WorldWideScience

Sample records for crater flat pleistocene

  1. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement sampled near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87 Sr/ 86 Sr, and eolian material has 87 Sr/ 86 Sr ratios at the lower end of the pedogenic range. The average 87 Sr/ 86 Sr of Paleozoic basement from Black Marble Hill is similar to the 87 Sr/ 86 Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87 Sr/ 86 Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain

  2. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement samples near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87 Sr/ 86 Sr ratios at the lower end of the pedogenic range. The average 87 Sr/ 86 Sr of Paleozoic basement from Black Marble Hill is similar to the 87 Sr/ 86 Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87 Sr/ 86 Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain. 7 refs., 5 figs

  3. Geology of drill hole USW VH-2, and structure of Crater Flat, southwestern Nevada

    International Nuclear Information System (INIS)

    Carr, W.J.; Parrish, L.D.

    1985-01-01

    A 1219 meter (4000 ft) drill hole in Crater Flat shows the absence of buried Pliocene or Quaternary volcanic rocks, and penetrates a section of Timber Mountain, Paintbrush, and the upper part of the Crater Flat Tuffs, similar to that exposed adjacent to Crater Flat. A prominent negative aeromagnetic anomaly between the drill hole and Bare Mountain is attributed to a westward thickening section of a reversely magnetized Miocene basalt. The relatively shallow depth of this basalt in the west-central part of Crater Flat indicates that no large amount of tectonic movement has occurred in approximately the last 10 m.y. Massive brecciated wedges of Paleozoic rocks are penetrated in two stratigraphic intervals in the drill hole; the older one, between the Tiva Canyon Member of the Paintbrush Tuff and the Rainier Mesa Member of the Timber Mountain Tuff, correlates with the time of maximum faulting east of Crater Flat in the Yucca Mountain area. The younger slide masses are correlated with a large slide block of probable late Miocene age exposed along the southwestern rim of Crater Flat. The structural pattern and style buried beneath central and western Crater Flat is deduced to be similar to that exposed at Yucca Mountain, but less developed. The major fault system controlling the steep east face of Bare Mountain, though probably still active, is believed to have developed mainly as a result of caldera collapse between 13 and 14 m.y. ago. Relations between faulting and four episodes of basalt eruption in the Crater Flat area strongly suggest contemporaneity of the two processes. 17 refs., 2 figs., 3 tabs

  4. Pleistocene Lake Bonneville and Eberswalde Crater of Mars: Quantitative Methods for Recognizing Poorly Developed Lacustrine Shorelines

    Science.gov (United States)

    Jewell, P. W.

    2014-12-01

    The ability to quantify shoreline features on Earth has been aided by advances in acquisition of high-resolution topography through laser imaging and photogrammetry. Well-defined and well-documented features such as the Bonneville, Provo, and Stansbury shorelines of Late Pleistocene Lake Bonneville are recognizable to the untrained eye and easily mappable on aerial photos. The continuity and correlation of lesser shorelines must rely quantitative algorithms for processing high-resolution data in order to gain widespread scientific acceptance. Using Savitsky-Golay filters and the geomorphic methods and criteria described by Hare et al. [2001], minor, transgressive, erosional shorelines of Lake Bonneville have been identified and correlated across the basin with varying degrees of statistical confidence. Results solve one of the key paradoxes of Lake Bonneville first described by G. K. Gilbert in the late 19th century and point the way for understanding climatically driven oscillations of the Last Glacial Maximum in the Great Basin of the United States. Similar techniques have been applied to the Eberswalde Crater area of Mars using HRiSE DEMs (1 m horizontal resolution) where a paleolake is hypothesized to have existed. Results illustrate the challenges of identifying shorelines where long term aeolian processes have degraded the shorelines and field validation is not possible. The work illustrates the promises and challenges of indentifying remnants of a global ocean elsewhere on the red planet.

  5. Geochemical evidence for waning magmatism and polycyclic volcanism at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Perry, F.V.; Crowe, B.M.

    1992-01-01

    This paper reports that petrologic and geochemical studies of basaltic rocks in the Yucca Mountain region are currently focused on understanding the evolution of volcanism in the Crater Flat volcanic field and the mechanisms of polycyclic volcanic field and the mechanisms of polycyclic volcanism at the Lathrop Wells volcanic center, the youngest center in the Crater Flat volcanic field. Geochemical and petrologic data indicate that the magma chambers which supplied the volcanic centers at Crater Flat became situated at greater crustal depths as the field evolved. Deep magma chambers may be related to a waning magma flux that was unable to sustain upper crustal magma conduits and chambers. Geochemical data from the Lathrop Wells volcanic center indicate that eruptive units identified from field and geomorphic relationships are geochemically distinct. The geochemical variations cannot be explained by fractional crystallization of a single magma batch, indicating that several magma batches were involved in the formation of the Lathrop Wells center. Considering the low magma flux in the Yucca Mountain region in the Quaternary, the probability of several magma batches erupting essentially simultaneously at Lathrop Wells is considered remote

  6. Aeromagnetic surveys across Crater Flat and parts of Yucca Mountain, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Sikora, R.F.; Campbell, D.L.; Kucks, R.P.

    1995-01-01

    As part of a study to characterize a potential nuclear waste repository at Yucca Mountain, aeromagnetic surveys were conducted in April 1993 along the trace of a planned seismic profile across Crater Flat and parts of Yucca Mountain. This report includes a presentation and preliminary interpretation of the data. The profiles are at scales of 1:100,000. Also included are a gridded color contour map of the newly acquired data and a discussion of the likely applicability of very-low-frequency (VLF) electromagnetic surveys to Yucca Mountain investigations

  7. Ground magnetic studies along a regional seismic-reflection profile across Bare Mountain, Crater Flat and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Langenheim, V.E.; Ponce, D.A.

    1995-01-01

    Ground magnetic data were collected along a 26-km-long regional seismic-reflection profile in southwest Nevada that starts in the Amargosa Desert, crosses Bare Mountain, Crater Flat and Yucca Mountain, and ends in Midway Valley. Parallel ground magnetic profiles were also collected about 100 m to either side of the western half of the seismic-reflection line. The magnetic data indicate that the eastern half of Crater Flat is characterized by closely-spaced faulting (1--2 km) in contrast to the western half of Crater Flat. Modeling of the data indicates that the Topopah Spring Tuff is offset about 250 m on the Solitario Canyon fault and about 50 m on the Ghost Dance fault. These estimates of fault offset are consistent with seismic-reflection data and geologic mapping. A broad magnetic high of about 500--600 nT is centered over Crater Flat. Modeling of the magnetic data indicates that the source of this high is not thickening and doming of the Bullfrog Tuff, but more likely lies below the Bullfrog Tuff. Possible source lithologies for this magnetic high include altered argillite of the Eleana Formation, Cretaceous or Tertiary intrusions, and mafic sills

  8. Late quaternary history and uranium isotopic compositions of ground water discharge deposits, Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Paces, J.B.; Taylor, E.M.; Bush, C.

    1993-01-01

    Three carbonate-rich spring deposits are present near the southern end of Crater Flat, NV, approximately 18 km southwest of the potential high-level waste repository at Yucca Mountain. We have analyzed five samples of carbonate-rich material from two of the deposits for U and Th isotopic compositions. Resulting U-series disequilibrium ages indicate that springs were active at 18 ± 1, 30 ± 3, 45 ± 4 and >70 ka. These ages are consistent with a crude internal stratigraphy at one site. Identical ages for two samples at two separate sites suggest that springs were contemporaneous, at least in part, and were most likely part of the same hydrodynamic system. In addition, initial U isotopic compositions range from 2.8 to 3.8 and strongly suggest that ground water from the regional Tertiary-volcanic aquifer provided the source for these hydrogenic deposits. This interpretation, along with water level data from near-by wells suggest that the water table rose approximately 80 to 115 m above present levels during the late Quaternary and may have fluctuated repeatedly. Current data are insufficient to allow reconstruction of a detailed depositional history, however geochronological data are in a good agreement with other paleoclimatic proxy records preserved throughout the region. Since these deposits are down gradient from the potential repository site, the possibility of higher ground water levels in the future dramatically shortens both vertical and lateral ground water pathways and reduces travel times of transported radionuclides to potential discharge sites

  9. Late quaternary history and uranium isotopic compositions of ground water discharge deposits, Crater Flat, Nevada

    Science.gov (United States)

    Paces, James B.; Taylor, Emily M.; Bush, Charles

    1993-01-01

    Three carbonate-rich spring deposits are present near the southern end of Crater Flat, NV, approximately 18 km southwest of the potential high-level waste repository at Yucca Mountain. We have analyzed five samples of carbonate-rich material from two of the deposits for U and Th isotopic compositions. Resulting U-series disequilibrium ages indicate that springs were active at 18 ?? 1, 30 ?? 3, 45 ?? 4 and >70 ka. These ages are consistent with a crude internal stratigraphy at one site. Identical ages for two samples at two separate sites suggest that springs were contemporaneous, at least in part, and were most likely part of the same hydrodynamic system. In addition, initial U isotopic compositions range from 2.8 to 3.8 and strongly suggest that ground water from the regional Tertiary-volcanic aquifer provided the source for these hydrogenic deposits. This interpretation, along with water level data from near-by wells suggest that the water table rose approximately 80 to 115 m above present levels during the late Quaternary and may have fluctuated repeatedly. Current data are insufficient to allow reconstruction of a detailed depositional history, however geochronological data are in good agreement with other paleoclimatic proxy records preserved throughout the region. Since these deposits are down gradient from the potential repository site, the possibility of higher ground water levels in the future dramatically shortens both vertical and lateral ground water pathways and reduces travel times of transported radionuclides to potential discharge sites.

  10. Petrologic and geochemical characterization of the Bullfrog Member of the Crater Flat Tuff: outcrop samples used in waste package experiments

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1983-09-01

    In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), experiments on hydrothermal rock/water interaction, corrosion, thermomechanics, and geochemical modeling calculations are being conducted. All of these activities require characterization of the initial bulk composition, mineralogy, and individual phase geochemistry of the potential repository host rock. This report summarizes the characterization done on samples of the Bullfrog Member of the Crater Flat Tuff (Tcfb) used for Waste Package experimental programs. 11 references, 17 figures, 3 tables

  11. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs

  12. Flat plate film cooling at the coolant supply into triangular and cylindrical craters

    Directory of Open Access Journals (Sweden)

    Khalatov Artem A.

    2017-01-01

    Full Text Available The results are given of the film cooling numerical simulation of three different schemes including single-array of the traditional round inclined holes, as well as inclined holes arranged in the cylindrical or triangular dimples (craters. The results of simulation showed that at the medium and high values of the blowing ratio (m > 1.0 the scheme with coolant supply into triangular craters improves the adiabatic film cooling efficiency by 1.5…2.7 times compared to the traditional array of inclined holes, or by 1.3…1.8 times compared to the scheme with coolant supply into cylindrical craters. The greater film cooling efficiency with the coolant supply into triangular craters is explained by decrease in the intensity of secondary vortex structures (“kidney” vortex. This is due to the partial destruction and transformation of the coolant jets structure interacting with front wall of the crater. Simultaneously, the film cooling uniformity is increased in the span-wise direction.

  13. Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations

    International Nuclear Information System (INIS)

    Vaniman, D.; Crowe, B.

    1981-06-01

    Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently

  14. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.

    1995-01-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff

  15. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Las Vegas, NV (United States)

    1995-07-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff.

  16. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain--Crater Flat region, Nevada

    International Nuclear Information System (INIS)

    Brocher, T.M.; Langenheim, V.E.; Hunter, W.C.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate-to-high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64 degree ± 5 degree. Along the profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging

  17. Energetic Residues and Crater Geometries from the Firing of 120-mm High-Explosive Mortar Projectiles into Eagle River Flats, June 2007

    Science.gov (United States)

    2008-07-01

    samples. ERDC/CRREL TR-08-10 15 c. US DH-48 isokinetic sampler. Figure 7 (cont’d). The second activity was the collection of soil at the...3 0.28 Mc1/3 0.3 Mc1/3 Ra Apparent radius of the crater in meters Mc Mass of the explosive charge in kilograms Da Apparent depth of the crater in... meters The apparent depth and radius of a crater will increase with the depth of explosive charge below the surface down to a maximum depth called

  18. Statistical test of reproducibility and operator variance in thin-section modal analysis of textures and phenocrysts in the Topopah Spring member, drill hole USW VH-2, Crater Flat, Nye County, Nevada

    International Nuclear Information System (INIS)

    Moore, L.M.; Byers, F.M. Jr.; Broxton, D.E.

    1989-06-01

    A thin-section operator-variance test was given to the 2 junior authors, petrographers, by the senior author, a statistician, using 16 thin sections cut from core plugs drilled by the US Geological Survey from drill hole USW VH-2 standard (HCQ) drill core. The thin sections are samples of Topopah Spring devitrified rhyolite tuff from four textural zones, in ascending order: (1) lower nonlithophysal, (2) lower lithopysal, (3) middle nonlithophysal, and (4) upper lithophysal. Drill hole USW-VH-2 is near the center of the Crater Flat, about 6 miles WSW of the Yucca Mountain in Exploration Block. The original thin-section labels were opaqued out with removable enamel and renumbered with alpha-numeric labels. The sliders were then given to the petrographer operators for quantitative thin-section modal (point-count) analysis of cryptocrystalline, spherulitic, granophyric, and void textures, as well as phenocryst minerals. Between operator variance was tested by giving the two petrographers the same slide, and within-operator variance was tested by the same operator the same slide to count in a second test set, administered at least three months after the first set. Both operators were unaware that they were receiving the same slide to recount. 14 figs., 6 tabs

  19. Centrifuge impact cratering experiment 5

    Science.gov (United States)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  20. Cutting Craters

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 12 November 2003The rims of two old and degraded impact craters are intersected by a graben in this THEMIS image taken near Mangala Fossa. Yardangs and low-albedo wind streaks are observed at the top of the image as well as interesting small grooves on the crater floor. The origin of these enigmatic grooves may be the result of mud or lava and volatile interactions. Variable surface textures observed in the bottom crater floor are the result of different aged lava flows.Image information: VIS instrument. Latitude -15.2, Longitude 219.2 East (140.8 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Experimental simulation of impact cratering on icy satellites

    Science.gov (United States)

    Greeley, R.; Fink, J. H.; Gault, D. E.; Guest, J. E.

    1982-01-01

    Cratering processes on icy satellites were simulated in a series of 102 laboratory impact experiments involving a wide range of target materials. For impacts into homogeneous clay slurries with impact energies ranging from five million to ten billion ergs, target yield strengths ranged from 100 to 38 Pa, and apparent viscosities ranged from 8 to 200 Pa s. Bowl-shaped craters, flat-floored craters, central peak craters with high or little relief, and craters with no relief were observed. Crater diameters increased steadily as energies were raised. A similar sequence was seen for experiment in which impact energy was held constant but target viscosity and strength progressively decreases. The experiments suggest that the physical properties of the target media relative to the gravitationally induced stresses determined the final crater morphology. Crater palimpsests could form by prompt collapse of large central peak craters formed in low target strength materials. Ages estimated from crater size-frequency distributions that include these large craters may give values that are too high.

  2. A schematic model of crater modification by gravity

    Science.gov (United States)

    Melosh, H. J.

    1982-01-01

    The morphology of craters found on planets and moons of the solar system is examined and a development model which can account for the observed crater characteristics is discussed. The prompt collapse of craters to form flat floors, terraced walls, and central peak structures is considered to be the result of an approximate Bingham plastic rheology of the material surrounding the crater. This rheology is induced dynamically by the strong incoherent acoustic 'noise' accompanying excavation of the crater. Central pits, peak rings, and other multiple symmetric-profile rings originate by oscillation of this fluid. Large craters with transient depths comparable to the lithosphere thickness are subject to collapse by fragmentation of the lithosphere as well as fluidization. The considered concepts are developed mathematically. A model emerges which appears capable of explaining most of the qualitative features of large impact structures.

  3. Dome craters on Ganymede

    International Nuclear Information System (INIS)

    Moore, J.M.; Malin, M.C.

    1987-01-01

    Voyager observations reveal impact craters on Ganymede that are characterized by the presence of broad, high albedo, topographic domes situated within a central pit. Fifty-seven craters with central domes were identified in images covering approx. 50% of the surface. Owing to limitations in resolution, and viewing and illumination angles, the features identified are most likely a subset of dome craters. The sample appears to be sufficiently large to infer statistically meaningful trends. Dome craters appear to fall into two distinct populations on plots of the ratio of dome diameter to crater rim diameter, large-dome craters and small-dome craters. The two classes are morphologically distinct from one another. In general, large dome craters show little relief and their constituent landforms appear subdued with respect to fresh craters. The physical attributes of small-dome craters are more sharply defined, a characteristic they share with young impact craters of comparable size observed elsewhere in the solar system. Both types of dome craters exhibit central pits in which the dome is located. As it is difficult to produce domes by impact and/or erosional processes, an endogenic origin for the domes is reasonably inferred. Several hypotheses for their origin are proposed. These hypotheses are briefly reviewed

  4. Degraded Crater Rim

    Science.gov (United States)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  5. Pleistocene Paleoart of Australia

    Directory of Open Access Journals (Sweden)

    Robert G. Bednarik

    2014-02-01

    Full Text Available Pleistocene rock art is abundant in Australia, but has so far received only limited attention. Instead there has been a trend, begun over a century ago, to search for presumed depictions of extinct megafauna and the tracks of such species. All these notions have been discredited, however, and the current evidence suggests that figurative depiction was introduced only during the Holocene, never reaching Tasmania. Nevertheless, some Australian rock art has been attributed to the Pleistocene by direct dating methods, and its nature implies that a significant portion of the surviving corpus of rock art may also be of such age. In particular much of Australian cave art is of the Ice Age, or appears to be so, and any heavily weathered or patinated petroglyphs on particularly hard rocks are good candidates for Pleistocene antiquity. On the other hand, there is very limited evidence of mobiliary paleoart of such age in Australia.

  6. Pleistocene Palaeoart of Asia

    Directory of Open Access Journals (Sweden)

    Robert G. Bednarik

    2013-06-01

    Full Text Available This comprehensive overview considers the currently known Pleistocene palaeoart of Asia on a common basis, which suggests that the available data are entirely inadequate to form any cohesive synthesis about this corpus. In comparison to the attention lavished on the corresponding record available from Eurasia’s small western appendage, Europe, it is evident that Pleistocene palaeoart from the rest of the world has been severely neglected. Southern Asia, in particular, holds great promise for the study of early cognitive development of hominins, and yet this potential has remained almost entirely unexplored. Asia is suggested to be the key continent in any global synthesis of ‘art’ origins, emphasising the need for a comprehensive pan-continental research program. This is not just to counter-balance the incredible imbalance in favour of Europe, but to examine the topic of Middle Pleistocene palaeoart development effectively.

  7. A model for the dynamics of crater-centered intrusion: Application to lunar floor-fractured craters

    Science.gov (United States)

    Thorey, Clément; Michaut, Chloé

    2014-01-01

    Lunar floor-fractured craters are a class of craters modified by post-impact mechanisms. They are defined by distinctive shallow floors that are convex or plate-like, sometimes with a wide floor moat bordering the wall region. Radial, concentric, and polygonal floor fractures suggest an endogenous process of modification. Two mechanisms have been proposed to account for such deformations: viscous relaxation and spreading of a magma intrusion at depth below the crater. To test the second assumption and bring more constraints on the intrusion process, we develop a model for the dynamics of magma spreading below an elastic overlying layer with a crater-like topography. As predicted in earlier more qualitative studies, the increase in lithostatic pressure at the crater wall zone prevents the intrusion from spreading laterally, leading to the thickening of the intrusion. Additionally, our model shows that the final crater floor appearance after the uplift, which can be convex or flat, with or without a circular moat bordering the wall zone, depends on the elastic thickness of the layer overlying the intrusion and on the crater size. Our model provides a simple formula to derive the elastic thickness of the overlying layer hence a minimum estimate for the intrusion depth. Finally, our model suggests that crust redistribution by cratering must have controlled magma ascent below most of these craters.

  8. Geologic map of Tooting crater, Amazonis Planitia region of Mars

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2015-01-01

    Tooting crater has a diameter of 27.2 km, and formed on virtually flat lava flows within Amazonis Planitia ~1,300 km west of the summit of Olympus Mons volcano, where there appear to have been no other major topographic features prior to the impact. The crater formed in an area ~185 x 135 km that is at an elevation between −3,870 m and −3,874 m relative to the Mars Orbiter Laser Altimeter (MOLA) Mars datum. This fortuitous situation (for example, a bland, horizontal target) allows the geometry of the crater and the thickness of the ejecta blanket to be accurately determined by subtracting the appropriate elevation of the surrounding landscape (−3,872 m) from the individual MOLA measurements across the crater. Thus, for the first time, it is possible to determine the radial decrease of ejecta thickness as a function of distance away from the rim crest. On the basis of the four discrete ejecta layers surrounding the crater cavity, Tooting crater is classified as a Multiple-Layered Ejecta (MLE) crater. By virtue of the asymmetric distribution of secondary craters and the greater thickness of ejecta to the northeast, Morris and others (2010) proposed that Tooting crater formed by an oblique impact from the southwest. The maximum range of blocks that produced identifiable secondary craters is ~500 km (~36.0 crater radii) from the northeast rim crest. In contrast, secondary craters are only identifiable ~215 km (15.8 radii) to the southeast and 225 km (16.5 radii) to the west.

  9. Experimental impact crater morphology

    Science.gov (United States)

    Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The research group MEMIN (Multidisciplinary Experimental and Impact Modelling Research Network) is conducting impact experiments into porous sandstones, examining, among other parameters, the influence of target pore-space saturation with water, and projectile velocity, density and mass, on the cratering process. The high-velocity (2.5-7.8 km/s) impact experiments were carried out at the two-stage light-gas gun facilities of the Fraunhofer Institute EMI (Germany) using steel, iron meteorite (Campo del Cielo IAB), and aluminium projectiles with Seeberg Sandstone as targets. The primary objectives of this study within MEMIN are to provide detailed morphometric data of the experimental craters, and to identify trends and characteristics specific to a given impact parameter. Generally, all craters, regardless of impact conditions, have an inner depression within a highly fragile, white-coloured centre, an outer spallation (i.e. tensile failure) zone, and areas of arrested spallation (i.e. spall fragments that were not completely dislodged from the target) at the crater rim. Within this general morphological framework, distinct trends and differences in crater dimensions and morphological characteristics are identified. With increasing impact velocity, the volume of craters in dry targets increases by a factor of ~4 when doubling velocity. At identical impact conditions (steel projectiles, ~5km/s), craters in dry and wet sandstone targets differ significantly in that "wet" craters are up to 76% larger in volume, have depth-diameter ratios generally below 0.19 (whereas dry craters are almost consistently above this value) at significantly larger diameters, and their spallation zone morphologies show very different characteristics. In dry craters, the spall zone surfaces dip evenly at 10-20° towards the crater centre. In wet craters, on the other hand, they consist of slightly convex slopes of 10-35° adjacent to the inner depression, and of sub-horizontal tensile

  10. Centrifuge Impact Cratering Experiments

    Science.gov (United States)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.

    1985-01-01

    The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.

  11. Buried Craters of Utopia

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-365, 19 May 2003Beneath the northern plains of Mars are numerous buried meteor impact craters. One of the most heavily-cratered areas, although buried, occurs in Utopia Planitia, as shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The history of Mars is complex; impact craters provide a tool by which to understand some of that history. In this case, a very ancient, cratered surface was thinly-buried by younger material that is not cratered at all. This area is near 48.1oN, 228.2oW; less than 180 km (112 mi) west of the Viking 2 lander site. Sunlight illuminates the scene from the lower left.

  12. Crater in Utopia

    Science.gov (United States)

    2004-01-01

    23 March 2004 Craters of the martian northern plains tend to be somewhat shallow because material has filled them in. Their ejecta blankets, too, are often covered by younger materials. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example--a crater in Utopia Planitia near 43.7oN, 227.3oW. Erosion has roughened some of the surfaces of the material that filled the crater and covered its ejecta deposit. The picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  13. Polygons on Crater Floor

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-357, 11 May 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a pattern of polygons on the floor of a northern plains impact crater. These landforms are common on crater floors at high latitudes on Mars. Similar polygons occur in the arctic and antarctic regions of Earth, where they indicate the presence and freeze-thaw cycling of ground ice. Whether the polygons on Mars also indicate water ice in the ground is uncertain. The image is located in a crater at 64.8oN, 292.7oW. Sunlight illuminates the scene from the lower left.

  14. Mercury's Densely Cratered Surface

    Science.gov (United States)

    1974-01-01

    Mariner 10 took this picture (FDS 27465) of the densely cratered surface of Mercury when the spacecraft was 18,200 kilometers (8085 miles) from the planet on March 29. The dark line across top of picture is a 'dropout' of a few TV lines of data. At lower left, a portion of a 61 kilometer (38 mile) crater shows a flow front extending across the crater floor and filling more than half of the crater. The smaller, fresh crater at center is about 25 kilometers (15 miles) in diameter. Craters as small as one kilometer (about one-half mile) across are visible in the picture.The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.Image Credit: NASA/JPL/Northwestern University

  15. Multivariate analyses of crater parameters and the classification of craters

    Science.gov (United States)

    Siegal, B. S.; Griffiths, J. C.

    1974-01-01

    Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.

  16. Pleistocene Palaeoart of Africa

    Directory of Open Access Journals (Sweden)

    Robert G. Bednarik

    2013-02-01

    Full Text Available This comprehensive review of all currently known Pleistocene rock art of Africa shows that the majority of sites are located in the continent’s south, but that the petroglyphs at some of them are of exceptionally great antiquity. Much the same applies to portable palaeoart of Africa. The current record is clearly one of paucity of evidence, in contrast to some other continents. Nevertheless, an initial synthesis is attempted, and some preliminary comparisons with the other continents are attempted. Certain parallels with the existing record of southern Asia are defined.

  17. Craters on comets

    Science.gov (United States)

    Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.

    2014-07-01

    This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous

  18. Geometric interpretation of the ratio of overall diameter to rim crest diameter for lunar and terrestrial craters.

    Science.gov (United States)

    Siegal, B. S.; Wickman, F. E.

    1973-01-01

    An empirical linear relationship has been established by Pike (1967) between the overall diameter and the rim crest diameter for rimmed, flat-floored as well as bowl-shaped, lunar and terrestrial craters formed by impact and explosion. A similar relationship for experimentally formed fluidization craters has been established by Siegal (1971). This relationship is examined in terms of the geometry of the crater and the slope angles of loose materials. The parameter varies from 1.40 to 1.65 and is found to be dependent on mean interior flat floor radius, exterior and interior rim slope angles, angle of aperture of the crater cone, and the volume fraction of crater void accounted for in the rim. The range of the observed parameter can be understood in terms of simple crater geometry by realistic values of the five parameters.

  19. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  20. Paleobiology of Pleistocene Proboscideans

    Science.gov (United States)

    Fisher, Daniel C.

    2018-05-01

    The paleobiology of Pleistocene proboscideans plays a pivotal role in understanding their history and in answering fundamental questions involving their interactions with other taxa, including humans. Much of our view of proboscidean paleobiology is influenced by analogies with extant elephants. However, a wealth of information is available for reconstructing the paleobiology of ancient proboscideans using data from fossil specimens and preservational settings. Remarkable opportunities include permafrost-derived specimens with preserved soft tissue, intestinal contents with direct evidence of diet, and compositional and structural profiles with subannual temporal resolution archived in appositional systems such as proboscidean tusks. New information on diets and local climates puts our understanding of proboscidean paleoecology on a firmer foundation, but the greatest prospects for new insight spring from life history data now being retrieved from accelerator mass spectrometry–dated fossil material. Interaction between humans and proboscideans has been a critical factor in the history of both groups.

  1. Cratering on Small Bodies: Lessons from Eros

    Science.gov (United States)

    Chapman, C. R.

    2003-01-01

    from interactions with main-belt asteroids in its Earth-approaching orbit, almost all of its cratering history must have occurred in the main belt, where it almost certainly lived for a long time and where the impact rate is orders-of-magnitude greater than in its present environment. Thus NEAR Shoemaker's year-long orbital studies of Eros should be representative of asteroidal cratering processes for medium-small (tens of km) asteroids generally - with the caveat that small bodies are made of many different materials, ranging from metal to whatever comets are made of, and we already have indications from NEAR Shoemaker's flyby of Mathilde that responses to impacts on such bodies may be very different from what is observed on rocky Eros. As viewed from a distance, the saturated crater fields on Eros look similar to those on Ida and, indeed, on the Moon itself. It is at smaller scales, never before studied for asteroids, where Eros# appearance diverted dramatically from expectations based on modest extrapolations from our lunar experience. Flat, level "ponds" are common on Eros and were certainly not expected. Most striking, however, is the virtual absence of small-scale (cm to meters) craters and the dominance of rocks and boulders on the surface. Apparently many of the larger boulders were distributed about Eros by the comparatively recent impact that produced the Shoemaker crater, providing insight to ejecta processes on small bodies. But, assuming that Shoemaker didn't form practically "yesterday", the dearth of small craters is extremely puzzling. Some researchers have attempted to explain the shortage by traditional geological processes; I will explain why these fail and we are being forced to turn to explanations involving shortages of small projectiles in the asteroid belt (e.g. due to the Yarkovsky Effect). Even if projectile shortages help to explain the data, other non-lunar processes must be at work, as well. Mass-wasting processes are evident on large

  2. Hypervelocity impact cratering calculations

    Science.gov (United States)

    Maxwell, D. E.; Moises, H.

    1971-01-01

    A summary is presented of prediction calculations on the mechanisms involved in hypervelocity impact cratering and response of earth media. Considered are: (1) a one-gram lithium-magnesium alloys impacting basalt normally at 6.4 km/sec, and (2) a large terrestrial impact corresponding to that of Sierra Madera.

  3. Heavy Cratering near Callisto's South Pole

    Science.gov (United States)

    1997-01-01

    Images from NASA's Galileo spacecraft provide new insights into this region near Callisto's south pole. This two frame mosaic shows a heavily cratered surface with smooth plains in the areas between craters. North is to the top of the image. The smoothness of the plains appears to increase toward the south pole, approximately 480 kilometers (293 miles) south of the bottom of the image. This smoothness of Callisto's surface was not evident in images taken during the 1979 flyby of NASA's Voyager spacecraft because the resolution was insufficient to show the effect. This smooth surface, and the process(es) that cause it, are among the most intriguing aspects of Callisto. Although not fully understood, the process(es) responsible for this smoothing could include erosion by tiny meteorites and energetic ions. Some craters, such as Keelut, the 47 kilometer (29 mile) crater in the lower right corner, have sharp, well defined rims. Keelut contains an inner ring surrounding a central depression about 17 kilometers (11 miles) in diameter. Keelut, and the more irregularly shaped, degraded Reginleif, the 32 kilometer (19.5 mile) crater in the top center of the image, are very shallow and have flat floors. Crater forms can be seen down to less than 2 kilometers (1.2 miles) in diameter in the image. Each picture element (pixel) in this image is approximately 0.68 kilometers (0.41 miles) across.This image which was taken by the Galileo spacecraft's solid state imaging (CCD) system during its eighth orbit around Jupiter, on May 6th, 1997. The center of the image is located at 71.3 degrees south latitude, 97.6 degrees west longitude, and was taken when the spacecraft was approximately 35,470 kilometers (21,637 miles) from Callisto.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http

  4. Owhership of flats

    OpenAIRE

    Přibil, Jan

    2012-01-01

    Ownership of Flats Summary In his diploma thesis "Ownership of Flats", the author focuses on applicable law of flat ownership in the Czech Republic, especially the Flat Ownership Act 72/1994 Sb. The author puts the contemporary regulation in historical context; he describes the theoretical principles underlining the current applicable law and defines in detail the basic legal terms used by the Flat Ownership Act. Original and derivative forms of flat ownership acquisition are explained, namel...

  5. Pleistocene Palaeoart of the Americas

    Directory of Open Access Journals (Sweden)

    Robert G. Bednarik

    2014-04-01

    Full Text Available In contrast to the great time depth of Pleistocene rock art and mobiliary ‘art’ in the four other continents, the available evidence from the Americas is very limited, and restricted at best to the last part of the final Pleistocene. A review of what has so far become available is hampered by a considerable burden of literature presenting material contended to be of the Ice Age, even of the Mesozoic in some cases, that needs to be sifted through to find a minute number of credible claims. Even the timing of the first colonization of the Americas remains unresolved, and the lack of clear-cut substantiation of palaeoart finds predating about 12,000 years bp is conspicuous. There are vague hints of earlier human presence, rendering it likely that archaeology has failed to define its manifestations adequately, and Pleistocene palaeoart remains almost unexplored at this stage.

  6. The temporal bones from Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain). A phylogenetic approach.

    Science.gov (United States)

    Martínez, I; Arsuaga, J L

    1997-01-01

    Three well-preserved crania and 22 temporal bones were recovered from the Sima de los Huesos Middle Pleistocene site up to and including the 1994 field season. This is the largest sample of hominid temporal bones known from a single Middle Pleistocene site and it offers the chance to characterize the temporal bone morphology of an European Middle Pleistocene population and to study the phylogenetic relationships of the SH sample with other Upper and Middle Pleistocene hominids. We have carried out a cladistic analysis based on nine traits commonly used in phylogenetic analysis of Middle and Late Pleistocene hominids: shape of the temporal squama superior border, articular eminence morphology, contribution of the sphenoid bone to the median glenoid wall, postglenoid process projection, tympanic plate orientation, presence of the styloid process, mastoid process projection, digastric groove morphology and anterior mastoid tubercle. We have found two autapomorphies on the Home erectus temporal bone: strong reduction of the postglenoid process and absence of the styloid process. Modern humans, Neandertals and the Middle Pleistocene fossils from Europe and Africa constitute a clade characterized by a convex superior border of the temporal squama. The European Middle Pleistocene fossils from Sima de los Huesos, Petralona, Steinheim, Bilzingsleben and Castel di Guido share a Neandertal apomorphy: a relatively flat articular eminence. The fossils from Ehringsdorf, La Chaise Suardi and Biache-Saint-Vaast also display another Neandertal derived trait: an anteriorly obliterated digastric groove. Modern humans and the African Middle Pleistocene fossils share a synapomorphy: a sagittally orientated tympanic plate.

  7. Crater Highlands, Tanzania

    Science.gov (United States)

    2006-01-01

    The Shuttle Radar Topography Mission (SRTM), flown aboard Space Shuttle Endeavour in February 2000, acquired elevation measurements for nearly all of Earth's landmass between 60oN and 56oS latitudes. For many areas of the world SRTM data provide the first detailed three-dimensional observation of landforms at regional scales. SRTM data were used to generate this view of the Crater Highlands along the East African Rift in Tanzania. Landforms are depicted with colored height and shaded relief, using a vertical exaggeration of 2X and a southwestwardly look direction. Lake Eyasi is depicted in blue at the top of the image, and a smaller lake occurs in Ngorongoro Crater. Near the image center, elevations peak at 3648 meters (11,968 feet) at Mount Loolmalasin, which is south of Ela Naibori Crater. Kitumbeine (left) and Gelai (right) are the two broad mountains rising from the rift lowlands. Mount Longido is seen in the lower left, and the Meto Hills are in the right foreground. Tectonics, volcanism, landslides, erosion and deposition -- and their interactions -- are all very evident in this view. The East African Rift is a zone of spreading between the African (on the west) and Somali (on the east) crustal plates. Two branches of the rift intersect here in Tanzania, resulting in distinctive and prominent landforms. One branch trends nearly parallel the view and includes Lake Eyasi and the very wide Ngorongoro Crater. The other branch is well defined by the lowlands that trend left-right across the image (below center, in green). Volcanoes are often associated with spreading zones where magma, rising to fill the gaps, reaches the surface and builds cones. Craters form if a volcano explodes or collapses. Later spreading can fracture the volcanoes, which is especially evident on Kitumbeine and Gelai Mountains (left and right, respectively, lower center). The Crater Highlands rise far above the adjacent savannas, capture moisture from passing air masses, and host rain

  8. Polygons and Craters

    Science.gov (United States)

    2005-01-01

    3 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygons enhanced by subliming seasonal frost in the martian south polar region. Polygons similar to these occur in frozen ground at high latitudes on Earth, suggesting that perhaps their presence on Mars is also a sign that there is or once was ice in the shallow subsurface. The circular features are degraded meteor impact craters. Location near: 72.2oS, 310.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  9. Gully formation in terrestrial simple craters: Meteor Crater, USA and Lonar Crater, India

    Science.gov (United States)

    Kumar, P.; Head, J. W.; Kring, D. A.

    2007-12-01

    Geomorphic features such as gullies, valley networks, and channels on Mars have been used as a proxy to understand the climate and landscape evolution of Mars. Terrestrial analogues provide significant insight as to how the various exogenic and endogenic processes might contribute to the evolution of these martian landscapes. We describe here a terrestrial example from Meteor Crater, which shows a spectacular development of gullies throughout the inner wall in response to rainwater precipitation, snow melting and groundwater discharge. As liquid water has been envisaged as one of the important agents of landscape sculpturing, Meteor Crater remains a useful landmark, where planetary geologists can learn some lessons. We also show here how the lithology and structural framework of this crater controls the gully distribution. Like many martian impact craters, it was emplaced in layered sedimentary rocks with an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels and fans. Some of the gullies originate from the rim crest and others from the middle crater wall, where a lithologic transition occurs. Deeply incised alcoves are well-developed on the soft sandstones of the Coconino Formation exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of groundwater flow and discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing degradation. Like martian craters, channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when groundwater seeped from springs on the crater wall. Caves exposed on the lower crater level may point to percolation of surface runoff

  10. Shaped by uneven Pleistocene climate

    DEFF Research Database (Denmark)

    Li, Xinlei; Dong, Feng; Lei, Fumin

    2016-01-01

    had different impacts on different populations: clade N expanded after the last glacial maximum (LGM), whereas milder Pleistocene climate of east Asia allowed clade SE a longer expansion time (since MIS 5); clade SW expanded over a similarly long time as clade SE, which is untypical for European...

  11. Meteor Crater, AZ

    Science.gov (United States)

    2002-01-01

    The Barringer Meteorite Crater (also known as 'Meteor Crater') is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset.This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along

  12. Polygons near Lyot Crater

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-564, 4 December 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows patterned ground, arranged in the form of polygons, on the undulating plains associated with ejecta from the Lyot impact crater on the martian northern plains. This picture was acquired in October 2003 and shows that the polygon margins are ridges with large boulders--shown here as dark dots--on them. On Earth, polygon patterns like this are created in arctic and antarctic regions where there is ice in the ground. The seasonal and longer-term cycles of freezing and thawing of the ice-rich ground cause these features to form over time. Whether the same is true for Mars is unknown. The polygons are located near 54.6oN, 326.6oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  13. How old is Autolycus crater?

    Science.gov (United States)

    Hiesinger, Harald; Pasckert, Jan Henrik; van der Bogert, Carolyn H.; Robinson, Mark S.

    2016-04-01

    Accurately determining the lunar cratering chronology is prerequisite for deriving absolute model ages (AMAs) across the lunar surface and throughout the Solar System [e.g., 1]. However, the lunar chronology is only constrained by a few data points over the last 1 Ga and there are no calibration data available between 1 and 3 Ga and beyond 3.9 Ga [2]. Rays from Autolycus and Aristillus cross the Apollo 15 landing site and presumably transported material to this location [3]. [4] proposed that at the Apollo 15 landing site about 32% of any exotic material would come from Autolycus crater and 25% would come from Aristillus crater. [5,6] proposed that the 39Ar-40Ar age of 2.1 Ga derived from three petrologically distinct, shocked Apollo 15 KREEP basalt samples, date Autolycus crater. Grier et al. [7] reported that the optical maturity (OMAT) characteristics of these craters are indistinguishable from the background values despite the fact that both craters exhibit rays that were used to infer relatively young, i.e., Copernican ages [8,9]. Thus, both OMAT characteristics and radiometric ages of 2.1 Ga and 1.29 Ga for Autolycus and Aristillus, respectively, suggest that these two craters are not Copernican in age. [10] interpreted newer U-Pb ages of 1.4 and 1.9 Ga from sample 15405 as the formation ages of Aristillus and Autolycus. If Autolycus is indeed the source of the dated exotic material collected at the Apollo 15 landing site, than performing crater size frequency distribution (CSFD) measurements for Autolycus offers the possibility to add a new calibration point to the lunar chronology, particularly in an age range that was previously unconstrained. We used calibrated and map-projected LRO NAC images to perform CSFD measurements within ArcGIS, using CraterTools [11]. CSFDs were then plotted with CraterStats [12], using the production and chronology functions of [13]. We determined ages of 3.72 and 3.85 Ga for the interior (Ai1) and ejecta area Ae3, which we

  14. Floor-fractured craters on the Moon: an evidence of past intrusive magmatic activity

    Science.gov (United States)

    Thorey, C.; Michaut, C.

    2012-12-01

    Floor-fractured lunar craters (FFC's) are a class of craters modified by post impact mechanisms. They are defined by distinctive shallow, often plate-like or convex floors, wide floor moats and radial, concentric and polygonal floor-fractures, suggesting an endogenous process of modification. Two main mechanisms have been proposed to account for such observations : 1) viscous relaxation and 2) spreading of magmatic intrusions at depth below the crater. Here, we propose to test the case of magmatic intrusions. We develop a model for the dynamics of magma spreading below an elastic crust with a crater-like topography and above a rigid horizontal surface. Results show first that the lithostatic pressure increase at the crater rim prevents the intrusion from spreading horizontally giving rise to intrusion thickening and to an uplift of the crater floor. Second, the deformation of the overlying crust exerts a strong control on the intrusion shape, and hence, on the nature of the crater floor uplift. As the deformation can only occur over a minimum flexural wavelength noted Λ, the intrusion shape shows a bell-shaped geometry for crater radius smaller than 3Λ, or a flat top with smooth edges for crater radius larger than 3Λ. For given crustal elastic properties, the crust flexural wavelength increases with the intrusion depth. Therefore, for a large intrusion depth or small crater size, we observe a convex uplift of the crater floor. On the contrary, for a small intrusion depth or large crater size, the crater floor undergoes a piston-like uplift and a circular moat forms just before the rim. The depth of the moat is controlled by the thickening of the crust at the crater rim. On the contrary to viscous relaxation models, our model is thus able to reproduce most of the features of FFC's, including small-scale features. Spreading of a magmatic intrusion at depth can thus be considered as the main endogenous mechanism at the origin of the deformations observed at FFC

  15. Geology of Lofn Crater, Callisto

    Science.gov (United States)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  16. A Tale of 3 Craters

    Science.gov (United States)

    2004-01-01

    11 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image captures some of the complexity of the martian upper crust. Mars does not simply have an impact-cratered surface, it's upper crust is a cratered volume. Over time, older craters on Mars have been eroded, filled, buried, and in some cases exhumed and re-exposed at the martian surface. The crust of Mars is layered to depths of 10 or more kilometers, and mixed in with the layered bedrock are a variety of ancient craters with diameters ranging from a few tens of meters (a few tens of yards) to several hundred kilometers (more than one or two hundred miles). The picture shown here captures some of the essence of the layered, cratered volume of the upper crust of Mars in a very simple form. The image shows three distinct circular features. The smallest, in the lower right quarter of the image, is a meteor crater surrounded by a mound of material. This small crater formed within a layer of bedrock that once covered the entire scene, but today is found only in this small remnant adjacent to the crater. The intermediate-sized crater, west (left) of the small one, formed either in the next layer down--that is, below the layer in which the small crater formed--or it formed in some layers that are now removed, but was big enough to penetrate deeply into the rock that is near the surface today. The largest circular feature in the image, in the upper right quarter of the image, is still largely buried. It formed in layers of rock that are below the present surface. Erosion has brought traces of its rim back to the surface of Mars. This picture is located near 50.0oS, 77.8oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this October 2004 image from the upper left.

  17. Thermoluminescence dating of pleistocene sediments

    International Nuclear Information System (INIS)

    Poupeau, G.; Souza, J.H.; Rivera, A.

    1984-01-01

    After a short introduction on recent trends in quaternary geochronology, this article focuses on the thermoluminescence dating of sediments, whose principles and present limits and prospects are discussed. Results are presented for the TL behaviour of sands from various geological contexts in Brazil. They show that the coarse (approx. 100-200μm) quartz fraction of coastal and intra continental, eolian and fluvial-type deposits, might be datable by TL from the upper Holocene to at least the basis of the upper Pleistocene, with a precision of + - 10-15%. (Author) [pt

  18. Thermoluminescence dating of pleistocene sediments

    International Nuclear Information System (INIS)

    Poupeau, G.; Souza, J.H.

    1984-01-01

    After a short introduction on recent trends in quaternary geochronology, this article focuses on the thermoluminescence (TL) dating of sediments, whose principles, present limits and prospects are discussed. Results are presented for TL behavior of sands from various geological contexts in Brazil. They show that the coarse (approx. 100-200 μm) quartz fraction of coastal and intracontinental, eolian and fluvial - type deposits, might be datable by TL from the upper Holocene to at least the base of the upper Pleistocene, with a precision of +- 10-15%. (Author) [pt

  19. Creating flat design websites

    CERN Document Server

    Pratas, Antonio

    2014-01-01

    This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.

  20. Size variation in Middle Pleistocene humans.

    Science.gov (United States)

    Arsuaga, J L; Carretero, J M; Lorenzo, C; Gracia, A; Martínez, I; Bermúdez de Castro, J M; Carbonell, E

    1997-08-22

    It has been suggested that European Middle Pleistocene humans, Neandertals, and prehistoric modern humans had a greater sexual dimorphism than modern humans. Analysis of body size variation and cranial capacity variation in the large sample from the Sima de los Huesos site in Spain showed instead that the sexual dimorphism is comparable in Middle Pleistocene and modern populations.

  1. Stability of nuclear crater slopes in rock

    International Nuclear Information System (INIS)

    Fleming, Robert W.; Frandsen, Alton D.; LaFrenz, Robert L.

    1970-01-01

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects

  2. Stability of nuclear crater slopes in rock

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Robert W; Frandsen, Alton D; LaFrenz, Robert L [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects.

  3. Moon - 'Ghost' craters formed during Mare filling.

    Science.gov (United States)

    Cruikshank, D. P.; Hartmann, W. K.; Wood, C. A.

    1973-01-01

    This paper discusses formation of 'pathological' cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D less than 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.

  4. Meteor Crater (Barringer Meteorite Crater), Arizona: Summary of Impact Conditions

    Science.gov (United States)

    Roddy, D. J.; Shoemaker, E. M.

    1995-09-01

    Meteor Crater in northern Arizona represents the most abundant type of impact feature in our Solar System, i.e., the simple bowl-shaped crater. Excellent exposures and preservation of this large crater and its ejecta blanket have made it a critical data set in both terrestrial and planetary cratering research. Recognition of the value of the crater was initiated in the early 1900's by Daniel Moreau Barringer, whose 27 years of exploration championed its impact origin [1]. In 1960, Shoemaker presented information that conclusively demonstrated that Meteor Crater was formed by hypervelocity impact [2]. This led the U.S. Geological Survey to use the crater extensively in the 1960-70's as a prime training site for the Apollo astronauts. Today, Meteor Crater continues to serve as an important research site for the international science community, as well as an educational site for over 300,000 visitors per year. Since the late 1950's, studies of this crater have presented an increasingly clearer view of this impact and its effects and have provided an improved view of impact cratering in general. To expand on this data set, we are preparing an upgraded summary on the Meteor Crater event following the format in [3], including information and interpretations on: 1) Inferred origin and age of the impacting body, 2) Inferred ablation and deceleration history in Earth's atmosphere, 3) Estimated speed, trajectory, angle of impact, and bow shock conditions, 4) Estimated coherence, density, size, and mass of impacting body, 5) Composition of impacting body (Canyon Diablo meteorite), 6) Estimated kinetic energy coupled to target rocks and atmosphere, 7) Terrain conditions at time of impact and age of impact, 8) Estimated impact dynamics, such as pressures in air, meteorite, and rocks, 9) Inferred and estimated material partitioning into vapor, melt, and fragments, 10) Crater and near-field ejecta parameters, 11) Rock unit distributions in ejecta blanket, 12) Estimated far

  5. Stratigraphy of the crater Copernicus

    Science.gov (United States)

    Paquette, R.

    1984-01-01

    The stratigraphy of copernicus based on its olivine absorption bands is presented. Earth based spectral data are used to develop models that also employ cratering mechanics to devise theories for Copernican geomorphology. General geologic information, spectral information, upper and lower stratigraphic units and a chart for model comparison are included in the stratigraphic analysis.

  6. Underwater research methods for study of nuclear bomb craters, Enewetak, Marshall Islands

    Science.gov (United States)

    Shinn, E.A.; Halley, R.B.; Kindinger, J.L.; Hudson, J.H.; Slate, R.A.

    1990-01-01

    Three craters, created by the explosion of nuclear fusion devices, were mapped, sampled, core drilled and excavated with airlifts at Enewetak Atoll in the Marshall Islands by using scuba and a research submersible. The craters studied were Mike, Oak, and Koa. Tests took place near sea level at the transition between lithified reef flat and unlithified lagoonal sediments, where water depth ranged from 1 to 4 m. Craters produced by the blasts ranged from 30 to 60 m in depth. The purpose of our study was to determine crater diameter and depth immediately after detonation. Observations of submerged roadways and testing structures and upturned crater rims similar to those characteristic of meteor impacts indicate that the initial, or transient, craters were smaller than their present size. At some later time, while the area was too radioactive for direct examination, the sides of the craters slumped owing to dewatering of under lying pulverized rock. Core drilling of crater margins with a diver-operated hydraulic coring device provided additional data. On the seaward margin of the atoll, opposite Mike, a large portion of the atoll rim approximately the size of a city block had slumped into the deep ocean, leaving a clean vertical rock section more than 400m high. An abundance of aggressive grey reef sharks displaying classic territorial behavior prevented use of scuba at the Mike slump site. The two-person submersible R.V. Delta provided protection and allowed observations down to 300 m. During the 6-week period of study, we made more than 300 scuba and 275 submersible dives. Mapping was with side scan sonar and continuous video sweeps supplemented by tape-recorded verbal descriptions made from within the submersible. A mini-ranger navigation system linked to the submersible allowed plotting of bottom features, depth and sediment type with spatial accuracy to within 2 m.

  7. Flat-port connectors

    KAUST Repository

    Alrashed, Mohammed

    2017-05-26

    Disclosed are various embodiments for connectors used with electronic devices, such as input and/or output ports to connect peripheral equipment or accessories. More specifically, various flat-port are provided that can be used in place of standard connectors including, but not limited to, audio jacks and Universal Serial Bus (USB) ports. The flat-port connectors are an alternate connection design to replace the traditional receptacle port (female-port), making the device more sealed creation more dust and water resistant. It is unique in the way of using the outer surfaces of the device for the electrical connection between the ports. Flat-port design can allow the manufacture of extremely thin devices by eliminating the side ports slots that take a lot of space and contribute to the increase thickness of the device. The flat-port receptacle improves the overall appearance of the device and makes it more resistant to dust and water.

  8. Flat-space singletons

    International Nuclear Information System (INIS)

    Fronsdal, C.

    1987-01-01

    Singletons exist, as particles and as local fields, only in 3+2 de Sitter space. Their kinematical properties make them natural candidates for constituents of massless fields, and perhaps for quarks. It is interesting to find out how to describe this type of compositeness in flat space. A theory of interacting singleton fields in de Sitter space is now available, and in this paper we study the flat-space limit of the Green's functions of that theory. The flat-space limit is an autonomous theory of Green's functions, but is not an operator field theory. The three-point function is calculated and its flat-space limit is found to reveal glimpses of a physical interpretation. Causal and spectral properties are in accord with the tenets of axiomatic field theory. The theory is a generalization of local field theory, in which photons appear as composite objects although the physical S matrix is the same as in conventional QED

  9. Blocky craters: implications about the lunar megaregolith

    International Nuclear Information System (INIS)

    Thompson, T.W.; Roberts, W.J.; Hartmann, W.K.; Shorthill, R.W.; Zisk, S.H.

    1979-01-01

    Radar, infrared, and photogeologic properties of lunar craters have been studied to determine whether there is a systematic difference in blocky craters between the maria and terrae and whether this difference may be due to a deep megaregolith of pulverized material forming the terra surface, as opposed to a layer of semi-coherent basalt flows forming the mare surface. Some 1310 craters from about 4 to 100 km diameter have been catalogued as radar and/or infrared anomalies. In addition, a study of Apollo Orbital Photography confirmed that the radar and infrared anomalies are correlated with blocky rubble around the crater. Analysis of the radar and infrared data indicated systematic terra-mare differences. Fresh terra craters smaller than 12 km were less likely to be infrared and radar anomalies than comparable mare craters: but terra and mare craters larger than 12 km had similar infrared and radar signatures. Also, there are many terra craters which are radar bright but not infrared anomalies. The authors interpretation of these data is that while the maria are rock layers (basaltic flow units) where craters eject boulder fields, the terrae are covered by relatively pulverized megaregolith at least 2 km deep, where craters eject less rocky rubble. Blocky rubble, either in the form of actual rocks or partly consolidated blocks, contributes to the radar and infrared signatures of the crater. However, aging by impacts rapidly destroys these effects, possibly through burial by secondary debris or by disintegration of the blocks themselves, especially in terra regions. (Auth.)

  10. Lunar Bouguer gravity anomalies - Imbrian age craters

    Science.gov (United States)

    Dvorak, J.; Phillips, R. J.

    1978-01-01

    The Bouguer gravity of mass anomalies associated with four Imbrian age craters, analyzed in the present paper, are found to differ considerably from the values of the mass anomalies associated with some young lunar craters. Of the Imbrian age craters, only Piccolomini exhibits a negative gravity anomaly (i.e., a low density region) which is characteristic of the young craters studied. The Bouguer gravity anomalies are zero for each of the remaining Imbrian age craters. Since, Piccolomini is younger, or at least less modified, than the other Imbrian age craters, it is suggested that the processes responsible for the post-impact modification of the Imbrian age craters may also be responsible for removing the negative mass anomalies initially associated with these features.

  11. Lethal Interpersonal Violence in the Middle Pleistocene

    OpenAIRE

    Sala, Nohemi; Arsuaga, Juan Luis; Pantoja-P?rez, Ana; Pablos, Adri?n; Mart?nez, Ignacio; Quam, Rolf M.; G?mez-Olivencia, Asier; Berm?dez de Castro, Jos? Mar?a; Carbonell, Eudald

    2015-01-01

    Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force ...

  12. Crater Degradation on Mercury: A Global Perspective

    Science.gov (United States)

    Kinczyk, M. J.; Byrne, P. K.; Prockter, L. M.; Susorney, H. C. M.; Chapman, C. R.; Barnouin, O. S.

    2017-12-01

    On geologic timescales, initially fresh craters are subjected to many weathering mechanisms. Whereas water and wind are, or were, effective erosive mechanisms such as on Earth and Mars, micrometeorite bombardment and modification due to subsequent impacts are the dominant processes that degrade craters and crater rays on airless bodies like the Moon and Mercury. Classifying craters based on their state of degradation can help determine the relative ages of landforms proximal to, and crosscut by, these craters. However, this method is most effective when used together with statistical analysis of crater distributions. Pre-MESSENGER degradation classification schemes lacked sufficient detail to be consistently applied to craters of various sizes and morphological types—despite evidence suggesting that the ejecta deposits of large basins persist much longer than those of smaller craters, for instance—yet broad assumptions have been made regarding the correlation of crater class to the planet's time-stratigraphic sequence. Moreover, previous efforts to categorize craters by degradation state have either been restricted to regional study sites or applied only to a subset of crater age or size. As a result, numerous interpretations of crater degradation state persist for Mercury, challenging a complete understanding of this process on the innermost planet. We report on the first global survey of crater degradation on Mercury. By modifying an established 5-class scheme, we have systematically applied a rigorous set of criteria to all craters ≥40 km in diameter on the planet. These criteria include the state and morphology of crater deposits separately (e.g., rim, floor, wall, ejecta) and degradation classes were assigned as the collection of these individual attributes. This approach yields a consistent classification of craters of different sizes. Our results provide the first comprehensive assessment of how craters of various states of degradation are distributed

  13. Petrogenesis of basalt-trachyte lavas from Olmoti Crater, Tanzania

    Science.gov (United States)

    Mollel, Godwin F.; Swisher, Carl C., III; McHenry, Lindsay J.; Feigenson, Mark D.; Carr, Michael J.

    2009-08-01

    Olmoti Crater is part of the Plio-Pleistocene Ngorongoro Volcanic Highland (NVH) in northern Tanzania to the south of Gregory Rift. The Gregory Rift is part of the eastern branch of the East African Rift System (EARS) that stretches some 4000 km from the Read Sea and Gulf of Aden in the north to the Zambezi River in Mozambique. Here, we (1) characterize the chemistry and mineral compositions of lavas from Olmoti Crater, (2) determine the age and duration of Olmoti volcanic activity through 40Ar/ 39Ar dating of Olmoti Crater wall lavas and (3) determine the genesis of Olmoti lavas and the relationship to other NVH and EARS volcanics and (4) their correlation with volcanics in the Olduvai and Laetoli stratigraphic sequences. Olmoti lavas collected from the lower part of the exposed crater wall section (OLS) range from basalt to trachyandesite whereas the upper part of the section (OUS) is trachytic. Petrography and major and trace element data reflect a very low degree partial melt origin for the Olmoti lavas, presumably of peridotite, followed by extensive fractionation. The 87Sr/ 86Sr data overlap whereas Nd and Pb isotope data are distinct between OLS and OUS samples. Interpretation of the isotope data suggests mixing of enriched mantle (EM I) with high-μ-like reservoirs, consistent with the model of Bell and Blenkinsop [Bell, K., Blenkinsop, J., 1987. Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 5, 99-102] for East African carbonatite lavas. The isotope ratios are within the range of values defined by Oceanic Island Basalt (OIB) globally and moderate normalized Tb/Yb ratios (2.3-1.6) in these lavas suggest melting in the lithospheric mantle consistent with other studies in the region. 40Ar/ 39Ar incremental-heating analyses of matrix and anorthoclase separates from Olmoti OLS and OUS lavas indicate that volcanic activity was short in duration, lasting ˜200 kyr from 2.01 ± 0.03 Ma to 1.80 ± 0

  14. Peaks, plateaus, canyons, and craters: The complex geometry of simple mid-domain effect models

    DEFF Research Database (Denmark)

    Colwell, Robert K.; Gotelli, Nicholas J.; Rahbek, Carsten

    2009-01-01

    dye algorithm to place assemblages of species of uniform We used a spreading dye algorithm to place assemblages of species of uniform range size in one-dimensional or two-dimensional bounded domains. In some models, we allowed dispersal to introduce range discontinuity. Results: As uniform range size...... increases from small to medium, a flat pattern of species As uniform range size increases from small to medium, a flat pattern of species richness is replaced by a pair of peripheral peaks, separated by a valley (one-dimensional models), or by a cratered ring (two-dimensional models) of species richness...... of a uniform size generate more complex patterns, including peaks, plateaus, canyons, and craters of species richness....

  15. Rocky Flats Compliance Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE's strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP

  16. Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure

    Science.gov (United States)

    Poag, C.W.

    2005-01-01

    This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism. 

  17. Pleistocene Indian Monsoon Rainfall Variability

    Science.gov (United States)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  18. Flat-port connectors

    KAUST Repository

    Alrashed, Mohammed

    2017-01-01

    and water resistant. It is unique in the way of using the outer surfaces of the device for the electrical connection between the ports. Flat-port design can allow the manufacture of extremely thin devices by eliminating the side ports slots that take a lot

  19. Piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We examine the continuum limit of the piecewise flat locally finite gravity model introduced by ’t Hooft. In the linear weak field limit, we find the energy–momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy–momentum turns out to be restricted to satisfy

  20. Flat out and bluesome

    OpenAIRE

    Wilson, Mark; Snaebjornsdottir, Bryndis; Byatt, Lucy

    2008-01-01

    ‘Nanoq: flat out and bluesome’ is the story of polar bears, the largest land predators on earth, and their journey from the arctic wilderness to the museums and stately homes of the UK. The work documents the histories of each of these bears, the legacies of the hunters who shot them and the skills and expertise of the taxidermists who stuffed them.

  1. Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime

    Science.gov (United States)

    Ivanov, B. A.

    2018-01-01

    The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.

  2. Investigation of Secondary Craters in the Saturnian System

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.; White, O. L.

    2012-03-01

    To derive accurate ages using impact craters, the impact source must be determined. We investigate secondary crater size, frequency, distribution, formation, and crater chain formation on icy satellites throughout the Jupiter and Saturn systems.

  3. Martian Low-Aspect-Ratio Layered Ejecta (LARLE) craters: Distribution, characteristics, and relationship to pedestal craters

    Science.gov (United States)

    Barlow, Nadine G.; Boyce, Joseph M.; Cornwall, Carin

    2014-09-01

    Low-Aspect-Ratio Layered Ejecta (LARLE) craters are a unique landform found on Mars. LARLE craters are characterized by a crater and normal layered ejecta pattern surrounded by an extensive but thin outer deposit which terminates in a sinuous, almost flame-like morphology. We have conducted a survey to identify all LARLE craters ⩾1-km-diameter within the ±75° latitude zone and to determine their morphologic and morphometric characteristics. The survey reveals 140 LARLE craters, with the majority (91%) located poleward of 40°S and 35°N and all occurring within thick mantles of fine-grained deposits which are likely ice-rich. LARLE craters range in diameter from the cut-off limit of 1 km up to 12.2 km, with 83% being smaller than 5 km. The radius of the outer LARLE deposit displays a linear trend with the crater radius and is greatest at higher polar latitudes. The LARLE deposit ranges in length between 2.56 and 14.81 crater radii in average extent, with maximum length extending up to 21.4 crater radii. The LARLE layer is very sinuous, with lobateness values ranging between 1.45 and 4.35. LARLE craters display a number of characteristics in common with pedestal craters and we propose that pedestal craters are eroded versions of LARLE craters. The distribution and characteristics of the LARLE craters lead us to propose that impact excavation into ice-rich fine-grained deposits produces a dusty base surge cloud (like those produced by explosion craters) that deposits dust and ice particles to create the LARLE layers. Salts emplaced by upward migration of water through the LARLE deposit produce a surficial duricrust layer which protects the deposit from immediate removal by eolian processes.

  4. What Really Happened to Earth's Older Craters?

    Science.gov (United States)

    Bottke, William; Mazrouei, Sara; Ghent, Rebecca; Parker, Alex

    2017-10-01

    Most assume the Earth’s crater record is heavily biased, with erosion/tectonics destroying older craters. This matches expectations, but is it actually true? To test this idea, we compared Earth’s crater record, where nearly all D ≥ 20 km craters are pick out from older craters with eroded fragments. Moreover, an inverse relationship between rock abundance (RA) and crater age exists. Using measured RA values, we computed ages for 111 rocky craters with D ≥ 10 km that formed between 80°N and 80°S over the last 1 Gyr.We found several surprising results. First, the production rate of D ≥ 10 km lunar craters increased by a factor of 2.2 [-0.9, +4.4; 95% confidence limits] over the past 250 Myr compared to the previous 750 Myr. Thus, the NEO population is higher now than it has been for the last billion years. Second, the size and age distributions of lunar and terrestrial craters for D ≥ 20 km over the last 650 Myr have similar shapes. This implies that crater erasure must be limited on stable terrestrial terrains; in an average sense, for a given region, the Earth either keeps all or loses all of its D ≥ 20 craters at the same rate, independent of size. It also implies the observed deficit of large terrestrial craters between 250-650 Myr is not preservation bias but rather reflects a distinctly lower impact flux. We predict 355 ± 86 D ≥ 20 km craters formed on Earth over the last 650 Myr. Only 38 ± 6 are known, so the ratio, 10.7 ± 3.1%, is a measure of the Earth’s surface that is reasonably stable to large crater formation over 650 Myr. If erosion had dominated, the age distribution of terrestrial craters would be strongly skewed toward younger ages, which is not observed. We predict Chicxulub-type impacts were rare over the last Gyr, with the event 66 Ma a probable byproduct of the current high terrestrial impact flux.

  5. Machine cataloging of impact craters on Mars

    Science.gov (United States)

    Stepinski, Tomasz F.; Mendenhall, Michael P.; Bue, Brian D.

    2009-09-01

    This study presents an automated system for cataloging impact craters using the MOLA 128 pixels/degree digital elevation model of Mars. Craters are detected by a two-step algorithm that first identifies round and symmetric topographic depressions as crater candidates and then selects craters using a machine-learning technique. The system is robust with respect to surface types; craters are identified with similar accuracy from all different types of martian surfaces without adjusting input parameters. By using a large training set in its final selection step, the system produces virtually no false detections. Finally, the system provides a seamless integration of crater detection with its characterization. Of particular interest is the ability of our algorithm to calculate crater depths. The system is described and its application is demonstrated on eight large sites representing all major types of martian surfaces. An evaluation of its performance and prospects for its utilization for global surveys are given by means of detailed comparison of obtained results to the manually-derived Catalog of Large Martian Impact Craters. We use the results from the test sites to construct local depth-diameter relationships based on a large number of craters. In general, obtained relationships are in agreement with what was inferred on the basis of manual measurements. However, we have found that, in Terra Cimmeria, the depth/diameter ratio has an abrupt decrease at ˜38°S regardless of crater size. If shallowing of craters is attributed to presence of sub-surface ice, a sudden change in its spatial distribution is suggested by our findings.

  6. Impact craters in South America

    CERN Document Server

    Acevedo, Rogelio Daniel; Ponce, Juan Federico; Stinco, Sergio G

    2015-01-01

    A complete and updated catalogue of impact craters and structures in South America from 2014 is presented here. Approximately eighty proven, suspected and disproven structures have been identified by several sources in this continent. All the impact sites of this large continent have been exhaustively reviewed: the proved ones, the possible ones and some very doubtful. Many sites remain without a clear geological ""in situ"" confirmation and some of them could be even rejected. Argentina and Brazil are leading the list containing almost everything detected. In Bolivia, Chile, Colombia, Guyana,

  7. Landscape evolution on Mars - A model of aeolian denudation in Gale Crater

    Science.gov (United States)

    Day, M. D.; Kocurek, G.; Grotzinger, J. P.

    2015-12-01

    Aeolian erosion has been the dominant geomorphic agent to shape the surface of Mars for the past ~3.5 billion years. Although individual geomorphic features evidencing aeolian activity are well understood (e.g., yardangs, dune fields, and wind streaks), landscapes formed by aeolian erosion remain poorly characterized. Intra-crater sedimentary mounds are hypothesized to have formed by wind deflation of craters once filled with flat-lying strata, and, therefore, should be surrounded by landscapes formed by aeolian erosion. Here we present a landscape evolution model that provides both an initial characterization of aeolian landscapes, and a mechanism for large-scale excavation. Wind excavation of Gale Crater to form the 5 km high Mount Sharp would require removal of 6.4 x 104 km3 of sediment. Imagery in Gale Crater from satellites and the Mars Science Laboratory rover Curiosity shows a surface characterized by first-cycle aeolian erosion of bedrock. The overall landscape is interpreted to represent stages in a cycle of aeolian deflation and excavation, enhanced by physical weathering (e.g., thermal fracturing, cratering). Initial wind erosion of bedrock is enhanced along fractures, producing retreating scarps. Underlying less resistant layers then erode faster than the armoring cap rock, increasing relief in scarps to form retreating mesas. As scarp retreat continues, boulders from the armoring cap unit break away and cover the hillslopes of less resistant material below the scarps. Eventually all material from the capping unit is eroded away and a boulder-capped hill remains. Winnowing of fine material flattens hillslope topography, leaving behind a desert pavement. Over long enough time, this pavement is breached and the cycle begins anew. This cycle of landscape denudation by the wind is similar to that of water, but lacks characteristic subaqueous features such as dendritic drainage networks.

  8. Technical problems and future cratering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, J B [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    This paper reviews some of the key technical problems that remain to be solved in nuclear cratering technology. These include: (1) developing a broader understanding of the effects that material properties and water content of the earth materials around the shot have on cratering behavior, (2) extending the experimental investigation of retarc formation to include intermediate yields and various materials, and (3) improving our ability to predict the escape of radioactive material to the atmosphere to form the cloud source responsible for fallout. The formation processes of ejecta craters, retarcs, and subsidence craters are described in the light of our present understanding, and the major gaps in our understanding are indicated. Methods of calculating crater and retarc formation are discussed, with particular reference to the input information needed. Methods for calculating fallout are presented, and their shortcomings are discussed. A preliminary analysis of the safety factors associated with the presently proposed nuclear excavation concepts is presented. (author)

  9. Technical problems and future cratering experiments

    International Nuclear Information System (INIS)

    Knox, J.B.

    1969-01-01

    This paper reviews some of the key technical problems that remain to be solved in nuclear cratering technology. These include: (1) developing a broader understanding of the effects that material properties and water content of the earth materials around the shot have on cratering behavior, (2) extending the experimental investigation of retarc formation to include intermediate yields and various materials, and (3) improving our ability to predict the escape of radioactive material to the atmosphere to form the cloud source responsible for fallout. The formation processes of ejecta craters, retarcs, and subsidence craters are described in the light of our present understanding, and the major gaps in our understanding are indicated. Methods of calculating crater and retarc formation are discussed, with particular reference to the input information needed. Methods for calculating fallout are presented, and their shortcomings are discussed. A preliminary analysis of the safety factors associated with the presently proposed nuclear excavation concepts is presented. (author)

  10. Asteroid families from cratering: Detection and models

    Science.gov (United States)

    Milani, A.; Cellino, A.; Knežević, Z.; Novaković, B.; Spoto, F.; Paolicchi, P.

    2014-07-01

    A new asteroid families classification, more efficient in the inclusion of smaller family members, shows how relevant the cratering impacts are on large asteroids. These do not disrupt the target, but just form families with the ejecta from large craters. Of the 12 largest asteroids, 8 have cratering families: number (2), (4), (5), (10), (87), (15), (3), and (31). At least another 7 cratering families can be identified. Of the cratering families identified so far, 7 have >1000 members. This imposes a remarkable change from the focus on fragmentation families of previous classifications. Such a large dataset of asteroids believed to be crater ejecta opens a new challenge: to model the crater and family forming event(s) generating them. The first problem is to identify which cratering families, found by the similarity of proper elements, can be formed at once, with a single collision. We have identified as a likely outcome of multiple collisions the families of (4), (10), (15), and (20). Of the ejecta generated by cratering, only a fraction reaches the escape velocity from the surviving parent body. The distribution of velocities at infinity, giving to the resulting family an initial position and shape in the proper elements space, is highly asymmetric with respect to the parent body. This shape is deformed by the Yarkovsky effect and by the interaction with resonances. All the largest asteroids have been subjected to large cratering events, thus the lack of a family needs to be interpreted. The most interesting case is (1) Ceres, which is not the parent body of the nearby family of (93). Two possible interpretations of the low family forming efficiency are based on either the composition of Ceres with a significant fraction of ice, protected by a thin crust, or with the larger escape velocity of ~500 m/s.

  11. Investigations of Ceres's Craters with Straightened Rim

    Science.gov (United States)

    Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Raponi, A.; Formisano, M.; Ciarniello, M.; Magni, G.; Combe, J. P.; Marchi, S.; Raymond, C. A.; Schwartz, S. J.

    2017-12-01

    Dwarf planet Ceres hosts some geological features that are unique in the solar system because its composition, rich in aqueously-altered silicates, is usually found on full-size planets, whereas its mean radius is smaller than most natural satellites in the solar system. For example, the local high-albedo, carbonate-rich areas or faculaeare specific to Ceres; also, the absence of big impact crater structures is key to understand the overall mechanical behaviour of the Cerean crust. After the first findings of water ice occurring in the shadowed areas of craters on Ceres by the NASA/Dawn mission (1, 2), we analyzed the morphology of craters looking for features similar to the ones where the water ice composition has been detected analyzing the data from the VIR spectrometer (3). These craters fall outside of the family of polygonal craters which are mainly related to regional or global scale tectonics (4). We analyzed the morphology on the base of the global mosaic, the digital terrain model derived by using the stereo photogrammetry method and the single data frames of the Framing Camera. Our investigation started from crater Juling, which is characterized by a portion of the rim which forms a straight segment instead of a portion of a circle. This linear crater wall is also steep enough that it forms a cliff that is in the shadowed area in all images acquired by Dawn. Very smooth and bright deposits lay at the foot of this crater-wall cliff. Then, we identified several other craters, relatively fresh, with radius of 2 to 10 kilometers, showing one or two sectors of the crater-rim being truncated by a mass-wasting process, probably a rockfall. Our first analysis show that in the selected craters, the truncated sectors are always in the north-eastern sector of the rim for the craters in the southern hemisphere. Conversely, the craters on the northern hemisphere exhibit a truncated rim in their south-eastern sector. Although a more detailed analysis is mandatory

  12. Drainage systems of Lonar Crater, India: Contributions to Lonar Lake hydrology and crater degradation

    Science.gov (United States)

    Komatsu, Goro; Senthil Kumar, P.; Goto, Kazuhisa; Sekine, Yasuhito; Giri, Chaitanya; Matsui, Takafumi

    2014-05-01

    Lonar, a 1.8-km-diameter impact crater in India, is a rare example of terrestrial impact craters formed in basaltic bedrock. The estimated age of the crater ranges widely from less than 12 ka to over 600 ka, but the crater preserves a relatively pristine morphology. We conducted a study of various drainage systems of Lonar Crater. The crater floor hosts a shallow 5-m-deep lake, which fluctuates seasonally. Our investigation reveals that the lake level is influenced by surface runoff that is active during the monsoon and groundwater input effective during both the rainy and the dry seasons. The groundwater discharge is observed as springs on the inner rim walls corresponding to weathered vesicular basalt and/or proximal ejecta, which are underlain by thick massive basalt layers. This observation indicates that groundwater movement is lithologically controlled: it passes preferentially through permeable vesicular basalt or proximal ejecta but is hindered in less permeable massive basalt. It is hypothesized that groundwater is also structurally controlled by dipping of basalt layers, interconnectivity of the permeable lithologic units through fractures, and preferential pathways such as fractures within the permeable lithologic units. Investigation on hydrological processes at Lonar Crater and its lake could provide useful insights into purported paleo-crater lakes presumably formed in the basaltic crust of Mars. The Lonar Crater interior shows signs of degradation in the forms of gullies and debris flows, and the Dhar valley incising in the rim leading to form a fan delta. The ejecta surface is characterized by the presence of channels, originating from the rim area and extending radially away from the crater center. The channels probably resulted from surface runoff, and its erosion contributes to the removal of the ejecta. Lonar Crater is a valuable analog site for studying degradation processes with potential application to impact craters occurring on

  13. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    Science.gov (United States)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form craters in a geologic instant. The question examined in this manuscript is how fast these craters erode after their formation. To simplify the problem, we examined craters of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of craters on both bodies that met these criteria. Our results suggest that craters on Mercury become shallower much more quickly than craters on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.

  14. Saying Goodbye to 'Bonneville' Crater

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Annotated Image NASA's Mars Exploration Rover Spirit took this panoramic camera image on sol 86 (March 31, 2004) before driving 36 meters (118 feet) on sol 87 toward its future destination, the Columbia Hills. This is probably the last panoramic camera image that Spirit will take from the high rim of 'Bonneville' crater, and provides an excellent view of the ejecta-covered path the rover has journeyed thus far. The lander can be seen toward the upper right of the frame and is approximately 321 meters (1060 feet) away from Spirit's current location. The large hill on the horizon is Grissom Hill. The Colombia Hills, located to the left, are not visible in this image.

  15. SMALL CRATERS AND THEIR DIAGNOSTIC POTENTIAL

    Directory of Open Access Journals (Sweden)

    R. Bugiolacchi

    2017-07-01

    Full Text Available I analysed and compared the size-frequency distributions of craters in the Apollo 17 landing region, comprising of six mare terrains with varying morphologies and cratering characteristics, along with three other regions allegedly affected by the same secondary event (Tycho secondary surge. I propose that for the smaller crater sizes (in this work 9–30 m, a] an exponential curve of power −0.18D can approximate Nkm−2 crater densities in a regime of equilibrium, while b] a power function D−3 closely describes the factorised representation of craters by size (1 m. The saturation level within the Central Area suggests that c] either the modelled rates of crater erosion on the Moon should be revised, or that the Tycho event occurred much earlier in time than the current estimate. We propose that d] the size-frequency distribution of small secondary craters may bear the signature (in terms of size-frequency distribution of debris/surge of the source impact and that this observation should be tested further.

  16. Flat feet in children

    Directory of Open Access Journals (Sweden)

    Vukašinović Zoran

    2009-01-01

    Full Text Available The authors describe flatfoot, as one of very frequent deformities in everyday medical practice. A special condition of the deformity associated with a calcaneal valgus position and complicated by a knee valgus position (as a consequence of non-treatment is described. Also, the precise anatomy of the longitudinal foot arches (medial and lateral, definition and classification of the deformity, clinical findings and therapeutic protocols are proposed. The authors especially emphasise that the need for having extensive knowledge on the differences between a flexible and rigid flatfoot, having in mind that the treatment of flexible flat foot is usually not necessary, while the treatment of rigid flatfoot is usually unavoidable.

  17. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  18. Aboriginal oral traditions of Australian impact craters

    Science.gov (United States)

    Hamacher, Duane W.; Goldsmith, John

    2013-11-01

    In this paper we explore Aboriginal oral traditions that relate to Australian meteorite craters. Using the literature, first-hand ethnographic records and field trip data, we identify oral traditions and artworks associated with four impact sites: Gosses Bluff, Henbury, Liverpool and Wolfe Creek. Oral traditions describe impact origins for Gosses Bluff, Henbury and Wolfe Creek Craters, and non-impact origins for Liverpool Crater, with Henbury and Wolfe Creek stories having both impact and non-impact origins. Three impact sites that are believed to have been formed during human habitation of Australia -- Dalgaranga, Veevers, and Boxhole -- do not have associated oral traditions that are reported in the literature.

  19. Ricci-flat branes

    International Nuclear Information System (INIS)

    Brecher, D.; Perry, M.J.

    2000-01-01

    Up to overall harmonic factors, the D8-brane solution of the massive type IIA supergravity theory is the product of nine-dimensional Minkowski space (the world-volume) with the real line (the transverse space). We show that the equations of motion allow for the world-volume metric to be generalised to an arbitrary Ricci-flat one. If this nine-dimensional Ricci-flat manifold admits Killing spinors, then the resulting solutions are supersymmetric and satisfy the usual Bogomol'nyi bound, although they preserve fewer than the usual one half of the supersymmetries. We describe the possible choices of such manifolds, elaborating on the connection between the existence of Killing spinors and the self-duality condition on the curvature two-form. Since the D8-brane is a domain wall in ten dimensions, we are led to consider the general case: domain walls in any supergravity theory. Similar considerations hold here also. Moreover, it is shown that the world-volume of any magnetic brane - of which the domain walls are a specific example - can be generalised in precisely the same way. The general class of supersymmetric solutions have gravitational instantons as their spatial sections. Some mention is made of the world-volume solitons of such branes

  20. Flat Engineered Multichannel Reflectors

    Directory of Open Access Journals (Sweden)

    V. S. Asadchy

    2017-09-01

    Full Text Available Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  1. Flat Engineered Multichannel Reflectors

    Science.gov (United States)

    Asadchy, V. S.; Díaz-Rubio, A.; Tcvetkova, S. N.; Kwon, D.-H.; Elsakka, A.; Albooyeh, M.; Tretyakov, S. A.

    2017-07-01

    Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  2. Cratering statistics on asteroids: Methods and perspectives

    Science.gov (United States)

    Chapman, C.

    2014-07-01

    Crater size-frequency distributions (SFDs) on the surfaces of solid-surfaced bodies in the solar system have provided valuable insights about planetary surface processes and about impactor populations since the first spacecraft images were obtained in the 1960s. They can be used to determine relative age differences between surficial units, to obtain absolute model ages if the impactor flux and scaling laws are understood, to assess various endogenic planetary or asteroidal processes that degrade craters or resurface units, as well as assess changes in impactor populations across the solar system and/or with time. The first asteroid SFDs were measured from Galileo images of Gaspra and Ida (cf., Chapman 2002). Despite the superficial simplicity of these studies, they are fraught with many difficulties, including confusion by secondary and/or endogenic cratering and poorly understood aspects of varying target properties (including regoliths, ejecta blankets, and nearly-zero-g rubble piles), widely varying attributes of impactors, and a host of methodological problems including recognizability of degraded craters, which is affected by illumination angle and by the ''personal equations'' of analysts. Indeed, controlled studies (Robbins et al. 2014) demonstrate crater-density differences of a factor of two or more between experienced crater counters. These inherent difficulties have been especially apparent in divergent results for Vesta from different members of the Dawn Science Team (cf. Russell et al. 2013). Indeed, they have been exacerbated by misuse of a widely available tool (Craterstats: hrscview.fu- berlin.de/craterstats.html), which incorrectly computes error bars for proper interpretation of cumulative SFDs, resulting in derived model ages specified to three significant figures and interpretations of statistically insignificant kinks. They are further exacerbated, and for other small-body crater SFDs analyzed by the Berlin group, by stubbornly adopting

  3. Ablation from artificial or laser-induced crater surfaces of silver by laser irradiation at 355 nm

    DEFF Research Database (Denmark)

    Toftmann, B.; Schou, Jørgen; Larsen, N.B.

    1999-01-01

    The angular distribution of laser ablated particles from silver irradiated at 355 nm has been studied. The angular distribution from craters prepared by more than 10(4) shots exhibits only minor changes compared with that from a nonirradiated target. The distribution from artificial cylindrical c...... craters of a depth comparable to the laser spot dimensions is about one order of magnitude smaller at large exit angles than that from a flat target.......The angular distribution of laser ablated particles from silver irradiated at 355 nm has been studied. The angular distribution from craters prepared by more than 10(4) shots exhibits only minor changes compared with that from a nonirradiated target. The distribution from artificial cylindrical...

  4. A Late Pleistocene sea level stack

    OpenAIRE

    Spratt Rachel M; Lisiecki Lorraine E

    2016-01-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal componen...

  5. UVIS Flat Field Uniformity

    Science.gov (United States)

    Quijano, Jessica Kim

    2009-07-01

    The stability and uniformity of the low-frequency flat fields {L-flat} of the UVIS detector will be assessed by using multiple-pointing observations of the globular clusters 47 Tucanae {NGC104} and Omega Centauri {NGC5139}, thus imaging moderately dense stellar fields. By placing the same star over different portions of the detector and measuring relative changes in its brightness, it will be possible to determine local variations in the response of the UVIS detector. Based on previous experience with STIS and ACS, it is deemed that a total of 9 different pointings will suffice to provide adequate characterization of the flat field stability in any given band. For each filter to be tested, the baseline consists of 9 pointings in a 3X3 box pattern with dither steps of about 25% of the FOV, or 40.5", in either the x or y direction {useful also for CTE measurements, if needed in the future}. During SMOV, the complement of filters to be tested is limited to the following 6 filters: F225W, F275W, F336W, for Omega Cen, and F438W, F606W, and F814W for 47 Tuc. Three long exposures for each target are arranged such that the initial dither position is observed with the appropriate filters for that target within one orbit at a single pointing, so that filter-to-filter differences in the observed star positions can be checked. In addition to the 9 baseline exposures, two sets of short exposures will be taken:a} one short exposure will be taken of OmegaCen with each of the visible filters {F438W, F606W and F814W} in order to check the geometric distortion solution to be obtained with the data from proposal 11444;b} for each target, a single short exposure will be taken with each filter to facilitate the study of the PSF as a function of position on the detector by providing unsaturated images of sparsely-spaced bright stars.This proposal corresponds to Activity Description ID WF39. It should execute only after the following proposal has executed:WF21 - 11434

  6. Topography of the Martian Impact Crater Tooting

    Science.gov (United States)

    Mouginis-Mark, P. J.; Garbeil, H.; Boyce, J. M.

    2009-01-01

    Tooting crater is approx.29 km in diameter, is located at 23.4degN, 207.5degE, and is classified as a multi-layered ejecta crater [1]. Our mapping last year identified several challenges that can now be addressed with HiRISE and CTX images, but specifically the third dimension of units. To address the distribution of ponded sediments, lobate flows, and volatile-bearing units within the crater cavity, we have focused this year on creating digital elevation models (DEMs) for the crater and ejecta blanket from stereo CTX and HiRISE images. These DEMs have a spatial resolution of approx.50 m for CTX data, and 2 m for HiRISE data. Each DEM is referenced to all of the available individual MOLA data points within an image, which number approx.5,000 and 800 respectively for the two data types

  7. Fresh Impact Crater and Rays in Tharsis

    Science.gov (United States)

    2002-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission has included dozens of opportunities to point the spacecraft directly at features of interest so that pictures of things not seen during the earlier Mapping Mission can be obtained. The example shown here is a small meteorite impact crater in northern Tharsis near 17.2oN, 113.8oW. Viking Orbiter images from the late 1970's showed at this location what appeared to be a dark patch with dark rays emanating from a brighter center. The MOC team surmised that the dark rays may be indicating the location of afresh crater formed by impact sometime in the past few centuries (since dark ray are quickly covered by dust falling out of the martian atmosphere). All through MOC's Mapping Mission in 1999 and 2000, attempts were made to image the crater as predictions indicated that the spacecraft would pass over the site, but the crater was never seen. Finally, in June 2001, Extended Mission operations allowed the MOC team to point the spacecraft (and hence the camera, which is fixed to the spacecraft)directly at the center of the dark rays, where we expected to find the crater.The picture on the left (above, A) is a mosaic of three MOC high resolution images and one much lower-resolution Viking image. From left to right, the images used in the mosaic are: Viking 1 516A55, MOC E05-01904, MOCM21-00272, and MOC M08-03697. Image E05-01904 is the one taken in June 2001 by pointing the spacecraft. It captured the impact crater responsible for the rays. A close-up of the crater, which is only 130 meters (427 ft)across, is shown on the right (above, B). This crater is only one-tenth the size of the famous Meteor Crater in northern Arizona.The June 2001 MOC image reveals many surprises about this feature. For one, the crater is not located at the center of the bright area from which the dark rays radiate. The rays point to the center of this bright area, not the crater. Further, the dark material ejected from the

  8. Pleistocene vertebrates of the Yukon Territory

    Science.gov (United States)

    Harington, C. R.

    2011-08-01

    Unglaciated parts of the Yukon constitute one of the most important areas in North America for yielding Pleistocene vertebrate fossils. Nearly 30 vertebrate faunal localities are reviewed spanning a period of about 1.6 Ma (million years ago) to the close of the Pleistocene some 10 000 BP (radiocarbon years before present, taken as 1950). The vertebrate fossils represent at least 8 species of fishes, 1 amphibian, 41 species of birds and 83 species of mammals. Dominant among the large mammals are: steppe bison ( Bison priscus), horse ( Equus sp.), woolly mammoth ( Mammuthus primigenius), and caribou ( Rangifer tarandus) - signature species of the Mammoth Steppe fauna ( Fig. 1), which was widespread from the British Isles, through northern Europe, and Siberia to Alaska, Yukon and adjacent Northwest Territories. The Yukon faunas extend from Herschel Island in the north to Revenue Creek in the south and from the Alaskan border in the west to Ketza River in the east. The Yukon holds evidence of the earliest-known people in North America. Artifacts made from bison, mammoth and caribou bones from Bluefish Caves, Old Crow Basin and Dawson City areas show that people had a substantial knowledge of making and using bone tools at least by 25 000 BP, and possibly as early as 40 000 BP. A suggested chronological sequence of Yukon Pleistocene vertebrates ( Table 1) facilitates comparison of selected faunas and indicates the known duration of various taxa.

  9. Crater Mound Formation by Wind Erosion on Mars

    Science.gov (United States)

    Steele, L. J.; Kite, E. S.; Michaels, T. I.

    2018-01-01

    Most of Mars' ancient sedimentary rocks by volume are in wind-eroded sedimentary mounds within impact craters and canyons, but the connections between mound form and wind erosion are unclear. We perform mesoscale simulations of different crater and mound morphologies to understand the formation of sedimentary mounds. As crater depth increases, slope winds produce increased erosion near the base of the crater wall, forming mounds. Peak erosion rates occur when the crater depth is ˜2 km. Mound evolution depends on the size of the host crater. In smaller craters mounds preferentially erode at the top, becoming more squat, while in larger craters mounds become steeper sided. This agrees with observations where smaller craters tend to have proportionally shorter mounds and larger craters have mounds encircled by moats. If a large-scale sedimentary layer blankets a crater, then as the layer recedes across the crater it will erode more toward the edges of the crater, resulting in a crescent-shaped moat. When a 160 km diameter mound-hosting crater is subject to a prevailing wind, the surface wind stress is stronger on the leeward side than on the windward side. This results in the center of the mound appearing to "march upwind" over time and forming a "bat-wing" shape, as is observed for Mount Sharp in Gale crater.

  10. Nuclear cratering on a digital computer

    Energy Technology Data Exchange (ETDEWEB)

    Terhune, R W; Stubbs, T F; Cherry, J T [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Computer programs based on the artificial viscosity method are applied to developing an understanding of the physics of cratering, with emphasis on cratering by nuclear explosives. Two established codes, SOC (spherical symmetry) and TENSOR (cylindrical symmetry), are used to illustrate the effects of variations in the material properties of various media on the cratering processes, namely shock, spall, and gas acceleration. Water content is found to be the most important material property, followed by strength, porosity, and compressibility. Crater profile calculations are presented for Pre-Gondola Charley (20-ton nitromethane detonation in shale) and Sedan (100-kt nuclear detonation in alluvium). Calculations also are presented for three 1-Mt yields in saturated Divide basalt and 1-Mt yield in dry Buckboard basalt, to show crater geometry as a function of the burial depth for large explosive yields. The calculations show, for megaton-level yields, that gas acceleration is the dominate mechanism in determining crater size and depends in turn on the water content in the medium. (author)

  11. Nuclear cratering on a digital computer

    International Nuclear Information System (INIS)

    Terhune, R.W.; Stubbs, T.F.; Cherry, J.T.

    1970-01-01

    Computer programs based on the artificial viscosity method are applied to developing an understanding of the physics of cratering, with emphasis on cratering by nuclear explosives. Two established codes, SOC (spherical symmetry) and TENSOR (cylindrical symmetry), are used to illustrate the effects of variations in the material properties of various media on the cratering processes, namely shock, spall, and gas acceleration. Water content is found to be the most important material property, followed by strength, porosity, and compressibility. Crater profile calculations are presented for Pre-Gondola Charley (20-ton nitromethane detonation in shale) and Sedan (100-kt nuclear detonation in alluvium). Calculations also are presented for three 1-Mt yields in saturated Divide basalt and 1-Mt yield in dry Buckboard basalt, to show crater geometry as a function of the burial depth for large explosive yields. The calculations show, for megaton-level yields, that gas acceleration is the dominate mechanism in determining crater size and depends in turn on the water content in the medium. (author)

  12. Pollen analyses of Pleistocene hyaena coprolites from Montenegro and Serbia

    Directory of Open Access Journals (Sweden)

    Argant Jacqueline

    2007-01-01

    Full Text Available The results of pollen analyses of hyaena coprolites from the Early Pleistocene cave of Trlica in northern Montenegro and the Late Pleistocene cave of Baranica in southeast Serbia are described. The Early Pleistocene Pachycrocuta brevirostris, and the Late Pleistocene Crocuta spelaea are coprolite-producing species. Although the pollen concentration was rather low, the presented analyses add considerably to the much-needed knowledge of the vegetation of the central Balkans during the Pleistocene. Pollen extracted from a coprolite from the Baranica cave indicates an open landscape with the presence of steppe taxa, which is in accordance with the recorded conditions and faunal remains. Pollen analysis of the Early Pleistocene samples from Trlica indicate fresh and temperate humid climatic conditions, as well as the co-existence of several biotopes which formed a mosaic landscape in the vicinity of the cave.

  13. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  14. Pancam Peek into 'Victoria Crater' (Stereo)

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Left-eye view of a stereo pair for PIA08776 [figure removed for brevity, see original site] Right-eye view of a stereo pair for PIA08776 A drive of about 60 meters (about 200 feet) on the 943rd Martian day, or sol, of Opportunity's exploration of Mars' Meridiani Planum region (Sept. 18, 2006) brought the NASA rover to within about 50 meters (about 160 feet) of the rim of 'Victoria Crater.' This crater has been the mission's long-term destination for the past 21 Earth months. Opportunity reached a location from which the cameras on top of the rover's mast could begin to see into the interior of Victoria. This stereo anaglyph was made from frames taken on sol 943 by the panoramic camera (Pancam) to offer a three-dimensional view when seen through red-blue glasses. It shows the upper portion of interior crater walls facing toward Opportunity from up to about 850 meters (half a mile) away. The amount of vertical relief visible at the top of the interior walls from this angle is about 15 meters (about 50 feet). The exposures were taken through a Pancam filter selecting wavelengths centered on 750 nanometers. Victoria Crater is about five times wider than 'Endurance Crater,' which Opportunity spent six months examining in 2004, and about 40 times wider than 'Eagle Crater,' where Opportunity first landed. The great lure of Victoria is the expectation that a thick stack of geological layers will be exposed in the crater walls, potentially several times the thickness that was previously studied at Endurance and therefore, potentially preserving several times the historical record.

  15. Flat plate collector. Solarflachkollektor

    Energy Technology Data Exchange (ETDEWEB)

    Raab, N

    1979-03-29

    The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.

  16. A Tale of Two Craters

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] In western Acidalia, two craters of similar size (a few km's) dramatically display the effects of geologic activity. The younger one on the left has been left relatively well preserved, retaining a sharp rim crest, a classic bowl shape, and a clearly defined ejecta blanket. The older one on the right likely has experienced a flood of lava that covered over the ejecta and filled in the bowl (note the breach in the rim). Its rim crest has been worn down by a multitude of subsequent impacts.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Image information: VIS instrument. Latitude 35.9, Longitude 311.1 East (48.9 West). 19 meter/pixel resolution.

  17. The Global Contribution of Secondary Craters on the Icy Satellites

    Science.gov (United States)

    Hoogenboom, T.; Johnson, K. E.; Schenk, P.

    2014-12-01

    At present, surface ages of bodies in the Outer Solar System are determined only from crater size-frequency distributions (a method dependent on an understanding of the projectile populations responsible for impact craters in these planetary systems). To derive accurate ages using impact craters, the impactor population must be understood. Impact craters in the Outer Solar System can be primary, secondary or sesquinary. The contribution of secondary craters to the overall population has recently become a "topic of interest." Our objective is to better understand the contribution of dispersed secondary craters to the small crater populations, and ultimately that of small comets to the projectile flux on icy satellites in general. We measure the diameters of obvious secondary craters (determined by e.g. irregular crater shape, small size, clustering) formed by all primary craters on Ganymede for which we have sufficiently high resolution data to map secondary craters. Primary craters mapped range from approximately 40 km to 210 km. Image resolution ranges from 45 to 440 m/pixel. Bright terrain on Ganymede is our primary focus. These resurfaced terrains have relatively low crater densities and serve as a basis for characterizing secondary populations as a function of primary size on an icy body for the first time. Although focusing on Ganymede, we also investigate secondary crater size, frequency, distribution, and formation, as well as secondary crater chain formation on icy satellites throughout the Saturnian and Jovian systems principally Rhea. We compare our results to similar studies of secondary cratering on the Moon and Mercury. Using Galileo and Voyager data, we have identified approximately 3,400 secondary craters on Ganymede. In some cases, we measured crater density as a function of distance from a primary crater. Because of the limitations of the Galileo data, it is necessary to extrapolate from small data sets to the global population of secondary craters

  18. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    Science.gov (United States)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the

  19. Characterizing dark mantle deposits in the lunar crater Alphonsus

    Science.gov (United States)

    Shkuratov, Y. G.; Ivanov, M. A.; Korokhin, V. V.; Kaydash, V. G.; Basilevsky, A. T.; Videen, G.; Hradyska, L. V.; Velikodsky, Y. I.; Marchenko, G. P.

    2018-04-01

    We analyze available remote-sensing data of the crater Alphonsus, focusing on the analysis of the crater's dark mantle deposits (DMDs), which includes images from NASA Clementine and Lunar Reconnaissance Orbiter (LRO), Japanese Selene (Kaguya), and Indian Chandrayaan-1 missions. The Alphonsus DMDs are gentle-sloped flat hills with typical heights of several meters, which are presented with pyroclastic materials. Our determination of the absolute ages of the Alphonsus DMDs by the technique of crater size-frequency distributions shows that they are ∼200-400 m.y. old. However, being geologically young, the Alphonsus DMDs are not seen in OMAT maps. The DMDs have noticeably lower content of TiO2 (2-3%) than the mare regions to the west (>4%). The assessment of total pyroxene shows it has a higher abundance in the DMDs, although LRO Diviner measurements of the Chirstiansen feature suggest, rather, a high abundance of olivine. The DMDs pyroclastic material has no signs of OH/H2O compounds. We may suggest that this characteristic of the DMDs either relates to their impact reworking and loss of the OH/H2O compounds or to the non-water volatiles as the driving agent of the pyroclastic activity. The compositional assessments of the DMDs may be flawed from contamination with the surrounding material due to horizontal and vertical transportation due to impacts. This effect probably can be observed in LROC NAC images of high resolution. A very dark material outcropping on the slopes of the vent depression is seen due to renovation of the regolith on the steep walls of the depression. Thus, at smaller phase angles, the pyroclastic material is dark and at larger phase angles it appears almost like the surrounding material. This means that the phase dependence of the outcropping dark material is shallow; i.e. the dark surface is smoother than its surroundings. This may suggest venting of gases resulting in fluidization of the granular pyroclastic material of the deposit.

  20. Optimizing laser crater enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.

    2018-05-01

    The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.

  1. Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy

    Science.gov (United States)

    Rouchon, V.; Gillot, P. Y.; Quidelleur, X.; Chiesa, S.; Floris, B.

    2008-10-01

    The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma-Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K-Ar geochronological data. The RVC was active from c.a. 550 ka to 150 ka. Its evolution is divided into five stages, defining a volcanic pulse recurrence time of c.a. 90-100 kyr. The two initial stages, consisted in the construction of two successive stratovolcanoes of the tephrite-phonolite, namely "High-K series". The first stage was terminated by a major plinian eruption emplacing the trachytic Rio Rava pumices at 439 ± 9 ka. At the end of the second stage, the last High-K series stratovolcano was destroyed by a large sector collapse and the emplacement of the Brown Leucitic Tuff (BLT) at 353 ± 5 ka. The central caldera of the RVC is the result of the overlapping of the Rio Rava and of the BLT explosions. The plinian eruption of the BLT is related to the emptying of a stratified, deep-seated HKS magma chamber during the upwelling of K series (KS) magma, marking a major geochemical transition and plumbing system re-organization. The following stage was responsible for the emplacement of the Lower White Trachytic Tuff at 331 ± 2 ka, and of basaltic-trachytic effusive products erupted through the main vent. The subsequent activity was mainly restricted to the emplacement of basaltic-shoshonitic parasitic cones and lava flows, and of minor subplinian deposits of the Upper White Trachytic Tuff between 275 and 230 ka. The northern crater is most probably a maar that formed by the phreatomagmatic explosion of the Yellow Trachytic Tuff at 230 ka. The latest stage of

  2. 40 CFR 230.42 - Mud flats.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Mud flats. 230.42 Section 230.42... Aquatic Sites § 230.42 Mud flats. (a) Mud flats are broad flat areas along the sea coast and in coastal rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats...

  3. Computer simulations of large asteroid impacts into oceanic and continental sites--preliminary results on atmospheric, cratering and ejecta dynamics

    Science.gov (United States)

    Roddy, D.J.; Schuster, S.H.; Rosenblatt, M.; Grant, L.B.; Hassig, P.J.; Kreyenhagen, K.N.

    1987-01-01

    40 km at ???30 s and began to decay at velocities of 500 m/s to develop large-tsunami conditions. After ???30 s, strong gravitational rebound drove both craters toward broad flat-floored shapes. At 120 s, transient crater diameters were ???80 km (continental) and ???105 km (oceanic) and transient depths were ???27 km; crater floors consisting of melted and fragmented hot rock were rebounding rapidly upward. By 60 s, the continental crater had ejected ???2 ?? 1014 t, about twice the mass ejected from the oceanic crater. By 120 s, ???70,000 km3 (continental) and ???90,000 km3 (oceanic) target material were excavated (no mantle) and massive ejecta blankets were formed around the craters. We estimate that in excess of ???70% of the ejecta would finally lie within ???3 crater diameters of the impact, and the remaining ejecta (???1013 t), including the vaporized asteroid, would be ejected into the atmosphere to altitudes as high as the ionosphere. Effects of secondary volcanism and return of the ocean over hot oceanic crater floor could also be expected to contribute substantial material to the atmosphere. ?? 1987.

  4. Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies

    Science.gov (United States)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel

    2015-03-01

    , the intrusion concentrates bending primarily at the periphery, resulting in a flat, tabular intrusion. We predict that this process will result in concentric fractures over the region of greatest bending. This location is close to the crater wall in large, flat-floored craters, as observed in the crater Humboldt, and interior to the crater over the domed floor in smaller craters, as observed in the crater Vitello. A variety of volcanic features are predicted to be associated with the solidification and degassing of the intrusion; these include: (1) surface lava flows associated with concentric fractures (e.g., in the crater Humboldt); (2) vents with no associated pyroclastic material, from the deflation of under-pressurized magmatic foam (e.g., the crater Damoiseau); and (3) vents with associated pyroclastic deposits from vulcanian eruptions of highly pressurized magmatic foam (e.g., the crater Alphonsus). The intrusion of basaltic magma beneath the crater is predicted to contribute a positive component to the Bouguer gravity anomaly; we assess the predicted Bouguer anomalies associated with FFCs and outline a process for their future interpretation. We conclude that our proposed mechanism serves as a viable formation process for FFCs and accurately predicts numerous morphologic, morphometric, and geophysical features associated with FFCs. These predictions can be further tested using GRAIL (Gravity Recovery and Interior Laboratory) data.

  5. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10 8 kg, with a corresponding kinetic energy of 1.88 x 10 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references

  6. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-04-01

    A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago [Roddy (1977)]. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements

  7. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10/sup 8/ kg, with a corresponding kinetic energy of 1.88 x 10/sup 16/ J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references.

  8. Experimental investigation of crater growth dynamics

    Science.gov (United States)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.; Holsapple, K. A.

    1985-01-01

    This work is a continuation of an ongoing program whose objective is to perform experiments and to develop scaling relationships for large-body impacts onto planetary surfaces. The centrifuge technique is used to provide experimental data for actual target materials of interest. With both power and gas guns mounted on the rotor arm, it is possible to match various dimensionless similarity parameters, which have been shown to govern the behavior of large-scale impacts. The development of the centrifuge technique has been poineered by the present investigators and is documented by numerous publications, the most recent of which are listed below. Understanding the dependence of crater size upon gravity has been shown to be key to the complete determination of the dynamic and kinematic behavior of crater formation as well as ejecta phenomena. Three unique time regimes in the formation of an impact crater have been identified.

  9. Crater monitoring through social media observations

    Science.gov (United States)

    Gialampoukidis, I.; Vrochidis, S.; Kompatsiaris, I.

    2017-09-01

    We have collected more than one lunar image per two days from social media observations. Each one of the collected images has been clustered into two main groups of lunar images and an additional cluster is provided (noise) with pictures that have not been assigned to any cluster. The proposed lunar image clustering process provides two classes of lunar pictures, at different zoom levels; the first showing a clear view of craters grouped into one cluster and the second demonstrating a complete view of the Moon at various phases that are correlated with the crawling date. The clustering stage is unsupervised, so new topics can be detected on-the-fly. We have provided additional sources of planetary images using crowdsourcing information, which is associated with metadata such as time, text, location, links to other users and other related posts. This content has crater information that can be fused with other planetary data to enhance crater monitoring.

  10. Physics of soft impact and cratering

    CERN Document Server

    Katsuragi, Hiroaki

    2016-01-01

    This book focuses on the impact dynamics and cratering of soft matter to describe its importance, difficulty, and wide applicability to planetary-related problems. A comprehensive introduction to the dimensional analysis and constitutive laws that are necessary to discuss impact mechanics and cratering is first provided. Then, particular coverage is given to the impact of granular matter, which is one of the most crucial constituents for geophysics. While granular matter shows both solid-like and fluid-like behaviors, neither solid nor fluid dynamics is sufficient to fully understand the physics of granular matter. In order to reveal its fundamental properties, extensive impact tests have been carried out recently. The author reveals the findings of these recent studies as well as what remains unsolved in terms of impact dynamics. Impact crater morphology with various soft matter impacts also is discussed intensively. Various experimental and observational results up to the recent Itokawa asteroid’s terrain...

  11. A concept of row crater enhancement

    International Nuclear Information System (INIS)

    Redpath, B.B.

    1970-01-01

    Linear craters formed by the simultaneous detonation of a row of buried explosives will probably have a wider application than single charges in the explosive excavation of engineering structures. Most cratering experience to date has been with single charges, and an analytical procedure for the design of a row of charges to excavate a crater with a specified configuration has been lacking. There are no digital computer codes having direct application to a row of charges as there are for single charges. This paper derives a simple relationship which can be used to design row charges with some assurance of achieving the desired result and with considerable flexibility in the choice of explosive yield of the individual charges

  12. Goat paddock cryptoexplosion crater, Western Australia

    Science.gov (United States)

    Harms, J.E.; Milton, D.J.; Ferguson, J.; Gilbert, D.J.; Harris, W.K.; Goleby, B.

    1980-01-01

    Goat Paddock, a crater slightly over 5 km in diameter (18??20??? S, 126??40???E), lies at the north edge of the King Leopold Range/Mueller Range junction in the Kimberley district, Western Australia (Fig. 1). It was noted as a geological anomaly in 1964 during regional mapping by the Bureau of Mineral Resources, Geology and Geophysics and the Geological Survey of Western Australia. The possibility of its being a meteorite impact crater has been discussed1, although this suggestion was subsequently ignored2. Two holes were drilled by a mining corporation in 1972 to test whether kimberlite underlay the structure. Here we report the findings of five days of reconnaissance in August 1979 which established that Goat Paddock is a cryptoexplosion crater containing shocked rocks and an unusually well exposed set of structural features. ?? 1980 Nature Publishing Group.

  13. Late Pleistocene dune activity in the central Great Plains, USA

    Science.gov (United States)

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  14. Lomonosov Crater, Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 16 June 2004 This pair of images shows part of Lomonosov Crater. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude 64.9, Longitude 350.7 East (9.3 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project

  15. Lethal interpersonal violence in the Middle Pleistocene.

    Directory of Open Access Journals (Sweden)

    Nohemi Sala

    Full Text Available Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force trauma. The type of injuries, their location, the strong similarity of the fractures in shape and size, and the different orientations and implied trajectories of the two fractures suggest they were produced with the same object in face-to-face interpersonal conflict. Given that either of the two traumatic events was likely lethal, the presence of multiple blows implies an intention to kill. This finding shows that the lethal interpersonal violence is an ancient human behavior and has important implications for the accumulation of bodies at the site, supporting an anthropic origin.

  16. Lethal interpersonal violence in the Middle Pleistocene.

    Science.gov (United States)

    Sala, Nohemi; Arsuaga, Juan Luis; Pantoja-Pérez, Ana; Pablos, Adrián; Martínez, Ignacio; Quam, Rolf M; Gómez-Olivencia, Asier; Bermúdez de Castro, José María; Carbonell, Eudald

    2015-01-01

    Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force trauma. The type of injuries, their location, the strong similarity of the fractures in shape and size, and the different orientations and implied trajectories of the two fractures suggest they were produced with the same object in face-to-face interpersonal conflict. Given that either of the two traumatic events was likely lethal, the presence of multiple blows implies an intention to kill. This finding shows that the lethal interpersonal violence is an ancient human behavior and has important implications for the accumulation of bodies at the site, supporting an anthropic origin.

  17. Optimizing laser crater enhanced Raman spectroscopy.

    Science.gov (United States)

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  18. Laboratory and Field Investigations of Small Crater Repair Technologies

    National Research Council Canada - National Science Library

    Priddy, Lucy P; Tingle, Jeb S; McCaffrey, Timothy J; Rollings, Ray S

    2007-01-01

    .... This airfield damage repair (ADR) investigation consisted of laboratory testing of selected crater fill and capping materials, as well as full-scale field testing of small crater repairs to evaluate field mixing methods, installation...

  19. Seismic Stratigraphy of Pleistocene Deltaic Deposits in Bahía Blanca Estuary, Argentina

    Directory of Open Access Journals (Sweden)

    SALVADOR ALIOTTA

    2014-06-01

    Full Text Available The Bahía Blanca estuary (Argentina has a morphological configuration resulting from hydrological and sedimentary processes related to Late Quaternary sea level changes. This estuarine system occupies a large coastal plain with a dense net of tidal channels, low-altitude islands and large intertidal flats. Little is known about the sedimentary units of the marine subbottom. Therefore, a stratigraphical analysis of the northern coast of Bahía Blanca estuary was carried out using high resolution seismic (3.5 kHz in order to: i define Quaternary sequences, ii describe sedimentary structures, and iii determine the paleoenvironmental conditions of sedimentation. The seismic stratigraphic data collected and their correlation with drilling lithological data show five seismic sequences (S1, S2, S3, S4 and S5, of which S1-S2 were found to be associated with a continental paleoenvironment of Miocene-Pleistocene age. Sequences S3 and S4, whose lithology and seismic facies (paleochannel structures and prograding reflection configurations, were defined on these materials, to evidence the development of an ancient deltaic environment which was part of a large Pleistocene drainage system. The S5 sequence was formed during the Holocene transgressive-regressive process and complete the seismostratigraphic column defined in the present study.

  20. Crater ejecta scaling laws: fundamental forms based on dimensional analysis

    International Nuclear Information System (INIS)

    Housen, K.R.; Schmidt, R.M.; Holsapple, K.A.

    1983-01-01

    A model of crater ejecta is constructed using dimensional analysis and a recently developed theory of energy and momentum coupling in cratering events. General relations are derived that provide a rationale for scaling laboratory measurements of ejecta to larger events. Specific expressions are presented for ejection velocities and ejecta blanket profiles in two limiting regimes of crater formation: the so-called gravity and strength regimes. In the gravity regime, ejectra velocities at geometrically similar launch points within craters vary as the square root of the product of crater radius and gravity. This relation implies geometric similarity of ejecta blankets. That is, the thickness of an ejecta blanket as a function of distance from the crater center is the same for all sizes of craters if the thickness and range are expressed in terms of crater radii. In the strength regime, ejecta velocities are independent of crater size. Consequently, ejecta blankets are not geometrically similar in this regime. For points away from the crater rim the expressions for ejecta velocities and thickness take the form of power laws. The exponents in these power laws are functions of an exponent, α, that appears in crater radius scaling relations. Thus experimental studies of the dependence of crater radius on impact conditions determine scaling relations for ejecta. Predicted ejection velocities and ejecta-blanket profiles, based on measured values of α, are compared to existing measurements of velocities and debris profiles

  1. Coesite from Wabar crater, near Al Hadida, Arabia

    Science.gov (United States)

    Chao, E.C.T.; Fahey, J.J.; Littler, J.

    1961-01-01

    The third natural occurrence of coesite, the high pressure polymorph of silica, is found at the Wabar meteorite crater, Arabia. The Wabar crater is about 300 feet in diameter and about 40 feet deep. It is the smallest of three craters where coesite has been found.

  2. 3D structure of the Gusev Crater region

    NARCIS (Netherlands)

    van Kan - Parker, M.; Zegers, T.E.; kneissl, T.; Ivanov, B.; Neukum, G.; Foing, B.

    2010-01-01

    Gusev Crater lies within the Aeolis Quadrangle of Mars at the boundary between the northern lowlands and southern highlands. The ancient valley Ma'adim Vallis dissects the highlands south of Gusev Crater and is thought to have fed the crater with sediments.High Resolution Stereo Camera data and

  3. Flat slices in Minkowski space

    Science.gov (United States)

    Murchadha, Niall Ó.; Xie, Naqing

    2015-03-01

    Minkowski space, flat spacetime, with a distance measure in natural units of d{{s}2}=-d{{t}2}+d{{x}2}+d{{y}2}+d{{z}2}, or equivalently, with spacetime metric diag(-1, +1, +1, +1), is recognized as a fundamental arena for physics. The Poincaré group, the set of all rigid spacetime rotations and translations, is the symmetry group of Minkowski space. The action of this group preserves the form of the spacetime metric. Each t = constant slice of each preferred coordinate system is flat. We show that there are also nontrivial non-singular representations of Minkowski space with complete flat slices. If the embedding of the flat slices decays appropriately at infinity, the only flat slices are the standard ones. However, if we remove the decay condition, we find non-trivial flat slices with non-vanishing extrinsic curvature. We write out explicitly the coordinate transformation to a frame with such slices.

  4. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    Science.gov (United States)

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  5. Constraining the thickness of polar ice deposits on Mercury using the Mercury Laser Altimeter and small craters in permanently shadowed regions

    Science.gov (United States)

    Deutsch, Ariel N.; Head, James W.; Chabot, Nancy L.; Neumann, Gregory A.

    2018-05-01

    Radar-bright deposits at the poles of Mercury are located in permanently shadowed regions, which provide thermally stable environments for hosting and retaining water ice on the surface or in the near subsurface for geologic timescales. While the areal distribution of these radar-bright deposits is well characterized, their thickness, and thus their total mass and volume, remain poorly constrained. Here we derive thickness estimates for selected water-ice deposits using small, simple craters visible within the permanently shadowed, radar-bright deposits. We examine two endmember scenarios: in Case I, these craters predate the emplacement of the ice, and in Case II, these craters postdate the emplacement of the ice. In Case I, we find the difference between estimated depths of the original unfilled craters and the measured depths of the craters to find the estimated infill of material. The average estimated infilled material for 9 craters assumed to be overlain with water ice is ∼ 41-14+30 m, where 1-σ standard error of the mean is reported as uncertainty. Reported uncertainties are for statistical errors only. Additional systematic uncertainty may stem from georeferencing the images and topographic datasets, from the radial accuracy of the altimeter measurements, or from assumptions in our models including (1) ice is flat in the bowl-shaped crater and (2) there is negligible ice at the crater rims. In Case II, we derive crater excavation depths to investigate the thickness of the ice layer that may have been penetrated by the impact. While the absence of excavated regolith associated with the small craters observed suggests that impacts generally do not penetrate through the ice deposit, the spatial resolution and complex illumination geometry of images may limit the observations. Therefore, it is not possible to conclude whether the small craters in this study penetrate through the ice deposit, and thus Case II does not provide a constraint on the ice thickness

  6. Pleistocene lake level changes in Western Mongolia

    Science.gov (United States)

    Borodavko, P. S.

    2009-04-01

    Global cooling in the Early Pleistocene caused extensive continental glaciation in the northern hemisphere including the arid areas of Central Asia. The reduction of temperatures (particularly summer temperatures) reduced evaporation and strengthened the importance of precipitation. The simultaneity of "lakes periods" (pluvials) and stages of glaciation is established experience confirmed by investigations in the west of North America and Russia. In the Mongolian Great Lakes Depression new evidence for similar conditions is found. The Great Lakes Depression is one of the largest in Central Asia, and is divided into 2 main Lakes basins: Hyargas Lake Basin and Uvs Lake Basin. The basin is 600-650 km in length with a width of 200-250 km in the north and 60-100 km in the south. Total catchment area is about 186600 km2. The elevation of the basin floor is from 1700 m a.s.l. to 760 m a.s.l., decreasing to the north and south-east. The depression extends south-north and is bounded by mountains: Tannu-Ola to the north, Hangai to the east; Gobi Altai to the south and Mongolian Altay to the west. The maximum elevation of the mountains is 4000 m a.s.l. There are some mountains with an elevation between 2000 and 3000 m a.s.l in the lake catchment. These mountains are not glaciated today. The geological record [1] suggests the Great Lakes Depression already existed in the Mesozoic, but assumed its modern form only during the Pliocene-Quaternary when tectonic movements caused the uplift of the surrounding mountains. A phase of tectonic stability occurred during the Late Quaternary. The depression is filled by Quaternary fluvial, aeolian and lacustrine deposits (e.g. sand, pebbles). The Neogene deposits are represented by coloured clay, marl, sand and sandstone [1]. Hyargas Lake is the end base level of erosion of the lake group consisting of the Hara-Us Nur, Dorgon, Hara Nur and Airag lakes. Hyargas is one of the largest lakes in Mongolia, with a water surface of 1,407 km2. The

  7. On the Paleobiogeography of Pleistocenic Italian Mammals / Osservazioni sulla paleobiogeografia dei mammiferi del Pleistocene italiano

    Directory of Open Access Journals (Sweden)

    Lucia Caloi

    1986-06-01

    Full Text Available Abstract In this paper the main Italian Pleistocene mammalofaunas are examined and a chronological sequence of the main deposits is proposed. Centers of spreading, times of first appearence in Italy and ranges through the peninsula of the more representative species are indicated, as far as possible. The insular faunas and the different degrees of endemism they show, are particularly discussed. Riassunto Vengono esaminate sinteticamente le principali faune a mammiferi del Pleistocene d'Italia e viene proposta una successione cronologica per i principali giacimenti. Per le specie più rappresentative vengono indicati, per quanto possibile, le aree di provenienza, il momento della comparsa e la loro diffusione nella penisola. Particolare attenzione viene posta alle forme insulari ed al loro carattere endemico.

  8. Summary of results of cratering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Toman, J [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    The use of nuclear excavation as a construction technique for producing harbors, canals, highway cuts, and other large excavations requires a high assurance that the yield and depth of burst selected for the explosive will produce the desired configuration within an acceptable degree of tolerance. Nuclear excavation technology advanced significantly during 1968 as a result of the successful execution of Projects Cabriolet, Buggy, and Schooner. Until these experiments were conducted, the only nuclear data available for designing large excavations were derived from Sedan (100 kt in alluvium), Danny Boy (0.42 kt in basalt), and Sulky (0.090 kt in basalt). Applicable experience has now been extended to include two additional rock types: tuff and porphyritic trachyte, non-homogeneous formations with severe geologic layering, and a nuclear row in hard rock. The continued development of cratering calculations using in situ geophysical measurements and high-pressure test data have provided a means for predicting the cratering characteristics of untested materials. Chemical explosive cratering experiments conducted in the pre-Gondola series during the past several years have been directed toward determining the behavior of weak, wet clay shales. This material is important to nuclear excavation because of potential long-term stability problems which may affect the cratered slopes. (author)

  9. Inclement Weather Crater Repair Tool Kit

    Science.gov (United States)

    2017-11-30

    9. Corrugated steel quadcons. ....................................................................................................... 14 Figure 10...Saw cutting around crater upheaval. ERDC/GSL TR-17-26 6 The excavation team is responsible for breaking up the damaged portland cement ...in the table located on Sheet 2 in Appendix A. The corrugated steel quadcons (Item 1) are equipped with double swing doors on both ends of the

  10. Summary of results of cratering experiments

    International Nuclear Information System (INIS)

    Toman, J.

    1969-01-01

    The use of nuclear excavation as a construction technique for producing harbors, canals, highway cuts, and other large excavations requires a high assurance that the yield and depth of burst selected for the explosive will produce the desired configuration within an acceptable degree of tolerance. Nuclear excavation technology advanced significantly during 1968 as a result of the successful execution of Projects Cabriolet, Buggy, and Schooner. Until these experiments were conducted, the only nuclear data available for designing large excavations were derived from Sedan (100 kt in alluvium), Danny Boy (0.42 kt in basalt), and Sulky (0.090 kt in basalt). Applicable experience has now been extended to include two additional rock types: tuff and porphyritic trachyte, non-homogeneous formations with severe geologic layering, and a nuclear row in hard rock. The continued development of cratering calculations using in situ geophysical measurements and high-pressure test data have provided a means for predicting the cratering characteristics of untested materials. Chemical explosive cratering experiments conducted in the pre-Gondola series during the past several years have been directed toward determining the behavior of weak, wet clay shales. This material is important to nuclear excavation because of potential long-term stability problems which may affect the cratered slopes. (author)

  11. Fluids, evaporation and precipitates at Gale Crater

    OpenAIRE

    Schwenzer, S. P.; Bridges, J. C.; Leveille, R.; Wiens, R. C.; Mangold, N.; McAdam, A.; Conrad, P.; Kelley, S. P.; Westall, F.; Martín-Torres, F.; Zorzano, M.-P.

    2015-01-01

    The Mars Science Laboratory (MSL) mission landed in Gale Crater, Mars, on 6th August 2012, and has explored the Yellowknife Bay area. The detailed mineralogical and sedimentological studies provide a unique opportunity to characterise the secondary fluids associated with this habitable environment.

  12. Some Studies of Terrestrial Impact Cratering Rate

    Directory of Open Access Journals (Sweden)

    Jetsu L.

    2011-06-01

    Full Text Available In 1984, a 28.4 Myr periodicity was detected in the ages of terrestrial impact craters and a 26 Myr periodicity in the epochs of mass extinctions of species. Periodic comet showers from the Oort cloud seemed to cause catastrophic events linked to mass extinctions of species. Our first study revealed that the only significant detected periodicity is the “human signal” caused by the rounding of these data into integer numbers. The second study confirmed that the original 28.4 Myr periodicity detection was not significant. The third study revealed that the quality and the quantity of the currently available data would allow detection of real periodicity only if all impacts have been periodic, which cannot be the case. The detection of a periodic signal, if present, requires that more craters should be discovered and the accuracy of age estimates improved. If we sometimes will be able to find the difference between the craters caused by asteroid and comet impacts, the aperiodic component could be removed. The lunar impact craters may eventually provide the required supplementary data.

  13. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage

    Science.gov (United States)

    Kenkmann, T.; Artemieva, N. A.; Wünnemann, K.; Poelchau, M. H.; Elbeshausen, D.; Núñez Del Prado, H.

    2009-08-01

    The recent Carancas meteorite impact event caused a worldwide sensation. An H4-5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye-witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter-sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100-1000 MJ (0.024- 0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12- 14 kms-1) and shallow entry angles (<20°) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40-60°), and an impact velocity of 350-600 ms-1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of

  14. Pleistocene Homo sapiens from Middle Awash, Ethiopia.

    Science.gov (United States)

    White, Tim D; Asfaw, Berhane; DeGusta, David; Gilbert, Henry; Richards, Gary D; Suwa, Gen; Howell, F Clark

    2003-06-12

    The origin of anatomically modern Homo sapiens and the fate of Neanderthals have been fundamental questions in human evolutionary studies for over a century. A key barrier to the resolution of these questions has been the lack of substantial and accurately dated African hominid fossils from between 100,000 and 300,000 years ago. Here we describe fossilized hominid crania from Herto, Middle Awash, Ethiopia, that fill this gap and provide crucial evidence on the location, timing and contextual circumstances of the emergence of Homo sapiens. Radioisotopically dated to between 160,000 and 154,000 years ago, these new fossils predate classic Neanderthals and lack their derived features. The Herto hominids are morphologically and chronologically intermediate between archaic African fossils and later anatomically modern Late Pleistocene humans. They therefore represent the probable immediate ancestors of anatomically modern humans. Their anatomy and antiquity constitute strong evidence of modern-human emergence in Africa.

  15. Geomorphology of Afekan Crater, Titan: Terrain Relationships in Titan’s Blandlands

    Science.gov (United States)

    Malaska, Michael; Shoenfeld, Ashley M.; Lopes, Rosaly M.; Hayes, Alex G.; Le Gall, Alice; Birch, Sam; Solomonidou, Anezina; Neish, Catherine D.; Soderblom, Jason M.; Farr, Thomas G.

    2014-11-01

    The enigmatic mid-latitude undifferentiated plains of Saturn’s moon Titan cover an estimated 29% of the surface of that world, making them one of the most important terrain units. Nicknamed “blandlands”, they appear nearly featureless to the Cassini spacecraft’s Visual and Infrared Mapping Spectrometer (VIMS), Imaging Science Subsystems (ISS) and Synthetic Aperture Radar (SAR) imaging. The possible origins and identity of the vast undifferentiated plains have ranged from thick organic photochemical deposits to cryovolcanic flood deposits of aqueous materials. To help constrain these possibilities, we selected the region around Afekan Crater for detailed geomorphological mapping. We defined and determined terrain units in ArcGIS primarily using SAR images and used the resulting contact and embayment relationships to determine a preliminary stratigraphy between the previously known units and the undifferentiated plains.We find that although the plains are relatively featureless, they are not flat - some topographic variation is observed. Our work suggests Titan’s dunes embay the undifferentiated plains. This is consistent with dunes actively invading and depositing in the topographically low regions of the undifferentiated plains. Correlation of our defined undifferentiated plains regions with radiometric data is not consistent with large exposures of putative water-based cryovolcanic outflows, but is consistent with dune materials. The infrared reflectance obtained by Cassini VIMS and ISS show distinctive albedo differences between the dunes and undifferentiated plains materials. Combined, these results provide support that the undifferentiated plains are composed of organic materials, but that they are distinct from unmodified dune materials. Undifferentiated plains are found partially filling the interior of Afekan Crater, as well as in the presumed wind shadow of Afekan Crater, implying that plains material deposition happened after Afekan Crater was

  16. Shallow and deep fresh impact craters in Hesperia Planum, Mars

    Science.gov (United States)

    Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1993-01-01

    The depths of 109 impact craters about 2-16 km in diameter, located on the ridged plains materials of Hesperia Planum, Mars, have been measured from their shadow lengths using digital Viking Orbiter images (orbit numbers 417S-419S) and the PICS computer software. On the basis of their pristine morphology (very fresh lobate ejecta blankets, well preserved rim crests, and lack of superposed impact craters), 57 of these craters have been selected for detailed analysis of their spatial distribution and geometry. We find that south of 30 deg S, craters less than 6.0 km in diameter are markedly shallower than similar-sized craters equatorward of this latitude. No comparable relationship is observed for morphologically fresh craters greater than 6.0 km diameter. We also find that two populations exist for older craters less than 6.0 km diameter. When craters that lack ejecta blankets are grouped on the basis of depth/diameter ratio, the deeper craters also typically lie equatorward of 30 S. We interpret the spatial variation in crater depth/diameter ratios as most likely due to a poleward increase in volatiles within the top 400 m of the surface at the times these craters were formed.

  17. Wrinkle Ridges and Young Fresh Crater

    Science.gov (United States)

    2002-01-01

    (Released 10 May 2002) The Science Wrinkle ridges are a very common landform on Mars, Mercury, Venus, and the Moon. These ridges are linear to arcuate asymmetric topographic highs commonly found on smooth plains. The origin of wrinkle ridges is not certain and two leading hypotheses have been put forth by scientists over the past 40 years. The volcanic model calls for the extrusion of high viscosity lavas along linear conduits. This thick lava accumulated over these conduits and formed the ridges. The other model is tectonic and advocates that the ridges are formed by compressional faulting and folding. Today's THEMIS image is of the ridged plains of Lunae Planum located between Kasei Valles and Valles Marineris in the northern hemisphere of the planet. Wrinkle ridges are found mostly along the eastern side of the image. The broadest wrinkle ridges in this image are up to 2 km wide. A 3 km diameter young fresh crater is located near the bottom of the image. The crater's ejecta blanket is also clearly seen surrounding the sharp well-defined crater rim. These features are indicative of a very young crater that has not been subjected to erosional processes. The Story The great thing about the solar system is that planets are both alike and different. They're all foreign enough to be mysterious and intriguing, and yet familiar enough to be seen as planetary 'cousins.' By comparing them, we can learn a lot about how planets form and then evolve geologically over time. Crinkled over smooth plains, the long, wavy raised landforms seen here are called 'wrinkle ridges,' and they've been found on Mars, Mercury, Venus, and the Moon - that is, on rocky bodies that are a part of our inner solar system. We know from this observation that planets (and large-enough moons) follow similar processes. What we don't know for sure is HOW these processes work. Scientists have been trying to understand how wrinkle ridges form for 40 years, and they still haven't reached a conclusion. That

  18. Hailar crater - A possible impact structure in Inner Mongolia, China

    Science.gov (United States)

    Xiao, Zhiyong; Chen, Zhaoxu; Pu, Jiang; Xiao, Xiao; Wang, Yichen; Huang, Jun

    2018-04-01

    Hailar crater, a probable impact structure, is a circular depression about 300 m diameter in Inner Mongolia, northeast China. With broad elevated rims, the present rim-to-floor depth is 8-20 m. Regional geological background and geomorphological comparison suggest that this feature is likely not formed by surface processes such as salt diapir, karst, aeolian, glacial, or volcanic activity. Its unique occurrence in this region and well-preserved morphology are most consistent with it being a Cenozoic impact crater. Two field expeditions in 2016 and 2017 investigated the origin of this structure, recognizing that (1) no additional craters were identified around Hailar crater in the centimeter-scale digital topography models that were constructed using a drone imaging system and stereo photogrammetry; (2) no bedrock exposures are visible within or adjacent to the crater because of thick regolith coverage, and only small pieces of angular unconsolidated rocks are present on the crater wall and the gently-sloped crater rim, suggesting recent energetic formation of the crater; (3) most samples collected from the crater have identical lithology and petrographic characteristics with the background terrain, but some crater samples contain more abundant clasts and silicate hydrothermal veins, indicating that rocks from depths have been exposed by the crater; (4) no shock metamorphic features were found in the samples after thin section examinations; and (5) a systematic sample survey and iron detector scan within and outside of the crater found no iron-rich meteorites larger than 2 cm in size in a depth of 30 cm. Although no conclusive evidence for an impact origin is found yet, Hailar crater was most likely formed by an impact based on its unique occurrence and comparative geomorphologic study. We suggest that drilling in the crater center is required to verify the impact origin, where hypothesized melt-bearing impactites may be encountered.

  19. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Geologic Structures in Crater Walls on Vesta

    Science.gov (United States)

    Mittlefehldt, David W.; Beck, A. W.; Ammannito, E.; Carsenty, U.; DeSanctis, M. C.; LeCorre, L.; McCoy, T. J.; Reddy, V.; Schroeder, S. E.

    2012-01-01

    The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In

  1. Zonation of uplifted pleistocene coral reefs on barbados, west indies.

    Science.gov (United States)

    Mesolella, K J

    1967-05-05

    The coral species composition of uplifted Pleistocene reefs on Barbados is very similar to Recent West Indian reefs. Acropora palmata, Acropora cervicornis, and Montastrea annularis are qtuantitatively the most important of the coral species.

  2. Plio-Pleistocene Hyracoidea from Swartkrans Cave, South Africa

    African Journals Online (AJOL)

    the decline in relative abundance and ultimate extinction of this species towards the end of the Pleistocene. Predators can ..... There is no reason to discount the possibility that leopards .... animal bones from archacologicaJ sites. Peabody Mus ...

  3. Aqueous alteration detection in Tikhonravov crater, Mars

    Science.gov (United States)

    Mancarella, F.; Fonti, S.; Alemanno, G.; Orofino, V.; Blanco, A.

    2018-03-01

    The existence of a wet period lasting long enough to allow the development of elementary forms of life on Mars has always been a very interesting issue. Given this perspective, the research for geological markers of such occurrences has been continually pursued. Once a favorable site is detected, effort should be spent to get as much information as possible aimed at a precise assessment of the genesis and evolution of the areas showing the selected markers. In this work, we discuss the recent finding of possible deposits pointing to the past existence of liquid water in Tikhonravov crater located in Arabia Terra. Comparison of CRISM spectra and those of laboratory minerals formed by aqueous alteration has led us to the conclusion that the studied areas within the impact crater host phyllosilicates deposits. In addition, analysis of the CRISM spectra has resulted in the tentative identification of carbonates mixed with phyllosilicates.

  4. Layers of 'Cabo Frio' in 'Victoria Crater'

    Science.gov (United States)

    2006-01-01

    This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is an approximately true color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.

  5. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    Science.gov (United States)

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  6. Pleistocene megafaunal interaction networks became more vulnerable after human arrival.

    Science.gov (United States)

    Pires, Mathias M; Koch, Paul L; Fariña, Richard A; de Aguiar, Marcus A M; dos Reis, Sérgio F; Guimarães, Paulo R

    2015-09-07

    The end of the Pleistocene was marked by the extinction of almost all large land mammals worldwide except in Africa. Although the debate on Pleistocene extinctions has focused on the roles of climate change and humans, the impact of perturbations depends on properties of ecological communities, such as species composition and the organization of ecological interactions. Here, we combined palaeoecological and ecological data, food-web models and community stability analysis to investigate if differences between Pleistocene and modern mammalian assemblages help us understand why the megafauna died out in the Americas while persisting in Africa. We show Pleistocene and modern assemblages share similar network topology, but differences in richness and body size distributions made Pleistocene communities significantly more vulnerable to the effects of human arrival. The structural changes promoted by humans in Pleistocene networks would have increased the likelihood of unstable dynamics, which may favour extinction cascades in communities facing extrinsic perturbations. Our findings suggest that the basic aspects of the organization of ecological communities may have played an important role in major extinction events in the past. Knowledge of community-level properties and their consequences to dynamics may be critical to understand past and future extinctions. © 2015 The Author(s).

  7. Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede

    Science.gov (United States)

    Fink, J. H.; Greeley, R.; Gault, D. E.

    1982-01-01

    Results from a series of laboratory impacts into clay slurry targets are compared with photographs of impact craters on Mars and Ganymede. The interior and ejecta lobe morphology of rampart-type craters, as well as the progression of crater forms seen with increasing diameter on both Mars and Ganymede, are equalitatively explained by a model for impact into Bingham materials. For increasing impact energies and constant target rheology, laboratory craters exhibit a morphologic progression from bowl-shaped forms that are typical of dry planetary surfaces to craters with ejecta flow lobes and decreasing interior relief, characteristic of more volatile-rich planets. A similar sequence is seen for uniform impact energy in slurries of decreasing yield strength. The planetary progressions are explained by assuming that volatile-rich or icy planetary surfaces behave locally in the same way as Bingham materials and produce ejecta slurries with yield strenghs and viscosities comparable to terrestrial debris flows. Hypothetical impact into Mars and Ganymede are compared, and it is concluded that less ejecta would be produced on Ganymede owing to its lower gravitational acceleration, surface temperature, and density of surface materials.

  8. Low-velocity impact cratering experiments in granular slopes

    Science.gov (United States)

    Hayashi, Kosuke; Sumita, Ikuro

    2017-07-01

    Low-velocity impact cratering experiments are conducted in sloped granular targets to study the effect of the slope angle θ on the crater shape and its scales. We use two types of granular matter, sand and glass beads, former of which has a larger friction coefficient μs = tanθr , where θr is the angle of repose. Experiments show that as θ increases, the crater becomes shallower and elongated in the direction of the slope. Furthermore the crater floor steepens in the upslope side and a thick rim forms in the downslope side, thus forming an asymmetric profile. High-speed images show that these features are results of ejecta being dispersed farther towards the downslope side and the subsequent avalanche which buries much of the crater floor. Such asymmetric ejecta dispersal can be explained by combining the Z-model and a ballistic model. Using the topographic maps of the craters, we classify crater shape regimes I-III, which transition with increasing θ : a full-rim crater (I), a broken-rim crater (II), and a depression (III). The critical θ for the regime transitions are larger for sand compared to glass beads, but collapse to close values when we use a normalized slope θ^ = tanθ / tanθr . Similarly we derive θ^-dependences of the scaled crater depth, length, width and their ratios which collapse the results for different targets and impact energies. We compare the crater profiles formed in our experiments with deep craters on asteroid Vesta and find that some of the scaled profiles nearly overlap and many have similar depth / length ratios. This suggests that these Vestan craters may also have formed in the gravity regime and that the formation process can be approximated by a granular flow with a similar effective friction coefficient.

  9. Soil decontamination at Rocky Flats

    International Nuclear Information System (INIS)

    Olsen, R.L.; Hayden, J.A.; Alford, C.E.; Kochen, R.L.; Stevens, J.R.

    1979-01-01

    A soils decontamination project was initiated, to remove actinides from soils at Rocky Flats. Wet screening, attrition scrubbing with Calgon at high pH, attrition scrubbing at low pH, and cationic flotation were investigated. Pilot plant studies were carried out. Conceptual designs have been generated for mounting the process in semi-trailers

  10. The isostatic state of Mead crater

    Science.gov (United States)

    Banerdt, W. B.; Konopliv, A. S.; Rappaport, N. J.; Sjogren, W. L.; Grimm, R. E.; Ford, P. G.

    1994-01-01

    We have analyzed high-resolution Magellan Doppler tracking data over Mead crater, using both line-of-sight and spherical harmonic methods, and have found a negative gravity anomaly of about 4-5 mgal (at spacecraft altitude, 182 km). This is consistent with no isostatic compensation of the present topography; the uncertainty in the analysis allows perhaps as much as 30% compensation at shallow dpeths (approximately 25 km). This is similar to observations of large craters on Earth, which are not generally compensated, but contrasts with at least some lunar basins which are inferred to have large Moho uplifts and corresponding positive Bouguer anomalies. An uncompensated load of this size requires a lithosphere with an effective elastic lithosphere thickness greater than 30 km. In order for the crust-mantle boundary not to have participated in the deformation associated with the collapse of the transient cavity during the creation of the crater, the yield strength near the top of the mantle must have been significantly higher on Earth and Venus than on the Moon at the time of basin formation. This might be due to increased strength against frictional sliding at the higher confining pressures within the larger planets. Alternatively, the thinner crusts of Earth and Venus compared to that of the Moon may result in higher creep strength of the upper mantle at shallower depths.

  11. Ejecta from single-charge cratering explosions

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R H

    1970-05-15

    The objective was to obtain experimental data tracing the location of ejecta to its origin within the crater region. The experiment included ten high-explosive spherical charges weighing from 8 to 1000 pounds and detonated in a playa dry lake soil on the Tonopah Test Range. Each event included from 24 to 40 locations of distinctly different tracer material embedded in a plane in the expected crater region. Tracers consisted of glass, ceramic and bugle beads, chopped metal, and plastic wire. Results of this experiment yielded data on tracer dispersion as a function of charge weight, charge burial depth and tracer emplacement position. Tracer pattern parameters such as center-of-tracer mass, range to center-of-tracer mass, and angle to center-of-tracer mass were determined. There is a clear tendency for range (to center-of-tracer mass) and the size of the dispersion pattern to decrease as tracer emplacement depth increases. Increasing tracer emplacement depth and range tends to decrease the area over which tracers are dispersed on the ground surface. Tracers at the same scaled position relative to the charge were deposited closer to the crater (on a scaled basis) as charge weight was increased. (author)

  12. The central uplift of Ritchey crater, Mars

    Science.gov (United States)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-01-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  13. The central uplift of Ritchey crater, Mars

    Science.gov (United States)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-05-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  14. Pleistocene cave art from Sulawesi, Indonesia.

    Science.gov (United States)

    Aubert, M; Brumm, A; Ramli, M; Sutikna, T; Saptomo, E W; Hakim, B; Morwood, M J; van den Bergh, G D; Kinsley, L; Dosseto, A

    2014-10-09

    Archaeologists have long been puzzled by the appearance in Europe ∼40-35 thousand years (kyr) ago of a rich corpus of sophisticated artworks, including parietal art (that is, paintings, drawings and engravings on immobile rock surfaces) and portable art (for example, carved figurines), and the absence or scarcity of equivalent, well-dated evidence elsewhere, especially along early human migration routes in South Asia and the Far East, including Wallacea and Australia, where modern humans (Homo sapiens) were established by 50 kyr ago. Here, using uranium-series dating of coralloid speleothems directly associated with 12 human hand stencils and two figurative animal depictions from seven cave sites in the Maros karsts of Sulawesi, we show that rock art traditions on this Indonesian island are at least compatible in age with the oldest European art. The earliest dated image from Maros, with a minimum age of 39.9 kyr, is now the oldest known hand stencil in the world. In addition, a painting of a babirusa ('pig-deer') made at least 35.4 kyr ago is among the earliest dated figurative depictions worldwide, if not the earliest one. Among the implications, it can now be demonstrated that humans were producing rock art by ∼40 kyr ago at opposite ends of the Pleistocene Eurasian world.

  15. Cratering Studies in Thin Plastic Films

    Science.gov (United States)

    Shu, A. J.; Bugiel, S.; Gruen, E.; Hillier, J.; Horanyi, M.; Munsat, T. L.; Srama, R.

    2013-12-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can

  16. Individual energy savings for individual flats in blocks of flats

    DEFF Research Database (Denmark)

    Nielsen, Anker; Rose, Jørgen

    2014-01-01

    and 1980. Normally, we expect the reduction in energy consumption to be around 20% for a 2 °C lower temperature, but for an inner flat the reduction can be up to 71%. The owners of the adjoining flats get an increase in energy demand of 10 to 20% each. They will not be able to figure out whether...... this is because the neighbour maintains a low temperature or the fact that they maintain a higher temperature. The best solution is to keep your own indoor temperature low. We can also turn the problem around: if you maintain a higher temperature than your neighbours, then you will pay part of their heating bill....

  17. Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan

    Science.gov (United States)

    Bland, M. T.; Ermakov, A. I.; Raymond, C. A.; Williams, D. A.; Bowling, T. J.; Preusker, F.; Park, R. S.; Marchi, S.; Castillo-Rogez, J. C.; Fu, R. R.; Russell, C. T.

    2018-02-01

    Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long-term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact-induced uplift of the high-density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest-degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin-associated gravity anomalies, although their origin may differ substantially.

  18. Geological mapping of lunar highland crater Lalande: Topographic configuration, morphology and cratering process

    Science.gov (United States)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Liu, ChangQing; Bi, Xiangyu

    2018-02-01

    Highland crater Lalande (4.45°S, 8.63°W; D = 23.4 km) is located on the PKT area of the lunar near side, southeast of the Mare Insularum. It is a complex crater in Copernican era and has three distinguishing features: high silicic anomaly, the highest Th abundance and special landforms on its floor. There are some low-relief bulges on the left of Lalande's floor with regular circle or ellipse shapes. They are ∼250-680 m wide and ∼30-91 m high with maximum flank slopes >20°. There are two possible scenarios for the formation of these low-relief bulges which are impact melt products or young silicic volcanic eruptions. We estimated the absolute model ages of the ejecta deposits, several melt ponds and the hummocky floor and determined the ratio of diameter and depth of the crater Lalande. In addition, we found some similar bugle features within other Copernican-aged craters and there were no volcanic source vents on Lalande's floor. Thus, we hypothesized that these low-relief bulges were most consistent with an origin of impact melts during the crater formation instead of small and young volcanic activities occurring on the floor. Based on Kaguya Terrain Camera (TC) ortho-mosaic and Digital Terrain Model (DTM) data produced by TC imagery in stereo, geological units and some linear features on the floor and wall of Lalande have been mapped. Eight geological units are organized by crater floor units: hummocky floor, central peak and low-relief bulges; and crater wall units: terraced walls, channeled and veneered walls, interior walls, mass wasting areas, blocky areas, and melt ponds. These geological units and linear features provided us a chance to understand some details of the cratering process and elevation differences on the floor. We proposed that subsidence due to melt cooling, late-stage wall collapse and rocks uplifted from beneath the surface could be the possible causes of the observed elevation differences on Lalande's floor.

  19. Impact spacecraft imagery and comparative morphology of craters

    International Nuclear Information System (INIS)

    Moutsoulas, M.; Piteri, S.

    1979-01-01

    The use of hard-landing 'simple' missions for wide-scale planetary exploration is considered. As an example of their imagery potentialities, Ranger VII data are used for the study of the morphological characteristics of 16 Mare Cognitum craters. The morphological patterns of lunar craters, expressed in terms of the Depth/Diameter ratios appear to be in most cases independent of the crater location or size. (Auth.)

  20. Crater populations in the early history of Mercury

    International Nuclear Information System (INIS)

    Guest, J.E.; Gault, D.E.

    1976-01-01

    Crater populations on two major geologic units of Mercury have been classified into three morphologic types which characterize their state of degradation. The results indicate that one or more processes either prior to or contemporary with the formation of the 1300 km diameter Caloris Planitia reduced the population of fresh craters smaller than 70--80 km diameter and totally erased the population of fresh craters smaller than 20--30 km

  1. Paleohydrology of the southern Great Basin, with special reference to water table fluctuations beneath the Nevada Test Site during the late(?) Pleistocene

    Science.gov (United States)

    Winograd, Isaac Judah; Doty, Gene C.

    1980-01-01

    Knowledge of the magnitude of water-table rise during Pleistocene pluvial climates, and of the resultant shortening of groundwater flow path and reduction in unsaturated zone thickness, is mandatory for a technical evaluation of the Nevada Test Site (NTS) or other arid zone sites as repositories for high-level or transuranic radioactive wastes. The distribution of calcitic veins filling fractures in alluvium, and of tufa deposits between the Ash Meadows spring discharge area and the Nevada Test Site indicates that discharge from the regional Paleozoic carbonate aquifer during the Late( ) Pleistocene pluvial periods may have occurred at an altitude about 50 meters higher than at present and 14 kilometers northeast of Ash Meadows. Use of the underflow equation (relating discharge to transmissivity, aquifer width, and hydraulic gradient), and various assumptions regarding pluvial recharge, transmissivity, and altitude of groundwater base level, suggest possible rises in potentiometric level in the carbonate aquifer of about -90 meters beneath central Frenchman Flat. During Wisconsin time the rise probably did not exceed 30 meters. Water-level rises beneath Frenchman Flat during future pluvials are unlikely to exceed 30 meters and might even be 10 meters lower than modern levels. Neither the cited rise in potentiometric level in the regional carbonate aquifer, nor the shortened flow path during the Late( ) Pleistocene preclude utilization of the NTS as a repository for high-level or transuranic-element radioactive wastes provided other requisite conditions are met as this site. Deep water tables, attendant thick (up to several hundred meter) unsaturated zones, and long groundwater flow paths characterized the region during the Wisconsin Stage and probably throughout the Pleistocene Epoch and are likely to so characterize it during future glacial periods. (USGS)

  2. Lucy's flat feet: the relationship between the ankle and rearfoot arching in early hominins.

    Directory of Open Access Journals (Sweden)

    Jeremy M DeSilva

    Full Text Available BACKGROUND: In the Plio-Pleistocene, the hominin foot evolved from a grasping appendage to a stiff, propulsive lever. Central to this transition was the development of the longitudinal arch, a structure that helps store elastic energy and stiffen the foot during bipedal locomotion. Direct evidence for arch evolution, however, has been somewhat elusive given the failure of soft-tissue to fossilize. Paleoanthropologists have relied on footprints and bony correlates of arch development, though little consensus has emerged as to when the arch evolved. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence from radiographs of modern humans (n = 261 that the set of the distal tibia in the sagittal plane, henceforth referred to as the tibial arch angle, is related to rearfoot arching. Non-human primates have a posteriorly directed tibial arch angle, while most humans have an anteriorly directed tibial arch angle. Those humans with a posteriorly directed tibial arch angle (8% have significantly lower talocalcaneal and talar declination angles, both measures of an asymptomatic flatfoot. Application of these results to the hominin fossil record reveals that a well developed rearfoot arch had evolved in Australopithecus afarensis. However, as in humans today, Australopithecus populations exhibited individual variation in foot morphology and arch development, and "Lucy" (A.L. 288-1, a 3.18 Myr-old female Australopithecus, likely possessed asymptomatic flat feet. Additional distal tibiae from the Plio-Pleistocene show variation in tibial arch angles, including two early Homo tibiae that also have slightly posteriorly directed tibial arch angles. CONCLUSIONS/SIGNIFICANCE: This study finds that the rearfoot arch was present in the genus Australopithecus. However, the female Australopithecus afarensis "Lucy" has an ankle morphology consistent with non-pathological flat-footedness. This study suggests that, as in humans today, there was variation in arch

  3. Determining long-term regional erosion rates using impact craters

    Science.gov (United States)

    Hergarten, Stefan; Kenkmann, Thomas

    2015-04-01

    More than 300,000 impact craters have been found on Mars, while the surface of Moon's highlands is even saturated with craters. In contrast, only 184 impact craters have been confirmed on Earth so far with only 125 of them exposed at the surface. The spatial distribution of these impact craters is highly inhomogeneous. Beside the large variation in the age of the crust, consumption of craters by erosion and burial by sediments are the main actors being responsible for the quite small and inhomogeneous crater record. In this study we present a novel approach to infer long-term average erosion rates at regional scales from the terrestrial crater inventory. The basic idea behind this approach is a dynamic equilibrium between the production of new craters and their consumption by erosion. It is assumed that each crater remains detectable until the total erosion after the impact exceeds a characteristic depth depending on the crater's diameter. Combining this model with the terrestrial crater production rate, i.e., the number of craters per unit area and time as a function of their diameter, allows for a prediction of the expected number of craters in a given region as a function of the erosion rate. Using the real crater inventory, this relationship can be inverted to determine the regional long-term erosion rate and its statistical uncertainty. A limitation by the finite age of the crust can also be taken into account. Applying the method to the Colorado Plateau and the Deccan Traps, both being regions with a distinct geological history, yields erosion rates in excellent agreement with those obtained by other, more laborious methods. However, these rates are formally exposed to large statistical uncertainties due to the small number of impact craters. As higher crater densities are related to lower erosion rates, smaller statistical errors can be expected when large regions in old parts of the crust are considered. Very low long-term erosion rates of less than 4

  4. Floor-Fractured Craters through Machine Learning Methods

    Science.gov (United States)

    Thorey, C.

    2015-12-01

    Floor-fractured craters are impact craters that have undergone post impact deformations. They are characterized by shallow floors with a plate-like or convex appearance, wide floor moats, and radial, concentric, and polygonal floor-fractures. While the origin of these deformations has long been debated, it is now generally accepted that they are the result of the emplacement of shallow magmatic intrusions below their floor. These craters thus constitute an efficient tool to probe the importance of intrusive magmatism from the lunar surface. The most recent catalog of lunar-floor fractured craters references about 200 of them, mainly located around the lunar maria Herein, we will discuss the possibility of using machine learning algorithms to try to detect new floor-fractured craters on the Moon among the 60000 craters referenced in the most recent catalogs. In particular, we will use the gravity field provided by the Gravity Recovery and Interior Laboratory (GRAIL) mission, and the topographic dataset obtained from the Lunar Orbiter Laser Altimeter (LOLA) instrument to design a set of representative features for each crater. We will then discuss the possibility to design a binary supervised classifier, based on these features, to discriminate between the presence or absence of crater-centered intrusion below a specific crater. First predictions from different classifier in terms of their accuracy and uncertainty will be presented.

  5. Surface age of venus: use of the terrestrial cratering record

    International Nuclear Information System (INIS)

    Schaber, G.G.; Shoemaker, E.M.; Kozak, R.C.

    1987-01-01

    The average crater age of Venus' northern hemisphere may be less than 250 m.y. assuming equivalence between the recent terrestrial cratering rate and that on Venus for craters ≥ 20 km in diameter. For craters larger than this threshold size, below which crater production is significantly affected by the Venusian atmosphere, there are fairly strong observational grounds for concluding that such an equivalence in cratering rates on Venus and Earth may exist. However, given the uncertainties in the role of both active and inactive comet nuclei in the cratering history of Earth, we conclude that the age of the observed surface in the northern hemisphere of Venus could be as great as the 450-m.y. mean age of the Earth's crust. The observed surface of Venus might be even older, but no evidence from the crater observations supports an age as great as 1 b.y. If the age of the observed Venusian surface were 1 b.y., it probably should bear the impact scars of a half dozen or more large comet nuclei that penetrated the atmosphere and formed craters well over 100 km in diameter. Venera 15/16 mapped only about 25% of Venus; the remaining 75% may tell us a completely different story

  6. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    Science.gov (United States)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  7. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  8. Polyurethane adhesives in flat roofs

    OpenAIRE

    Bogárová Markéta; Stodůlka Jindřich; Šuhajda Karel

    2017-01-01

    It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is...

  9. Flat space physics from holography

    International Nuclear Information System (INIS)

    Bousso, Raphael

    2004-01-01

    We point out that aspects of quantum mechanics can be derived from the holographic principle, using only a perturbative limit of classical general relativity. In flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter does not contain Newton's constant and cannot operate via gravitational back reaction. Instead, it is protected by - and in this sense, predicts - the Heisenberg uncertainty principle. (author)

  10. Flat panel planar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  11. A small flat fission chamber

    International Nuclear Information System (INIS)

    Li Yijun; Wang Dalun; Chen Suhe

    1999-01-01

    With fission materials of depleted uranium, natural uranium, enriched uranium, 239 Pu, and 237 Np, the authors have designed and made a series of small flat fission chamber. The authors narrated the construction of the fission chamber and its technological process of manufacture, and furthermore, the authors have measured and discussed the follow correct factor, self-absorption, boundary effect, threshold loss factor, bottom scatter and or so

  12. Residue management at Rocky Flats

    International Nuclear Information System (INIS)

    Olencz, J.

    1995-01-01

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as open-quotes materials in-processclose quotes to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes

  13. Transient nature of late Pleistocene climate variability.

    Science.gov (United States)

    Crowley, Thomas J; Hyde, William T

    2008-11-13

    Climate in the early Pleistocene varied with a period of 41 kyr and was related to variations in Earth's obliquity. About 900 kyr ago, variability increased and oscillated primarily at a period of approximately 100 kyr, suggesting that the link was then with the eccentricity of Earth's orbit. This transition has often been attributed to a nonlinear response to small changes in external boundary conditions. Here we propose that increasing variablility within the past million years may indicate that the climate system was approaching a second climate bifurcation point, after which it would transition again to a new stable state characterized by permanent mid-latitude Northern Hemisphere glaciation. From this perspective the past million years can be viewed as a transient interval in the evolution of Earth's climate. We support our hypothesis using a coupled energy-balance/ice-sheet model, which furthermore predicts that the future transition would involve a large expansion of the Eurasian ice sheet. The process responsible for the abrupt change seems to be the albedo discontinuity at the snow-ice edge. The best-fit model run, which explains almost 60% of the variance in global ice volume during the past 400 kyr, predicts a rapid transition in the geologically near future to the proposed glacial state. Should it be attained, this state would be more 'symmetric' than the present climate, with comparable areas of ice/sea-ice cover in each hemisphere, and would represent the culmination of 50 million years of evolution from bipolar nonglacial climates to bipolar glacial climates.

  14. Flat beams in the SLC

    International Nuclear Information System (INIS)

    Adolphsen, C.; Barklow, T.; Burke, D.; Decker, F.J.; Emma, P.; Hildreth, M.; Himel, T.; Krejcik, P.; Limberg, T.; Minty, M.

    1993-01-01

    The Stanford Linear Collider was designed to operate with round beams; horizontal and vertical emittance made equal in the damping rings. The main motivation was to facilitate the optical matching through beam lines with strong coupling elements like the solenoid spin rotator magnets and the SLC arcs. Tests in 1992 showed that open-quote flat close-quote beams with a vertical to horizontal emittance ratio of around 1/10 can be successfully delivered to the end of the linac. Techniques developed to measure and control the coupling of the SLC arcs allow These beams to be transported to the Interaction Point (IP). Before flat beams could be used for collisions with polarized electrons, a new method of rotating the electron spin orientation with vertical arc orbit bumps had to be developed. Early in the 1993 run, the SLC was switched to open-quote flat close-quote beam operation. Within a short time the peak luminosity of the previous running cycle was reached and then surpassed. The average daily luminosity is now a factor of about two higher than the best achieved last year. In the following the authors present an overview of the problems encountered and their solutions for different parts of the SLC

  15. Harmonic manifolds with minimal horospheres are flat

    Indian Academy of Sciences (India)

    Abstract. In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting ...

  16. Harmonic Manifolds with Minimal Horospheres are Flat

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  17. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified for...

  18. Trajectory Optimization for Differential Flat Systems

    OpenAIRE

    Kahina Louadj; Benjamas Panomruttanarug; Alexandre Carlos Brandao Ramos; Felix Mora-Camino

    2016-01-01

    International audience; The purpose of this communication is to investigate the applicability of Variational Calculus to the optimization of the operation of differentially flat systems. After introducingcharacteristic properties of differentially flat systems, the applicability of variational calculus to the optimization of flat output trajectories is displayed. Two illustrative examples are also presented.

  19. Cratering record in the inner solar system: Implications for earth

    International Nuclear Information System (INIS)

    Barlow, N.G.

    1988-01-01

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters

  20. Observational constraints on the identification of shallow lunar magmatism : insights from floor-fractured craters

    OpenAIRE

    Jozwiak, Lauren; Head, James; Neumann, G. A.; Wilson, Lionel

    2017-01-01

    Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity so...

  1. Detection of lunar floor-fractured craters using machine learning methods

    Science.gov (United States)

    Thorey, C.

    2015-10-01

    About 200 Floor Fractured Craters (FFCs) have been identified by Schultz (1976) on the Moon, mainly around the lunar maria. These craters are a class of impact craters that are distinguished by having radi-ally and concentric floor-fractured networks and ab-normally shallow floors. In some cases, the uplift of the crater floor can be as large as 50% of the initial crater depth. These impact craters are interpreted to have undergone endogenous deformations after their formation.

  2. Flat panel display - Impurity doping technology for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshiharu [Advanced Technology Planning, Sumitomo Eaton Nova Corporation, SBS Tower 9F, 10-1, Yoga 4-chome, Setagaya-ku, 158-0097 Tokyo (Japan)]. E-mail: suzuki_tsh@senova.co.jp

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  3. Flat panel display - Impurity doping technology for flat panel displays

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    2005-01-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified

  4. Impact cratering on porous targets in the strength regime

    Science.gov (United States)

    Nakamura, Akiko M.

    2017-12-01

    Cratering on small bodies is crucial for the collision cascade and also contributes to the ejection of dust particles into interplanetary space. A crater cavity forms against the mechanical strength of the surface, gravitational acceleration, or both. The formation of moderately sized craters that are sufficiently larger than the thickness of the regolith on small bodies, in which mechanical strength plays the dominant role rather than gravitational acceleration, is in the strength regime. The formation of microcraters on blocks on the surface is also within the strength regime. On the other hand, the formation of a crater of a size comparable to the thickness of the regolith is affected by both gravitational acceleration and cohesion between regolith particles. In this short review, we compile data from the literature pertaining to impact cratering experiments on porous targets, and summarize the ratio of spall diameter to pit diameter, the depth, diameter, and volume of the crater cavity, and the ratio of depth to diameter. Among targets with various porosities studied in the laboratory to date, based on conventional scaling laws (Holsapple and Schmidt, J. Geophys. Res., 87, 1849-1870, 1982) the cratering efficiency obtained for porous sedimentary rocks (Suzuki et al., J. Geophys. Res. 117, E08012, 2012) is intermediate. A comparison with microcraters formed on a glass target with impact velocities up to 14 km s-1 indicates a different dependence of cratering efficiency and depth-to-diameter ratio on impact velocity.

  5. Evolution of Occator Crater on (1) Ceres

    Energy Technology Data Exchange (ETDEWEB)

    Nathues, A.; Platz, T.; Thangjam, G.; Hoffmann, M.; Corre, L. Le; Reddy, V.; Kallisch, J. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Goettingen (Germany); Mengel, K. [IELF, TU Clausthal, Adolph-Roemer-Straße 2A, 38678 Clausthal-Zellerfeld (Germany); Cloutis, E. A. [University of Winnipeg, Winnipeg, MB R3B 2E (Canada); Crown, D. A., E-mail: nathues@mps.mpg.de, E-mail: platz@mps.mpg.de, E-mail: thangjam@mps.mpg.de, E-mail: hoffmann@mps.mpg.de, E-mail: kallisch@mps.mpg.de, E-mail: gkmengel@t-online.de, E-mail: e.cloutis@uwinnipeg.ca, E-mail: lecorre@psi.edu, E-mail: reddy@psi.edu, E-mail: crown@psi.edu [Planetary Science Institute, 1700 East Fort Lowell Rd, Suite 106, Tucson, AZ 85719-2395 (United States)

    2017-03-01

    The dwarf planet Ceres (diameter 939 km) is the largest object in the main asteroid belt. Recent investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body which was never completely molten but possibly differentiated into a rocky core, an ice-rich mantle, and which may contain remnant internal liquid water. Thermal alteration and exogenic material infall contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of Occator crater derived from the Framing Camera and the Visible and Infrared Spectrometer onboard Dawn. We found that the central bright spot (Cerealia Facula) of Occator is ∼30 Myr younger than the crater itself. The central spot is located in a central pit which contains a dome that is spectrally homogenous, exhibiting absorption features that are consistent with carbonates. Multiple radial fractures across the dome indicate an extrusive formation process. Our results lead us to conclude that the floor region was subject to past endogenic activity. Dome and bright material in its vicinity formed likely due to a long-lasting, periodic, or episodic ascent of bright material from a subsurface reservoir rich in carbonates. Originally triggered by an impact event, gases, possibly dissolved from a subsurface water/brine layer, enabled material rich in carbonates to ascend through fractures and be deposited onto the surface.

  6. Theory and experiments on centrifuge cratering

    International Nuclear Information System (INIS)

    Schmidt, R.M.; Holsapple, K.A.

    1980-01-01

    Centrifuge experimental techniques provide possibilities for laboratory simulation of ground motion and cratering effects due to explosive loadings. The results of a similarity analysis for the thermomechanical response of a continuun show that increased gravity is a necessary condition for subscale testing when identical materials for both model and prototype are being used. The general similarity requirements for this type of subscale testing are examined both theoretically and experimentally. The similarity analysis is used to derive the necessary and sufficient requirements due to the general balance and jump equations and gives relations among all the scale factors for size, density, stress, body forces, internal energy, heat supply, heat conduction, heat of detonation, and time. Additional constraints due to specific choices of material constitutive equations are evaluated separately. The class of consitutive equations that add no further requirements is identified. For this class of materials, direct simulation of large-scale cratering events at small scale on the centrifuge is possible and independent of the actual constitutive equations. For a rare-independent soil it is shown that a small experiment at gravity g and energy E is similar to a large event at 1 G but with energy equal to g 3 E. Consequently, experiments at 500 G with 8 grams of explosives can be used to

  7. Mass movement on Vesta at steep scarps and crater rims

    Science.gov (United States)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.

    2014-12-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  8. Mass Movement on Vesta at Steep Scarps and Crater Rims

    Science.gov (United States)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; hide

    2014-01-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  9. Postshot distribution and movement of radionuclides in nuclear crater ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, John J; Martin, John R; Wikkerink, Robert; Stuart, Marshall [Bio-Medical Division, Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    The distribution and postshot movement of radionuclides in nuclear crater ejecta are discussed in this report. Continuing studies of tritium movement in ejecta at SEDAN crater demonstrate that variations in tritium concentration are correlated with seasonal rainfall and soil water movements. Losses of 27 mCi H{sup 3}/ft{sup 2} are evident on SEDAN crater lip at the end of a three year period of measurements in -which an unusually large flux of rain was received. The distribution of gamma emitting radionuclides and tritium is described in the recently created SCHOONER crater ejecta field. The specific activity of radionuclides in the SCHOONER ejecta continuum is shown for ejecta collected from the crater lip to 17 miles from GZ. The movement of W{sup 181} and tritium into the sub-ejecta preshot soil is described at a site 3000 feet from GZ. (author)

  10. Acoustic fluidization and the scale dependence of impact crater morphology

    Science.gov (United States)

    Melosh, H. J.; Gaffney, E. S.

    1983-01-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  11. Reflections on a flat wall

    International Nuclear Information System (INIS)

    Stevenson, G.R.; Huhtinen, M.

    1995-01-01

    This paper describes an investigation into whether estimates of attenuation in the flat sidewalls of the tunnel for the MC main ring can be based on a simple point-source/line-of-sight model. Having seen the limitations of such a model, an alternative is proposed where the main radiation source is not the initial object struck by the beam but the plane source provided by the first interactions of secondaries from the target in the shield-wall. This is shown to have a closer relation to reality than the point-source/line-of-sight model. (author)

  12. Blowup for flat slow manifolds

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2017-01-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a......) the regularization of piecewise smooth systems by tanh, (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b)....

  13. Blowup for flat slow manifolds

    Science.gov (United States)

    Kristiansen, K. U.

    2017-05-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a) the regularization of piecewise smooth systems by \\tanh , (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b).

  14. Geology and Volcanology of Kima'Kho Mountain, Northern British Columbia: A Pleistocene Glaciovolcanic Edifice

    Science.gov (United States)

    Turnbull, M.; Porritt, L. A.; Edwards, B. R.; Russell, K.

    2014-12-01

    Kima'Kho Mountain is a 1.8 Ma (40Ar/39Ar of 1.82 +/- 40 ka) Pleistocene an alkali-olivine basaltic tuya situated in northern British Columbia. The volcanic edifice rises 460 m from its base and comprises a central vent, dominated by lapilli-tuff and minor pillow lava and dykes; and a surrounding plateau underlain by a sequence of dipping beds of basaltic tuff-breccia and capped by a series of flat-lying, subaerial lava flows. We present a 1:10,000 geological map for Kima'Kho Mountain building on the preliminary work of Ryane et al. (2010). We use the volcanic stratigraphy to explore the implications of three unique features. (1) The central cone comprises massive to crudely-bedded lapilli tuffs containing abundant armoured lapilli - cores of highly-vesicular pyroclasts coated with blocky to cuspate vitric ash. These units suggest an explosive origin from within an ice-enclosed lake, and deposited by wet, dilute pyroclastic surge events. (2) The entire stratigraphic sequence hosts at least two "passage zones" (cf. Jones, 1969); the presence and geometry of these passage zones constrain ice thicknersses at the time of eruption and inform on the englacial lake dynamics. (3) Lastly, our field-based stratigraphic relationships are at odds with the classic tuya model (i.e. an effusive onset to the eruption, forming pillow basalts, followed by explosive activity). Our field mapping suggests an alternative model of tuya architecture, involving a highly-energetic, sustained explosive onset creating a tephra cone that become emergent followed by effusive eruption to create lavas and a subaqueous lava-fed delta. Jones, J. G. Intraglacial volcanoes of the Laugarvatn region, south-west Iceland-I. Geological Society of London Quarterly Journal 124, 197-211 (1969). Ryane, C., Edwards, B. R. & Russell, J. K. The volcanic stratigraphy of Kima'Kho Mountain: A Pleistocene tuya, northwestern British Columbia. Geological Survey of Canada, Current Research 2011-104, 12p, doi:10

  15. Simple Impact Crater Shapes From Shadows - The Sequel

    Science.gov (United States)

    Chappelow, J. E.

    2008-12-01

    At the last LPSC meeting I presented the outline of a method for determining simple impact crater shapes from shadows. In theory the shadow cast within a simple crater provides enough information to derive its cross-sectional shape from shadow measurements, at least to the maximum depth to which the shadow extends. Under certain simple assumptions, this can be done analytically. If the crater is conic-section - shaped, then it can be shown that the down-sun bound of any shadow cast within it is elliptical, with one axis along the direction of illumination and the other (perpendicular to it) of semi-length D/2 (where D is diameter). The properties of this shadow-ellipse can be related to the parameters of the crater shape conic-section, thus measurements of the shadow-ellipse yield not only crater depth and diameter but also the approximate crater shape, in terms of conic sections. The method also does not depend upon the shadow crossing near the crater center, which avoids a pitfall of older shadow measurement methods. The technique is also amenable to computer implementation, which has already been largely completed. Once computerized, crater measurements can be made rapidly and repeatably. The program reads in an image, its resolution, and the solar elevation and azimuth. The user then defines the crater rim by 'clicking' on three points, and the shadow ellipse by clicking on two more. The program calculates and outputs the diameter, the depth, and parameters describing the crater's approximating conic-section. It is highly applicable to situations where only single-image photography is available, for example MESSENGER flybys of Mercury. At the meeting I will present the finished math for this method and give some examples of its use.

  16. LU60645GT and MA132843GT Catalogues of Lunar and Martian Impact Craters Developed Using a Crater Shape-based Interpolation Crater Detection Algorithm for Topography Data

    Science.gov (United States)

    Salamuniccar, Goran; Loncaric, Sven; Mazarico, Erwan Matias

    2012-01-01

    For Mars, 57,633 craters from the manually assembled catalogues and 72,668 additional craters identified using several crater detection algorithms (CDAs) have been merged into the MA130301GT catalogue. By contrast, for the Moon the most complete previous catalogue contains only 14,923 craters. Two recent missions provided higher-quality digital elevation maps (DEMs): SELENE (in 1/16° resolution) and Lunar Reconnaissance Orbiter (we used up to 1/512°). This was the main motivation for work on the new Crater Shape-based interpolation module, which improves previous CDA as follows: (1) it decreases the number of false-detections for the required number of true detections; (2) it improves detection capabilities for very small craters; and (3) it provides more accurate automated measurements of craters' properties. The results are: (1) LU60645GT, which is currently the most complete (up to D>=8 km) catalogue of Lunar craters; and (2) MA132843GT catalogue of Martian craters complete up to D>=2 km, which is the extension of the previous MA130301GT catalogue. As previously achieved for Mars, LU60645GT provides all properties that were provided by the previous Lunar catalogues, plus: (1) correlation between morphological descriptors from used catalogues; (2) correlation between manually assigned attributes and automated measurements; (3) average errors and their standard deviations for manually and automatically assigned attributes such as position coordinates, diameter, depth/diameter ratio, etc; and (4) a review of positional accuracy of used datasets. Additionally, surface dating could potentially be improved with the exhaustiveness of this new catalogue. The accompanying results are: (1) the possibility of comparing a large number of Lunar and Martian craters, of e.g. depth/diameter ratio and 2D profiles; (2) utilisation of a method for re-projection of datasets and catalogues, which is very useful for craters that are very close to poles; and (3) the extension of the

  17. Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods

    Science.gov (United States)

    Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.

    2010-01-01

    Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.

  18. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    Science.gov (United States)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size

  19. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  20. Closing Rocky Flats by 2006

    International Nuclear Information System (INIS)

    Tuor, N. R.; Schubert, A. L.

    2002-01-01

    Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead

  1. Flat Coalgebraic Fixed Point Logics

    Science.gov (United States)

    Schröder, Lutz; Venema, Yde

    Fixed point logics are widely used in computer science, in particular in artificial intelligence and concurrency. The most expressive logics of this type are the μ-calculus and its relatives. However, popular fixed point logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the μ-calculus. The family of such flat fixed point logics includes, e.g., CTL, the *-nesting-free fragment of PDL, and the logic of common knowledge. Here, we extend this notion to the generic semantic framework of coalgebraic logic, thus covering a wide range of logics beyond the standard μ-calculus including, e.g., flat fragments of the graded μ-calculus and the alternating-time μ-calculus (such as ATL), as well as probabilistic and monotone fixed point logics. Our main results are completeness of the Kozen-Park axiomatization and a timed-out tableaux method that matches ExpTime upper bounds inherited from the coalgebraic μ-calculus but avoids using automata.

  2. National construction, Denmark. Flat roofs

    Energy Technology Data Exchange (ETDEWEB)

    Rode, C

    1995-04-01

    The Paris meeting of IEA Annex 24 (held in the spring of 1991) declared a set of typical building constructions, the Heat, Air and Moisture characteristics of which should be dealt with as part of the Annex work. Each type of construction was assigned to one or more countries as their National Construction, and it has been the responsibility of each country to prepare a report on what may be regarded as common knowledge in the country on the hygrothermal behaviour of their construction. This knowledge is in part due to experimental work carried out by research bodies in the countries, and due to experience form practice. This report has two main sections: Section 2 gives a general overview of the design of the most common variants of flat roofs and common knowledge reported for such roofs. Section 3 gives an account of research projects carried out in Denmark on flat roofs to analyze their hygrothermal performance. Whenever possible, an emphasis will be put on the hygrothermal consequences of thermally insulating such constructions. (EG) 19 refs.

  3. Late Middle Pleistocene hominin teeth from Panxian Dadong, South China.

    Science.gov (United States)

    Liu, Wu; Schepartz, Lynne A; Xing, Song; Miller-Antonio, Sari; Wu, Xiujie; Trinkaus, Erik; Martinón-Torres, María

    2013-05-01

    The hominin teeth and evidence of hominin activities recovered from 1991 to 2005 at the Panxian Dadong site in South China are dated to the late Middle Pleistocene (MIS 8-6 or ca. 130-300 ka), a period for which very little is known about the morphology of Asian populations. The present study provides the first detailed morphometric description and comparisons of four hominin teeth (I(1), C1, P(3) and P3) from this site. Our study shows that the Panxian Dadong teeth combine archaic and derived features that align them with Middle and Upper Pleistocene fossils from East and West Asia and Europe. These teeth do not display any typical Neanderthal features and they are generally more derived than other contemporaneous populations from Asia and Africa. However, the derived traits are not diagnostic enough to specifically link the Panxian Dadong teeth to Homo sapiens, a common problem when analyzing the Middle Pleistocene dental record from Africa and Asia. These findings are contextualized in the discussion of the evolutionary course of Asian Middle Pleistocene hominins, and they highlight the necessity of incorporating the Asian fossil record in the still open debate about the origin of H. sapiens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. High population connectivity and Pleistocene range expansion in ...

    African Journals Online (AJOL)

    Nuclear markers (ATPSα, ATPSβ, ANT, SRPS4, TBP, LTRS and ZMP) showed no sequence variation. Bullia rhodostoma exhibited shallow ... from these refugial regions. Keywords: cytochrome oxidase I, demographic history, Pleistocene climatic changes, population genetic structure, sandy beach ecosystems, sea level ...

  5. The role of ice sheets in the pleistocene climate

    NARCIS (Netherlands)

    Oerlemans, J.

    1991-01-01

    Northern hemisphere ice sheets have played an important role in the climatic evolution of the Pleistocene. The characteristic time-scale of icesheet growth has the same order-of-magnitude as that for the orbital insolation variations. The interaction with the solid earth, the importance of the

  6. Significance of Two New Pleistocene Plant Records from Western Europe

    Science.gov (United States)

    Field, Michael H.; Velichkevich, Felix Y.; Andrieu-Ponel, Valerie; Woltz, Phillipe

    2000-09-01

    The first records of extinct Caulinia goretskyi (Dorofeev) Dorofeev (synonym Najas goretskyi Dorofeev) in western Europe and of Potamogeton occidentalis M.H. Field sp. nov. were obtained from plant macrofossil analyses of Middle Pleistocene temperate stage deposits exposed at Trez Rouz, Brittany, France. Palynological assemblages recovered suggest correlation with the Holsteinian Stage. This discovery greatly expands the western limit of the paleogeographical distribution of Caulinia goretskyi. The record of Potamogeton occidentalis indicates an affinity with the eastern Asiatic flora, as the fruits resemble those of the extant Potamogeton maackianus A. Bennett. Other extinct Pleistocene species related to P. maackianus have been described, and it is possible to follow the development of this group through the Pleistocene in the European fossil record. These new finds illustrate the importance of a complete paleobotanical approach (both plant macrofossil and palynological analyses). The plant macrofossil assemblages not only provide detailed insight into local vegetation and environment, because they are often not transported long distances (in temperate areas) and can frequently be identified to species level; they can also offer the opportunity to investigate Pleistocene evolutionary trends.

  7. Ancient aqueous environments at Endeavour crater, Mars

    Science.gov (United States)

    Arvidson, R. E.; Squyres, S. W.; Bell, J.F.; Catalano, J.G.; Clark, B. C.; Crumpler, L.S.; de Souza, P.A.; Fairén, A.G.; Farrand, W. H.; Fox, V.K.; Gellert, Ralf; Ghosh, A.; Golombeck, M.P.; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Moore, Johnnie N.; Morris, R.V.; Murchie, S.L.; Parker, T.J.; Paulsen, G.; Rice, J.W.; Ruff, S.W.; Smith, M.D.; Wolff, M.J.

    2014-01-01

    Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.

  8. Martian Fluvial Conglomerates at Gale Crater

    Science.gov (United States)

    Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.; Gupta, S.; Sumner, D. Y.; Wiens, R. C.; Mangold, N.; Malin, M. C.; Edgett, K. S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, H. E.; Dromart, G.; Palucis, M. C.; Yingst, R. A.; Anderson, R. B.; Herkenhoff, K. E.; Le Mouélic, S.; Goetz, W.; Madsen, M. B.; Koefoed, A.; Jensen, J. K.; Bridges, J. C.; Schwenzer, S. P.; Lewis, K. W.; Stack, K. M.; Rubin, D.; Kah, L. C.; Bell, J. F.; Farmer, J. D.; Sullivan, R.; Van Beek, T.; Blaney, D. L.; Pariser, O.; Deen, R. G.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Edgar, Lauren; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sobrón Sánchez, Pablo; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Aparicio, Carlos Armiens; Caride Rodríguez, Javier; Carrasco Blázquez, Isaías; Gómez Gómez, Felipe; Elvira, Javier Gómez; Hettrich, Sebastian; Lepinette Malvitte, Alain; Marín Jiménez, Mercedes; Frías, Jesús Martínez; Soler, Javier Martín; Torres, F. Javier Martín; Molina Jurado, Antonio; Sotomayor, Luis Mora; Muñoz Caro, Guillermo; Navarro López, Sara; González, Verónica Peinado; García, Jorge Pla; Rodriguez Manfredi, José Antonio; Planelló, Julio José Romeral; Alejandra Sans Fuentes, Sara; Sebastian Martinez, Eduardo; Torres Redondo, Josefina; O'Callaghan, Roser Urqui; Zorzano Mier, María-Paz; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; Uston, Claude d.; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Szopa, Cyril; Robert, François; Sautter, Violaine; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; de la Torre Juarez, Manuel; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Blanco Ávalos, Juan José; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; González, Rafael Navarro; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Kortmann, Onno; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Jakosky, Bruce; Zunic, Tonci Balic; Frydenvang, Jens; Kinch, Kjartan; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mellin, Reinhold Mueller; Schweingruber, Robert Wimmer; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-05-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  9. The Microstructure of Lunar Micrometeorite Impact Craters

    Science.gov (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  10. Slope activity in Gale crater, Mars

    Science.gov (United States)

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  11. Crater Topography on Titan: Implications for Landscape Evolution

    Science.gov (United States)

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R. D.; Bray, V. J.; Schenk, P.; Stiles, B. W.; Turtle, E.; Mitchell, K.; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn's moon Titan. In general, the depths of Titan's craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede's average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 +/- 0.0003 (for the largest crater studied, Menrva, D approximately 425 km) and 0.017 +/- 0.004 (for the smallest crater studied, Ksa, D approximately 39 km). When we evaluate the Anderson-Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan's craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close 'airless' analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan's surface, the only body in the outer Solar System with extensive surface-atmosphere exchange.

  12. Noachian and more recent phyllosilicates in impact craters on Mars.

    Science.gov (United States)

    Fairén, Alberto G; Chevrier, Vincent; Abramov, Oleg; Marzo, Giuseppe A; Gavin, Patricia; Davila, Alfonso F; Tornabene, Livio L; Bishop, Janice L; Roush, Ted L; Gross, Christoph; Kneissl, Thomas; Uceda, Esther R; Dohm, James M; Schulze-Makuch, Dirk; Rodríguez, J Alexis P; Amils, Ricardo; McKay, Christopher P

    2010-07-06

    Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times.

  13. Nevada Test Site craters used for astronaut training

    Science.gov (United States)

    Moore, H. J.

    1977-01-01

    Craters produced by chemical and nuclear explosives at the Nevada Test Site were used to train astronauts before their lunar missions. The craters have characteristics suitable for reconnaissance-type field investigations. The Schooner test produced a crater about 300 m across and excavated more than 72 m of stratigraphic section deposited in a fairly regular fashion so that systematic observations yield systematic results. Other features common on the moon, such as secondary craters and glass-coated rocks, are present at Schooner crater. Smaller explosive tests on Buckboard Mesa excavated rocks from three horizontal alteration zones within basalt flows so that the original sequence of the zones could be determined. One crater illustrated the characteristics of craters formed across vertical boundaries between rock units. Although the exercises at the Nevada Test Site were only a small part of the training of the astronauts, voice transcripts of Apollo missions 14, 16, and 17 show that the exercises contributed to astronaut performance on the moon.

  14. The Morphology of Craters on Mercury: Results from MESSENGER Flybys

    Science.gov (United States)

    Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.

    2012-01-01

    Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.

  15. A Pleistocene coastal alluvial fan complex produced by Middle Pleistocene glacio-fluvial processes

    Science.gov (United States)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip; Giglio, Federico; Del Bianco, Fabrizio

    2014-05-01

    A coarse-grained alluvial fan sequence at Lipci, Kotor Bay, in western Montenegro, provides a sedimentary record of meltwater streams draining from the Orjen Massif (1,894 m a.s.l.) to the coastal zone. At Lipci sedimentary evidence and U-series ages have been used alongside offshore bathymetric imagery and seismic profiles to establish the size of the fan and constrain the nature and timing of its formation. Establishing the depositional history of such coastal fans is important for our understanding of cold stage sediment flux from glaciated uplands to the offshore zone, and for exploring the impact of sea level change on fan reworking. There is evidence of at least four phases of Pleistocene glaciation on the Orjen massif, which have been U-series dated and correlated to MIS 12, MIS 6, MIS 5d-2 and the Younger Dryas. A series of meltwater channels delivered large volumes of coarse- and fine-grained limestone sediment from the glaciated uplands into the Bay of Kotor. At the southern margin of the Orjen massif, a series of large (>700 m long) alluvial fans has developed. Some of these extend offshore for up to 600 m. Lipci fan lies downstream of end moraines in the valley immediately above, which were formed by an extensive outlet glacier of the Orjen ice cap during MIS 12. The terrestrial deposits are part of the fan apex (50 m a.s.l.) that lies at the foot of a steep bedrock channel, but the majority of the fan is now more than 25 m below sea level. The terrestrial fan sediments are strongly cemented by multiple generations of calcite precipitates: the oldest U-series ages are infinite indicating that the fan is >350 ka in age. These ages are in agreement with alluvial sedimentary evidence and U-series ages from other fluvial units on Mount Orjen. The terrestrial portion of the Lipci fan surface contains several channels. These are well preserved due to cementation with calcium carbonate. Submarine imagery indicates that the now submerged portion of the fan also

  16. Chemical hazards from acid crater lakes

    Science.gov (United States)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pHfluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where volatile elements, derived from passively degassing magma, are intercepted by (sub) surface water bodies.

  17. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  18. Rock spatial densities on the rims of the Tycho secondary craters in Mare Nectaris

    Science.gov (United States)

    Basilevsky, A. T.; Michael, G. G.; Kozlova, N. A.

    2018-04-01

    The aim of this work is to check whether the technique of estimation of age of small lunar craters based on spatial density of rock boulders on their rims described in Basilevsky et al. (2013, 2015b) and Li et al. (2017) for the craters rock counts on the rims of four craters having diameters 1000, 1100, 1240 and 1400 m located in Mare Nectaris. These craters are secondaries of the primary crater Tycho, whose age was found to be 109 ± 4 Ma (Stoffler and Ryder, 2001) so this may be taken as the age of the four craters, too. Using the dependence of the rock spatial densities at the crater rims on the crater age for the case of mare craters (Li et al., 2017) our measured rock densities correspond to ages from ∼100 to 130 Ma. These estimates are reasonably close to the given age of the primary crater Tycho. This, in turn, suggests that this technique of crater age estimation is applicable to craters up to ∼1.5 km in diameter. For the four considered craters we also measured their depth/diameter ratios and the maximum angles of the crater inner slopes. For the considered craters it was found that with increasing crater diameter, the depth/diameter ratios and maximum angles of internal slopes increase, but the values of these parameters for specific craters may deviate significantly from the general trends. The deviations probably result from some dissimilarities in the primary crater geometries, that may be due to crater to crater differences in characteristics of impactors (e.g., in their bulk densities) and/or differences in the mechanical properties of the target. It may be possible to find secondaries of crater Tycho in the South pole area and, if so, they may be studied to check the specifics and rates of the rock boulder degradation in the lunar polar environment.

  19. Prediction of gamma exposure rates in large nuclear craters

    Energy Technology Data Exchange (ETDEWEB)

    Tami, Thomas M; Day, Walter C [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    In many civil engineering applications of nuclear explosives there is the need to reenter the crater and lip area as soon as possible after the detonation to carry out conventional construction activities. These construction activities, however, must be delayed until the gamma dose rate, or exposure rate, in and around the crater decays to acceptable levels. To estimate the time of reentry for post-detonation construction activities, the exposure rate in the crater and lip areas must be predicted as a function of time after detonation. An accurate prediction permits a project planner to effectively schedule post-detonation activities.

  20. Morphometry and Morphology of Fresh Craters on Titan

    Science.gov (United States)

    Kirk, R. L.; Wood, C. A.; Neish, C.; Lucas, A.; Hayes, A. G.; Cassini Radar Team

    2011-12-01

    Cassini RADAR imagery obtained on Titan flyby T77 revealed a 40-km diameter fresh impact crater at 11.6° N 44.6° W. This is only the 8th crater identified with high confidence (Wood et al., 2010, Icarus 206, 334), and the 3rd (after Sinlap D=79 km and Ksa D=30 km) for which the depth can be estimated by comparing the foreshortening of the near and far walls. This "autostereo" technique yields an estimated depth of 680 m. The T77 image forms a stereo pair with the T17 discovery image of Ksa from which we estimate the depth of Ksa at 750-800 m, in close agreement with SARTopo data. The depth of Sinlap is 760 m based on SARTopo. Depth-diameter ratios for these craters thus range from 0.01 to 0.025 and the depths are comparable to but 200-400 m shallower than fresh craters of the same size on Ganymede (Bray et al., 2008, Met. Planet Sci. 43, 1979). The depth differences could be explained by initial crater morphometry, by relaxation in a different thermal environment, or (perhaps most plausibly given the bland floors of even the freshest Titan craters) to sedimentary infill. In contrast, the 18x36 km elliptical depression at Sotra Facula is much deeper than Ganymede craters of similar size (d=1500 m from stereo), supporting the conclusion that it is not an impact crater. All three craters exhibit a relatively radar-bright annulus around the outer edge of the floor, possibly as the result of mass wasting of blocky materials from the crater walls. The central part of each crater is darker. The central darker floor of the new crater is symmetrical and featureless, whereas Ksa has a bright central ring 7 km in diameter. Stereo spot heights indicate the ring is 350±100 m above the outer floor. This height is in close agreement with the scaling for Ganymede crater central peaks from Bray et al. (2008). The darker floor area of Sinlap is substantially asymmetrical with a small bright central spot whose elevation is unknown. The new crater has continuous, radar

  1. Geomorphology of crater and basin deposits - Emplacement of the Fra Mauro formation

    Science.gov (United States)

    Morrison, R. H.; Oberbeck, V. R.

    1975-01-01

    Characteristics of continuous deposits near lunar craters larger than about 1 km wide are considered, and it is concluded that (1) concentric dunes, radial ridges, and braided lineations result from deposition of the collision products of ejecta from adjacent pairs of similarly oriented secondary-crater chains and are, therefore, concentrations of secondary-crater ejecta; (2) intracrater ridges are produced within preexisting craters surrounding a fresh primary crater by ricocheting and focusing of secondary-crater ejecta from the preexisting craters' walls; and (3) secondary cratering has produced many of the structures of the continuous deposits of relatively small lunar craters and is the dominant process for emplacement of most of the radial facies of the continuous deposits of large lunar craters and basins. The percentages of Imbrium ejecta in deposits and the nature of Imbrium sculpturing are investigated.

  2. Alberca De Guadalupe Maar Crater, Zacapu Basin : A Rare Type of Volcano within the Michoacán-Guanajuato Volcanic Field, México

    Science.gov (United States)

    Kshirsagar, P. V.; Siebe, C.; Guilbaud, M. N.; Salinas, S.

    2014-12-01

    Phreato-magmatic vents (esp. maar craters) are rare in the ~40,000 Km2 Plio-Quaternary monogenetic Michoacán-Guanajuato Volcanic Field (MGVF) located in the central part of the Mexican Volcanic Belt. In contrast to >1000 scoria cones, only 2 dozen phreato-magmatic monogenetic vents (e.g. tuff cones, tuff rings, and maars) have been identified. About half of these form a cluster near Valle de Santiago in the Lerma river valley at the northern margin of the MGVF, while the others occur in a rather scattered fashion. Here we discuss the origin of Alberca de Guadalupe maar crater, one of the three phreato-magmatic vents (in addition to El Caracol and Alberca de Los Espinos) that occur within the boundaries of the inter-montane lacustrine Zacapu basin, a tectonic graben bound by an ENE-WSW normal fault system. The maar crater came into existence between 20,000 and 23,000 y BP, forming a 140 m deep hole in the otherwise planar surrounding ground of theearly Pleistocene lava flows of Cerro Pelón.The maar crater has a diameter of ~1 Km and bears a 9 m deep lake. Eruptive products include typical surge deposits that are best exposed around the rim and inner crater walls. They are poorly sorted (Mdø= -1.56 to -3.75, ø= 1.43 to 3.23), rich in accidental lithics (angular andesitic lava and ignimbrite clasts) constituting 51-88% of the deposit with few juveniles (basaltic andesite with phenocrysts of plagioclase, olivine, and pyroxene in a quenched glassy matrix; SiO2=54-58 wt. %). Dry surge units are friable and clast-supported, in contrast the wet surge units are fairly indurated and bear accretionary lapilli. Bedding is frequently distorted by ballistic impact-sag structures. The entire construct is disrupted by an E-W trending regional fault, downthrowing the northern part by ~30 m.The unusual formation of this maar crater in the semi-arid highlands of Zacapu was favored by the local hydrological and topographical conditions. Such conditions still prevail in several

  3. Crater topography on Titan: Implications for landscape evolution

    Science.gov (United States)

    Neish, C.; Kirk, R.; Lorenz, R.; Bray, V.; Schenk, P.; Stiles, B.; Turtle, E.; Cassini Radar Team

    2012-04-01

    Unique among the icy satellites, Titan’s surface shows evidence for extensive modification by fluvial and aeolian erosion, which act to change the topography of its surface over time. Quantifying the extent of this landscape evolution is difficult, since the original, ‘non-eroded’ surface topography is generally unknown. However, fresh craters on icy satellites have a well-known shape and morphology, which has been determined from extensive studies on the airless worlds of the outer solar system (Schenk et al., 2004). By comparing the topography of craters on Titan to similarly sized, pristine analogues on airless bodies, we can obtain one of the few direct measures of the amount of erosion that has occurred on Titan. Cassini RADAR has imaged >30% of the surface of Titan, and more than 60 potential craters have been identified in this data set (Wood et al., 2010; Neish and Lorenz, 2012). Topographic information for these craters can be obtained from a technique known as ‘SARTopo’, which estimates surface heights by comparing the calibration of overlapping synthetic aperture radar (SAR) beams (Stiles et al., 2009). We present topography data for several craters on Titan, and compare the data to similarly sized craters on Ganymede, for which topography has been extracted from stereo-derived digital elevation models (Bray et al., 2012). We find that the depths of craters on Titan are generally within the range of depths observed on Ganymede, but several hundreds of meters shallower than the average (Fig. 1). A statistical comparison between the two data sets suggests that it is extremely unlikely that Titan’s craters were selected from the depth distribution of fresh craters on Ganymede, and that is it much more probable that the relative depths of Titan are uniformly distributed between ‘fresh’ and ‘completely infilled’. This is consistent with an infilling process that varies linearly with time, such as aeolian infilling. Figure 1: Depth of

  4. Vegetation damage and recovery after Chiginagak Volcano Crater drainage event

    Data.gov (United States)

    Department of the Interior — From August 20 — 23, 2006, I revisited Chiginigak volcano to document vegetation recovery after the crater drainage event that severely damaged vegetation in May of...

  5. LRO MOON CRATER EDR RAWDATA VERSION 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set comprises the raw binary data from from the LRO Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. The data consists of the...

  6. Mars Climate History: Insights From Impact Crater Wall Slope Statistics

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.

    2018-02-01

    We use the global distribution of the steepest slopes on crater walls derived from Mars Orbiter Laser Altimeter profile data to assess the magnitudes of degradational processes with latitude, altitude, and time. We independently confirm that Amazonian polar/high-latitude crater slope modification is substantial, but that craters in the low latitudes have essentially escaped significant slope modification since the Early Hesperian. We find that the total amount of crater wall degradation in the Late Noachian is very small in comparison to the circumpolar regions in the Late Amazonian, an observation that we interpret to mean that the Late Noachian climate was not characterized by persistent and continuous warm and wet conditions. A confirmed elevational zonality in degradation in the Early Hesperian is interpreted to mean that the atmosphere was denser than today.

  7. Extreme Access & Lunar Ice Mining in Permanently Shadowed Craters

    Data.gov (United States)

    National Aeronautics and Space Administration — Results from the recent NASA Lunar CRater Observation and Sensing Satellite, or LCROSS, mission in 2010, indicate that water (H2O), ice and other useful volatiles...

  8. Site characterization requirements for nuclear-cratering design

    International Nuclear Information System (INIS)

    Terhune, R.W.; Carlson, R.C.

    1977-01-01

    A material properties measurement program for the design of large engineering nuclear-excavation projects by computer calculation is presented. Material properties of the site and their relative effect on crater size are analyzed and ordered in relation to their importance in determining the overall cratering efficiency. The measurement program includes both in situ logging and laboratory measurement of core samples, together with the reason for each measurement and its use in the calculations

  9. A global catalogue of Ceres impact craters ≥ 1 km and preliminary analysis

    Science.gov (United States)

    Gou, Sheng; Yue, Zongyu; Di, Kaichang; Liu, Zhaoqin

    2018-03-01

    The orbital data products of Ceres, including global LAMO image mosaic and global HAMO DTM with a resolution of 35 m/pixel and 135 m/pixel respectively, are utilized in this research to create a global catalogue of impact craters with diameter ≥ 1 km, and their morphometric parameters are calculated. Statistics shows: (1) There are 29,219 craters in the catalogue, and the craters have a various morphologies, e.g., polygonal crater, floor fractured crater, complex crater with central peak, etc.; (2) The identifiable smallest crater size is extended to 1 km and the crater numbers have been updated when compared with the crater catalogue (D ≥ 20 km) released by the Dawn Science Team; (3) The d/D ratios for fresh simple craters, obviously degraded simple crater and polygonal simple crater are 0.11 ± 0.04, 0.05 ± 0.04 and 0.14 ± 0.02 respectively. (4) The d/D ratios for non-polygonal complex crater and polygonal complex crater are 0.08 ± 0.04 and 0.09 ± 0.03. The global crater catalogue created in this work can be further applied to many other scientific researches, such as comparing d/D with other bodies, inferring subsurface properties, determining surface age, and estimating average erosion rate.

  10. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  11. Radiation monitor training program at Rocky Flats

    International Nuclear Information System (INIS)

    Medina, L.C.; Kittinger, W.D.; Vogel, R.M.

    The Rocky Flats Radiation Monitor Training Program is tailored to train new health physics personnel in the field of radiation monitoring. The purpose of the prescribed materials and media is to be consistent in training in all areas of Rocky Flats radiation monitoring job involvement

  12. Morphological indicators of a mascon beneath Ceres' largest crater, Kerwan

    Science.gov (United States)

    Bland, Michael T.; Ermakov, Anton; Raymond, Carol A.; Williams, David A.; Bowling, Tim J.; Preusker, F.; Park, Ryan S.; Marchi, Simone; Castillo-Rogez, Julie C.; Fu, R.R.; Russell, Christopher T.

    2018-01-01

    Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long‐term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact‐induced uplift of the high‐density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest‐degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin‐associated gravity anomalies, although their origin may differ substantially.

  13. Flat flexible polymer heat pipes

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Bright, Victor M; Lee, Y C

    2013-01-01

    Flat, flexible, lightweight, polymer heat pipes (FPHP) were fabricated. The overall geometry of the heat pipe was 130 mm × 70 mm × 1.31 mm. A commercially available low-cost film composed of laminated sheets of low-density polyethylene terephthalate, aluminum and polyethylene layers was used as the casing. A triple-layer sintered copper woven mesh served as a liquid wicking structure, and water was the working fluid. A coarse nylon woven mesh provided space for vapor transport and mechanical rigidity. Thermal power ranging from 5 to 30 W was supplied to the evaporator while the device was flexed at 0°, 45° and 90°. The thermal resistance of the FPHP ranged from 1.2 to 3.0 K W −1 depending on the operating conditions while the thermal resistance for a similar-sized solid copper reference was a constant at 4.6 K W −1 . With 25 W power input, the thermal resistance of the liquid–vapor core of the FPHP was 23% of a copper reference sample with identical laminated polymer material. This work shows a promising combination of technologies that has the potential to usher in a new generation of highly flexible, lightweight, low-cost, high-performance thermal management solutions. (paper)

  14. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.

    Directory of Open Access Journals (Sweden)

    Evgeny I Rogaev

    2006-03-01

    Full Text Available Phylogenetic relationships between the extinct woolly mammoth (Mammuthus primigenius, and the Asian (Elephas maximus and African savanna (Loxodonta africana elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch--the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as approximately 1,600-1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests that M. primigenius and E. maximus are sister species that diverged soon after their common ancestor split from the L. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population of M. primigenius throughout the late Pleistocene.

  15. Early pleistocene sediments at Great Blakenham, Suffolk, England

    Science.gov (United States)

    Gibbard, P. L.; Allen, P.; Field, M. H.; Hallam, D. F.

    Detailed investigation of a fine sediment sequence, the College Farm Silty Clay Member, that overlies the Creeting Sands (Early Pleistocene) in Suffolk, is presented. The sedimentary sequence is thought to represent a freshwater pool accumulation in a small coastal embayment. Palaeobotanical investigation of the sediment indicates that it accumulated during the late temperate substage of a temperate (interglacial) event. The occurrence of Tsuga pollen, associated with abundant remains of the water fern Azolla tegeliensis indicate that the deposits are of Early Pleistocene age and are correlated with a later part of the Antian-Bramertonian Stage. Correlation with Tiglian TO substage in The Netherlands' sequence is most likely. The sediments' normal palaeomagnetic polarity reinforces the biostratigraphical correlation.

  16. 100 New Impact Crater Sites Found on Mars

    Science.gov (United States)

    Kennedy, M. R.; Malin, M. C.

    2009-12-01

    Recent observations constrain the formation of 100 new impact sites on Mars over the past decade; 19 of these were found using the Mars Global Surveyor Mars Orbiter Camera (MOC), and the other 81 have been identified since 2006 using the Mars Reconnaissance Orbiter Context Camera (CTX). Every 6 meter/pixel CTX image is examined upon receipt and, where they overlap images of 0.3-240 m/pixel scale acquired by the same or other Mars-orbiting spacecraft, we look for features that may have changed. New impact sites are initially identified by the presence of a new dark spot or cluster of dark spots in a CTX image. Such spots may be new impact craters, or result from the effect of impact blasts on the dusty surface. In some (generally rare) cases, the crater is sufficiently large to be resolved in the CTX image. In most cases, however, the crater(s) cannot be seen. These are tentatively designated as “candidate” new impact sites, and the CTX team then creates an opportunity for the MRO spacecraft to point its cameras off-nadir and requests that the High Resolution Imaging Science Experiment (HiRISE) team obtain an image of ~0.3 m/pixel to confirm whether a crater or crater cluster is present. It is clear even from cursory examination that the CTX observations are areographically biased to dusty, higher albedo areas on Mars. All but 3 of the 100 new impact sites occur on surfaces with Lambert albedo values in excess of 23.5%. Our initial study of MOC images greatly benefited from the initial global observations made in one month in 1999, creating a baseline date from which we could start counting new craters. The global coverage by MRO Mars Color Imager is more than a factor of 4 poorer in resolution than the MOC Wide Angle camera and does not offer the opportunity for global analysis. Instead, we must rely on partial global coverage and global coverage that has taken years to accumulate; thus we can only treat impact rates statistically. We subdivide the total data

  17. Early Pleistocene aquatic resource use in the Turkana Basin.

    Science.gov (United States)

    Archer, Will; Braun, David R; Harris, Jack W K; McCoy, Jack T; Richmond, Brian G

    2014-12-01

    Evidence for the acquisition of nutritionally dense food resources by early Pleistocene hominins has implications for both hominin biology and behavior. Aquatic fauna may have comprised a source of highly nutritious resources to hominins in the Turkana Basin at ∼1.95 Ma. Here we employ multiple datasets to examine the issue of aquatic resource use in the early Pleistocene. This study focuses on four components of aquatic faunal assemblages (1) taxonomic diversity, (2) skeletal element proportion, (3) bone fragmentation and (4) bone surface modification. These components are used to identify associations between early Pleistocene aquatic remains and hominin behavior at the site of FwJj20 in the Koobi Fora Fm. (Kenya). We focus on two dominant aquatic species: catfish and turtles. Further we suggest that data on aquatic resource availability as well as ethnographic examples of aquatic resource use complement our observations on the archaeological remains from FwJj20. Aquatic food items provided hominins with a valuable nutritional alternative to an exclusively terrestrial resource base. We argue that specific advantages afforded by an aquatic alternative to terrestrial resources include (1) a probable reduction in required investment of energy relative to economic return in the form of nutritionally dense food items, (2) a decrease in the technological costs of resource acquisition, and (3) a reduced level of inter-specific competition associated with carcass access and an associated reduction of predation risk relative to terrestrial sources of food. The combined evidence from FwJj20 suggests that aquatic resources may have played a substantial role in early Pleistocene diets and these resources may have been overlooked in previous interpretations of hominin behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Fossils mollusc asemblage found at Zagarzazu, marine Pleistocene, Uruguay

    International Nuclear Information System (INIS)

    Rojas, A. . E mail: alejandra@fcien.edu.uy

    2004-01-01

    There are presented the results of the paleoecological analysis of the mollusc assemblage found at Zagarzazu, Colonia department. The fossils are well preserved, arranged in thin shell-beds with some specimens in life position. The assemblage is indicative of higher temperatures than present, and a strong marine influence. It is important to stress that new thermophilic molluscs for the marine Quaternary were found and that this locality represents a new Pleistocene marine record in Uruguay [es

  19. Geological Mapping of Impact Melt Deposits at Lunar Complex Craters: New Insights into Morphological Diversity, Distribution and the Cratering Process

    Science.gov (United States)

    Dhingra, D.; Head, J. W., III; Pieters, C. M.

    2014-12-01

    We have completed high resolution geological mapping of impact melt deposits at the young lunar complex craters (wall and rim impact melt units and their relation to floor units have also been mapped. Among the distinctive features of these impact melt deposits are: 1) Impact Melt Wave Fronts: These are extensive (sometimes several kilometers in length) and we have documented their occurrence and distribution in different parts of the crater floor at Jackson and Tycho. These features emphasize melt mobility and style of emplacement during the modification stage of the craters. 2) Variations in Floor Elevations: Spatially extensive and coherent sections of crater floors have different elevations at all the three craters. The observed elevation differences could be caused by subsidence due to cooling of melt and/or structural failure, together with a contribution from regional slope. 3) Melt-Covered Megablocks: We also observe large blocks/rock-fragments (megablocks) covered in impact melt, which could be sections of collapsed wall or in some cases, subdued sections of central peaks. 4) Melt-Covered Central Peaks: Impact melt has also been mapped on the central peaks but varies in spatial extent among the craters. The presence of melt on peaks must be taken into account when interpreting peak mineralogy as exposures of deeper crust. 5) Boulder Distribution: Interesting trends are observed in the distribution of boulder units of various sizes; some impact melt units have spatially extensive boulders, while boulder distribution is very scarce in other units on the floor. We interpret these distributions to be influenced by a) the differential collapse of the crater walls during the modification stage, and b) the amount of relative melt volume retained in different parts of the crater floor. These observations provide important documentation of the morphological diversity and better understanding of the emplacement and final distribution of impact melt deposits.

  20. Temperature profiles from Pos Crater Lake

    Science.gov (United States)

    Neshyba, Steve; Fernandez, Walter; Diaz-Andrade, José

    In 1984, we took part in an expedition to measure the temperature field and bathymetry of the acid lake (Figure 1) that has formed in the crater of Poás volcano, Costa Rica, since its last eruption in 1953. Obtaining these data was the first step in a long-range study planned by researchers at the Center for Geophysical Research, University of Costa Rica (San Jose, Costa Rica), and the College of Oceanography, Oregon State University (Corvallis). The study will eventually consider all aspects of fluid behavior in a volcanic lake that is heated or otherwise convectively driven by energy injected at the lake bottom.Evidence of convection is clearly visible on the surface of the Poás lake most of the time. Fumarole activity has been continuous since 1953. Phreatic explosions are quite frequent, varying from weak to strong, and the height of the ejected column varies from 1 to more than 500 m. One immediately useful result of the research would be an estimate of the heat transfer from sources within the conduit to the overlying water column. As far as geophysical fluid behavior goes, we are interested in the turbulent and diffusive processes by which heat and chemical species are transferred. We are especially interested in the impact on the density stratification of the density changes that occur as particulates settle downward through the fluid column. The stratification would otherwise be controlled by the turbulent and diffusive processes driven by thermochemical factors.

  1. Early Pleistocene occurrence of Acheulian technology in North China

    Science.gov (United States)

    Li, Xingwen; Ao, Hong; Dekkers, Mark J.; Roberts, Andrew P.; Zhang, Peng; Lin, Shan; Huang, Weiwen; Hou, Yamei; Zhang, Weihua; An, Zhisheng

    2017-01-01

    Acheulian tools with their associated level of cognizance heralded a major threshold in the evolution of hominin technology, culture and behavior. Thus, unraveling occurrence ages of Acheulian technology across different regions worldwide constitutes a key aspect of understanding the archeology of early human evolution. Here we present a magneto-cyclochronology for the Acheulian assemblage from Sanmenxia Basin, Loess Plateau, North China. Our results place a sequence of stable normal and reversed paleomagnetic polarities within a regional lithostratigraphic context. The Acheulian assemblage is dated to be older than the Matuyama-Brunhes boundary at 0.78 Ma, and is found in strata that are probably equivalent to a weak paleosol subunit within loess layer L9 in the Chinese loess-paleosol sequence, which corresponds to marine isotope stage (MIS) 23, a relatively subdued interglacial period with age range of ∼0.89-0.92 Ma. This age of ∼0.9 Ma implies that Acheulian stone tools were unambiguously present in North China during the Early Pleistocene. It distinctly enlarges the geographic distribution of Acheulian technology and brings its occurrence in North China back into the Early Pleistocene, which is contemporaneous with its first emergence in Europe. Combined with other archeological records, the larger area over which Acheulian technology existed in East Asia during the terminal Early Pleistocene has important implications for understanding early human occupation of North China.

  2. Dynamics of crater formations in immersed granular materials

    Science.gov (United States)

    Varas, G.; Vidal, V.; Géminard, J.

    2009-12-01

    Craters are part of the widespread phenomena observed in nature. Among the main applications to natural phenomena, aside from meteorite impact craters, are the formation and growth of volcanic edifices, by successive ejecta emplacement and/or erosion. The time evolution and dynamics play a crucial role here, as the competition between volcanic-jet mass-flux (degassing and ejecta) and crater-size evolution may control directly the eruptive regime. Crater morphology in dry granular material has been extensively studied, both experimentally and theoretically. Most of these studies investigate the final, steady crater shape resulting from the collision of solid bodies with the material surface and scaling laws are derived. In immersed granular material, craters generated by an underwater vortex ring, or underwater impact craters generated by landslide, have been reported. In a previous experimental study, Gostiaux et al. [Gran. Matt., 2002] have investigated the dynamics of air flowing through an immersed granular layer. They reported that, depending on the flow rate, the system exhibits two qualitatively different regimes: At small flow rate, the bubbling regime during which bubbles escape the granular layer independently one from another; At large flow rate, the open-channel regime which corresponds to the formation of a channel crossing the whole thickness of the granular bed through which air escapes almost continuously. At intermediate flow rate, a spontaneous alternation between these two regimes is observed. Here, we report the dynamics of crater formations at the free surface of an immersed granular bed, locally crossed by an ascending gas flow. We reproduce the experimental conditions of Gostiaux et al. (2002) in two dimensions: In a vertical Hele-Shaw cell, the crater consists of two sand piles which develop around the location of the gas emission. We observe that the typical size of the crater increases logarithmically with time, independently of the gas

  3. Long-range Rocky Flats utilization study

    International Nuclear Information System (INIS)

    1983-02-01

    The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors

  4. Planetary boundary layer and circulation dynamics at Gale Crater, Mars

    Science.gov (United States)

    Fonseca, Ricardo M.; Zorzano-Mier, María-Paz; Martín-Torres, Javier

    2018-03-01

    The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace gas content within the crater. Our results show that the average time when the PBL height is deeper than the crater rim increases and decreases with the same rate and pattern as Curiosity's observations of the line-of-sight of dust within the crater and that the season when maximal (minimal) mixing is produced is Ls 225°-315° (Ls 90°-110°). Thus the diurnal and seasonal variability of the PBL depth seems to be the driver of the changes in the local dust content within the crater. A comparison with the available methane measurements suggests that changes in the PBL depth may also be one of the factors that accounts for the observed variability, with the model results pointing towards a local source to the north of the MSL site. The interaction between regional and local flows at Gale Crater is also investigated assuming that the meridional wind, the dynamically important component of the horizontal wind at Gale, anomalies with respect to the daily mean can be approximated by a sinusoidal function as they typically oscillate between positive (south to north) and negative (north to south) values that correspond to upslope/downslope or downslope/upslope regimes along the crater rim and Mount Sharp slopes and the dichotomy boundary. The smallest magnitudes are found in the northern crater floor in a region that

  5. Plio-Pleistocene aardvarks (Mammalia, Tubulidentata from East Africa

    Directory of Open Access Journals (Sweden)

    T. Lehmann

    2008-08-01

    Full Text Available The Tubulidentata are unique among mammals for being the only order represented nowadays by a single living species, Orycteropus afer: the aardvark. Nevertheless, it is one of the least studied mammalian orders. Aardvarks are currently distributed all over sub-Saharan Africa, but the fossil record extends their spatial range to Europe and Asia. The earliest known Tubulidentata are ca. 20 million years old. About 14 species and three to four genera have been recognised so far, but since the late Pliocene, aardvarks have only been represented by a single genus and are restricted to Africa. The extant aardvark is the only species of Tubulidentata with a large distribution area, i.e. the African continent. There are three known Plio-Pleistocene African species of aardvark: Orycteropus afer (Pallas, 1766, O. crassidens MacInnes, 1956, and O. djourabensis Lehmann et al., 2004. Fossils of these species have been discovered in North-Africa, Kenya, and Chad respectively. The present study is focused on the aardvark material found in the Plio-Pleistocene of East Africa (Ethiopia, Kenya. New specimens from Asa Issie (Ethiopia and East Turkana (Kenya are described, and published ones are re-examined in the light of the latest discoveries. This study demonstrates that Kenyan specimens identified as O. crassidens are in fact representatives of the Chadian O. djourabensis. Moreover, additional material from Ethiopia and Kenya shows a close relationship with the latter species too. The presence of specimens of O. djourabensis in Chad and in Kenya during the Plio-Pleistocene implies that this taxon is the oldest-known species of aardvark to have experienced a continental dispersal. It also shows that Tubulidentates were able to cross Africa from east-west during Plio-Pleistocene times, despite the presence of the Rift Valley. It is however not possible to infer the centre of origin of O. djourabensis. Finally, this study suggests that two species of aardvark

  6. Pleistocene glaciation of the Jackson Hole area, Wyoming

    Science.gov (United States)

    Pierce, Kenneth L.; Licciardi, Joseph M.; Good, John M.; Jaworowski, Cheryl

    2018-01-24

    Pleistocene glaciations and late Cenozoic offset on the Teton fault have played central roles in shaping the scenic landscapes of the Teton Range and Jackson Hole area in Wyoming. The Teton Range harbored a system of mountain-valley glaciers that produced the striking geomorphic features in these mountains. However, the comparatively much larger southern sector of the Greater Yellowstone glacial system (GYGS) is responsible for creating the more expansive glacial landforms and deposits that dominate Jackson Hole. The glacial history is also inextricably associated with the Yellowstone hotspot, which caused two conditions that have fostered extensive glaciation: (1) uplift and consequent cold temperatures in greater Yellowstone; and (2) the lowland track of the hotspot (eastern Snake River Plain) that funneled moisture to the Yellowstone Plateau and the Yellowstone Crescent of High Terrain (YCHT).The penultimate (Bull Lake) glaciation filled all of Jackson Hole with glacial ice. Granitic boulders on moraines beyond the south end of Jackson Hole have cosmogenic 10Be exposure ages of ~150 thousand years ago (ka) and correlate with Marine Isotope Stage 6. A thick loess mantle subdues the topography of Bull Lake moraines and caps Bull Lake outwash terraces with a reddish buried soil near the base of the loess having a Bk horizon that extends down into the outwash gravel. The Bull Lake glaciation of Jackson Hole extended 48 kilometers (km) farther south than the Pinedale, representing the largest separation of these two glacial positions in the Western United States. The Bull Lake is also more extensive than the Pinedale on the west (22 km) and southwest (23 km) margins of the GYGS but not on the north and east. This pattern is explained by uplift and subsidence on the leading and trailing “bow-wave” of the YCHT, respectively.During the last (Pinedale) glaciation, mountain-valley glaciers of the Teton Range extended to the western edge of Jackson Hole and built

  7. A Numerical Investigation into Low-Speed Impact Cratering Events

    Science.gov (United States)

    Schwartz, Stephen; Richardson, D. C.; Michel, P.

    2012-10-01

    Impact craters are the geological features most commonly observed on the surface of solid Solar System bodies. Crater shapes and features are crucial sources of information regarding past and present surface environments, and can provide indirect information about the internal structures of these bodies. In this study, we consider the effects of low-speed impacts into granular material. Studies of low-speed impact events are suitable for understanding the cratering process leading, for instance, to secondary craters. In addition, upcoming asteroid sample return missions will employ surface sampling strategies that use impacts into the surface by a projectile. An understanding of the process can lead to better sampling strategies. We use our implementation of the Soft-Sphere Discrete Element Method (SSDEM) (Schwartz et al. 2012, Granular Matter 14, 363-380) into the parallel N-body code PKDGRAV (cf. Richardson et al. 2011, Icarus 212, 427-437) to model the impact cratering process into granular material. We consider the effects of boundary conditions on the ejecta velocity profile and discuss how results relate to the Maxwell Z-Model during the crater growth phase. Cratering simulations are compared to those of Wada et al. 2006 (Icarus 180, 528-545) and to impact experiments performed in conjunction with Hayabusa 2. This work is supported in part by grants from the National Science Foundation under grant number AST1009579 and from the Office of Space Science of NASA under grant number NNX08AM39G. Part of this study resulted from discussions with the International Team (#202) sponsored by ISSI in Bern (Switzerland). Some simulations were performed on the YORP cluster administered by the Center for Theory and Computation of the Department of Astronomy at the University of Maryland in College Park and on the SIGGAM computer cluster hosted by the Côte d'Azur Observatory in Nice (France).

  8. Chaotic inflation in models with flat directions

    International Nuclear Information System (INIS)

    Graziani, F.; Olive, K.

    1989-01-01

    We consider the chaotic inflationary scenario in models with flat directions. We find that unless the scalars along the flat directions have vacuum expectation values p or 10 14 M p 15 M p depending on the expectation values of the chaotic inflator, Ψ, one or two or more periods of inflation occur but with a resulting energy density perturbation δρ/ρ ≅ 10 -16 , far too small to be of any consequence for galaxy formation. Even with p only limited initial values of ≅ (3-200) M p result in inflation with reasonable density perturbations. Thus chaotic inflation in models with flat directions require rather special initial conditions. (orig.)

  9. Pleistocene and Holocene Iberian flora: a complete picture and review

    Science.gov (United States)

    González Sampériz, Penélope

    2010-05-01

    A detailed analysis of the location and composition of Iberian vegetation types during the whole Pleistocene and Holocene periods shows a complex patched landscape with persistence of different types of ecosystems, even during glacial times. In addition, recent, high-resolution palaeoecological records are changing the traditional picture of post-glacial vegetation succession in the Iberian Peninsula. The main available charcoal and pollen sequences include, coniferous and deciduous forest, steppes, shrublands, savannahs and glacial refugia during the Pleistocene for Meso-thermophytes (phytodiversity reservoirs), in different proportions. This panorama suggests an environmental complexity that relates biotic responses to climate changes forced by Milankovitch cycles, suborbital forcings and by the latitudinal and physiographic particularities of the Iberian Peninsula. Thus, many factors are critical in the course of vegetational developments and strong regional differences are observed since the Early Pleistocene. Currently, the flora of Iberia is located in two biogeographical/climatic regions: the Eurosiberian and the Mediterranean. The first one includes northern and northwestern areas of the peninsula, where post-glacial responses of vegetation are very similar to Central Europe, although with some particularities due to its proximity to both the Atlantic Ocean and the Mediterranean region. The second one comprises the main territory of Iberia and shows more complex patterns and singularities, now and in the past. Steppe landscapes dominated extensive areas over all the territory during the cold spells of the Quaternary, especially during the Late Pleistocene up to the Last Glacial Maximum, but differences in composition of the dominant taxa (Compositae versus Artemisia) are observed since the Early Pleistocene, probably related to moisture regional gradients. Coastal shelves and intramountainous valleys, even in continental areas, are spots of floristic

  10. Chicxulub Impact Crater and Yucatan Carbonate Platform - PEMEX Oil Exploratory Wells Revisited

    Science.gov (United States)

    Pérez-Drago, G.; Gutierrez-Cirlos, A. G.; Pérez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Geophysical oil exploration surveys carried out by PEMEX in the 1940's revealed occurrence of an anomalous pattern of semi-circular concentric gravity anomalies. The Bouguer gravity anomalies covered an extensive area over the flat carbonate platform in the northwestern Yucatan Peninsula; strong density contrasts were suggestive of a buried igneous complex or basement uplift beneath the carbonates, which was referred as the Chicxulub structure. The exploration program carried out afterwards included a drilling program, starting with Chicxulub-1 well in 1952 and comprising eight deep boreholes through the 1970s. An aeromagnetic survey in late 1970's showed high amplitude anomalies in the gravity anomaly central sector. Thus, research showing Chicxulub as a large complex impact crater formed at the K/T boundary was built on the PEMEX decades-long exploration program. Despite frequent reference to PEMEX information and samples, original data and cores have not been openly available for detailed evaluation and integration with results from recent investigations. Core samples largely remain to be analyzed and interpreted in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we report on the stratigraphy and paleontological data for PEMEX wells: Chicxulub- 1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m), Ticul-1 (3575m) Yucatan-4 (2398m), Yucatan-2 (3474m), Yucatan-5A (3003m) and Yucatan-1 (3221m). These wells remain the deepest drilled in Chicxulub, providing samples of impact lithologies, carbonate sequences and basement, which give information on post- and pre-impact stratigraphy and crystalline basement. We concentrate on stratigraphic columns, lateral correlations and integration with UNAM and ICDP borehole data. Current plans for deep drilling in Chicxulub crater target the peak ring and central sector, with offshore and onshore boreholes proposed to the IODP and ICDP

  11. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  12. Atmospheric Tides in Gale Crater, Mars

    Science.gov (United States)

    Guzewich, Scott D,; Newman, C. E; de la Torre Juarez, M.; Wilson, R. J.; Lemmon, M.; Smith, M. D.; Kahanpaa, H.; Harri, A.-M.

    2015-01-01

    Atmospheric tides are the primary source of daily air pressure variation at the surface of Mars. These tides are forced by solar heating of the atmosphere and modulated by the presence of atmospheric dust, topography, and surface albedo and thermal inertia. This results in a complex mix of sun-synchronous and nonsun- synchronous tides propagating both eastward and westward around the planet in periods that are integer fractions of a solar day. The Rover Environmental Monitoring Station on board the Mars Science Laboratory has observed air pressure at a regular cadence for over 1 Mars year and here we analyze and diagnose atmospheric tides in this pressure record. The diurnal tide amplitude varies from 26 to 63 Pa with an average phase of 0424 local true solar time, while the semidiurnal tide amplitude varies from 5 to 20 Pa with an average phase of 0929. We find that both the diurnal and semidiurnal tides in Gale Crater are highly correlated to atmospheric opacity variations at a value of 0.9 and to each other at a value of 0.77, with some key exceptions occurring during regional and local dust storms. We supplement our analysis with MarsWRF general circulation modeling to examine how a local dust storm impacts the diurnal tide in its vicinity. We find that both the diurnal tide amplitude enhancement and regional coverage of notable amplitude enhancement linearly scales with the size of the local dust storm. Our results provide the first long-term record of surface pressure tides near the martian equator.

  13. Hydrothermal activity and subsoil complexity: implication for degassing processes at Solfatara crater, Campi Flegrei caldera

    Science.gov (United States)

    Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.

    2017-12-01

    The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and

  14. Stereo Pair, with Topographic Height as Color, Manicouagan Crater, Quebec, Canada

    Science.gov (United States)

    2003-01-01

    Manicouagan Crater is one of the world's largest and oldest known impact craters and perhaps the one most readily apparent to astronauts in orbit. The age of the impact is estimated at 214 million years before present. Since then erosion has removed about one kilometer (0.6 miles) of rock from the region and has created a topographic pattern that follows the structural pattern of the crater. A ring depression (prominently seen as green) encloses a central peak. The ring depression now hosts the Manicouagan Reservoir and so appears as a distinct ring lake to astronauts and as a smooth and flat feature in this topographic visualization. A fine pattern of topographic striations trending south-southeast, most prominent within the crater itself, indicates the flow direction of glaciers that covered this area during the last ice age. Three visualization methods were combined to produce this image: shading, color coding, and synthetic stereoscopy. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to blue at the highest elevations. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. The image can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing) or by downloading, printing, and splitting the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Total topographic relief from the ring lake level to the central crater peak is about 600 meters (2000 feet). Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The

  15. Morphodynamic Modeling of Tidal Mud Flats

    National Research Council Canada - National Science Library

    Winterwerp, Johan C

    2008-01-01

    The objective of the current research proposal is to develop and test a numerical model to simulate and predict the seasonal morphodynamic evolution of intertidal mud flats in macrotidal environments...

  16. A crater and its ejecta: An interpretation of Deep Impact

    Science.gov (United States)

    Holsapple, Keith A.; Housen, Kevin R.

    2007-03-01

    We apply recently updated scaling laws for impact cratering and ejecta to interpret observations of the Deep Impact event. An important question is whether the cratering event was gravity or strength-dominated; the answer gives important clues about the properties of the surface material of Tempel 1. Gravity scaling was assumed in pre-event calculations and has been asserted in initial studies of the mission results. Because the gravity field of Tempel 1 is extremely weak, a gravity-dominated event necessarily implies a surface with essentially zero strength. The conclusion of gravity scaling was based mainly on the interpretation that the impact ejecta plume remained attached to the comet during its evolution. We address that feature here, and conclude that even strength-dominated craters would result in a plume that appeared to remain attached to the surface. We then calculate the plume characteristics from scaling laws for a variety of material types, and for gravity and strength-dominated cases. We find that no model of cratering alone can match the reported observation of plume mass and brightness history. Instead, comet-like acceleration mechanisms such as expanding vapor clouds are required to move the ejected mass to the far field in a few-hour time frame. With such mechanisms, and to within the large uncertainties, either gravity or strength craters can provide the levels of estimated observed mass. Thus, the observations are unlikely to answer the questions about the mechanical nature of the Tempel 1 surface.

  17. Detection and characterization of buried lunar craters with GRAIL data

    Science.gov (United States)

    Sood, Rohan; Chappaz, Loic; Melosh, Henry J.; Howell, Kathleen C.; Milbury, Colleen; Blair, David M.; Zuber, Maria T.

    2017-06-01

    We used gravity mapping observations from NASA's Gravity Recovery and Interior Laboratory (GRAIL) to detect, characterize and validate the presence of large impact craters buried beneath the lunar maria. In this paper we focus on two prominent anomalies detected in the GRAIL data using the gravity gradiometry technique. Our detection strategy is applied to both free-air and Bouguer gravity field observations to identify gravitational signatures that are similar to those observed over buried craters. The presence of buried craters is further supported by individual analysis of regional free-air gravity anomalies, Bouguer gravity anomaly maps, and forward modeling. Our best candidate, for which we propose the informal name of Earhart Crater, is approximately 200 km in diameter and forms part of the northwestern rim of Lacus Somniorum, The other candidate, for which we propose the informal name of Ashoka Anomaly, is approximately 160 km in diameter and lies completely buried beneath Mare Tranquillitatis. Other large, still unrecognized, craters undoubtedly underlie other portions of the Moon's vast mare lavas.

  18. East Part of Sapas Mons with Flooded Crater

    Science.gov (United States)

    1991-01-01

    This Magellan image centered near 9.6 degrees north latitude, 189.5 degrees east longitude of an area 140 kilometers (87 miles) by 110 kilometers (68 miles) covers part of the eastern flank of the volcano Sapas Mons on the western edge of Atla Regio. The bright lobate features along the southern and the western part of the image, oriented in northeast to southwest directions, are lava flows that are rough at the 12.6 centimeter wavelength of the radar. These flows range in width from 5 kilometers to 25 kilometers (3 to 16 miles) with lengths of 50 kilometers to 100 kilometers (31 to 62 miles), extending off the area shown here. Additional radar-dark (smooth) flows are also present. The radar-bright linear structures in the northwest part of the image are interpreted to be faults and fractures possibly associated with the emplacement of magma in the subsurface. Located near the center of the image is a 20 kilometer (12 mile) diameter impact crater. This crater is superimposed on a northeast/southwest trending fracture while the southern part of the crater's ejecta blanket is covered by a 6 kilometer (4 mile) wide radar-bright lava flow. These relations indicate that the crater post dates an episode of fracturing and is older than the lava flows covering its southern edge. This is one of only a few places on Venus in which an impact crater is seen to be covered by volcanic deposits.

  19. Measuring impact crater depth throughout the solar system

    Science.gov (United States)

    Robbins, Stuart J.; Watters, Wesley A.; Chappelow, John E.; Bray, Veronica J.; Daubar, Ingrid J.; Craddock, Robert A.; Beyer, Ross A.; Landis, Margaret E.; Ostrach, Lillian; Tornabene, Livio L.; Riggs, Jamie D.; Weaver, Brian P.

    2018-01-01

    One important, almost ubiquitous, tool for understanding the surfaces of solid bodies throughout the solar system is the study of impact craters. While measuring a distribution of crater diameters and locations is an important tool for a wide variety of studies, so too is measuring a crater's “depth.” Depth can inform numerous studies including the strength of a surface and modification rates in the local environment. There is, however, no standard data set, definition, or technique to perform this data‐gathering task, and the abundance of different definitions of “depth” and methods for estimating that quantity can lead to misunderstandings in and of the literature. In this review, we describe a wide variety of data sets and methods to analyze those data sets that have been, are currently, or could be used to derive different types of crater depth measurements. We also recommend certain nomenclature in doing so to help standardize practice in the field. We present a review section of all crater depths that have been published on different solar system bodies which shows how the field has evolved through time and how some common assumptions might not be wholly accurate. We conclude with several recommendations for researchers which could help different data sets to be more easily understood and compared.

  20. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  1. Flat H Frangible Joint Evolution

    Science.gov (United States)

    Diegelman, Thomas E.; Hinkel, Todd J.; Benjamin, Andrew; Rochon, Brian V.; Brown, Christopher W.

    2016-01-01

    Space vehicle staging and separation events require pyrotechnic devices. They are single-use mechanisms that cannot be tested, nor can failure-tolerant performance be demonstrated in actual flight articles prior to flight use. This necessitates the implementation of a robust design and test approach coupled with a fully redundant, failure-tolerant explosive mechanism to ensure that the system functions even in the event of a single failure. Historically, NASA has followed the single failure-tolerant (SFT) design philosophy for all human-rated spacecraft, including the Space Shuttle Program. Following the end of this program, aerospace companies proposed building the next generation human-rated vehicles with off-the-shelf, non-redundant, zero-failure-tolerant (ZFT) separation systems. Currently, spacecraft and launch vehicle providers for both the Orion and Commercial Crew Programs (CCPs) plan to deviate from the heritage safety approach and NASA's SFT human rating requirements. Both programs' partners have base-lined ZFT frangible joints for vehicle staging and fairing separation. These joints are commercially available from pyrotechnic vendors. Non-human-rated missions have flown them numerous times. The joints are relatively easy to integrate structurally within the spacecraft. In addition, the separation event is debris free, and the resultant pyro shock is lower than that of other design solutions. It is, however, a serious deficiency to lack failure tolerance. When used for critical applications on human-rated vehicles, a single failure could potentially lead to loss of crew (LOC) or loss of mission (LOM)). The Engineering and Safety & Mission Assurance directorates within the NASA Johnson Space Center took action to address this safety issue by initiating a project to develop a fully redundant, SFT frangible joint design, known as the Flat H. Critical to the ability to retrofit on launch vehicles being developed, the SFT mechanisms must fit within the same

  2. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    Science.gov (United States)

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on

  3. Signatures of Late Pleistocene fluvial incision in an Alpine landscape

    Science.gov (United States)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2018-02-01

    Uncertainty regarding the relative efficacy of fluvial and glacial erosion has hindered attempts to quantitatively analyse the Pleistocene evolution of alpine landscapes. Here we show that the morphology of major tributaries of the Rhone River, Switzerland, is consistent with that predicted for a landscape shaped primarily by multiple phases of fluvial incision following a period of intense glacial erosion after the mid-Pleistocene transition (∼0.7 Ma). This is despite major ice sheets reoccupying the region during cold intervals since the mid-Pleistocene. We use high-resolution LiDAR data to identify a series of convex reaches within the long-profiles of 18 tributary channels. We propose these reaches represent knickpoints, which developed as regional uplift raised tributary bedrock channels above the local fluvial baselevel during glacial intervals, and migrated upstream as the fluvial system was re-established during interglacial periods. Using a combination of integral long-profile analysis and stream-power modelling, we find that the locations of ∼80% of knickpoints in our study region are consistent with that predicted for a fluvial origin, while the mean residual error over ∼100 km of modelled channels is just 26.3 m. Breaks in cross-valley profiles project toward the elevation of former end-of-interglacial channel elevations, supporting our model results. Calculated long-term uplift rates are within ∼15% of present-day measurements, while modelled rates of bedrock incision range from ∼1 mm/yr for low gradient reaches between knickpoints to ∼6-10 mm/yr close to retreating knickpoints, typical of observed rates in alpine settings. Together, our results reveal approximately 800 m of regional uplift, river incision, and hillslope erosion in the lower half of each tributary catchment since 0.7 Ma.

  4. The Pleistocene rivers of the English Channel region

    Science.gov (United States)

    Antoine, Pierre; Coutard, Jean-Pierre; Gibbard, Philip; Hallegouet, Bernard; Lautridou, Jean-Pierre; Ozouf, Jean-Claude

    2003-02-01

    The Pleistocene history of river systems that enter the English Channel from northern France and southern England is reviewed. During periods of low sea-level (cold stages) these streams were tributaries of the Channel River. In southern England the largest, the River Solent, is an axial stream that has drained the Hampshire Basin from the Early Pleistocene or late Pliocene. Other streams of southern England may be of similar antiquity but their records are generally short and their sedimentary history have been destroyed, as in northern Brittany, by coastal erosion and valley deepening as a consequence of tectonic uplift. In northern France, the Seine and Somme rivers have very well developed terrace systems recording incision that began at around 1 Ma. The uplift rate, deduced from the study of these terrace systems, is of 55 to 60 m myr-1 since the end of the Early Pleistocene. Generally the facies and sedimentary structures indicate that the bulk of the deposits in these rivers accumulated in braided river environments under periglacial climates in all the area around the Channel. Evolution of the rivers reflects their responses to climatic change, local geological structure and long-term tectonic activity. In this context the Middle Somme valley is characterised by a regular pattern in which incision occurs at the beginning of each glacial period within a general background of uplift. Nevertheless the response of the different rivers to climatic variations, uplift and sea-level changes is complex and variable according to the different parts of the river courses.

  5. Crater Ejecta by Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 24 June 2004 This pair of images shows a crater and its ejecta. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project

  6. Meridiani Crater in Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 14 June 2004 This pair of images shows crater ejecta in the Terra Meridiani region. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -1.6, Longitude 4.1 East (355.9 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  7. Gusev Crater by Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 23 June 2004 This pair of images shows part of Gusev Crater. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -14.5, Longitude 175.5 East (184.5 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project

  8. The Links Between Target Properties and Layered Ejecta Craters in Acidalia and Utopia Planitiae Mars

    Science.gov (United States)

    Jones, E.; Osinski, G. R.

    2013-08-01

    Layered ejecta craters on Mars may form from excavation into subsurface volatiles. We examine a new catalogue of martian craters to decipher differences between the single- and double-layered ejecta populations in Acidalia and Utopia.

  9. Automated Detection of Craters in Martian Satellite Imagery Using Convolutional Neural Networks

    Science.gov (United States)

    Norman, C. J.; Paxman, J.; Benedix, G. K.; Tan, T.; Bland, P. A.; Towner, M.

    2018-04-01

    Crater counting is used in determining surface age of planets. We propose improvements to martian Crater Detection Algorithms by implementing an end-to-end detection approach with the possibility of scaling the algorithm planet-wide.

  10. Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico

    Science.gov (United States)

    Capra, L.; Macías, J. L.

    2000-10-01

    During the Pleistocene, intense hydrothermal alteration promoted a flank failure of the southern portion of Nevado de Toluca volcano. This event produced a debris avalanche that transformed into a cohesive debris flow (Pilcaya deposit) owing to water saturation and weakness of the altered pre-avalanche rocks. The Pilcaya debris flow traveled along a narrow tectonic depression up to a distance of 40 km and then spread over a flat plain reaching up to 55 km from the volcano summit. This transition zone corresponds with a sudden break in slope from 5 to 0.5° that caused a rapid reduction in velocity and thickening of the flow that consequently reduced its competence to transport large particles. The resulting deposit thickens from 15 to 40 m, and contains boulders up to 15 m in diameter that form hummocky morphology close to the transitional zone. Sometime after the emplacement of the Pilcaya debris flow, heavy rains and superficial drainage contributed to remobilize the upper portions of the deposit causing two secondary lahars. These debris flows called El Mogote, traveled up to 75 km from the volcano. The edifice collapse generated lahars with a total volume of 2.8 km3 that devastated an approximate area of 250 km2. The area versus volume plot for both deposits shows that the magnitude of the event is comparable to other cohesive debris flows such as the Teteltzingo lahar (Pico de Orizaba, Mexico) and the Osceola mudflow (Mount Rainier, Wa). The Pilcaya debris flow represents additional evidence of debris flow transformed from a flank failure, a potentially devastating phenomenon that could threaten distant areas from the volcano previously considered without risk.

  11. Parameters critical to the morphology of fluidization craters

    Science.gov (United States)

    Siegal, B. S.; Gold, D. P.

    1973-01-01

    In order to study further the role of fluidization on the moon, a laboratory investigation was undertaken on two particulate material size fractions to determine the effect of variables, such as, duration of gas streaming, gas pressure, and 'regolith' thickness on the morphology of fluidization craters. A 3.175-mm cylindrical vent was used to simulate a gas streaming conduit. Details of the fluidization chamber are discussed together with questions of experimental control, aspects of nomenclature, crater measurements, and the effect of variables.

  12. Extreme Access & Lunar Ice Mining in Permanently Shadowed Craters Project

    Science.gov (United States)

    Mueller, Robert P.

    2014-01-01

    Results from the recent LCROSS mission in 2010, indicate that H2O ice and other useful volatiles such as CO, He, and N are present in the permanently shadowed craters at the poles of the moon. However, the extreme topography and steep slopes of the crater walls make access a significant challenge. In addition temperatures have been measured at 40K (-233 C) so quick access and exit is desirable before the mining robot cold soaks. The Global Exploration Roadmap lists extreme access as a necessary technology for Lunar Exploration.

  13. The seismic expression and hydrocarbon potential of subsurface impact craters

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.; Westbroek, H.H.; Lawton, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The seismic characteristics of meteorite impact craters and their potential as oil and gas reservoirs were discussed. Seismic data from James River, Alberta, in the Western Canada Sedimentary Basin show subsurface anomalies to be meteorite impact structures. The White Valley structure in Saskatchewan has similar features and seismic anomalies indicate that it too could be a meteorite impact structure, although other possibilities have been proposed. Other impact structures in western Canada such as the Steen River structure and the Viewfield crater have or are producing hydrocarbons. 5 refs., 2 figs.

  14. Geomorphometric analysis of selected Martian craters using polar coordinate transformation

    Science.gov (United States)

    Magyar, Zoltán; Koma, Zsófia; Székely, Balázs

    2016-04-01

    Centrally symmetric landform elements are very common features on the surface of the planet Mars. The most conspicuous ones of them are the impact craters of various size. However, a closer look on these features reveals that they show often asymmetric patterns as well. These are partially related to the geometry of the trajectory of the impacting body, but sometimes it is a result of surface processes (e.g., freeze/thaw cycles, mass movements). Geomorphometric studies have already been carried out to reveal these pecularities. Our approach, the application of polar coordinate transformation (PCT) very sensitively enhances the non-radial and non-circular shapes. We used digital terrain models (DTMs) derived from the ESA Mars Express HRSC imagery. The original DTM or its derivatives (e.g. slope angle or aspect) are PCT transformed. We analyzed the craters inter alia with scattergrams in polar coordinates. The resulting point cloud can be used directly for the analysis, but in some cases an interpolation should be applied to enhance certain non-circular features (especially in case of smaller craters). Visual inspection of the crater slopes, coloured by the aspect, reveals smaller features. Some of them are processing artefacts, but many of them are related to local undulations in the topography or indications of mass movements. In many cases the undulations of the crater rim are due to erosional processes. The drawbacks of the technology are related to the uneven resolution of the projected image: features in the crater centre should be left out from the analysis because PCT has a low resolution around the projection center. Furthermore, the success of the PCT depends on the correct definition of the projection centre: erroneously centered images are not suitable for analysis. The PCT transformed images are also suitable for radial averaging and calculation of standard deviations, resulting in typical, comparable craters shapes. These studies may lead to a deeper

  15. Ceres' intriguing Occator crater and its faculae: formation and evolution

    Science.gov (United States)

    Buczkowski, D.; Scully, J. E. C.; Bowling, T.; Bu, C.; Castillo, J. C.; Jaumann, R.; Longobardo, A.; Nathues, A.; Neesemann, A.; Palomba, E.; Platz, T.; Quick, L. C.; Raponi, A.; Raymond, C. A.; Ruesch, O.; Russell, C. T.; Schenk, P.; Stein, N.

    2017-12-01

    Since March 2015, the Dawn spacecraft has orbited and explored Ceres, which is a dwarf planet and the largest object in the asteroid belt (radius 470 km). One of the most intriguing features on Ceres' surface is Occator crater, a 92-km-diameter impact crater that contains distinctive bright spots, called faculae, within its floor (Nathues et al., 2015; Russell et al., 2016; Schenk et al., 2017). Occator crater has been dated to 20-30 million years old (Nathues et al., 2017; Neesemann et al., 2017). The single scattering albedo of Occator's faculae is 0.67-0.80, which is greater than Ceres' average single scattering albedo of 0.09-0.11 (Li et al., 2016). The central facula is named Cerealia Facula, and is located in a 9 km wide and 700 m deep pit. There are also multiple additional faculae in the eastern crater floor, which are named the Vinalia Faculae. The faculae are mostly composed of sodium carbonate, are distinct from Ceres' average surface composition and are proposed to be the solid residues of crystallized brines (De Sanctis et al., 2016). The presence of such bright, apparently fresh, material on the surface of a dwarf planet that is billions of years old is intriguing, and indicates that active processes involving brines occurred within the geologically recent past. The Dawn Science Team has investigated whether the processes that formed the crater and the faculae are entirely endogenic, entirely exogenic or a combination of both. For example, the extensive lobate materials within the crater floor have been proposed to be impact melt, mass wasting deposits or cryolava flows (e.g. Buczkowski et al., 2017; Jaumann et al., 2017; Nathues et al., 2017; Schenk et al., 2017). Each possibility has the potential to provide fascinating insights into Ceres' evolution, including the potential for liquids within Ceres' interior today. The team's in-depth investigation of Occator crater will be presented in an upcoming special issue of the journal Icarus. This special

  16. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  17. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts

    DEFF Research Database (Denmark)

    Foote, Andrew David; Kaschner, Kristin; Schultze, Sebastian E.

    2013-01-01

    that a true Arctic species, the bowhead whale (Balaena mysticetus), shifted its range and tracked its core suitable habitat northwards during the rapid climate change of the Pleistocene-Holocene transition. Late Pleistocene lineages survived into the Holocene and effective female population size increased...

  18. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2) in Colbert County, Alabama, USA

    OpenAIRE

    Stephen J. Jacquemin; Jun A. Ebersole; William C. Dickinson; Charles N. Ciampaglio

    2016-01-01

    The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (?10,000 to 30,000 years B.P.) lead...

  19. Flat detectors and their clinical applications

    International Nuclear Information System (INIS)

    Spahn, Martin

    2005-01-01

    Diagnostic and interventional flat detector X-ray systems are penetrating the market in all application segments. First introduced in radiography and mammography, they have conquered cardiac and general angiography and are getting increasing attention in fluoroscopy. Two flat detector technologies prevail. The dominating method is based on an indirect X-ray conversion process, using cesium iodide scintillators. It offers considerable advantages in radiography, angiography and fluoroscopy. The other method employs a direct converter such as selenium which is particularly suitable for mammography. Both flat detector technologies are based on amorphous silicon active pixel matrices. Flat detectors facilitate the clinical workflow in radiographic rooms, foster improved image quality and provide the potential to reduce dose. This added value is based on their large dynamic range, their high sensitivity to X-rays and the instant availability of the image. Advanced image processing is instrumental in these improvements and expand the range of conventional diagnostic methods. In angiography and fluoroscopy the transition from image intensifiers to flat detectors is facilitated by ample advantages they offer, such as distortion-free images, excellent coarse contrast, large dynamic range and high X-ray sensitivity. These characteristics and their compatibility with strong magnetic fields are the basis for improved diagnostic methods and innovative interventional applications. (orig.)

  20. Instability of flat space at finite temperature

    International Nuclear Information System (INIS)

    Gross, D.J.; Perry, M.J.; Yaffe, L.G.

    1982-01-01

    The instabilities of quantum gravity are investigated using the path-integral formulation of Einstein's theory. A brief review is given of the classical gravitational instabilities, as well as the stability of flat space. The Euclidean path-integral representation of the partition function is employed to discuss the instability of flat space at finite temperature. Semiclassical, or saddle-point, approximations are utilized. We show how the Jeans instability arises as a tachyon in the graviton propagator when small perturbations about hot flat space are considered. The effect due to the Schwarzschild instanton is studied. The small fluctuations about this instanton are analyzed and a negative mode is discovered. This produces, in the semiclassical approximation, an imaginary part of the free energy. This is interpreted as being due to the metastability of hot flat space to nucleate black holes. These then evolve by evaporation or by accretion of thermal gravitons, leading to the instability of hot flat space. The nucleation rate of black holes is calculated as a function of temperature

  1. Microbial Habitability and Pleistocene Aridification of the Asian Interior.

    Science.gov (United States)

    Wang, Jiuyi; Lowenstein, Tim K; Fang, Xiaomin

    2016-06-01

    Fluid inclusions trapped in ancient halite can contain a community of halophilic prokaryotes and eukaryotes that inhabited the surface brines from which the halite formed. Long-term survival of bacteria and archaea and preservation of DNA have been reported from halite, but little is known about the distribution of microbes in buried evaporites. Here we report the discovery of prokaryotes and single-celled algae in fluid inclusions in Pleistocene halite, up to 2.26 Ma in age, from the Qaidam Basin, China. We show that water activity (aw), a measure of water availability and an environmental control on biological habitability in surface brines, is also related to microbe entrapment in fluid inclusions. The aw of Qaidam Basin brines progressively decreased over the last ∼1 million years, driven by aridification of the Asian interior, which led to decreased precipitation and water inflow and heightened evaporation rates. These changes in water balance produced highly concentrated brines, which reduced the habitability of surface lakes and decreased the number of microbes trapped in halite. By 0.13 Ma, the aw of surface brines approached the limits tolerated by halophilic prokaryotes and algae. These results show the response of microbial ecosystems to climate change in an extreme environment, which will guide future studies exploring deep life on Earth and elsewhere in the Solar System. Halite fluid inclusions-Ancient microbes-Water activity-Qaidam Basin-Pleistocene aridification. Astrobiology 16, 379-388.

  2. New Middle Pleistocene hominin cranium from Gruta da Aroeira (Portugal).

    Science.gov (United States)

    Daura, Joan; Sanz, Montserrat; Arsuaga, Juan Luis; Hoffmann, Dirk L; Quam, Rolf M; Ortega, María Cruz; Santos, Elena; Gómez, Sandra; Rubio, Angel; Villaescusa, Lucía; Souto, Pedro; Mauricio, João; Rodrigues, Filipa; Ferreira, Artur; Godinho, Paulo; Trinkaus, Erik; Zilhão, João

    2017-03-28

    The Middle Pleistocene is a crucial time period for studying human evolution in Europe, because it marks the appearance of both fossil hominins ancestral to the later Neandertals and the Acheulean technology. Nevertheless, European sites containing well-dated human remains associated with an Acheulean toolkit remain scarce. The earliest European hominin crania associated with Acheulean handaxes are at the sites of Arago, Atapuerca Sima de los Huesos (SH), and Swanscombe, dating to 400-500 ka (Marine Isotope Stage 11-12). The Atapuerca (SH) fossils and the Swanscombe cranium belong to the Neandertal clade, whereas the Arago hominins have been attributed to an incipient stage of Neandertal evolution, to Homo heidelbergensis , or to a subspecies of Homo erectus A recently discovered cranium (Aroeira 3) from the Gruta da Aroeira (Almonda karst system, Portugal) dating to 390-436 ka provides important evidence on the earliest European Acheulean-bearing hominins. This cranium is represented by most of the right half of a calvarium (with the exception of the missing occipital bone) and a fragmentary right maxilla preserving part of the nasal floor and two fragmentary molars. The combination of traits in the Aroeira 3 cranium augments the previously documented diversity in the European Middle Pleistocene fossil record.

  3. The British Lower Palaeolithic of the early Middle Pleistocene

    Science.gov (United States)

    Hosfield, Robert

    2011-06-01

    The archaeology of Britain during the early Middle Pleistocene (MIS 19-12) is represented by a number of key sites across eastern and southern England. These sites include Pakefield, Happisburgh 1, High Lodge, Warren Hill, Waverley Wood, Boxgrove, Kent's Cavern, and Westbury-sub-Mendip, alongside a 'background scatter' lithic record associated with the principal river systems (Bytham, pre-diversion Thames, and Solent) and raised beaches (Westbourne-Arundel). Hominin behaviour can be characterised in terms of: preferences for temperate or cool temperate climates and open/woodland mosaic habitats (indicated by mammalian fauna, mollusca, insects, and sediments); a biface-dominated material culture characterised by technological diversity, although with accompanying evidence for distinctive core and flake (Pakefield) and flake tool (High Lodge) assemblages; probable direct hunting-based subsistence strategies (with a focus upon large mammal fauna); and generally locally-focused spatial and landscape behaviours (principally indicated by raw material sources data), although with some evidence of dynamic, mobile and structured technological systems. The British data continues to support a 'modified short chronology' to the north of the Alps and the Pyrenees, with highly sporadic evidence for a hominin presence prior to 500-600 ka, although the ages of key assemblages are subject to ongoing debates regarding the chronology of the Bytham river terraces and the early Middle Pleistocene glaciations of East Anglia.

  4. Late Pleistocene and Holocene mammal extinctions on continental Africa

    Science.gov (United States)

    Faith, J. Tyler

    2014-01-01

    Understanding the cause of late Quaternary mammal extinctions is the subject of intense debate spanning the fields of archeology and paleontology. In the global context, the losses on continental Africa have received little attention and are poorly understood. This study aims to inspire new discussion of African extinctions through a review of the extinct species and the chronology and possible causes of those extinctions. There are at least 24 large mammal (> 5 kg) species known to have disappeared from continental Africa during the late Pleistocene or Holocene, indicating a much greater taxonomic breadth than previously recognized. Among the better sampled taxa, these losses are restricted to the terminal Pleistocene and early Holocene, between 13,000 and 6000 yrs ago. The African extinctions preferentially affected species that are grazers or prefer grasslands. Where good terrestrial paleoenvironmental records are present, extinctions are associated with changes in the availability, productivity, or structure of grassland habitats, suggesting that environmental changes played a decisive role in the losses. In the broader evolutionary context, these extinctions represent recent examples of selective taxonomic winnowing characterized by the loss of grassland specialists and the establishment of large mammal communities composed of more ecologically flexible taxa over the last million years. There is little reason to believe that humans played an important role in African extinctions.

  5. Usability of small impact craters on small surface areas in crater count dating: Analysing examples from the Harmakhis Vallis outflow channel, Mars

    Science.gov (United States)

    Kukkonen, S.; Kostama, V.-P.

    2018-05-01

    The availability of very high-resolution images has made it possible to extend crater size-frequency distribution studies to small, deca/hectometer-scale craters. This has enabled the dating of small and young surface units, as well as recent, short-time and small-scale geologic processes that have occurred on the units. Usually, however, the higher the spatial resolution of space images is, the smaller area is covered by the images. Thus the use of single, very high-resolution images in crater count age determination may be debatable if the images do not cover the studied region entirely. Here we compare the crater count results for the floor of the Harmakhis Vallis outflow channel obtained from the images of the ConTeXt camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO). The CTX images enable crater counts for entire units on the Harmakhis Vallis main valley, whereas the coverage of the higher-resolution HiRISE images is limited and thus the images can only be used to date small parts of the units. Our case study shows that the crater count data based on small impact craters and small surface areas mainly correspond with the crater count data based on larger craters and more extensive counting areas on the same unit. If differences between the results were founded, they could usually be explained by the regional geology. Usually, these differences appeared when at least one cratering model age is missing from either of the crater datasets. On the other hand, we found only a few cases in which the cratering model ages were completely different. We conclude that the crater counts using small impact craters on small counting areas provide useful information about the geological processes which have modified the surface. However, it is important to remember that all the crater counts results obtained from a specific counting area always primarily represent the results from the counting area-not the whole

  6. Pleistocene changes in the fauna and flora of South america.

    Science.gov (United States)

    Vuilleumier, B S

    1971-08-27

    In recent years, the view that Pleistocene climatic events played a major role in the evolution of the biotas of southern, primarily tropical continents has begun to displace the previously held conviction that these areas remained relatively stable during the Quaternary. Studies of speciation patterns of high Andean plant and avian taxa (7-14) have led to the conclusion that Pleistocene climatic events were the factors that ultimately shaped the patterns now observed in the paramo-puna and the related Patagonian flora and fauna. The final uplift of the Andes at the end of the Tertiary automatically limits the age of the high Andean habitats and their biotas to the Quaternary. Within this period, the number of ecological fluctuations caused by the glaciations could easily have provided the mechanism behind the patterns now present in these habitats (Appendix, 1; Figs. 1 and 2; Table 1). In glacial periods, when vegetation belts, were lowered, organisms in the paramo-puna habitat were allowed to expand their ranges. In interglacial periods, these taxa were isolated on disjunct peaks, where differentiation could occur. At times of ice expansion, glacial tongues and lakes provided local barriers to gene exchange, whereas in warm, interglacial times, dry river valleys were a major deterrent to the interbreeding of populations on different mountains (Fig. 2; Table 2). A preliminary analysis of about 10 to 12 percent of the total South American avifauna (14), subsequent to the study of the high Andean biota, suggested that the birds of all the major habitats of the continent possess, with about equal frequency, similar stages of speciation. This correspondence in levels of evolution indicated that the avifauna of vegetation zones which were thought to have been more stable (for example, tropical rainforests) are as actively speciating as are those of the more recent paramo-puna habitats. More intensive work on lowland tropical taxa (16, 19-21) and recent work on montane

  7. Magnetized and Flat Beam Experiment at FAST

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Hyun, J. [Sokendai, Tsukuba; Mihalcea, D. [NIU, DeKalb; Piot, P. [NICADD, DeKalb; Sen, T. [Fermilab; Thangaraj, C. [Fermilab

    2017-05-22

    A photocathode, immersed in solenoidal magnetic field, can produce canonical-angular-momentum (CAM) dominated or “magnetized” electron beams. Such beams have an application in electron cooling of hadron beams and can also be uncoupled to yield asymmetric-emittance (“flat”) beams. In the present paper we explore the possibilities of the flat beam generation at Fermilab’s Accelerator Science and Technology (FAST) facility. We present optimization of the beam flatness and four-dimensional transverse emittance and investigate the mapping and its limitations of the produced eigen-emittances to conventional emittances using a skew-quadrupole channel. Possible application of flat beams at the FAST facility are also discussed.

  8. Wildfires Caused by Formation of Small Impact Craters: A Kaali Crater Case

    Science.gov (United States)

    Losiak, Anna; Belcher, Claire; Hudspith, Victoria; Zhu, Menghua; Bronikowska, Malgorzata; Jõeleht, Argo; Plado, Juri

    2016-04-01

    Formation of ~200-km Chicxulub 65 Ma ago was associated with release of significant amount of thermal energy [1,2,3] which was sufficient to start wildfires that had either regional [4] or global [5] range. The evidence for wildfires caused by impacts smaller than Chicxulub is inconclusive. On one hand, no signs of fires are associated with the formation of 24-km Ries crater [6]. On the other hand, the Tunguska site was burned after the impact and the numerical models of the bolide-produced thermal radiation suggest that the Tunguska-like event would produce a thermal flux to the surface that is sufficient to ignite pine needles [7]. However, in case of Tunguska the only proof for the bolide starting the fire comes from an eyewitness description collected many years after the event. Some authors [8] suggest that this fire might have been caused "normaly" later during the same year, induced on dead trees killed by the Tunguska fall. More recently it was observed that the Chelyabinsk meteor [9] - smaller than Tunguska event - did not produced a fire. In order to explore this apparent relationship in more detail, we have studied the proximal ejecta from a 100-m in diameter, ~3500 years old [10] Kaali crater (Estonia) within which we find pieces of charred organic material. Those pieces appear to have been produced during the impact, according to their stratigraphic location and following 14C analysis [19] as opposed to pre- or post-impact forest fires. In order to determine the most probable formation mechanism of the charred organic material found within Kaali proximal ejecta blanket, we: 1) Analyzed charcoal under SEM to identify the charred plants and determine properties of the charcoal related to the temperature of its formation [11]. Detected homogenization of cell walls suggests that at least some pieces of charcoal were formed at >300 °C [11]. 2) Analyzed the reflectance properties of the charred particles in order to determine the intensity with which

  9. Determination of lunar surface ages from crater frequency–size ...

    Indian Academy of Sciences (India)

    and the images from Apollo missions have been calibrated from the lunar soil samples from Apollo and Luna landing sites (Head 1976; Neukum et al. 1975). ... Table 1 shows the ages as derived for the craters with errors. Mare Humorum is believed to be made up of six ring structures of 210, 340, 425, 570 and 1195km.

  10. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NARCIS (Netherlands)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G.; François, P.; Grotzinger, J. P.; Kashyap, S.; ten Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin-Torres, F. J.; Mcadam, A. C.; Ming, D. W.; Navarro-González, R.; Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M. P.

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater.

  11. Role of impact cratering for Mars sample return

    International Nuclear Information System (INIS)

    Schultz, P.H.

    1988-01-01

    The preserved cratering record of Mars indicates that impacts play an important role in deciphering Martian geologic history, whether as a mechanism to modify the lithosphere and atmosphere or as a tool to sample the planet. The various roles of impact cratering in adding a broader understanding of Mars through returned samples are examined. Five broad roles include impact craters as: (1) a process in response to a different planetary localizer environment; (2) a probe for excavating crustal/mantle materials; (3) a possible localizer of magmatic and hydrothermal processes; (4) a chronicle of changes in the volcanic, sedimentary, atmospheric, and cosmic flux history; and (5) a chronometer for extending the geologic time scale to unsampled regions. The evidence for Earth-like processes and very nonlunar styles of volcanism and tectonism may shift the emphasis of a sampling strategy away from equally fundamental issues including crustal composition, unit ages, and climate history. Impact cratering not only played an important active role in the early Martian geologic history, it also provides an important tool for addressing such issues

  12. Wet Weather Crater Repair Technologies for Grooved and Smooth Pavements

    Science.gov (United States)

    2018-04-30

    Dean Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199...ORGANIZATION REPORT NUMBER U.S. Army Engineer Research and Development Center Geotechnical and Structures Laboratory 3909 Halls Ferry Road ...SUBJECT TERMS Crater Concrete Rain and rainfall ADR Grooved pavement Smooth pavement Runoff Runways (Aeronautics) – Maintenance and repair

  13. Malaria among the pastoral communities of the Ngorongoro Crater ...

    African Journals Online (AJOL)

    Malaria among the pastoral communities of the Ngorongoro Crater Area, northern Tanzania. L.E.G Mboera, R.C Malima, P.E Mangesho, K.P Senkoro, V Mwingira. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  14. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars

    NARCIS (Netherlands)

    Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; Rice, M.; Achilles, C.N.; Grotzinger, J.P.; McLennan, S.M.; Williams, J.; Bell III, J.F.; Newsom, H.E.; Downs, R.T.; Maurice, S.; Sarrazin, P.; Yen, A.S.; Morookian, J.M.; Farmer, J.D.; Stack, K.; Milliken, R.E.; Ehlmann, B.L.; Sumner, D.Y.; Berger, G.; Crisp, J.A.; Hurowitz, J.A.; Anderson, R.; Des Marais, D.J.; Stolper, E.M.; Edgett, K.S.; Gupta, S.; Spanovich, N.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John

  15. Crater formation by single ions, cluster ions and ion "showers"

    CERN Document Server

    Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

    2011-01-01

    The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...

  16. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    Science.gov (United States)

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  17. Long-Term Recovery of Life in the Chicxulub Crater

    Science.gov (United States)

    Lowery, C.; Jones, H.; Bralower, T. J.; Smit, J.; Rodriguez-Tovar, F. J.; Whalen, M. T.; Owens, J. D.; Expedition 364 Science Party, I. I.

    2017-12-01

    The Chicxulub Crater on the Yucatán Peninsula of Mexico was formed by the impact of an asteroid 66 Ma that caused the extinction of 75% of genera on Earth. Immediately following the impact, the decimated ecosystem began the long process of recovery, both in terms of primary productivity and species diversity. This well-documented process was heterogeneous across the world ocean, but until the present time it has been inaccessible at ground zero of the impact. IODP/ICDP Exp. 364 recovered 9.5 m of pelagic limestone spanning the entire Paleocene, including a continuous section spanning the first 5 myr following the impact. The Chicxulub Crater is the largest known marine impact crater on Earth, and the recovery of the ecosystem presented here is the first such record of long-term primary succession in the sterile zone of a large impact crater. Planktic and benthic foraminifera, calcareous nannoplankton, calcispheres, bioturbation, and geochemical proxies all indicate that export productivity in the Chicxulub Crater recovered rapidly (within 30 kyr) following the impact. Recovery in terms of diversity and species abundance took much longer, and varied between groups. Planktic foraminifera quickly diversified, with all common Paleocene tropical/subtropical species appearing roughly when expected. Trace fossils appear rapidly after the event, with a progressive recovery through the lowermost Paleocene. Calcareous nannoplankton took much longer to recover, and disaster taxa like Braarudosphaera dominated the assemblage well into the late Paleocene. Paleoecology and geochemistry relate these trends to oceanographic conditions within the Chicxulub Crater. Planktic foraminifera from known depth habitats, including Morozovellids, Acarininids, Chiloguembelinids, and Subbotinids, track changes in the water column structure and paleoredox conditions within the crater. Diverse and abundant macro- and microbenthic organisms indicate food availability and good oxygen conditions

  18. Issues evaluation process at Rocky Flats Plant

    International Nuclear Information System (INIS)

    Smith, L.C.

    1992-01-01

    This report describes the issues evaluation process for Rocky Flats Plant as established in July 1990. The issues evaluation process was initiated February 27, 1990 with a Charter and Process Overview for short-term implementation. The purpose of the process was to determine the projects required for completion before the Phased Resumption of Plutonium Operations. To determine which projects were required, the issues evaluation process and emphasized risk mitigation, based on a ranking system. The purpose of this report is to document the early design of the issues evaluation process to record the methodologies used that continue as the basis for the ongoing Issues Management Program at Rocky Flats Plant

  19. Holography and Entanglement in Flat Spacetime

    International Nuclear Information System (INIS)

    Li Wei; Takayanagi, Tadashi

    2011-01-01

    We propose a holographic correspondence of the flat spacetime based on the behavior of the entanglement entropy and the correlation functions. The holographic dual theory turns out to be highly nonlocal. We argue that after most part of the space is traced out, the reduced density matrix gives the maximal entropy and the correlation functions become trivial. We present a toy model for this holographic dual using a nonlocal scalar field theory that reproduces the same property of the entanglement entropy. Our conjecture is consistent with the entropy of Schwarzschild black holes in asymptotically flat spacetimes.

  20. Late Pleistocene sea-level changes recorded in tidal and fluvial deposits from Itaubal Formation, onshore portion of the Foz do Amazonas Basin, Brazil

    Directory of Open Access Journals (Sweden)

    Isaac Salém Alves Azevedo Bezerra

    Full Text Available ABSTRACTThe Pleistocene deposits exposed in the Amapá Coastal Plain (onshore portion of the Foz do Amazonas Basin, northeastern South America were previously interpreted as Miocene in age. In this work, they were named as "Itaubal Formation" and were included in the quaternary coastal history of Amazonia. The study, through facies and stratigraphic analyses in combination with optically stimulated luminescence (single and multiple aliquot regeneration, allowed interpreting this unit as Late Pleistocene tidal and fluvial deposits. The Itaubal Formation, which unconformably overlies strongly weathered basement rocks of the Guianas Shield, was subdivided into two progradational units, separated by an unconformity related to sea-level fall, here named as Lower and Upper Units. The Lower Unit yielded ages between 120,600 (± 12,000 and 70,850 (± 6,700 years BP and consists of subtidal flat, tide-influenced meandering stream and floodplain deposits, during highstand conditions. The Upper Unit spans between 69,150 (± 7,200 and 58,150 (± 6,800 years BP and is characterized by braided fluvial deposits incised in the Lower Unit, related to base-level fall; lowstand conditions remained until 23,500 (± 3,000 years BP. The studied region was likely exposed during the Last Glacial Maximum and then during Holocene, covered by tidal deposits influenced by the Amazon River.

  1. Crater Morphometry and Crater Degradation on Mercury: Mercury Laser Altimeter (MLA) Measurements and Comparison to Stereo-DTM Derived Results

    Science.gov (United States)

    Leight, C.; Fassett, C. I.; Crowley, M. C.; Dyar, M. D.

    2017-01-01

    Two types of measurements of Mercury's surface topography were obtained by the MESSENGER (MErcury Surface Space ENvironment, GEochemisty and Ranging) spacecraft: laser ranging data from Mercury Laser Altimeter (MLA) [1], and stereo imagery from the Mercury Dual Imaging System (MDIS) camera [e.g., 2, 3]. MLA data provide precise and accurate elevation meaurements, but with sparse spatial sampling except at the highest northern latitudes. Digital terrain models (DTMs) from MDIS have superior resolution but with less vertical accuracy, limited approximately to the pixel resolution of the original images (in the case of [3], 15-75 m). Last year [4], we reported topographic measurements of craters in the D=2.5 to 5 km diameter range from stereo images and suggested that craters on Mercury degrade more quickly than on the Moon (by a factor of up to approximately 10×). However, we listed several alternative explanations for this finding, including the hypothesis that the lower depth/diameter ratios we observe might be a result of the resolution and accuracy of the stereo DTMs. Thus, additional measurements were undertaken using MLA data to examine the morphometry of craters in this diameter range and assess whether the faster crater degradation rates proposed to occur on Mercury is robust.

  2. Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region

    Science.gov (United States)

    Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith

    2012-01-01

    Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.

  3. Remediation of the Maxey Flats Site

    International Nuclear Information System (INIS)

    1990-01-01

    This report describes issues associated with remedial action of Maxey Flats, a low-level radioactive waste disposal site from 1963-1977, located in Fleming County, Kentucky. Present remedial action alternatives being considered are discussed along with emergency plans, ground water monitoring plans, and budgets

  4. Status of flat electron beam production

    International Nuclear Information System (INIS)

    Edwards, Donald A.

    2001-01-01

    Last year at LINAC2000 [1] the authors reported their initial verification of the round beam (comparable transverse emittances) to flat beam (high transverse emittance ratio) transformation described by Brinkmann, Derbenev, and Floettmann [2]. Further analysis of the data has confirmed that a transverse emittance ratio of approximately 50 was observed. Graphics representing observational detail are included here, and future plans outlined

  5. Flat deformation theorem and symmetries in spacetime

    International Nuclear Information System (INIS)

    Llosa, Josep; Carot, Jaume

    2009-01-01

    The flat deformation theorem states that given a semi-Riemannian analytic metric g on a manifold, locally there always exists a two-form F, a scalar function c, and an arbitrarily prescribed scalar constraint depending on the point x of the manifold and on F and c, say Ψ(c, F, x) = 0, such that the deformed metric η = cg - εF 2 is semi-Riemannian and flat. In this paper we first show that the above result implies that every (Lorentzian analytic) metric g may be written in the extended Kerr-Schild form, namely η ab := ag ab - 2bk (a l b) where η is flat and k a , l a are two null covectors such that k a l a = -1; next we show how the symmetries of g are connected to those of η, more precisely; we show that if the original metric g admits a conformal Killing vector (including Killing vectors and homotheties), then the deformation may be carried out in a way such that the flat deformed metric η 'inherits' that symmetry.

  6. Flat roofs, a grey area; Grauzone Flachdach

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Anja

    2012-11-01

    The boom of low-ballast assembly systems for flat roofs is going on. Solar assembly racks are set up directly on the sealing foil without fastening bolts. But what happens in case of water ingress? And what should be done to prevent damage to the roof cover? (orig.)

  7. Computational Design of Flat-Band Material

    Science.gov (United States)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  8. Do intertidal flats ever reach equilibrium?

    NARCIS (Netherlands)

    Maan, D.C.; van Prooijen, B.C.; Wang, Z.B.; de Vriend, H.J.

    2015-01-01

    Various studies have identified a strong relation between the hydrodynamic forces and the equilibrium profile for intertidal flats. A thorough understanding of the interplay between the hydrodynamic forces and the morphology, however, concerns more than the equilibrium state alone. We study the

  9. Nonflat equilibrium liquid shapes on flat surfaces.

    Science.gov (United States)

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  10. 8. Asymptotically Flat and Regular Cauchy Data

    Science.gov (United States)

    Dain, Sergio

    I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.

  11. Design scenarios for flat panel photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2011-01-01

    Evaluation of the potential of algae production for biofuel and other products at various locations throughout the world requires assessment of algae productivity under varying light conditions and different reactor layouts. A model was developed to predict algae biomass production in flat panel

  12. Completeness for flat modal fixpoint logics

    NARCIS (Netherlands)

    Santocanale, L.; Venema, Y.

    2010-01-01

    This paper exhibits a general and uniform method to prove axiomatic completeness for certain modal fixpoint logics. Given a set Γ of modal formulas of the form γ(x,p1,…,pn), where x occurs only positively in γ, we obtain the flat modal fixpoint language L♯(Γ) by adding to the language of polymodal

  13. Hangingwall accomodation styles in flat ramp trust

    NARCIS (Netherlands)

    Mulugeta, G.; Sokoutis, D.

    2003-01-01

    In this paper we study the dynamic and rheologic control of hanging wall accommodation in ramp-flat thrust models. In particular we vary the dimensionless ratio of shear strength to gravity stress to model hanging wall accommodation styles in different materials. In all models we require that the

  14. Designing Flat-Plate Photovoltaic Arrays

    Science.gov (United States)

    Ross, R. G., Jr.

    1984-01-01

    Report presents overview of state of art in design techniques for flat-plate solar photovoltaic modules and arrays. Paper discusses design requirements, design analyses, and test methods identified and developed for this technology over past several years in effort to reduce cost and improve utility and reliability for broad spectrum of terrestrial applications.

  15. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  16. Assessment of geomorphological and hydrological changes produced by Pleistocene glaciations in a Patagonian basin

    Science.gov (United States)

    Scordo, Facundo; Seitz, Carina; Melo, Walter D.; Piccolo, M. Cintia; Perillo, Gerardo M. E.

    2018-04-01

    This work aims to assess how Pleistocene glaciations modeled the landscape in the upper Senguer River basin and its relationship to current watershed features (drainage surface and fluvial hydrological regime). During the Pleistocene six glacial lobes developed in the upper basin of the Senguer River localized east of the Andean range in southern Argentinean Patagonia between 43° 36' - 46° 27‧ S. To describe the topography and hydrology, map the geomorphology, and propose an evolution of the study area during the Pleistocene we employed multitemporal Landsat images, national geological sheets and a mosaic of the digital elevation model (Shuttle Radar Topography Mission) along with fieldwork. The main conclusion is that until the Middle Pleistocene, the drainage divide of the Senguer River basin was located to the west of its current limits and its rivers drained the meltwater of the glaciers during interglacial periods. However, processes of drainage inversion and drainage surface reduction occurred in the headwater of most rivers of the basin during the Late Pleistocene. Those processes were favored by a relative shorter glacial extension during LGM and the dam effect produced by the moraines of the Post GPG I and III glaciations. Thus, since the Late Pleistocene, the headwaters of several rivers in the basin have been reduced, and the moraines corresponding to the Middle Pleistocene glaciations currently divide the watersheds that drain towards the Senguer River from those that flow west towards the Pacific Ocean.

  17. Potential for observing and discriminating impact craters and comparable volcanic landforms on Magellan radar images

    International Nuclear Information System (INIS)

    Ford, J.P.

    1989-01-01

    Observations of small terrestrial craters by Seasat synthetic aperture radar (SAR) at high resolution (approx. 25 m) and of comparatively large Venusian craters by Venera 15/16 images at low resolution (1000 to 2000 m) and shorter wavelength show similarities in the radar responses to crater morphology. At low incidence angles, the responses are dominated by large scale slope effects on the order of meters; consequently it is difficult to locate the precise position of crater rims on the images. Abrupt contrasts in radar response to changing slope (hence incidence angle) across a crater produce sharp tonal boundaries normal to the illumination. Crater morphology that is radially symmetrical appears on images to have bilateral symmetry parallel to the illumination vector. Craters are compressed in the distal sector and drawn out in the proximal sector. At higher incidence angles obtained with the viewing geometry of SIR-A, crater morphology appears less compressed on the images. At any radar incidence angle, the distortion of a crater outline is minimal across the medial sector, in a direction normal to the illumination. Radar bright halos surround some craters imaged by SIR-A and Venera 15 and 16. The brightness probably denotes the radar response to small scale surface roughness of the surrounding ejecta blankets. Similarities in the radar responses of small terrestrial impact craters and volcanic craters of comparable dimensions emphasize the difficulties in discriminating an impact origin from a volcanic origin in the images. Similar difficulties will probably apply in discriminating the origin of small Venusian craters, if they exist. Because of orbital considerations, the nominal incidence angel of Magellan radar at the center of the imaging swath will vary from about 45 deg at 10 deg N latitude to about 16 deg at the north pole and at 70 deg S latitude. Impact craters and comparable volcanic landforms will show bilateral symmetry

  18. Upper Middle Pleistocene climate and landscape development of Northern Germany

    Science.gov (United States)

    Urban, B.

    2009-04-01

    The Pleistocene sequence of the Schöningen lignite mine contains a number of interglacial and interstadial limnic and peat deposits, travertine tuff, soils, tills and fluvioglacial sediments as well as loess deposits. The complex Quaternary sequence contains six major cycles with evidence of four interglacials younger than the Elsterian glaciation and preceding the Holocene. The sequence begins with Late Elsterian glacial and three interstadial deposits formed in shallow basins. Cycle I is assigned to late parts of the Holsteinian interglacial. A strong cooling is recorded by a significant increase of Artemisia and grasses during the following Buschhaus A Stadial, which is considered to mark the onset of the Saalian Complex sensu lato (penultimate glacial-complex). The lacustrine sediments of Cycle II, Reinsdorf interglacial sequence (Urban, 1995), have been found to occur at archaeological sites Schöningen 12 and 13 (Thieme,1997). Recent investigations give evidence for at least 13 Local Pollen Assemblage Zones showing a five-fold division of the interglacial and a sequence of five climatic oscillations following the interglacial (Urban, 2006). From the relative high values for grasses and herbs in the inferred forested periods of the interglacial, a warm dry forest steppe climate can be deduced. The stratigraphic position of throwing spears (Thieme, 1997), can clearly be allocated to Reinsdorf Interstadial B (level II-4) characterized by an open pine-birch forest. Uppermost parts (level II-5) represent the transition into a periglacial environment indicating the definite end of cycle II. The Schöningen Interglacial (Cycle III) represents the youngest of the pre-Drenthe (Early Saalian Stadial) interglacials (Urban, 1995). In summary, it can be concluded that the Middle Pleistocene terrestrial pollen record of the Schöningen sequence represents tentative correlatives of MIS 7, 9 and 11. North of Leck (North Friesland, Schleswig-Holstein) sediments of the centre

  19. A complete human pelvis from the Middle Pleistocene of Spain.

    Science.gov (United States)

    Arsuaga, J L; Lorenzo, C; Carretero, J M; Gracia, A; Martínez, I; García, N; Bermúdez de Castro, J M; Carbonell, E

    1999-05-20

    The Middle Pleistocene site of Sima de los Huesos in Sierra de Atapuerca, Spain, has yielded around 2,500 fossils from at least 33 different hominid individuals. These have been dated at more than 200,000 years ago and have been classified as ancestors of Neanderthals. An almost complete human male pelvis (labelled Pelvis 1) has been found, which we associate with two fragmentary femora. Pelvis 1 is robust and very broad with a very long superior pubic ramus, marked iliac flare, and a long femoral neck. This pattern is probably the primitive condition from which modern humans departed. A modern human newborn would pass through the birth canal of Pelvis 1 and this would be even larger in a female individual. We estimate the body mass of this individual at 95 kg or more. Using the cranial capacities of three specimens from Sima de los Huesos, the encephalization quotients are substantially smaller than in Neanderthals and modern humans.

  20. Towards an Integrated Geomagnetic Polarity Reversal Timescale for the Pleistocene

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Kuiper, Klaudia

    The development of the geomagnetic polarity timescale (GPTS) in the mid 20th century led to the greater understanding of seafloor spreading and plate tectonics (Heirtzler et al., 1968). Over 40 years later, the GPTS continues to be refined, particularly in terms of integrating multiple dating...... minerals. Each of these ages is then compared to independent astronomical ages for the events in order to define tie-points for constructing a Pleistocene a multi-chronometer GPTS. Although only three reversals are addressed here, the methodology applied shows promise to refining short-lived excursions...... to enable further understanding of the wavering magnetic field. The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 215458....

  1. The consequences of pleistocene climate change on lowland neotropical vegetation

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, P.E.; Colinvaux, P.A. (Smithsonian Tropical Research Institute, Panama City (Panama))

    1994-06-01

    Palynological reconstructions indicate that lowland tropical America was subject to intense cooling during the last ice-age. The descent of presently montane taxa into the lowlands of Amazonia and Minas Gerais indicate temperature depressions ranging from 5[degrees]C to 9[degrees]C cooler-than-present. The strengthened incursion of southerly airmasses caused a reassortment of vegetation throughout Amazonia. Presently allopatric species are found to have been sympatric as novel forest assemblages and formed and dissolved. Modest drying, perhaps a 20% reduction in precipitation, accounts for all the records that show a Pleistocene expansion of savanna. No evidence is found to support the fragmentation of Amazonian forests during glacial times, and the hypothesis of forest refuges as an explanation of tropical speciation is rejected on empirical grounds.

  2. Summit crater lake observations, and the location, chemistry, and pH of water samples near Mount Chiginagak volcano, Alaska: 2004-2012

    Science.gov (United States)

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Wang, Bronwen; McGimsey, Robert G.

    2013-01-01

    Mount Chiginagak is a hydrothermally active volcano on the Alaska Peninsula, approximately 170 km south–southwest of King Salmon, Alaska (fig. 1). This small stratovolcano, approximately 8 km in diameter, has erupted through Tertiary to Permian sedimentary and igneous rocks (Detterman and others, 1987). The highest peak is at an elevation of 2,135 m, and the upper ~1,000 m of the volcano are covered with snow and ice. Holocene activity consists of debris avalanches, lahars, and lava flows. Pleistocene pyroclastic flows and block-and-ash flows, interlayered with andesitic lava flows, dominate the edifice rocks on the northern and western flanks. Historical reports of activity are limited and generally describe “steaming” and “smoking” (Coats, 1950; Powers, 1958). Proximal tephra collected during recent fieldwork suggests there may have been limited Holocene explosive activity that resulted in localized ash fall. A cluster of fumaroles on the north flank, at an elevation of ~1,750 m, commonly referred to as the “north flank fumarole” have been emitting gas throughout historical time (location shown in fig. 2). The only other thermal feature at the volcano is the Mother Goose hot springs located at the base of the edifice on the northwestern flank in upper Volcano Creek, at an elevation of ~160 m (fig. 2, near sites H1, H3, and H4). Sometime between November 2004 and May 2005, a ~400-m-wide, 100-m-deep lake developed in the snow- and ice-filled summit crater of the volcano (Schaefer and others, 2008). In early May 2005, an estimated 3 million cubic meters (3×106 m3) of sulfurous, clay-rich debris and acidic water exited the crater through tunnels at the base of a glacier that breaches the south crater rim. More than 27 km downstream, these acidic flood waters reached approximately 1.3 m above normal water levels and inundated a fertile, salmon-spawning drainage, acidifying the entire water column of Mother Goose Lake from its surface waters to its

  3. Palaeodemography of the Atapuerca-SH Middle Pleistocene hominid sample.

    Science.gov (United States)

    Bermúdez de Castro, J M; Nicolás, M E

    1997-01-01

    We report here on the palaeodemographic analysis of the hominid sample recovered to date from the Sima de los Huesos (SH) Middle Pleistocene cave site in the Sierra de Atapuerca (Burgos, Spain). The analysis of the mandibular, maxillary, and dental remains has made it possible to estimate that a minimum of 32 individuals, who probably belonged to the same biological population, are represented in the current SH human hypodigm. The remains of nine-individuals are assigned to males, and nine to females, suggesting that a 1:1 sex ratio characterizes this hominid sample. The survivorship curve shows a low representation of infants and children, a high mortality among the adolescents and prime-age adults, and a low older adult mortality. Longevity was probably no greater than 40 years. This mortality pattern (adolescents and adults); which in some aspects resembles that observed in Neandertals, is quite different from those reported for recent foraging human groups. The adult age-at-death distribution of the SH hominid sample appears to be neither the consequence of underaging the older adults, nor of differential preservation or of the recognition of skeletal remains. Thus if we accept that they had a life history pattern similar to that of modern humans there would appear to be a clear contradiction between the demographic distribution and the demographic viability of the population represented by the SH hominid fossils. The possible representational bias of the SH hominid sample, as well as some aspects of the reproductive biology of the Pleistocene populations are also discussed.

  4. Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada).

    Science.gov (United States)

    Bargo, M Susana; Toledo, Néstor; Vizcaíno, Sergio F

    2006-02-01

    Sloths are among the most characteristic elements of the Cainozoic of South America and are represented, during the Pleistocene, by approximately nine genera of gigantic ground sloths (Megatheriidae and Mylodontidae). A few contributions have described their masticatory apparatus, but almost no attention has been paid to the reconstruction of the muzzle, an important feature to consider in relation to food intake, and particularly relevant in sloths because of the edentulous nature of the muzzle and its varied morphology. The relationship between dietary habits and shape and width of the muzzle is well documented in living herbivores and has been considered an important feature for the inference of alimentary styles in fossils, providing an interesting methodological tool that deserves to be considered for xenarthrans. The goal of this study was to examine models of food intake by reconstructing the appearance and shape of the muzzle in five species of Pleistocene ground sloths (Megatherium americanum, Glossotherium robustum, Lestodon armatus, Mylodon darwini, and Scelidotherium leptocephalum) using reconstructions of the nasal cartilages and facial muscles involved in food intake. The preservation of the nasal septum, and the scars for muscular attachment in the rostral part of the skulls, allow making a conservative reconstruction of muzzle anatomy in fossil sloths. Wide-muzzled ground sloths (Glossotherium and Lestodon) had a square, nonprehensile upper lip and were mostly bulk-feeders. The lips, coupled with the tongue, were used to pull out grass and herbaceous plants. Narrow-muzzled sloths (Mylodon, Scelidotherium, and Megatherium) had a cone-shaped and prehensile lip and were mixed or selective feeders. The prehensile lip was used to select particular plants or plant parts. (c) 2005 Wiley-Liss, Inc.

  5. Magma genesis at Gale Crater: Evidence for Pervasive Mantle Metasomatism

    Science.gov (United States)

    Filiberto, J.

    2017-12-01

    Basaltic rocks have been analyzed at Gale Crater with a larger range in bulk chemistry than at any other landing site [1]. Therefore, the rocks may have experienced significantly different formation conditions than those experienced by magmas at Gusev Crater or Meridiani Planum. Specifically, the rocks at Gale Crater have higher potassium than other Martian rocks, with a potential analog of the Nakhlite parental magma, and are consistent with forming from a metasomatized mantle source [2-4]. Mantle metasomatism would not only affect the bulk chemistry but mantle melting conditions, as metasomatism fluxes fluids into the source region. Here I will combine differences in bulk chemistry between Martian basalts to calculate formation conditions in the interior and investigate if the rocks at Gale Crater experienced magma genesis conditions consistent with metasomatism - lower temperatures and pressures of formation. To calculate average formation conditions, I rely on experimental results, where available, and silica-activity and Mg-exchange thermometry calculations for all other compositions following [5, 6]. The results show that there is a direct correlation between the calculated mantle potential temperature and the K/Ti ratio of Gale Crater rocks. This is consistent with fluid fluxed metasomatism introducing fluids to the system, which depressed the melting temperature and fluxed K but not Ti to the system. Therefore, all basalts at Gale Crater are consistent with forming from a metasomatized mantle source, which affected not only the chemistry of the basalts but also the formation conditions. References: [1] Cousin A. et al. (2017) Icarus. 288: 265-283. [2] Treiman A.H. et al. (2016) Journal of Geophysical Research: Planets. 121: 75-106. [3] Treiman A.H. and Medard E. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10.1130/abs/2016AM-285851. [4] Schmidt M.E. et al. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10

  6. General classification of a normally flat Ric- semi symmetric submanifolds

    International Nuclear Information System (INIS)

    Mirzoyan, V.A.

    2012-01-01

    It has been proved that a normally flat submanifold M in Euclidean space En satisfies the condition R(X,Y)Ricci =0 if and only if it is the open part of one of the following submanifolds: (1) normally flat two-dimensional submanifold, (2) normally flat Einstein submanifold (in particular Ricci-flat or locally Euclidean), (3) normally flat semi- Einstein submanifold, (4) normally flat interlacing product of semi-Einstein submanifolds and locally Euclidean submanifold (may be of zero dimension), (5) direct product of the above enumerated classes of submanifolds

  7. Continuity versus discontinuity of the human settlement of Europe between the late Early Pleistocene and the early Middle Pleistocene. The mandibular evidence

    Science.gov (United States)

    Bermúdez de Castro, José María; Martinón-Torres, María; Rosell, Jordi; Blasco, Ruth; Arsuaga, Juan Luís; Carbonell, Eudald

    2016-12-01

    One of the most interesting aspects of the settlement of Europe is the possible continuity or discontinuity of the populations living in this continent during the Early and Middle Pleistocene. In this paper we present an analysis of the mandibular fossil record from four important Pleistocene European sites, Gran Dolina-TD6-2 (Sierra de Atapuerca), Mauer, Arago, and Atapuerca-Sima de los Huesos. We focus this study in the recognition of key derived mandibular features that may be useful to assess the relationship among the populations represented at these sites. In order to make an approach to the ecological scenario, we also present a short review and discussion of the archaeological and paleoenvironmental evidences at that time. Our results suggest that probably there was a demographic discontinuity between the late Early Pleistocene populations (MIS 21-MIS 19), and those dated to the MIS 15. Hybridization between residents and new settlers cannot be discarded. However, some features of the Gran Dolina-TD6 hominins point to some relationship between the population represented in this site (probably dated to the MIS 21) and the European Middle Pleistocene and early Late Pleistocene populations. A hypothetical scenario is presented in order to understand this apparent contradiction with the model of discontinuity.

  8. Middle and Late Pleistocene glaciations in the southwestern Pamir and their effects on topography [Topography of the SW Pamir shaped by middle-late Pleistocene glaciation

    International Nuclear Information System (INIS)

    Stübner, Konstanze; Grin, Elena; Hidy, Alan J.; Schaller, Mirjam; Gold, Ryan D.

    2017-01-01

    Glacial chronologies provide insight into the evolution of paleo-landscapes, paleoclimate, topography, and the erosion processes that shape mountain ranges. In the Pamir of Central Asia, glacial morphologies and deposits indicate extensive past glaciations, whose timing and extent remain poorly constrained. Geomorphic data and 15 new "1"0Be exposure ages from moraine boulders and roches moutonnées in the southwestern Pamir document multiple Pleistocene glacial stages. The oldest exposure ages, View the MathML source113 ± 10ka, underestimate the age of the earliest preserved glacial advance and imply that the modern relief of the southwestern Pamir (peaks at ~5000–6000 m a.s.l.; valleys at ~2000–3000 m a.s.l.) already existed in the late Middle Pleistocene. Younger exposure ages (~40–80 ka, ~30 ka) complement the existing Central Asian glacial chronology and reflect successively less extensive Late Pleistocene glaciations. The topography of the Pamir and the glacial chronologies suggest that, in the Middle Pleistocene, an ice cap or ice field occupied the eastern Pamir high-altitude plateau, whereas westward flowing valley glaciers incised the southwestern Pamir. Since the Late Pleistocene deglaciation, the rivers of the southwestern Pamir adjusted to the glacially shaped landscape. As a result, localized rapid fluvial incision and drainage network reorganization reflect the transient nature of the deglaciated landscape.

  9. Dietary traits of the late Early Pleistocene Bison menneri (Bovidae, Mammalia) from its type site Untermassfeld (Central Germany) and the problem of Pleistocene 'wood bison'

    Science.gov (United States)

    van Asperen, Eline N.; Kahlke, Ralf-Dietrich

    2017-12-01

    Over the course of the Early and early Middle Pleistocene, a climatic cooling trend led to the partial opening up of landscapes in the western Palaearctic. This led to a gradual replacement of browsers by grazers, whilst some herbivore species shifted their diet towards including more grass. Wear patterns of herbivore cheek teeth can inform our understanding of the timing and extent of this change and indicate levels of dietary plasticity. One of the indicator species of the faunal turnover is the first large-sized form of bison in the Palaearctic, Bison menneri. The dental mesowear of the palaeopopulation from the species' late Early Pleistocene type site of Untermassfeld in Central Germany and the Late Pleistocene B. priscus from Taubach, both from habitat mosaics of forested habitats and more open landscapes, have a mixed feeder profile similar to that of North American wood bison, which has a distinct preference for open habitats but occasionally consumes a high amount of browse as a fall-back food. In contrast, the grazer mesowear signature of early Middle Pleistocene B. schoetensacki voigtstedtensis from Voigtstedt indicates these animals likely did not regularly feed in the densely forested area around the site. The mesowear of B. schoetensacki from Süssenborn, in a more open environment, is similar to that of extant European bison. Both Pleistocene and extant bison are grazers to mixed feeders with relatively high tolerance of a suboptimal browsing diet. None of these species can be regarded as true 'wood bison'.

  10. Are pre-crater mounds gas-inflated?

    Science.gov (United States)

    Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Babkina, Elena; Arefiev, Stanislav; Khairullin, Rustam

    2017-04-01

    Gas-emission craters (GEC) on Yamal peninsula, which occupied minds of researches for the last couple of years since first discovered in 2014, appeared to form on the place of specifically shaped mounds. There was a number of hypotheses involving pingo as an origin of these mounds. This arouse an interest in mapping pingo thus marking the areas of GEC formation risk. Our field research allows us to suggest that remote-sensing-based mapping of pingo may result in mix up of mounds of various origin. Thus, we started with classification of the mounds based on remote-sensing, field observations and survey from helicopter. Then we compared indicators of mounds of various classes to the properties of pre-crater mounds to conclude on their origin. Summarizing field experience, there are three main mound types on Yamal. (1) Outliers (remnant hills), separated from the main geomorphic landform by erosion. Often these mounds comprise polygonal blocks, kind of "baydzherakh". Their indicators are asymmetry (short gentle slope towards the main landform, and steep slope often descending into a small pond of thermokarst-nivation origin), often quadrangle or conic shape, and large size. (2) Pingo, appear within the khasyrei (drain lake basin); often are characterized by open cracks resulting from expansion of polygonal network formed when re-freezing of lake talik prior to pingo formation; old pingo may bear traces of collapse on the top, with depression which differs from the GEC by absence of parapet. (3) Frost-heave mounds (excluding pingo) may form on deep active layer, reducing due to moss-peat formation and forming ice lenses from an active layer water, usually they appear in the drainage hollows, valley bottoms, drain-lake basins periphery. These features are smaller than the first two types of mounds. Their tops as a rule are well vegetated. We were unable to find a single or a set of indicators unequivocally defining any specific mound type, thus indicators of pre-crater

  11. Redox stratification of an ancient lake in Gale crater, Mars.

    Science.gov (United States)

    Hurowitz, J A; Grotzinger, J P; Fischer, W W; McLennan, S M; Milliken, R E; Stein, N; Vasavada, A R; Blake, D F; Dehouck, E; Eigenbrode, J L; Fairén, A G; Frydenvang, J; Gellert, R; Grant, J A; Gupta, S; Herkenhoff, K E; Ming, D W; Rampe, E B; Schmidt, M E; Siebach, K L; Stack-Morgan, K; Sumner, D Y; Wiens, R C

    2017-06-02

    In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized. Copyright © 2017, American Association for the Advancement of Science.

  12. Layers of 'Cabo Frio' in 'Victoria Crater' (False Color)

    Science.gov (United States)

    2006-01-01

    This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is an enhanced false color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.

  13. Layers of 'Cabo Frio' in 'Victoria Crater' (Stereo)

    Science.gov (United States)

    2006-01-01

    This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is a red-blue stereo anaglyph generated from images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 430-nanometer filters.

  14. A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2017-09-01

    A novel thermo-hydraulic coupling model was proposed in this study to investigate the crater formation in electrical discharge machining (EDM). The temperature distribution of workpiece materials was included, and the crater formation process was explained from the perspective of hydrodynamic characteristics of the molten region. To better track the morphology of the crater and the movement of debris, the level-set method was introduced in this study. Simulation results showed that the crater appears shortly after the ignition of the discharge, and the molten material is removed by vaporizing in the initial stage, then by splashing at the following time. The driving force for the detachment of debris in the splashing removal stage comes from the extremely large pressure difference in the upper part of the molten region, and the morphology of the crater is also influenced by the shearing flow of molten material. It was found that the removal ratio of molten material is only about 7.63% under the studied conditions, leaving most to form the re-solidification layer on the surface of the crater. The size of the crater reaches the maximum at the end of discharge duration then experiences a slight reduction because of the reflux of molten material after the discharge. The results of single pulse discharge experiments showed that the morphologies and sizes between the simulation crater and actual crater are good at agreement, verifying the feasibility of the proposed thermo-hydraulic coupling model in explaining the mechanisms of crater formation in EDM.

  15. Martian Cratering 7: The Role of Impact Gardening

    Science.gov (United States)

    Hartmann, William K.; Anguita, Jorge; de la Casa, Miguel A.; Berman, Daniel C.; Ryan, Eileen V.

    2001-01-01

    Viking-era researchers concluded that impact craters of diameter Dduricrust at Viking and Pathfinder sites demonstrates the cementing process. These results affect lander/rover searches for intact ancient deposits. The upper tens of meters of exposed Noachian units cannot survive today in a pristine state. Intact Noachian deposits might best be found in cliffside strata, or in recently exhumed regions. The hematite-rich areas found in Terra Meridiani by the Mars Global Surveyor are probably examples of the latter.

  16. Geological Structures in the WaIls of Vestan Craters

    Science.gov (United States)

    Mittlefehldt, David; Nathues, A.; Beck, A. W.; Hoffmann, M.; Schaefer, M.; Williams, D. A.

    2014-01-01

    A compelling case can be made that Vesta is the parent asteroid for the howardite, eucrite and diogenite (HED) meteorites [1], although this interpretation has been questioned [2]. Generalized models for the structure of the crust of Vesta have been developed based on petrologic studies of basaltic eucrites, cumulate eucrites and diogenites. These models use inferred cooling rates for different types of HEDs and compositional variations within the clan to posit that the lower crust is dominantly diogenitic in character, cumulate eucrites occur deep in the upper crust, and basaltic eucrites dominate the higher levels of the upper crust [3-5]. These models lack fine-scale resolution and thus do not allow for detailed predictions of crustal structure. Geophysical models predict dike and sill intrusions ought to be present, but their widths may be quite small [6]. The northern hemisphere of Vesta is heavily cratered, and the southern hemisphere is dominated by two 400-500 km diameter basins that excavated deep into the crust [7-8]. Physical modeling of regolith formation on 300 km diameter asteroids predicts that debris layers would reach a few km in thickness, while on asteroids of Vesta's diameter regolith thicknesses would be less [9]. This agrees well with the estimated =1 km thickness of local debris excavated by a 45 km diameter vestan crater [10]. Large craters and basins may have punched through the regolith/megaregolith and exposed primary vestan crustal structures. We will use Dawn Framing Camera (FC) [11] images and color ratio maps from the High Altitude and Low Altitude Mapping Orbits (HAMO, 65 m/pixel; LAMO, 20 m/pixel) to evaluate structures exposed on the walls of craters: two examples are discussed here.

  17. Continued monitoring of aeolian activity within Herschel Crater, Mars

    Science.gov (United States)

    Cardinale, Marco; Pozzobon, Riccardo; Michaels, Timothy; Bourke, Mary C.; Okubo, Chris H.; Chiara Tangari, Anna; Marinangeli, Lucia

    2017-04-01

    In this work, we study a dark dune field on the western side of Herschel crater, a 300 km diameter impact basin located near the Martian equator (14.4°S, 130°E), where the ripple and dune motion reflects the actual atmospheric wind conditions. We develop an integrated analysis using (1) automated ripple mapping that yields ripple orientations and evaluates the spatial variation of actual atmospheric wind conditions within the dunes, (2) an optical cross-correlation that allows us to quantify an average ripple migration rate of 0.42 m per Mars year, and (3) mesoscale climate modeling with which we compare the observed aeolian changes with modeled wind stresses and directions. Our observations are consistent with previous work [1] [2] that detected aeolian activity in the western part of the crater. It also demonstrates that not only are the westerly Herschel dunes movable, but that predominant winds from the north are able to keep the ripples and dunes active within most (if not all) of Herschel crater in the current atmospheric conditions. References: [1] Cardinale, M., Silvestro, S., Vaz, D.A., Michaels, T., Bourke, M.C., Komatsu, G., Marinangeli, L., 2016. Present-day aeolian activity in Herschel Crater, Mars. Icarus 265, 139-148. doi:10.1016/j.icarus.2015.10.022. [2] Runyon, K.D., Bridges, N.T., Ayoub, F., Newman, C.E. and Quade, J.J., 2017. An integrated model for dune morphology and sand fluxes on Mars. Earth and Planetary Science Letters, 457, pp.204-212.

  18. Stratigraphy and Evolution of Delta Channel Deposits, Jezero Crater, Mars

    Science.gov (United States)

    Goudge, T. A.; Mohrig, D.; Cardenas, B. T.; Hughes, C. M.; Fassett, C. I.

    2017-01-01

    The Jezero impact crater hosted an open-basin lake that was active during the valley network forming era on early Mars. This basin contains a well exposed delta deposit at the mouth of the western inlet valley. The fluvial stratigraphy of this deposit provides a record of the channels that built the delta over time. Here we describe observations of the stratigraphy of the channel deposits of the Jezero western delta to help reconstruct its evolution.

  19. Large sulfur isotope fractionations in Martian sediments at Gale crater

    Science.gov (United States)

    Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.

    2017-09-01

    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.

  20. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    Science.gov (United States)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  1. A Flat World with Deep Fractures

    Directory of Open Access Journals (Sweden)

    Emil Constantinescu

    2016-10-01

    Full Text Available The Internet manages to connect different parts of the world, defies geographical distances and gives the impression that our planet is flat, but the Internet is there only for the ones who have the possibility and the ability to use it. Our contemporary flat world has deep transversal fractures which, like in many geological structures, make a direct connection between layers with different characteristics. The elites are moving across information avenues with targets set in the future; at the same time, in many parts of our planet, there are people organizing their lives in pre-modern agrarian cycles. Diversity in ways of living and in social organization is a sign of human freedom, not a sign of error, so, having different alternatives to achieving prosperity and happiness should be good news. Holding dear to a society’s lifestyle should not push for the destruction of societies with different sets of values.

  2. Towards a flat 45%-efficient concentrator module

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén, E-mail: rmohedano@lpi-europe.com; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Sorgato, S.; Falicoff, Waqidi [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid (Spain); Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Madrid (Spain)

    2015-09-28

    The so-called CCS{sup 4}FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.

  3. Release fractions for Rocky Flats specific accidents

    International Nuclear Information System (INIS)

    Weiss, R.C.

    1992-01-01

    As Rocky Flats and other DOE facilities begin the transition process towards decommissioning, the nature of the scenarios to be studied in safety analysis will change. Whereas the previous emphasis in safety accidents related to production, now the emphasis is shifting to accidents related tc decommissioning and waste management. Accident scenarios of concern at Rocky Flats now include situations of a different nature and different scale than are represented by most of the existing experimental accident data. This presentation will discuss approaches at sign to use for applying the existing body of release fraction data to this new emphasis. Mention will also be made of ongoing efforts to produce new data and improve the understanding of physical mechanisms involved

  4. Standard specification for silvered flat glass mirror

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification covers the requirements for silvered flat glass mirrors of rectangular shape supplied as cut sizes, stock sheets or as lehr ends and to which no further processing (such as edgework or other fabrication) has been done. 1.2 This specification covers the quality requirements of silvered annealed monolithic clear and tinted flat glass mirrors up to 6 mm (¼ in.) thick. The mirrors are intended to be used indoors for mirror glazing, for components of decorative accessories or for similar uses. 1.3 This specification does not address safety glazing materials nor requirements for mirror applications. Consult model building codes and other applicable standards for safety glazing applications. 1.4 Mirrors covered in this specification are not intended for use in environments where high humidity or airborne corrosion promoters, or both, are consistently present (such as swimming pool areas, ocean-going vessels, chemical laboratories and other corrosive environments). 1.5 The dimensional val...

  5. History of Rocky Flats waste streams

    International Nuclear Information System (INIS)

    Luckett, L.L.; Dickman, A.A.; Wells, C.R.; Vickery, D.J.

    1982-01-01

    An analysis of the waste streams at Rocky Flats was done to provide information for the Waste Certification program. This program has involved studying the types and amounts of retrievable transuranic (TRU) waste from Rocky Flats that is stored at the Idaho National Engineering Laboratory (INEL). The information can be used to estimate the types and amounts of waste that will need to be permanently stored in the Waste Isolation Pilot Plant (WIPP). The study covered mostly the eight-year period from June 1971 to June 1979. The types, amounts, and plutonium content of TRU waste and the areas or operations responsible for generating the waste are summarized in this waste stream history report. From the period studied, a total of 24,546,153 lbs of waste containing 211,148 g of plutonium currently occupies 709,497 cu ft of storage space at INEL

  6. Infiltration barrier demonstration at Maxey Flats, Kentucky

    International Nuclear Information System (INIS)

    Mills, D.; Razor, J.

    1983-01-01

    At the 1982 DOE LLWMP meeting, the Kentucky Natural Resources and Environmental Protection Cabinet presented a history of the Maxey Flats Waste Disposal Facility, its status, and current Commonwealth activities leading toward stabilization and decommissioning. Information was presented at that time on the purpose of the DOE Trench Moisture Barrier Demonstration Grant and the early phases of construction and implementation. In this paper, final construction and implementation of the trench moisture barrier demonstration are discussed. Data including trench water level measurements, lateral liquid flow in experimental sections, and soil moisture measurements are presented and discussed. The Paper is completed with a brief discussion of remediation activities currently being implemented at Maxey Flats. 9 references, 7 figures, 1 table

  7. Rocky Flats cleanup receives new deadline

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Rocky Flats nuclear weapon plant near Denver narrowly missed a court-ordered shutdown of virtually all cleanup activities when it failed to meet an Aug. 22 deadline for a state permit to store mixed radioactive and hazardous wastes on site. US District Court Judge Lewis Babcock granted a 90-day stay of contempt charges against the US Dept. of Energy, but left open the possibility of civil penalties under the Resource Conservation and Recovery Act. DOE's problems stem from a lawsuit the Sierra Club won two years ago in which Babcock gave Rocky Flats until Aug. 22 to obtain a RCRA permit or interim status from Colorado to store 600 cu yd of mixed wastes. If DOE failed to do so, the court said it could not generate further hazardous wastes at the site

  8. Kinematic tests of exotic flat cosmological models

    International Nuclear Information System (INIS)

    Charlton, J.C.; Turner, M.S.; NASA/Fermilab Astrophysics Center, Batavia, IL)

    1987-01-01

    Theoretical prejudice and inflationary models of the very early universe strongly favor the flat, Einstein-de Sitter model of the universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the universe which posses a smooth component of energy density. The kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings is studied in detail. The observational tests which can be used to discriminate between these models are also discussed. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations. 58 references

  9. Modelling Flat Spring performance using FEA

    International Nuclear Information System (INIS)

    Fatola, B O; Keogh, P; Hicks, B

    2009-01-01

    This paper reports how the stiffness of a Flat Spring can be predicted using nonlinear Finite Element Analysis (FEA). The analysis of a Flat Spring is a nonlinear problem involving contact mechanics, geometric nonlinearity and material property nonlinearity. Research has been focused on improving the accuracy of the model by identifying and exploring the significant assumptions contributing to errors. This paper presents results from some of the models developed using FEA software. The validation process is shown to identify where improvements can be made to the model assumptions to increase the accuracy of prediction. The goal is to achieve an accuracy level of ±10 % as the intention is to replace practical testing with FEA modelling, thereby reducing the product development time and cost. Results from the FEA models are compared with experimental results to validate the accuracy.

  10. THERMAL PERFORMANCE OF FLAT PLATE SOLAR COLLECTOR

    Directory of Open Access Journals (Sweden)

    TABET I.

    2017-06-01

    Full Text Available In this paper, a theoretical and experimental studyof flat platesolar water collector with reflectors.A mathematical model based on energy balance equations saw the thermal behavior of the collector is investigated. The experimental test was made at the unit research applies in renewable energy (URAER located in southern Algeria.An increase of 23% for solar radiation incident on the collector surface with the addition of the planers reflectors in the day of May, this increase causes an improvement of the performance of the collector,the fluid temperature increases with an average of 5%. Thetests conducted on the flat plate solar water collector in open circuit enabled the determination of thermal performance of the collector by estimating the daily output The thermal efficiency of the collector ranges from 1% -63% during the day, a mean value of 36%obtained.

  11. Kinematic tests of exotic flat cosmological models

    International Nuclear Information System (INIS)

    Charlton, J.C.; Turner, M.S.

    1986-05-01

    Theoretical prejudice and inflationary models of the very early Universe strongly favor the flat, Einstein-deSitter model of the Universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the Universe which possess a smooth component by energy density. We study in detail the kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings. We also discuss the observational tests which can be used to discriminate between these models. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations

  12. Kinematic tests of exotic flat cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, J.C.; Turner, M.S.

    1986-05-01

    Theoretical prejudice and inflationary models of the very early Universe strongly favor the flat, Einstein-deSitter model of the Universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the Universe which possess a smooth component by energy density. We study in detail the kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings. We also discuss the observational tests which can be used to discriminate between these models. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations.

  13. Towards a flat 45%-efficient concentrator module

    Science.gov (United States)

    Mohedano, Rubén; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Miñano, Juan C.; Benitez, Pablo; Sorgato, S.; Falicoff, Waqidi

    2015-09-01

    The so-called CCS4FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.

  14. Towards a flat 45%-efficient concentrator module

    International Nuclear Information System (INIS)

    Mohedano, Rubén; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Sorgato, S.; Falicoff, Waqidi; Miñano, Juan C.; Benitez, Pablo

    2015-01-01

    The so-called CCS 4 FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations

  15. Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon

    Science.gov (United States)

    Bacon, Charles R.; Lanphere, Marvin A.

    2006-01-01

    Geologic mapping, K-Ar, and 40Ar/39Ar age determinations, supplemented by paleomagnetic measurements and geochemical data, are used to quantify the Quaternary volcanic history of the Crater Lake region in order to define processes and conditions that led to voluminous explosive eruptions. The Cascade arc volcano known as Mount Mazama collapsed during its climactic eruption of ∼50 km3 of mainly rhyodacitic magma ∼7700 yr ago to form Crater Lake caldera. The Mazama edifice was constructed on a Pleistocene silicic lava field, amidst monogenetic and shield volcanoes ranging from basalt to andesite similar to parental magmas for Mount Mazama. Between 420 ka and 35 ka, Mazama produced medium-K andesite and dacite in 2:1 proportion. The edifice was built in many episodes; some of the more voluminous occurred approximately coeval with volcanic pulses in the surrounding region, and some were possibly related to deglaciation following marine oxygen isotope stages (MIS) 12, 10, 8, 6, 5.2, and 2. Magmas as evolved as dacite erupted many times, commonly associated with or following voluminous andesite effusion. Establishment of the climactic magma chamber was under way when the first preclimactic rhyodacites vented ca. 27 ka. The silicic melt volume then grew incrementally at an average rate of 2.5 km3 k.y.−1 for nearly 20 k.y. The climactic eruption exhausted the rhyodacitic magma and brought up crystal-rich andesitic magma, mafic cumulate mush, and wall-rock granodiorite. Postcaldera volcanism produced 4 km3 of andesite during the first 200–500 yr after collapse, followed at ca. 4800 yr B.P. by 0.07 km3 of rhyodacite. The average eruption rate for all Mazama products was ∼0.4 km3 k.y.−1, but major edifice construction episodes had rates of ∼0.8 km3 k.y.−1. The long-term eruption rate for regional monogenetic and shield volcanoes was d∼0.07 km3 k.y.−1, but only ∼0.02 km3 k.y.−1 when the two major shields are excluded. Plutonic xenoliths and evidence for

  16. Attempt at ESR dating of tooth enamel of French middle pleistocene sites

    International Nuclear Information System (INIS)

    Bahain, J.J.; Sarcia, M.N.; Falgueres, C.; Yokoyama, Y.

    1993-01-01

    Tooth enamel samples from four important French middle Pleistocene sites are analyzed by the ESR method. ESR ages were calculated using uranium uptake mathematical models and compared with U-series results. (author)

  17. Paleoescatology in the sopas formation (Upper Pleistocene) form Uruguay, paleobilogic focus

    International Nuclear Information System (INIS)

    Verde, M.; Ubilla, M.; Soloviy, J.

    1998-01-01

    Continental tetrapod coprolites are reported for the first time for Uruguay, these remains come from the Sopas Formation (Upper Pleistocene). They are assigned to carnivore mammals based on morphology and inclusions of micrommmal remains besides of other attributes.(author)

  18. Snapshots of the Greenland ice sheet configuration in the Pliocene to early Pleistocene

    DEFF Research Database (Denmark)

    Solgaard, Anne M.; Reeh, Niels; Japsen, Peter

    2011-01-01

    The geometry of the ice sheets during the Pliocene to early Pleistocene is not well constrained. Here we apply an ice-flow model in the study of the Greenland ice sheet (GIS) during three extreme intervals of this period constrained by geological observations and climate reconstructions. We study...... the extent of the GIS during the Mid-Pliocene Warmth (3.3-3.0 Ma), its advance across the continental shelf during the late Pliocene to early Pleistocene glaciations (3.0-2.4 Ma) as implied by offshore geological studies, and the transition from glacial to interglacial conditions around 2.4 Ma as deduced...... the variability of the GIS during the Pliocene to early Pleistocene and underline the importance of including independent estimates of the GIS in studies of climate during this period. We conclude that the GIS did not exist throughout the Pliocene to early Pleistocene, and that it melted during interglacials even...

  19. CANIS LUPUS (MAMMALIA, CANIDAE FROM THE LATE PLEISTOCENE DEPOSIT OF AVETRANA (TARANTO, SOUTHERN ITALY

    Directory of Open Access Journals (Sweden)

    DAVIDE F.BERTÈ

    2014-11-01

    Full Text Available Here we described the remains of Canis lupus from the bed 8 of Avetrana karst filling (Late Pleistocene; Taranto, Southern Italy. The studied specimens are larger than those collected from the early Late Pleistocene Apulian localities and those referred to the recent Italian wolf. Moreover, the remains from Avetrana are morphometrically close to Canis lupus maximus from France and to C. lupus collected from Central and Northern Italian localities, chronologically related to MIS 2 and MIS 3. Morphologically, the studied specimens slightly differ from both C. l. maximus and other Pleistocene Apulian wolves. The dimensional differences between the Avetrana wolves and those collected from the other early Late Pleistocene Apulian localities could be explained through a spread of a large-sized morphotype from the Northern Italy.

  20. Basic TRUEX process for Rocky Flats Plant

    International Nuclear Information System (INIS)

    Leonard, R.A.; Chamberlain, D.B.; Dow, J.A.; Farley, S.E.; Nunez, L.; Regalbuto, M.C.; Vandegrift, G.F.

    1994-08-01

    The Generic TRUEX Model was used to develop a TRUEX process flowsheet for recovering the transuranics (Pu, Am) from a nitrate waste stream at Rocky Flats Plant. The process was designed so that it is relatively insensitive to changes in process feed concentrations and flow rates. Related issues are considered, including solvent losses, feed analysis requirements, safety, and interaction with an evaporator system for nitric acid recycle

  1. Microwave solidification development for Rocky Flats waste

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.; Erle, R.; Eschen, V. [and others

    1994-04-01

    The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology.

  2. Microwave solidification development for Rocky Flats waste

    International Nuclear Information System (INIS)

    Dixon, D.; Erle, R.; Eschen, V.

    1994-04-01

    The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology

  3. Optimised intake stroke analysis for flat and dome head pistons ...

    African Journals Online (AJOL)

    Optimised intake stroke analysis for flat and dome head pistons. ... in understanding the performance characteristics optioned between flat head and dome head pistons in engine design. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  4. Concentric Crater Fill in Utopia Planitia: Timing and Transitions Between Glacial and Periglacial Processes.

    Science.gov (United States)

    Levy, J.; Head, J.

    2008-09-01

    Concentric crater fill (CCF), lobate debris aprons (LDA), and lineated valley fill (LVF) have long been used as indicators of ground ice on Mars [1-3]. Formation models for these features range from aeolian modification [4], to rock-glacier processes [5], to debris-covered glacier processes [6-7], but are now largely constrained by the detection of material within lobate debris aprons that is 100s of meters thick, and which has dielectric properties consistent with water ice [8-9]. At ~30 cm/pixel HiRISE resolution, LVF, LDA, and CCF show complex surface textures, termed "brain coral terrain" [9], or, succinctly, "brain terrain" (BT) [10]. Polygonally patterned ground commonly is present in proximity to brain terrain, overlying it as "brain terrain-covering" polygons (BTC) [10]. Here we document spatial patterns of BT and BTC morphology present in four CCF-filled, ~10 km diameter craters in Utopia Planitia. We then evaluate formation processes for BT and BTC units. Brain Terrain (BT) Morphology At HiRISE resolution (~30 cm/pixel), concentric crater fill brain terrain displays a complex surface texture. Two distinct sub-textures are commonly present in brain terrain [9]: filled brain terrain (FBT) and hollow brain terrain (HBT) (Figure 1). Filled brain terrain (FBT) is composed of arcuate and cuspate mounds, commonly ~10-20 m wide and 10 - Hollow brain terrain (HBT) is composed of arcuate and cuspate features that are delimited by a convex-up boundary band, commonly ~4-6 m wide, surrounding a depression. HBT are of similar dimensions to FBT, but are seldom longer than ~100 m. HBT boundary bands are commonly parallel along the long axis, but may be tightly rounded or gradually tapered along the short axis. HBT features occur singly, or in linked groups. HBT features are commonly oriented in lineations which are concentric to the crater in which the unit is present. HBT lineation spacing is variable, but commonly has a wavelength of ~20 m. HBT is commonly present at

  5. How flat is our Universe really?

    International Nuclear Information System (INIS)

    Okouma, P.M.; Fantaye, Y.; Bassett, B.A.

    2013-01-01

    Distance measurement provides no constraints on curvature independent of assumptions about the dark energy, raising the question, how flat is our Universe if we make no such assumptions? Allowing for general evolution of the dark energy equation of state with 20 free parameters that are allowed to cross the phantom divide, w(z)=−1, we show that while it is indeed possible to match the first peak in the Cosmic Microwave Background with non-flat models and arbitrary Hubble constant, H 0 , the full WMAP7 and supernova data alone imply −0.12 k 0 prior, this tightens significantly to Ω k =0.002±0.009. These constitute the most conservative and model-independent constraints on curvature available today, and illustrate that the curvature-dynamics degeneracy is broken by current data, with a key role played by the Integrated Sachs Wolfe effect rather than the distance to the surface of last scattering. If one imposes a quintessence prior on the dark energy (−1⩽w(z)⩽1) then just the WMAP7 and supernova data alone force the Universe to near flatness: Ω k =0.013±0.012. Finally, allowing for curvature, we find that all datasets are consistent with a Harrison–Zel'dovich spectral index, n s =1, at 2σ, illustrating the interplay between early and late Universe constraints

  6. Stationary solutions and asymptotic flatness I

    International Nuclear Information System (INIS)

    Reiris, Martin

    2014-01-01

    In general relativity, a stationary isolated system is defined as an asymptotically flat (AF) stationary spacetime with compact material sources. Other definitions that are less restrictive on the type of asymptotic could in principle be possible. Between this article and its sequel, we show that under basic assumptions, asymptotic flatness indeed follows as a consequence of Einstein's theory. In particular, it is proved that any vacuum stationary spacetime-end whose (quotient) manifold is diffeomorphic to R 3 minus a ball and whose Killing field has its norm bounded away from zero, is necessarily AF with Schwarzschildian fall off. The ‘excised’ ball would contain (if any) the actual material body, but this information is unnecessary to reach the conclusion. In this first article, we work with weakly asymptotically flat (WAF) stationary ends, a notion that generalizes as much as possible that of the AF end, and prove that WAF ends are AF with Schwarzschildian fall off. Physical and mathematical implications are also discussed. (paper)

  7. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  8. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Melo, W. S.; Guerini, S.; Diniz, E. M.

    2015-01-01

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  9. Design scenarios for flat panel photobioreactors

    International Nuclear Information System (INIS)

    Slegers, P.M.; Wijffels, R.H.; Straten, G. van; Boxtel, A.J.B. van

    2011-01-01

    Evaluation of the potential of algae production for biofuel and other products at various locations throughout the world requires assessment of algae productivity under varying light conditions and different reactor layouts. A model was developed to predict algae biomass production in flat panel photobioreactors using the interaction between light and algae growth for the algae species Phaeodactylum tricornutum and Thalassiosira pseudonana. The effect of location, variable sunlight and reactor layout on biomass production in single standing and parallel positioned flat panels was considered. Three latitudes were studied representing the Netherlands, France and Algeria. In single standing reactors the highest yearly biomass production is achieved in Algeria. During the year biomass production fluctuates the most in the Netherlands, while it is almost constant in Algeria. Several combinations of path lengths and biomass concentrations can result in the same optimal biomass production. The productivity in parallel place flat panels is strongly influenced by shading and diffuse light penetration between the panels. Panel orientation has a large effect on productivity and at higher latitudes the difference between north-south and east-west orientation may go up to 50%.

  10. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2) in Colbert County, Alabama, USA.

    Science.gov (United States)

    Jacquemin, Stephen J; Ebersole, Jun A; Dickinson, William C; Ciampaglio, Charles N

    2016-01-01

    The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (∼10,000 to 30,000 years B.P.) leading to modern Holocene fish diversity patterns. The objective of this study was to describe the fish assemblages of the Tennessee River Basin from the late Pleistocene using a series of faunas from locales throughout the basin documented from published literature, unpublished reports, and an undocumented fauna from Bell Cave (site ACb-2, Colbert County, AL). Herein we discuss 41 unequivocal taxa from 10 late Pleistocene localities within the basin and include a systematic discussion of 11 families, 19 genera, and 24 identifiable species (28 unequivocal taxa) specific to the Bell Cave locality. Among the described fauna are several extirpated (e.g., Northern Pike Esox lucius, Northern Madtom Noturus stigmosus) and a single extinct (Harelip Sucker Moxostoma lacerum) taxa that suggest a combination of late Pleistocene displacement events coupled with more recent changes in habitat that have resulted in modern basin diversity patterns. The Bell Cave locality represents one of the most intact Pleistocene freshwater fish deposits anywhere in North America. Significant preservational, taphonomic, sampling, and identification biases preclude the identification of additional taxa. Overall, this study provides a detailed look into paleo-river ecology, as well as freshwater fish diversity and distribution leading up to the contemporary biodiversity patterns of the Tennessee River Basin and Mississippi River Basin as a whole.

  11. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2 in Colbert County, Alabama, USA

    Directory of Open Access Journals (Sweden)

    Stephen J. Jacquemin

    2016-02-01

    Full Text Available The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (∼10,000 to 30,000 years B.P. leading to modern Holocene fish diversity patterns. The objective of this study was to describe the fish assemblages of the Tennessee River Basin from the late Pleistocene using a series of faunas from locales throughout the basin documented from published literature, unpublished reports, and an undocumented fauna from Bell Cave (site ACb-2, Colbert County, AL. Herein we discuss 41 unequivocal taxa from 10 late Pleistocene localities within the basin and include a systematic discussion of 11 families, 19 genera, and 24 identifiable species (28 unequivocal taxa specific to the Bell Cave locality. Among the described fauna are several extirpated (e.g., Northern Pike Esox lucius, Northern Madtom Noturus stigmosus and a single extinct (Harelip Sucker Moxostoma lacerum taxa that suggest a combination of late Pleistocene displacement events coupled with more recent changes in habitat that have resulted in modern basin diversity patterns. The Bell Cave locality represents one of the most intact Pleistocene freshwater fish deposits anywhere in North America. Significant preservational, taphonomic, sampling, and identification biases preclude the identification of additional taxa. Overall, this study provides a detailed look into paleo-river ecology, as well as freshwater fish diversity and distribution leading up to the contemporary biodiversity patterns of the Tennessee River Basin and Mississippi River Basin as a whole.

  12. Low Florida coral calcification rates in the Plio-Pleistocene

    Science.gov (United States)

    Brachert, Thomas C.; Reuter, Markus; Krüger, Stefan; Klaus, James S.; Helmle, Kevin; Lough, Janice M.

    2016-08-01

    In geological outcrops and drill cores from reef frameworks, the skeletons of scleractinian corals are usually leached and more or less completely transformed into sparry calcite because the highly porous skeletons formed of metastable aragonite (CaCO3) undergo rapid diagenetic alteration. Upon alteration, ghost structures of the distinct annual growth bands often allow for reconstructions of annual extension ( = growth) rates, but information on skeletal density needed for reconstructions of calcification rates is invariably lost. This report presents the bulk density, extension rates and calcification rates of fossil reef corals which underwent minor diagenetic alteration only. The corals derive from unlithified shallow water carbonates of the Florida platform (south-eastern USA), which formed during four interglacial sea level highstands dated approximately 3.2, 2.9, 1.8, and 1.2 Ma in the mid-Pliocene to early Pleistocene. With regard to the preservation, the coral skeletons display smooth growth surfaces with minor volumes of marine aragonite cement within intra-skeletal porosity. Within the skeletal structures, voids are commonly present along centres of calcification which lack secondary cements. Mean extension rates were 0.44 ± 0.19 cm yr-1 (range 0.16 to 0.86 cm yr-1), mean bulk density was 0.96 ± 0.36 g cm-3 (range 0.55 to 1.83 g cm-3) and calcification rates ranged from 0.18 to 0.82 g cm-2 yr-1 (mean 0.38 ± 0.16 g cm-2 yr-1), values which are 50 % of modern shallow-water reef corals. To understand the possible mechanisms behind these low calcification rates, we compared the fossil calcification rates with those of modern zooxanthellate corals (z corals) from the Western Atlantic (WA) and Indo-Pacific calibrated against sea surface temperature (SST). In the fossil data, we found a widely analogous relationship with SST in z corals from the WA, i.e. density increases and extension rate decreases with increasing SST, but over a significantly larger

  13. Arctic East Siberia had a lower latitude in the Pleistocene

    Directory of Open Access Journals (Sweden)

    Willy Woelfli

    2007-06-01

    Full Text Available Remains of mammoths in Arctic East Siberia, where there is not sufficient sunlight over the year for the growth of the plants on which these animals feed, indicate that the latitude of this region was lower before the end of the Pleistocene than now. Reconstructing this geographic pole shift, we introduce a massive object, which moved in an extremely eccentric orbit and was hot from tidal work and solar radiation. Evaporation produced a disk-shaped cloud of ions around the Sun. This cloud partially shielded the solar radiation, producing the cold and warm periods characterizing the Pleistocene. The shielding depends on the inclination of Earth's orbit, which has a period of 100. 000 years. The cloud builds up to a point where inelastic particle collisions induce its collapse The resulting near-periodic time dependence resembles that of Dansgaard-Oeschger events. The Pleistocene ended when the massive object had a close encounter with the Earth, which suffered a one per mil extensional deformation. While the deformation relaxed to an equilibrium shape in one to several years, the globe turned relative to the rotation axis: The North Pole moved from Greenland to the Arctic Sea. The massive object split into fragments, which evaporated.Na Sibéria Oriental Ártica, onde há sobras de mamutes, a luzsolar durante o ano é insuficiente para sustentar as plantas que alimentam esses animais. Isto prova que a latitude dessas regiões era menor durante o Pleistoceno. Reconstruindo esse deslocamento geográfico dos pólos introduzimos um planeta adicional numa órbita tão excêntrica que a energia da maré e da radiação solar o esquentou. A sua evaporação criava em torno do sol uma nuvem de íons que espalhava a radiação solar e assim causava os períodos quentes e frios do Pleistoceno. O efeito depende da inclinação da órbita da terra, que varia com um período de 100. 000 anos. Quase periodicamente anuvem se formava até o ponto em que as colis

  14. "Pleistocene Park" - A Glacial Ecosystem in a Warming World

    Science.gov (United States)

    Zimov, N.; Zimov, S. A.

    2011-12-01

    dry and runoff low. This would further increase nutrient availability in the soil. Water limitation would force roots grow deeper to cold soil horizons where these roots (carbon) will be sequestered for a long period of time. After high productivity and high diversity of animals in the ecosystem is reached, this ecosystem will once again be able to compete and to expand. To test this hypothesis, we have started the experiment named "Pleistocene Park". For over 15 years we have brought different herbivore species to the fenced area in the Kolyma river lowland, keep them at high density and see the ecosystem transformation. Now Pleistocene Park is size of 20 km2 and home for 7 big herbivores species. It is a small version of how the Mammoth Steppe ecosystem looked in the past and may look in the future. Pleistocene Park is a place where scientists can conduct in situ research and see how restoration of the ice age ecosystem may help mitigate future climatic changes. Arctic is a weakly populated region with no possibilities for agriculture. Modern civilization treats bigger part of the Arctic as wastelands. So why don't turn this "wasteland" into something that can strongly benefit our civilization in the future?

  15. An anthropogenic origin of the "Sirente crater," Abruzzi, Italy

    Science.gov (United States)

    Speranza, Fabio; Sagnotti, Leonardo; Rochette, Pierre

    2004-04-01

    In this paper, we review the recent hypothesis, based mostly on geomorphological features, that a ~130 m-wide sag pond, surrounded by a saddle-shaped rim from the Sirente plain (Abruzzi, Italy), is the first-discovered meteoritic crater of Italy. Sub-circular depressions (hosting ponds), with geomorphological features and size very similar to those exhibited by the main Sirente sag, are exposed in other neighboring intermountain karstic plains from Abruzzi. We have sampled present day soils from these sag ponds and from the Sirente sags (both the main "crater" and some smaller ones, recently interpreted as a crater field) and various Abruzzi paleosols from excavated trenches with an age range encompassing the estimated age of the "Sirente crater." For all samples, we measured the magnetic susceptibility and determined the Ni and Cr contents of selected specimens. The results show that the magnetic susceptibility values and the geochemical composition are similar for all samples (from Sirente and other Abruzzi sags) and are both significantly different from the values reported for soils contaminated by meteoritic dust. No solid evidence pointing at an impact origin exists, besides the circular shape and rim of the main sag. The available observations and data suggest that the "Sirente crater," together with analogous large sags in the Abruzzi intermountain plains, have to be attributed to the historical phenomenon of "transumanza" (seasonal migration of sheep and shepherds), a custom that for centuries characterized the basic social-economical system of the Abruzzi region. Such sags were excavated to provide water for millions of sheep, which spent summers in the Abruzzi karstic high pasture lands, on carbonatic massifs deprived of natural superficial fresh water. Conversely, the distribution of the smaller sags from the Sirente plain correlates with the local pattern of the calcareous bedrock and, together with the characteristics of their internal structure, are

  16. The Context of Carbonates in Gusev and Jezero Craters

    Science.gov (United States)

    Ruff, S. W.; Hamilton, V. E.

    2017-12-01

    Gusev and Jezero are Noachian-aged craters with evidence of a lake in early Mars history. Both are among three remaining candidates for the Mars 2020 rover mission, which is intended to collect and cache rock samples for possible future return to Earth. Gusev was explored by the Spirit rover from 2004 to 2010, revealing outcrops dubbed Comanche composed of olivine-rich volcanic tephra that hosts up to 30% Mg-Fe carbonate, clear evidence for the role of near-neutral pH fluids [1]. Jezero also displays evidence for olivine- and carbonate-bearing materials, likely Mg-carbonate based on orbital spectral observations [2]. In both craters, the carbonates occur in materials that are among the oldest stratigraphic units in each, perhaps an indication of more clement climatic conditions on early Mars compared to those that prevailed for most of its history. We are undertaking investigations of various rover-based and orbital measurements of the carbonates in Gusev to better understand their geologic context and origin. In doing so, the results shed light on carbonate occurrences in Jezero. The Comanche outcrops are contained in the Columbia Hills, which represent a kipuka or island of eroded older terrain fully encircled by lava flows, here with a crater retention age of 3.65 Ga (Fig. 1). In situ and orbital observations [3] demonstrate that carbonate-bearing outcrops extend beyond those visited by Spirit. The distinctive morphology and thermal inertia signature of these outcrops and their unaltered host rocks are recognizable in other kipukas on the floor of Gusev [4]. Carbonate also occurs in kipukas in Jezero (Fig. 2), but larger occurrences extend beyond the crater rim and in isolated places among the delta fan deposits [2]. The presence of carbonates outside of the crater suggests an origin unrelated to a former lake, unlike the Comanche carbonates, which may have arisen through evaporation of dilute brines from an ephemeral lake in Gusev [4]. In both cases, the clear

  17. Global Implications of late Pleistocene Megafaunal Extinctions in the Holarctic

    Science.gov (United States)

    Cooper, Alan; Turney, Chris

    2017-04-01

    Improved resolution data from radiocarbon, climate and ancient DNA studies of megafauna and humans is providing the first ability to disentangle the roles of climate change and human impact in the Late Pleistocene megafaunal extinctions. In the Holarctic we find that megafaunal populations underwent repeated local or global extinctions apparently associated with abrupt, centennial to millennial duration warming events (Dansgaard-Oeschger interstadials). Importantly, the extinction events took place both before and after the arrival of modern humans in the landscape. Here we look at the possible role of human activity in Holarctic and suggest it may be through the disruption of metapopulation processes which stabilize ecosystems and may have evolved to provide resilience to rapid and frequent climate shifts in the past. The observed relationship between climate and humans on megafaunal populations may provide a model for global extinction. Fortunately in this regard, the rapid movement of the first Native Americans throughout both American continents during the Last Deglaciation provides a powerful and unique model system for testing the competing roles on extinction because the opposing climate trends in each hemisphere at the time. Here we show that while megafaunal extinctions were associated with warming trends in both cases, the out-of-phase climate patterns caused the sequence and timing of events to be mirrored, providing a unique high-resolution view of the interactions of human colonization and rapid climate change on megafaunal ecosystems, with implications for future warming scenarios. References: Cooper, A., Turney, C., Hughen, K.A., Brook, B.W., McDonald, H.G., Bradshaw, C.J.A., 2015. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602-606. Metcalf, J.L., Turney, C., Barnett, R., Martin, F., Bray, S.C., Vilstrup, J.T., Orlando, L., Salas-Gismondi, R., Loponte, D., Medina, M., De Nigris, M., Civalero, T., Fern

  18. In plain sight: the Chesapeake Bay crater ejecta blanket

    Science.gov (United States)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An

  19. Pyroclastic Deposits in the Floor-fractured Crater Alphonsus

    Science.gov (United States)

    Allen, Carlton C.; Donaldson-Hanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.

    2013-01-01

    Alphonsus, the 118 km diameter floor-fractured crater, is located immediately east of Mare Nubium. Eleven pyroclastic deposits have been identified on the crater's floor. Early telescopic spectra suggest that the floor of Alphonsus is noritic, and that the pyroclastic deposits contain mixtures of floor material and a juvenile component including basaltic glass. Head and Wilson contend that Nubium lavas intruded the breccia zone beneath Alphonsus, forming dikes and fractures on the crater floor. In this model, the magma ascended to the level of the mare but cooled underground, and a portion broke thru to the surface in vulcanian (explosive) eruptions. Alternatively, the erupted material could be from a source unrelated to the mare, in the style of regional pyroclastic deposits. High-resolution images and spectroscopy from the Moon Mineralogy Mapper (M3), Diviner Lunar Radiometer, and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (NAC) provide data to test these formation models. Spectra from M3 confirm that the crater floor is primarily composed of noritic material, and that the Nubium lavas are basaltic. Spectra from the three largest pyroclastic deposits in Alphonsus are consistent with a minor low- Ca pyroxene component in a glass-rich matrix. The centers of the 2 micron absorption bands have wavelengths too short to be of the same origin as the Nubium basalts. Diviner Christiansen feature (CF) values were used to estimate FeO abundances for the crater floor, Nubium soil, and pyroclastic deposits. The estimated abundance for the crater floor (7.5 +/- 1.4 wt.%) is within the range of FeO values for Apollo norite samples. However, the estimated FeO abundance for Nubium soil (13.4 +/- 1.4 wt.%) is lower than those measured in most mare samples. The difference may reflect contamination of the mare soil by highland ejecta. The Diviner-derived FeO abundance for the western pyroclastic deposit is 13.8 +/- 3.3 wt.%. This is lower than the values for mare soil

  20. Landing Site Studies Using High Resolution MGS Crater Counts and Phobos-2 Termoskan Data

    Science.gov (United States)

    Hartmann, Willian K.; Berman, Daniel C.; Betts, Bruce H.

    1999-06-01

    We have examined a number of potential landing sites to study effects associated with impact crater populations. We used Mars Global Surveyor high resolution MOC images, and emphasized "ground truth" by calibrating with the MOC images of Viking 1 and Pathfinder sites. An interesting result is that most of Mars (all surfaces with model ages older than 100 My) have small crater populations in saturation equilibrium below diameters D approx. = 60 meters (and down to the smallest resolvable, countable sizes, approx. = 15 m). This may have consequences for preservation of surface bedrock exposures accessible to rovers. In the lunar maria, a similar saturation equilibrium is reached for crater diameters below about 300 meters, and this has produced a regolith depth of about 10-20 meters in those areas. Assuming linear scaling, we infer that saturation at D approx. = 60 m would produce gardening and Martian regolith, or fragmental layers, about 2 to 4 meters deep over all but extremely young surfaces (such as the very fresh thin surface flows in southern Elysium Planitia, which have model ages around 10 My or less). This result may explain the global production of ubiquitous dust and fragmental material on Mars. Removal of fines may leave the boulders that have been seen at all three of the first landing sites. Accumulation of the fines elsewhere produces dunes. Due to these effects, it may be difficult to set down rovers in areas where bedrock is well preserved at depths of centimeters, unless we find cliff sides or areas of deflation where wind has exposed clean surfaces (among residual boulders?) We have also surveyed the PHOBOS 2 Termoskan data to look for regions of thermal anomalies that might produce interesting landing sites. For landing site selection, two of the more interesting types of features are thermally distinct ejecta blankets and thermally distinct channels and valleys. Martian "thermal features" such as these that correlate closely with nonaeolian

  1. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

    OpenAIRE

    Grotzinger, JP; Gupta, S; Malin, MC; Rubin, DM; Schieber, J; Siebach, K; Sumner, DY; Stack, KM; Vasavada, AR; Arvidson, RE; Calef, F; Edgar, L; Fischer, WF; Grant, JA; Griffes, J

    2015-01-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittentl...

  2. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact

  3. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    Directory of Open Access Journals (Sweden)

    Takeshi Nishimura

    2016-03-01

    Full Text Available We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more

  4. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985--1986

    International Nuclear Information System (INIS)

    Carman, R.L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperature, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction

  5. The Mars Science Laboratory Mission: Early Results from Gale Crater Landing Site

    Science.gov (United States)

    Flatow, I.; Grotzinger, J. P.; Blake, D.; Crisp, J. A.; Edgett, K. S.; Gellert, R.; Gomez-Elvira, J.; Hassler, D. M.; Mahaffy, P. R.; Malin, M. C.; Meyer, M. A.; Mitrofanov, I.; Vasavada, A. R.; Wiens, R. C.

    2012-12-01

    The Mars Science Laboratory rover, Curiosity, landed at Gale Crater on August 5th (PDT) and initiated an investigation of modern and ancient environments. The 155-km diameter Gale Crater was chosen as Curiosity's field site based on several attributes: the interior Mount Sharp preserves a succession of flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mound show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Gale's regional context and strong evidence for a progression through multiple potentially habitable environments, represented by a stratigraphic record of extraordinary extent, ensure preservation of a rich record of the environmental history of early Mars. Curiosity has an expected lifetime of at least one Mars year (~23 months), and drive capability of at least 20 km. The MSL science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM); an x-ray diffractometer that will determine mineralogical diversity (CheMin); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, Mastcam); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam); an active/passive neutron spectrometer designed to search for water in rocks/regolith (DAN); a weather station to measure modern-day environmental variables (REMS); and a sensor designed for continuous monitoring of

  6. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    Science.gov (United States)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  7. Oblique view of crater Theophilus at northwest edge of Sea of Nectar

    Science.gov (United States)

    1969-01-01

    An Apollo 11 oblique view of the large crater Theophilus located at the northwest edge of the Sea of Nectar on the lunar nearside. Theophilus is about 60 statute miles in diameter. the smooth area is Mare Nectaris. The smaller crater Madler, about 14 statute miles in diameter, is located to the east of Theophilus. Visible in the background are the large crater Fracastorius and the smaller crater Beaumont. The coordinates of the center of this photograph are 29 degrees east longitude and 11 degrees south latitude.

  8. Late Pleistocene climate drivers of early human migration

    Science.gov (United States)

    Timmermann, Axel; Friedrich, Tobias

    2016-10-01

    On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50-120 thousand years ago occurred in several orbitally paced migration episodes. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106-94, 89-73, 59-47 and 45-29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard-Oeschger events, had a more limited regional effect.

  9. TERRESTRIAL EFFECTS OF NEARBY SUPERNOVAE IN THE EARLY PLEISTOCENE

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B. C.; Engler, E. E. [Department of Physics and Astronomy, Washburn University, Topeka, KS 66621 (United States); Kachelrieß, M. [Institutt for fysikk, NTNU, Trondheim (Norway); Melott, A. L. [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Overholt, A. C. [Department of Science and Mathematics, MidAmerica Nazarene University, Olathe, KS 66062 (United States); Semikoz, D. V., E-mail: brian.thomas@washburn.edu [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, F-119 75205 Paris (France)

    2016-07-20

    Recent results have strongly confirmed that multiple supernovae happened at distances of ∼100 pc, consisting of two main events: one at 1.7–3.2 million years ago, and the other at 6.5–8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing {sup 60}Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  10. Early human symbolic behavior in the Late Pleistocene of Wallacea

    Science.gov (United States)

    Brumm, Adam; Hakim, Budianto; Ramli, Muhammad; Sumantri, Iwan; Burhan, Basran; Saiful, Andi Muhammad; Siagian, Linda; Suryatman; Sardi, Ratno; Jusdi, Andi; Abdullah; Mubarak, Andi Pampang; Hasliana; Hasrianti; Oktaviana, Adhi Agus; Adhityatama, Shinatria; van den Bergh, Gerrit D.; Aubert, Maxime; Zhao, Jian-xin; Huntley, Jillian; Li, Bo; Roberts, Richard G.; Saptomo, E. Wahyu; Perston, Yinika; Grün, Rainer

    2017-01-01

    Wallacea, the zone of oceanic islands separating the continental regions of Southeast Asia and Australia, has yielded sparse evidence for the symbolic culture of early modern humans. Here we report evidence for symbolic activity 30,000–22,000 y ago at Leang Bulu Bettue, a cave and rock-shelter site on the Wallacean island of Sulawesi. We describe hitherto undocumented practices of personal ornamentation and portable art, alongside evidence for pigment processing and use in deposits that are the same age as dated rock art in the surrounding karst region. Previously, assemblages of multiple and diverse types of Pleistocene “symbolic” artifacts were entirely unknown from this region. The Leang Bulu Bettue assemblage provides insight into the complexity and diversification of modern human culture during a key period in the global dispersal of our species. It also shows that early inhabitants of Sulawesi fashioned ornaments from body parts of endemic animals, suggesting modern humans integrated exotic faunas and other novel resources into their symbolic world as they colonized the biogeographically unique regions southeast of continental Eurasia. PMID:28373568

  11. Pleistocene climatic changes drive diversification across a tropical savanna.

    Science.gov (United States)

    Potter, Sally; Xue, Alexander T; Bragg, Jason G; Rosauer, Dan F; Roycroft, Emily J; Moritz, Craig

    2018-01-01

    Spatial responses of species to past climate change depend on both intrinsic traits (climatic niche breadth, dispersal rates) and the scale of climatic fluctuations across the landscape. New capabilities in generating and analysing population genomic data, along with spatial modelling, have unleashed our capacity to infer how past climate changes have shaped populations, and by extension, complex communities. Combining these approaches, we uncover lineage diversity across four codistributed lizards from the Australian Monsoonal Tropics and explore how varying climatic tolerances interact with regional climate history to generate common vs. disparate responses to late Pleistocene change. We find more divergent spatial structuring and temporal demographic responses in the drier Kimberley region compared to the more mesic and consistently suitable Top End. We hypothesize that, in general, the effects of species' traits on sensitivity to climate fluctuation will be more evident in climatically marginal regions. If true, this points to the need in climatically marginal areas to craft more species-(or trait)-specific strategies for persistence under future climate change. © 2017 John Wiley & Sons Ltd.

  12. How flat is our Universe really?

    Energy Technology Data Exchange (ETDEWEB)

    Okouma, P.M., E-mail: okouma@saao.ac.za [Department of Maths and Applied Maths, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); South African Astronomical Observatory, Observatory, Cape Town (South Africa); African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg, Cape Town (South Africa); Centre for High Performance Computing, 15 Lower Hope St., Rosebank, Cape Town (South Africa); Fantaye, Y. [Astrophysics Sector, International School for Advanced Studies, SISSA, 34136 Trieste (Italy); Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315, Oslo (Norway); Bassett, B.A. [Department of Maths and Applied Maths, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); South African Astronomical Observatory, Observatory, Cape Town (South Africa); African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg, Cape Town (South Africa); Centre for High Performance Computing, 15 Lower Hope St., Rosebank, Cape Town (South Africa)

    2013-02-12

    Distance measurement provides no constraints on curvature independent of assumptions about the dark energy, raising the question, how flat is our Universe if we make no such assumptions? Allowing for general evolution of the dark energy equation of state with 20 free parameters that are allowed to cross the phantom divide, w(z)=−1, we show that while it is indeed possible to match the first peak in the Cosmic Microwave Background with non-flat models and arbitrary Hubble constant, H{sub 0}, the full WMAP7 and supernova data alone imply −0.12<Ω{sub k}<0.01 (2σ). If we add an H{sub 0} prior, this tightens significantly to Ω{sub k}=0.002±0.009. These constitute the most conservative and model-independent constraints on curvature available today, and illustrate that the curvature-dynamics degeneracy is broken by current data, with a key role played by the Integrated Sachs Wolfe effect rather than the distance to the surface of last scattering. If one imposes a quintessence prior on the dark energy (−1⩽w(z)⩽1) then just the WMAP7 and supernova data alone force the Universe to near flatness: Ω{sub k}=0.013±0.012. Finally, allowing for curvature, we find that all datasets are consistent with a Harrison–Zel'dovich spectral index, n{sub s}=1, at 2σ, illustrating the interplay between early and late Universe constraints.

  13. Rigidity of generalized Bach-flat vacuum static spaces

    Science.gov (United States)

    Yun, Gabjin; Hwang, Seungsu

    2017-11-01

    In this paper, we study the structure of generalized Bach-flat vacuum static spaces. Generalized Bach-flat metrics are considered as extensions of both Einstein and Bach-flat metrics. First, we prove that a compact Riemannian n-manifold with n ≥ 4 which is a generalized Bach-flat vacuum static space is Einstein. A generalized Bach-flat vacuum static space with the potential function f having compact level sets is either Ricci-flat or a warped product with zero scalar curvature when n ≥ 5, and when n = 4, it is Einstein if f has its minimum. Secondly, we consider critical metrics for another quadratic curvature functional involving the Ricci tensor, and prove similar results. Lastly, by applying the technique developed above, we prove Besse conjecture when the manifold is generalized Bach-flat.

  14. Flat H Redundant Frangible Joint Development

    Science.gov (United States)

    Brown, Chris

    2016-01-01

    Orion and Commercial Crew Program (CCP) Partners have chosen to use frangible joints for certain separation events. The joints currently available are zero failure tolerant and will be used in mission safety applications. The goal is to further develop a NASA designed redundant frangible joint that will lower flight risk and increase reliability. FY16 testing revealed a successful design in subscale straight test specimens that gained efficiency and supports Orion load requirements. Approach / Innovation A design constraint is that the redundant joint must fit within the current Orion architecture, without the need for additional vehicle modification. This limitation required a design that changed the orientation of the expanding tube assemblies (XTAs), by rotating them 90deg from the standard joint configuration. The change is not trivial and affects the fracture mechanism and structural load paths. To address these changes, the design incorporates cantilevered arms on the break plate. The shock transmission and expansion of the XTA applies force to these arms and creates a prying motion to push the plate walls outward to the point of structural failure at the notched section. The 2014 test design revealed that parts could slip during functioning wasting valuable energy needed to separate the structure with only a single XTA functioning. Dual XTA functioning fully separated the assembly showing a discrepancy can be backed up with redundancy. Work on other fully redundant systems outside NASA is limited to a few patents that have not been subjected to functionality testing Design changes to prevent unwanted slippage (with ICA funding in 2015) showed success with a single XTA. The main goal for FY 2016 was to send the new Flat H RFJ to WSTF where single XTA test failures occurred back in 2014. The plan was to gain efficiency in this design by separating the Flat H RFJ with thicker ligaments with dimensions baselined in 2014. Other modifications included geometry

  15. Flexible Polyhedral Surfaces with Two Flat Poses

    Directory of Open Access Journals (Sweden)

    Hellmuth Stachel

    2015-05-01

    Full Text Available We present three types of polyhedral surfaces, which are continuously flexible and have not only an initial pose, where all faces are coplanar, but pass during their self-motion through another pose with coplanar faces (“flat pose”. These surfaces are examples of so-called rigid origami, since we only admit exact flexions, i.e., each face remains rigid during the motion; only the dihedral angles vary. We analyze the geometry behind Miura-ori and address Kokotsakis’ example of a flexible tessellation with the particular case of a cyclic quadrangle. Finally, we recall Bricard’s octahedra of Type 3 and their relation to strophoids.

  16. Incorporation of flat glass in red ceramic

    International Nuclear Information System (INIS)

    Caldas, T.C.C.; Morais, A.S.C.; Pereira, P.S.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    This work have as objective evaluate the effect of incorporation of up to 10% by weight of powdered flat glass , from civil industry, in red ceramic. The bodies were obtained by uniaxial pressing at 20 MPa and fired at temperatures of 850 ° C and 1050 ° C. The parameters studied were linear firing shrinkage, apparent density, water absorption and flexural rupture stress for the evaluation of the mechanical physical properties. The microstructure was observed by scanning electron microscopy and phase identification was performed by X-ray diffraction. The results showed that the waste changes the microstructure and properties of red ceramics. (author)

  17. Relative stiffness of flat conductor cables

    Science.gov (United States)

    Hankins, J. D.

    1976-01-01

    The measurement of the bending moment required to obtain a given deflection in short lengths of flat conductor cable (FCC) is presented in this report. Experimental data were taken on 10 different samples of FCC and normalized to express all bending moments (relative stiffness factor) in terms of a cable 5.1 cm (2.0 in.) in width. Data are presented in tabular and graphical form for the covenience of designers who may be interested in finding torques exerted on critical components by short lengths of FCC.

  18. Q-balls in flat potentials

    International Nuclear Information System (INIS)

    Copeland, Edmund J.; Tsumagari, Mitsuo I.

    2009-01-01

    We study the classical and absolute stability of Q-balls in scalar field theories with flat potentials arising in both gravity-mediated and gauge-mediated models. We show that the associated Q-matter formed in gravity-mediated potentials can be stable against decay into their own free particles as long as the coupling constant of the nonrenormalizable term is small, and that all of the possible three-dimensional Q-ball configurations are classically stable against linear fluctuations. Three-dimensional gauge-mediated Q-balls can be absolutely stable in the thin-wall limit, but are completely unstable in the thick-wall limit.

  19. VNIR Multispectral Observations of Rocks at Spirit of St. Louis Crater and Marathon Valley on Th Rim of Endeavour Crater Made by the Opportunity Rover Pancam

    Science.gov (United States)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D.W.

    2016-01-01

    The Mars Exploration Rover Opportunity has been exploring the western rim of the 22 km diameter Endeavour crater since August, 2011. Recently, Opportunity has reached a break in the Endeavour rim that the rover team has named Mara-thon Valley. This is the site where orbital observations from the MRO CRISM imaging spectrometer indicated the presence of iron smectites. On the outer western portion of Marathon Valley, Opportunity explored the crater-form feature dubbed Spirit of St. Louis (SoSL) crater. This presentation describes the 430 to 1009 nm (VNIR) reflectance, measured by the rover's Pancam, of rock units present both at Spirit of St. Louis and within Marathon Valley.

  20. Facies associations, depositional environments and stratigraphic framework of the Early Miocene-Pleistocene successions of the Mukah-Balingian Area, Sarawak, Malaysia

    Science.gov (United States)

    Murtaza, Muhammad; Rahman, Abdul Hadi Abdul; Sum, Chow Weng; Konjing, Zainey

    2018-02-01

    Thirty-five stratigraphic section exposed along the Mukah-Selangau road in the Mukah-Balingian area have been studied. Sedimentological and palynological data have been integrated to gain a better insight into the depositional architecture of the area. Broadly, the Mukah-Balingian area is dominated by fluvial, floodplain and estuarine related coal-bearing deposits. The Balingian, Begrih and Liang formations have been described and interpreted in terms of seven facies association. These are: FA1 - Fluvial-dominated channel facies association; FA2 - Tide-influenced channel facies association; FA3 - Tide-dominated channel facies association; FA4 - Floodplain facies association; FA5 - Estuarine central basin-mud flats facies association; FA6 - Tidal flat facies association and FA7 - Coastal swamps and marshes facies association. The Balingian Formation is characterised by the transgressive phase in the base, followed by a regressive phase in the upper part. On the basis of the occurrence of Florscheutzia trilobata with Florscheutzia levipoli, the Early to Middle Miocene age has been assigned to the Balingian Formation. The distinct facies pattern and foraminifera species found from the samples taken from the Begrih outcrop imply deposition in the intertidal flats having pronounced fluvio-tidal interactions along the paleo-margin. Foraminiferal data combined with the pronounced occurrence of Stenochlaena laurifolia suggest at least the Late Miocene age for the Begrih Formation. The internal stratigraphic architecture of the Liang Formation is a function of a combination of sea level, stable tectonic and autogenic control. Based on stratigraphic position, the Middle Pliocene to Pleistocene age for the Liang Formation is probable. The Balingian, Begrih and Liang formations display deposits of multiple regressive-transgressive cycles while the sediments were derived from the uplifted Penian high and Rajang group.

  1. Geological remote sensing signatures of terrestrial impact craters

    International Nuclear Information System (INIS)

    Garvin, J.B.; Schnetzler, C.; Grieve, R.A.F.

    1988-01-01

    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures

  2. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.

  3. Stratigraphic architecture of bedrock reference section, Victoria Crater, Meridiani Planum, Mars

    Science.gov (United States)

    Edgar, Lauren A.; Grotzinger, John P.; Hayes, Alex G.; Rubin, David M.; Squyres, Steve W.; Bell, James F.; Herkenhoff, Ken E.

    2012-01-01

    The Mars Exploration Rover Opportunity has investigated bedrock outcrops exposed in several craters at Meridiani Planum, Mars, in an effort to better understand the role of surface processes in its geologic history. Opportunity has recently completed its observations of Victoria crater, which is 750 m in diameter and exposes cliffs up to ~15 m high. The plains surrounding Victoria crater are ~10 m higher in elevation than those surrounding the previously explored Endurance crater, indicating that the Victoria crater exposes a stratigraphically higher section than does the Endurance crater; however, Victoria strata overlap in elevation with the rocks exposed at the Erebus crater. Victoria crater has a well-developed geomorphic pattern of promontories and embayments that define the crater wall and that reveal thick bedsets (3–7m) of large-scale cross-bedding, interpreted as fossil eolian dunes. Opportunity was able to drive into the crater at Duck Bay, located on the western margin of Victoria crater. Data from the Microscopic Imager and Panoramic Camera reveal details about the structures, textures, and depositional and diagenetic events that influenced the Victoria bedrock. A lithostratigraphic subdivision of bedrock units was enabled by the presence of a light-toned band that lines much of the upper rim of the crater. In ascending order, three stratigraphic units are named Lyell, Smith, and Steno; Smith is the light-toned band. In the Reference Section exposed along the ingress path at Duck Bay, Smith is interpreted to represent a zone of diagenetic recrystallization; however, its upper contact also coincides with a primary erosional surface. Elsewhere in the crater the diagenetic band crosscuts the physical stratigraphy. Correlation with strata present at nearby promontory Cape Verde indicates that there is an erosional surface at the base of the cliff face that corresponds to the erosional contact below Steno. The erosional contact at the base of Cape Verde

  4. The Mechanics of Peak-Ring Impact Crater Formation from the IODP-ICDP Expedition 364

    Science.gov (United States)

    Melosh, H.; Collins, G. S.; Morgan, J. V.; Gulick, S. P. S.

    2017-12-01

    The Chicxulub impact crater is one of very few peak-ring impact craters on Earth. While small (less than 3 km on Earth) impact craters are typically bowl-shaped, larger craters exhibit central peaks, which in still larger (more than about 100 km on Earth) craters expand into mountainous rings with diameters close to half that of the crater rim. The origin of these peak rings has been contentious: Such craters are far too large to create in laboratory experiments and remote sensing of extraterrestrial examples has not clarified the mechanics of their formation. Two principal models of peak ring formation are currently in vogue, the "nested crater" model, in which the peak ring originates at shallow depths in the target, and the "dynamic collapse" model in which the peak ring is uplifted at the base of a collapsing, over-steepened central peak and its rocks originate at mid-crustal depths. IODP-ICDP Expedition 364 sought to elucidate, among other important goals, the mechanics of peak ring formation in the young (66 Myr), fresh, but completely buried Chicxulub impact crater. The cores from this borehole now show unambiguously that the rocks in the Chicxulub peak ring originated at mid-crustal depths, apparently ruling out the nested crater model. These rocks were shocked to pressures on the order of 10-35 GPa and were so shattered that their densities and seismic velocities now resemble those of sedimentary rocks. The morphology of the final crater, its structure as revealed in previous seismic imaging, and the results from the cores are completely consistent with modern numerical models of impact crater excavation and collapse that incorporate a model for post-impact weakening. Subsequent to the opening of a ca. 100 km diameter and 30 km deep transient crater, this enormous hole in the crust collapsed over a period of about 10 minutes. Collapse was enabled by movement of the underlying rocks, which briefly behaved in the manner of a high-viscosity fluid, a brittle

  5. Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analysis on Martian soil [1] at Rocknest in Gale Crater. In particular, crystalline phases from scoop 5 were identified and analyzed with the Rietveld method [2]. Refined unit-cell parameters are reported in Table 1. Comparing these unit-cell parameters with those in the literature provides an estimate of the chemical composition of the crystalline phases. For instance, Fig. 1 shows the Mg-content of Fa-Fo olivine as a function of the b unit-cell parameter using literature data. Our refined b parameter is indicated by the black triangle.

  6. A row-charge nuclear cratering explosion in alluvial rocks

    International Nuclear Information System (INIS)

    Kireev, V.V.; Kedrovskij, O.L.; Valentinov, Yu.A.; Myasnikov, K.V.; Nikiforov, G.A.; Prozorov, L.B.; Potapov, V.K.

    1975-01-01

    A brief description is given of the first row-charge nuclear cratering explosion in alluvial rocks carried out on the route of the Pechora-Kolva canal. The authors explain the purposes of the explosion, describe the geological conditions, indicate the emplacement parameters and yields of the charges, present data on the dynamics of development of the explosion and report on its seismic effects. The parameters of the resulting trench cut and the characteristics of the rock ejecta are also given. The possibility of using nuclear explosions for hydrotechnological projects requiring large excavations in a thick stratum of weak water-bearing rocks is considered

  7. Mineralogy of Rocks and Sediments at Gale Crater, Mars

    Science.gov (United States)

    Achilles, Cherie; Downs, Robert; Blake, David; Vaniman, David; Ming, Doug; Rampe, Elizabeth; Morris, Dick; Morrison, Shaunna; Treiman, Allan; Chipera, Steve; Yen, Albert; Bristow, Thomas; Craig, Patricia; Hazen, Robert; Crisp, Joy; Grotzinger, John; Des Marias, David; Farmer, Jack; Sarrazin, Philippe; Morookian, John Michael

    2017-04-01

    The Mars Science Laboratory rover, Curiosity, is providing in situ mineralogical, geochemical, and sedimentological assessments of rocks and soils in Gale crater. Since landing in 2012, Curiosity has traveled over 15 km, providing analyses of mudstones and sandstones to build a stratigraphic history of the region. The CheMin X-ray diffraction (XRD) instrument is the first instrument on Mars to provide quantitative mineralogical analyses of drilled powders and scooped sediment based on X-ray crystallography. CheMin identifies and determines mineral abundances and unit-cell parameters of major crystalline phases, and identifies minor phases at abundances >1 wt%. In conjunction with elemental analyses, CheMin-derived crystal chemistry allows for the first calculations of crystalline and amorphous material compositions. These mineralogy, crystal chemistry, and amorphous chemistry datasets are playing central roles in the characterization of Gale crater paleoenvironments. CheMin has analyzed 17 rock and sediment samples. In the first phase of the mission, Curiosity explored the sedimentary units of Aeolis Palus (Bradbury group), including two mudstones from Yellowknife Bay. CheMin analyses of the Yellowknife Bay mudstones identified clay minerals among an overall basaltic mineral assemblage. These mineralogical results, along with imaging and geochemical analyses, were used to characterize an ancient lacustrine setting that is thought to have once been a habitable environment. Following the investigations of the Bradbury group, Curiosity arrived at the lower reaches of Aeolis Mons, commonly called Mt. Sharp. A strategic sample campaign was initiated, drilling bedrock at X-ray amorphous phases. Adjacent to fractures, light-toned, halo-like zones are thought to result from significant aqueous alteration of the primary sandstone and show decreased abundances of feldspar and pyroxene, and an increase in the amorphous component, specifically high-silica phases. The Murray

  8. Disposal of Rocky Flats residues as waste

    International Nuclear Information System (INIS)

    Dustin, D.F.; Sendelweck, V.S.

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes

  9. Risk, media, and stigma at Rocky Flats

    International Nuclear Information System (INIS)

    Flynn, J.; Peters, E.; Mertz, C.K.; Slovic, P.

    1998-01-01

    Public responses to nuclear technologies are often strongly negative. Events, such as accidents or evidence of unsafe conditions at nuclear facilities, receive extensive and dramatic coverage by the news media. These news stories affect public perceptions of nuclear risks and the geographic areas near nuclear facilities. One result of these perceptions, avoidance behavior, is a form of technological stigma that leads to losses in property values near nuclear facilities. The social amplification of risk is a conceptual framework that attempts to explain how stigma is created through media transmission of information about hazardous places and public perceptions and decisions. This paper examines stigma associated with the US Department of energy's Rocky Flats facility, a major production plant in the nation's nuclear weapons complex, located near Denver, Colorado. This study, based upon newspaper analyses and a survey of Denver area residents, finds that the social amplification theory provides a reasonable framework for understanding the events and public responses that took place in regard to Rocky Flats during a 6-year period, beginning with an FBI raid of the facility in 1989

  10. Cosmological consequences of supersymmetric flat directions

    CERN Document Server

    Riva, Francesco; Sarkar, Subir; Giudice, Gian

    In this work we analyze various implications of the presence of large field vacum expectation values (VEVs) along supersymmetric flat direct ions during the early universe. First, we discuss supersymmetric leptogenesis and the grav itino bound. Supersym- metric thermal leptogenesis with a hierarchical right-han ded neutrino mass spectrum normally requires the mass of the lightest right-handed neu trino to be heavier than about 10 9 GeV. This is in conflict with the upper bound on the reheating t empera- ture which is found by imposing that the gravitinos generate d during the reheating stage after inflation do not jeopardize successful nucleosy nthesis. We show that a solution to this tension is actually already incorporated i n the framework, because of the presence of flat directions in the supersymmetric scalar potential. Massive right- handed neutrinos are efficiently produced non-thermally and the observed baryon asymmetry can be explained even for a reheating temperature respecting the grav- itino bound...

  11. Biotic turnover rates during the Pleistocene-Holocene transition

    Science.gov (United States)

    Stivrins, Normunds; Soininen, Janne; Amon, Leeli; Fontana, Sonia L.; Gryguc, Gražyna; Heikkilä, Maija; Heiri, Oliver; Kisielienė, Dalia; Reitalu, Triin; Stančikaitė, Miglė; Veski, Siim; Seppä, Heikki

    2016-11-01

    The Northern Hemisphere is currently warming at the rate which is unprecedented during the Holocene. Quantitative palaeoclimatic records show that the most recent time in the geological history with comparable warming rates was during the Pleistocene-Holocene transition (PHT) about 14,000 to 11,000 years ago. To better understand the biotic response to rapid temperature change, we explore the community turnover rates during the PHT by focusing on the Baltic region in the southeastern sector of the Scandinavian Ice Sheet, where an exceptionally dense network on microfossil and macrofossil data that reflect the biotic community history are available. We further use a composite chironomid-based summer temperature reconstruction compiled specifically for our study region to calculate the rate of temperature change during the PHT. The fastest biotic turnover in the terrestrial and aquatic communities occurred during the Younger Dryas-Holocene shift at 11,700 years ago. This general shift in species composition was accompanied by regional extinctions, including disappearance of mammoth (Mammuthus primigenius) and reindeer (Rangifer tarandus) and many arctic-alpine plant taxa, such as Dryas octopetala, Salix polaris and Saxifraga aizoides, from the region. This rapid biotic turnover rate occurred when the rate of warming was 0.17 °C/decade, thus slightly lower than the current Northern Hemisphere warming of 0.2 °C/decade. We therefore conclude that the Younger Dryas-Holocene shift with its rapid turnover rates and associated regional extinctions represents an important palaeoanalogue to the current high latitude warming and gives insights about the probable future turnover rates and patterns of the terrestrial and aquatic ecosystem change.

  12. Paleochemistry of Plio-Pleistocene Lake Turkana, Kenya. [Alkalinity

    Energy Technology Data Exchange (ETDEWEB)

    Cerling, T.

    1979-01-01

    The paleochemisry of Plio-Pleistocene Lake Turkana can be estimated by using the chemistry of lakes from the Eastern Rift of Africa as an analogue. Most modern East Africa lakes occupy closed basins; their chemistries follow an evaporation trend defined by the precipitation of certain mineral phases with increasing alkalinity. Estimates of paleoalkalinity can be used to closely estimate the chemical composition of ancient lakes. Three methods are used to estimate paleoalkalinity. Diatoms, molluscs, and fish have certain metabolic requirements that are dependent on pH, alkalinity, or calcium levels; thus fauna and flora can be used as paleoalkalinity indicators. Exchangeable cations on clay minerals can also be used because the relative concentrations of sodium and calcium in lake waters are related to alkalinity. Absence or presence of certain minerals also can serve as a paleoalkalinity indicator. Although the latter two techniques give estimates of paleoalkalinity that are averaged over several hundred or thousand years, their estimates agree with the instantaneous estimates based on biologic considerations. This study shows that the earliest lake phase was very fresh and contained until the end of the Kubi Algi Formation. The Lower Member of the Koobi Fora Formation is shown to have been a fresh- to brackish-water lake. From the beginning of Upper Member time (about 1.8 MY ago) to the present, the lake occupying the Turkana Depression has varied from a brackish lake that overflowed to a closed basin lake that fell below overflow level and whose alkalinity rose to about 200 meq/l.

  13. Enamel hypoplasia in the middle pleistocene hominids from Atapuerca (Spain).

    Science.gov (United States)

    Bermúdez de Castro, J M; Pérez, P J

    1995-03-01

    The prevalence and chronology of enamel hypoplasias were studied in a hominid dental sample from the Sima de los Huesos (SH) Middle Pleistocene site at the Sierra de Atapuerca (Burgos, northern Spain). A total of 89 permanent maxillary teeth, 143 permanent mandibular teeth, and one deciduous lower canine, belonging to a minimum of 29 individuals, were examined. Excluding the antimeres (16 maxillary and 37 mandibular cases) from the sample, the prevalence of hypoplasias in the permanent dentition is 12.8% (23/179), whereas the deciduous tooth also showed an enamel defect. No statistically significant differences were found between both arcades and between the anterior and postcanine teeth for the prevalence of hypoplasias. In both the maxilla and the mandible the highest frequency of enamel hypoplasias was recorded in the canines. Only one tooth (a permanent upper canine) showed two different enamel defects, and most of the hypoplasias were expressed as faint linear horizontal defects. Taking into account the limitations that the incompleteness of virtually all permanent dentitions imposes, we have estimated that the frequency by individual in the SH hominid sample was not greater than 40%. Most of the hypoplasias occurred between birth and 7 years (N = 18, X = 3.5, SD = 1.3). Both the prevalence and severity of the hypoplasias of the SH hominid sample are significantly less than those of a large Neandertal sample. Furthermore, prehistoric hunter-gatherers and historic agricultural and industrial populations exhibit a prevalence of hypoplasias generally higher than that of the SH hominids. Implications for the survival strategies and life quality of the SH hominids are also discussed.

  14. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    Science.gov (United States)

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  15. Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes

    Science.gov (United States)

    Martini, Mateo A.; Kaplan, Michael R.; Strelin, Jorge A.; Astini, Ricardo A.; Schaefer, Joerg M.; Caffee, Marc W.; Schwartz, Roseanne

    2017-09-01

    The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5-19 ka) and other time periods, we combined geomorphic features with forty-two precise 10Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52-39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.

  16. Flat epithelial atypia and atypical ductal hyperplasia: carcinoma underestimation rate.

    Science.gov (United States)

    Ingegnoli, Anna; d'Aloia, Cecilia; Frattaruolo, Antonia; Pallavera, Lara; Martella, Eugenia; Crisi, Girolamo; Zompatori, Maurizio

    2010-01-01

    This study was carried out to determine the underestimation rate of carcinoma upon surgical biopsy after a diagnosis of flat epithelial atypia and atypical ductal hyperplasia and 11-gauge vacuum-assisted breast biopsy. A retrospective review was conducted of 476 vacuum-assisted breast biopsy performed from May 2005 to January 2007 and a total of 70 cases of atypia were identified. Fifty cases (71%) were categorized as pure atypical ductal hyperplasia, 18 (26%) as pure flat epithelial atypia and two (3%) as concomitant flat epithelial atypia and atypical ductal hyperplasia. Each group were compared with the subsequent open surgical specimens. Surgical biopsy was performed in 44 patients with atypical ductal hyperplasia, 15 patients with flat epithelial atypia, and two patients with flat epithelial atypia and atypical ductal hyperplasia. Five cases of atypical ductal hyperplasia were upgraded to ductal carcinoma in situ, three cases of flat epithelial atypia yielded one ductal carcinoma in situ and two cases of invasive ductal carcinoma, and one case of flat epithelial atypia/atypical ductal hyperplasia had invasive ductal carcinoma. The overall rate of malignancy was 16% for atypical ductal hyperplasia (including flat epithelial atypia/atypical ductal hyperplasia patients) and 20% for flat epithelial atypia. The presence of flat epithelial atypia and atypical ductal hyperplasia at biopsy requires careful consideration, and surgical excision should be suggested.

  17. Strength and Deformability of Light-toned Layered Deposits Observed by MER Opportunity: Eagle to Erebus Craters

    Science.gov (United States)

    Okubo, C. H.; Schultz, R. A.; Nahm, A. L.

    2007-07-01

    The strength and deformability of light-toned layered deposits are estimated based on measurements of porosity from Microscopic Imager data acquired by MER Opportunity during its traverse from Eagle Crater to Erebus Crater.

  18. Hominin teeth from the early Late Pleistocene site of Xujiayao, Northern China.

    Science.gov (United States)

    Xing, Song; Martinón-Torres, María; Bermúdez de Castro, Jose María; Wu, Xiujie; Liu, Wu

    2015-02-01

    It is generally accepted that from the late Middle to the early Late Pleistocene (∼340-90 ka BP), Neanderthals were occupying Europe and Western Asia, whereas anatomically modern humans were present in the African continent. In contrast, the paucity of hominin fossil evidence from East Asia from this period impedes a complete evolutionary picture of the genus Homo, as well as assessment of the possible contribution of or interaction with Asian hominins in the evolution of Homo sapiens and Homo neanderthalensis. Here we present a comparative study of a hominin dental sample recovered from the Xujiayao site, in Northern China, attributed to the early Late Pleistocene (MIS 5 to 4). Our dental study reveals a mosaic of primitive and derived dental features for the Xujiayao hominins that can be summarized as follows: i) they are different from archaic and recent modern humans, ii) they present some features that are common but not exclusive to the Neanderthal lineage, and iii) they retain some primitive conformations classically found in East Asian Early and Middle Pleistocene hominins despite their young geological age. Thus, our study evinces the existence in China of a population of unclear taxonomic status with regard to other contemporary populations such as H. sapiens and H. neanderthalensis. The morphological and metric studies of the Xujiayao teeth expand the variability known for early Late Pleistocene hominin fossils and suggest the possibility that a primitive hominin lineage may have survived late into the Late Pleistocene in China. Copyright © 2014 Wiley Periodicals, Inc.

  19. The alkaline volcanic rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars

    Science.gov (United States)

    Neakrase, L. D.; Lim, D. S. S.; Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Christensen, P. R.

    2016-12-01

    Idaho's Eastern Snake River Plain (ESRP) is host to extensive expressions of basaltic volcanism dominated by non evolved olivine tholeiites (NEOT) with localized occurrences of evolved lavas. Craters of the Moon National Monument (COTM) is a polygenetic lava field comprised of more than 60 lava flows emplaced during 8 eruptive periods spanning the last 15 kyrs. The most recent eruptive period (period A; 2500-2000 yr B.P.) produced flows with total alkali vs. silica classifications spanning basalt to trachyte. Coeval with the emplacement of the COTM period A volcanic pile was the emplacement of the Wapi and King's Bowl NEOT 70 km SSE of COTM along the Great Rift. Previous investigations have determined a genetic link between these two compositionally distinct volcanic centers where COTM compositions can be generated from NEOT melts through complex ascent paths and variable degrees of fractionation and assimilation of lower-middle crustal materials. The Mars Exploration Rover, Spirit, conducted a robotic investigation of Gusev crater from 2004-2010. Spirit was equipped with the Athena science payload enabling the determination of mineralogy (mini-Thermal Emission Spectrometer, Pancam multispectral camera, and Mössbauer spectrometer), bulk chemistry (Alpha Particle X-ray Spectrometer) and context (Pancam and Microscopic Imager). During sol 32 Spirit investigated an olivine basalt named Adirondack, the type specimen for a class of rock that composes much of the plains material within Gusev Crater and embays the Columbia Hills. Following the characterization of the plains material, Spirit departed the plains targeting the Columbia Hills and ascending at Husband Hill. During Spirit's ascent of Husband Hill three additional classes of volcanic rock were identified as distinct by their mini-TES spectra; Wishstone, Backstay and Irvine. These rocks are classified as tephrite, trachy-basalt and basalt, respectively, and are the first alkaline rocks observed on Mars. These

  20. Proceedings of the Geophysical Laboratory/Lawrence Radiation Laboratory Cratering Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, Milo D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1961-10-01

    The geological papers in this morning's session will deal descriptively with surficial features and end products of impact craters caused by meteorite falls. Such items as breccia, structural deformation, normal and inverse stratigraphy, glass (fused rock), and coesite will frequently be mentioned. Meteor and explosion crater data are presented.

  1. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data

    Science.gov (United States)

    Martinot, M.; Besse, S.; Flahaut, J.; Quantin-Nataf, C.; Lozac'h, L.; van Westrenen, W.

    2018-02-01

    Moon Mineralogy Mapper (M3) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M3 data, using a custom-made method for M3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  2. Tectonic and volcanic implications of a cratered seamount off Nicobar Island, Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.; Ray, D.; Mudholkar, A.V.; Murty, G.P.S.; Gahalaut, V.K.; Samudrala, K.; Paropkari, A.L.; Ramachandran, R.; SuryaPrakash, L.

    seamount with well-developed crater at the summit was discovered near to the center of the Nicobar swarm. Rock samples collected by TV-guided grab from the seamount crater are dacite, rhyolite and andesite type with a veneer of ferromanganese oxide coating...

  3. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data.

    Science.gov (United States)

    Martinot, M; Besse, S; Flahaut, J; Quantin-Nataf, C; Lozac'h, L; van Westrenen, W

    2018-02-01

    Moon Mineralogy Mapper (M 3 ) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M 3 data, using a custom-made method for M 3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  4. Enhancing Magnetic Interpretation Towards Meteorite Impact Crater at Bukit Bunuh, Perak, Malaysia

    Science.gov (United States)

    Nur Amalina, M. K. A.; Nordiana, M. M.; Saad, Rosli; Saidin, Mokhtar

    2017-04-01

    Bukit Bunuh is the most popular area of suspected meteorite impact crater. In the history of meteorite impact hitting the earth, Bukit Bunuh has complex crater of a rebound zone of positive magnetic anomaly value. This study area was located at Lenggong, Perak of peninsular Malaysia. The crater rim extended 5 km outwards with a clear subdued zone and immediately surround by a positive magnetic residual crater rim zone. A recent study was done to enhance the magnetic interpretation towards meteorite impact crater on this study area. The result obtained is being correlated with boreholes data to determine the range of local magnetic value. For the magnetic survey, the equipment used is Geometric G-856 Proton Precision magnetometers with the aids of other tools such as compass and GPS. In advance, the using of proton precision magnetometer causes it able in measures the magnetic fields separately within interval of second. Also, 18 boreholes are accumulated at study area to enhance the interpretation. The additional boreholes data had successfully described the structure of the impact crater at Bukit Bunuh in detailed where it is an eroded impact crater. Correlations with borehole records enlighten the results acquired from magnetic methods to be more reliable. A better insight of magnetic interpretation of Bukit Bunuh impact crater was done with the aid of geotechnical methods.

  5. Behavioral ecology of American Pikas (Ochotona princeps) at Mono Craters, California: living on the edge

    Science.gov (United States)

    Andrew T. Smith; John D. Nagy; Connie Millar

    2016-01-01

    The behavioral ecology of the American pika (Ochotona princeps) was investigated at a relatively hot south-facing, low-elevation site in the Mono Craters, California, a habitat quite different from the upper montane regions more typically inhabited by this species and where most prior investigations have been conducted. Mono Craters pikas exhibited...

  6. Crater Lake Controls on Volcano Stability: Insights From White Island, New Zealand

    Science.gov (United States)

    Hamling, Ian J.

    2017-11-01

    Many volcanoes around the world host summit crater lakes but their influence on the overall stability of the edifice remains poorly understood. Here I use satellite radar data acquired by TerraSAR-X from early 2015 to July 2017 over White Island, New Zealand, to investigate the interaction of the crater lake and deformation of the surrounding edifice. An eruption in April 2016 was preceded by a period of uplift within the crater floor and drop in the lake level. Modeling of the uplift indicates a shallow source located at ˜100 m depth in the vicinity of the crater lake, likely coinciding with the shallow hydrothermal system. In addition to the drop in the lake level, stress changes induced by the inflation suggest that the pressurization of the shallow hydrothermal system helped promote failure along the edge of the crater lake which collapsed during the eruption. After the eruption, and almost complete removal of the crater lake, large areas of the crater wall and lake edge began moving downslope at rates approaching 400 mm/yr. The coincidence between the rapid increase in the displacement rates and removal of the crater lake suggests that the lake provides a physical control on the stability of the surrounding edifice.

  7. Large-scale impact cratering on the terrestrial planets

    International Nuclear Information System (INIS)

    Grieve, R.A.F.

    1982-01-01

    The crater densities on the earth and moon form the basis for a standard flux-time curve that can be used in dating unsampled planetary surfaces and constraining the temporal history of endogenic geologic processes. Abundant evidence is seen not only that impact cratering was an important surface process in planetary history but also that large imapact events produced effects that were crucial in scale. By way of example, it is noted that the formation of multiring basins on the early moon was as important in defining the planetary tectonic framework as plate tectonics is on the earth. Evidence from several planets suggests that the effects of very-large-scale impacts go beyond the simple formation of an impact structure and serve to localize increased endogenic activity over an extended period of geologic time. Even though no longer occurring with the frequency and magnitude of early solar system history, it is noted that large scale impact events continue to affect the local geology of the planets. 92 references

  8. Mapping nuclear craters on Enewetak Atoll, Marshall Islands

    Science.gov (United States)

    Hampson, John C., Jr.

    1986-01-01

    In 1984, the U.S. Geological Survey conducted a detailed geologic analysis of two nuclear test craters at Enewetak Atoll, Marshall Islands, on behalf of the Defense Nuclear Agency. A multidisciplinary task force mapped the morphology, surface character, and subsurface structure of two craters, OAK and KOA. The field mapping techniques include echo sounding, sidescan sonar imaging, single-channel and multichannel seismic reflection profiling, a seismic refraction survey, and scuba and submersible operations. All operations had to be navigated precisely and correlatable with subsequent drilling and sampling operations. Mapping with a high degree of precision at scales as large as 1:1500 required corrections that often are not considered in marine mapping. Corrections were applied to the bathymetric data for location of the echo- sounding transducer relative to the navigation transponder on the ship and for transducer depth, speed of sound, and tidal variations. Sidescan sonar, single-channel seismic reflection, and scuba and submersible data were correlated in depth and map position with the bathymetric data to provide a precise, internally consistent data set. The multichannel and refraction surveys were conducted independently but compared well with bathymetry. Examples drawn from processing the bathymetric, sidescan sonar, and single- channel reflection data help illustrate problems and procedures in precision mapping.

  9. Characteristics of small young lunar impact craters focusing on current production and degradation on the Moon

    Science.gov (United States)

    Kereszturi, Akos; Steinmann, Vilmos

    2017-11-01

    Analysing the size-frequency distribution of very small lunar craters (sized below 100 m including ones below 10 m) using LROC images, spatial density and related age estimations were calculated for mare and terra terrains. Altogether 1.55 km2 area was surveyed composed of 0.1-0.2 km2 units, counting 2784 craters. The maximal areal density was present at the 4-8 m diameter range at every analysed terrain suggesting the bombardment is areally relatively homogeneous. Analysing the similarities and differences between various areas, the mare terrains look about two times older than the terra terrains using ages ranged between 13 and 20 Ma for mare, 4-6 Ma for terra terrains. Substantial fluctuation (min: 936 craters/km2, max: 2495 craters/km2) was observed without obvious source of nearby secondaries or fresh ejecta blanket produced fresh crater. Randomness analysis and visual inspection also suggested no secondary craters or ejecta blanket from fresh impact could contribute substantially in the observed heterogeneity of the areal distribution of small craters - thus distant secondaries or even other, poorly known resurfacing processes should be considered in the future. The difference between the terra/mare ages might come only partly from the easier identification of small craters on smooth mare terrains, as the differences were observed for larger (30-60 m diameter) craters too. Difference in the target hardness could more contribute in this effect. It was possible to separate two groups of small craters based on their appearance: a rimmed thus less eroded, and a rimless thus more eroded one. As the separate usage of different morphology groups of craters for age estimation at the same area is not justifiable, this was used only for comparison. The SFD curves of these two groups showed characteristic differences: the steepness of the fresh craters' SFD curves are similar to each other and were larger than the isochrones. The eroded craters' SFD curves also resemble

  10. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    Science.gov (United States)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; hide

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts

  11. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    Science.gov (United States)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary

  12. Subaqueous geology and a filling model for Crater Lake, Oregon

    Science.gov (United States)

    Nathenson, M.; Bacon, C.R.; Ramsey, D.W.

    2007-01-01

    Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time

  13. Origin of the outer layer of martian low-aspect ratio layered ejecta craters

    Science.gov (United States)

    Boyce, Joseph M.; Wilson, Lionel; Barlow, Nadine G.

    2015-01-01

    Low-aspect ratio layered ejecta (LARLE) craters are one of the most enigmatic types of martian layered ejecta craters. We propose that the extensive outer layer of these craters is produced through the same base surge mechanism as that which produced the base surge deposits generated by near-surface, buried nuclear and high-explosive detonations. However, the LARLE layers have higher aspect ratios compared with base surge deposits from explosion craters, a result of differences in thicknesses of these layers. This characteristics is probably caused by the addition of large amounts of small particles of dust and ice derived from climate-related mantles of snow, ice and dust in the areas where LARLE craters form. These deposits are likely to be quickly stabilized (order of a few days to a few years) from eolian erosion by formation of duricrust produced by diffusion of water vapor out of the deposits.

  14. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

    Science.gov (United States)

    Grotzinger, J. P.; Gupta, S.; Malin, M. C.; Rubin, D. M.; Schieber, J.; Siebach, K.; Sumner, D. Y.; Stack, K. M.; Vasavada, A. R.; Arvidson, R. E.; Calef, F.; Edgar, L.; Fischer, W. F.; Grant, J. A.; Griffes, J.; Kah, L. C.; Lamb, M. P.; Lewis, K. W.; Mangold, N.; Minitti, M. E.; Palucis, M.; Rice, M.; Williams, R. M. E.; Yingst, R. A.; Blake, D.; Blaney, D.; Conrad, P.; Crisp, J.; Dietrich, W. E.; Dromart, G.; Edgett, K. S.; Ewing, R. C.; Gellert, R.; Hurowitz, J. A.; Kocurek, G.; Mahaffy, P.; McBride, M. J.; McLennan, S. M.; Mischna, M.; Ming, D.; Milliken, R.; Newsom, H.; Oehler, D.; Parker, T. J.; Vaniman, D.; Wiens, R. C.; Wilson, S. A.

    2015-10-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).

  15. Relaxed impact craters on Ganymede: Regional variation and high heat flows

    Science.gov (United States)

    Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.

    2018-01-01

    Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows—in excess of 30–40 mW m−2 over 2 Gyr, with many small (heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.

  16. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars.

    Science.gov (United States)

    Grotzinger, J P; Gupta, S; Malin, M C; Rubin, D M; Schieber, J; Siebach, K; Sumner, D Y; Stack, K M; Vasavada, A R; Arvidson, R E; Calef, F; Edgar, L; Fischer, W F; Grant, J A; Griffes, J; Kah, L C; Lamb, M P; Lewis, K W; Mangold, N; Minitti, M E; Palucis, M; Rice, M; Williams, R M E; Yingst, R A; Blake, D; Blaney, D; Conrad, P; Crisp, J; Dietrich, W E; Dromart, G; Edgett, K S; Ewing, R C; Gellert, R; Hurowitz, J A; Kocurek, G; Mahaffy, P; McBride, M J; McLennan, S M; Mischna, M; Ming, D; Milliken, R; Newsom, H; Oehler, D; Parker, T J; Vaniman, D; Wiens, R C; Wilson, S A

    2015-10-09

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp). Copyright © 2015, American Association for the Advancement of Science.

  17. Brightening and Volatile Distribution Within Shackleton Crater Observed by the LRO Laser Altimeter.

    Science.gov (United States)

    Smith, D. E.; Zuber, M. T.; Head, J. W.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Aharonson, O.; Tye, A. R.; Fassett, C. I.; Rosengurg, M. A.; hide

    2012-01-01

    Shackleton crater, whose interior lies largely in permanent shadow, is of interest due to its potential to sequester volatiles. Observations from the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter have enabled an unprecedented topographic characterization, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting little floor deposition since crater formation over 3 billion years ago. At 1064 nm the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explainable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a 1-mm-thick layer containing approx 20% surficial ice is an alternative possibility.

  18. Relaxed impact craters on Ganymede: Regional variation and high heat flows

    Science.gov (United States)

    Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.

    2018-05-01

    Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows-in excess of 30-40 mW m-2 over 2 Gyr, with many small (heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.

  19. The Alleret Maar lacustrine sequence (French Massif Central): a 150 ka long early-middle Pleistocene continental paleoenvironmental record.

    Science.gov (United States)

    Nomade, S.; Pastre, J.; Guillou, H.; Gauthier, A.; Scaillet, S.

    2008-12-01

    Lacustrine maar sequences of the French Massif Central are of great interest for paleoclimatic and paleoenvironmental reconstructions of mid-latitudes Quaternary continental environments. In particular, the western Velay region yields exceptional sequences spanning the last 450 ka (Reille et al., J. Quat. Sci. 2000). However, older sequences remain largely unknown despite the presence of interbedded alkaline tephras allowing precise absolute radiochronological control of many lacustrine squences. The Alleret maar is a 1500 m wide phreatomagmatic crater that provides a long lacustrine sequence (41 m). The upper part of this sequence (AL2 core, 14.6 m) was studied between 2005 and 2006 (Pastre et al., C. R. Acad Sci, 2007). A 39Ar/40Ar date (557 ± 5ka) obtained from an interbedded tephra layer located at 7m as well as the associated pollen data attribute the beginning of this sequence to the MIS 15. Thanks to the AL3 core recovered in 2005 (40.6 m, CNRS Meudon) several new tephra layers were discovered in the bottom part of this lacustrine sequence. Three new 39Ar/40Ar ages (single crystal analyses) from trachytic tephra layers were obtained at the LSCE Argon Laboratory (France). These layers are located at -30.2, -36.2 and -39.2m. Ages obtained relative to the ACR-2 flux standard (1,201Ma, Kuiper et al., Science, 2008) range from 692 ± 6 ka (MSWD: 2.3, n=18) for the youngest (-30.2m) to 726 ± 9Ka Ka (MSWD: 2.2, n=12) for the lowest tephra located at -39.2m. These new dates indicate a relatively homogeneous deposition rate of 3.5cm/ka and that the last 10 meters cover the MIS 17-MIS18 period. According to these current radiochronological data the complete lacustrine sequence last more than 150ka. Ongoing sedimentary and pollen studies will allow to extend the paleoenvironmental and paleoclimatic records of the French Massif Central towards the beginning of the early middle Pleistocene.

  20. Majorana flat bands in anisotropic systems

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, Daniel; Kotetes, Panagiotis; Schoen, Gerd [Institut fuer theoretische Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    It has been recently proposed that topologically protected Majorana flat bands (MFBs) emerge in superconductors with nodal energy spectrum. In this work we introduce a new class of gapful superconductors, in which MFBs can occur due to strong anisotropy. The prototype system exhibiting this kind of behavior is the nematic p{sub x}+p{sub y} spinless superconductor, which supports an edge MFB with controllable bandwidth. Our proposal can be for instance experimentally implemented in topological superconductors engineered from i. semiconductors with tunable spin-orbit coupling or ii. topological insulator surfaces with intrinsic magnetic order in proximity to a conventional SC. By investigating the topological properties of both setups, we show that their unique features render them feasible platforms for manipulating the Majorana fermion bandstructure and realizing MFBs.

  1. The bifurcations of nearly flat origami

    Science.gov (United States)

    Santangelo, Christian

    Self-folding origami structures provide one means of fabricating complex, three-dimensional structures from a flat, two-dimensional sheet. Self-folding origami structures have been fabricated on scales ranging from macroscopic to microscopic and can have quite complicated structures with hundreds of folds arranged in complex patterns. I will describe our efforts to understand the mechanics and energetics of self-folding origami structures. Though the dimension of the configuration space of an origami structure scales with the size of the boundary and not with the number of vertices in the interior of the structure, a typical origami structure is also floppy in the sense that there are many possible ways to assign fold angles consistently. I will discuss our theoretical progress in understanding the geometry of the configuration space of origami. For random origami, the number of possible bifurcations grows surprisingly quickly even when the dimension of the configuration space is small. EFRI ODISSEI-1240441, DMR-0846582.

  2. Ultra flat ideal concentrators of high concentration

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Julio [IST, Physics Dept., Lisboa (Portugal); INETI-DER, Lisboa (Portugal); Collares-Pereira, Manuel [INETI-DER, Lisboa (Portugal)

    2000-07-01

    A new method for the design of nonimaging devices is presented. Its application to the design of ultra flat compact concentrators is analysed. These new concentrators are based on a combination of two stages: the first one is composed of a large number of small structures placed side by side and the second one is a very compact single device concentrating the radiation to the limit. These devices are ideal for 2D. These compact designs are much more compact than the traditional ones like lens-mirror combinations or parabolic primaries with nonimaging secondaries. Besides, they can be designed for any acceptance angle, while the traditional ones are limited to small acceptance angles. (Author)

  3. Theory of Fermi Liquid with Flat Bands

    Science.gov (United States)

    Khodel, V. A.

    2018-04-01

    A self-consistent theory of Fermi systems hosting flat bands is developed. Compared with an original model of fermion condensation, its key point consists in proper accounting for mixing between condensate and non-condensate degrees of freedom that leads to formation of a non-BCS gap Υ (p) in the single-particle spectrum. The results obtained explain: (1) the two-gap structure of spectra of single-particle excitations of electron systems of copper oxides, revealed in ARPES studies, (2) the role of violation of the topological stability of the Landau state in the arrangement of the T-x phase diagram of this family of high-T_c superconductors, (3) the topological nature of a metal-insulator transition, discovered in homogeneous two-dimensional low-density electron liquid of MOSFETs more than 20 years ago.

  4. NEPA/CERCLA integration at Rocky Flats

    International Nuclear Information System (INIS)

    Schassburger, R.J.

    1991-01-01

    Integration of two laws, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Environmental Policy Act (NEPA) was mandated by the US Department of Energy (DOE) with issuance of DOE Order 5400.4 in October 6, 1989. NEPA documentation is required for all federal actions to thereby consider the impacts of such actions prior to the action taking place. On the other hand, CERCLA actions taken by the US Environmental Protection Agency (EPA) at non-federal and federal sites do not normally take NEPA into consideration, although it is not exempted at federal sites. EPA claims that CERCLA is functionally equivalent to N-EPA and therefore NEPA is not required. Although EPA maintains the functional equivalency of the two laws and formerly resisted to recognize NEPA even in Inter-Agency Agreements (IAGs), Rocky Flats has been integrating the two laws within documents to avoid duplication of information and effort

  5. Transparent Solar Concentrator for Flat Panel Display

    Science.gov (United States)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  6. Testing models for the formation of the equatorial ridge on Iapetus via crater counting

    Science.gov (United States)

    Damptz, Amanda L.; Dombard, Andrew J.; Kirchoff, Michelle R.

    2018-03-01

    Iapetus's equatorial ridge, visible in global views of the moon, is unique in the Solar System. The formation of this feature is likely attributed to a key event in the evolution of Iapetus, and various models have been proposed as the source of the ridge. By surveying imagery from the Cassini and Voyager missions, this study aims to compile a database of the impact crater population on and around Iapetus's equatorial ridge, assess the relative age of the ridge from differences in cratering between on ridge and off ridge, and test the various models of ridge formation. This work presents a database that contains 7748 craters ranging from 0.83 km to 591 km in diameter. The database includes the study area in which the crater is located, the latitude and longitude of the crater, the major and minor axis lengths, and the azimuthal angle of orientation of the major axis. Analysis of crater orientation over the entire study area reveals that there is no preference for long-axis orientation, particularly in the area with the highest resolution. Comparison of the crater size-frequency distributions show that the crater distribution on the ridge appears to be depleted in craters larger than 16 km with an abruptly enhanced crater population less than 16 km in diameter up to saturation. One possible interpretation is that the ridge is a relatively younger surface with an enhanced small impactor population. Finally, the compiled results are used to examine each ridge formation hypothesis. Based on these results, a model of ridge formation via a tidally disrupted sub-satellite appears most consistent with our interpretation of a younger ridge with an enhanced small impactor population.

  7. Crater relaxation on Titan aided by low thermal conductivity sand infill

    Science.gov (United States)

    Schurmeier, Lauren R.; Dombard, Andrew J.

    2018-05-01

    Titan's few impact craters are currently many hundreds of meters shallower than the depths expected. Assuming these craters initially had depths equal to that of similar-size fresh craters on Ganymede and Callisto (moons of similar size, composition, and target lithology), then some process has shallowed them over time. Since nearly all of Titan's recognized craters are located within the arid equatorial sand seas of organic-rich dunes, where rain is infrequent, and atmospheric sedimentation is expected to be low, it has been suggested that aeolian infill plays a major role in shallowing the craters. Topographic relaxation at Titan's current heat flow was previously assumed to be an unimportant process on Titan due to its low surface temperature (94 K). However, our estimate of the thermal conductivity of Titan's organic-rich sand is remarkably low (0.025 W m-1 K-1), and when in thick deposits, will result in a thermal blanketing effect that can aid relaxation. Here, we simulate the relaxation of Titan's craters Afekan, Soi, and Sinlap including thermal effects of various amounts of sand inside and around Titan's craters. We find that the combination of aeolian infill and subsequent relaxation can produce the current crater depths in a geologically reasonable period of time using Titan's current heat flow. Instead of needing to fill completely the missing volume with 100% sand, only ∼62%, ∼71%, and ∼97%, of the volume need be sand at the current basal heat flux for Afekan, Soi, and Sinlap, respectively. We conclude that both processes are likely at work shallowing these craters, and this finding contributes to why Titan overall lacks impact craters in the arid equatorial regions.

  8. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae.

    Science.gov (United States)

    Welker, Frido; Smith, Geoff M; Hutson, Jarod M; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine; Gaudzinski-Windheuser, Sabine

    2017-01-01

    Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus . No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros ( Dicerorhinus sumatrensis ). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus . ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus , subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera ( Equus , Tapirus ), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae, Tapiridae, and

  9. TRANSVERSE MODES FOR FLAT INTER-BUNCH WAKES*

    CERN Document Server

    Burov, A

    2013-01-01

    If inter-bunch wake fields are flat, i.e. their variations over a bunch length can be neglected, all coherent modes have the same coupled-bunch structure, provided the bunches can be treated as identical by their inner qualities (train theorem). If a flat feedback is strong enough, the transverse modes are single-bunch, provided the inter-bunch wakes are also flat (damper theorem).

  10. Development of Partial Tubular Flat Knitting Fabric Composite Preform

    Directory of Open Access Journals (Sweden)

    Jiang Wei Qing

    2016-01-01

    Full Text Available After building some structures of partial tubular flat knitting fabric composite preform, the influencing factor on tubular section was analyzed and the fabric was knitted selectively. The partial tubular flat knitting fabric composite preform were Knitted by changing different yarn, row number and two-sided partial tubular flat knitting fabric. Multilayer sheet would be got after hot pressing and it has big market prospects and good application value.

  11. Flat connection, conformal field theory and quantum group

    International Nuclear Information System (INIS)

    Kato, Mitsuhiro.

    1989-07-01

    General framework of linear first order differential equation for four-point conformal block is studied by using flat connection. Integrability and SL 2 invariance restrict possible form of flat connection. Under a special ansatz classical Yang-Baxter equation appears as an integrability condition and the WZW model turns to be unique conformal field theory in that case. Monodromy property of conformal block can be easily determined by the flat connection. 11 refs

  12. Patterns of myoxid evolution in the Pliocene and Pleistocene of Europe

    Directory of Open Access Journals (Sweden)

    Adam Nadachoswki

    1995-05-01

    Full Text Available Abstract The origin of recent species belonging to the genera Myoxus, Muscardinus, Glirulus, Eliomys, Dryomys and Myomimus is discussed. Evolution of myoxids in the Pliocene and Pleistocene is expressed by gradual size increase of their cheek teeth. No gradual change in the dental pattern is observed. Riassunto Modelli di evoluzione dei Mioxidi nel Pliocene e Pleistocene in Europa - Viene discussa l'origine delle specie recenti appartenenti ai generi Myoxus, Muscardinus, Glirulus, Eliomys, Dryomys e Myomimus. L'evoluzione dei Mioxidi nel Pliocene e nel Pleistocene è espressa da un graduale aumento delle dimensioni dei molari. Non è stato osservato alcun cambiamento graduale nel pattern dentale.

  13. A NEW EARLY PLEISTOCENE BIRD ASSOCIATION FROM PIETRAFITTA (PERUGIA, CENTRAL ITALY

    Directory of Open Access Journals (Sweden)

    GILDA ZUCCHETTA

    2003-11-01

    Full Text Available We here present che preliminary results of the analysis of the fossil bird assemblages found in the lignite deposits of the Pietrafitta Mine (Perugia, Central Italy. A rich vertebrate association, mainly mammals, has been retrieved in Pietrafitta, which is the richest local fauna of the Farneta Faunal Unit (late Villafranchian, early Pleistocene. Avian remains of Podicipedidae, Ardeidae, Phalacrocoracidae, Anatidae, Phasianidae and Rallidae have been identified, for most of which Pietrafitta represents the earliest occurrence in Italy. The Pietrafitta fossil bird association is the first Italian bird assemblage of the Early Pleistocene and seems to be one of the most important ones for the early Pleistocene in Europe, especially because it contains mainly aquatic birds, often rare in many other European deposits. 

  14. Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age.

    Science.gov (United States)

    Gabunia, L; Vekua, A; Lordkipanidze, D; Swisher, C C; Ferring, R; Justus, A; Nioradze, M; Tvalchrelidze, M; Antón, S C; Bosinski, G; Jöris, O; Lumley, M A; Majsuradze, G; Mouskhelishvili, A

    2000-05-12

    Archaeological excavations at the site of Dmanisi in the Republic of Georgia have uncovered two partial early Pleistocene hominid crania. The new fossils consist of a relatively complete cranium and a second relatively complete calvaria from the same site and stratigraphic unit that yielded a hominid mandible in 1991. In contrast with the uncertain taxonomic affinity of the mandible, the new fossils are comparable in size and morphology with Homo ergaster from Koobi Fora, Kenya. Paleontological, archaeological, geochronological, and paleomagnetic data from Dmanisi all indicate an earliest Pleistocene age of about 1.7 million years ago, supporting correlation of the new specimens with the Koobi Fora fossils. The Dmanisi fossils, in contrast with Pleistocene hominids from Western Europe and Eastern Asia, show clear African affinity and may represent the species that first migrated out of Africa.

  15. Drainage system inversion in the Guadalentin Depression during the Late Pleistocene-Holocene (Murcia, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Calmel-Avila, M.; Silva, P. G.; Bardaji, T.; Goy, J. L.; Zazo, C.

    2009-07-01

    This article presents the results of studies conducted in the central sector of Guadalentin depression (Murcia) for the abnormal accumulation (more than 17 m) of Pleistocene and Holocene deposits upstream of Romeral tectonic threshold (Librilla). {sup 1}4C dating. ruins and archaeological sites, together with its stratigraphic analysis show that the three sequences that constitute the Holocene detrital filling of the Depression, prograded are superimposed on the upper Pleistocene travertine upstream from the confluence of the River Guadalentin the Rambla de Librilla. Between Librilla and threshold Romeral Holocene deposits only appear along the left bank (15-17m). By contrast the right side shows significant lifting of the Pleistocene travertine up area Romeral threshold, where the substrate allora Neogene. (Author) 11 refs.

  16. Late Pleistocene and Holocene landscape formation in a gully catchment area in Northern Hesse, Germany

    DEFF Research Database (Denmark)

    Döhler, Susanne; Damm, Bodo; Terhorst, Birgit

    2015-01-01

    the differentiation between Pleistocene and Holocene landforms. Radiocarbon and optically stimulated luminescence dating are applied to add numerical data to the relative ages of the sediments and landforms. The gully channels are oriented along Pleistocene depressions that are built up of periglacial cover beds...... and intercalated reworked loess. As the gully channels cut through the periglacial cover beds, especially the upper layer, the gully system is of Holocene age. At least two phases of gully erosion are identified in the alluvial fan sediments. The initial gully erosion is dated to the time span between the Late......Permanent gully channels under forest are common geomorphological features in Central European low mountain areas. In the Rehgraben/Fuchslöchergraben gully catchment in Northern Hesse, Germany the Late Pleistocene landscape formation is reconstructed based on periglacial cover beds. In addition...

  17. Criteria impacting shipments of Rocky Flats Plant radioactive mixed wastes

    International Nuclear Information System (INIS)

    Clawson, R.L.; Eide, J.H.

    1992-05-01

    Westinghouse Hanford Company, Transportation and Packaging Division, under contract for the Los Alamos Technology Office-Rocky Flats Plant, has developed this synopsis report to be used as a reference in the development of the Rocky Flats Plant Comprehensive Treatment and Management Plan and the Rocky Flats Plant Residue Elimination Plan. This report represents the criteria for packaging, shipping, and transporting Rocky Flats Plant radioactive mixed wastes. It is a compilation of state and federal regulations, US Department of Energy orders, and acceptance criteria specific to US Department of Energy radioactive mixed waste treatment, storage and disposal facilities

  18. 3D flat holography: entropy and logarithmic corrections

    International Nuclear Information System (INIS)

    Bagchi, Arjun; Basu, Rudranil

    2014-01-01

    We compute the leading corrections to the Bekenstein-Hawking entropy of the Flat Space Cosmological (FSC) solutions in 3D flat spacetimes, which are the flat analogues of the BTZ black holes in AdS 3 . The analysis is done by a computation of density of states in the dual 2D Galilean Conformal Field Theory and the answer obtained by this matches with the limiting value of the expected result for the BTZ inner horizon entropy as well as what is expected for a generic thermodynamic system. Along the way, we also develop other aspects of holography of 3D flat spacetimes

  19. An epidemiologic study of flat foot in Iran

    Directory of Open Access Journals (Sweden)

    Alamy B

    1997-07-01

    Full Text Available Among 880 studied feet of 7-14 years old children 6.9% suffered mild and severe flat foot. 53.8% of the affected children were symptomatic. As 40.1% of the general population experiences symptoms, in a small proportion of affected persons, symptoms are due to flat foot. The prevalence of symptoms rises with increasing severity of the disorder. In this article, reviewing general aspects of flat food, prevalence and other epidemiological aspects of flat foot for the first time in Iran have been presented

  20. Flat synchronizations in spherically symmetric space-times

    International Nuclear Information System (INIS)

    Herrero, Alicia; Morales-Lladosa, Juan Antonio

    2010-01-01

    It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.

  1. The late Middle Pleistocene hominin fossil record of eastern Asia: synthesis and review.

    Science.gov (United States)

    Bae, Christopher J

    2010-01-01

    Traditionally, Middle Pleistocene hominin fossils that cannot be allocated to Homo erectus sensu lato or modern H. sapiens have been assigned to different specific taxa. For example, in eastern Asia, these hominin fossils have been classified as archaic, early, or premodern H. sapiens. An increasing number of Middle Pleistocene hominin fossils are currently being assigned to H. heidelbergensis. This is particularly the case for the African and European Middle Pleistocene hominin fossil record. There have been suggestions that perhaps the eastern Asian late Middle Pleistocene hominins can also be allocated to the H. heidelbergensis hypodigm. In this article, I review the current state of the late Middle Pleistocene hominin fossil record from eastern Asia and examine the various arguments for assigning these hominins to the different specific taxa. The two primary conclusions drawn from this review are as follows: 1) little evidence currently exists in the eastern Asian Middle Pleistocene hominin fossil record to support their assignment to H. heidelbergensis; and 2) rather than add to the growing list of hominin fossil taxa by using taxonomic names like H. daliensis for northeast Asian fossils and H. mabaensis for Southeast Asian fossils, it is better to err on the side of caution and continue to use the term archaic H. sapiens to represent all of these hominin fossils. What should be evident from this review is the need for an increase in the quality and quantity of the eastern Asian hominin fossil data set. Fortunately, with the increasing number of large-scale multidisciplinary paleoanthropological field and laboratory research projects in eastern Asia, the record is quickly becoming better understood. Copyright © 2010 Wiley-Liss, Inc.

  2. Hominin teeth from the Middle Pleistocene site of Yiyuan, Eastern China.

    Science.gov (United States)

    Xing, Song; Sun, Chengkai; Martinón-Torres, María; Bermúdez de Castro, José María; Han, Fei; Zhang, Yingqi; Liu, Wu

    2016-06-01

    In 1981-1982, some hominin fossils, including a relatively complete skull and seven isolated teeth, were recovered from the Middle Pleistocene site of Yiyuan in Eastern China. In the present study we provide a detailed metric and morphological comparison of the Yiyuan dental sample in order to characterize better the variability of the human populations that inhabited China during the Middle Pleistocene. Aside from taxonomic and phylogenetic questions, the lack of understanding and/or knowledge about the morphological variability of these populations have caused concern about the human versus non-human nature of some of the hominin dental remains found in East Asia during the Early and the Middle Pleistocene. Thus, our study aims to present a detailed description and comparison of the Yiyuan isolated teeth to 1) discuss and support their human nature and 2) to explore their taxonomic affinities with regard to other penecontemporaneous populations from Asia. Our results clearly differentiate the Yiyuan sample from Pongo specimens and support a human attribution for the Yiyuan material. Our analyses also suggest that the Yiyuan teeth form a morphologically coherent group together with samples from Zhoukoudian, Chaoxian and Hexian. They are different from the more derived specimens from Panxian Dadong, suggesting a pattern of biogeographic isolation and different evolutionary trends between northern and southern China during the Middle Pleistocene. In addition, and despite sharing a common morphological bauplan with Homo erectus sensu stricto (s.s.), the Yiyuan, Zhoukoudian and Hexian teeth are also different from the Indonesian Early Pleistocene samples. In particular, the expression of a highly crenulated or dendritic enamel-dentine surface could be unique to these groups. Our study supports the notion that the taxonomy of the Pleistocene hominins from Asia may have been oversimplified. Future studies should explore the variability of the Asian specimens and

  3. The Pliocene initiation and Early Pleistocene volcanic disruption of the palaeo-Gediz fluvial system, Western Turkey

    NARCIS (Netherlands)

    Maddy, D.; Demir, T.; Bridgland, D.R.; Veldkamp, A.; Stemerdink, C.; Schriek, van der T.; Schreve, D.

    2007-01-01

    In this paper, we report our latest observations concerning a Pliocene and Early Pleistocene record from Western Turkey. The sedimentary sequence described comprises the fluvial deposits of an Early Pleistocene palaeo-Gediz river system and its tributaries prior to the onset of volcanism around Kula

  4. Is the modern koala ( Phascolarctos cinereus) a derived dwarf of a Pleistocene giant? Implications for testing megafauna extinction hypotheses

    Science.gov (United States)

    Price, Gilbert J.

    2008-12-01

    The modern Australian koala ( Phascolarctos cinereus) is commonly regarded as a dwarf descendent of a Late Pleistocene giant koala ( Ph. stirtoni). The implication of that hypothesis is that the giant koala survived the Late Pleistocene megafaunal extinction "event", albeit as a smaller body-sized form. It is important to be able to constrain rates of Late Pleistocene faunal turnover, an aspect reliant on having accurate taxonomic information of extinct species. The koala dwarfing hypothesis is tested here by using a temporally-constrained biogeographical record of fossil koalas, and a morphological character analysis. The contemporary occurrence of both taxa in pre-Late Pleistocene deposits and significant differences in dental morphologies between those forms suggests that the modern koala is not a derived dwarf of the Pleistocene giant koala. Thus, the giant-form was among a number of other giant mammals, lizards and birds that suffered extinction sometime during the Late Pleistocene. The potential phenomenon of dwarfing of other Late Pleistocene and Recent faunas, such as grey kangaroos, is commonly used as a test for or against various megafaunal extinction hypotheses. However, the results of this study also demonstrate that the dwarfing hypothesis has not been adequately tested for a suite of other taxa. Thus, until the dwarfing hypothesis can be more fully tested, a clear understanding of the fate of Late Pleistocene faunas that apparently survived the extinction "event", and the origins of many extant forms will remain elusive.

  5. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends

    Directory of Open Access Journals (Sweden)

    Schmitt Thomas

    2007-04-01

    Full Text Available Abstract The climatic cycles with subsequent glacial and intergalcial periods have had a great impact on the distribution and evolution of species. Using genetic analytical tools considerably increased our understanding of these processes. In this review I therefore give an overview of the molecular biogeography of Europe. For means of simplification, I distinguish between three major biogeographical entities: (i "Mediterranean" with Mediterranean differentiation and dispersal centres, (ii "Continental" with extra-Mediterranean centres and (iii "Alpine" and/or "Arctic" with recent alpine and/or arctic distribution patterns. These different molecular biogeographical patterns are presented using actual examples. Many "Mediterranean" species are differentiated into three major European genetic lineages, which are due to glacial isolation in the three major Mediterranean peninsulas. Postglacial expansion in this group of species is mostly influenced by the barriers of the Pyrenees and the Alps with four resulting main patterns of postglacial range expansions. However, some cases are known with less than one genetic lineage per Mediterranean peninsula on the one hand, and others with a considerable genetic substructure within each of the Mediterranean peninsulas, Asia Minor and the Maghreb. These structures within the Mediterranean sub-centres are often rather strong and in several cases even predate the Pleistocene. For the "Continental" species, it could be shown that the formerly supposed postglacial spread from eastern Palearctic expansion centres is mostly not applicable. Quite the contrary, most of these species apparently had extra-Mediterranean centres of survival in Europe with special importance of the perialpine regions, the Carpathian Basin and parts of the Balkan Peninsula. In the group of "Alpine" and/or "Arctic" species, several molecular biogeographical patterns have been found, which support and improve the postulates based on

  6. Indian Ocean circulation changes over the Middle Pleistocene Transition.

    Science.gov (United States)

    Petrick, B.; Auer, G.; De Vleeschouwer, D.; Christensen, B. A.; Stolfi, C.; Reuning, L.; Martinez-Garcia, A.; Haug, G. H.; Bogus, K.

    2017-12-01

    The Mid-Pleistocene Transition (MPT; 1.4 - 0.4 Ma) represents a climatic shift towards climate cycles at a quasi-100-kyr frequency. Although, several high-resolution records covering the MPT from globally distributed archives exist, there is only sparse evidence on changes in heat exchange between the Pacific and Indian Oceans, which represents a crucial part of the global thermohaline circulation (THC). Deciphering the influence of this heat exchange via the Indonesian Throughflow (ITF) is an important step in understanding the causes of the MPT. The Leeuwin Current off Western Australia is directly influenced by the ITF and can therefore be used to reconstruct ITF variability during the MPT. Today, the Leeuwin Current is the only southward flowing eastern boundary current in the southern hemisphere. The onset of the current is unknown but is proposed to have occurred 1 Ma and was likely related to significant changes in ITF dynamics during the MPT We present the first continuous reconstruction of changes in the Leeuwin Current during the MPT using data from IODP Expedition 356 Site U1460. The site is located at 29°S in the path of the current. High sedimentation rates ( 30 cm/ka) at Site U1460 provide the opportunity for high-resolution reconstruction of the MPT. We reconstruct paleoenvironmental variability by combining XRF, organic geochemistry, ICP-MS and XRD data with shipboard data, to reconstruct Leeuwin Current and ITF variability. Initial analyses show clear indications that upwelling off Western Australia intensified during the MPT, indicated by increased primary productivity related to increased nutrient levels, from 900-600 ka. Our results also suggest that the west Australian current (WAC) strengthened during this time supplying cool eutrophic waters from the high southern latitutes to the site. This intensification of the WAC may have had major implications for the Indian Ocean current system, but also the THC at large. This seems to be coupled with

  7. Latest Pleistocene and Holocene Glacier Fluctuations in southernmost Patagonia

    Science.gov (United States)

    Menounos, B.; Maurer, M.; Clague, J. J.; osborn, G.; Ponce, F.; Davis, P. T.; Rabassa, J.; Coronato, A.; Marr, R.

    2011-12-01

    Summer insolation has been proposed to explain long-term glacier fluctuations during the Holocene. If correct, the record of glacier fluctuations at high latitudes in the Southern Hemisphere should differ from that in the Northern Hemisphere. Testing this insolation hypothesis has been hampered by dating uncertainties of many Holocene glacier chronologies from Patagonia. We report on our ongoing research aimed at developing a regional glacier chronology at the southern end of the Andes north and west of Ushuaia, Argentina. We have found evidence for an advance of cirque glaciers at the end of the Pleistocene; one or locally two closely spaced moraines extend up to 2 km beyond Little Ice Age moraines. Radiocarbon dating of terrestrial macrofossils recovered from basal sediments behind two of these moraines yielded ages of 10,320 ± 25 and 10,330 ± 30 14C yr BP. These moraines may record glacier advances coeval with the Antarctic Cold Reversal; surface exposure dating of these moraines is currently in progress to test this hypothesis. We find no evidence of Holocene moraines older than 6800 14C yr BP, based on the distribution of Hudson tephra of that age. At some sites, there is evidence for an early Neoglacial advance of glaciers slightly beyond (Peru. We have documented multiple wood mats with stumps in growth position separated by till units in a 100 m section of the northeast lateral moraine at Stoppani Glacier (54.78 S, 68.98 W), 50 km west of Ushuaia. Ten radiocarbon ages on these wood mats range in age from 3510 ± 15 to 135 ± 15 14C yr BP. The mats decrease in age up-section; many overlap with published age ranges for Neoglacial advances in western Canada. Taken together, these data: a) do not support the summer insolation hypothesis for Holocene glacier fluctuations in southernmost Patagonia; b) confirm paleobotanical evidence for a warm, dry early Holocene; and c) suggest that many Neoglacial advances in southernmost Patagonia and western North America

  8. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    Science.gov (United States)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  9. Anthropogenic Origin of Siliceous Scoria Droplets from Pleistocene and Holocene Archeaological Sites in Northern Syria

    DEFF Research Database (Denmark)

    Thy, Peter; Willcox, George; Barfod, Gry

    2015-01-01

    Siliceous scoria droplets, measuring from 1 to 10 mm, from one late Pleistocene and four early Holocene archaeological sites in northern Syria are compared to similar droplets previously suggested to be the result of a cosmic impact at the onset of the Younger Dryas global cooling event. The !ndi......Siliceous scoria droplets, measuring from 1 to 10 mm, from one late Pleistocene and four early Holocene archaeological sites in northern Syria are compared to similar droplets previously suggested to be the result of a cosmic impact at the onset of the Younger Dryas global cooling event...

  10. Implications of the avian fauna for paleoecology in the Early Pleistocene of the Iberian Peninsula.

    Science.gov (United States)

    Sánchez-Marco, A

    1999-01-01

    The aim of this paper is to reconstruct the landscape and climate during the formation of the Lower Pleistocene TD6 layer at Gran Dolina, Atapuerca. Habitat preferences and phenetic behavioural spectra of fossil birds are reconstructed using comparisons of fossil bird assemblages with modern avian communities. This method is based upon the phenology (seasonality and breeding status) of each species for both the fossil association and modern communities. The results indicate that more open country and wetter conditions prevailed during the early Pleistocene than were previously inferred. Copyright 1999 Academic Press.

  11. A critical evaluation of the evidence for multiple Late Pleistocene eruptions of Laacher See Volcano

    DEFF Research Database (Denmark)

    Zernack, Anke Verena; Hoggard, Christian Steven; Sauer, Florian Rudolf

    The c. 12,900 BP Plinian eruption of Laacher See Volcano is one of the largest known volcanic events of the Late Pleistocene in the Northern Hemisphere. It buried proximal areas under tens of meters of pyroclastic flow, surge and fallout deposits and deposited a widespread tephra layer across much...... of dispersal of the products from varying eruptive stages and some sites even report two distinct Laacher See Tephra layers that have been interpreted as evidence of a precursor eruption. In order to assess the potential for multiple Late Pleistocene eruptions of Laacher See Volcano, we have compiled...

  12. Leakage of active crater lake brine through the north flank at Rincon de la Vieja volcano, northwest Costa Rica, and implications for crater collapse

    Science.gov (United States)

    Kempter, K.A.; Rowe, G.L.

    2000-01-01

    The Active Crater at Rincon de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincon de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams. Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincon de la Vieja volcano: acid chloride-sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH ~ 0) chloride-sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2-1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincon

  13. Origin of late pleistocene formation water in Mexican oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, P. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    2004-07-01

    . For wellhead samples, a 20 liter-sampling-reagent was previously filled with N{sub 2}-gas for the collection and phase separation of the pressurized gas-water-crude oil mixture. No differences in {sup 14}C-concentrations were detected applying, both, conventional and AMS-techniques. In contradiction to the expected 'fossil age' of reservoir water as part of a stagnant hydraulic system, measured {sup 14}C-concentrations between 0.89 pmC and 31.86 pmC indicate a late Pleistocene-early Holocene, regional event for the infiltration of surface water into the reservoir. The variety in water mineralization from meteoric (TDS{sub max} = 0.5 g/l) to hyper-saline composition (TDS{sub max} = 338 g/l) is not caused by halite dissolution from adjacent salt domes, as shown by elevated Br/Cl ratios. In contrary, the linear correlation between {sup 18}O and Cl values reflect varying mixing proportions of two components - meteoric water and evaporated seawater. Instead of water/rock-interaction, evaporation of seawater at the surface prior to infiltration represents the principal process for fluid enrichment in {sup 18}O and chlorine, with maximum values of 17.2 %o and 228 g/l, respectively. The young residence time of formation water in Mexican oil reservoirs implies following: - The common assumption of 'hydraulically-frozen' reservoirs is not correct, as main descending fluid migration occurred during glacial period. Probably, major infiltration processes are related to periods with climatic changes and increased humidity - as observed for the adjacent Yucatan region in SE-Mexico during early-mid Holocene (6,000 yr BP) (Metcalfe et al. 2000) - with the probable transgression of Mexican Gulf seawater into the recent Mexican coastal plain. - The common hypothesis of hydrocarbon maturation within Jurassic organic-rich layers, and its subsequent expulsion and migration into Cretaceous/Tertiary sedimentary units must be expanded by a last-step-process: As glacial

  14. Paleosoils and pedogenic calcretes formations in Fray Bentos (Oligocene - early miocene) Raigon (late pliocene and middle pleistocene) and Libertad (early - middle pleistocene)

    International Nuclear Information System (INIS)

    Tofalo, O.; Morras, H.; Sanchez-Bettucci, L.

    2012-01-01

    The Fray Bentos formation is composed by loessic deposits based on paleosoils and pedogenic calcretes (Oligocene - early miocene). In this deposits are tubular and lamellar formations which would have been formed in arid climates.The fluvial origen of Raigon Formation, (late pliocene and middle pleistocene) presents a paleosoil roof which is generated under a subhumid climate.The Libertad Formation during the glacial intervals consisted of loess deposits

  15. The Roles of the Yellowstone Hotspot and Crustal Assimilation in Generating Pleistocene-Holocene Basalts on the Eastern Snake River Plain

    Science.gov (United States)

    Mintz, H.; Chadwick, J.

    2017-12-01

    The southwest motion of the North American plate across the Yellowstone hotspot created a chain of age-progressive rhyolitic calderas over the past 16 myr. in southern Idaho, U.S. The focus of Yellowstone activity now resides in northwest Wyoming, but basaltic volcanism has continued in its wake in southern Idaho on the eastern Snake River Plain (ESRP). These younger basaltic lavas are not age progressive and have buried the Yellowstone rhyolites on the ESRP. The ultimate source of the basalts is commonly ascribed to the passage or presence of the hotspot. However, the mechanisms involved, and the relative roles of the hotspot, other mantle sources, and the North American crust in generating the ESRP basalts remain unclear and have been the subject of recent geochemical and isotopic studies. In this study, the role of crustal assimilation is addressed by analyzing the chemical and isotopic characteristics of some of the youngest Pleistocene-Holocene tholeiitic volcanic fields on the ESRP, which were erupted through varying thicknesses of continental crust. Samples were analyzed from the Hell's Half Acre flow (5,200 years old; all dates Kuntz et al., 1986, 1994), Cerro Grande flow (13,380 years), and Black Butte Crater (a.k.a. Shoshone) flow (10,130 years), which were erupted at distances from between about 200 to 300 km from the current location of the hotspot. The crust of the ESRP thins from northeast to southwest, from about 47 km at the Hells Half Acre flow to 40 km at the Black Butte Crater flow, a thickness difference of about 15%. The apparently similar tectonic and magmatic environments of the three sampled flows suggest the crustal thickness variation may be a primary influence on the magnitude of assimilation and therefore the isotopic characteristics of the lavas. The goal of this work is to constrain the relative role of assimilation and to understand the source(s) of the magmas and the Yellowstone hotspot contribution. Major elements, trace elements

  16. Basaltic rocks analyzed by the Spirit rover in Gusev crater

    Science.gov (United States)

    McSween, H.Y.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Crumpler, L.S.; Des Marias, D.J.; Farmer, J.D.; Gellert, Ralf; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L.A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Klingelhoefer, G.; Knudson, A.T.; McLennan, S.; Milam, K.A.; Moersch, J.E.; Morris, R.V.; Rieder, R.; Ruff, S.W.; De Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Wyatt, M.B.; Yen, A.; Zipfel, J.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ???25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mo??ssbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  17. Mars methane detection and variability at Gale crater

    Science.gov (United States)

    Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Flesch, Gregory J.; Mischna, Michael A.; Meslin, Pierre-Yves; Farley, Kenneth A.; Conrad, Pamela G.; Christensen, Lance E.; Pavlov, Alexander A.; Martín-Torres, Javier; Zorzano, María-Paz; McConnochie, Timothy H.; Owen, Tobias; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Steele, Andrew; Malespin, Charles A.; Archer, P. Douglas; Sutter, Brad; Coll, Patrice; Freissinet, Caroline; McKay, Christopher P.; Moores, John E.; Schwenzer, Susanne P.; Bridges, John C.; Navarro-Gonzalez, Rafael; Gellert, Ralf; Lemmon, Mark T.; MSL Science Team; Abbey, William; Achilles, Cherie; Agard, Christophe; Alexandre Alves Verdasca, José; Anderson, Dana; Anderson, Robert C.; Anderson, Ryan B.; Appel, Jan Kristoffer; Archer, Paul Douglas; Arevalo, Ricardo; Armiens-Aparicio, Carlos; Arvidson, Raymond; Atlaskin, Evgeny; Atreya, Andrew Sushil; Azeez, Aubrey Sherif; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Battalio, Michael; Beach, Michael; Bean, Keri; Beck, Pierre; Becker, Richard; Beegle, Luther; Behar, Alberto; Belgacem, Inès; Bell, James F., III; Bender, Steven; Benna, Mehdi; Bentz, Jennifer; Berger, Jeffrey; Berger, Thomas; Berlanga, Genesis; Berman, Daniel; Bish, David; Blacksberg, Jordana; Blake, David F.; José Blanco, Juan; Blaney, Ávalos Diana; Blank, Jennifer; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Bonnet, Jean-Yves; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, William; Braswell, Shaneen; Breves, Elly; Bridges, John C.; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Burton, John; Buz, Jennifer; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John L.; Cantor, Bruce; Caplinger, Michael; Clifton, Carey, Jr.; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Cavanagh, Patrick; Charpentier, Antoine; Chipera, Steve; Choi, David; Christensen, Lance; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Coman, Ecaterina I.; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy A.; Cropper, Kevin; Cros, Alain; Cucinotta, Francis; d'Uston, Claude; Davis, Scott; Day, Mackenzie; Daydou, Yves; DeFlores, Lauren; Dehouck, Erwin; Delapp, Dorothea; DeMarines, Julia; Dequaire, Tristan; Des Marais, David; Desrousseaux, Roch; Dietrich, William; Dingler, Robert; Domagal-Goldman, Shawn; Donny, Christophe; Downs, Robert; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason P.; Dyar, M. Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher S.; Edwards, Laurence; Edwards, Peter; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jennifer; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Fairén, Alberto; Farley, Kenneth; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Fendrich, Kim; Fischer, Erik; Fisk, Martin; Fitzgibbon, Mike; Flesch, Gregory; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fox, Valerie; Fraeman, Abigail; Francis, Raymond; François, Pascaline; Franz, Heather; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Getty, Stephanie; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Graham, Heather; Grant, John; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Victoria; Hand, Kevin; Hardgrove, Craig; Hardy, Keian; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alexander; Herkenhoff, Kenneth; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Stephen; Israël, Guy; Jackson, Ryan Steele; Jacob, Samantha; Jakosky, Bruce; Jean-Rigaud, Laurent; Jensen, Elsa; Kløvgaard Jensen, Jaqueline; Johnson, Jeffrey R.; Johnson, Micah; Johnstone, Stephen; Jones, Andrea; Jones, John H.; Joseph, Jonathan; Joulin, Mélissa; Jun, Insoo; Kah, Linda C.; Kahanpää, Henrik; Kahre, Melinda; Kaplan, Hannah; Karpushkina, Natalya; Kashyap, Srisht