaps as much as 30% compensation at shallow dpeths (approximately 25 km). This is similar to observations of large craters on Earth, which are not generally compensated, but contrasts with at least some lunar basins which are inferred to have large Moho uplifts and corresponding positive Bouguer anomalies. An uncompensated load of this size requires a lithosphere with an effective elastic lithosphere thickness greater than 30 km. In order for the crust-mantle boundary not to have participated in the deformation associated with the collapse of the transient cavity during the creation of the crater, the yield strength near the top of the mantle must have been significantly higher on Earth and Venus than on the Moon at the time of basin formation. This might be due to increased strength against frictional sliding at the higher confining pressures within the larger planets. Alternatively, the thinner crusts of Earth and Venus compared to that of the Moon may result in higher creep strength of the upper mantle at shallower depths.

  8. Using Outcrop Exposures on the Road to Yellowknife Bay to Build a Stratigraphic Column, Gale Crater, Mars

    Science.gov (United States)

    Stack, K. M.; Grotzinger, J. P.; Sumner, D.; Ehlmann, B. L.; Milliken, R. E.; Eigenbrode, J. L.; Gupta, S.; Williams, R. M. E.; Kah, L. C.; Lewis, K. W.

    2013-01-01

    Since landing in Gale Crater on August 5, 2012, the Curiosity rover has driven 450 m east, descending approximately 15 m in elevation from the Bradbury landing site to Yellowknife Bay. Outcrop exposure along this drive has been discontinuous, but isolated outcrops may represent windows into underlying inplace stratigraphy. This study presents an inventory of outcrops targeted by Curiosity (Figs. 1-2), grouped by lithological properties observed in Mastcam and Navcam imagery. Outcrop locations are placed in a stratigraphic context using orbital imagery and first principles of stratigraphy. The stratigraphic models presented here represent an essential first step in understanding the relative age relationships of lithological units encountered at the Curiosity landing site. Such observations will provide crucial context for assessing habitability potential of ancient Gale crater environments and organic matter preservation.

  9. Determination of chemical composition of soils and rocks at the MER landing sites Gusev crater and Meridiani Planum using the APXS

    Science.gov (United States)

    Brueckner, J.

    2004-05-01

    The new Alpha Particle X-Ray Spectrometer (APXS) is a small, light-weight instrument to obtain x-ray spectra from Martian surface samples. The sensor head contains a high-resolution x-ray detector that is surrounded by a circle of radioactive Cm-244 sources. Alpha and x-ray radiation emitted by the sources is used to induce x-ray excitation in the sample. Elements from sodium to zinc (increasing by atomic weight) are detected and their concentrations determined. The APXS is mounted on each Instrument Deployment Device (IDD) of the two Mars Exploration Rovers (MER) Spirit and Opportunity. Rover Spirit landed in the large Gusev crater that seems to have been altered by water activities in the past based on evidence of orbital images. Rover Opportunity landed in a very small crater of the Meridiani Planum, where the mineral hematite that points to water-related processes is expected to be found. Inside the little crater, a light-colored outcrop is exposed that shows widespread fine layering. The first APXS high-resolution x-ray spectrum of a Gusev soil indicated many similarities to the composition of the Mars Pathfinder (MPF) and Viking soils. However, differences are also noticeable: Low-Z elements are somewhat higher compared to MPF soils, while high-Z elements are depleted, notably Ti. Potassium in the soils reflects the K concentration of the local rocks at the different landing sites pointing toward a local contribution to the soil's composition. The Rock Abrasion Tool was used to grind the first rock on Mars at Gusev: Adirondack's undisturbed and ground surface was measured by the APXS. The composition of its fresh surface is different from the MPF soilfree rock, noticeably in Mg and Al, and clearly exhibits a basaltic nature related to the composition of basaltic shergottites. The first rock at the Meridiani crater outcrop (dubbed Robert-E) exhibited a very high sulfur concentration, more than a factor of 15 compared to rock Adirondack, indicating it is

  10. Recurrence Rate and Magma Effusion Rate for the Latest Volcanism on Arsia Mons, Mars

    Science.gov (United States)

    Richardson, Jacob A.; Wilson, James A.; Connor, Charles B.; Bleacher, Jacob E.; Kiyosugi, Koji

    2016-01-01

    Magmatism and volcanism have evolved the Martian lithosphere, surface, and climate throughout the history of Mars. Constraining the rates of magma generation and timing of volcanism on the surface clarifies the ways in which magma and volcanic activity have shaped these Martian systems. The ages of lava flows on other planets are often estimated using impact crater counts, assuming that the number and size-distribution of impact craters per unit area reflect the time the lava flow has been on the surface and exposed to potential impacts. Here we show that impact crater age model uncertainty is reduced by adding stratigraphic information observed at locations where neighboring lavas abut each other, and demonstrate the significance of this reduction in age uncertainty for understanding the history of a volcanic field comprising 29 vents in the 110-kilometer-diameter caldera of Arsia Mons, Mars. Each vent within this caldera produced lava flows several to tens of kilometers in length; these vents are likely among the youngest on Mars, since no impact craters in their lava flows are larger than 1 kilometer in diameter. First, we modeled the age of each vent with impact crater counts performed on their corresponding lava flows and found very large age uncertainties for the ages of individual vents, often spanning the estimated age for the entire volcanic field. The age model derived from impact crater counts alone is broad and unimodal, with estimated peak activity in the field around 130Ma (megaannum, 1 million years). Next we applied our volcano event age model (VEAM), which uses a directed graph of stratigraphic relationships and random sampling of the impact crater age determinations to create alternative age models. Monte Carlo simulation was used to create 10,000 possible vent age sets. The recurrence rate of volcanism is calculated for each possible age set, and these rates are combined to calculate the median recurrence rate of all simulations. Applying this

  11. In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids

    Science.gov (United States)

    Yasui, Minami; Arakawa, Masahiko; Hasegawa, Sunao; Fujita, Yukihiro; Kadono, Toshihiko

    2012-11-01

    Recent studies of impact craters formed on low-density asteroids led to the proposal of a new crater formation mechanism dominated by pore collapse and compaction. Thus, it is important to study the crater formation process associated with the projectile penetration on porous cohesive targets. Laboratory impact experiments were conducted for a porous gypsum target with porosity of 50%, and flash X-rays were used to visualize the interior of the target for in situ observation of crater formation and projectile penetration. Spherical projectiles made of three different materials, stainless steel, aluminum, and nylon were impacted at 1.9-2.4 km/s (low-velocity impact) and 5.6-6.4 km/s (high-velocity impact) by using a two-stage light-gas gun. Two imaging plates were used to take two X-ray images at a different delay time from the impact moment for one shot. Two types of crater cavity shape were found on the porous gypsum target, that is, penetration holes or hemispherical cavities, depending on the projectile size and density, and the impact velocity. The drag coefficient of a projectile was determined by measuring the penetration depth changing with time, and we found that it was closely related to the crater cavity shape: it was about 0.9 for a penetration hole, while it was 2.3-3.9 for a hemispherical cavity. This large value for a hemispherical cavity could have been caused by the deformation or the disruption of the projectile. The cratering efficiency, ρtVcr(t)/mp, was found to have a power law relationship to the scaling time for crater growth, πt = vit/rp, where vi is the impact velocity, rp is the projectile radius, and t is the time after the impact, and all data for stainless steel and aluminum projectiles merged completely and could be fitted by a power-law equation of ρtVcr(t)/mp=2.69×10-1πt1.10. Furthermore, the scaled crater volume, πV = Vcr_finalρt/mp, where Vcr_final is the final crater cavity volume, ρt is the target density, and mp is the

  12. Mars Stratigraphy Mission

    Science.gov (United States)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  13. Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012

    Directory of Open Access Journals (Sweden)

    Quinn Philip R.

    2017-01-01

    Full Text Available Radiation in the form of solar energetic particles (SEPs presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth’s protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER onboard the Lunar Reconnaissance Orbiter (LRO at the Moon and from the Radiation Assessment Detector (RAD on the Mars Science Laboratory (MSL during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm−2 and 5.0 g cm−2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.

  14. A radar-echo model for Mars

    International Nuclear Information System (INIS)

    Thompson, T.W.; Moore, H.J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed

  15. My Changing Perception of Mars: A Whipple Award Lecture

    Science.gov (United States)

    Malin, M. C.

    2017-12-01

    I have been studying Mars for 46+ years. My initial studies of the planet were mentored by Bruce Murray (my Ph.D. advisor) and Bob Sharp. My 4 years as Bruce's student were the most productive and exciting of my early career, during which I wrote or participated in a dozen published works. My early efforts on Mars, based on Mariner 9 images, culminated in my Ph.D. dissertation, the last paragraph of which, written in 1975, read: "In summary, Mars appears to have had a complex early history, complete with significant atmospheric and some fluid erosion. Just as the polar layered deposits are believed to record the recent history of Mars, so may the ancient layered deposits — the intercrater plains — record the most primitive history of Mars. Detailed studies of Martian stratigraphy in the distant future may be as intellectually rewarding as the studies of terrestrial stratigraphy are today."Welcome to the distant future! During my student years with Murray and Sharp, I concluded that images of significantly higher spatial resolution were needed to unravel the geologic story hinted at in the Mariner 9 data. For 10 years I made the case for aerial photo-like high resolution imaging, to highly skeptical science and engineering communities. With Ed Danielson (of JPL and then Caltech) and a group of young engineers he recruited, we succeeded in convincing advisory groups and a NASA selection board to fly the Mars Observer Camera, that included early 1980's innovations such as a 32-bit microprocessor, a 100 MB solid state memory, gate arrays for instrument control, and a 35 cm aperture telescope with an f/2 primary and a secondary mirror with 8-fold magnification to achieve 3.7 µrad/pixel scale (1.4 m/pxl from 378 km altitude). Although MO failed, the MOC was reflown on MGS and my colleague Ken Edgett and I found evidence for: widespread water-lain sedimentary rock, persistent surficial water flow and ponding in bodies of standing water, gullies that may indicate the

  16. Mars Science Laboratory Rover System Thermal Test

    Science.gov (United States)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  17. Basaltic rocks analyzed by the Spirit rover in Gusev crater

    Science.gov (United States)

    McSween, H.Y.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Crumpler, L.S.; Des Marias, D.J.; Farmer, J.D.; Gellert, Ralf; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L.A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Klingelhoefer, G.; Knudson, A.T.; McLennan, S.; Milam, K.A.; Moersch, J.E.; Morris, R.V.; Rieder, R.; Ruff, S.W.; De Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Wyatt, M.B.; Yen, A.; Zipfel, J.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ???25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mo??ssbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  18. Huygens Crater: Insights into Noachian Volcanism, Stratigraphy, and Aqueous Processes

    Science.gov (United States)

    Ackiss, S. E.; Wray, J. J.; Seelos, K. D.; Niles, P. B.

    2015-01-01

    Huygens crater is a well preserved peak ring structure on Mars centered at 13.5 deg S, 55.5 deg E in the Noachian highlands between Terras Tyrrhena and Sabaea near the NW rim of Hellas basin. With a diameter of approximately 470 km, it uplifted and exhumed pre-Noachian crustal materials from depths greater than 25 km, penetrating below the thick, ubiquitous layer of Hellas ejecta. In addition, Huygens served as a basin for subsequent aqueous activity, including erosion/deposition by fluvial valley networks and subsurface alteration that is now exposed by smaller impacts. Younger mafic-bearing plains that partially cover the basin floor and surrounding intercrater areas were likely emplaced by later volcanism.

  19. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements.

    Science.gov (United States)

    Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M

    2014-08-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼10 4  m 2 to ∼10 7  m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼10 2  m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I  = 452 J m -2  K -1  s -1/2 (SI units used throughout this article) is found at YKB followed by PL with I  = 306 and RCK with I  = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.

  20. Shock-induced kelyphite formation in the core of a complex impact crater

    Science.gov (United States)

    Deseta, Natalie; Boonsue, Suporn; Gibson, Roger L.; Spray, John G.

    2017-10-01

    We present a compositional and textural analysis of shock-induced microtextures in garnet porphyroblasts in migmatitic garnet-cordierite-biotite paragneisses from the centre of the Vredefort impact structure, South Africa. Detailed imaging and major element analysis of deformation features in, and adjacent to, the garnet porphyroblasts record a complex, heterogeneous distribution of shock effects at the microscale. As the most competent silicate mineral in the assemblage, with the highest Hugoniot Elastic Limit and a wide pressure-temperature stability field, the porphyroblastic garnet preserves a more diverse shock deformation response compared to minerals such as quartz and feldspar, which underwent more comprehensive shock metamorphism and subsequent annealing. The garnet porphyroblasts display pre-impact fractures that are overprinted by later intra-granular Hertzian and distinctive planar fractures associated with the impact event. Shock-induced strain localization occurred along internal slip planes and defects, including pre-existing fractures and inclusion boundaries in the garnet. Symplectitic (kelyphitic) coronas commonly enclose the garnet porphyroblasts, and inhabit intra-granular fractures. The kelyphite assemblage in fractures with open communication beyond garnet grain boundaries is characterized by orthopyroxene—cordierite—sapphirine. Conversely, the kelyphite assemblage in closed-off intra-granular fractures is highly variable, comprising spatially restricted combinations of a secondary garnet phase with a majoritic component, Al-rich orthopyroxene, sapphirine and cordierite. The impedance contrast between garnet porphyroblasts and their inclusions further facilitated the formation of shock-induced features (Al-rich orthopyroxene coronas). Together, the textural and mineralogical data suggest that these features provide a record of oscillatory shock perturbations initiated under confining pressure beneath the transient crater floor. This

  1. In-Situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols

    Science.gov (United States)

    Robinson, M.; Collins, C.; Leger, P.; Carsten, J.; Tompkins, V.; Hartman, F.; Yen, J.

    2013-01-01

    The Robotic Arm (RA) has operated for more than 200 Martian solar days (or sols) since the Mars Science Laboratory rover touched down in Gale Crater on August 5, 2012. During the first seven months on Mars the robotic arm has performed multiple contact science sols including the positioning of the Alpha Particle X-Ray Spectrometer (APXS) and/or Mars Hand Lens Imager (MAHLI) with respect to rocks or loose regolith targets. The RA has supported sample acquisition using both the scoop and drill, sample processing with CHIMRA (Collection and Handling for In- Situ Martian Rock Analysis), and delivery of sample portions to the observation tray, and the SAM (Sample Analysis at Mars) and CHEMIN (Chemistry and Mineralogy) science instruments. This paper describes the planning and execution of robotic arm activities during surface operations, and reviews robotic arm performance results from Mars to date.

  2. EU-FP7-iMars: Analysis of Mars Multi-Resolution Images using Auto-Coregistration, Data Mining and Crowd Source Techniques

    Science.gov (United States)

    Ivanov, Anton; Oberst, Jürgen; Yershov, Vladimir; Muller, Jan-Peter; Kim, Jung-Rack; Gwinner, Klaus; Van Gasselt, Stephan; Morley, Jeremy; Houghton, Robert; Bamford, Steven; Sidiropoulos, Panagiotis

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 15 years, especially in 3D imaging of surface shape. This has led to the ability to be able to overlay different epochs back to the mid-1970s, examine time-varying changes (such as the recent discovery of boulder movement, tracking inter-year seasonal changes and looking for occurrences of fresh craters. Consequently we are seeing a dramatic improvement in our understanding of surface formation processes. Since January 2004, the ESA Mars Express has been acquiring global data, especially HRSC stereo (12.5-25 m nadir images) with 87% coverage with more than 65% useful for stereo mapping. NASA began imaging the surface of Mars, initially from flybys in the 1960s and then from the first orbiter with image resolution less than 100 m in the late 1970s from Viking Orbiter. The most recent orbiter, NASA MRO, has acquired surface imagery of around 1% of the Martian surface from HiRISE (at ≈20 cm) and ≈5% from CTX (≈6 m) in stereo. Within the iMars project (http://i-Mars.eu), a fully automated large-scale processing (“Big Data”) solution is being developed to generate the best possible multi-resolution DTM of Mars. In addition, HRSC OrthoRectified Images (ORI) will be used as a georeference basis so that all higher resolution ORIs will be co-registered to the HRSC DTMs (50-100m grid) products generated at DLR and, from CTX (6-20 m grid) and HiRISE (1-3 m grids) on a large-scale Linux cluster based at MSSL. The HRSC products will be employed to provide a geographic reference for all current, future and historical NASA products using automated co-registration based on feature points and initial results will be shown here. In 2015, many of the entire NASA and ESA orbital images will be co-registered and the updated georeferencing

  3. Updates from the MSL-RAD Experiment on the Mars Curiosity Rover

    Science.gov (United States)

    Zeitlin, Cary

    2015-01-01

    The MSL-RAD instrument continues to operate flawlessly on Mars. As of this writing, some 1040 sols (Martian days) of data have been successfully acquired. Several improvements have been made to the instrument's configuration, particularly aimed at enabling the analysis of neutral-particle data. The dose rate since MSL's landing in August 2012 has remained remarkably stable, reflecting the unusual and very weak solar maximum of Cycle 24. Only a few small SEP events have been observed by RAD, which is shielded by the Martian atmosphere. Gale Crater, where Curiosity landed, is 4.4 km below the mean surface of Mars, and the column depth of atmosphere above is approximately 20 g/sq cm, which provides significant attenuation of GCR heavy ions and SEPs. Recent analysis results will be presented, including updated estimates of the neutron contributions to dose and dose equivalent in cruise and on the surface of Mars.

  4. Assessment of Mars Exploration Rover Landing Site Predictions

    Science.gov (United States)

    Golombek, M. P.

    2005-05-01

    Comprehensive analyses of remote sensing data during the 3-year effort to select the Mars Exploration Rover landing sites at Gusev crater and Meridiani Planum correctly predicted the safe and trafficable surfaces explored by the two rovers. Gusev crater was predicted to be a relatively low relief surface that was comparably dusty, but less rocky than the Viking landing sites. Available data for Meridiani Planum indicated a very flat plain composed of basaltic sand to granules and hematite that would look completely unlike any of the existing landing sites with a dark, low albedo surface, little dust and very few rocks. Orbital thermal inertia measurements of 315 J m-2 s-0.5 K-1 at Gusev suggested surfaces dominated by duricrust to cemented soil-like materials or cohesionless sand or granules, which is consistent with observed soil characteristics and measured thermal inertias from the surface. THEMIS thermal inertias along the traverse at Gusev vary from 285 at the landing site to 330 around Bonneville rim and show systematic variations that can be related to the observed increase in rock abundance (5-30%). Meridiani has an orbital bulk inertia of ~200, similar to measured surface inertias that correspond to observed surfaces dominated by 0.2 mm sand size particles. Rock abundance derived from orbital thermal differencing techniques suggested that Meridiani Planum would have very low rock abundance, consistent with the rock free plain traversed by Opportunity. Spirit landed in an 8% orbital rock abundance pixel, consistent with the measured 7% of the surface covered by rocks >0.04 m diameter at the landing site, which is representative of the plains away from craters. The orbital albedo of the Spirit traverse varies from 0.19 to 0.30, consistent with surface measurements in and out of dust devil tracks. Opportunity is the first landing in a low albedo portion of Mars as seen from orbit, which is consistent with the dark, dust-free surface and measured albedos. The

  5. Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia

    Science.gov (United States)

    Edwards, C.S.; Bandfield, J.L.; Christensen, P.R.; Fergason, R.L.

    2009-01-01

    We investigate high thermal inertia surfaces using the Mars Odyssey Thermal Emission Imaging System (THEMIS) nighttime temperature images (100 m/pixel spatial sampling). For this study, we interpret any pixel in a THEMIS image with a thermal inertia over 1200 J m-2 K-1 s-1/2 as "bedrock" which represents either in situ rock exposures or rock-dominated surfaces. Three distinct morphologies, ranked from most to least common, are associated with these high thermal inertia surfaces: (1) valley and crater walls associated with mass wasting and high surface slope angles; (2) floors of craters with diameters >25 km and containing melt or volcanics associated with larger, high-energy impacts; and (3) intercrater surfaces with compositions significantly more mafic than the surrounding regolith. In general, bedrock instances on Mars occur as small exposures (less than several square kilometers) situated in lower-albedo (inertia (>350 J m-2 K-1 s-1/2), and relatively dust-free (dust cover index <0.95) regions; however, there are instances that do not follow these generalizations. Most instances are concentrated in the southern highlands, with very few located at high latitudes (poleward of 45oN and 58oS), suggesting enhanced mechanical breakdown probably associated with permafrost. Overall, Mars has very little exposed bedrock with only 960 instances identified from 75oS to 75oN with likely <3500 km2 exposed, representing???1% of the total surface area. These data indicate that Mars has likely undergone large-scale surface processing and reworking, both chemically and mechanically, either destroying or masking a majority of the bedrock exposures on the planet. Copyright 2009 by the American Geophysical Union.

  6. Ice Lens Formation, Frost Heave, Thin Films, and the Importance of the Polar H2O Reservoir at High Obliquity

    Science.gov (United States)

    Zent, A. P.; Sizemore, H. G.; Rempel, A. W.

    2011-01-01

    Several lines of evidence indicate that the volume of shallow ground ice in the martian high latitudes exceeds the pore volume of the host regolith. Boynton et al. found an optimal fit to the Mars Odyssey Gamma Ray Spectrometer (GRS) data at the Phoenix landing site by modeling a buried layer of 50-75% ice by mass (up to 90% ice by volume). Thermal and optical observations of recent impact craters in the northern hemisphere have revealed nearly pure ice. Ice deposits containing only 1-2% soil by volume were excavaged by Phoenix. One hypothesis for the origin of this excess ice is that it developed in situ by a mechanism analogous to the formation of terrestrial ice lenses and needle ice. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycling and the movement of bulk water, neither of which are expected to have occurred in the geologically recent past on Mars. If however ice lens formation is possible at temperatures less than 273 K, there are possible implications for the habitability of Mars permafrost, since the same thin films of unfrozen water that lead to ice segregation are used by terrestrial psychrophiles to metaboluze and grow down to temperatures of at least 258 K.

  7. Selection of the Mars Science Laboratory landing site

    Science.gov (United States)

    Golombek, M.; Grant, J.; Kipp, D.; Vasavada, A.; Kirk, Randolph L.; Fergason, Robin L.; Bellutta, P.; Calef, F.; Larsen, K.; Katayama, Y.; Huertas, A.; Beyer, R.; Chen, A.; Parker, T.; Pollard, B.; Lee, S.; Hoover, R.; Sladek, H.; Grotzinger, J.; Welch, R.; Dobrea, E. Noe; Michalski, J.; Watkins, M.

    2012-01-01

    The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20 km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1) latitude (±30°) for thermal management of the rover and instruments, (2) elevation (surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.

  8. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    Science.gov (United States)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  9. Cratering Studies in Thin Plastic Films

    Science.gov (United States)

    Shu, A. J.; Bugiel, S.; Gruen, E.; Hillier, J.; Horanyi, M.; Munsat, T. L.; Srama, R.

    2013-12-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can

  10. Update on the Chemical Composition Of Crystalline, Smectite, and Amorphous Components for Rocknest Soil and John Klein and Cumberland Mudstone Drill Fines at Gale Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Vaniman, D. T.; Bish, D. L.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Downs, R. T.; Rampe, E. B.; hide

    2015-01-01

    We have previously calculated the chemical compositions of the X-ray-diffraction (XRD) amorphous component of three solid samples (Rocknest (RN) soil, John Klein (JK) drill fines, and Cumberland (CB) drill fines) using major-element chemistry (APXS), volatile-element chemistry (SAM), and crystalline- phase mineralogy (CheMin) obtained by the Curiosity rover as a part of the ongoing Mars Science Laboratory mission in Gale Crater. According to CheMin analysis, the RN and the JK and CB samples are mineralogically distinct in that RN has no detectable clay minerals and both JK and CB have significant concentrations of high-Fe saponite. The chemical composition of the XRD amorphous component is the composition remaining after mathematical removal of the compositions of crystalline components, including phyllosilicates if present. Subsequent to, we have improved the unit cell parameters for Fe-forsterite, augite, and pigeonite, resulting in revised chemical compositions for the XRD-derived crystalline component (excluding clay minerals). We update here the calculated compositions of amorphous components using these revised mineral compositions.

  11. Stability of nuclear crater slopes in rock

    International Nuclear Information System (INIS)

    Fleming, Robert W.; Frandsen, Alton D.; LaFrenz, Robert L.

    1970-01-01

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects

  12. Stability of nuclear crater slopes in rock

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Robert W; Frandsen, Alton D; LaFrenz, Robert L [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects.

  13. Impact cratering on granular beds: From the impact of raindrops to the strike of hailstones

    Science.gov (United States)

    Gordillo, Leonardo; Wang, Junping; Japardi, Fred; Teddy, Warren; Gao, Ming; Cheng, Xiang

    Impact craters generated by the impact of a spherical object onto a granular bed strongly depend on the material properties of impactors. As an example, impact cratering by liquid drops and by solid spheres exhibits qualitatively different power-law scalings for the size of resulting impact craters. While the basic energy conservation and dimensional analysis provide simple guiding rules, the detailed dynamics governing the relation between these power-law scalings is still far from clear. To analyze the transition between liquid-drop and solid-sphere impact cratering, we investigate impact cratering by liquid drops for a wide range of viscosities over 7 decades. Using high-speed photography and laser profilometry, we delineate the liquid-to-solid transition and show the emergence of the two asymptotic behaviors and their respective power laws. We find that granular avalanches triggered by impacts are crucial in understanding the energy partition between impacted surfaces and impactors, which directly determines the observed scaling relations. A simple model is constructed for the initial stage of the impact that explains the energy partition during crater formation. We ackowledge the support of NSF CAREER DMR-1452180. LG acknowledges fundings from CONICYT/BECAS CHILE 74160007.

  14. The initial exploration of Mars - Rationale for a return mission to Chryse Planitia and the Viking 1 Lander

    Science.gov (United States)

    Craddock, Robert A.

    1992-01-01

    A discussion of the concepts behind planning a landing site on Mars is presented. On the basis of the engineering constraints and the scientific objectives which are likely to be imposed on the first few missions to the surface, reasons for supporting a return to Chryse Planitia and the Viking 1 landing site are given. Samples from the Hesperian ridged plains would be useful in establishing an absolute age for the present crater chronology, and samples of soils from the vicinity of the Viking 1 lander would be useful in determining the significance of the results from the Viking biological experiments. Soil samples would provide consistency between unmanned and manned missions, may contain fossil microorganisms, and could be useful in determining the mechanism responsible for outflow channel formation.

  15. Experimental simulation of impact cratering on icy satellites

    Science.gov (United States)

    Greeley, R.; Fink, J. H.; Gault, D. E.; Guest, J. E.

    1982-01-01

    Cratering processes on icy satellites were simulated in a series of 102 laboratory impact experiments involving a wide range of target materials. For impacts into homogeneous clay slurries with impact energies ranging from five million to ten billion ergs, target yield strengths ranged from 100 to 38 Pa, and apparent viscosities ranged from 8 to 200 Pa s. Bowl-shaped craters, flat-floored craters, central peak craters with high or little relief, and craters with no relief were observed. Crater diameters increased steadily as energies were raised. A similar sequence was seen for experiment in which impact energy was held constant but target viscosity and strength progressively decreases. The experiments suggest that the physical properties of the target media relative to the gravitationally induced stresses determined the final crater morphology. Crater palimpsests could form by prompt collapse of large central peak craters formed in low target strength materials. Ages estimated from crater size-frequency distributions that include these large craters may give values that are too high.

  16. The Effects of Perchlorate and its Precursors on Organic Molecules under Simulated Mars Conditions

    Science.gov (United States)

    Carrier, B. L.; Beegle, L. W.; Bhartia, R.; Abbey, W. J.

    2016-12-01

    Perchlorate (ClO4-) was first detected on Mars by the Phoenix Lander in 2008 [1] and has subsequently been detected by Curiosity in Gale Crater [2], in Mars meteorite EETA79001 [3], and has been proposed as a possible explanation for results obtained by Viking [4]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [5]. The discovery of perchlorate on Mars has raised important questions about its effects on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [2, 4], few studies have been conducted on the potential effects of perchlorate and its precursors on organic molecules prior to analysis. Perchlorate is typically inert under Mars temperatures and pressures, but it has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-), hypochlorite (ClO-) and chlorine dioxide (ClO2) when exposed to Mars conditions including ionizing radiation [6]. The oxidation of chloride to perchlorate also results in the formation of reactive oxychlorine species such as chlorate (ClO3-) [5]. Here we investigate the effects of perchlorate and its oxychlorine precursors on organic molecules. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of Mojave Mars Simulant (MMS) [7] and each organic, as well as varying concentrations of perchlorate and/or chloride salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination

  17. Fatty Acid Detection in Mars-Analogous Rock Samples with the TMAH Wet Chemistry Experiment on the Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Williams, A. J.; Eigenbrode, J. L.; Wilhelm, M. B.; Johnson, S. S.; Craft, K.; O'Reilly, S.; Lewis, J. M. T.; Williams, R.; Summons, R. E.; Benison, K. C.; Mahaffy, P. R.

    2017-12-01

    The Curiosity rover is exploring sedimentary rock sequences in Gale Crater for evidence of habitability and searching for organic compounds using the Sample Analysis at Mars (SAM) instrument suite. SAM includes a gas chromatograph mass spectrometer (GC-MS) and pyrolysis ovens. SAM has the ability to perform wet chemistry experiments, one of which uses tetramethylammonium hydroxide (TMAH) thermochemolysis to liberate bound lipids, making them sufficiently volatile for detection by GC-MS. To determine the effectiveness of the SAM-like TMAH experiment on fatty acid methyl ester (FAME) biomarker identification, rock and sediment samples were collected from a variety of Mars analog environments including iron oxides from a modern mineral precipitate and older surface gossan at Iron Mountain, CA, as well as modern acid salt and neutral lake sediments with mixed iron oxides and clays from Western Australia; siliceous sinter from recently inactive and modern near-vent Icelandic hot springs deposits; modern carbonate ooids from The Bahamas, and organic-rich shale from Germany. Samples underwent pyrolysis with TMAH. Fatty acids were analyzed by pyro-GC-MS using a SAM-like heating ramp (35°C/min) as well as a 500°C flash on a Frontier pyrolyzer and Agilent GC-MS instrument. Results reveal that FAMEs were detectable with the TMAH experiment in nearly all samples. Low molecular weight (MW) C6:0-C10:0 FAMEs were present in all samples, medium MW C11:0-C18:2 FAMEs were present in select samples, and high MW (HMW) C20:0-C30:0 FAMEs were present in the shale sample. Many of these samples exhibited an even-over-odd carbon number preference, indicating biological production. These experiments demonstrate that TMAH thermochemolysis with SAM-like pyro-GC-MS is effective in fatty acid analysis from natural Mars-analog samples that vary in mineralogy, age, and microbial community input. HMW FAMEs are not detected in iron-dominated samples, and may not be detectable at low

  18. Lunar Bouguer gravity anomalies - Imbrian age craters

    Science.gov (United States)

    Dvorak, J.; Phillips, R. J.

    1978-01-01

    The Bouguer gravity of mass anomalies associated with four Imbrian age craters, analyzed in the present paper, are found to differ considerably from the values of the mass anomalies associated with some young lunar craters. Of the Imbrian age craters, only Piccolomini exhibits a negative gravity anomaly (i.e., a low density region) which is characteristic of the young craters studied. The Bouguer gravity anomalies are zero for each of the remaining Imbrian age craters. Since, Piccolomini is younger, or at least less modified, than the other Imbrian age craters, it is suggested that the processes responsible for the post-impact modification of the Imbrian age craters may also be responsible for removing the negative mass anomalies initially associated with these features.

  19. SMALL CRATERS AND THEIR DIAGNOSTIC POTENTIAL

    Directory of Open Access Journals (Sweden)

    R. Bugiolacchi

    2017-07-01

    Full Text Available I analysed and compared the size-frequency distributions of craters in the Apollo 17 landing region, comprising of six mare terrains with varying morphologies and cratering characteristics, along with three other regions allegedly affected by the same secondary event (Tycho secondary surge. I propose that for the smaller crater sizes (in this work 9–30 m, a] an exponential curve of power −0.18D can approximate Nkm−2 crater densities in a regime of equilibrium, while b] a power function D−3 closely describes the factorised representation of craters by size (1 m. The saturation level within the Central Area suggests that c] either the modelled rates of crater erosion on the Moon should be revised, or that the Tycho event occurred much earlier in time than the current estimate. We propose that d] the size-frequency distribution of small secondary craters may bear the signature (in terms of size-frequency distribution of debris/surge of the source impact and that this observation should be tested further.

  20. Red/violet contrast reversal on Mars - significance for eolian sediments

    International Nuclear Information System (INIS)

    Thomas, P.; Veverka, J.

    1986-01-01

    Viking Orbiter images of Mars are analyzed to define relationships between the observed contrast reversals (CR) and specific surface features. The link between CR phenomena and surface composition was first detected in contrast comparisons between UV and visible wavelength Mariner 9 data. Viking data, taken through red and violet filters, showed that the CRs occurred only with crater splotches and splotch-related streaks and in bright depositional and dark erosional streaks, both being low-albedo markings presumably caused by eolian forces. The splotch phenomena is confined mainly to the Oxia Palus region, although there are other regions where splotches and streaks commingle. Laboratory tests to mimic the CR characteristics showed that CRs are a common phenomena of different size fractions of iron oxides, e.g., goethite, where particles under 5 microns have been removed. The splotches, including dune formations, are therefore believed to indicate the presence of particles in the 100-800 microns diam range. Finer particles ride on the tops of the dust storms, and are continually removed from the surface by saltation. 51 references

  1. Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results

    Science.gov (United States)

    Thomas, N.; Stelter, R.; Ivanov, A.; Bridges, N.T.; Herkenhoff, K. E.; McEwen, A.S.

    2011-01-01

    The High-Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to observe Phobos and Deimos at spatial scales of around 6 and 20 m/px, respectively. HiRISE (McEwen et al.; JGR, 112, CiteID E05S02, DOI: 10.1029/2005JE002605, 2007) has provided, for the first time, high-resolution colour images of the surfaces of the Martian moons. When processed, by the production of colour ratio images for example, the data show considerable small-scale heterogeneity, which might be attributable to fresh impacts exposing different materials otherwise largely hidden by a homogenous regolith. The bluer material that is draped over the south-eastern rim of the largest crater on Phobos, Stickney, has been perforated by an impact to reveal redder material and must therefore be relatively thin. A fresh impact with dark crater rays has been identified. Previously identified mass-wasting features in Stickney and Limtoc craters stand out strongly in colour. The interior deposits in Stickney appear more inhomogeneous than previously suspected. Several other local colour variations are also evident. Deimos is more uniform in colour but does show some small-scale inhomogeneity. The bright streamers (Thomas et al.; Icarus, 123, 536556,1996) are relatively blue. One crater to the south-west of Voltaire and its surroundings appear quite strongly reddened with respect to the rest of the surface. The reddening of the surroundings may be the result of ejecta from this impact. The spectral gradients at optical wavelengths observed for both Phobos and Deimos are quantitatively in good agreement with those found by unresolved photometric observations made by the Imager for Mars Pathfinder (IMP; Thomas et al.; JGR, 104, 90559068, 1999). The spectral gradients of the blue and red units on Phobos bracket the results from IMP. ?? 2010 Elsevier Ltd. All rights reserved.

  2. Mars Exploration Rovers Launch Performance and TCM-1 Maneuver Design

    Science.gov (United States)

    Kangas, Julie A.; Potts, Christopher L.; Raofi, Behzad

    2004-01-01

    The Mars Exploration Rover (MER) project successfully landed two identical rovers on Mars in order to remotely conduct geologic investigations, including characterization of rocks and soils that may hold clues to past water activity. Two landing sites, Gusev crater and Meridiani Planum, were selected out of nearly 200 candidate sites after balancing science returns and flight system engineering and safety. Precise trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites within the flight system constraints. This paper discusses the expected and achieved launch vehicle performance and the impacts of that performance on the first Trajectory Correction Maneuver (TCM-1) while maintaining targeting flexibility in accommodating additional project concerns about landing site safety and possible in-flight retargeting to alternate landing sites.

  3. The Age of Lunar South Circumpolar Craters Haworth, Shoemaker, Faustini, and Shackleton: Implications for Regional Geology, Surface Processes, and Volatile Sequestration

    Science.gov (United States)

    Tye, A. R.; Fassett, C. I.; Head, J. W.; Mazarico, E.; Basilevsky, A. T.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2015-01-01

    The interiors of the lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton contain permanently shadowed regions (PSRs) and have been interpreted to contain sequestered volatiles including water ice. Altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter provide a new means of examining the permanently shadowed interiors of these craters in unprecedented detail. In this study, we used extremely high-resolution gridded LOLA data of Haworth, Shoemaker, Faustini, and Shackleton to determine the size-frequency distributions and the spatial density of craters superposing their rims, inner slopes, and floors. Based on their population of superposed D greater than or equal to 2 km craters, Haworth, Shoemaker, and Faustini have pre-Nectarian formation ages. Shackleton is interpreted as having a Late Imbrian age on the basis of craters with diameter D greater than or equal to 0.5 km superposed on its rim. The local density of craters with sub-km diameters across our study area is strongly dependent on slope; because of its steep interior slopes, the lifetime of craters on the interior of Shackleton is limited. The slope-dependence of the small crater population implies that the population in this size range is controlled primarily by the rate at which craters are destroyed. This is consistent with the hypothesis that crater removal and resurfacing is a result of slopedependent processes such as diffusive mass wasting and seismic shaking, linked to micrometeorite and meteorite bombardment. Epithermal neutron flux data and UV albedo data show that these circumpolar PSRs, particularly Shoemaker, may have approximately 1-2% water ice by mass in their highly porous surface regolith, and that Shoemaker may have approximately 5% or more water ice by mass in the near subsurface. The ancient formation ages of Shoemaker, Faustini and Haworth, and the Late Imbrian (approximately 3.5 Ga) crater retention ages of their

  4. Models of formation and activity of spring mounds in the mechertate-chrita-sidi el hani system, eastern Tunisia: implications for the habitability of Mars.

    Science.gov (United States)

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G; Chan, Marjorie A; Yaich, Chokri

    2014-08-28

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet ("island") stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on Mars

  5. Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars

    Directory of Open Access Journals (Sweden)

    Elhoucine Essefi

    2014-08-01

    Full Text Available Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early to the islet (“island” stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii indurated eolian sedimentation and erosional remnants are common

  6. Discovery of Carbonate-Rich Outcrops in the Gusev Crater Columbia Hills by the MER Rover Spirit

    Science.gov (United States)

    Morris, Richard V.; Ruff, Steven W.; Gellert, Ralf; Ming, Douglas W.; Arvidson, Raymond E.; Clark, Benton C.; Golden, Dadi C.; Siebach, Kirsten L.; Klingelhoefer, Goestar; Schroeder, Christian; hide

    2010-01-01

    The chemical composition, global abundance, distribution, and formation pathways of carbonates are central to understanding aqueous processes, climate, and habitability of early Mars. The Mars Exploration Rover (MER) Spirit analyzed a series of olivine-rich outcrops while descending from the summit region of Husband Hill into the Inner Basin of the Columbia Hills of Gusev Crater to the eastern edge of the El Dorado ripple field in late 2005. Reanalysis of Spirit s mineralogical data from the Moessbauer Spectrometer (MB) and the Miniature Thermal Emission Spectrometer (Mini-TES) and chemical data from the Alpha Particle X-Ray Spectrometer (APXS) in 2010, coupled with new laboratory data for carbonate-bearing samples, lead to identification of carbonate in one of the outcrops (Comanche) [Morris, R.V., et al., Science, 329, 421-424]. The carbonate is rich in magnesium and iron (Mc62Sd25Cc11Rh2, assuming all Ca and Mn is associated with the carbonate) and is a major component of the Comanche outcrops (16 to 34 wt.%). The mineralogical, chemical, and abundance data are constrained in multiple, mutually consistent ways by the MER analyses. For example, a low-Ca carbonate is required by the MB and APXS data and is consistent with Mini-TES data. Three spectral features attributable to fundamental infrared vibrational modes of low-Ca carbonate are present in the Mini-TES spectra of Comanche outcrops. The average composition of Comanche carbonate approximates the average composition of the carbonate globules in Martian meteorite ALH 84001. Analogy with ALH 84001, terrestrial, and synthetic carbonate globules suggests that Comanche carbonate precipitated from aqueous solutions under hydrothermal conditions at near neutral pH in association with volcanic activity during the Noachian era. Comanche outcrop morphology suggests they are remnants of a larger carbonate-bearing formation that evolved in ultramafic rock and then preferentially eroded by a combination of aeolian

  7. Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure

    Science.gov (United States)

    Poag, C.W.

    2005-01-01

    This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism. 

  8. Esperance: Multiple episodes of aqueous alteration involving fracture fills and coatings at Matijevic Hill, Mars

    Science.gov (United States)

    Clark, Benton C.; Morris, Richard V.; Herkenhoff, Kenneth E.; Farrand, William H.; Gellert, Ralf; Jolliff, Bradley L.; Arvidson, Raymond E.; Squyres, Steven W.; Mittelfehldt, David W.; Ming, Douglas W.; Yen, Albert S.

    2016-01-01

    In the search for evidence of past aqueous activity by the Mars Exploration Rover Opportunity, fracture-filling veins and rock coatings are prime candidates for exploration. At one location within a segment of remaining rim material surrounding Endeavour Crater, a set of “boxwork” fractures in an outcrop called Esperance are filled by a bright, hydrated, and highly siliceous (SiO2 ~ 66 wt%) material, which has overall a montmorillonite-like chemical composition. This material is partially covered by patches of a thin, dark coating that is sulfate-rich (SO3 ~ 21 wt%) but also contains significant levels of Si, Fe, Ca, and Mg. The simultaneous presence of abundant S, Si, and Fe indicates significant mineralogical complexity within the coating. This combination of vein and coating compositions is unlike previous analyses on Mars. Both materials are heterogeneously eroded, presumably by eolian abrasion. The evidence indicates at least two separate episodes of solute precipitation from aqueous fluids at this location, possibly widely separated in time. In addition to the implications for multiple episodes of alteration at the surface of the planet, aqueous chemical environments such as these would have been habitable at the time of their formation and are also favorable for preservation of organic material.

  9. Blocky craters: implications about the lunar megaregolith

    International Nuclear Information System (INIS)

    Thompson, T.W.; Roberts, W.J.; Hartmann, W.K.; Shorthill, R.W.; Zisk, S.H.

    1979-01-01

    Radar, infrared, and photogeologic properties of lunar craters have been studied to determine whether there is a systematic difference in blocky craters between the maria and terrae and whether this difference may be due to a deep megaregolith of pulverized material forming the terra surface, as opposed to a layer of semi-coherent basalt flows forming the mare surface. Some 1310 craters from about 4 to 100 km diameter have been catalogued as radar and/or infrared anomalies. In addition, a study of Apollo Orbital Photography confirmed that the radar and infrared anomalies are correlated with blocky rubble around the crater. Analysis of the radar and infrared data indicated systematic terra-mare differences. Fresh terra craters smaller than 12 km were less likely to be infrared and radar anomalies than comparable mare craters: but terra and mare craters larger than 12 km had similar infrared and radar signatures. Also, there are many terra craters which are radar bright but not infrared anomalies. The authors interpretation of these data is that while the maria are rock layers (basaltic flow units) where craters eject boulder fields, the terrae are covered by relatively pulverized megaregolith at least 2 km deep, where craters eject less rocky rubble. Blocky rubble, either in the form of actual rocks or partly consolidated blocks, contributes to the radar and infrared signatures of the crater. However, aging by impacts rapidly destroys these effects, possibly through burial by secondary debris or by disintegration of the blocks themselves, especially in terra regions. (Auth.)

  10. On the crypto-explosive crater and its relation with gold mineralization in larma Au-U deposit

    International Nuclear Information System (INIS)

    Chen Guohua; Jing Hongxiang; Huang Shutao

    1998-01-01

    A new type of gold mineralization-controlling structure-hydrothermal crypto-explosive crater was identified at the Larma gold-uranium deposit in the border regions between Gansu and Sichuan provinces, western China. The hydrothermal crypto-explosive crater is ellipse-shaped at the surface, while funnel-like in profile. A silica-cap composed of hydrothermal siliceous breccia is distributed at the top of the crater, while hydrothermal crypto-explosive breccia are in the centre. The configuration of the crater is roughly consistent with the distribution of gold ore bodies. The formation mechanism of the crater is: first, a silica cap composed of hydrothermal siliceous metasomatic rock was formed at the contact area between the siliceous rock and the slate, and blocked the movement of hydrothermal fluid and resulted in the appearance of over-pressed geothermal environment. Then, at 49.5 Ma, the rejuvenation of the EW-striking faults in larma area resulted in the breaking of the brittle silica cap, followed by the crypto-explosion of hydrothermal fluid. In Larma gold-uranium deposit, the hydrothermal crypto-explosion gave rise to the precipitation of gold from the hydrothermal fluid, while the crypto-explosive crater provided the space for gold mineralization

  11. Solar and wind exergy potentials for Mars

    International Nuclear Information System (INIS)

    Delgado-Bonal, Alfonso; Martín-Torres, F. Javier; Vázquez-Martín, Sandra; Zorzano, María-Paz

    2016-01-01

    The energy requirements of the planetary exploration spacecrafts constrain the lifetime of the missions, their mobility and capabilities, and the number of instruments onboard. They are limiting factors in planetary exploration. Several missions to the surface of Mars have proven the feasibility and success of solar panels as energy source. The analysis of the exergy efficiency of the solar radiation has been carried out successfully on Earth, however, to date, there is not an extensive research regarding the thermodynamic exergy efficiency of in-situ renewable energy sources on Mars. In this paper, we analyse the obtainable energy (exergy) from solar radiation under Martian conditions. For this analysis we have used the surface environmental variables on Mars measured in-situ by the Rover Environmental Monitoring Station onboard the Curiosity rover and from satellite by the Thermal Emission Spectrometer instrument onboard the Mars Global Surveyor satellite mission. We evaluate the exergy efficiency from solar radiation on a global spatial scale using orbital data for a Martian year; and in a one single location in Mars (the Gale crater) but with an appreciable temporal resolution (1 h). Also, we analyse the wind energy as an alternative source of energy for Mars exploration and compare the results with those obtained on Earth. We study the viability of solar and wind energy station for the future exploration of Mars, showing that a small square solar cell of 0.30 m length could maintain a meteorological station on Mars. We conclude that the low density of the atmosphere of Mars is responsible of the low thermal exergy efficiency of solar panels. It also makes the use of wind energy uneffective. Finally, we provide insights for the development of new solar cells on Mars. - Highlights: • We analyse the exergy of solar radiation under Martian environment • Real data from in-situ instruments is used to determine the maximum efficiency of radiation • Wind

  12. Nuclear cratering on a digital computer

    International Nuclear Information System (INIS)

    Terhune, R.W.; Stubbs, T.F.; Cherry, J.T.

    1970-01-01

    Computer programs based on the artificial viscosity method are applied to developing an understanding of the physics of cratering, with emphasis on cratering by nuclear explosives. Two established codes, SOC (spherical symmetry) and TENSOR (cylindrical symmetry), are used to illustrate the effects of variations in the material properties of various media on the cratering processes, namely shock, spall, and gas acceleration. Water content is found to be the most important material property, followed by strength, porosity, and compressibility. Crater profile calculations are presented for Pre-Gondola Charley (20-ton nitromethane detonation in shale) and Sedan (100-kt nuclear detonation in alluvium). Calculations also are presented for three 1-Mt yields in saturated Divide basalt and 1-Mt yield in dry Buckboard basalt, to show crater geometry as a function of the burial depth for large explosive yields. The calculations show, for megaton-level yields, that gas acceleration is the dominate mechanism in determining crater size and depends in turn on the water content in the medium. (author)

  13. Nuclear cratering on a digital computer

    Energy Technology Data Exchange (ETDEWEB)

    Terhune, R W; Stubbs, T F; Cherry, J T [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Computer programs based on the artificial viscosity method are applied to developing an understanding of the physics of cratering, with emphasis on cratering by nuclear explosives. Two established codes, SOC (spherical symmetry) and TENSOR (cylindrical symmetry), are used to illustrate the effects of variations in the material properties of various media on the cratering processes, namely shock, spall, and gas acceleration. Water content is found to be the most important material property, followed by strength, porosity, and compressibility. Crater profile calculations are presented for Pre-Gondola Charley (20-ton nitromethane detonation in shale) and Sedan (100-kt nuclear detonation in alluvium). Calculations also are presented for three 1-Mt yields in saturated Divide basalt and 1-Mt yield in dry Buckboard basalt, to show crater geometry as a function of the burial depth for large explosive yields. The calculations show, for megaton-level yields, that gas acceleration is the dominate mechanism in determining crater size and depends in turn on the water content in the medium. (author)

  14. Curiosity at Gale Crater, Mars: Characterization and analysis of the rocknest sand shadow

    NARCIS (Netherlands)

    Blake, D.F.; Morris, R.V.; Kocurek, G.; Morrison, S.M.; Downs, R.T.; Bish, D.; Ming, D.W.; Edgett, K.S.; Rubin, D.; Goetz, W.; Madsen, M.B.; Sullivan, R.; Gellert, R.; Campbell, I.; Treiman, A.H.; McLennan, S.M.; Yen, A.S.; Grotzinger, J.; Vaniman, D.T.; Chipera, S.J.; Achilles, C.N.; Rampe, E.B.; Sumner, D.; Meslin, P.-Y.; Maurice, S.; Forni, O.; Gasnault, O.; Fisk, M.; Schmidt, M.; Mahaffy, P.; Leshin, L.A.; Glavin, D.; Steele, A.; Freissinet, C.; Navarro-González, R.; Yingst, R.A.; Kah, L.C.; Bridges, N.; Lewis, K.W.; Bristow, T.F.; Farmer, J.D.; Crisp, J.A.; Stolper, E.M.; Des Marais, D.J.; Sarrazin, P.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2013-01-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous

  15. Mars Exploration Rovers Propulsive Maneuver Design

    Science.gov (United States)

    Potts, Christopher L.; Raofi, Behzad; Kangas, Julie A.

    2004-01-01

    The Mars Exploration Rovers Spirit and Opportunity successfully landed respectively at Gusev Crater and Meridiani Planum in January 2004. The rovers are essentially robotic geologists, sent on a mission to search for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. In order to conduct NASA's 'follow the water' strategy on opposite sides of the planet Mars, an interplanetary journey of over 300 million miles culminated with historic navigation precision. Rigorous trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites. The propulsive maneuver design challenge was to meet or exceed these requirements while preserving the necessary design margin to accommodate additional project concerns. Landing site flexibility was maintained for both missions after launch, and even after the first trajectory correction maneuver for Spirit. The final targeting strategy was modified to improve delivery performance and reduce risk after revealing constraining trajectory control characteristics. Flight results are examined and summarized for the six trajectory correction maneuvers that were planned for each mission.

  16. Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico

    Science.gov (United States)

    von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.

    2013-12-01

    Lava channels, tubes and sheets are transport structures that deliver flowing lava to a flow front. The type of structure can vary within a flow field and evolve throughout an eruption. The 18.0 × 1.0 ka Twin Craters lava flow in the Zuni-Bandera lava field provides a unique opportunity to study morphological changes of a lava flow partly attributable to interaction with a topographic obstacle. Facies mapping and airborne image analysis were performed on an area of the Twin Craters flow that includes a network of channels, lava tubes, shatter features, and disrupted pahoehoe flows surrounding a 45 m tall limestone bluff. The bluff is 1000 m long (oriented perpendicular to flow.) The general flow characteristics upstream from the bluff include smooth, lobate pahoehoe flows and a >2.5 km long lava tube (see Samuels et al., this meeting.) Emplacement characteristics change abruptly where the flow encountered the bluff, to include many localized areas of disrupted pahoehoe and several pahoehoe-floored depressions. Each depression is fully or partly surrounded by a raised rim of blocky material up to 4 m higher than the surrounding terrain. The rim is composed of 0.05 - 4 m diameter blocks, some of which form a breccia that is welded by lava, and some of which exhibit original flow textures. The rim-depression features are interpreted as shatter rings based on morphological similarity to those described by Orr (2011.Bul Volcanol.73.335-346) in Hawai';i. Orr suggests that shatter rings develop when fluctuations in the lava supply rate over-pressurize the tube, causing the tube roof to repeatedly uplift and subside. A rim of shattered blocks and breccias remains surrounding the sunken tube roof after the final lava withdraws from the system. One of these depressions in the Twin Craters flow is 240 m wide and includes six mounds of shattered material equal in height to the surrounding undisturbed terrain. Several mounds have depressed centers floored with rubbly pahoehoe

  17. Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars.

    Science.gov (United States)

    Chojnacki, Matthew; Urso, Anna; Fenton, Lori K; Michaels, Timothy I

    2017-06-01

    It is now known unambiguously that wind-driven bedform activity is occurring on the surface of Mars today, including early detections of active sand dunes in Meridiani Planum's Endeavour crater. Many of these reports are only based on a few sets of observations of relatively isolated bedforms and lack regional context. Here, we investigate aeolian activity across central Meridiani Planum and test the hypothesis that dune sites surrounding Endeavour crater are also active and part of region-wide sediment migration driven by northwesterly winds. All 13 dune fields investigated clearly showed evidence for activity and the majority exhibited dune migration (average rates of 0.6 m/Earth-year). Observations indicate substantial geographic and temporal heterogeneity of dune crest fluxes across the area and per site. Locations with multiple time steps indicate dune sand fluxes can vary by a factor of five, providing evidence for short periods of rapid migration followed by near-stagnation. In contrast, measurements at other sites are nearly identical, indicating that some dunes are in a steady-state as they migrate. The observed sediment transport direction was consistent with a regional northeasterly-to-northwesterly wind regime, revealing more variations than were appreciated from earlier, more localized studies. Craters containing shallow, degraded, flat-floored interiors tended to have dunes with high sediment fluxes/activity, whereas local kilometer-scale topographic obstructions (e.g., central peaks, yardangs) were found to be inversely correlated with dune mobility. Finally, the previous, more limited detections of dune activity in Endeavour crater have been shown to be representative of a broader, region-wide pattern of dune motion.

  18. Simulation of Martian EVA at the Mars Society Arctic Research Station

    Science.gov (United States)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  19. The early thermal evolution of Mars

    Science.gov (United States)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  20. Brushed Target on Rock 'Champagne' in Gusev Crater

    Science.gov (United States)

    2005-01-01

    NASA's Mars Exploration Rover Spirit took this microscopic image of a target called 'Bubbles' on a rock called 'Champagne' after using its rock abrasion tool to brush away a coating of dust. The circular brushed area is about 5 centimeters (2 inches) across. This rock is different from rocks out on the plains of Gusev Crater but is similar to other rocks in this area of the 'Columbia Hills' in that it has higher levels of phosphorus. Plagioclase, a mineral commonly found in igneous rocks, is also present in these rocks, according to analysis with the minature thermal emission spectrometer. By using the alpha particle X-ray spectrometer to collect data over multiple martian days, or sols, scientists are also beginning to get measurements of trace elements in these rocks. Spirit took the images that are combined into this mosaic on sol 354 (Dec. 30, 2004).

  1. Ancient aqueous sedimentation on Mars

    International Nuclear Information System (INIS)

    Goldspiel, J.M.; Squyres, S.W.

    1991-01-01

    Viking orbiter images are presently used to calculate approximate volumes for the inflow valleys of the ancient cratered terrain of Mars; a sediment-transport model is then used to conservatively estimate the amount of water required for the removal of this volume of debris from the valleys. The results obtained for four basins with well-developed inflow networks indicate basin sediment thicknesses of the order of tens to hundreds of meters. The calculations further suggest that the quantity of water required to transport the sediment is greater than that which could be produced by a single discharge of the associated aquifer, unless the material of the Martian highlands was very fine-grained and noncohesive to depths of hundreds of meters. 48 refs

  2. Mini-RF S- and X-band Bistatic Observations of the Floor of Cabeus Crater

    Science.gov (United States)

    Patterson, Gerald Wesley; Stickle, Angela; Turner, Franklin; Jensen, James; Cahill, Joshua; Mini-RF Team

    2017-10-01

    The Mini-RF instrument aboard NASA’s Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) and operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34 meter antenna DSS-13 to collect S- and X-band bistatic radar data of the Moon. Bistatic radar data provide a means to probe the near subsurface for the presence of water ice, which exhibits a strong response in the form of a Coherent Backscatter Opposition Effect (CBOE). This effect has been observed in radar data for the icy surfaces of the Galilean satellites, the polar caps of Mars, polar craters on Mercury, and terrestrial ice sheets in Greenland. Previous work using Mini-RF S-band (12.6 cm) bistatic data suggests the presence of a CBOE associated with the floor of the lunar south polar crater Cabeus. The LRO spacecraft has begun its third extended mission. For this phase of operations Mini-RF is leveraging the existing AO architecture to make S-band radar observations of additional polar craters (e.g., Haworth, Shoemaker, Faustini). The purpose of acquiring these data is to determine whether other polar craters exhibit the response observed for Cabeus. Mini-RF has also initiated a new mode of operation that utilizes the X-band (4.2cm) capability of the instrument receiver and a recently commissioned X/C-band transmitter within the Deep Space Network’s (DSN) Goldstone complex to collect bistatic X-band data of the Moon. The purpose of acquiring these data is to constrain the depth/thickness of materials that exhibit a CBOE response - with an emphasis on observing the floor of Cabeus. Recent Mini-RF X-band observations of the floors of the craters Cabeus do not show evidence for a CBOE. This would suggest that the upper ~0.5 meters of the regolith for the floor of Cabeus do not harber water ice in a form detectable at 4.2 cm wavelengths.

  3. Floor-Fractured Craters through Machine Learning Methods

    Science.gov (United States)

    Thorey, C.

    2015-12-01

    Floor-fractured craters are impact craters that have undergone post impact deformations. They are characterized by shallow floors with a plate-like or convex appearance, wide floor moats, and radial, concentric, and polygonal floor-fractures. While the origin of these deformations has long been debated, it is now generally accepted that they are the result of the emplacement of shallow magmatic intrusions below their floor. These craters thus constitute an efficient tool to probe the importance of intrusive magmatism from the lunar surface. The most recent catalog of lunar-floor fractured craters references about 200 of them, mainly located around the lunar maria Herein, we will discuss the possibility of using machine learning algorithms to try to detect new floor-fractured craters on the Moon among the 60000 craters referenced in the most recent catalogs. In particular, we will use the gravity field provided by the Gravity Recovery and Interior Laboratory (GRAIL) mission, and the topographic dataset obtained from the Lunar Orbiter Laser Altimeter (LOLA) instrument to design a set of representative features for each crater. We will then discuss the possibility to design a binary supervised classifier, based on these features, to discriminate between the presence or absence of crater-centered intrusion below a specific crater. First predictions from different classifier in terms of their accuracy and uncertainty will be presented.

  4. Geology of Lofn Crater, Callisto

    Science.gov (United States)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  5. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    Science.gov (United States)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  6. Microrelief Associated with Gas Emission Craters: Remote-Sensing and Field-Based Study

    Directory of Open Access Journals (Sweden)

    Alexander Kizyakov

    2018-04-01

    Full Text Available Formation of gas emission craters (GEC is a new process in the permafrost zone, leading to considerable terrain changes. Yet their role in changing the relief is local, incomparable in the volume of the removed deposits to other destructive cryogenic processes. However, the relief-forming role of GECs is not limited to the appearance of the crater itself, but also results in positive and negative microforms as well. Negative microforms are rounded hollows, surrounded by piles of ejected or extruded deposits. Hypotheses related to the origin of these forms are put forward and supported by an analysis of multi-temporal satellite images, field observations and photographs of GECs. Remote sensing data specifically was used for interpretation of landform origin, measuring distances and density of material scattering, identifying scattered material through analysis of repeated imagery. Remote-sensing and field data reliably substantiate an impact nature of the hollows around GECs. It is found that scattering of frozen blocks at a distance of up to 293 m from a GEC is capable of creating an impact hollow. These data indicate the influence of GEC on the relief through the formation of a microrelief within a radius of 15–20 times the radius of the crater itself. Our study aims at the prediction of risk zones.

  7. Micro-Crater Laser Induced Breakdown Spectroscopy--an Analytical approach in metals samples

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, Vincent [UCV- Laboratorio de Espectroscopia Laser, Caracas (Venezuela); Lawrence Berkeley National laboratory, Berkeley, US (United States); Gonzalez, Jhanis; Xianglei, Mao; Russo, Richard [Lawrence Berkeley National laboratory, Berkeley, US (United States); Fernandez, Alberto [UCV- Laboratorio de Espectroscopia Laser, Caracas (Venezuela)

    2008-04-15

    The laser ablation has been increasing its popularity like as technique of chemical analysis. This is due to its great potentiality in the analysis of solid samples. On the way to contributing to the development of the technique, we in this work studied the laser induced breakdown spectroscopy (LIBS) in conditions of micro ablation for future studies of coverings and micro crates analysis. Craters between 2 and 7 micrometers of diameter were made using an Nd-YAG nanosecond laser in their fundamental emission of 1064 nm. In order to create these craters we use an objective lens of long distance work and 0.45 of numerical aperture. The atomic emission versus the energy of the laser and its effect on the size of craters was study. We found that below 3 micrometers although there was evidence of material removal by the formation of a crater, it was no detectable atomic emission for our instruments. In order to try to understand this, curves of size of crater versus plasma temperature using the Boltzmann distribution graphs taking the Copper emission lines in the visible region were made. In addition calibration curves for Copper and aluminum were made in two different matrices; one of it was a Cu/Zn alloy and the other a Zinc Matrix. The atomic lines Cu I (521.78 nm) and Al I (396.15 nm) was used. From the Calibration curve the analytical limit of detection and other analytical parameters were obtained.

  8. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  9. Onboard autonomous mineral detectors for Mars rovers

    Science.gov (United States)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.

    2005-12-01

    Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer

  10. Quantifying Cyclic Thermal Stresses Due to Solar Exposure in Rock Fragments in Gale Crater, Mars

    Science.gov (United States)

    Hallet, B.; Mackenzie-Helnwein, P.; Sletten, R. S.

    2017-12-01

    Curiosity and earlier rovers on Mars have revealed in detail rocky landscapes with decaying outcrops, rubble, stone-littered regolith, and bedrock exposures that reflect the weathering processes operating on rock exposed to Mars' cold and hyperarid environment. Evidence from diverse sources points to the importance of thermal stresses driven by cyclic solar exposure in contributing to the mechanical weathering of exposed rock and generation of regolith in various settings on Earth [1,2,3], and even more so on extraterrestrial bodies where large, rapid cyclic temperature variations are frequent (e.g. Mars [4], as well as comets [5], asteroids [6] and other airless bodies [7]). To study these thermal stresses, we use a 3d finite element (FE) model constrained by ground-based surface temperature measurements from Curiosity's Environmental Monitoring Station (REMS). The numerical model couples radiation and conduction with elastic response to determine the temperature and stress fields in individual rocks on the surface of Mars based on rock size and thermo-mechanical properties. We provide specific quantitative results for boulder-size basalt rocks resting on the ground using a realistic thermal forcing that closely matches the REMS temperature observations, and related thermal inertia data. Moreover, we introduce analytical studies showing that these numerical results can readily be generalized. They are quite universal, informing us about thermal stresses due to cyclic solar exposure in general, for rock fragments of different sizes, lithologies, and fracture- thermal- and mechanical-properties. Using Earth-analogue studies to gain insight, we also consider how the shapes, fractures, and surface details of rock fragments imaged by Curiosity likely reflect the importance of rock breakdown due to thermal stresses relative to wind-driven rock erosion and other surface processes on Mars. References:[1] McFadden L et al. (2005) Geol. Soc.Am. Bull. 117(1-2): 161-173 [2

  11. Geologic Map of the MTM -30262 and -30267 Quadrangles, Hadriaca Patera Region of Mars

    Science.gov (United States)

    Crown, David A.; Greeley, Ronald

    2007-01-01

    Introduction Mars Transverse Mercator (MTM) -30262 and -30267 quadrangles cover the summit region and east margin of Hadriaca Patera, one of the Martian volcanoes designated highland paterae. MTM -30262 quadrangle includes volcanic deposits from Hadriaca Patera and Tyrrhena Patera (summit northeast of map area) and floor deposits associated with the Dao and Niger Valles canyon systems (south of map area). MTM -30267 quadrangle is centered on the caldera of Hadriaca Patera. The highland paterae are among the oldest, central-vent volcanoes on Mars and exhibit evidence for explosive eruptions, which make a detailed study of their geology an important component in understanding the evolution of Martian volcanism. Photogeologic mapping at 1:500,000-scale from analysis of Viking Orbiter images complements volcanological studies of Hadriaca Patera, geologic investigations of the other highland paterae, and an analysis of the styles and evolution of volcanic activity east of Hellas Planitia in the ancient, cratered highlands of Mars. This photogeologic study is an extension of regional geologic mapping east of Hellas Planitia. The Martian highland paterae are low-relief, areally extensive volcanoes exhibiting central calderas and radial channels and ridges. Four of these volcanoes, Hadriaca, Tyrrhena, Amphitrites, and Peneus Paterae, are located in the ancient cratered terrains surrounding Hellas Planitia and are thought to be located on inferred impact basin rings or related fractures. Based on analyses of Mariner 9 images, Potter (1976), Peterson (1977), and King (1978) suggested that the highland paterae were shield volcanoes formed by eruptions of fluid lavas. Later studies noted morphologic similarities between the paterae and terrestrial ash shields and the lack of primary lava flow features on the flanks of the volcanoes. The degraded appearances of Hadriaca and Tyrrhena Paterae and the apparently easily eroded materials composing their low, broad shields further

  12. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database

    Science.gov (United States)

    Graettinger, A. H.

    2018-05-01

    A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.

  13. Investigations of Ceres's Craters with Straightened Rim

    Science.gov (United States)

    Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Raponi, A.; Formisano, M.; Ciarniello, M.; Magni, G.; Combe, J. P.; Marchi, S.; Raymond, C. A.; Schwartz, S. J.

    2017-12-01

    Dwarf planet Ceres hosts some geological features that are unique in the solar system because its composition, rich in aqueously-altered silicates, is usually found on full-size planets, whereas its mean radius is smaller than most natural satellites in the solar system. For example, the local high-albedo, carbonate-rich areas or faculaeare specific to Ceres; also, the absence of big impact crater structures is key to understand the overall mechanical behaviour of the Cerean crust. After the first findings of water ice occurring in the shadowed areas of craters on Ceres by the NASA/Dawn mission (1, 2), we analyzed the morphology of craters looking for features similar to the ones where the water ice composition has been detected analyzing the data from the VIR spectrometer (3). These craters fall outside of the family of polygonal craters which are mainly related to regional or global scale tectonics (4). We analyzed the morphology on the base of the global mosaic, the digital terrain model derived by using the stereo photogrammetry method and the single data frames of the Framing Camera. Our investigation started from crater Juling, which is characterized by a portion of the rim which forms a straight segment instead of a portion of a circle. This linear crater wall is also steep enough that it forms a cliff that is in the shadowed area in all images acquired by Dawn. Very smooth and bright deposits lay at the foot of this crater-wall cliff. Then, we identified several other craters, relatively fresh, with radius of 2 to 10 kilometers, showing one or two sectors of the crater-rim being truncated by a mass-wasting process, probably a rockfall. Our first analysis show that in the selected craters, the truncated sectors are always in the north-eastern sector of the rim for the craters in the southern hemisphere. Conversely, the craters on the northern hemisphere exhibit a truncated rim in their south-eastern sector. Although a more detailed analysis is mandatory

  14. The morphology of transverse aeolian ridges on Mars

    Science.gov (United States)

    Geissler, Paul E.; Wilgus, Justin T.

    2017-06-01

    A preliminary survey of publicly released high resolution digital terrain models (DTMs) produced by the High Resolution Imaging Science Experiment (HiRISE) camera on Mars Reconnaissance Orbiter identified transverse aeolian ridges (TARs) in 154 DTMs in latitudes from 50°S to 40°N. Consistent with previous surveys, the TARs identified in HiRISE DTMs are found at all elevations, irrespective of the regional thermal inertia of the surface. Ten DTMs were selected for measuring the characteristics of the TARs, including maximum height, mean height, mean spacing (wavelength), and the slope of the surface where they are located. We confined our measurements to features that were taller than 1 m and spaced more than 10 m apart. We found a surprisingly wide variability of TAR sizes within each local region (typically 5 km by 25 km), with up to a factor of 7 difference in TAR wavelengths in a single DTM. The TAR wavelengths do not appear to be correlated to latitude or elevation, but the largest TARs in our small survey were found at lower elevations. The tallest TARs we measured were on the flat floor of Moni crater, within Kaiser crater in the southern highlands. These TARs are up to 14 m tall, with a typical wavelength of 120 m. TAR heights are weakly correlated with their wavelengths. The height-to-wavelength ratios for most TARs are far less than 1/2π (the maximum predicted for antidunes), however in two cases the ratio is close to 1/2π, and in one case (in the bend of a channel) the ratio exceeds 1/2π. TAR wavelengths are uncorrelated with surface slope, both on local and regional scales. TAR heights are weakly anti-correlated with local slope. These results help constrain models of TAR formation, particularly a new hypothesis (Geissler, 2014) that suggests that TARs were formed from micron-sized dust that was transported in suspension. The lack of correlation between TAR wavelength and surface slope seems to rule out formation by gravity-driven dust flows such as

  15. Landing site rationality scaling for subsurface sampling on Mars—Case study for ExoMars Rover-like missions

    Science.gov (United States)

    Kereszturi, Akos

    2012-11-01

    Subsurface sampling will be important in the robotic exploration of Mars in the future, and this activity requires a somewhat different approach in landing site selection than earlier, surface analysis focused missions. In this work theoretical argumentation for the selection of ideal sites is summarized, including various parameters that were defined as examples for the earlier four candidate landing sites of Mars Science Laboratory. The aim here was to compare interesting sites; the decision on the final site does not affect this work. Analyzing the theoretical background, to identify ideal locations for subsurface analysis, several factors could be identified by remote sensing, including the dust and dune coverage, the cap layer distribution as well as the location of probable important outcrops. Beyond the fact that image based information on the rock hardness on Mars is lacking, more work would be also useful to put the interesting sites into global context and to understand the role of secondary cratering in age estimation. More laboratory work would be also necessary to improve our knowledge on the extraction and preservation of organic materials under different conditions. Beyond the theoretical argumentation mentioned above, the size and accessibility of possible important shallow subsurface materials were analyzed at the four earlier candidate landing sites of Mars Science Laboratory. At the sample terrains, interesting but inaccessible, interesting and sideward accessible, and interesting and from above accessible outcrops were identified. Surveying these outcrop types at the sample terrains, the currently available datasets showed only 3-9% of exposed strata over the entire analyzed area is present at Eberswalde and Holden crater, and individual outcrops have an average diameter between 100 and 400 m there. For Gale crater and Mawrth Valles region, these parameters were 46-35% of exposed strata, with an average outcrop diameter of ˜300 m. In the case

  16. Asteroid families from cratering: Detection and models

    Science.gov (United States)

    Milani, A.; Cellino, A.; Knežević, Z.; Novaković, B.; Spoto, F.; Paolicchi, P.

    2014-07-01

    A new asteroid families classification, more efficient in the inclusion of smaller family members, shows how relevant the cratering impacts are on large asteroids. These do not disrupt the target, but just form families with the ejecta from large craters. Of the 12 largest asteroids, 8 have cratering families: number (2), (4), (5), (10), (87), (15), (3), and (31). At least another 7 cratering families can be identified. Of the cratering families identified so far, 7 have >1000 members. This imposes a remarkable change from the focus on fragmentation families of previous classifications. Such a large dataset of asteroids believed to be crater ejecta opens a new challenge: to model the crater and family forming event(s) generating them. The first problem is to identify which cratering families, found by the similarity of proper elements, can be formed at once, with a single collision. We have identified as a likely outcome of multiple collisions the families of (4), (10), (15), and (20). Of the ejecta generated by cratering, only a fraction reaches the escape velocity from the surviving parent body. The distribution of velocities at infinity, giving to the resulting family an initial position and shape in the proper elements space, is highly asymmetric with respect to the parent body. This shape is deformed by the Yarkovsky effect and by the interaction with resonances. All the largest asteroids have been subjected to large cratering events, thus the lack of a family needs to be interpreted. The most interesting case is (1) Ceres, which is not the parent body of the nearby family of (93). Two possible interpretations of the low family forming efficiency are based on either the composition of Ceres with a significant fraction of ice, protected by a thin crust, or with the larger escape velocity of ~500 m/s.

  17. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Grotzinger, J. P.; Sumner, D. Y.; Kah, L. C.; Stack, K.; Gupta, S.; Edgar, L.; Rubin, D.; Lewis, K.; Schieber, J.; Mangold, N.; Milliken, R.; Conrad, P. G.; DesMarais, D.; Farmer, J.; Siebach, K.; Calef, F.; Hurowitz, J.; McLennan, S. M.; Ming, D.; Vaniman, D.; Crisp, J.; Vasavada, A.; Edgett, K. S.; Malin, M.; Blake, D.; Gellert, R.; Mahaffy, P.; Wiens, R. C.; Maurice, S.; Grant, J. A.; Wilson, S.; Anderson, R. C.; Beegle, L.; Arvidson, R.; Hallet, B.; Sletten, R. S.; Rice, M.; Bell, J.; Griffes, J.; Ehlmann, B.; Anderson, R. B.; Bristow, T. F.; Dietrich, W. E.; Dromart, G.; Eigenbrode, J.; Fraeman, A.; Hardgrove, C.; Herkenhoff, K.; Jandura, L.; Kocurek, G.; Lee, S.; Leshin, L. A.; Leveille, R.; Limonadi, D.; Maki, J.; McCloskey, S.; Meyer, M.; Minitti, M.; Newsom, H.; Oehler, D.; Okon, A.; Palucis, M.; Parker, T.; Rowland, S.; Schmidt, M.; Squyres, S.; Steele, A.; Stolper, E.; Summons, R.; Treiman, A.; Williams, R.; Yingst, A.; MSL Science Team; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Cremers, David; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Li, Shuai; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Farley, Kenneth; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Sutter, Brad; Cabane, Michel; Coscia, David; Szopa, Cyril; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Fay, Donald; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Posner, Arik; Voytek, Mary; Aubrey, Andrew; Behar, Alberto; Blaney, Diana; Brinza, David; Christensen, Lance; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Jun, Insoo; Keymeulen, Didier; Mischna, Michael; Morookian, John Michael; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Vicenzi, Edward; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Kortmann, Onno; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.

  18. Coulomb explosion sputtering, crater and blister formation by HCI

    International Nuclear Information System (INIS)

    Parilis, E.S.

    2001-01-01

    A simple theoretical model based on gradual Auger neutralization of a highly charged ion as it approaches the surface, with consequent positive charge deposition in surface layers and their expansion due to Coulomb repulsion provides the means to make some estimates that could explain the creation of very shallow blisters and craters on surface, as well as sputtering of up to 10 3 atoms in a single ion impact. Calculation of the dependence of blister size on projectile charge, based on charge evolution, gives some results fitting the experimental data. The model deals not just with the conducting properties of the solid, but with its structure as well, for instance the layered structure of mica. While the general source of energy remains the same, the particular mechanism of its realization depends largely on the composition, structure and electronic properties of the solid. The composition of the ejecta is discussed within the framework of the shock wave approach. (orig.)

  19. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    Science.gov (United States)

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on

  20. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    Science.gov (United States)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.