WorldWideScience

Sample records for crantz ii crop

  1. Cassava (Manihot esculenta Crantz) and Yam (Dioscorea spp.) Crops and Their Derived Foodstuffs: Safety, Security and Nutritional Value.

    Science.gov (United States)

    Ferraro, Vincenza; Piccirillo, Clara; Tomlins, Keith; Pintado, Manuela E

    2016-12-09

    Cassava (Manihot esculenta Crantz) and yam (Dioscorea spp.) are tropical crops consumed by ca. 2 billion people and represent the main source of carbohydrate and energy for the approximately 700 million people living in the tropical and sub-tropical areas. They are a guarantee of food security for developing countries. The production of these crops and the transformation into food-derived commodities is increasing, it represents a profitable business and farmers generate substantial income from their market. However, there are some important concerns related to the food safety and food security. The high post-harvest losses, mainly for yam, the contamination by endogenous toxic compounds, mainly for cassava, and the contamination by external agents (such as micotoxins, pesticides, and heavy metal) represent a depletion of economic value and income. The loss in the raw crops or the impossibility to market the derived foodstuffs, due to incompliance with food regulations, can seriously limit all yam tubers and the cassava roots processors, from farmers to household, from small-medium to large enterprises. One of the greatest challenges to overcome those concerns is the transformation of traditional or indigenous processing methods into modern industrial operations, from the crop storage to the adequate package of each derived foodstuff.

  2. Nutrient cycling potential of camelina (Camelina sativa L. Crantz.) as a cover crop in the US Northern Great Plains

    Science.gov (United States)

    Berti, Marisol; Samarappuli, Dulan

    2017-04-01

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize-soybean-wheat cropping systems. The objectives of this study were to determine the agronomic performance and nutrient scavenging potential of winter camelina in comparison with other common cover crops. Experiments were conducted in Fargo, ND in 2015 and 2016, and in Prosper, ND in 2015. The experimental design was a randomized complete block design with a split-plot arrangement with three replicates. The main plot was the sowing date and the subplot were camelina cultivars as well as other common cover crops in the area. Sowing dates were targeted to 15 August and September 1, although the final dates varied slightly each year. Biomass yield, N content of the biomass N uptake and P uptake was evaluated. Winter camelina N and P uptake ranged between 21 and 30.5 kg N ha-1 and 3.4 to 5.3 kg P ha-1. The nutrient scavenging potential of winter camelina was similar to other cover crops although slightly lower than turnip (Brassica rapa L.), radish (Raphanus sativus L.), and rape (Brassica napus L.) cultivars which had significantly higher P uptake than winter camelina and the other cover crops in the study. An evaluation of spring regrowth and cover indicated that only rye, winter camelina, and pennycress (Thlaspi arvense L.) survived the winter, although a few plants of triticale (x Trticosecale Witt.) and rape were found on a few plots. Because of the high variability on the plots there were no significant differences among the surviving cover crops on soil coverage. The soil coverage for rye cultivars was 25 and 35% and for camelina cv. Bison was 27%.In 2016, biomass yield was not significant for sowing date, cultivars, or their interaction. Winter camelina cultivars biomass yield fluctuated between 1.15 and 2.33 Mg dry matter ha-1 on the first sowing

  3. Evolution of cassava (Manihot esculenta Crantz) after recent introduction into a South Pacific Island system: the contribution of sex to the diversification of a clonally propagated crop.

    Science.gov (United States)

    Sardos, J; McKey, D; Duval, M F; Malapa, R; Noyer, J L; Lebot, V

    2008-11-01

    Cassava (Manihot esculenta Crantz) is a clonally propagated crop that was introduced into the South Pacific archipelago of Vanuatu in the 1850s. Based on a survey conducted in 10 different villages throughout the archipelago, we present here a study of its diversity. Farmers' knowledge about cultivation cycle and sexual reproduction of cassava was recorded during group interviews in each village. Using a set of 11 SSR markers, we genotyped the 104 landraces collected and 60 supplementary accessions from a within-landrace study (12 landraces x 5 plants). Out of the 104 landraces collected, we discovered 77 different multilocus genotypes and the within-landrace study identified several polyclonal landraces. Our data suggest a number of hypotheses about the dynamics of diversity of cassava in Vanuatu.

  4. Natural hybridization between a clonally propagated crop, cassava (Manihot esculenta Crantz) and a wild relative in French Guiana.

    Science.gov (United States)

    Duputié, Anne; David, Patrice; Debain, Chantal; McKey, Doyle

    2007-07-01

    Because domestication rarely leads to speciation, domesticated populations often hybridize with wild relatives when they occur in close proximity. Little work has focused on this question in clonally propagated crops. If selection on the capacity for sexual reproduction has been relaxed, these crops would not be expected to hybridize with their wild relatives as frequently as seed-propagated crops. Cassava is one of the most important clonally propagated plants in tropical agriculture. Gene flow between cassava and wild relatives has often been postulated, but never demonstrated in nature. We studied a population of a wild Manihot sp. in French Guiana, which was recently in contact with domesticated cassava, and characterized phenotypes (10 morphological traits) and genotypes (six microsatellite loci) of individuals in a transect parallel to the direction of hypothesized gene flow. Wild and domesticated populations were strongly differentiated at microsatellite loci. We identified many hybrids forming a continuum between these two populations, and phenotypic variation was strongly correlated with the degree of hybridization as determined by molecular markers. Analysis of linkage disequilibrium and of the diversity of hybrid pedigrees showed that hybridization has gone on for at least three generations and that no strong barrier prevents admixture of the populations. Hybrids were more heterozygous than either wild or domesticated individuals, and phenotypic comparisons suggested heterosis in vegetative traits. Our results also suggest that this situation is not uncommon, at least in French Guiana, and demonstrate the need for integrated management of wild and domesticated populations even in clonally propagated crops.

  5. Efeito de três sistemas de preparo do solo sobre a rentabilidade econômica da mandioca (Manihot esculenta Crantz = Effects of three tillage systems on economic profitability of cassava crop (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Manoel Genildo Pequeno

    2007-07-01

    Full Text Available O objetivo deste estudo foi avaliar a rentabilidade econômica da cultura damandioca em três sistemas de preparo de solo durante os anos agrícolas de 1999/2000 a2002/2003, em Araruna, Estado do Paraná. O delineamento experimental utilizado foi o deblocos completos casualizados, com oito repetições. Os tratamentos foram constituídos deplantio direto; preparo mínimo (escarificação e preparo convencional (aração + gradagemniveladora. A força de tração e o consumo de combustível requeridos nas operações depreparo do solo e de plantio da mandioca foram maiores no sistema de preparoconvencional. Os maiores custos com combustível, preparo do solo e plantio da mandioca, ecusto operacional relativo às culturas de inverno e à cultura da mandioca, bem como a maiorrenda bruta foram observados no sistema de preparo convencional, seguidos pelo preparomínimo e plantio direto. A maior renda líquida e a melhor relação benefício/custo foramobservadas no sistema de preparo convencional que proporcionou maior produtividade deraízes tuberosas em relação aos sistemas de preparo mínimo e de plantio direto.The objective of this paper was to evaluate the economicprofitability of cassava crop submitted to the three soil tillage systems during the years1999/2000 to 2002/2003, in Araruna, state of Parana. The treatments consisted of three soiltillage systems: no-tillage, minimum tillage using chiseling, and conventional tillage withmoldboard plow and disking, arranged in a randomized complete blocks with eightreplications. The traction strength and fuel consumption in the soil tillage and in the cassavasowed operation were more required in the conventional tillage system. The conventionaland the minimum tillage systems showed the highest costs for fuel, soil tillage and cassavasowed. They also presented the highest gross income. The greatest net income and the bestbenefit/cost relation were observed in the conventional tillage system, which

  6. Isolation and characterisation of starch biosynthesis genes from cassava (Manihot esculenta Crantz)

    NARCIS (Netherlands)

    Munyikwa, T.R.I.

    1997-01-01


    Cassava (Manihot esculenta Crantz) is a tropical crop grown for its starchy thickened roots, mainly by peasant farmers, in the tropics, for whom it is a staple food. There is an increasing demand for the use of cassava in processed food and feed products, and in the

  7. Field Performance of Cassava (Manihot esculenta Crantz ...

    African Journals Online (AJOL)

    Field Performance of Cassava (Manihot esculenta. Crantz) ... Keywords: Tissue culture-derived plantlets, Field plant growth, Yield, Root tuber characteristics,. Cassava ..... Micro-propagation of ... Roca, W.M.; Henry, G., Angel, F. and Sarria, R.

  8. Integrating winter camelina into maize and soybean cropping systems

    Science.gov (United States)

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems. The objectives of this st...

  9. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz)

    OpenAIRE

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-01-01

    Background Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Results Transgenic cassava plants that co-express cytosolic superoxide dismu...

  10. Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    van Rijssen, Fredrika W Jansen; Morris, E Jane; Eloff, Jacobus N

    2013-09-04

    The importance of food composition in safety assessments of genetically modified (GM) food is described for cassava ( Manihot esculenta Crantz) that naturally contains significantly high levels of cyanogenic glycoside (CG) toxicants in roots and leaves. The assessment of the safety of GM cassava would logically require comparison with a non-GM crop with a proven "history of safe use". This study investigates this statement for cassava. A non-GM comparator that qualifies would be a processed product with CG level below the approved maximum level in food and that also satisfies a "worst case" of total dietary consumption. Although acute and chronic toxicity benchmark CG values for humans have been determined, intake data are scarce. Therefore, the non-GM cassava comparator is defined on the "best available knowledge". We consider nutritional values for cassava and conclude that CG residues in food should be a priority topic for research.

  11. Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.

    Science.gov (United States)

    Tong, Xuejiao; Xu, Renkou

    2013-04-01

    The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.

  12. Field Screening of Cassava (Manihot esculenta Crantz) Germplasm ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    Marmey P., Beeching J. R., Hamon S. and Charrier A. (1994). Evaluation of cassava (Manihot esculenta Crantz) germplasm collection using RAPD markers. Euphytica 74: 203–209. Roa A. C., Maya, M. M., Duque M. M., Tohme J., Allen A. C. and Bonierbale M. W. (1997). AFLP analysis of relationships among cassava and ...

  13. Manihot esculenta crantz in crude oil contaminated soil amended ...

    African Journals Online (AJOL)

    Studies on the performance of Manihot esculenta, Crantz (TMS 30572) in a crude oil polluted soil was investigated in the Botanic Garden of University of Port Harcourt. The soil samples were polluted at four different levels (0%, 2%, 4% and 6%) with crude oil and amended with organic supplement (decomposed Centrosem ...

  14. Amélioration des rendements de la culture du manioc (Manihot esculenta Crantz, Euphorbiales, Euphorbiaceae) par les terres de termitières dans la zone de savane de Damara en République Centrafricaine

    OpenAIRE

    Christiant Simplice Armand BALLOT; Solange Patricia WANGO; Wouyo ATAKPAMA; Silla SEMBALLA; Innocent ZINGA; Komlan BATAWILA; Koffi AKPAGANA

    2017-01-01

    The effect of termitary soil on the cassava (Manihot esculenta Crantz) crop was assessed in order to improve soil fertility and productivity of cassava in Central Africa Republic. The study focused on soil samplings and laboratory analysis of ground termitary, followed by agronomic field experiments through 12 months of cultivation using termite mounds and mineral fertilizers. Results showed that termite mounds are rich in minerals. The contribution of ground termitary and mineral fertilizer ...

  15. Weed infestation of field crops in different soils in the protective zone of Roztocze National Park. Part II. Root crops

    Directory of Open Access Journals (Sweden)

    Marta Ziemińska-Smyk

    2013-12-01

    Full Text Available The study on weed infestation of root crops in different soils in the protective zone of Roztocze National Park was conducted in the years 1991-1995. As many as 240 phytosociological records, made with the use of Braun-Blanquet method, were taken in potato and sugar beet fields. The number of weed species in sugar beet and potato in the area depended on the soil and type of root crop. In the same environment conditions. the iiuinber of weed species was higher in potato than in sugar beet. The most difficult weed species iii all types of soil were: Chenopodium album, Stellaria media and Convolvulus arvensis. Podsolic soils were highly infested by two acidophylic species: Spergula arvensis and Raphanus raphanistum. Potato in loess soil and brown soil made of loamy sands were highly infested by Echinochloa crus-galli, Equisetum arvense and Galinsoga parviflora. Root crop plantations in brown soils formed from gaizes of granulometric loam texture and limestone soils were infested by: Galium aparine, Sonchus arvensis, Sinapis arvensis and Veronica persica.

  16. 75 FR 807 - Pesticide Tolerance Crop Grouping Program II; Revision to General Tolerance Regulations

    Science.gov (United States)

    2010-01-06

    .... pubescens Ruiz & Pav., Capsicum spp.; (12) Roselle, Hibiscus sabdariffa L.; (13) Scarlet eggplant, Solanum..., specialty crop producers, pesticide registrants, the environment, or human health. No crop group tolerance... Environmental Health Risks and Safety Risks (62 FR 19885, April 23, 1997) does not apply to this proposed rule...

  17. Non-destructive determination of photosynthetic rates of eight varieties of cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Amadu, A. A.

    2015-07-01

    Cassava is an important food security crop in Ghana and in the wake of climate change there is the need for plant breeders to develop varieties with high water use efficiency as well as high photosynthetic rate in order to adapt to the changing climate. Thus, the photosynthetic rates of eight cassava (Manihot esculenta Crantz) varieties were non-destructively evaluated using photosynthesis meter miniPPM300, from June 2014 to May 2015, with the aim of selecting varieties with high photosynthetic rate for future breeding programmes. The mean photosynthetic rate varied depending on the varieties ranging from 40.5 μmol/m 2 s in Bosom nsia to 45.2 μmol/m 2 s in Gbenze. However, the presence of African cassava mosaic disease (ACMD) marginally reduced the photosynthetic rate to below 40 μmol/m 2 s in all the varieties. Similarly, the chlorophyll content index (CCI) as measured by chlorophyll meter and spectrophotometer also varied from one variety to another; it was low in Nandom (17.9 CCI) and high in Gbenze (39.93 CCI) using the chlorophyll meter and was also reduced by the presence of the virus. Although, the stomatal density varied between the varieties it was not influenced by virus infection. Furthermore, ACMD significantly decreased the leaf surface area from 5705.8mm 2 in uninfected plants to 1251.6mm 2 in infected plants, consequently reducing the number and weight of tubers produced 11 month after planting (MAP). Molecular Testing of the viruses using virus specific primers JSP001/JSP002, EAB555F/EAB555R, EACMV1e/EACMV2e at 6 MAP and 11MAP, showed that the mosaic symptoms were caused by African Cassava Mosaic virus disease. Cassava varieties with high photosynthetic efficiency and low virus infection can be used in cassava improvement programmes in Ghana. (au)

  18. Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, B. R. [BP Research, Cleveland, OH (United States); Nielsen, D. C.; Shock, C. C.

    1992-10-15

    Infrared thermometry can be a valuable research and production tool for detecting and quantifying water stress in plants, as shown by a large volume of published research. Users of infrared thermometers (IRT) should be aware of the many equipment, environmental, and plant factors influencing canopy temperature measured by an IRT. The purpose of this paper is to describe factors influencing measured plant temperature, outline sampling procedures that will produce reliable Crop Water Stress Index (CWSI) values, and offer interpretations of CWSI and plant temperatures relative to crop production and other water stress parameters by reviewing previously conducted research. Factors that are considered are IRT condition, configuration, and position; psychrometer location; wind speed; solar radiation; time of day; leaf area and orientation; and appropriate non-water-stressed baseline equation. Standard sampling and CWSI calculation procedures are proposed. Use of CWSI with crops varying in type of response to water stress is described. Previously conducted research on plant temperatures or CWSI is tabulated by crop and water stress parameters measured. The paper provides valuable information to assist interested users of IRTs in making reliable water stress measurements. (author)

  19. Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation

    International Nuclear Information System (INIS)

    Gardner, B.R.; Nielsen, D.C.; Shock, C.C.

    1992-01-01

    Infrared thermometry can be a valuable research and production tool for detecting and quantifying water stress in plants, as shown by a large volume of published research. Users of infrared thermometers (IRT) should be aware of the many equipment, environmental, and plant factors influencing canopy temperature measured by an IRT. The purpose of this paper is to describe factors influencing measured plant temperature, outline sampling procedures that will produce reliable Crop Water Stress Index (CWSI) values, and offer interpretations of CWSI and plant temperatures relative to crop production and other water stress parameters by reviewing previously conducted research. Factors that are considered are IRT condition, configuration, and position; psychrometer location; wind speed; solar radiation; time of day; leaf area and orientation; and appropriate non-water-stressed baseline equation. Standard sampling and CWSI calculation procedures are proposed. Use of CWSI with crops varying in type of response to water stress is described. Previously conducted research on plant temperatures or CWSI is tabulated by crop and water stress parameters measured. The paper provides valuable information to assist interested users of IRTs in making reliable water stress measurements. (author)

  20. Screening for acyanogenic somatic mutations in cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Moh, C.C.

    1976-01-01

    By irradiating the young stem cuttings (6-8 months old wood) of a cassava cultivar, Japonesa, (Manihot esculenta Crantz) with an acute dose of 4 kR from a 60 CO source, it was found that in a number of cases, the induced mutant characters appeared in the whole R 1 plants or in large chimeric sectors. This result suggested that a cassava plant could develop from one or two initial cells in the shoot apex of a bud. This unusual biological response to radiation provides a great advantage for selection in mutation breeding. By using the sodium picrate method, 2676 leaves from 1338 R 1 plants irradiated with 4 kR were screened for hydrocyanic acid content (HCN). As compared with the control, some leaves had higher and some had lower HCN level, indicating that the radiation broadened the variability. Whether or not those R 1 plants producing a lower level of HCN in the leaves are truly a genetic mutant cannot be ascertained at present. Further screening of the selected R 1 plants in the subsequent vegetative propagation generations will help to distinguish whether they are genetic mutants. (author)

  1. Diversidad genética y contenido de carotenos totales en accesiones de yuca (Manihot esculenta Crantz Genetic diversity and total carotene content in accessions of the cassava (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Ana Cruz Morillo C.

    2011-04-01

    Full Text Available La yuca (Manihot esculenta Crantz es un arbusto perenne cultivado en África, América Latina y el Sureste asiático, cuya raíz constituye una fuente importante de energía en la dieta humana en países tropicales. Los carotenoides son pigmentos naturales que se encuentran ampliamente distribuidos en la naturaleza. Se reconoce que aproximadamente cincuenta de ellos tienen actividad provitamina A, siendo b-caroteno el de mayor eficiencia para su conversión en vitamina A. El estudio de la variabilidad genética es un procedimiento útil para fortificar, enriquecer o incrementar el contenido de nutrientes de los alimentos o cultivos, entre ellos los carotenos en raíz de yuca mediante procesos de selección y recombinación en programas de mejoramiento que permitan identificar genotipos superiores. En el presente estudio, a partir de la evaluación de la diversidad genética, se generó un dendrograma de accesiones de yuca en el cual se formaron seis grupos con 68% de similitud. La heterocigosidad promedio observada fue de Ht = 0.559. Los análisis de regresión y correlación entre el contenido de carotenos totales y los datos moleculares mostraron que los marcadores que se encuentran correlacionados con altos contenidos de carotenos pertenecen al grupo de ligamiento D del mapa molecular de yuca.Cassava (Manihot esculenta Crantz is a perennial shrub cultivated in Africa, Latin America and Southeast Asia. It is an important dietary source for humans in tropical countries. Carotenoids are natural pigments that are widely distributed in the nature, where about 50 of them have provitamin A activity, b-carotene has been the most efficient. Among the procedures to fortify (enrich or increase the nutritional content of foods or crops cassava varieties, the study of genetic variability of the content of carotenoids in the root is one of the most common to carried out processes of selection and recombination in the breeding program which will allow the

  2. Effect of medium composition and explant size on embryogenic calli formation of cassava (Manihot esculenta Crantz local genotypes

    Directory of Open Access Journals (Sweden)

    ENNY SUDARMONOWATI

    2006-07-01

    Full Text Available Cassava (Manihot esculenta Crantz is an important tropical crop species used for human consumption, feed and raw material for various industries. Genetic transformation through embryogenic tissues is known as an effective method for cassava genetic improvements. Objective of this study was to obtain a suitable medium and length of explants to induce embryogenic callus on friable embryogenic callus (FEC as a target for genetic transformation. Immature leaf lobes (1-3 mm, 3-5 mm and larger than 5 mm in length of local genotypes of cassava (Adira 4. Menti, Iding, Gebang, Rawi and Timtim-29 cultured in vitro were used as explants. The explants were incubated for 2 and 4 weeks on MS (Murashige-Skoog or GD (Greshooff & Doy semi solid medium containing 10 mg/L picloram, 6 mg/L NAA supplemented with 4% sucrose and 4 µM CuSO4. Results showed that the highest percentage (100% of embryogenic calli formation for 4 weeks obtained by culturing Iding of 3-5 mm length on GD semi solid medium, whereas the lowest (33% one obtained by incubation 5 mm leaf lobe of Timtim-29 on the same medium. The most suitable medium for callus induction was GD, whereas the optimum length of explants was 5 mm or larger. Further study needs to be done to obtain friable embryogenic calli (FEC by employing different concentration of picloram and varying other critical factors.

  3. Opportunities for woody crop production using treated wastewater in Egypt. II. Irrigation strategies.

    Science.gov (United States)

    Evett, Steven R; Zalesny, Ronald S; Kandil, Nabil F; Stanturf, John A; Soriano, Chris

    2011-01-01

    An Egyptian national program targets annual reuse of 2.4 billion m3 of treated wastewater (TWW) to irrigate 84,000 ha of manmade forests in areas close to treatment plants and in the desert. To evaluate the feasibility of such afforestation efforts, we describe information about TWW irrigation strategies based on (1) water use of different tree species, (2) weather conditions in different climate zones of Egypt, (3) soil types and available irrigation systems, and (4) the requirement to avoid deep percolation losses that could lead to groundwater contamination. We conclude that drip irrigation systems are preferred, that they should in most cases use multiple emitters per tree in order to increase wetted area and decrease depth of water penetration, that deep rooting should be encouraged, and that in most situations irrigation system automation is desirable to achieve several small irrigations per day in order to avoid deep percolation losses. We describe directed research necessary to fill knowledge gaps about depth of rooting of different species in sandy Egyptian soils and environments, tree crop coefficients needed for rational irrigation scheduling, and depth of water penetration under different irrigation system designs. A companion paper addresses recommendations for afforestation strategies (see Zalesny et al. 2011, this issue).

  4. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.

    Science.gov (United States)

    Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine

    2017-05-01

    Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.

  5. Embriogénesis somática y producción de callo embriogénico friable de dos cultivares de yuca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Juan Camilo Ochoa

    2012-07-01

    Full Text Available Título en ingles: Somatic Embryogenesis and friable embryogenic callus production in two cassava cultivars (Manihot esculenta Crantz Resumen: La yuca (Manihot esculenta Crantz es un cultivo de alta importancia en países tropicales. La transformación genética de yuca ha sido posible desde hace 15 años mediante la producción que callo embriogénico friable (CEF a partir de embriones somáticos. En el presente trabajo se evalúan la inducción de embriones somáticos usando tres diferentes auxinas sintéticas y la producción de CEF a partir de éstos en los cultivares de yuca SG107-35 y BRA685. Estos cultivares son resistentes a la bacteriosis vascular de yuca cuyo agente causal es Xanthomonas axonopodis pv. manihotis, una de las principales limitantes del cultivo. Los resultados obtenidos muestran que en ambos cultivares la hormona Picloram a una concentración de 12 mg/l fue más eficiente que 2,4-D y Dicamba para producir embriones somáticos. Adicionalmente se consiguió la producción de CEF y la regeneración de plantas mediante embriogénesis somática en el cultivar BRA685. Los resultados del presente trabajo son importantes para evaluar la transformabilidad de distintos cultivares de yuca. Actualmente este número es bastante reducido principalmente porque la producción de CEF es fuertemente influenciada por el genotipo. Por tal razón solo se transforma de manera rutinaria y eficiente en el cultivar 60444. La posibilidad de transformación de distintos cultivares de yuca permitirá explotar la enorme variabilidad del cultivo, invitándonos a aumentar los esfuerzos para mejorar y universalizar los protocolos de transformación de yuca. Palabras clave: Picloram, regeneración, dependencia del genotipo.  Abstract: The cassava (Manihot esculenta Crantz crop has a very important role as a food, feed and a raw material in developing countries; therefore it is a priority to develop technologies oriented to the solution of problems and

  6. Cassava (Manihot esculenta Crantz) is a widely grown root crop in ...

    African Journals Online (AJOL)

    Netherlands Liaison Office

    accessions were grouped into five marker based groups. This study proved that ..... contribute to the elucidation of forces that shape genetic ... Mathematical model for studying genetic variation in terms of ... WL, Lee M, Porter K (2000). Genetic ...

  7. Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    2004-01-01

    The Nitrate Directive of the European Union (EU) forces agriculture to reduce nitrate emission. The current study addressed nitrate emission and nitrate-N concentrations in leachate from cropping systems with and without the cultivation of catch crops (winter rye: Secale cereale L. and forage rape:

  8. Evaluation of cassava (Manihot esculenta (Crantz) planting methods ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-01-05

    Jan 5, 2008 ... and biological productivity of the crop species grown in sole and intercrop. The treatments ... of nitrogen through its symbiotic fixation, hence lowering the total ... mospheric nitrogen and produces proteins, while cassava depletes the ..... soybean/maize/cassava intercrop, in which they were of the view that ...

  9. Studies on the injuries of crops by harmful gases under covering. II. On the mechanism of crop injury due to gaseous nitrogen dioxide. [Eggplant

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Tachibana, S; Inden, T

    1974-12-01

    The mechanism of crop injury by nitrogen dioxide gas was investigated by exploring kidney bean, cucumber, tomato, egg plant, and spinach plants 6.0 to 17 ppM NO/sub 2/ under various conditions. The application of aqueous oxyethylene decasanol on crop leaves reduced the injury due to the gas, expecially on the lower leaf sides. Leaves exposed to NO/sub 2/ in the dark showed severer injury and contained more nitrite anion than those exposed to NO/sub 2/ in the light. Leaves smeared with an aqueous sodium nitrite solution showed the same type of injury as that induced by NO/sub 2/. After treatment with 3-(3,4-dichlorophenyl)-1,1- dimethylurea, the leaves became more susceptible to the gas even under light and formed more nitrite anion than controls. Plants grown in nitrate-nitrogen cultures were less susceptible to NO/sub 2/ damage than those grown in ammonia-nitrogen cultures or cultures without nitrogen and contained less nitrite anion than others. Plant injury by gaseous nitrogen dioxide appeared to be caused by nitrite anion. Susceptibility to NO/sub 2/ depended on the amount of the gas taken in by stomata and on the physiological activity of the plant which reduces the anion. The reduction is carried out by nitrite reductase. The photochemical reduction by reductase in chloroplasts appears to be related to the injury-reducing effect of light.

  10. Balance sheet method assessment for nitrogen fertilization in winter wheat: II. alternative strategies using the CropSyst simulation model

    Directory of Open Access Journals (Sweden)

    Maria Corbellini

    2006-09-01

    Full Text Available It is important, both for farmer profit and for the environment, to correctly dose fertilizer nitrogen (N for winter wheat growth. Balance-sheet methods are often used to calculate the recommended dose of N fertilizer. Other methods are based on the dynamic simulation of cropping systems. Aim of the work was to evaluate the balance-sheet method set up by the Region Emilia-Romagna (DPI, by comparing it with the cropping systems simulation model CropSyst (CS, and with an approach based on fixed supplies of N (T. A 3-year trial was structured as a series of N fertility regimes at 3 sites (Papiano di Marsciano, Ravenna, San Pancrazio. The N-regimes were generated at each site-year as separate trials in which 3 N rates were applied: N1 (DPI, N2 (DPI+50 kg ha-1 N at spike initiation, N3 (DPI + 50 kg ha-1 N at early booting. Above ground biomass and soil data (NO3-N and water were sampled and used to calibrate CS. Doses of fertilizer N were calculated by both DPI and CS for winter wheat included in three typical rotations for Central and Northern Italy. Both these methods and method T were simulated at each site over 50 years, by using daily generated weather data. The long-term simulation allowed evaluating such alternative fertilization strategies. DPI and CS estimated comparable crop yields and N leached amounts, and both resulted better than T. Minor risk of leaching emerged for all N doses. The N2 and N3 rates allowed slightly higher crop yields than N1.

  11. Climate Change Effects on Agricultural Production of Iran: II. Predicting Productivity of Field Crops and Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2016-07-01

    Full Text Available Introduction Recent evidences confirm that during the next few decades, many agroclimatic indices of Iran would be affected by global climate change. Koocheki et al. using two General Circulation Models showed that the mean annual temperature of the country will increase between 3.5-4.5°C while mean precipitation will reduce by 7-15% to 2050. It is well established that crop growth and development would drastically affect by the future global warming and its consequences because yield determining processes such as photosynthesis and crop phenology are directly related to temperature. On the other hands, the combined effects of CO2 enrichment and temperature rise on crop growth are complicated and should be studied using crop simulation models. Furthermore, adapting to climatic variability will have a substantially greater effect in reducing impacts than willing mitigation. However, such impacts on crop productivity at national scale and adaptive measures for future conditions are rarely studied in Iran. In this research crop development and yield of wheat, corn, chickpea and sugar beet were simulated for the target year of 2050 and the results are compared with the current yield as the baseline. Materials and Methods Future climatic variables were predicted using A1f (business as usual scenario by GFDL general circulation model and the results were used as weather inputs in the SUCROS model which was previously validated against measured data of the four crops. To account for the effect of CO2 enrichment on crop growth the photosynthesis routine of the model was adopted for increased CO2 concentration using a scaling factor. Changes in developmental stages of each crop were estimated for the future conditions and the relation between duration of these stages and yield was determined. Predicted crop yields for the year 2050 were compared with the current potential yields considering some adaptation strategies. Results and Discussion Results

  12. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.

    Science.gov (United States)

    Liu, Shi; Zainuddin, Ima M; Vanderschuren, Herve; Doughty, James; Beeching, John R

    2017-05-01

    Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its roots that occurs within 24-72 h of harvest, rendering the roots unpalatable and unmarketable. PPD limits cassava's marketing possibilities in countries that are undergoing increased development and urbanisation due to growing distances between farms and consumers. The inevitable wounding of the roots caused by harvesting triggers an oxidative burst that spreads throughout the cassava root, together with the accumulation of secondary metabolites including phenolic compounds, of which the coumarin scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one) is the most abundant. Scopoletin oxidation yields a blue-black colour, which suggests its involvement in the discoloration observed during PPD. Feruloyl CoA 6'-hydroxylase is a controlling enzyme in the biosynthesis of scopoletin. The cassava genome contains a seven membered family of feruloyl CoA 6'-hydroxylase genes, four of which are expressed in the storage root and, of these, three were capable of functionally complementing Arabidopsis T-DNA insertion mutants in this gene. A RNA interference construct, designed to a highly conserved region of these genes, was used to transform cassava, where it significantly reduced feruloyl CoA 6'-hydroxylase gene expression, scopoletin accumulation and PPD symptom development. Collectively, our results provide evidence that scopoletin plays a major functional role in the development of PPD symptoms, rather than merely paralleling symptom development in the cassava storage root.

  13. Addressing crop interactions within cropping systems in LCA

    DEFF Research Database (Denmark)

    Goglio, Pietro; Brankatschk, Gerhard; Knudsen, Marie Trydeman

    2018-01-01

    objectives of this discussion article are as follows: (i) to discuss the characteristics of cropping systems which might affect the LCA methodology, (ii) to discuss the advantages and the disadvantages of the current available methods for the life-cycle assessment of cropping systems, and (iii) to offer...... management and emissions, and (3) functional unit issues. The LCA approaches presented are as follows: cropping system, allocation approaches, crop-by-crop approach, and combined approaches. The various approaches are described together with their advantages and disadvantages, applicability...... considers cropping system issues if they are related to multiproduct and nutrient cycling, while the crop-by-crop approach is highly affected by assumptions and considers cropping system issues only if they are related to the analyzed crop. Conclusions Each LCA approach presents advantages and disadvantages...

  14. Microbiologia de farinhas de mandioca (Manihot esculenta Crantz durante o armazenamento Microbiology of cassava flour (Manihot esculenta Crantz during the storage

    Directory of Open Access Journals (Sweden)

    Cândido Ferreira Neto

    2004-04-01

    Full Text Available Este trabalho foi realizado com o objetivo de avaliar as características microbiológicas em farinhas de mandioca (Manihot esculenta Crantz simples e temperadas, armazenadas durante 180 dias. Os materiais consistiram de cinco amostras, sendo uma de farinha de mandioca sem mistura (simples e as demais de farinhas de mandioca temperadas. A farinha simples foi embalada em sacos de polietileno de baixa densidade com capacidade de 1,0kg e as farinhas temperadas foram embaladas em sacos plásticos de polipropileno pigmentado, com capacidade 0,5kg. Em todas as amostras, foram realizadas contagens de coliformes fecais, Staphylococcus aureus, bactérias mesófilas, bolores e leveduras e pesquisa de Salmonella sp. As análises foram realizadas em intervalos de 30 dias. Não foram detectadas diferenças entre as características microbiológicas das amostras simples e das temperadas. O armazenamento não alterou os padrões microbiológicos das amostras. As amostras apresentaram esterilidade para coliformes fecais, Salmonella sp. e Staphylococcus aureus. Os valores encontrados para coliformes fecais, Salmonella sp., Staphylococcus aureus, bactérias mesófilas e para bolores e leveduras estavam dentro dos padrões fixados pela legislação brasileira.This work was accomplished with the aim of evaluating the microbiological characteristic in cassava flours (Manihot esculenta Crantz simple and temperate, stored during 180 days. The materials consisted of five samples, being one of cassava flour without mixture (simple and the others of temperate cassava flours. The simple flour was packed in polyethylen bags of low density with capacity of 1,0kg and the temperate flours were packed in colored polipropilen bags, with capacity of 0.5kg. In all the samples fecal coliformes, Staphylococcus aureus, mesophile bacterias, yeasts counting and Salmonella sp research were accomplished. The analyses were accomplished in intervals of 30 days. Differences were not

  15. Optical crop sensor for variable-rate nitrogen fertilization in corn: II - indices of fertilizer efficiency and corn yield

    Directory of Open Access Journals (Sweden)

    Jardes Bragagnolo

    2013-10-01

    Full Text Available Generally, in tropical and subtropical agroecosystems, the efficiency of nitrogen (N fertilization is low, inducing a temporal variability of crop yield, economic losses, and environmental impacts. Variable-rate N fertilization (VRF, based on optical spectrometry crop sensors, could increase the N use efficiency (NUE. The objective of this study was to evaluate the corn grain yield and N fertilization efficiency under VRF determined by an optical sensor in comparison to the traditional single-application N fertilization (TSF. With this purpose, three experiments with no-tillage corn were carried out in the 2008/09 and 2010/11 growing seasons on a Hapludox in South Brazil, in a completely randomized design, at three different sites that were analyzed separately. The following crop properties were evaluated: aboveground dry matter production and quantity of N uptake at corn flowering, grain yield, and vegetation index determined by an N-Sensor® ALS optical sensor. Across the sites, the corn N fertilizer had a positive effect on corn N uptake, resulting in increased corn dry matter and grain yield. However, N fertilization induced lower increases of corn grain yield at site 2, where there was a severe drought during the growing period. The VRF defined by the optical crop sensor increased the apparent N recovery (NRE and agronomic efficiency of N (NAE compared to the traditional fertilizer strategy. In the average of sites 1 and 3, which were not affected by drought, VRF promoted an increase of 28.0 and 41.3 % in NAE and NRE, respectively. Despite these results, no increases in corn grain yield were observed by the use of VRF compared to TSF.

  16. Effect of Crop-Straw Derived Biochars on Pb(II) Adsorption in Two Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    JIANG Tian-yu; XU Ren-kou; GU Tian-xia; JIANG Jun

    2014-01-01

    Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH signiifcantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume-straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.

  17. Biosafety considerations for selectable and scorable markers used in cassava (Manihot esculenta Crantz) biotechnology.

    Science.gov (United States)

    Petersen, William; Umbeck, Paul; Hokanson, Karen; Halsey, Mark

    2005-01-01

    Cassava is an important subsistence crop grown only in the tropics, and represents a major source of calories for many people in developing countries. Improvements in the areas of resistance to insects and viral diseases, enhanced nutritional qualities, reduced cyanogenic content and modified starch characteristics are urgently needed. Traditional breeding is hampered by the nature of the crop, which has a high degree of heterozygosity, irregular flowering, and poor seed set. Biotechnology has the potential to enhance crop improvement efforts, and genetic engineering techniques for cassava have thus been developed over the past decade. Selectable and scorable markers are critical to efficient transformation technology, and must be evaluated for biosafety, as well as efficiency and cost-effectiveness. In order to facilitate research planning and regulatory submission, the literature on biosafety aspects of the selectable and scorable markers currently used in cassava biotechnology is surveyed. The source, mode of action and current use of each marker gene is described. The potential for toxicity, allergenicity, pleiotropic effects, horizontal gene transfer, and the impact of these on food or feed safety and environmental safety is evaluated. Based on extensive information, the selectable marker genes nptII, hpt, bar/pat, and manA, and the scorable marker gene uidA, all have little risk in terms of biosafety. These appear to represent the safest options for use in cassava biotechnology available at this time.

  18. Transient GUS gene expression in cassava (Manihot esculenta Crantz using Agrobacterium tumefaciens leaf infiltration

    Directory of Open Access Journals (Sweden)

    Paula Díaz T.

    2014-09-01

    Full Text Available Objective. Assess transient gene expression of GUS in cassava (Manihot esculenta Crantz leaves using Agrobacterium tumefaciens infiltration. Materials and methods. A. tumefaciens strains GV3101 and AGL1 containing pCAMBIA1305.2 were used to evaluate transient gene expression of β-glucuronidase (GUS. A. tumefaciens infiltration (agroinfiltration was made using both leaves from in vitro and 1 month old greenhouse plants. Leaves were incubated in X-GLUC buffer, stained and photographed to detect GUS activity. Results. Agroinfiltration assays showed GUS transient expression in leaves of cassava varieties widely cultivated in the north coast and eastern savannah, MCOL2215 (Venezuelan and CM6438-14 (Vergara, respectively. A. tumefaciens agressive strain AGL1 showed high efficiency inducing GUS expression in cassava leaves. Conclusions. We recommend using A. tumefaciens agressive strain AGL1 for agroinfiltration to assess transient expression in cassava leaves.

  19. Evaluation of chemical pretreatments for enzymatic hydrolysis of lignocellulosic residues cassava (Manihot esculenta Crantz)

    OpenAIRE

    Niño López, Lilibeth; Acosta Cárdenas, Alejandro; Gelves Zambrano, Ricardo

    2013-01-01

    El efecto de diferentes pretratamientos químicos con ácido sulfúrico (H2SO4), hidróxido de sodio (NaOH) y peróxido de hidrogeno (H2O2), fueron evaluados mediante la cuantificación de azucares reductores totales producidos durante la etapa de hidrólisis enzimática de los residuos lignocelulósicos de yuca (Manihot esculenta Crantz) y el porcentaje (%) de remoción de lignina después del pretratamiento. La cantidad de residuos utilizados (1 y 5%) (w/v) a diferentes tamaños de partícula (1,18 y 0,...

  20. Quantifying type I and type II errors in decision-making under uncertainty : The case of GM crops

    NARCIS (Netherlands)

    Ansink, Erik; Wesseler, Justus

    2009-01-01

    In a recent paper, Hennessy and Moschini (American Journal of Agricultural Economics 88(2): 308-323, 2006) analyse the interactions between scientific uncertainty and costly regulatory actions. We use their model to analyse the costs of making type I and type II errors, in the context of the

  1. Quantifying type I and type II errors in decision-making under uncertainty: the case of GM crops

    NARCIS (Netherlands)

    Ansink, E.J.H.; Wesseler, J.H.H.

    2009-01-01

    In a recent paper, Hennessy and Moschini (American Journal of Agricultural Economics 88(2): 308¿323, 2006) analyse the interactions between scientific uncertainty and costly regulatory actions. We use their model to analyse the costs of making type I and type II errors, in the context of the

  2. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-08-05

    Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H₂O₂, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H₂O₂ synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress.

  3. Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch.

    Science.gov (United States)

    Toraya-Avilés, Rocío; Segura-Campos, Maira; Chel-Guerrero, Luis; Betancur-Ancona, David

    2017-06-01

    Cassava (Manihot esculenta Crantz) native starch was treated with pyroconversion and enzymatic hydrolysis to produce a pyrodextrin and an enzyme-resistant maltodextrin. Some nutritional characteristics were quantified for both compounds. Pyroconversion was done using a 160:1 (p/v) starch:HCl ratio, 90 °C temperature and 3 h reaction time. The resulting pyrodextrin contained 46.21% indigestible starch and 78.86% dietary fiber. Thermostable α-amylase (0.01%) was used to hydrolyze the pyrodextrin at 95 °C for 5 min. The resulting resistant maltodextrin contained 24.45% dextrose equivalents, 56.06% indigestible starch and 86.62% dietary fiber. Compared to the cassava native starch, the pyrodextrin exhibited 56% solubility at room temperature and the resistant maltodextrin 100%. The glycemic index value for the resistant maltodextrin was 59% in healthy persons. Its high indigestible starch and dietary fiber contents, as well as its complete solubility, make the resistant maltodextrin a promising ingredient for raising dietary fiber content in a wide range of foods, especially in drinks, dairy products, creams and soups.

  4. Genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) evaluated using ISSR markers.

    Science.gov (United States)

    Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S

    2015-07-14

    Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.

  5. EFECTIVIDAD DE CEPAS DE HMA EN EL CULTIVO DE LA YUCA (Manihot esculenta Crantz) EN DOS TIPOS DE SUELOS

    OpenAIRE

    José P. João; Alberto Espinosa Cuellar; Luís Ruiz Martínez; Jaime Simó González; Ramón Rivera Espinosa

    2016-01-01

    Con el objetivo de evaluar la efectividad de la inoculación de cepas de hongos micorrízicos arbusculares (HMA) en clones comerciales de yuca (Manihot esculenta Crantz) y su dependencia con el tipo de suelo, se comparó la efectividad de tres cepas de HMA, Glomus cubense, Rizophagus intraradices y Funneliformis mosseae, tanto en suelo Pardo Mullido Carbonatado como en Ferralítico Rojo Lixiviado. En el primer suelo, se utilizaron seis clones comerciales en un diseño de bloq...

  6. Amélioration des rendements de la culture du manioc (Manihot esculenta Crantz, Euphorbiales, Euphorbiaceae par les terres de termitières dans la zone de savane de Damara en République Centrafricaine

    Directory of Open Access Journals (Sweden)

    Christiant Simplice Armand BALLOT

    2017-01-01

    Full Text Available The effect of termitary soil on the cassava (Manihot esculenta Crantz crop was assessed in order to improve soil fertility and productivity of cassava in Central Africa Republic. The study focused on soil samplings and laboratory analysis of ground termitary, followed by agronomic field experiments through 12 months of cultivation using termite mounds and mineral fertilizers. Results showed that termite mounds are rich in minerals. The contribution of ground termitary and mineral fertilizer significantly increased the yield of cassava with 40.3 T.ha-1 for the treatment cassava + termite + NKP (T5 and 18.7 T.ha-1 for the control (T0. The use of mineral fertilizer combined with termitary soil (T5 generated an income of 510,000 F CFA and 630,000 F CFA higher than the control treatment (T0 evaluated at 433,000 F CFA and 490,000 F CFA, respectively after the sale of tubers/basin and bags of dried cassava by the villagers self-help group. The use of ground termitary would be a feasible method to reduce production expenses, increase yield and income of cassava producers in Central Africa Republic.

  7. Alternative crops

    International Nuclear Information System (INIS)

    Andreasen, L.M.; Boon, A.D.

    1992-01-01

    Surplus cereal production in the EEC and decreasing product prices, mainly for cereals, has prompted considerable interest for new earnings in arable farming. The objective was to examine whether suggested new crops (fibre, oil, medicinal and alternative grains crops) could be considered as real alternatives. Whether a specific crop can compete economically with cereals and whether there is a market demand for the crop is analyzed. The described possibilities will result in ca. 50,000 hectares of new crops. It is expected that they would not immediately provide increased earnings, but in the long run expected price developments are more positive than for cereals. The area for new crops will not solve the current surplus cereal problem as the area used for new crops is only 3% of that used for cereals. Preconditions for many new crops is further research activities and development work as well as the establishment of processing units and organizational initiatives. Presumably, it is stated, there will then be a basis for a profitable production of new crops for some farmers. (AB) (47 refs.)

  8. Leaf anatomy of cassava (Manihot esculenta Crantz. cv. IAC-12 after herbicides application to control weeds in Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Daniel Valadão Silva

    2017-07-01

    Full Text Available Micro-morphological changes precede the appearance of visible damage after herbicide application and are essential in providing data for the safe recommendation in chemical management of weeds. Therefore, the aim of this research was to verify the anatomical changes of leaf tissue caused by application of herbicides in cassava (Manihot esculenta Crantz. cv. IAC-12. A greenhouse experiment was conducted with post-emergence herbicides treatments as follows: nicossulfuron (60 g a.i ha-1, fluazifop (250 g a.i ha-1, fomesafem (250 g a.i ha-1, metribuzin (480 g a.i ha-1, oxyfluorfen (720 g a.i ha-1 and the mixture fluazifop + fomesafen (200 + 250 g a.i ha-1, and an untreated control, respectively. The results obtained have allowed to affirm the cassava plants (cultivar IAC-12, exhibited changes in leaf anatomy in response to herbicide application even on cassava leaves without no visual toxicity symptoms. The products caused alterations both in tissue thickness as in tissue proportion in the leaf blade. For the fluazifop, a eudicotyledonous selective herbicide, changes were observed in tissue thickness and proportion of leaf blade, even without any visual toxicity detected. Cassava plants (IAC-12, showed structural changes in leaf anatomy in response to application of herbicides. The leaf anatomy of cassava cv. IAC-12, can be used to indicate the herbicide effect on cassava (Manihot esculenta Crantz.cv. IAC-12 plants.

  9. Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats.

    Science.gov (United States)

    Soto-Blanco, Benito; Górniak, Silvana Lima

    2010-07-01

    Cassava (Manihot esculenta Crantz) is a major source of dietary energy for humans and domestic animals in many tropical countries. However, consumption of cassava is limited by its characteristic content of cyanogenic glycosides. The present work aimed to evaluate the toxic effects of ingestion of cassava leaves by goats for 30 consecutive days, and to compare the results with the toxic effects of cyanide in goats, which have been described previously. Eight Alpine cross-bred female goats were divided into two equal groups, and were treated with ground frozen cassava leaves at a target dose of 6.0mg hydrogen cyanide (HCN)/kg/day (treated animals), or with ground hay and water only (control group) by gavage for 30 consecutive days. Blood samples were collected on days 0, 7, 15, 21, and 30 for biochemical panel and cyanide determination. At the end of the experiment, fragments of pancreas, thyroid gland, liver, kidney, lungs, heart, spleen, and the whole central nervous system were collected for histopathological examination. Clinical signs were observed in all goats treated with cassava on the first day of the experiment. From the second day the dose of cassava leaves was reduced to 4.5mgHCN/kg/day. No changes were found in the blood chemical panel. A mild increase in the number of resorption vacuoles in the thyroid follicular colloid, slight vacuolation of periportal hepatocytes, and spongiosis of the mesencephalon were found in goats treated with cassava. The pattern of lesions seen in the present goats was similar to what has been described previously in cyanide-dosed goats. Thus, the toxic effects of the ingestion of cassava leaves by goats can be attributed to the action of cyanide released from cyanogenic glycosides, and none of the effects was promoted by these glycosides directly.

  10. (manihot esculenta crantz parte I: respuesta a la compresión unidireccional

    Directory of Open Access Journals (Sweden)

    HECTOR JOSÉ CIRO VELÁSQUEZ

    2007-01-01

    Full Text Available Se presentan los resultados de una investigación experimental del comportamiento reológico de los productos agrícolas a través de la determinación y análisis de las curvas de flujo de la yuca (Manihot esculenta crantz variedad chirosa obtenidas en compresión unidireccional. Las propiedades reológicas evaluadas fueron la resistencia mecánica del producto hasta el punto de falla (esfuerzo y deformación unitaria, tenacidad y módulo de deformabilidad . Los tubérculos fueron sometidos a pruebas de compresión unidireccional hasta la fractura a una velocidad de deformación de 1 mm/s, condiciones de temperatura y humedad relativa de 21ºC y 65% respectivamente. Los ensayo reológicos fueron evaluados en dos sentidos de carga de acuerdo a las fibras (longitudinal y transversal y dos niveles de contenido de humedad (producto fresco y producto deshidratado. Los análisis estadísticos mostraron que el comportamiento reológico del producto depende del contenido de humedad del producto y el sentido de carga, indicando que el material vegetal presenta una resistencia mecánica a la falla (esfuerzo de falla y tenacidad mas alta en sentido longitudinal que transversal. Además la rigidez del producto expresada por el modulo de deformabilidad indica que el producto es menos rígido a medida que se diminuye el contenido de humedad del producto.

  11. Cassava chip (Manihot esculenta Crantz as an energy source for ruminant feeding

    Directory of Open Access Journals (Sweden)

    Metha Wanapat

    2015-12-01

    Full Text Available Cassava (Manihot esculenta Crantz is widely grown in sub-tropical and tropical areas, producing roots as an energy source while the top biomass including leaves and immature stems can be sun-dried and used as cassava hay. Cassava roots can be processed as dried chip or pellet. It is rich in soluble carbohydrate (75 to 85% but low in crude protein (2 to 3%. Its energy value is comparable to corn meal but has a relatively higher rate of rumen degradation. Higher levels of non-protein nitrogen especially urea (1 to 4% can be successfully incorporated in concentrates containing cassava chip as an energy source. Cassava chip can also be processed with urea and other ingredients (tallow, sulfur, raw banana meal, cassava hay, and soybean meal to make products such as cassarea, cassa-ban, and cassaya. Various studies have been conducted in ruminants using cassava chip to replace corn meal in the concentrate mixtures and have revealed satisfactory results in rumen fermentation efficiency and the subsequent production of meat and milk. In addition, it was advantageous when used in combination with rice bran in the concentrate supplement. Practical home-made-concentrate using cassava chip can be easily prepared for use on farms. A recent development has involved enriching protein in cassava chips, yielding yeast fermented cassava chip protein (YEFECAP of up to 47.5% crude protein, which can be used to replace soybean meal. It is therefore, recommended to use cassava chip as an alternative source of energy to corn meal when the price is economical and it is locally available.

  12. Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production

    International Nuclear Information System (INIS)

    Witters, N.; Mendelsohn, R.; Van Passel, S.; Van Slycken, S.; Weyens, N.; Schreurs, E.; Meers, E.; Tack, F.; Vanheusden, B.; Vangronsveld, J.

    2012-01-01

    Phytoremediation could be a sustainable remediation alternative for conventional remediation technologies. However, its implementation on a commercial scale remains disappointing. To emphasize its sustainability, this paper examines whether and how the potential economic benefit of CO 2 abatement for different crops used for phytoremediation or sustainable land management purposes could promote phytotechnologies. Our analysis is based on a case study in the Campine region, where agricultural soils are contaminated with mainly cadmium. We use Life Cycle Analysis to show for the most relevant crops (willow (Salix spp), energy maize (Zea mays), and rapeseed (Brassica napus)), that phytoremediation, used for renewable energy production, could abate CO 2 . Converting this in economic numbers through the Marginal Abatement Cost of CO 2 (€ 20 ton −1 ) we can integrate this in the economic analysis to compare phytoremediation crops among each other, and phytoremediation with conventional technologies. The external benefit of CO 2 abatement when using phytoremediation crops for land management ranges between € 55 and € 501 per hectare. The purpose of these calculations is not to calculate a subsidy for phytoremediation. There is no reason why one would prefer phytoremediation crops for renewable energy production over “normal” biomass. Moreover, subsidies for renewable energy already exist. Therefore, we should not integrate these numbers in the economic analysis again. However, these numbers could contribute to making explicit the competitive advantage of phytoremediation compared to conventional remediation technologies, but also add to a more sustainably funded decision on which crop should be grown on contaminated land. -- Highlights: ► We add CO 2 abatement for each remediation crop to the private economic analysis. ► This values the advantage of phytoremediation compared to conventional remediation. ► This leads to a crop choice that considers an

  13. Phytoremediation of soils polluted by heavy metals and metalloids using crops: (ii early results from the in situ experiment of torviscosa (udine

    Directory of Open Access Journals (Sweden)

    Luca Marchiol

    Full Text Available Two annual high biomass yield crops – Sorghum bicolor and Helianthus annuus – were grown in a soil polluted by pyrite cinders. Specific aims of this work were: to observe the concentration of metals in plants during the crop cycle and to establish the amount of metal removal by the crops. The field trial was arranged in a randomized block design. The concentrations of heavy metals in the soil were: As 309, Cd 4.90, Co 50.9, Cu 1527, Pb 233 and Zn 980 mg kg-1. The crops received respectively mineral fertilization and organic amendment while plants in control soil did not receive any input. The phytoextraction potential of crops was estimated during the whole growth cycle; the concentration of the metals in the plant roots and in the harvestable biomass and two bioconcentration factors are reported. The amelioration of the nutritive status of soil resulted highly effective for the biomass yield but not in the concentration of metals in plant fractions. The evaluation of the potential of phytoremediation of our plants compared to other crops in terms of metal removal, was positive. Sorghum performed better than sunflower removing from the soil 220 g ha-1 of As, 5.6 g ha-1 of Cd, 30.2 g ha-1 of Co, 820 g ha-1 of Cu, 107 g ha-1 of Pb and 1944 g ha-1 of Zn.

  14. Phytoremediation of soils polluted by heavy metals and metalloids using crops: (ii early results from the in situ experiment of torviscosa (udine

    Directory of Open Access Journals (Sweden)

    Giuseppe Zerbi

    2011-02-01

    Full Text Available Two annual high biomass yield crops – Sorghum bicolor and Helianthus annuus – were grown in a soil polluted by pyrite cinders. Specific aims of this work were: to observe the concentration of metals in plants during the crop cycle and to establish the amount of metal removal by the crops. The field trial was arranged in a randomized block design. The concentrations of heavy metals in the soil were: As 309, Cd 4.90, Co 50.9, Cu 1527, Pb 233 and Zn 980 mg kg-1. The crops received respectively mineral fertilization and organic amendment while plants in control soil did not receive any input. The phytoextraction potential of crops was estimated during the whole growth cycle; the concentration of the metals in the plant roots and in the harvestable biomass and two bioconcentration factors are reported. The amelioration of the nutritive status of soil resulted highly effective for the biomass yield but not in the concentration of metals in plant fractions. The evaluation of the potential of phytoremediation of our plants compared to other crops in terms of metal removal, was positive. Sorghum performed better than sunflower removing from the soil 220 g ha-1 of As, 5.6 g ha-1 of Cd, 30.2 g ha-1 of Co, 820 g ha-1 of Cu, 107 g ha-1 of Pb and 1944 g ha-1 of Zn.

  15. Crossability studies and zygotic embryo culture in cassava (manihot esculenta crantz)

    International Nuclear Information System (INIS)

    Nunekpeku, W.

    2010-01-01

    Cassava (Manihot esculenta Crantz) germplasm in Ghana is mostly uncharacterized and includes a large collection of landraces variously suitable for specific end-uses at different locations across the country. None of the existing released varieties meets the requirements of an emerging local industry in starch production. In the absence of an active molecular genetic research group in the country to facilitate the incorporation of desired genes for high yield, high starch content and disease resistance into a single genotype, intra-specific hybridization remains a viable option in creating variability from which new varieties with a combination of the desired characteristics may be selected. Following a study of their phenological and reproductive characteristics, crosses were carried out among nine accessions of cassava (Megyewontem, Bamboo Akwetey, Ankra, BNARI Selection-1, Afisiafi, Security, Larbi, Asare and HO-008, abbreviated as ME, BA, AN, BS-1, AF, SE, LA, AS and HO-008 respectively). Flowering and fruiting characteristics differed significantly among the accessions. Percent crossability ranged from 0% (in AN x HO-008, AF x ME and LA x HO-008 crosses) to 88% (in AS x AF crosses). No clear relationship existed between seed set and embryo formation among the accessions. Fruit drop rate ranged from 11.7% to 83.3%. Zygotic embryos were harvested prior to seed maturity and cultured in vitro on phytohormone-free Murashige and Skoog medium to raise a collection of F 1 base population lines. In vitro germination rates of the hybrid embryos harvested at 45DAP ranged from 32.14% to 100%. Ex vitro acclimatization of 237 plantlets recovered from zygotic embryo cultures resulted in the survival of 35 hybrid progenies. These were grown for six months in a plant barn. Preliminary characterization of the hybrids with reference to above- and below-ground morphological traits, using IBPGR descriptors, revealed that they are generally similar in terms of pubescence of young

  16. Importance of Abscisic Acid (ABA in the In Vitro Conservation of Cassava (Manihot esculenta Crantz Importancia del Ácido Abscísico (ABA en la Conservación In Vitro de la Yuca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    L. Pedro Barrueto Cid

    2008-09-01

    Full Text Available The conventional technology for in vitro plant conservation for cassava (Manihot esculenta Crantz germplasm collections is laborious due to the need for several sub-culturing procedures per year. This practice implies high costs for medium preparation, tissue culture tubes, time-consuming labor, risks of contamination, mislabeling of accession, and the need for large growth chambers. We have developed a new procedure using in vitro cultivated nodal axillary buds treated with different abscisic acid (ABA concentrations to reduce the time for recycling transplants cultivated in a SP basic nutritive medium. Nodal explants were stored for three months with ABA. Plants were obtained after nodal axillary buds were placed in SP medium without ABA. Results indicated that 20 and 30 mM ABA induced bud dormancy and delayed sprouting without affecting subsequent growth of plants after treatment.La tecnología usual para conservación in vitro de colecciones de germoplasma de yuca (Manihotesculenta Crantz es corrientemente laboriosa y emplea varias transferencias por año. Este procedimiento envuelve altos costos en preparación de medios, consumo de tiempo, riesgos de manipulación y necesidad de mucho espacio para la mantención de colecciones en cámaras de cultivos. Se desarrolló un nuevo procedimiento usando yemas axilares nodales cultivadas in vitro con diferentes concentraciones de ácido abscísico (ABA, con el objetivo de reducir los ciclos de transferencia de los cultivos mantenidos en un medio nutritivo básico tal como el SP. Los segmentos nodales fueron almacenados por tres meses en presencia de ABA. Las plantas fueron obtenidas después que los segmentos nodales fueron transferidos al medio SP sin ABA. Los resultados indican que 20 y 30 mM de ABA indujeron una completa dormancia de yemas, sin afectar el desarrollo posterior de las yemas nodales y su consecuente conversión en planta.

  17. Canaryseed Crop

    Directory of Open Access Journals (Sweden)

    Maximiliano Cogliatti

    2012-03-01

    Full Text Available Canaryseed (Phalaris canariensis L. is a graminaceous crop species with production practices and cycle similar to those of other winter cereal crops such as spring wheat (Triticum aestivum L. and oat (Avena sativa L.. Currently its grains are used almost exclusively as feed for birds, alone or mixed with other grains like millet, sunflower seed, and flaxseed. Canaryseed is a genuine cereal with a unique composition that suggests its potential for food use. P. canariensis is cultivated in many areas of temperate climates. Currently, its production is concentrated in the southwestern provinces of Canada (Alberta, Saskatchewan and Manitoba and on a smaller scale in Argentina, Thailand and Australia. Globally it is considered to be a minor crop with regional relevance, with a production about of 250000 tonnes per year, which restricts private investment and public research on its genetic and technological improvement. For this reason, the type of crop management that is applied to this species largely depends on innovations made in other similar crops. This work provides an updated summary of the available information on the species: its requirements, distribution, genetic resources, cultivation practices, potential uses, marketing and other topics of interest to researchers and producers.

  18. Nutrient uptake and biomass accumulation for eleven different field crops

    Directory of Open Access Journals (Sweden)

    K. HAKALA

    2008-12-01

    Full Text Available Oil hemp (Cannabis sativa L., quinoa (Chenopodium quinoa Willd., false flax (Camelina sativa (L. Crantz, caraway (Carum carvi L., dyer’s woad (Isatis tinctoria L., nettle (Urtica dioica L., reed canary grass (RCG (Phalaris arundinacea L., buckwheat (Fagopyrum esculentum Moench, linseed (Linum usitatissimum L., timothy (Phleum pratense L. and barley (Hordeum vulgare L. were grown under uniform conditions in pots containing well fertilised loam soil. Dry matter (DM accumulation was measured repeatedly, and contents of minerals N, P, K, Ca and Mg at maturity. Annual crops accumulated above-ground biomass faster than perennials, while perennials had higher DM accumulation rates below ground. Seeds had high concentrations of N and P, while green biomass had high concentrations of K and Ca. Stems and roots had low concentrations of minerals. Concentrations of K and P were high in quinoa and caraway, and that of P in buckwheat. Hemp and nettle had high Ca concentrations, and quinoa had high Mg concentration. N and P were efficiently harvested with seed, Ca and K with the whole biomass. Perennials could prevent soil erosion and add carbon to the soil in the long term, while annuals compete better with weeds and prevent erosion during early growth. Nutrient balances in a field could be modified and nutrient leaching reduced by careful selection of the crop and management practices.;

  19. Do green manures as winter cover crops impact the weediness and crop yield in an organic crop rotation?

    OpenAIRE

    Madsen, Helena; Talgre, Liina; Eremeev, Viacheslav; Alaru, Maarika; Kauer, Karin; Luik, Anne

    2016-01-01

    The effects of different winter cover crops and their combination with composted cattle manure on weeds and crop yields were investigated within a five-field crop rotation (barley undersown with red clover, red clover, winter wheat, pea, potato) in three organic cropping systems. The control system (Org 0) followed the rotation. In organic systems Org I and Org II the winter cover crops were used as follows: ryegrass (Lolium perenne L. in 2011/2012) and a mixture of winter oilseed-rape (Brass...

  20. A Survey of Beginning Crop Science Courses at 49 U.S. Universities. II. Laboratory Format, Teaching Methods, and Topical Content.

    Science.gov (United States)

    Connors, Krista L.; Karnok, Keith J.

    1986-01-01

    This paper is the second of a two-part series which discusses the findings related to laboratory segments in the beginning crop science courses offered in Land Grant institutions. Survey results reveal that laboratories are used but employ traditional teaching rather than individualized or auto-tutorial techniques. (ML)

  1. A cost-effective and practical polybenzanthrone-based fluorescent sensor for efficient determination of palladium (II) ion and its application in agricultural crops and environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ge [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Wen, Yangping [Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, and Key Laboratory of Physiology, Ecology and Cultivation of Double Cropping Rice, Ministry of Agriculture, Jiangxi Agricultural University, Nanchang 330045 (China); Guo, Chaoqun [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Xu, Jingkun, E-mail: xujingkun@tsinghua.org.cn [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Lu, Baoyang; Duan, Xuemin [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); He, Haohua; Yang, Jun [Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, and Key Laboratory of Physiology, Ecology and Cultivation of Double Cropping Rice, Ministry of Agriculture, Jiangxi Agricultural University, Nanchang 330045 (China)

    2013-12-17

    Graphical abstract: -- Highlights: •PBA was facilely electrosynthesized in the binary solvent system containing of acetonitrile and boron trifluoride diethyl etherate. •“On–off” type fluorescent sensor based on this polymer for highly selective, sensitive, and practical detection of Pd{sup 2+} was designed. •The possible mechanism between Pd{sup 2+} and PBA has been discussed and TEM preliminary proved the proposed mechanism. •This fluorescent CP-based sensor has been used to practically detect Pd{sup 2+} in agricultural crops and environment samples with satisfactory results. -- Abstract: A highly selective and sensitive fluorescent chemosensor suitable for practical measurement of palladium ion (Pd{sup 2+}) in agricultural crops and environment samples has been successfully fabricated using polybenzanthrone (PBA). PBA was facilely electrosynthesized in the mixed electrolyte of acetonitrile and boron trifluoride diethyl etherate. The fluorescence intensity of PBA showed a linear response to Pd{sup 2+} in the concentration range of 5 nM–0.12 mM with a detection limit of 0.277 nM and quantification limit of 0.925 nM. Different compounds existing in agricultural crops and environment such as common metal ions, anions, natural amino acids, carbohydrates, and organic acids were used to examine the selectivity of the as-fabricated sensor, and no obvious fluorescence change could be observed in these interferents and their mixtures. A possible mechanism was proposed that the coordination of PBA and Pd{sup 2+} enhance the aggregation of polymer chains, which led to a significant quenching of PBA emission, and this was further confirmed by absorption spectra monitoring and transmission electron microscopy. The excellent performance of the proposed sensor and satisfactory results of the Pd{sup 2+} determination in practical samples suggested that the PBA-based fluorescent sensor for the determination of Pd{sup 2+} will be a good candidate for application in

  2. Hemaglutinina de folhas de mandioca (Manihot esculenta Crantz: purificação parcial e toxicidade Hemaglutinin of cassava leaves (Manihot esculenta Crantz: partial purification and toxicity

    Directory of Open Access Journals (Sweden)

    Chrystian Araujo Pereira

    2008-06-01

    Full Text Available Um dos componentes da multimistura para suplementação alimentar de populações carentes é a farinha de folhas de mandioca (FFM que possui elevado conteúdo em proteínas, vitaminas e minerais. Todavia, as folhas de mandioca também apresentam substâncias antinutritivas e/ou tóxicas, como cianeto, polifenóis, nitrato, ácido oxálico, hemaglutinina, saponinas e inibidores de tripsina. Objetivou-se neste trabalho extrair as proteínas da FFM, purificando-as em coluna cromatográfica e determinar sua atividade hemaglutinante e toxicidade. Foram testadas várias estratégias de extração e precipitação das proteínas, sendo que o maior teor protéico e atividade hemaglutinante foi obtido na extração com água destilada na proporção 1:20 (p/v seguida da precipitação com sulfato de amônio a 80% de saturação. As proteínas precipitadas foram purificadas em coluna Q-Sepharose. Das quatro frações obtidas na purificação (I, II, III e IV, a I e a II apresentaram maiores atividades hemaglutinantes. As mesmas frações foram injetadas via intraperitoneal em camundongos com doses de 2mg (fração I, 3mg (fração II, 54mg (fração III e 52mg (fração IV para cada animal com 20g de peso médio, não sendo observadas mortes ou quaisquer efeitos adversos após 120h.One of the components of the multimixture to the feed supplementation of low-income populations is cassava leaf flour (FFM, with high content of proteins, vitamins and minerals. However, cassava leaves also present substance regarded as antinutritive and/or toxic, such as cyanide, polyphenols, nitrate, oxalic acid, hemagglutinin, saponins and trypsin inhibitors. The aim of this work was to extract proteins from FFM, purifying them in chromatographic column and determine their hemagglutinating activity and toxicity. A number of strategies of extraction and precipitation of proteins were tested; the highest protein content and hemagglutinating activity were obtained in the

  3. Genetic relatedness between cassava (Manihot esculenta Crantz and M. flabellifolia and M. Peruviana based on both RAPD and AFLP markers

    Directory of Open Access Journals (Sweden)

    Colombo Carlos

    2000-01-01

    Full Text Available The taxonomy of the genus Manihot is still uncertain and the genetic origin of cassava (M. esculenta Crantz continues to be controversial. We studied the degree of genetic relatedness between cassava and two naturally occurring species (M. flabellifolia and M. peruviana which are probably involved in the evolution of cassava, using RAPD and AFLP molecular markers. Thirty-three clonal accessions of cassava of known genetic diversity and 15 accessions of the wild species M. flabellifolia and M. peruviana were analyzed using 92 polymorphic RAPD bands and 73 polymorphic AFLP bands. The genetic markers were unable to differentiate the two wild species, which confirms their botanical similarity. Half of the total number of amplified bands were monomorphic in all of the genotypes evaluated. The mean genetic similarity (Jaccard between cassava and the species M. flabellifolia/M. peruviana was 0.59. A grouping analysis (neighbor-joining method with RAPD markers of cultivated cassava, M. flabellifolia/M. peruviana and the other wild species located the genotypes of cassava and M. flabellifolia/M. peruviana at one extremity and the three Mexican species (M. aesculifolia, M. michaelis and M. chlorostica at the other. An intermediate position between these groups was occupied by two wild species (M. glaziovii and M. reptans native to central and northeastern Brazil. These results are consistent with the hypothesis that the species M. flabellifolia and M. peruviana gave rise to the cultivated species.

  4. Diversidad genética y contenido de carotenos totales en accesiones de yuca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Ana Cruz Morillo C.

    2011-04-01

    Full Text Available La yuca (Manihot esculenta Crantz es un arbusto perenne cultivado en África, América Latina y el Sureste asiático, cuya raíz constituye una fuente importante de energía en la dieta humana en países tropicales. Los carotenoides son pigmentos naturales que se encuentran ampliamente distribuidos en la naturaleza. Se reconoce que aproximadamente cincuenta de ellos tienen actividad provitamina A, siendo b-caroteno el de mayor eficiencia para su conversión en vitamina A. El estudio de la variabilidad genética es un procedimiento útil para fortificar, enriquecer o incrementar el contenido de nutrientes de los alimentos o cultivos, entre ellos los carotenos en raíz de yuca mediante procesos de selección y recombinación en programas de mejoramiento que permitan identificar genotipos superiores. En el presente estudio, a partir de la evaluación de la diversidad genética, se generó un dendrograma de accesiones de yuca en el cual se formaron seis grupos con 68% de similitud. La heterocigosidad promedio observada fue de Ht = 0.559. Los análisis de regresión y correlación entre el contenido de carotenos totales y los datos moleculares mostraron que los marcadores que se encuentran correlacionados con altos contenidos de carotenos pertenecen al grupo de ligamiento D del mapa molecular de yuca.

  5. Starch grains reveal early root crop horticulture in the Panamanian tropical forest.

    Science.gov (United States)

    Piperno, D R; Ranere, A J; Holst, I; Hansell, P

    2000-10-19

    Native American populations are known to have cultivated a large number of plants and domesticated them for their starch-rich underground organs. Suggestions that the likely source of many of these crops, the tropical forest, was an early and influential centre of plant husbandry have long been controversial because the organic remains of roots and tubers are poorly preserved in archaeological sediments from the humid tropics. Here we report the occurrence of starch grains identifiable as manioc (Manihot esculenta Crantz), yams (Dioscorea sp.) and arrowroot (Maranta arundinacea L.) on assemblages of plant milling stones from preceramic horizons at the Aguadulce Shelter, Panama, dated between 7,000 and 5,000 years before present (BP). The artefacts also contain maize starch (Zea mays L.), indicating that early horticultural systems in this region were mixtures of root and seed crops. The data provide the earliest direct evidence for root crop cultivation in the Americas, and support an ancient and independent emergence of plant domestication in the lowland Neotropical forest.

  6. Productivity and water use by rain-fed early maturing Cassava (Manihot esculenta Crantz) varieties grown at different plant densities in a coastal savannah environment

    International Nuclear Information System (INIS)

    Amanor, Emmanuel Nartey

    2016-06-01

    The production of cassava (Manihot esculenta Crantz) under rain-fed conditions at the Kwabenya-Atomic area in the coastal savannah environment is constrained by low and erratic rainfall events. Improving cassava production in the area requires the use of cassava varieties which are efficient in the use of limited soil moisture. The objective of the study was to evaluate the response of two early maturing cassava varieties to three (3) planting densities to TDM, RY, and WUE. The actual evapotranspiration was also partitioned into crop transpiration and soil evaporation using LAI data. The field experiment was conducted at Biotechnology and Nuclear Agriculture Research Institute (BNARI) research farm, Atomic Energy Commission (GAEC), Kwabenya-Atomic in 2015. The split plot design in three replicates was used. The two (2) cassava varieties, Bankye Hemaa and Capevars Bankye, were assigned to the main plots and three (3) planting densities: 10,000, 13,333 and 20,000 plants ha"-1 to the subplots. Plants were sampled each month and moisture in the 120 cm soil profile monitored every two weeks using the neutron probe (CPN 503 Hydroprobe). Soil moisture data were used to estimate actual evapotranspiration (AET) using the water balance approach. Root yield (RY) for Bankye Hemaa and Capevars Bankye, ranged from 2.8 to 15.1 t/ha"-1 for the 10,000 plants ha"-1, 4.2 to 18.1 t/ha"-1 for the 13,333 plants ha"-1 and 5.1 to 21.3 t/ha"-1 for the 20,000 plants ha"-1. Additionally, water use efficiency in term of total dry matter (WUETDM ) for the two cassava varieties ranged from 1.7 to 11.6, 2.3 to 12.8 and 3.7 to 12.4 kg ha"-1 mm"-1 for the 10,000, 13,333 and 20,000 plants ha"-1 planting density, respectively. Bankye Hemaa grown at 20,000 plants ha"-1 produced the highest root yield of 21.3 t/ha"-1 and WUETDM of 12.4 kg ha"-1 mm"-1, because of the comparatively lower soil evaporation which led to increased available soil water for crop use and higher crop transpiration, leading to

  7. Alterações na qualidade de raízes de mandioca(Manihot esculenta Crantz minimamente processadas Quality alterations in cassava roots (Manihot esculenta Crantz minimally processed

    Directory of Open Access Journals (Sweden)

    Andreia Alves

    2005-04-01

    Full Text Available A conservação pós-colheita das raízes de mandioca tem sido uma preocupação das indústrias e produtores, devido ao curto tempo de estocagem e a alta perecibilidade das raízes. Dois fenômenos são apontados como responsáveis pela deterioração das raízes, um de ordem fisiológica, provocando a perda inicial da qualidade por meio do desenvolvimento da descoloração vascular do tecido parenquimatoso, e o outro, de ordem microbiana, que se segue à fisiologia, responsável pela decomposição do produto. Dessa forma, com o presente trabalho, objetivou-se estudar a conservação das raízes de mandioca (Manihot esculenta Crantz, submetidas à higienização em água clorada e armazenadas em três tipos de embalagens, bandeja de isopor envolta em filme de policloreto de vinila (PVC, embalagem multicamada (poliéster Saram-13,5µ/polietileno-100µ com e sem vácuo e resfriadas (5 ± 0,5°C, mediante análises físico-químicas, microbiológicas, fisiológicas e sensoriais. A conservação de mandioca minimamente processada sob refrigeração para os tratamentos realizados, é possível diferenciando-se o período de armazenamento, sendo que para as amostras armazenadas em bandeja, o período de armazenamento foi de 7 dias, no selado e a vácuo foi de aproximadamente 24 dias, respectivamente.Post harvest of cassava roots has been a great concern in food industries and producers due to the short shelf life and high perishability. Several phenomena have been pointed out as responsible for root deterioration. Among them there are physiological aspects, that lead to losses in initial quality through vascular discoloration of parenchymatous tissue. On the other hand, phenomena from microbial origin, which follow the physiological alterations, are responsible for product decomposition. In this context, this work was aimed at investigating the conservation of cassava roots (Manihot esculenta Crantz submitted to chlorinated water, and stored using

  8. Estimating yield gaps at the cropping system level.

    Science.gov (United States)

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  9. Genetic diversity characterization of cassava cultivars (Manihot esculenta Crantz.: I RAPD markers

    Directory of Open Access Journals (Sweden)

    Colombo Carlos

    1998-01-01

    Full Text Available RAPD markers were used to investigate the genetic diversity of 31 Brazilian cassava clones. The results were compared with the genetic diversity revealed by botanical descriptors. Both sets of variates revealed identical relationships among the cultivars. Multivariate analysis of genetic similarities placed genotypes destinated for consumption "in nature" in one group, and cultivars useful for flour production in another. Brazil?s abundance of landraces presents a broad dispersion and is consequently an important resource of genetic variability. The botanical descriptors were not able to differentiate thirteen pairs of cultivars compared two-by-two, while only one was not differentiated by RAPD markers. These results showed the power of RAPD markers over botanical descriptors in studying genetic diversity, identifying duplicates, as well as validating, or improving a core collection. The latter is particularly important in this vegetatively propagated crop.

  10. Bio-ethanol production from non-food parts of Cassava (Manihot esculenta Crantz)

    Energy Technology Data Exchange (ETDEWEB)

    Nuwamanya, Ephraim; Kawuki, Robert S.; Baguma, Yona [National Agricultural Research organization, National Crops Resources Research Inst. (NaCRRI), Kampala (Uganda); Chiwona-Karltun, Linley [Dept. of Urban and Rural Development, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)], email: Linley.karltun@slu.se

    2012-03-15

    Global climate issues and a looming energy crisis put agriculture under pressure in Sub-Saharan Africa. Climate adaptation measures must entail sustainable development benefits, and growing crops for food as well as energy may be a solution, removing people from hunger and poverty without compromising the environment. The present study investigated the feasibility of using non-food parts of cassava for energy production and the promising results revealed that at least 28% of peels and stems comprise dry matter, and 10 g feedstock yields >8.5 g sugar, which in turn produced >60% ethanol, with pH {approx} 2.85, 74-84% light transmittance and a conductivity of 368 mV, indicating a potential use of cassava feedstock for ethanol production. Thus, harnessing cassava for food as well as ethanol production is deemed feasible. Such a system would, however, require supportive policies to acquire a balance between food security and fuel.

  11. Induced mutation breeding in Cassava (Manihot esculenta Crantz) cultivar `Bosom Nsia`

    Energy Technology Data Exchange (ETDEWEB)

    Ahiabu, R K.A.; Klu, G Y.P. [Biotechnology and Nuclear Agricultural Research Inst., Ghana Atomic Energy Commission, Legon (Ghana)

    1997-12-01

    Cassava is one of the most important staple food crops in the lowland tropics. In most cassava producing countries, it is mainly utilized for human consumption. Cassava leaves are a good source of protein and vitamins, and are used as food in Africa. In Ghana, `Bosom Nsia` is one of the most widely grown cultivars probably because of its good cooking quality and fast maturation in six months. However, this cultivar is highly susceptible to cassava mosaic virus disease (CMV), hence the need to improve its resistance to the disease. Various in vitro techniques have been developed for cassava research, Klu and Lamptey reported irradiation doses of 25 and 30 Gy to be ideal for in vitro mutagenesis of cassava. These doses were applied to in vivo and in vitro mutation for breeding CMV resistance in the cultivar `Bosom Nsia`. 6 refs.

  12. Induced mutation breeding in Cassava (Manihot esculenta Crantz) cultivar 'Bosom Nsia'

    International Nuclear Information System (INIS)

    Ahiabu, R.K.A.; Klu, G.Y.P.

    1997-01-01

    Cassava is one of the most important staple food crops in the lowland tropics. In most cassava producing countries, it is mainly utilized for human consumption. Cassava leaves are a good source of protein and vitamins, and are used as food in Africa. In Ghana, 'Bosom Nsia' is one of the most widely grown cultivars probably because of its good cooking quality and fast maturation in six months. However, this cultivar is highly susceptible to cassava mosaic virus disease (CMV), hence the need to improve its resistance to the disease. Various in vitro techniques have been developed for cassava research, Klu and Lamptey reported irradiation doses of 25 and 30 Gy to be ideal for in vitro mutagenesis of cassava. These doses were applied to in vivo and in vitro mutation for breeding CMV resistance in the cultivar 'Bosom Nsia'. 6 refs

  13. Efeitos dos períodos de competição do mato na cultura do amendoim: II. Safra das águas Effects of weed competition periods on peanut: II. Wet season crop

    Directory of Open Access Journals (Sweden)

    EDISON MARTINS PAULO

    2001-01-01

    , after sowing. Each experimental plot was set up with four peanut lines (6.0 m² of useful area. The main weed species occurring in the experimental area were: Cyperus lanceolatus Poir, Brachiaria decumbens Stapf., Commelina benghalensis L., Amaranthus viridis L., Eleusine indica (L. Gaertn., Portulaca oleracea L., Digitaria horizontalis Willd and Solanum americanum Mill. The main effects of weed presence in the peanut crop was to decrease pod kernel yields and peanut population at harvest. No significant effects were observed on shelling percentages and peanut dry matter for any of the studied periods. Weeding control, carried out at 13 and 67 days after sowing, not taking into account initial weed presence was enough for obtaining peanut pod yield statistically similar to that observed when the peanut crop was maintained with no competition during all cycle. Pods and kernel yields and peanut population at harvest increased with weeding control at the sowing stage.

  14. Application of molecular markers in germplasm enhancement of Cassava (Manihot esculenta L. Crantz) and Yams (Dioscorea spp.) at IITA

    International Nuclear Information System (INIS)

    Mignouna, H.D.; Asiedu, R.; Dixon, A.G.O.; Tonukari, J.; Ng, N.Q.; Thottappilly, G.; Knox, M.; Ellis, T.H.N.

    1998-01-01

    The genetic variation among 28 varieties of cassava (Manihot esculenta L. Crantz), collected from different parts of the Republic of Benin was determined using random amplified polymorphic DNA (RAPD) markers. A set of ten primers out of the one hundred that were screened, detected polymorphisms. Thirty-five cassava landraces from three countries of West Africa, along with five improved varieties and one genetic stock (58308), were analysed using both micro satellite markers and nine selected random primers which generated fifty-four polymorphic markers. Based on the unweighted pair group method with arithmetic averages (UPGMA) and Principal Component Analysis (PCA), six major groups of clusters were identified among the forty one genotypes. Clone 58308, the original source of resistance to African Cassava Mosaic Disease (ACMD) in IITA's cassava breeding program, and TMS 30572, an improved cultivar derived from clone 58308, were found in the same cluster group. All 34 of the landraces that are known to be resistant to ACMD were genetically distant from 58308 and TMS 30572. A diallel mating programme has been initiated to elucidate the genetics of these new sources of resistance to ACMD and determine their complementarity as well as allellism for resistance. A set of eight random primers for RAPD and two combinations of enzymes and specific primers for AFLP were used to generate DNA fingerprinting of twenty varietal groups among the 32 described for cultivated yams in the region. The results obtained confirm that a given varietal group is a mixture of different genotypes. The molecular taxonomy of 30 accessions of cultivated yams, D. rotundata and D. cayenensis, and 35 accessions of wild yams from Nigeria was established using RAPD and micro satellite markers. The cultivated yams separated into two distinct groups corresponding to the two species. D. rotundata genotypes showed relationship to the wild species D. abyssinica and D. praehensilis, whereas D. cayenensis

  15. Application of molecular markers in germplasm enhancement of Cassava (Manihot esculenta L. Crantz) and Yams (Dioscorea spp.) at IITA

    Energy Technology Data Exchange (ETDEWEB)

    Mignouna, H D; Asiedu, R; Dixon, A G.O.; Tonukari, J; Ng, N Q; Thottappilly, G [International Institute of Tropical Agriculture, Ibadan (Nigeria); Knox, M; Ellis, T H.N. [John Innes Centre, Norwich (United Kingdom)

    1998-10-01

    The genetic variation among 28 varieties of cassava (Manihot esculenta L. Crantz), collected from different parts of the Republic of Benin was determined using random amplified polymorphic DNA (RAPD) markers. A set of ten primers out of the one hundred that were screened, detected polymorphisms. Thirty-five cassava landraces from three countries of West Africa, along with five improved varieties and one genetic stock (58308), were analysed using both micro satellite markers and nine selected random primers which generated fifty-four polymorphic markers. Based on the unweighted pair group method with arithmetic averages (UPGMA) and Principal Component Analysis (PCA), six major groups of clusters were identified among the forty one genotypes. Clone 58308, the original source of resistance to African Cassava Mosaic Disease (ACMD) in IITA`s cassava breeding program, and TMS 30572, an improved cultivar derived from clone 58308, were found in the same cluster group. All 34 of the landraces that are known to be resistant to ACMD were genetically distant from 58308 and TMS 30572. A diallel mating programme has been initiated to elucidate the genetics of these new sources of resistance to ACMD and determine their complementarity as well as allellism for resistance. A set of eight random primers for RAPD and two combinations of enzymes and specific primers for AFLP were used to generate DNA fingerprinting of twenty varietal groups among the 32 described for cultivated yams in the region. The results obtained confirm that a given varietal group is a mixture of different genotypes. The molecular taxonomy of 30 accessions of cultivated yams, D. rotundata and D. cayenensis, and 35 accessions of wild yams from Nigeria was established using RAPD and micro satellite markers. The cultivated yams separated into two distinct groups corresponding to the two species. D. rotundata genotypes showed relationship to the wild species D. abyssinica and D. praehensilis, whereas D. cayenensis

  16. Responsive Polymers for Crop Protection

    Directory of Open Access Journals (Sweden)

    Serban F. Peteu

    2010-08-01

    Full Text Available This review outlines the responsive polymer methods currently in use with their potential application to plant protection and puts forward plant-specific mechanisms as stimuli in newly devised methods for smart release of crop protection agents (CPAs. CPAs include chemicals (fungicides, insecticides, herbicides, biochemicals (antibiotics, RNA-based vaccines for plant viruses, semiochemicals (pheromones, repellents, allomones, microbial pesticides, growth regulators (insect and plant or micronutrients, all with crop protection effects. This appraisal focuses on emerging uses of polymer nano-encapsulated CPAs. Firstly, the most interesting advances in controlled release methods are critically discussed with their advantages and drawbacks. Secondly, several plant-specific stimuli-based smart methods are anticipated for use alongside the polymer nano- or micro-capsules. These new CPA release methods are designed to (i protect plants against infection produced by fungi or bacteria, and (ii apply micro-nutrients when the plants need it the most. Thus, we foresee (i the responsive release of nano- encapsulated bio-insecticides regulated by plant stress enzymes, and (ii the delivery of micro-nutrients synchronized by the nature or intensity of plant root exudates. Such continued advances of nano-scale smart polymer-based CPAs for the protection of crops herald a “small revolution” for the benefit of sustainable agriculture.

  17. DESEMPENHO VEGETATIVO E PRODUTIVO DE CULTIVARES DE MANDIOCA (Manihot esculenta Crantz A PARTIR DE MANIVAS COM DIFERENTES DIÂMETROS

    Directory of Open Access Journals (Sweden)

    G.M.S. CÂMARA

    1998-05-01

    Full Text Available Realizou-se esta pesquisa com a finalidade de se estudar a viabilidade da utilização de manivas com três diferentes diâmetros relacionados a três diferentes posições nas plantas de origem, avaliando-se seus efeitos na emergência, desenvolvimento e produção de três cultivares de mandioca (Manihot esculenta Crantz. A pesquisa no campo foi realizada em dois anos, durante o período compreendido entre 23/09/1980 e 23/07/1981 e entre 01/09/1981 e 20/07/1982, em Piracicaba, SP. Ramas maduras e sadias foram obtidas de plantas com cerca de 12 meses de idade, pertencentes aos cultivares Mantiqueira, Jaçanã e Pirassununga. Destas ramas, foram preparadas manivas com comprimento de 20 cm e diâmetros de 2,6 ± 0,2 cm, 2,0 ± 0,2 cm e 1,4 ± 0,2 cm, representando, respectivamente, manivas retiradas das hastes principais, ramificações primárias e ramificações secundárias das plantas de origem. O delineamento experimental foi um fatorial 3 x 3 em blocos casualizados com nove tratamentos e cinco repetições. Foram determinados a velocidade e porcentagem de emergência, número de raízes tuberosas por planta, massa da raiz e o rendimento de raízes. De acordo com os resultados obtidos pode-se concluir: 1 O vigor da muda de mandioca, expresso através dos diversos diâmetros da maniva, manifesta-se significativamente no estádio de emergência da cultura; 2 Manivas com 2,0 ± 0,2 cm ou 2,6 ± 0,2 cm de diâmetros, retiradas respectivamente das ramificações primárias e hastes principais, devem ser preferidas para maior velocidade e porcentagem de emergência; 3 Menor número de raízes tuberosas produzidas por planta é compensado pela maior massa individual da raiz; 4 Para a produção de raízes por área, é indiferente a utilização de manivas com diâmetro de 2,6 ± 0,2 cm, 2,0 ± 0,2 cm e 1,4 ± 0,2 cm; 5 Os três cultivares utilizados no experimento são de alto rendimento em raízes, destacando-se o cultivar Mantiqueira

  18. Fertilidad del suelo y calidad nutricional de estacas de yuca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    López F. Yamel

    1995-06-01

    Full Text Available A study was conducted on the changes in nutritional content of cassava stems as a result of different soil fertilization levels, and on the effect of the stakes obtained from these stems on the subsequent crop. Results showed that the mother plants had different height and vigor depending on the 9 different nutritional levels of fertilizer application to the soils where they were grown. Stems of each of the 9 treatments produced stakes with different weights. Both the concentration ami the N-P-K content varied considerably depending on the fertilization treatment. These two parameters were lower when the amount of nutrient applied to the soil was lower. Germination percentage was strongly influenced by the level of K application as well as by its balance with N and P. The lowest germination percentage was registered by the treatment that received no K, but which had received a high level of N and P, which caused an disequilibrium in absorption of the elements. Germination potential was not affected by having planted the stakes in soils with or without fertilizer application, since what is important for this process was the amount of nutritional reserves that the stakes already brought with them, Stakes coming from plots with the highest level of N-PK application became plants with greater production of foliage and stems that were apt to be used as vegetative seed. These stakes also resulted in plants with greater total rood yield and greater production of commercial size roots.

    Se estudió el cambio en el contenido nutricional de los tallos de yuca ocasionado por diferentes niveles de fertilización al suelo y el efecto de las estacas obtenidas de esos tallos sobre el cultivo subsiguiente. Los 9 niveles nutricionales del suelo incidieron en la altura y vigor de las plantas madres. Tanto la concentración como el contenido de N-P-K variaron notablemente según el nivel de fertilización utilizado, siendo más bajos entre más baja fuera la

  19. Pendugaan Masa Kadaluarsa Ubi Kayu (Manihot esculenta Crantz Instan pada Beberapa Bahan Kemasan

    Directory of Open Access Journals (Sweden)

    Pande Elza Fitriani

    2015-03-01

    Full Text Available The shelf life estimating of instant cassava were determined by analyzing the moisture sorption of it. The instant cassava was made into cube form with dimension of 0,5 cm x 0,5 cm x 0,5 cm and used as samples to analyzing the moisture sorption isotherm characteristic. Moisture sorption isotherms of it were determined at 28±2°C using standard gravimetric static method over a range of equilibrium relative humidity (ERH from 6.90%-97.90%. The experimental data were fitted by Henderson model and well predicted almost at each point of aw. The data of instant cassava’s moisture sorption isotherm followed type II behavior. The shelf life of it were calculated using Labuza equation with three different packaging materials: low density polyethylene (LDPE of 0.03 mm thickness, polypropylene (PP of 0.03 mm thickness and retort pouch. The shelf life of instant cassava using those three packaging materials were obtained for 103, 88 and 3502 days, respectively.

  20. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  1. Sistemas de preparo do solo, plantas de cobertura e produtividade da cultura da mandioca Soil tillage systems, cover crops and productivity in cassava

    Directory of Open Access Journals (Sweden)

    Auro Akio Otsubo

    2008-03-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos do uso de plantas de cobertura e de sistemas de preparo do solo, no desenvolvimento e na produtividade da cultura da mandioca (Manihot esculenta Crantz. O trabalho foi conduzido em Argissolo Vermelho, sob sistema convencional de preparo do solo, e em cultivo mínimo sobre palhada de mucuna-cinza (Stizolobium cinereum Piper & Tracy, sorgo granífero [Sorghum bicolor (L. Moench] e milheto [Pennisetum americanum (L. K. Schum.]. Aos dezoito meses após o plantio da mandioca, foram avaliados: altura de plantas, produção de massa de matéria seca da parte aérea, número de raízes tuberosas, produtividade, percentagem de matéria seca e de amido nas raízes tuberosas e índice de colheita. Observou-se que o sistema convencional de preparo do solo pode ser substituído, na cultura da mandioca, pela prática do cultivo mínimo, associada ao uso de coberturas vegetais, por promover incrementos significativos na produtividade da cultura, especialmente, quando se utiliza o milheto como planta de cobertura. O uso de plantas de cobertura no pré-cultivo de mandioca, em sistema de preparo mínimo do solo, representa uma alternativa eficiente para um melhor manejo dessa cultura.The objective of this work was to evaluate the effects of cover crops and soil tillage systems in the development and yield of cassava (Manihot esculenta Crantz. The experiment was carried out in an Arenic Hapludult under conventional tillage, and in a minimum tillage system over mucuna (Stizolobium cinereum Piper & Tracy, sorghum [Sorghum bicolor (L. Moench] and millet straw [Pennisetum americanum (L. K. Schum.]. Eighteen months after cassava planting, the following variables were evaluated: plant height, shoot dry matter production, number of roots, yield, dry matter and starch content on storage roots, and harvest index. It was observed that conventional tillage could be replaced by minimum tillage in cassava crop, when associated

  2. Impact of cash cropping and perennial crops on food crop ...

    African Journals Online (AJOL)

    significant effects on food crop production and productivity. ... 2 Department of Economics and Resource management, Norwegian University of Life Sciences, Norway ... food markets work well, the problem of imperfect markets does not allow ..... prices at the time of purchase with the remaining balance due at the end of the.

  3. Removal of Cu (II and Zn (II from water with natural adsorbents from cassava agroindustry residues

    Directory of Open Access Journals (Sweden)

    Daniel Schwantes

    2015-07-01

    Full Text Available Current study employs solid residues from the processing industry of the cassava (Manihot esculenta Crantz (bark, bagasse and bark + bagasse as natural adsorbents for the removal of metal ions Cu(II and Zn(II from contaminated water. The first stage comprised surface morphological characterization (SEM, determination of functional groups (IR, point of zero charge and the composition of naturally existent minerals in the biomass. Further, tests were carried out to evaluate the sorption process by kinetic, equilibrium and thermodynamic studies. The adsorbents showed a surface with favorable adsorption characteristics, with adsorption sites possibly derived from lignin, cellulose and hemicellulose. The dynamic equilibrium time for adsorption was 60 min. Results followed pseudo-second-order, Langmuir and Dubinin-Radushkevich models, suggesting a chemisorption monolayer. The thermodynamic parameters suggested that the biosorption process of Cu and Zn was endothermic, spontaneous or independent according to conditions. Results showed that the studied materials were potential biosorbents in the decontamination of water contaminated by Cu(II and Zn(II. Thus, the above practice complements the final stages of the cassava production chain of cassava, with a new disposal of solid residues from the cassava agroindustry activity.

  4. Gender in crop agriculture

    OpenAIRE

    Food and Agriculture Organization; The World Bank; IFAD

    2008-01-01

    Metadata only record This is a module in the "Gender in Agriculture Sourcebook" published by the World Bank, UN Food and Agriculture Organization, and International Fund for Agricultural Development. This module examines the role of gender in crop agriculture as an essential component of development and poverty reduction. Gender is an integral aspect of crop agriculture because women's roles in crop production and household subsistence, as well as their knowledge of complex production syst...

  5. Manihot esculenta Crantz

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... minimum light period of 12 h per day under day light, supplemented with 400 W Phillips ..... fragments, seen as weak signals. The cultivars showed ... DISCUSSION. The detection of Ty3/gypsy-like retrotransposons using.

  6. Manihot esculenta crantz

    African Journals Online (AJOL)

    Jane

    2010-10-11

    Oct 11, 2010 ... A lot of people around the world convert cassava roots into different products according to local customs and ... rature (-18°C) for future analyses. All reagents were of .... sourness of some cassava derivative product (placali,.

  7. Manihot esculenta Crantz

    African Journals Online (AJOL)

    Sukhumal_wha

    2015-02-23

    RT-qPCR) is a well- established method for the precise quantification of gene expression. For accurate relative real-time RT-. qPCR analysis, validation of the expression of an appropriate reference gene is required. In this ...

  8. Manihot esculenta Crantz

    African Journals Online (AJOL)

    Owner

    was measured by zone of inhibition between the fungal plug and bacterial ... were more effective to inhibit the growth of Aspergillus niger, A. fumigatus, ... activity. The zone of inhibition was more apparent in the novel ring method. ... Prepared Malt Extract Agar plates were inoculated separately with .... Enhanced plant.

  9. Manihot esculenta Crantz

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-18

    Aug 18, 2009 ... Full Length Research Paper. A simple and .... years its average worldwide productivity has remained at. 12 -13 t/ha ... culture technology to cassava seed producers. MATERIALS ..... promissory varieties or long term maintenance of germoplasm ... Joint FAO/IAEA Division of Nuclear Techniques in Food and.

  10. Manihot esculenta Crantz

    African Journals Online (AJOL)

    HTP), diamètre au collet (DCO), longueur du pétiole. (LPE), longueur du lobe central (LLC). Les modalités des variables ont été codifiées. Analyse statistique des données. La matrice des données morphologiques composées des moyennes des.

  11. Manihot esculenta Crantz

    African Journals Online (AJOL)

    shawgi ali

    2012-08-16

    Aug 16, 2012 ... germplasm maintenance and exchange of materials across borders. ... into culture bottles and sterilized by pressurized steam at a temperature of 121°C ..... Cali, Colombia: International Center for Tropical. Agriculture (CIAT).

  12. Manihot esculenta Crantz

    African Journals Online (AJOL)

    SAM

    2014-07-30

    Jul 30, 2014 ... xidase, hormones such as absiscic acid and pigments such as chlorophylls and ... increased activity of growth regulators such as absiscic acid and proteins, both ...... Response of cassava to water deficit, leaf area growth and ...

  13. Numerical simulation of cropping

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Hutchinson, John W.

    2014-01-01

    Cropping is a cutting process whereby opposing aligned blades create a shearing failure by exerting opposing forces normal to the surfaces of a metal sheet or plate. Building on recent efforts to quantify cropping, this paper formulates a plane strain elastic-plastic model of a plate subject to s...

  14. Applied Crop Protection 2017

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Nielsen, Bent Jørgen; Mathiassen, Solvejg Kopp

    Linket til højre henviser til rapporten i trykt format til download. This publication contains results from crop protection trials which were carried out at the Department of Agroecology within the area of gricultural crops. Most of the results come from field trials, but results from greenhouse...

  15. Applied Crop Protection 2017

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Nielsen, Bent Jørgen; Mathiassen, Solvejg Kopp

    Linket til højre henviser til rapporten i trykt format til download. This publication contains results from crop protection trials which were carried out at the Department of Agroecology within the area of gricultural crops. Most of the results come from field trials, but results from greenhouse ...

  16. Applied crop protection 2016

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Nielsen, Bent Jørgen; Jensen, Peter Kryger

    This publication contains results from crop protection trials which were carried out at the Department of Agroecology within the area of agricultural crops. Most of the results come from field trials, but results from greenhouse and semi-field trials are also included. The report contains results...

  17. Injury profile SIMulator, a Qualitative aggregative modelling framework to predict injury profile as a function of cropping practices, and abiotic and biotic environment. II. Proof of concept: design of IPSIM-wheat-eyespot.

    Science.gov (United States)

    Robin, Marie-Hélène; Colbach, Nathalie; Lucas, Philippe; Montfort, Françoise; Cholez, Célia; Debaeke, Philippe; Aubertot, Jean-Noël

    2013-01-01

    IPSIM (Injury Profile SIMulator) is a generic modelling framework presented in a companion paper. It aims at predicting a crop injury profile as a function of cropping practices and abiotic and biotic environment. IPSIM's modelling approach consists of designing a model with an aggregative hierarchical tree of attributes. In order to provide a proof of concept, a model, named IPSIM-Wheat-Eyespot, has been developed with the software DEXi according to the conceptual framework of IPSIM to represent final incidence of eyespot on wheat. This paper briefly presents the pathosystem, the method used to develop IPSIM-Wheat-Eyespot using IPSIM's modelling framework, simulation examples, an evaluation of the predictive quality of the model with a large dataset (526 observed site-years) and a discussion on the benefits and limitations of the approach. IPSIM-Wheat-Eyespot proved to successfully represent the annual variability of the disease, as well as the effects of cropping practices (Efficiency = 0.51, Root Mean Square Error of Prediction = 24%; bias = 5.0%). IPSIM-Wheat-Eyespot does not aim to precisely predict the incidence of eyespot on wheat. It rather aims to rank cropping systems with regard to the risk of eyespot on wheat in a given production situation through ex ante evaluations. IPSIM-Wheat-Eyespot can also help perform diagnoses of commercial fields. Its structure is simple and permits to combine available knowledge in the scientific literature (data, models) and expertise. IPSIM-Wheat-Eyespot is now available to help design cropping systems with a low risk of eyespot on wheat in a wide range of production situations, and can help perform diagnoses of commercial fields. In addition, it provides a proof of concept with regard to the modelling approach of IPSIM. IPSIM-Wheat-Eyespot will be a sub-model of IPSIM-Wheat, a model that will predict injury profile on wheat as a function of cropping practices and the production situation.

  18. Phytochemical Characterization of Veronica officinalis L., V. teucrium L. and V. orchidea Crantz from Romania and Their Antioxidant and Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Andrei Mocan

    2015-09-01

    Full Text Available Aerial parts of Veronica species are used in Romanian traditional medicine for the treatment of various conditions like kidney diseases, cough, and catarrh, and are known for their wound-healing properties. In the present study, the phenolic and sterolic content and the antioxidant and antimicrobial activities of three Veronica species (Plantaginaceae, V. officinalis L., V. teucrium L. and V. orchidea Crantz, were studied. The identification and quantification of several phenolic compounds and phytosterols were performed using LC/MS techniques and the main components were p-coumaric acid, ferulic acid, luteoline, hispidulin and β-sitosterol. More than that, hispidulin, eupatorin and eupatilin were detected for the first time in the Veronica genus. Nevertheless, representatives of the Veronica genus were never investigated in terms of their phytosterol content. The antioxidant potential investigated by Trolox equivelents antioxidant capacity (TEAC and EPR spectroscopy revealed that V. officinalis and V. orchidea extracts presented similar antioxidant capacities, whilst the values registered for V. teucrium extract are lower. Regarding the antimicrobial activity of the investigated species, Staphylococcus aureus, Listeria monocytogenes and Listeria ivanovii were the most sensitive strains with MIC values between 3.9 and 15.62 mg/mL. The results obtained by this study may serve to promote better use of representatives from the genus Veronica as antioxidant and antimicrobial agents.

  19. A novel biochar from Manihot esculenta Crantz waste: application for the removal of Malachite Green from wastewater and optimization of the adsorption process.

    Science.gov (United States)

    Beakou, Buscotin Horax; El Hassani, Kaoutar; Houssaini, Mohammed Amine; Belbahloul, Mounir; Oukani, Elhassan; Anouar, Abdellah

    2017-09-01

    The adsorptive removal of Malachite Green (MG) by a novel biochar namely Cassava Rind Carbon (CRC) was studied in a batch system. Moreover, Box-Behnken Response Surface Methodology was used to optimize operating conditions of the adsorption process. Characterization was done by Thermo Gravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infra-Red Spectroscopy (ATR/FTIR), Brunauer-Emmett-Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and pH zero charge point (pH ZCP ). The pseudo-second-order model and Langmuir model provided the best fit for kinetic and isotherm, respectively. The maximum capacity of dye adsorbed was 932.98 mg/g at 25 °C. The influence of temperature, the mass of adsorbent and the concentration of dye was studied. The optimal amount of adsorbed MG was 1,363.58 mg/g corresponding to 50 °C, 5 mg of CRC and 150 mg/L of dye. According to the high performance exhibited by CRC in this study, Manihot esculenta Crantz waste can be used as a better and low-cost biomass for wastewater decolourization.

  20. The effects of continuous cropping and fallowing on the chemical ...

    African Journals Online (AJOL)

    In this study, soil chemical properties were determined in a cleared forestland continuously grown to cassava (Manihot esculenta Crantz), pigeon pea (Cajanus cajan), maize (Zea mays) and their combination for seven years and from then was fallowed for ten years. Soil samples were also collected from the adjacent ...

  1. Evaluating Changes In Fertility Status Of An Alfisol Under Different Growth Stages Of Cassava Manihot Esculenta Crantz

    Directory of Open Access Journals (Sweden)

    B. Osundare

    2015-02-01

    Full Text Available Abstract Evaluating changes in soil nutrient status under different growth stages of cassava makes possible determination of the most critical stage in its vegetative growth phase when its demand for nutrients is highest. Determining the most critical stage in cassava vegetative growth phase when its nutrient demand is highest will enhance properly timed fertilizer application in such a way the application will coincide with the most critical stage in cassava vegetative phase when its demand for nutrients is highest. In view of this a two year field experiment was designed to assess changes in nutrient status of an Alfisol under different growth stages of cassava during 2010 and 2011 cropping seasons at the Teaching and Research Farm of the Ekiti State University Ado Ekiti Ekiti State Nigeria. The experiment was laid out in a randomized complete block design with three replicates. The different growth stages of cassava when changes in nutrient status of Alfisol were evaluated included 3 6 9 and 12 months after planting MAP. The results indicated existence of significant P 0.05 differences among the different growth stages of cassava as regards their effects on chemical properties of Alfisol. During 2010 cropping season the significant decreases in soil organic carbon SOC under growth stages of cassava were from 0.96 g kg-1 for ISNSPTC to 0.88 0.80 0.72 and0.64 g kg-1 for ages 3 6 9 and 12 MAP respectively. Similarly during 2011 cropping season the significant decreases in soil organic carbon SOC under growth stages of cassava were from 0.96 g kg-1 for ISNSPTC to 0.80 0.73 0.66 and0.58 g kg-1 for ages 3 6 9 and 12 MAP respectively. During 2010 cropping season the significant decreases in total N under growth stages of cassava were from 0.68 g kg-1 for ISNSPTC to 0.57 0.50 0.43 and0.35 g kg-1 for ages 3 6 9 and 12 MAP respectively. During 2011 cropping season the significant decreases in total N under growth stages of cassava were from 0.68 g kg-1

  2. African Crop Science Journal

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... The African Crop Science Journal, a quarterly publication, publishes original ... interactions, information science, environmental science and soil science.

  3. African Crop Science Journal

    African Journals Online (AJOL)

    African Crop Science Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 2 (1993) >. Log in or Register to get access to full text downloads.

  4. African Crop Science Journal

    African Journals Online (AJOL)

    African Crop Science Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 22 (2014) >. Log in or Register to get access to full text downloads.

  5. Nitrate Leaching From Grain Maize After Different Tillage Methods and Long/Short Term Cover Cropping

    DEFF Research Database (Denmark)

    Hansen, Elly Møller

    trial initiated in 1968 on a coarse sandy soil. The previous trial included spring sown crops undersown (with or without) perennial ryegrass (Lolium perenne L.) as cover crop, two N-rates (90 and 120 kg N ha-1) and different tillage methods (shallow tillage and ploughing autumn or spring). With maize......) previous history of long-term cover cropping, ii) soil tillage methods, iii) N rates and iv) present short-term use of cover cropping in maize. Preliminary results from 2009 – 2011 suggest that leaching after a history of cover cropping tended to be higher than after no history of cover cropping......, but the effect was insignificant. The effect of tillage and previous N rates were also insignificant but the present use of cover crops had a small but significant decreasing effect on leaching compared to no cover cropping. The cover crop was well established in both years but grew less vigorously during autumn...

  6. Radioactivity in food crops

    International Nuclear Information System (INIS)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for 137 Cs, 40 K, 90 Sr, 226 Ra, 228 Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for 241 Am, 7 Be, 60 Co, 55 Fe, 3 H, 131 I, 54 Mn, 95 Nb, 210 Pb, 210 Po, 106 Ru, 125 Sb, 228 Th, 232 Th, and 95 Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g -1 (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins

  7. Radioactivity in food crops

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  8. Glyphosate sustainability in South American cropping systems.

    Science.gov (United States)

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it. Copyright (c) 2008 Society of Chemical Industry.

  9. Crop Sequence Influences on Sustainable Spring Wheat Production in the Northern Great Plains

    Directory of Open Access Journals (Sweden)

    Joseph M. Krupinsky

    2010-11-01

    Full Text Available Cropping systems in American agriculture are highly successful since World War II, but have become highly specialized, standardized, and simplified to meet the demands of an industrialized food system. Minimal attention has been given to the efficient exploitation of crop diversity and the synergistic and/or antagonistic relationships of crops in crop sequences. Objectives of our research were to determine if previous crop sequences have long-term benefits and/or drawbacks on spring wheat seed yield, seed N concentration, and seed precipitation-use efficiency in the semiarid northern Great Plains, USA. Research was conducted 6 km southwest of Mandan, ND using a 10 × 10 crop matrix technique as a research tool to evaluate multiple crop sequence effects on spring wheat (triticum aestivum L. production in 2004 and 2005. Spring wheat production risks can be mitigated when second year crop residue was dry pea (Pisium sativum L. averaged over all first year crop residues. When compared to spring wheat as second year crop residue in the dry year of 2004, dry pea as the second year residue crop resulted in a 30% spring wheat seed yield increase. Sustainable cropping systems need to use precipitation efficiently for crop production, especially during below average precipitation years like 2004. Precipitation use efficiency average over all treatments, during the below average precipitation year was 23% greater than the above average precipitation year of 2005. Diversifying crops in cropping systems improves production efficiencies and resilience of agricultural systems.

  10. Grand challenges for crop science

    Science.gov (United States)

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  11. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  12. Environmental and societal consequences of a possible CO/sub 2/-induced climate change. Volume II, Part 8. Impacts of rising atmospheric carbon dioxide levels on agricultural growing seasons and crop water use efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J. E.

    1982-09-01

    The researchable areas addressed relate to the possible impacts of climate change on agricultural growing seasons and crop adaptation responses on a global basis. The research activities proposed are divided into the following two main areas of investigation: anticipated climate change impacts on the physical environmental characteristics of the agricultural growing seasons and, the most probable food crop responses to the possible changes in atmospheric CO/sub 2/ levels in plant environments. The main physical environmental impacts considered are the changes in temperature, or more directly, thermal energy levels and the growing season evapotranspiration-precipitation balances. The resulting food crop, commercial forest and rangeland species response impacts addressed relate to potential geographical shifts in agricultural growing seasons as determined by the length in days of the frost free period, thermal energy changes and water balance changes. In addition, the interaction of possible changes in plant water use efficiencies during the growing season in relationship to changing atmospheric CO/sub 2/ concentrations, is also considered under the scenario of global warming due to increases in atmospheric CO/sub 2/ concentration. These proposed research investigations are followed by adaptive response evaluations.

  13. Energy from field crops

    Energy Technology Data Exchange (ETDEWEB)

    Zubr, J.

    1990-04-15

    At the Research Station of Royal Veterinary and Agricultural University, Copenhagen, Denmark, investigation concerning cultivation and exploitation of field crops for production of fuels was carried out during the period 1986-1989. High yielding crops, such as sugar beet - BETA VULGARIS, jerusalem artichoke - HELIANTHUS TUBEROSUS, rhubarb - RHEUM RHAPONTICUM, and comfrey - SYMPHYTUM ASPERUM, were grown experimentally in the field. Different cultivation methods for the crops were used and evaluated. Simultaneously with the field experiment, laboratory investigation was carried out to determine the energy potential of different products and by-products from the crops processes, such as alcoholic and methanogenic fermantation. Production expenses for the crops were determined, and cost of the fuels was estimated. The experimental results show that beet is a superior crop for the climatic conditions of Northern Europe. In the season 1986, yields exceeded 20 t TS/ha in the form of roots and tops, where achieved. A combined exploitation of beet roots and tops via alcoholic and methanogenic fermantation gave a gross energy corresponding to 80 hl OE/ha/yr. Using methanogenic fermentation exclusively, from ensiled beet roots and tops, gross energy yield corresponding to 85 hl IE/ha/yr, was achieved. The cost of energy in the form of alcohol from beet roots was estimated to be 5.17 DKK/1 OE (0.64 ECU/l OE). The cost of energy in the form of methane from ensiled beet tops, was estimated to be 2.68 DKK/l OE (0.33 ECU/l OE). At the present time, methane produced on the basis of ensiled beet roots and tops appears to be competitive with fossil fuels. Irrespective of the cost, however, the possibility of producing clean energy from field crops remains of interest for the future. (author) 27 refs.

  14. Tropical rotation crops influence nematode densities and vegetable yields.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hochmuth, R C

    1994-09-01

    The effects of eight summer rotation crops on nematode densities and yields of subsequent spring vegetable crops were determined in field studies conducted in north Florida from 1991 to 1993. The crop sequence was as follows: (i) rotation crops during summer 1991; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) 'Lemondrop L' squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) 'Classic' eggplant (Solanum melongena) during spring 1993. The eight summer crop rotation treatments were as follows: 'Hale' castor (Ricinus communis), velvetbean (Mucuna deeringiana), sesame (Sesamum indicum), American jointvetch (Aeschynomene americana), weed fallow, 'SX- 17' sorghum-sudangrass (Sorghum bicolor x S. sudanense), 'Kirby' soybean (Glycine max), and 'Clemson Spineless' okra (Hibiscus esculentus) as a control. Rotations with castor, velvetbean, American jointvetch, and sorghum-sudangrass were most effective in maintaining the lowest population densities of Meloidogyne spp. (a mixture of M. incognita race 1 and M. arenaria race 1), but Paratrichodorus minor built up in the sorghum-sudangrass rotation. Yield of squash was lower (P crops evaluated here may be useful for managing nematodes in the field and for improving yields of subsequent vegetable crops.

  15. Cinética de adsorción de agua en purés deshidratados de mandioca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    María M. Brousse

    2012-01-01

    Full Text Available El puré deshidratado de mandioca es un producto obtenido a partir de la raíz de mandioca (Manihot esculenta Crantz, mediante un proceso tecnológico sobre raíces limpias y peladas. Será utilizado como tal o como materia prima para la producción de pastas alimenticias o mezclas para pastas. El conocimiento de las propiedades, fisicoquímicas y funcionales del puré deshidratado de mandioca y del producto reconstituido constituye información fundamental para poder analizar las actuales y futuras aplicaciones tecnológicas. En este trabajo se estudió la influencia de la temperatura sobre el proceso de rehidratación y el efecto del tamaño de partícula sobre la cinética adsorción de agua de purés deshidratados de dos variedades de mandioca, "Pomberi" y "Concepción". El efecto de la temperatura fue evaluado mediante los Índices de Adsorción de Agua a tres temperaturas (30, 40 y 50 ºC. La cinética de adsorción de agua fue estudiada con los modelos de Pilosof y Exponencial. El Índice de Adsorción de Agua aumentó con el incremento de la temperatura en los purés de las dos variedades de mandioca. Los modelos de Pilosof y Exponencial describieron adecuadamente la cinética de adsorción de agua. La velocidad de adsorción de agua fue mayor en el puré con las partículas de menor tamaño.

  16. Cinética de adsorción de agua en purés deshidratados de mandioca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    María M. Brousse

    2012-06-01

    Full Text Available El puré deshidratado de mandioca es un producto obtenido a partir de la raíz de mandioca (Manihot esculenta Crantz, mediante un proceso tecnológico sobre raíces limpias y peladas. Será utilizado como tal o como materia prima para la producción de pastas alimenticias o mezclas para pastas. El conocimiento de las propiedades, fisicoquímicas y funcionales del puré deshidratado de mandioca y del producto reconstituido constituye información fundamental para poder analizar las actuales y futuras aplicaciones tecnológicas. En este trabajo se estudió la influencia de la temperatura sobre el proceso de rehidratación y el efecto del tamaño de partícula sobre la cinética adsorción de agua de purés deshidratados de dos variedades de mandioca, ‘Pomberi’ y ‘Concepción’. El efecto de la temperatura fue evaluado mediante los Índices de Adsorción de Agua a tres temperaturas (30, 40 y 50 ºC. La cinética de adsorción de agua fue estudiada con los modelos de Pilosof y Exponencial. El Índice de Adsorción de Agua aumentó con el incremento de la temperatura en los purés de las dos variedades de mandioca. Los modelos de Pilosof y Exponencial describieron adecuadamente la cinética de adsorción de agua. La velocidad de adsorción de agua fue mayor en el puré con las partículas de menor tamaño.

  17. Antioxidant and Antiradical Activities of Manihot esculenta Crantz (Euphorbiaceae Leaves and Other Selected Tropical Green Vegetables Investigated on Lipoperoxidation and Phorbol-12-myristate-13-acetate (PMA Activated Monocytes

    Directory of Open Access Journals (Sweden)

    Ange Mouithys-Mickalad

    2011-09-01

    Full Text Available Abelmoschus esculentus (Malvaceae, Hibiscus acetosella (Malvaceae, Manihot esculenta Crantz (Euphorbiaceae and Pteridium aquilinum (Dennstaedtiaceae leaves are currently consumed as vegetables by migrants from sub-Saharan Africa living in Western Europe and by the people in the origin countries, where these plants are also used in the folk medicine. Manihot leaves are also eaten in Latin America and some Asian countries. This work investigated the capacity of aqueous extracts prepared from those vegetables to inhibit the peroxidation of a linoleic acid emulsion. Short chain, volatile C-compounds as markers of advanced lipid peroxidation were measured by gas chromatography by following the ethylene production. The generation of lipid hydroperoxides, was monitored by spectroscopy using N-N′-dimethyl-p-phenylene-diamine (DMPD. The formation of intermediate peroxyl, and other free radicals, at the initiation of the lipid peroxidation was investigated by electron spin resonance, using α-(4-pyridyl-1-oxide-N-tert-butylnitrone as spin trap agent. The ability of the extracts to decrease the cellular production of reactive oxygen species (ROS in “inflammation like” conditions was studied by fluorescence technique using 2′,7′-dichlorofluorescine-diacetate as fluorogenic probe, in a cell model of human monocytes (HL-60 cells activated with phorbol ester. Overall the extracts displayed efficient concentration-dependent inhibitory effects. Their total polyphenol and flavonoid content was determined by classic colorimetric methods. An HPLC-UV/DAD analysis has clearly identified the presence of some polyphenolic compounds, which explains at least partially the inhibitions observed in our models. The role of these plants in the folk medicine by sub-Saharan peoples as well as in the prevention of oxidative stress and ROS related diseases requires further consideration.

  18. Plant biotechnology: transgenic crops.

    Science.gov (United States)

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  19. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  20. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.

  1. Sustainable Agriculture: Cover Cropping

    Science.gov (United States)

    Webster, Megan

    2018-01-01

    Sustainable agriculture practices are increasingly being used by farmers to maintain soil quality, increase biodiversity, and promote production of food that is environmentally safe. There are several types of sustainable agriculture practices such as organic farming, crop rotation, and aquaculture. This lesson plan focuses on the sustainable…

  2. Transpiration and crop yields

    NARCIS (Netherlands)

    Wit, de C.T.

    1958-01-01

    Theoretical and practical aspects of the transpiration of crops in the field are discussed and he concludes that the relationship between transpiration and total dry matter production is much less affected by growing conditions than has been supposed. In semi-arid and arid regions, this relationship

  3. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  4. Future-proof crops

    NARCIS (Netherlands)

    Kissoudis, Christos; Wiel, van de Clemens; Visser, R.G.F.; Linden, van der Gerard

    2016-01-01

    Breeding for stress-resilient crops strongly depends on technological and biological advancements that have provided a wealth of information on genetic variants and their contribution to stress tolerance. In the context of the upcoming challenges for agriculture due to climate change, such as

  5. Mycorrhiza and crop production

    Energy Technology Data Exchange (ETDEWEB)

    Hayman, D S

    1980-10-09

    This article describes recent research with vesicular-arbuscular mycorrhiza, a symbiotic fungus-root association. The suggestion that the symbiotic association may be harnessed to achieve more economical use of phosphate fertilizers is discussed and the results from various test crops are given.

  6. Building crop models within different crop modelling frameworks

    NARCIS (Netherlands)

    Adam, M.Y.O.; Corbeels, M.; Leffelaar, P.A.; Keulen, van H.; Wery, J.; Ewert, F.

    2012-01-01

    Modular frameworks for crop modelling have evolved through simultaneous progress in crop science and software development but differences among these frameworks exist which are not well understood, resulting in potential misuse for crop modelling. In this paper we review differences and similarities

  7. The use of PCR techniques to detect genetic variations in Cassava (Manihot esculenta L. Crantz): minisatellite and RAPD analysis

    International Nuclear Information System (INIS)

    Pawlicki, N.; Sangwan, R.S.; Sangwan-Norreel, B.; Koffi Konan, N.

    1998-01-01

    Cassava is an important tuber crop grown in the tropical and subtropical regions. Recently, we developed protocols for efficient somatic embryogenesis using zygotic embryos and nodal axillary meristems in order to reduce the genotype effect. Thereafter flow cytophotometry and randomly amplified polymorphic DNA (RAPD) markers were used to assess the ploidy level and the genetic fidelity of cassava plants regenerated by somatic embryogenesis. No change in the ploidy level of the regenerated plants was observed in comparison with the control plants. In the same way, monomorphic profiles of RAPD were obtained for the different cassava plants regenerated by somatic embryogenesis. The genetic analysis of calli showed only a few differences. Using two pairs of heterologous micro satellite primers developed in a wild African grass, a monomorphic pattern was also detected. Moreover, cultivars of different origins were also analysed using these PCR techniques. Our data from RAPD and materialistic analyses suggested that these techniques can be efficiently used to detect genetic variations in cassava. (author)

  8. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives.

    Science.gov (United States)

    Fregene, M A; Vargas, J; Ikea, J; Angel, F; Tohme, J; Asiedu, R A; Akoroda, M O; Roca, W M

    1994-11-01

    Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.

  9. Crop responses to climatic variation

    DEFF Research Database (Denmark)

    Porter, John R.; Semenov, Mikhail A.

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop...... production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important...... for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal...

  10. Replacing fallow by cover crops: economic sustainability

    Science.gov (United States)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  11. Comparative morphology, biology and histology of reproductive development in three lines of Manihot esculenta Crantz (Euphorbiaceae: Crotonoideae).

    Science.gov (United States)

    Perera, P I P; Quintero, M; Dedicova, B; Kularatne, J D J S; Ceballos, H

    2013-01-01

    Cassava (Manihot esculenta), a major food staple in the tropics and subtropics, thrives even in environments undergoing threatening climate change. To satisfy the increasing demand for crop improvement and overcome the limitations of conventional breeding, the introduction of inbreeding techniques such as the production of doubled haploid lines via androgenesis or gynogenesis offers advantages. However, comprehensive studies on cassava flower bud biology or structural development are lacking and precise structural and biological information is a prerequisite to enhance the efficiency of these techniques. The floral biology of three selected cassava lines was studied, focusing on morphology, phenology and pollen biology (quantity, viability and dimorphism). Histological studies were also conducted on microsporogenesis/microgametogenesis and megasporogenesis/megagameto-genesis to generate precise developmental data for these lines. Male and female cyathia have distinct developmental phases. Pollen viability was high during immature stages of plant development; however, pollen mortality was common at later stages. Pollen trimorphism in male gametophytes towards the larger or smaller pollen size, as compared with normal size, was observed. Ten characteristic events were identified in male gametogenesis and six in female gametogenesis that were correlated with flower bud diameter. Male gametophyte diameter at different developmental stages was also determined. Results indicate that the three lines did not differ significantly, except regarding a few morphological aspects such as plant height, flower colour and number of male cyathia. Pollen grains were initially viable, but viability decreased drastically at later stages of growth. Abnormal meiosis or mitosis triggered pollen trimorphism. The demonstrated sequential events of reproductive development generated valuable information at the cellular level, which will help close the current information gap for cassava

  12. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  13. Radiation and crop improvement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    The present state of the research was reviewed and its results analyzed at an international scientific Symposium on the Effects of Ionizing Radiations on Seeds and their Significance for Crop Improvement held at Karlsruhe, Federal Republic of Germany, in 1960. The experts began a detailed examination of certain special aspects of the radiobiology of seeds. Some of the topics discussed related to the processes initiated in seeds as a result of irradiation. The influence of environmental factors, such as temperature, humidity and the presence or absence of oxygen, was also evaluated. Variations in the sensitivity to radiation were taken into consideration and ways of modifying the sensitivity were examined. Two sessions were devoted to a study of radiation- and chemically-induced chromosome breakage and reunion. The nature and mechanism of chromosome breakage and reunion area subject of basic importance in all radiobiological studies and naturally constituted one of the main topics of discussion at the Karlsruhe symposium. The symposium discussed the relevance of these basic scientific questions to crop improvement. Whether irradiation itself, without producing any hereditary changes, can stimulate crop yields is a matter of considerable interest. It has been found that in some cases the effect is stimulating, while in others it is inhibitive. A number of experiments were described and an attempt was made to deduce certain principles from the results obtained

  14. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt

    Science.gov (United States)

    Kříbek, B.; Majer, V.; Knésl, I.; Nyambe, I.; Mihaljevič, M.; Ettler, V.; Sracek, O.

    2014-11-01

    The concentrations of arsenic (As), copper (Cu), cobalt (Co), lead (Pb) and zinc (Zn) in washed leaves and washed and peeled tubers of cassava (Manihot esculenta Crantz, Euphorbiaceae) growing on uncontaminated and contaminated soils of the Zambian Copperbelt mining district have been analyzed. An enrichment index (EI) was used to distinguish between contaminated and uncontaminated areas. This index is based on the average ratio of the actual and median concentration of the given contaminants (As, Co, Cu, mercury (Hg), Pb and Zn) in topsoil. The concentrations of copper in cassava leaves growing on contaminated soils reach as much as 612 mg kg-1 Cu (total dry weight [dw]). Concentrations of copper in leaves of cassava growing on uncontaminated soils are much lower (up to 252 mg kg-1 Cu dw). The concentrations of Co (up to 78 mg kg-1 dw), As (up to 8 mg kg-1 dw) and Zn (up to 231 mg kg-1 dw) in leaves of cassava growing on contaminated soils are higher compared with uncontaminated areas, while the concentrations of lead do not differ significantly. The concentrations of analyzed chemical elements in the tubers of cassava are much lower than in its leaves with the exception of As. Even in strongly contaminated areas, the concentrations of copper in the leaves and tubers of cassava do not exceed the daily maximum tolerance limit of 0.5 mg kg-1/human body weight (HBW) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The highest tolerable weekly ingestion of 0.025 mg kg-1/HBW for lead and the highest tolerable weekly ingestion of 0.015 mg kg-1/HBW for arsenic are exceeded predominantly in the vicinity of smelters. Therefore, the preliminary assessment of dietary exposure to metals through the consumption of uncooked cassava leaves and tubers has been identified as a moderate hazard to human health. Nevertheless, as the surfaces of leaves are strongly contaminated by metalliferous dust in the polluted areas, there is still a potential hazard

  15. Protein concentrate obtainment from leaves and aerial part cassava (ManihotesculentaCrantzObtenção de concentrado protéico de folhas e parte aérea da mandioca (ManihotesculentaCrantz

    Directory of Open Access Journals (Sweden)

    Janaina Lima da Silva

    2012-12-01

    Full Text Available The aerial parts of cassava, constituted by leaves, stalk sand stems, are considered as agro-industrial waste, so, they are thrown away during roots crop. This material has content of protein, vitamin and mineral; therefore, it can be used as a dietary supplement for food industries. Thus, alternatives have come to extract protein from leaves and remove toxic agent sand anti-nutrients that make part of their composition. In this context, this study aimed at evaluating yield, mineral composition and functional properties of protein concentrates from leaves and aerial part of cassava. During the extraction of proteins, the following tested methods were:(1 isoelectric precipitation; (2 natural fermentation for five days; (3 fermentation for 48 hours and (4 fermentation for 48 hours, followed by pH adjustment. A 2 x 4 factorial design was used, the studied factors were the products (leaves and shoots and the method of protein extraction (four methods, with three replications. From the results, it was observed that Method1 provided the highest yields of protein concentrate and protein extraction for cassava leaves, however, there was no significant difference among the extraction methods for the aerial part of cassava. The values of Fe, Mn and Zn increased in protein concentrates obtained both in leaves and the aerial part of cassava, especially for Method 3. The capacities of absorbing water and oil from protein concentrates were considered high for the four studied methods, thus, indicating a good application in food products.As partes aéreas da mandioca, representadas pelas folhas, hastes e caules, constituem-se como resíduos agroindustriais por serem desperdiçadas na colheita das raízes. Esse material possui valor protéico, vitaminas e mineiras, propiciando sua utilização como suplemento alimentar nas indústrias alimentícias. Alternativas neste sentido surgem para extrair a proteína das folhas e eliminar os agentes tóxicos e

  16. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    -substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare......Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  17. A Decision Support System (GesCoN for Managing Fertigation in Vegetable Crops. Part II – Model calibration and validation under different environmental growing conditions on field grown tomato

    Directory of Open Access Journals (Sweden)

    Giulia eConversa

    2015-07-01

    Full Text Available The GesCoN model was evaluated for its capability to simulate growth, nitrogen uptake and productivity of open field tomato grown under different environmental and cultural conditions. Five datasets collected from experimental trials carried out in Foggia (IT were used for calibration and 13 datasets collected from trials conducted in Foggia, Perugia (IT and Florida (USA were used for validation. The goodness of fitting was performed by comparing the observed and simulated shoot dry weight (SDW and N crop uptake during crop seasons, total dry weight (TDW, N uptake and fresh yield (TFY. In SDW model calibration, the relative RMSE values fell within the good 10 to 15% range, percent BIAS (PBIAS ranged between -11.5% and 7.4%. The Nash-Sutcliffe efficiency (NSE was very close to the optimal value 1. In the N uptake calibration RRMSE and PBIAS were very low(7%, and -1.78, respectively and NSE close to 1. The validation of SDW (RRMSE=16.7%; NSE=0.96 and N uptake (RRMSE=16.8%; NSE=0.96 showed the good accuracy of GesCoN. A model under- or overestimation of the SDW and N uptake occurred when higher or a lower N rates and/or a more or less efficient system were used compared to the calibration trial. The in-season adjustment, using the SDWcheck procedure, greatly improved model simulations both in the calibration and in the validation phases. The TFY prediction was quite good except in Florida, where a large overestimation (+16% was linked to a different harvest index (0.53 compared the cultivars used for model calibration and validation in Italian areas. The soil water content at the 10-30 cm depth appears to be well simulated by the software, and the GesCoN proved to be able to adaptively control potential yield and DW accumulation under limited N soil availability scenarios and consequently to modify fertilizer application. The DSSwell simulate SDW accumulation and N uptake of different tomato genotypes grown under Mediterranean and subtropical

  18. Crop yield response to climate change varies with cropping intensity.

    Science.gov (United States)

    Challinor, Andrew J; Parkes, Ben; Ramirez-Villegas, Julian

    2015-04-01

    Projections of the response of crop yield to climate change at different spatial scales are known to vary. However, understanding of the causes of systematic differences across scale is limited. Here, we hypothesize that heterogeneous cropping intensity is one source of scale dependency. Analysis of observed global data and regional crop modelling demonstrate that areas of high vs. low cropping intensity can have systematically different yields, in both observations and simulations. Analysis of global crop data suggests that heterogeneity in cropping intensity is a likely source of scale dependency for a number of crops across the globe. Further crop modelling and a meta-analysis of projected tropical maize yields are used to assess the implications for climate change assessments. The results show that scale dependency is a potential source of systematic bias. We conclude that spatially comprehensive assessments of climate impacts based on yield alone, without accounting for cropping intensity, are prone to systematic overestimation of climate impacts. The findings therefore suggest a need for greater attention to crop suitability and land use change when assessing the impacts of climate change. © 2015 John Wiley & Sons Ltd.

  19. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  20. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  1. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  2. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  3. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  4. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Jiao, Xiurong

    2017-01-01

    rotation of annual crops (maize, beet, hemp/oat, triticale, winter rye and winter rapeseed), ii) perennial crops intensively fertilised (festulolium, reed canary, cocksfoot and tall fescue), low-fertilised (miscanthus) or unfertilised (grass-legume mixtures) and iii) traditional systems (continuous...

  5. Multiple pathways of commodity crop expansion in tropical forest landscapes

    Science.gov (United States)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  6. Multiple pathways of commodity crop expansion in tropical forest landscapes

    International Nuclear Information System (INIS)

    Meyfroidt, Patrick; Lambin, Eric F; Carlson, Kimberly M; Fagan, Matthew E; DeFries, Ruth S; Gutiérrez-Vélez, Victor H; Macedo, Marcia N; Curran, Lisa M; Dyer, George A; Gibbs, Holly K; Morton, Douglas C; Robiglio, Valentina

    2014-01-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  7. Integrated crop management: an approach to sustainable agricultural development.

    NARCIS (Netherlands)

    Meerman, F.; Ven, van de G.W.J.; Keulen, van H.; Breman, H.

    1996-01-01

    In developing countries, agriculture is being intensified to produce more food and agricultural products. In most agricultural development strategies, the order of priorities is on: (i) increasing yields, (ii) crop protection, and (iii) human health, environmental and social aspects. This sequential

  8. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  9. Tolérance de quelques cultivars de manioc (Manihot esculenta Crantz et de l'espèce sauvage (Manihot glaziovii à la mosaïque virale africaine et à la cercosporiose du manioc

    Directory of Open Access Journals (Sweden)

    Ongono, YSB.

    2007-01-01

    Full Text Available Tolerance of some Cassava Cultivars (Manihot esculenta Crantz and the Wild Species (M. Glaziovii to Cassava Mosaic Virus Disease and Brown Leaf Spot. A study of the tolerance of three cultivars of Manihot esculenta Crantz (one local cultivar, Alot-Bikon, and two improved: IITA 8034, IITA 8061 and wild cassava (M. glaziovii collected from the Mbam and Kim forest (Cameroon towards the cassava mosaic virus disease (CMVD and brown leaf spot (BLS, was carried out in Yaoundé. CMVD was studied under natural conditions, whereas BLS was inoculated through a solution of Cercospora henningsii in concentration around 20 × 10² conidia/ml. Sixteen weeks after planting the cuttings, M. glaziovii plants were tallest (156 cm, whereas highest number of leaves (113 was obtained on the IITA 8061 cultivar. The lowest infection degrees by CMVD (17.2% and BLS (2.7% were registered on the wild species. Consequently, wild species seem to be more tolerant of the diseases studied. IITA 8061 cultivar is moderately resistant to CMVD (28.9% and rather resistant to BLS (7.8%. Cultivars IITA 8034 and the local variety are more sensitive respectively to CMVD (53.1 and 54.5% and BLS (18.8 and 32.8%. The highest yield in tubers was obtained from cultivar IITA 8061 (34.5 t/ha followed by IITA 8034 (32.1 t/ha and local cultivar, Alot-Bbikon (15.6 t/ha. These results show that the tolerance of cassava cultivars to disease has a large influence on tuber yield.

  10. in crop plants

    Directory of Open Access Journals (Sweden)

    Jan Antoni Rafalski

    2017-05-01

    Full Text Available Most important crop productivity traits, such as yield under normal and environmental stress conditions, are determined by a large number of genes, each with a small phenotypic effect. Genetic improvement of these traits through breeding or genetic engineering has been frustrating researchers in academia and industry. The reasons for this include the complexity of the traits, the difficulty of precise phenotyping and the lack of validated candidate genes. Different approaches to the discovery of the genetic architecture of such traits, such as Genetic Association Mapping and Genomic Selection and their engineering, are expected to yield benefits for farmers and consumers.

  11. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.

  12. Management of crop residues for sustainable crop production. Results of a co-ordinated research project 1996-2001

    International Nuclear Information System (INIS)

    2003-05-01

    Since ancient times, farmers have recognized the importance of organic matter inputs to enhance crop yields. Organic matter contributes to plant growth through beneficial effects on the physical, chemical, and biological properties of the soil, including (i) provision of a carbon and energy source for soil microbes, (ii) improvement of soil aggregation, thus reducing the hazard of erosion, (iii) retaining of nutrients and water, (iv) provision of nutrients through decomposition, and (v) reduction of soil compaction. The amount of soil organic matter is controlled by the balance between additions of plant and animal materials and losses by decomposition. Both additions and losses are directly affected by management practices. This CRP supported national efforts in eleven Member States to identify options managing crop residues for sustainable agricultural production and environmental preservation in a wide range of soils and cropping systems. Various options for the recycling of crop residues that are sustainable and economically attractive to farmers were examined using isotopic techniques. The specific options of this CRP were: to increase the quantity of nutrients available to crops from organic sources and for more effective recycling of those nutrients; to enhance the efficiency of use of nutrients by crops, and minimize losses through improved synchrony between process-level understanding of carbon and nutrient flow through the use of isotopic techniques so that management recommendations can be extrapolated to a wide range of environments using models. A simple mathematical model, descriptive in nature, was developed to synthesize information collected from all experimental sites, allowing comparisons between treatments and sites. Most of the fertilizer N was lost during the first cropping season and only insignificant losses occurred in the following seasons. The losses of N from applied fertilizer ranged from 45 to 85% irrespective of crop

  13. Space Data for Crop Management

    Science.gov (United States)

    1990-01-01

    CROPIX, Inc., formed in 1984 by Frank Lamb, president of the Eastern Oregon Farming Company, monitors primarily potato crops in a 20,000 square mile area of northern Oregon and central Washington. Potatoes are a high value specialty crop that can be more profitable to the farmer if he has advance knowledge of market conditions, knows when to harvest, and when to take it to market. By processing and collecting data collected by the NASA-developed Landsat Earth Resources survey satellites, Lamb is able to provide accurate information on crop acreage and conditions on a more timely basis than the routine estimates by the USDA. CROPIX uses Landsat data to make acreage estimates of crops, and to calculate a field-by-field vegetative index number. CROPIX then distributes to its customers a booklet containing color-coded maps, an inventory of crops, plus data and graphs on crop conditions and other valuable information.

  14. Introduction of Alley Cropping

    Directory of Open Access Journals (Sweden)

    Sugeng Parmadi

    2004-01-01

    Full Text Available One of the efforts to preserve the sources of vegetarian, soil, and water is to rehabilitate the land and soil conservation. The aim of this rehabilitation is increasing and maintaining the produtivity of the land, so it can be preserved and used optimally. Therefore, it is necessary to a  develop a variety of good soil conservation, such as vegetative method and civil engineering. To find an appropriate technology, so it is necessary to develop some alternatives of soil conservation technique that are mainly implemented at dry land with its slope of more than 15% in the upstream area of discharge. One of the most suitable soil conservation technique today is Alley Cropping. Based on the research (trial and error in some areas, Alley Cropping could really provide a positive result in terms of erotion controlling and running off and maintain the land productivity. In addition, the technique is more easly operated and spends a cheaper cost than making a bench terrace.

  15. SALT TOLERANCE OF CROP PLANTS

    OpenAIRE

    Hamdia, M. A; Shaddad, M. A. K.

    2010-01-01

    Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different pla...

  16. Evaluation of Aqua crop Model to Predict Crop Water Productivity

    International Nuclear Information System (INIS)

    Mohd Noor Hidayat Adenan; Faiz Ahmad; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Khairuddin Abdul Rahim

    2015-01-01

    Water and nutrient are critical inputs for crop production, especially in meeting challenges from increasing fertilizer cost and irregular water availability associated with climate change. The Land and Water Division of Food and Agriculture Organization of the United Nations (FAO) has developed Aqua Crop, an integrated application software to simulate the interactions between plant, water and soil. Field management and irrigation management are the factors that need to be considered since it affects the interactions. Four critical components are needed in the Aqua Crop model, viz. climate, crop, field management and soil conditions. In our case study, climate data from rice field in Utan Aji, Kangar, Perlis was applied to run a simulation by using AquaCrop model. The rice crop was also assessed against deficit irrigation schedules and we found that use of water at optimum level increased rice yield. Results derived from the use of the model corresponded conventional assessment. This model can be adopted to help farmers in Malaysia in planning crop and field management to increase the crop productivity, especially in areas where the water is limited. (author)

  17. Performance of process-based models for simulation of grain N in crop rotations across Europe

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Kersebaum, KC; Kollas, C

    2017-01-01

    The accurate estimation of crop grain nitrogen (N; N in grain yield) is crucial for optimizing agricultural N management, especially in crop rotations. In the present study, 12 process-based models were applied to simulate the grain N of i) seven crops in rotations, ii) across various pedo...... (Brassica napus L.). These differences are linked to the intensity of parameterization with better parameterized crops showing lower prediction errors. The model performance was influenced by N fertilization and irrigation treatments, and a majority of the predictions were more accurate under low N...

  18. Biosolarization in garlic crop

    Science.gov (United States)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly

  19. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  20. Crop Protection in Medieval Agriculture

    NARCIS (Netherlands)

    Zadoks, J.C.

    2013-01-01

    Mediterranean and West European pre-modern agriculture (agriculture before 1600) was by necessity ‘organic agriculture’. Crop protection is part and parcel of this agriculture, with weed control in the forefront. Crop protection is embedded in the medieval agronomy text books but specialised

  1. Potential photosynthesis of crop surfaces.

    NARCIS (Netherlands)

    Wit, de C.T.

    1959-01-01

    A formula for calculating the potential photosynthesis of a closed crop surface is proposed, assuming that the leaves of the crop are not arranged in any definite direction. In the Netherlands, values for potential photosynthesis vary from 290 kg. CH2O/ha./day in June to 50 kg./ha./day in December.

  2. Cassava as an energy crop

    DEFF Research Database (Denmark)

    Kristensen, Søren Bech Pilgaard; Birch-Thomsen, Torben; Rasmussen, Kjeld

    2014-01-01

    of the Attieké cassava variety. Little competition with food crops is likely, as cassava most likely would replace cotton as primary cash crop, following the decline of cotton production since 2005 and hence food security concerns appear not to be an issue. Stated price levels to motivate an expansion of cassava...

  3. Climate Impacts of Cover Crops

    Science.gov (United States)

    Lombardozzi, D.; Wieder, W. R.; Bonan, G. B.; Morris, C. K.; Grandy, S.

    2016-12-01

    Cover crops are planted in agricultural rotation with the intention of protecting soil rather than harvest. Cover crops have numerous environmental benefits that include preventing soil erosion, increasing soil fertility, and providing weed and pest control- among others. In addition to localized environmental benefits, cover crops can have important regional or global biogeochemical impacts by increasing soil organic carbon, changing emissions of greenhouse trace gases like nitrous oxide and methane, and reducing hydrologic nitrogen losses. Cover crops may additionally affect climate by changing biogeophysical processes, like albedo and latent heat flux, though these potential changes have not yet been evaluated. Here we use the coupled Community Atmosphere Model (CAM5) - Community Land Model (CLM4.5) to test how planting cover crops in the United States may change biogeophysical fluxes and climate. We present seasonal changes in albedo, heat fluxes, evaporative partitioning, radiation, and the resulting changes in temperature. Preliminary analyses show that during seasons when cover crops are planted, latent heat flux increases and albedo decreases, changing the evaporative fraction and surface temperatures. Understanding both the biogeophysical changes caused by planting cover crops in this study and the biogeochemical changes found in other studies will give a clearer picture of the overall impacts of cover crops on climate and atmospheric chemistry, informing how this land use strategy will impact climate in the future.

  4. Chemical mutagenesis for crop improvement

    International Nuclear Information System (INIS)

    1986-01-01

    Focusses on methodological aspects for the efficient induction of mutations in crop plants by chemomutagens. Mutagen treatment of barley seeds with ethylmethane sulfonate (EMS) is documented in detail to exemplify procedural phases. Reference is made to safe handling and the prevention of biohazards. Induced biological and genetic effects at various plant generations are documented and the use of mutants for crop improvement is discussed

  5. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  6. Archives: African Crop Science Journal

    African Journals Online (AJOL)

    Items 1 - 50 of 99 ... Archives: African Crop Science Journal. Journal Home > Archives: African Crop Science Journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 50 of 99 ...

  7. Archives: African Crop Science Journal

    African Journals Online (AJOL)

    Items 51 - 99 of 99 ... Archives: African Crop Science Journal. Journal Home > Archives: African Crop Science Journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 51 - 99 of 99 ...

  8. Crop Condition Assessment with Adjusted NDVI Using the Uncropped Arable Land Ratio

    Directory of Open Access Journals (Sweden)

    Miao Zhang

    2014-06-01

    Full Text Available Crop condition assessment in the early growing stage is essential for crop monitoring and crop yield prediction. A normalized difference vegetation index (NDVI-based method is employed to evaluate crop condition by inter-annual comparisons of both spatial variability (using NDVI images and seasonal dynamics (based on crop condition profiles. Since this type of method will generate false information if there are changes in crop rotation, cropping area or crop phenology, information on cropped/uncropped arable land is integrated to improve the accuracy of crop condition monitoring. The study proposes a new method to retrieve adjusted NDVI for cropped arable land during the growing season of winter crops by integrating 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS reflectance data at 250-m resolution with a cropped and uncropped arable land map derived from the multi-temporal China Environmental Satellite (Huan Jing Satellite charge-coupled device (HJ-1 CCD images at 30-m resolution. Using the land map’s data on cropped and uncropped arable land, a pixel-based uncropped arable land ratio (UALR at 250-m resolution was generated. Next, the UALR-adjusted NDVI was produced by assuming that the MODIS reflectance value for each pixel is a linear mixed signal composed of the proportional reflectance of cropped and uncropped arable land. When UALR-adjusted NDVI data are used for crop condition assessment, results are expected to be more accurate, because: (i pixels with only uncropped arable land are not included in the assessment; and (ii the adjusted NDVI corrects for interannual variation in cropping area. On the provincial level, crop growing profiles based on the two kinds of NDVI data illustrate the difference between the regular and the adjusted NDVI, with the difference depending on the total area of uncropped arable land in the region. The results suggested that the proposed method can be used to improve the assessment of

  9. Biogas production from energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.

    2006-07-01

    The feasibility of utilising energy crops and crop residues in methane production through anaerobic digestion in boreal conditions was evaluated in this thesis. Potential boreal energy crops and crop residues were screened for their suitability for methane production, and the effects of harvest time and storage on the methane potential of crops was evaluated. Codigestion of energy crops and crop residues with cow manure, as well as digestion of energy crops alone in batch leach bed reactors with and without a second stage upflow anaerobic sludge blanket reactor (UASB) or methanogenic filter (MF) were evaluated. The methane potentials of crops, as determined in laboratory methane potential assays, varied from 0.17 to 0.49 m3 CH{sub 4} kg-1 VS{sub added} (volatile solids added) and from 25 to 260 m3 CH4 t-1 ww (tons of wet weight). Jerusalem artichoke, timothy-clover and reed canary grass gave the highest methane potentials of 2 900-5 400 m3 CH{sub 4} ha-1, corresponding to a gross energy potential of 28-53 MWh ha-1 and 40 000-60 000 km ha-1 in passenger car transport. The methane potentials per ww increased with most crops as the crops matured. Ensiling without additives resulted in minor losses (0-13%) in the methane potential of sugar beet tops but more substantial losses (17-39%) in the methane potential of grass, while ensiling with additives was shown to have potential in improving the methane potentials of these substrates by up to 19-22%. In semi-continuously fed laboratory continuously stirred tank reactors (CSTRs) co-digestion of manure and crops was shown feasible with feedstock VS containing up to 40% of crops. The highest specific methane yields of 0.268, 0.229 and 0.213 m3 CH{sub 4} kg-1 VS{sub added} in co-digestion of cow manure with grass, sugar beet tops and straw, respectively, were obtained with 30% of crop in the feedstock, corresponding to 85-105% of the methane potential in the substrates as determined by batch assays. Including 30% of crop in

  10. Stable Food Crops Turning Into Commercial Crops: Case studies of ...

    African Journals Online (AJOL)

    RahelYilma

    case study analyses for the cereal crops of teff3, wheat and rice. Specifically, the ... behavior of households during the process of commercial transformation of subsistence ..... roducer → rural assembler, and producer → consumer. As with teff ...

  11. Recycling crop residues for use in recirculating hydroponic crop production

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  12. Rotação de culturas no sistema plantio direto em Tibagi (PR: II - Emissões de CO2 e N2O Crop rotation under no-tillage in Tibagi (Paraná State, Brazil: II - CO2 and N2O emissions

    Directory of Open Access Journals (Sweden)

    Marcos Siqueira Neto

    2009-08-01

    Full Text Available A atividade agrícola pode alterar a quantidade e qualidade da matéria orgânica do solo (MOS, resultando em emissões de dióxido de carbono (CO2 e óxido nitroso (N2O do solo para a atmosfera. O sistema plantio direto (SPD com a utilização de leguminosas em sistemas de rotação é uma estratégia que deve ser considerada tanto para o aumento da quantidade de MOS como para seu efeito na redução das emissões dos gases de efeito estufa. Com o objetivo de determinar os fluxos de gases do efeito estufa (CO2 e N2O do solo, um experimento foi instalado em Tibagi (PR, em um Latossolo Vermelho distroférrico textura argilosa. Os tratamentos, dispostos em faixas não casualizadas com parcelas subdivididas, foram: sistema plantio direto por 12 anos com sucessões milho/trigo e soja/trigo (PD12 M/T e PD12 S/T, respectivamente e por 22 anos (PD22 M/T e PD22 S/T, respectivamente. As emissões de CO2 do solo foram aproximadamente 20 % mais elevadas no PD22 em relação ao PD12. As emissões de CO2 apresentaram correlação significativa (R² = 0,85; p The agricultural activity can change the quantity and quality of soil organic matter (SOM, resulting in CO2 and N2O emissions from the soil. No-tillage (NT with legume species in crop rotation is a strategy that should be considered not only to increase the SOM quantity, but also to reduce greenhouse gas emissions. The objective of this study was to determine the soil-atmosphere gas emissions with greenhouse effect (CO2 and N2O. For this purpose, an experiment was installed in Tibagi (Paraná State, Brazil, on a clayey Oxisol (Typic Hapludox. The treatments were conducted in non-random strips with subdivided plots: no-tillage crop successions corn/wheat and soybean/wheat (NT12 M/T and NT12 S/T, respectively for 12 years and no-tillage (NT22 M/T and NT22 S/T, respectively for 22 years. The CO2 soil emissions were nearly 20 % higher in NT22 than in NT12. The CO2 emissions were significantly correlated (R

  13. Toward cropping systems that enhance productivity and sustainability

    Science.gov (United States)

    Cook, R. James

    2006-01-01

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding. PMID:17130454

  14. African Crop Science Journal: Submissions

    African Journals Online (AJOL)

    Particular attention should be paid to the study factors/treatments and their structure, design, ... The African Crop Science Journal uses the Harvard citation style. Only published articles (journals and proceedings) or books may be cited.

  15. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...

  16. Crop diversity for yield increase.

    Directory of Open Access Journals (Sweden)

    Chengyun Li

    2009-11-01

    Full Text Available Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean--either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand.

  17. Consorciação de plantas de cobertura antecedendo o milho em plantio direto: II - Nitrogênio acumulado pelo milho e produtividade de grãos Cover crop mixtures preceding no-till corn: II - Nitrogen accumulation by corn and grain yield

    Directory of Open Access Journals (Sweden)

    S. J. Giacomini

    2004-08-01

    possível atingir uma produtividade de grãos de milho equivalente àquela da ervilhaca solteira e a 70 % daquela obtida com o uso de 180 kg ha-1 de N-uréia no pousio.No-tillage has been increasingly adopted by farmers in South Brazil and it has increased the interest for the mixtures of cover crops in the autumn/winter as source of nitrogen to the corn in succession. A field experiment was carried out on a typic Hapludalf at the experimental area of the Soil Science Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil, in 1998/99 and 1999/00 to evaluate the effect of single crop and mixtures of black oat (BO (Avena strigosa Schieb, common vetch (CV (Vicia sativa L. and oilseed radish (OR (Raphanus sativus L. var. oleiferus Metzg. on N accumulation and grain yield by corn. The experiment was set in a complete randomized block design with four replications. The treatments were: 100 % BO (80 kg ha-1 of seeds, 100 % CV (80 kg ha-1, 100 % OR (14 kg ha-1, 15 % BO + 85 % CV, 30 % BO + 70 % CV, 45 % BO + 55 % CV, 15 % BO + 85 % OR and 30 % BO + 70 % OR. Two additional plots under winter fallow were also used for comparison. Other control treatments were corn cultivated without N fertilizer in one plot and fertilized with 180 kg ha-1 of N-urea in another one. Corn grain yield, dry matter and total N concentration in corn biomass was evaluated at different crop stages. The amount of N accumulated by corn and the grain yield in succession of oat + vetch mixtures were not different from the single vetch, and were proportional to the N amount in the vetch biomass of the crop mixtures. Vetch and oilseed radish as single crop or in mixtures with black oat provided a higher corn grain yield than after fallow and single oat. Results of this study indicated that oat + vetch mixtures, up to a maximum proportion of 30 % of oat, attained a productivity of corn grain equivalent to the single vetch and 70 % of that obtained with the use of 180 kg ha-1

  18. Assessment of agro-ecological service crop managements combined with organic fertilisation strategies in organic melon crop

    Directory of Open Access Journals (Sweden)

    Mariangela Diacono

    2018-05-01

    Full Text Available In organic horticultural systems, cover crops could provide several ecological services, therefore, they can be defined agroecological service crops (ASCs. The objective of this two-year research was to study the suitability on melon production of different ASC termination strategies, in combination with organic fertilisers application. In a split-block design, the main-plot was the ASC management, comparing: i green manure, in which the vetch was chopped and plowed into the soil; and ii roller-crimper (RC, in which the vetch was flattened by a roller-crimper; with iii fallow control, without vetch. The subplot consisted of offfarm organic inputs: i commercial humified fertiliser; ii anaerobic digestate fertiliser; iii composted municipal solid wastes; which were compared to iv unfertilised control (N0. At vetch termination, above soil biomass and nitrogen (N content were determined. At harvesting, crop yield performance and quality, N status and N efficiency were investigated. Also, main soil characteristics were assessed at the end of the trial. Among the ASC managements, the slightly reduced yield in the RC plots particularly in combination with N0 might have been the result of less N supplied by the vetch during the melon cycle. Anyway, no negative effects were observed for yield quality. The use of the RC showed a great potential in enhancing soil fertility. Our study suggests the suitability in organic farming of properly matching management of ASC and fertilisation strategies on melon crop.

  19. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  20. Alternatives to crop residues for soil amendment

    OpenAIRE

    Powell, J.M.; Unger, P.W.

    1997-01-01

    Metadata only record In semiarid agroecosystems, crop residues can provide important benefits of soil and water conservation, nutrient cycling, and improved subsequent crop yields. However, there are frequently multiple competing uses for residues, including animal forage, fuel, and construction material. This chapter discusses the various uses of crop residues and examines alternative soil amendments when crop residues cannot be left on the soil.

  1. Crop rotation modelling - A European model intercomparison

    DEFF Research Database (Denmark)

    Kollas, Chris; Kersebaum, Kurt C; Nendel, Claas

    2015-01-01

    Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fiftee...

  2. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Directory of Open Access Journals (Sweden)

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  3. Evaluación de pretratamientos químicos para la hidrólisis enzimática de residuos lignocelulósicos de yuca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Lilibeth Niño López

    2013-01-01

    Full Text Available El efecto de diferentes pretratamientos químicos con ácido sulfúrico (H2SO4, hidróxido de sodio (NaOH y peróxido de hidrogeno (H2O2, fueron evaluados mediante la cuantificación de azucares reductores totales producidos durante la etapa de hidrólisis enzimática de los residuos lignocelulósicos de yuca (Manihot esculenta Crantz y el porcentaje (% de remoción de lignina después del pretratamiento. La cantidad de residuos utilizados (1 y 5% (w/v a diferentes tamaños de partícula (1,18 y 0,6mm fueron pretratados por separado (hojas y tallos con H2SO4, NaOH y H2O2 a diferentes concentraciones (1 y 5% (w/v. Los residuos vegetales fueron hidrolizados con la enzima accellerase 1500 a 50°C, pH 5 y 140 rpm. El pretratamiento con NaOH permite la mayor liberación de azucares reductores totales durante la hidrólisis enzimática (3,7g/L en hojas seguido del pretratamiento con H2SO4 (2,11g/L y H2O2 (1,54g/L. En tallos las concentraciones de azúcares son menores.

  4. Effects of Cassava (Manihot Esculenta Crantz Root Meal in Diets Containing Corn Dried Distillers Grains With Solubles on Production Performance, Egg Quality, and Excreta Noxious Gas Emission in Laying Hens

    Directory of Open Access Journals (Sweden)

    XJ Lei

    Full Text Available ABSTRACT This study was conducted to evaluate effects of cassava (Manihot esculenta Crantz root meal (CRM in laying hen diets containing corn dried distiller grains with soluble (DDGS on production performance, egg quality, and excreta noxious gas emission. Two hundred and forty Hy-Line brown laying hens (40 weeks of age were randomly divided into 1 of 4 dietary treatments (10 replications with 6 hens per replication for 6 weeks. The dietary treatments were as follows: 1 corn-based diet (CON; 2 diet containing 10% CRM and 8% DDGS (CRM10; 3 diet containing 20% CRM and 8% DDGS (CRM20; 4 diet containing 30% CRM and 8% DDGS (CRM30. The inclusion of 30% CRM in the diet containing 8% DDGS significantly decreased (p0.05 the egg quality with the exception of decreased (p<0.05 egg yolk color when 30% of CRM was included in laying hens diet. CRM20 and CRM30 dietary treatments tended to decrease ammonia emission compared with CON dietary treatment (p=0.08. In conclusion, the results of the current study demonstrated that CRM may be incorporated to a concentration of 20% in laying hen diets containing 8% DDGS without detrimental effects on production performance and egg quality. Furthermore, the addition of 20% and 30% CRM in laying hen diets containing 8% DDGS tended to reduce the excreta ammonia emission.

  5. 77 FR 22467 - Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions

    Science.gov (United States)

    2012-04-16

    ...-0006] RIN 0563-AC32 Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop... Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Fresh Market Tomato (Dollar... Common Crop Insurance Regulations (7 CFR part 457), Fresh Market Tomato (Dollar Plan) Crop Provisions...

  6. 76 FR 71276 - Common Crop Insurance Regulations; Pecan Revenue Crop Insurance Provisions

    Science.gov (United States)

    2011-11-17

    ...-0008] RIN 0563-AC35 Common Crop Insurance Regulations; Pecan Revenue Crop Insurance Provisions AGENCY... Corporation (FCIC) proposes to amend the Common Crop Insurance Regulations, Pecan Revenue Crop Insurance... Regulations (7 CFR part 457) by revising Sec. 457.167 Pecan Revenue Crop Insurance Provisions, to be effective...

  7. 75 FR 15603 - Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions

    Science.gov (United States)

    2010-03-30

    ... to: (1) Theft; or (2) Inability to market the avocados for any reason other than actual physical... Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions AGENCY: Federal Crop Insurance... Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions to convert the Florida...

  8. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.

  9. Fermentation and nutritive value of silage and hay made from the aerial part of cassava (Manihot esculenta Crantz Padrão de fermentação e valor nutritivo das silagens e do feno da parte aérea de mandioca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Eduardo Zambello de Pinho

    2004-01-01

    Full Text Available Cassava (Manihot esculenta Crantz, although native to Brazil, is still underutilized, especially when it comes to using its aerial part. In order to study the potential of the cassava plant for use as animal feed, the present work evaluated the characteristics of the aerial part of cassava when submitted to the processes of ensiling and haymaking. Treatments consisted of: aerial part of the plant ensiled without wilting (PAS; aerial part ensiled after wilting (PAE, and aerial part made into hay (PAF. Chemical analyses were run in order to evaluate the traits that determine the nutritional value of silage and hay. Wilting increased dry matter concentration from 25% to 27.7%, without changing the concentration of soluble carbohydrates (33.3 and 35.5% in the PAS and PAE, respectively, as well as buffer capacity (204 mmol kg-1 DM in PAS and 195 mmol kg-1 DM in PAE. Neither pH (3.57 in fresh silage and 3.60 in PAE nor the ADIN concentration (11.32% of total nitrogen in PAS and 9.99% of total nitrogen in PAE differed between the silages, but ADIN concentration was higher in hay (15.39%. Wilting caused an increase in the concentration of ammonia (from 6.5% of total nitrogen in PAS to 13.0 of total nitrogen in PAE. The levels of volatile fatty acids did not change with wilting. The ensiling process reduced the concentrations of free hydrocyanide (HCN, without, however, affecting cyanohydrin.A mandioca, apesar de ser nativa do Brasil, ainda é sub-utilizada principalmente quando a questão é o aproveitamento da sua parte aérea. Com o objetivo de estudar o potencial da mandioca para alimentação animal, o presente trabalho avaliou as características da parte aérea da planta quando submetida os processos de ensilagem e fenação. Os tratamentos consistiram de: parte aérea ensilada sem emurchecimento (PAS; parte aérea ensilada após 24 horas de emurchecimento (PAE e parte aérea fenada (PAF. As análises químicas foram realizadas a fim de avaliar os

  10. Faba bean in cropping systems

    DEFF Research Database (Denmark)

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    The grain legume (pulse) faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. At the same time faba bean offers ecosystem services such as renewable inputs of nitrogen (N) into crops and soil via biological N2 fixation, and a diversification of cropping systems. Even...... though the global average grain yield has almost doubled during the past 50 years the total area sown to faba beans has declined by 56% over the same period. The season-to-season fluctuations in grain yield of faba bean and the progressive replacement of traditional farming systems, which utilized...... legumes to provide N to maintain soil N fertility, with industrialized, largely cereal-based systems that are heavily reliant upon fossil fuels (=N fertilizers, heavy mechanization) are some of the explanations for this decline in importance. Past studies of faba bean in cropping systems have tended...

  11. Automated phenotyping of permanent crops

    Science.gov (United States)

    McPeek, K. Thomas; Steddom, Karl; Zamudio, Joseph; Pant, Paras; Mullenbach, Tyler

    2017-05-01

    AGERpoint is defining a new technology space for the growers' industry by introducing novel applications for sensor technology and data analysis to growers of permanent crops. Serving data to a state-of-the-art analytics engine from a cutting edge sensor platform, a new paradigm in precision agriculture is being developed that allows growers to understand the unique needs of each tree, bush or vine in their operation. Autonomous aerial and terrestrial vehicles equipped with multiple varieties of remote sensing technologies give AGERpoint the ability to measure key morphological and spectral features of permanent crops. This work demonstrates how such phenotypic measurements combined with machine learning algorithms can be used to determine the variety of crops (e.g., almond and pecan trees). This phenotypic and varietal information represents the first step in enabling growers with the ability to tailor their management practices to individual plants and maximize their economic productivity.

  12. Helping to increase tree crops

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    Tree crops such as coffee, coconuts, palm oil, citrus fruits and cocoa are of major importance to the economies of countries in Africa, Asia and Latin America, and may be a prime source of foreign exchange earnings. The search for ways to improve efficiently the yields of crops like these - now being aided by the Division of Atomic Energy in Food and Agriculture operated jointly with the Food and Agriculture Organization - thus has a clearly defined practical goal. D. Nethsinghe deals here with some of the work. (author)

  13. Helping to increase tree crops

    International Nuclear Information System (INIS)

    1970-01-01

    Tree crops such as coffee, coconuts, palm oil, citrus fruits and cocoa are of major importance to the economies of countries in Africa, Asia and Latin America, and may be a prime source of foreign exchange earnings. The search for ways to improve efficiently the yields of crops like these - now being aided by the Division of Atomic Energy in Food and Agriculture operated jointly with the Food and Agriculture Organization - thus has a clearly defined practical goal. D. Nethsinghe deals here with some of the work. (author)

  14. Ammonia volatilization from crop residues and frozen green manure crops

    NARCIS (Netherlands)

    Ruijter, de F.J.; Huijsmans, J.F.M.; Rutgers, B.

    2010-01-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues

  15. Compositions comprising lignosulfonates for crop protection and crop improvement

    NARCIS (Netherlands)

    Stevens, L.H.; Kok, C.J.; Krieken, van der W.M.

    2009-01-01

    International patent application number: WO2004067699http://www.wipo.int/patentscope/search/en/WO2004067699 (EN)The invention relates to a composition for protecting an agricultural crop against external threats, such as weeds, pathogens, abiotic and biotic stresses and/or for improving the quality

  16. Progress update: crop development of biofortified staple food crops ...

    African Journals Online (AJOL)

    Over the past 15 years, biofortification, the process of breeding nutrients into food crops, has gained ample recognition as a cost-effective, complementary, feasible means of delivering micronutrients to populations that may have limited access to diverse diets, supplements, or commercially fortified foods. In 2008, a panel of ...

  17. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...

  18. Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited

    International Nuclear Information System (INIS)

    Swinton, Scott M.; Babcock, Bruce A.; James, Laura K.; Bandaru, Varaprasad

    2011-01-01

    By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. - Highlights: → Biofuel crops on cropland can displace food crops, reducing food supply and triggering indirect land use. → Growing biofuel crops on non-crop marginal land avoids these problems. → But US farmers expanded cropland by only 2% when crop profitability jumped 64% during 2006-09. → So medium-term availability of marginal lands for biofuel crops is limited and costly.

  19. Copper (II)

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Valine (2 - amino - 3 – methylbutanoic acid), is a chemical compound containing .... Stability constant (Kf). Gibb's free energy. ) (. 1. −. ∆. Mol. JG. [CuL2(H2O)2] ... synthesis and characterization of Co(ii), Ni(ii), Cu (II), and Zn(ii) complexes with ...

  20. Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents

    Science.gov (United States)

    Paksamut, J.; Boonsong, P.

    2018-03-01

    In this study, the purpose of our interest is to investigatethe adsorption behavior of copper (II) ions in aqueous solution using some tannin-rich plants as natural bio-adsorbents such as mangosteen peels (Garciniamangostana L.), cassava leaves (Manihotesculenta Crantz) and Thai copper pod leaves (Sennasiamea (Lam.)) as powder form in different dosage of adsorbent plant materials.The adsorption capacities at different pH of solution and contact time were performed.All the experiments in this studywere chosen at room temperature by batch technique. From the experimental results showed that cassava leaves gave better adsorbent properties than mangosteen peels and Thai copper pod leaves. The increasing dosage of all adsorbents and contact time have been found to increase adsorption capacities. In this respect, the adsorption capacities depend crucially on the adsorbents and contact time. The optimum pH of copper (II) ions adsorption was pH4. According to this work, it was observed that bioadsorbent materials from tannin-rich plants could be used to remove copper (II) ions from aqueous solutions.

  1. Nitrogen research for perennial crops

    International Nuclear Information System (INIS)

    Bowen, G.D.; Danso, S.K.A.

    1987-01-01

    The article describes the role of trees in restoring and maintaining soil fertility. Cropping systems that include trees can provide the ecological framework within which food, fuelwood, and fibre production can be intergrated. The IAEA has been actively involved in studies on nitrogen-fixing pasture legumes and is ready to embark on similar studies of trees. 1 tab

  2. Energy crops - where are they?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, Jim [CPL Scientific Ltd., Newbury (United Kingdom)

    1999-07-01

    The author examines briefly the factors controlling the growth of energy crops, particularly the relationship between dry matter yield and fuel costs and conversion efficiency and electricity price. The EU target is for 135 Mtoe from biomass by 2010 and consideration is given on how this can be met.

  3. Cover Crops in Hillside Agriculture

    International Development Research Centre (IDRC) Digital Library (Canada)

    Our study focuses on the wet tropical hillsides of northern Honduras (Figure 1). ..... The eastern extreme of the region (Jutiapa) is a dry spot, with less rainfall (2 000 mm a-1) as a result ...... Paper presented at the International Workshop on Green Manure–Cover Crops for Smallholders in ..... Lamaster, J.P.; Jones, I.R. 1923.

  4. Vegetable Crop Pests. MEP 311.

    Science.gov (United States)

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  5. Fruit Crop Pests. MEP 312.

    Science.gov (United States)

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…

  6. Economic impact of GM crops

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520

  7. Botrytis species on bulb crops

    NARCIS (Netherlands)

    Lorbeer, J.W.; Seyb, A.M.; Boer, de M.; Ende, van den J.E.

    2007-01-01

    Abstract. A number of Botrytis species are pathogens of bulb crops. Botrytis squamosa (teleomorph=Botrytotinia squamosa) causal agent of botrytis leaf blight and B. allii the causal agent of botrytis neck rotare two of the most important fungal diseases of onion. The taxonomics of several of the

  8. Water, heat and crop growth

    NARCIS (Netherlands)

    Feddes, R.A.

    1971-01-01

    To a large extent the results of a farmer's efforts to get higher crop yields will be determined by the prevailing environmental conditions, i.e. by the existing complex of physical, chemical and biological factors. The possibilities of an efficient use of these factors are enlarged by our

  9. WEED INTERFERENCE IN EGGPLANT CROPS

    Directory of Open Access Journals (Sweden)

    LUIZ JUNIOR PEREIRA MARQUES

    2017-01-01

    Full Text Available Uncontrolled weed growth interferes with the growth eggplants and crop yields. To control weeds, the main weed species must be identified in crop growing areas and during weed control periods, as weed species might vary in relation to management practices. Therefore, this study aimed to identify the main weed species and determine the periods of weed interference in the eggplant cultivar Nápoli when grown under certain cultural practices, including plant staking and sprout thinning. The experiment was carried out in 2014 using a randomized complete block design, with 3 replications. The treatments consisted of 11 periods of (1 increasing weed control and (2 increasing coexistence of eggplant with weeds from the first day of transplanting (0-14, 0-28, 0-42, 0-56, 0-70, 0-84, 0-98, 0-112, 0-126, 0-140, and up do day 154. Eggplant staking and sprout thinning were performed 42 days after transplanting (DAT. Weed identification and crop yield assessments were performed to determine the Period Before Interference (PBI, Total Period of Interference Prevention (TPIP, and the Critical Period of Interference Prevention (CPIP. The major weeds found in the eggplant cultivar Nápoli were Eleusine indica, Portulaca oleracea, and Cyperus rotundus. Coexistence between the weed community and the eggplant throughout the entire crop production cycle reduced eggplant fruit yield by 78%. The PBI was 29 DAT and the TPIP was 48 DAT, resulting in 19 days of CPIP.

  10. Seleção e hierarquização de parâmetros de qualidade de água para culturas irrigadas com o uso do Electre I e II The selection and the hierarchical classification of water quality parameters for irrigated crops through a Electre I and II

    Directory of Open Access Journals (Sweden)

    Silmara Eloisa Dotto

    1996-01-01

    Full Text Available Em planejamento de áreas que fazem uso de irrigação, discutem-se, comumente, parâmetros de qualidade de água, objetivando evitar ou minimizar impactos desfavoráveis sobre a produção de culturas e a saúde da população. Este trabalho contribui na seleção e classificação, em ordem de importância, de parâmetros de qualidade que estejam envolvidos com o processo de irrigação. Assim, são hierarquizados, por meio do método multicriterial Electre I e II, seis parâmetros: coliforme fecal (CF; potencial hidrogeniônico (pH; demanda bioquímica de oxigênio (DBO; cloreto (Cl; nitrogênio total (Nt e condutividade elétrica (CE, em função de nove culturas irrigadas: tomate, batata, feijão, laranja, morango, pêssego, alface, cenoura e beterraba. Adotou-se como área de estudo a bacia hidrográfica do rio Piracicaba (SP. Os resultados mostram que, para essa região, os parâmetros de maior preferência são CF e CE e, o de menor preferência, DBO.Developmental plans in the areas that make use of irrigation, discuss, commonly, water quality parameters with the objective of eliminating or minimizing unfavorable impacts on agriculture and on public health. Using this as a focus point, this paper contributes to the selection and classification of quality parameters that are envolved with the irrigation process, by importance order. Thus, six parameters (fecal coliform, hydrogenionical potential, biochemical demand of oxygen, cloride, total nitrogen, and electrical conductivity are hierarquisated using the multicriterial methods Electre I and II related to nine irrigated cultures (tomatoes, potatoes, beans, oranges, strawberries, peaches, lettuce, carrots and beets. The study area is the Piracicaba river basin, Sao Paulo State, Brazil. The results demonstrate that, for this region, the parameters with the highest preference are the fecal coliform and the electrical conductivity and the least preference is the biochemical demand of oxygen.

  11. Size asymmetry in intraspecific competition and the density-dependence of inbreeding depression in a natural plant population: a case study in cassava (Manihot esculenta Crantz, Euphorbiaceae).

    Science.gov (United States)

    Pujol, B; McKey, D

    2006-01-01

    The effects of competition on the genetic composition of natural populations are not well understood. We combined demography and molecular genetics to study how intraspecific competition affects microevolution in cohorts of volunteer plants of cassava (Manihot esculenta) originating from seeds in slash-and-burn fields of Palikur Amerindians in French Guiana. In this clonally propagated crop, genotypic diversity is enhanced by the incorporation of volunteer plants into farmers' stocks of clonal propagules. Mortality of volunteer plants was density-dependent. Furthermore, the size asymmetry of intraspecific competition increased with local clustering of plants. Size of plants was correlated with their multilocus heterozygosity, and stronger size-dependence of survival in clusters of plants, compared with solitary plants, increased the magnitude of inbreeding depression when competition was severe. The density-dependence of inbreeding depression of volunteer plants helps explain the high heterozygosity of volunteers that survive to harvest time and thus become candidates for clonal propagation. This effect could help favour the maintenance of sex in this 'vegetatively' propagated crop plant.

  12. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology

    NARCIS (Netherlands)

    Yin, X.; Struik, P.C.

    2015-01-01

    A new simple framework was proposed to quantify the efficiency of converting incoming solar radiation into phytoenergy in annual crops. It emphasizes the need to account for (i) efficiency gain when scaling up from the leaf level to the canopy level, and (ii) efficiency loss due to incomplete canopy

  13. AN APPROACH TO TRANSGENIC CROP MONITORING

    Science.gov (United States)

    Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal crop distribution in the landscape. Genetically engineered crops containing bacterial gene(s) that express an insecticidal protein from Bacillus thuringiensis (Bt) are regulated...

  14. Nutritionally Enhanced Food Crops; Progress and Perspectives

    Directory of Open Access Journals (Sweden)

    Kathleen L. Hefferon

    2015-02-01

    Full Text Available Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world’s poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops.

  15. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,PhD,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by the Editorial Board of 85 international experts from various fields of crop sciences.

  16. Marketing biofortified crops: insights from consumer research ...

    African Journals Online (AJOL)

    Marketing biofortified crops: insights from consumer research. ... To develop a global strategy for consumer marketing of biofortified crops, research is needed to understand consumer ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  17. Crop diversity prevents serious weed problems

    DEFF Research Database (Denmark)

    Melander, Bo

    2016-01-01

    Weed management in organic crop production could benefit from more diversification of today’s cropping systems. However, the potential of diversification needs better documentation and solid suggestions for employment in practise must be identified.......Weed management in organic crop production could benefit from more diversification of today’s cropping systems. However, the potential of diversification needs better documentation and solid suggestions for employment in practise must be identified....

  18. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.

  19. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.

  20. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief

  1. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief of

  2. 7th International Crop Science Congress Announcement

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    August 14–19,2016 Beijing,China Crop Science—Innovation and SustainabilityInternational Crop Science Congress(ICSC)is a regular forum for crop scientists from around the world to integrate current knowledge into a global context and international applications.The Congress is organized about every four years beginning in July,1992.The International Crop Science Society has primary oversight for general

  3. Looking forward to genetically edited fruit crops.

    Science.gov (United States)

    Nagamangala Kanchiswamy, Chidananda; Sargent, Daniel James; Velasco, Riccardo; Maffei, Massimo E; Malnoy, Mickael

    2015-02-01

    The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Crop succession requirements in agricultural production planning

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; Stegeman, A.

    2005-01-01

    A method is proposed to write crop succession requirements as linear constraints in an LP-based model for agricultural production planning. Crop succession information is given in the form of a set of inadmissible successions of crops. The decision variables represent the areas where a certain

  5. Perceptions of Crop Science Instructional Materials.

    Science.gov (United States)

    Elkins, D. M.

    1994-01-01

    A number of crop science instructors have indicated that there is a shortage of quality, current crop/plant science teaching materials, particularly textbooks. A survey instrument was developed to solicit information from teachers about the use and adequacy of textbooks, laboratory manuals, and videotapes in crop/plant science instruction. (LZ)

  6. Zonificación agroecológica y estimación del rendimiento potencial del cultivo de la yuca (Manihot esculenta Crantz en el estado de Tabasco, México

    Directory of Open Access Journals (Sweden)

    B. Rivera-Hernández

    2012-01-01

    Full Text Available El estado de Tabasco es el principal productor de yuca (Manihote esculenta Crantz en México, mismo que ha perdido en los últimos cinco años cerca del 45% de la superficie dedicada a este cultivo. Razón por la cual, las políticas actuales de desarrollo rural se enfocan a dirigir todo tipo de apoyos, especialmente los económicos, hacia las áreas con mayor potencial productivo para diferentes cultivos, entre ellos, la yuca. Derivado de esta política y del interés del gobierno del estado de Tabasco, se realizó el presente estudio, con los objetivos de conocer las áreas con mayor potencial productivo en el estado y estimar el rendimiento potencial esperado del cultivo de la yuca. Para ello, se utilizó el procedimiento de zonificación agro-ecológica (zae propuesto por la Fao para áreas muy aptas y para una situación de alta inversión en condiciones de agricultura de temporal. Se analizaron cuatro variables climáticas y seis propiedades edafológicas. El análisis de las variables climáticas y edafológicas (físicas y químicas y su posterior representación cartográfica mostraron que en el estado de Tabasco existen 476,617 hectáreas con alto potencial edafoclimático para cultivar yuca, con rendimientos potenciales de 42.3 t ha-1.

  7. Cinética de secado de la yuca (Manihot esculenta Crantz variedad CORPOICA M-tai en función de la temperatura y de la velocidad de aire

    Directory of Open Access Journals (Sweden)

    Jairo Salcedo Mendoza

    2014-12-01

    Full Text Available El secado de yuca (Manihot esculenta Crantz variedad CORPOICA M-tai, fue realizado en un secador de bandejas a escala de laboratorio. Muestras de yuca con espesor de 0,2cm y diámetro de 0,4cm fueron colocadas en el equipo en contacto directo con aire caliente, bajo distintas condiciones de operación. Se evaluó el efecto de la temperatura (35, 45 y 55ºC y la velocidad del aire (1,0, 2,0 y 3,0m/s sobre el tiempo de secado y la difusividad efectiva. Los resultados obtenidos indicaron que a una temperatura y flujo de aire de 55°C y 3,0 m/s respectivamente, el tiempo de secado fue de 4,5h, alcanzándose una humedad de 4,87%. Los datos derivados de las curvas de secado fueron ajustados a los modelos de Newton, el de Dos términos exponencial, el de Wang y Singh, el de Henderson y Pabis modificado y el Difusión aproximal. De acuerdo con los resultados el modelo matemático que describió mejor el comportamiento cinético de las curvas de secado fue el modelo Difusión aproximal con una regresión lineal (0,958 ≤ R2 ≤ 0,993. La difusividad efectiva (Df de la yuca varió entre 1,26 x 10-10 y 4,14 x 10-10m2/s y la energía de activación (Ea varió entre 33,66 a 16,16KJ /mol.

  8. Ammonia volatilization from crop residues and frozen green manure crops

    Science.gov (United States)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  9. Injury Profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases.

    Directory of Open Access Journals (Sweden)

    Jean-Noël Aubertot

    Full Text Available The limitation of damage caused by pests (plant pathogens, weeds, and animal pests in any agricultural crop requires integrated management strategies. Although significant efforts have been made to i develop, and to a lesser extent ii combine genetic, biological, cultural, physical and chemical control methods in Integrated Pest Management (IPM strategies (vertical integration, there is a need for tools to help manage Injury Profiles (horizontal integration. Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment. In return, a given cropping system, in a given production situation will exhibit a unique injury profile, defined as a dynamic vector of the main injuries affecting the crop. This simple description of agroecosystems has been used to develop IPSIM (Injury Profile SIMulator, a modelling framework to predict injury profiles as a function of cropping practices, abiotic and biotic environment. Due to the tremendous complexity of agroecosystems, a simple holistic aggregative approach was chosen instead of attempting to couple detailed models. This paper describes the conceptual bases of IPSIM, an aggregative hierarchical framework and a method to help specify IPSIM for a given crop. A companion paper presents a proof of concept of the proposed approach for a single disease of a major crop (eyespot on wheat. In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems. In addition, IPSIM could also be used to help make diagnoses on commercial fields. It is important to point out that the presented concepts are not crop- or pest-specific and that IPSIM can be used on any crop.

  10. Injury Profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases.

    Science.gov (United States)

    Aubertot, Jean-Noël; Robin, Marie-Hélène

    2013-01-01

    The limitation of damage caused by pests (plant pathogens, weeds, and animal pests) in any agricultural crop requires integrated management strategies. Although significant efforts have been made to i) develop, and to a lesser extent ii) combine genetic, biological, cultural, physical and chemical control methods in Integrated Pest Management (IPM) strategies (vertical integration), there is a need for tools to help manage Injury Profiles (horizontal integration). Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment. In return, a given cropping system, in a given production situation will exhibit a unique injury profile, defined as a dynamic vector of the main injuries affecting the crop. This simple description of agroecosystems has been used to develop IPSIM (Injury Profile SIMulator), a modelling framework to predict injury profiles as a function of cropping practices, abiotic and biotic environment. Due to the tremendous complexity of agroecosystems, a simple holistic aggregative approach was chosen instead of attempting to couple detailed models. This paper describes the conceptual bases of IPSIM, an aggregative hierarchical framework and a method to help specify IPSIM for a given crop. A companion paper presents a proof of concept of the proposed approach for a single disease of a major crop (eyespot on wheat). In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems. In addition, IPSIM could also be used to help make diagnoses on commercial fields. It is important to point out that the presented concepts are not crop- or pest-specific and that IPSIM can be used on any crop.

  11. Impact of perennial energy crops income variability on the crop selection of risk averse farmers

    International Nuclear Information System (INIS)

    Alexander, Peter; Moran, Dominic

    2013-01-01

    The UK Government policy is for the area of perennial energy crops in the UK to expand significantly. Farmers need to choose these crops in preference to conventional rotations for this to be achievable. This paper looks at the potential level and variability of perennial energy crop incomes and the relation to incomes from conventional arable crops. Assuming energy crop prices are correlated to oil prices the results suggests that incomes from them are not well correlated to conventional arable crop incomes. A farm scale mathematical programming model is then used to attempt to understand the affect on risk averse farmers crop selection. The inclusion of risk reduces the energy crop price required for the selection of these crops. However yields towards the highest of those predicted in the UK are still required to make them an optimal choice, suggesting only a small area of energy crops within the UK would be expected to be chosen to be grown. This must be regarded as a tentative conclusion, primarily due to high sensitivity found to crop yields, resulting in the proposal for further work to apply the model using spatially disaggregated data. - Highlights: ► Energy crop and conventional crop incomes suggested as uncorrelated. ► Diversification effect of energy crops investigated for a risk averse farmer. ► Energy crops indicated as optimal selection only on highest yielding UK sites. ► Large establishment grant rates to substantially alter crop selections.

  12. 75 FR 15777 - Common Crop Insurance Regulations, Basic Provisions; and Various Crop Insurance Provisions

    Science.gov (United States)

    2010-03-30

    ... (protection for production losses only) within one Basic Provisions and the applicable Crop Provisions to..., Macadamia Nut Crop Insurance Provisions, Onion Crop Insurance Provisions, Dry Pea Crop Insurance Provisions... (protection for production losses only) and revenue protection (protection against loss of revenue caused by...

  13. Organic fertigation for greenhouse crops

    DEFF Research Database (Denmark)

    Pokhrel, Bhaniswor

    2017-01-01

    productivity is suboptimal nutrient management resulting from poor synchronization between crop nutrient demand and nutrient release from organic fertilizers, affecting the physical, chemical and biological characteristics of the root zone environment, and thus plant growth and productivity. Compared to solid...... organic fertilizers, the application of liquid organic fertilizers potentially more accurately addresses the nutrient demand, because nutrients are readily available and different fertilizers are easily mixed. This PhD work explores the possibilities and challenges related to the application of liquid...... organic fertilizers in organic greenhouse crop production. Four greenhouse experiments were designed where different liquid organic fertilizers were prepared: acidic extraction or anaerobic digestion of red clover and white mustard silage, water extraction of composted chicken manure and flushing...

  14. Biogas production from catch crops

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2013-01-01

    , being in the ranges of 1.4–3.0 t ha−1 and 0.3–1.7 t ha−1 for Holstebro and Aabenraa, respectively. Specific methane yields were in the range of 229–450 m3 t−1 of VS. Methane yields per hectare of up to 800 m3 ha−1 were obtained, making catch crops a promising source of feedstock for manure-based biogas......Manure-based biogas plants in Denmark are dependent on high yielding biomass feedstock in order to secure economically feasible operation. The aim of this study was to investigate the potential of ten different catch crop species or mixtures as feedstock for biogas production in co...

  15. Decomposing global crop yield variability

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  16. Selenium Enrichment of Horticultural Crops.

    Science.gov (United States)

    Puccinelli, Martina; Malorgio, Fernando; Pezzarossa, Beatrice

    2017-06-04

    The ability of some crops to accumulate selenium (Se) is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  17. Selenium Enrichment of Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Martina Puccinelli

    2017-06-01

    Full Text Available The ability of some crops to accumulate selenium (Se is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  18. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  19. Androgenesis in recalcitrant solanaceous crops.

    Science.gov (United States)

    Seguí-Simarro, José M; Corral-Martínez, Patricia; Parra-Vega, Verónica; González-García, Beatriz

    2011-05-01

    Tomato, eggplant, and pepper are three solanaceous crops of outstanding importance worldwide. For hybrid seed production in these species, a fast and cheap method to obtain pure (homozygous) lines is a priority. Traditionally, pure lines are produced by classical inbreeding and selection techniques, which are time consuming (several years) and costly. Alternatively, it has become possible to accelerate the production of homozygous lines through a biotechnological approach: the induction of androgenesis to generate doubled haploid (homozygous) plants. This biotechnological in vitro tool reduces the process to only one generation, which implies important time and costs savings. These facts make androgenic doubled haploids the choice in a number of important crops where the methodology is well set up. Unfortunately, recalcitrant solanaceous crops such as tomato, eggplant, and pepper are still far from an efficient and reliable technology to be applied on a routine basis to different genotypes in breeding programs. In eggplant and pepper, only anther cultures are known to work relatively well. Unfortunately, a more efficient and promising technique, the culture of isolated microspores, is not sufficiently developed yet. In tomato, none of these methods is available nowadays. However, recent advances in the knowledge of embryo development are filling the gaps and opening new ways to achieve the final goal of an efficient protocol in these three recalcitrant species. In this review, we outline the state of the art on androgenic induction in tomato, eggplant, and pepper, and postulate new experimental ways in order to overcome current limitations.

  20. Simple weighing lysimeters for measuring reference and crop evapotranspiration

    Science.gov (United States)

    Knowledge of cotton crop evapotranspiration is important in scheduling irrigations, optimizing crop production, and modeling evapotranspiration and crop growth. The ability to measure, estimate, and predict evapotranspiration and cotton crop water requirements can result in better satisfying the cr...

  1. Microeconomic aspects of energy crops cultivation

    International Nuclear Information System (INIS)

    Bartolelli, V.; Mutinati, G.; Pisani, F.

    1992-01-01

    The topic of energy crops, namely of those crops designed to produce biomass to transform into ethanol, has been explored, in Italy and abroad, in all its technical and agronomical aspects. The microeconomic aspect, including the evaluation of convenience for the farmer in adopting such crops, is, on the contrary, less well researched. RENAGRI has developed a research methodology able to give information about the level of convenience of two energy crops (Sweet Sorghum and Topinambour) and has applied it to different Italian agricultural situations, in order to verify the existence of conditions favourable to the cultivation of the two crops, or to indicate the necessity of eventual subvention. (author)

  2. Handling Procedures of Vegetable Crops

    Science.gov (United States)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  3. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  4. GENETICALLY MODIFIED FOOD CROPS AND PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Alejandro Chaparro Giraldo

    2008-09-01

    Full Text Available The progress made in plant biotechnology has provided an opportunity to new food crops being developed having desirable traits for improving crop yield, reducing the use of agrochemicals and adding nutritional properties to staple crops. However, genetically modified (GM crops have become a subject of intense debate in which opponents argue that GM crops represent a threat to individual freedom, the environment, public health and traditional economies. Despite the advances in food crop agriculture, the current world situation is still characterised by massive hunger and chronic malnutrition, representing a major public health problem. Biofortified GM crops have been considered an important and complementary strategy for delivering naturally-fortified staple foods to malnourished populations. Expert advice and public concern have led to designing strategies for assessing the potential risks involved in cultivating and consuming GM crops. The present critical review was aimed at expressing some conflicting points of view about the potential risks of GM crops for public health. It was concluded that GM food crops are no more risky than those genetically modified by conventional methods and that these GM crops might contribute towards reducing the amount of malnourished people around the world. However, all this needs to be complemented by effective political action aimed at increasing the income of people living below the poverty-line.

  5. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in Science Direct.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,Ph D,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by

  6. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access) in Science Direct.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,PhD,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by

  7. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  8. Nitrogen deficiency in maize. I. Effects on crop growth, development, dry matter partitioning, and kernel set

    International Nuclear Information System (INIS)

    Uhart, S.A.; Andrade, F.H.

    1995-01-01

    Variations in N availability affect growth and development of maize (Zea mays L.) and may lead to changes in crop physiological conditions at flowering and in kernel set. The objectives of this study were (i) to establish the effect of N availability on crop development, crop radiation interception, radiation use efficiency, and dry matter partitioning; and (ii) to study the relationship between kernel number and crop growth at flowering and between kernel number and crop N accumulation at flowering. Three experiments with a commercial hybrid (DK636) were carried out under field conditions at the INTA Balcarce Experimental Station, Argentina, without water limitations. The treatments consisted of different radiation levels, obtained by shading, combined with different levels of N availability obtained by the addition of N fertilizer or organic matter to immobilize N. Nitrogen deficiencies delayed both vegetative and reproductive phenological development, slightly reduced leaf emergence rate, and strongly diminished leaf expansion rate and leaf area duration. Nitrogen deficiencies reduced radiation interception as much as radiation use efficiency and their effects on the ear dry mater/total dry matter ratio at harvest were associated with crop growth rate reductions at flowering. Dry matter partitioning to reproductive sinks at flowering and the ear dry matter/total dry matter ratio at harvest were reduced by N shortages. Significant relationships between kernel number and N accumulation rate or crop growth rate at flowering were fitted by linear + plateau functions with thresholds above which kernel number and grain yield did not increase

  9. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  10. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  11. Toward quantifying water pollution abatement in response to installing buffers on crop land

    Science.gov (United States)

    Michael G. Dosskey

    2001-01-01

    The scientific research literature is reviewed (i) for evidence of how much reduction in nonpoint source pollution can be achieved by installing buffers on crop land, (ii) to summarize important factors that can affect this response, and (iii) to identify remaining major information gaps that limit our ability to make probable estimates. This review is intended to...

  12. Effect of storage conditions on losses and crop utilization of nitrogen from solid cattle manure

    NARCIS (Netherlands)

    Shah, G.M.; Shah, G.A.; Groot, J.C.J.; Oenema, O.; Raza, A.S.; Lantinga, E.A.

    2016-01-01

    The objectives of the present study were to quantify the effects of contrasting methods for storing solid cattle manure on: (i) total carbon (C) and nitrogen (N) balances during storage, and (ii) crop apparent N recovery (ANR) following manure application to arable land, with maize as a test

  13. Diversity, Physicochemical and Technological Characterization of Elite Cassava (Manihot esculenta Crantz Cultivars of Bantè, a District of Central Benin

    Directory of Open Access Journals (Sweden)

    Abadjayé Faouziath Sanoussi

    2015-01-01

    Full Text Available Cassava is one of the staple food crops contributing significantly to food and nutrition security in Benin. This study aimed to assess the diversity of the elite cassava cultivars of Bantè district, determine the physicochemical properties of the most preferred ones as well as the sensory attributes of their major derived products (gari and tapioca, and compare them with the farmers’ and processors’ perception on their technological qualities. The ethnobotanical investigation revealed existence of 40 cultivars including 9 elites that were further classified into three groups based on agronomics and technological and culinary properties. Clustered together, cultivars Idilèrou, Monlèkangan, and Odohoungbo characterized by low fiber content, high yield of gari and tapioca, and good in-ground postmaturity storage were the most preferred ones. Their physicochemical analysis revealed good rate of dry matters (39.8% to 41.13%, starch (24.47% to 25.5% and total sugars (39.46% to 41.13%, low fiber (0.80% to 1.02%, and cyanide (50 mg/kg contents. The sensory analysis of their gari and tapioca revealed very well appreciated (taste, color, and texture products by the consumers. The confirmation by scientific analysis of the farmers’ perception on qualities of the most preferred cultivars indicated that they have good knowledge of their materials.

  14. Effects of mulch on soil properties and on the performance of late season cassava (Manihot esculenta Crantz on an acid ultisol in Southwestern Zaire

    Directory of Open Access Journals (Sweden)

    Lutaladio, NB.

    1992-01-01

    Full Text Available Mulch effects on soil temperature, soil moisture content, soil chemical properties, growth and development, yield and yield components of late season cassava were investigated for three years on an acid ultisol in the tropical sa vanna zone of Southwestern Zaire. Diurnal soil temperature and soil moisture content were recorded at 30-day intervals during the first 4 months of growth. Cassava growth and development were monitored a t3, 6 and 9 months after planting while yield and yield components were noted at 12 months after planting. After each cropping year, changes in soil chemical constituents were recorded. Mulching significantly reduced soil temperature by about 3.5°C and increased soil moisture content by 6.1 % under late season cassava. Soil pH, soil organic carbon content, total nitrogen, soil available phosphorus and soil exchangeable cations (Ca, Mg, K increased as a result of increase in organic matter with continuous application of mulch for 3 years. Plant height, leaf area, shoot and root dry weights of cassava plants given mulch were significantly increased as compared to the plants in unmulched plots. Cassava plants given mulch produced more and bigger storage roots than unmulched plants. Storage root yield increased by 16.7, 28.1 and 57.7 % respectively in the first, the second and the third years of mulch application. The beneficiai effect of mulching over no-mulching increased from year to year, irrespective of cassava cultivars.

  15. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    The theme of this thesis was chosen against the background of the necessary substitution of fossil fuels and the need to reduce greenhouse gas emissions. One major solution for these topics may be the energy generation from domestically produced biomass. The overall aim of this thesis was the identification of one or more efficient energy cropping systems for Central Europe. The existence of diverse production environments necessitates further diversification and the identification of several energy crops and the development of energy cropping systems suited to those diverse environments. This thesis starts with an introductory essay (chapter 1), which provides the background for renewable energy production, its features, demands and potentials, and the scientific basis of this thesis. Chapters 2 to 6 consist of five manuscripts to be published in reviewed journals (Papers I, II, IV and V) or in a multi-author book (Paper III). Subsequently, the results from all papers are discussed in a general setting (chapter 7), from which a general conclusion is formulated (chapter 8). The basis of the research formed four field experiments, which were conducted at the experimental sites Ihinger Hof, Oberer Lindenhof and Goldener Acker of the University of Hohenheim, in south-western Germany. Paper I addresses the overall objective of this thesis. Selected cropping systems for this experiment were short rotation willow, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale with either conventional tillage or no-till. The systems were cultivated with three different nitrogen fertilizer applications. An energy balance was calculated to evaluate the biomass and energy yields of the different cropping systems. Results indicate that perennial lignocellulosic crops combine high biomass and net energy yields with low input and potential ecological impacts. Switchgrass, which produced low yields

  16. Weed management strategies for castor bean crops

    Directory of Open Access Journals (Sweden)

    Augusto Guerreiro Fontoura Costa

    2014-04-01

    Full Text Available Castor bean crops are agriculturally relevant due to the quality and versatility of their oil, both for the chemical industry and for biodiesel production. Proper weed management is important for both the cultivation and the yield of castor bean crops; therefore, the intention of the present work is to review pertinent information regarding weed management, including the studies regarding weed interference periods, chemical controls for use in different crop production systems and herbicide selectivity, for castor bean crops. Weed science research for castor bean crops is scarce. One of the main weed management challenges for castor bean crops is the absence of herbicides registered with the Ministry of Agriculture, Livestock and Food Supply (MALFS. Research for viable herbicides for weed control in castor bean crops should be directed by research and/or rural extension institutions, associations and farmers cooperatives, as well as by manufactures, for the registration of these selective herbicides, which would be primarily used to control eudicotyledons in castor bean crops. New studies involving the integration of weed control methods in castor bean also may increase the efficiency of weed management, for both small farmers using traditional crop methods in the Brazilian Northeast region, as well as for areas with the potential for large scale production, using conservation tillage systems, such as the no-tillage crop production system.

  17. Protein improvement in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Rabson, R

    1974-07-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  18. Protein improvement in crop plants

    International Nuclear Information System (INIS)

    Rabson, R.

    1974-01-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  19. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  20. Minichromosomes: Vectors for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Jon P. Cody

    2015-07-01

    Full Text Available Minichromosome technology has the potential to offer a number of possibilities for expanding current biofortification strategies. While conventional genome manipulations rely on random integration of one or a few genes, engineered minichromosomes would enable researchers to concatenate several gene aggregates into a single independent chromosome. These engineered minichromosomes can be rapidly transferred as a unit to other lines through the utilization of doubled haploid breeding. If used in conjunction with other biofortification methods, it may be possible to significantly increase the nutritional value of crops.

  1. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  2. Induced mutations for crop improvement

    International Nuclear Information System (INIS)

    Micke, A.; Donini, B.; Maluszynski, M.

    1990-01-01

    Mutation induction has become an established tool in plant breeding to supplement existing germ plasma and to improve cultivars in certain specific traits. Hundreds of improved varieties have been released to farmers for many different crop species, demonstrating the economic value of the technology. Limitations arise mainly from the large mutagenized populations to be screened and from the unsatisfactory selection methods. Both limitations may be eased to some extent by advances in techniques of plant in-vitro culture. (author). Refs, 1 fig., 7 tabs

  3. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  4. Review of Alternative Management Options of Vegetable Crop Residues to Reduce Nitrate Leaching in Intensive Vegetable Rotations

    Directory of Open Access Journals (Sweden)

    Laura Agneessens

    2014-12-01

    Full Text Available Vegetable crop residues take a particular position relative to arable crops due to often large amounts of biomass with a N content up to 200 kg N ha−1 left behind on the field. An important amount of vegetable crops are harvested during late autumn and despite decreasing soil temperatures during autumn, high rates of N mineralization and nitrification still occur. Vegetable crop residues may lead to considerable N losses through leaching during winter and pose a threat to meeting water quality objectives. However, at the same time vegetable crop residues are a vital link in closing the nutrient and organic matter cycle of soils. Appropriate and sustainable management is needed to harness the full potential of vegetable crop residues. Two fundamentally different crop residue management strategies to reduce N losses during winter in intensive vegetable rotations are reviewed, namely (i on-field management options and modifications to crop rotations and (ii removal of crop residues, followed by a useful and profitable application.

  5. Genome editing for crop improvement: Challenges and opportunities.

    Science.gov (United States)

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    the genome. Due to its precision, gene editing is more precise than either conventional crop breeding methods or standard genetic engineering methods. Thus this technology is a very powerful tool that can be used toward securing the world's food supply. In addition to improving the nutritional value of crops, it is the most effective way to produce crops that can resist pests and thrive in tough climates. There are 3 types of modifications produced by genome editing; Type I includes altering a few nucleotides, Type II involves replacing an allele with a pre-existing one and Type III allows for the insertion of new gene(s) in predetermined regions in the genome. Because most genome-editing techniques can leave behind traces of DNA alterations evident in a small number of nucleotides, crops created through gene editing could avoid the stringent regulation procedures commonly associated with GM crop development. For this reason many scientists believe plants improved with the more precise gene editing techniques will be more acceptable to the public than transgenic plants. With genome editing comes the promise of new crops being developed more rapidly with a very low risk of off-target effects. It can be performed in any laboratory with any crop, even those that have complex genomes and are not easily bred using conventional methods.

  6. Environmental considerations in energy crop production

    International Nuclear Information System (INIS)

    Ranney, J.W.; Mann, L.K.

    1994-01-01

    This paper is a preliminary attempt to provide information on the probable environmental effects of energy crop production relative to other potential uses of the land. While dedicated energy crop production is anticipated to occur primarily on land currently in agricultural production, some pastureland and forestland with a high potential for conversion to agricultural production may be utilized. Experimental results suggest that chemical use on energy crops will be lower than on most row crops and that land producing energy crops should experience less erosion than land producing row crops. Long-term site productivity should not be a major issue if macro-and micro-fertilizers are added as needed and nutrient-conserving production techniques are used. (Author)

  7. Managing for Multifunctionality in Perennial Grain Crops

    Science.gov (United States)

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  8. Dynamics of world oil crops market

    Directory of Open Access Journals (Sweden)

    Knežević Marija

    2012-01-01

    Full Text Available According to the harvested area, oil crops are the second most important crops after cereals. Soybean is the most important oil crop in terms of production and trade of oilseeds and meals, and second most important in terms of production and trade of vegetable oils after palm oil. Dynamics of prices of derived oil crop products in the international market is conditioned by the relationship between supply and demand in the overall market of oil crops. The substitution of animal fats with vegetable oils in human nutrition, the expansion of biodiesel industry and intensification of livestock production have led to increased demand for oil crops. The objective of this paper was to identify trends in production, consumption and trade of soybeans, rapeseed and sunflower and their derived products.

  9. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  10. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission

    Science.gov (United States)

    Mariotto, Isabella; Thenkabail, Prasad S.; Huete, Alfredo; Slonecker, E. Terrence; Platonov, Alexander

    2013-01-01

    Precise monitoring of agricultural crop biomass and yield quantities is critical for crop production management and prediction. The goal of this study was to compare hyperspectral narrowband (HNB) versus multispectral broadband (MBB) reflectance data in studying irrigated cropland characteristics of five leading world crops (cotton, wheat, maize, rice, and alfalfa) with the objectives of: 1. Modeling crop productivity, and 2. Discriminating crop types. HNB data were obtained from Hyperion hyperspectral imager and field ASD spectroradiometer, and MBB data were obtained from five broadband sensors: Landsat-7 Enhanced Thematic Mapper Plus (ETM +), Advanced Land Imager (ALI), Indian Remote Sensing (IRS), IKONOS, and QuickBird. A large collection of field spectral and biophysical variables were gathered for the 5 crops in Central Asia throughout the growing seasons of 2006 and 2007. Overall, the HNB and hyperspectral vegetation index (HVI) crop biophysical models explained about 25% greater variability when compared with corresponding MBB models. Typically, 3 to 7 HNBs, in multiple linear regression models of a given crop variable, explained more than 93% of variability in crop models. The evaluation of λ1 (400–2500 nm) versus λ2 (400–2500 nm) plots of various crop biophysical variables showed that the best two-band normalized difference HVIs involved HNBs centered at: (i) 742 nm and 1175 nm (HVI742-1175), (ii) 1296 nm and 1054 nm (HVI1296-1054), (iii) 1225 nm and 697 nm (HVI1225-697), and (iv) 702 nm and 1104 nm (HVI702-1104). Among the most frequently occurring HNBs in various crop biophysical models, 74% were located in the 1051–2331 nm spectral range, followed by 10% in the moisture sensitive 970 nm, 6% in the red and red-edge (630–752 nm), and the remaining 10% distributed between blue (400–500 nm), green (501–600 nm), and NIR (760–900 nm).Discriminant models, used for discriminating 3 or 4 or 5 crop types, showed

  11. Effect of irrigation techniques and strategies on water footprint of growing crops

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.

    2014-12-01

    Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation

  12. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  13. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  14. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    Science.gov (United States)

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  15. The Economics of Genetically Modified Crops

    OpenAIRE

    Matin Qaim

    2009-01-01

    Genetically modified (GM) crops have been used commercially for more than 10 years. Available impact studies of insect-resistant and herbicide-tolerant crops show that these technologies are beneficial to farmers and consumers, producing large aggregate welfare gains as well as positive effects for the environment and human health. The advantages of future applications could even be much bigger. Given a conducive institutional framework, GM crops can contribute significantly to global food se...

  16. Ethics and Transgenic Crops: a Review

    OpenAIRE

    Robinson, Jonathan

    1999-01-01

    This article represents a review of some of the ethical dilemmas that have arisen as a result of the development and deployment of transgenic crop plants. The potential for transgenic crops to alleviate human hunger and the possible effects on human health are discussed. Risks and benefits to the environment resulting from genetic engineering of crops for resistance to biotic and abiotic stresses are considered, in addition to effects on biodiversity. The socio-economic impacts and distributi...

  17. Genetically Modified Crops and Food Security

    OpenAIRE

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers’ income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the firs...

  18. The spatial impact of genetically modified crops

    OpenAIRE

    MUNRO, Alistair

    2008-01-01

    Although genetically modified (GM) organisms have attracted a great deal of public attention, analysis of their economic impacts has been less common. It is, perhaps, spatial externalities where the divergence between efficient and unregulated outcomes is potentially largest, because the presence of transgenic crops may eliminate or severely reduce the planting of organic varieties and other crops where some consumers have a preference for non-GM crops. This paper constructs a simple model of...

  19. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  20. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  1. Remote Sensing and Cropping Practices: A Review

    Directory of Open Access Journals (Sweden)

    Agnès Bégué

    2018-01-01

    Full Text Available For agronomic, environmental, and economic reasons, the need for spatialized information about agricultural practices is expected to rapidly increase. In this context, we reviewed the literature on remote sensing for mapping cropping practices. The reviewed studies were grouped into three categories of practices: crop succession (crop rotation and fallowing, cropping pattern (single tree crop planting pattern, sequential cropping, and intercropping/agroforestry, and cropping techniques (irrigation, soil tillage, harvest and post-harvest practices, crop varieties, and agro-ecological infrastructures. We observed that the majority of the studies were exploratory investigations, tested on a local scale with a high dependence on ground data, and used only one type of remote sensing sensor. Furthermore, to be correctly implemented, most of the methods relied heavily on local knowledge on the management practices, the environment, and the biological material. These limitations point to future research directions, such as the use of land stratification, multi-sensor data combination, and expert knowledge-driven methods. Finally, the new spatial technologies, and particularly the Sentinel constellation, are expected to improve the monitoring of cropping practices in the challenging context of food security and better management of agro-environmental issues.

  2. Origins of food crops connect countries worldwide

    Science.gov (United States)

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  3. 78 FR 70485 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Science.gov (United States)

    2013-11-26

    ... planting period may be deemed appropriate and actuarially sound. No change has been made in the final rule... in the table for crops in the Crop Insurance Handbook (CIH). Response: The option for providing a...

  4. 78 FR 33690 - Common Crop Insurance Regulations; Pecan Crop Insurance Provisions; Correction

    Science.gov (United States)

    2013-06-05

    ...-0008] RIN 0563-AC35 Common Crop Insurance Regulations; Pecan Crop Insurance Provisions; Correction... FR 13454-13460). The regulation pertains to the insurance of Pecans. DATES: Effective Date: June 5...: [[Page 33691

  5. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    OpenAIRE

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on poten...

  6. Biomass supply from alternative cellulosic crops and crop residues: A spatially explicit bioeconomic modeling approach

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, César R.; Manowitz, David H.; Zhang, Xuesong

    2011-01-01

    This paper introduces a spatially-explicit bioeconomic model for the study of potential cellulosic biomass supply. For biomass crops to begin to replace current crops, farmers must earn more from them than from current crops. Using weather, topographic and soil data, the terrestrial ecosystem model, EPIC, dynamically simulates multiple cropping systems that vary by crop rotation, tillage, fertilization and residue removal rate. EPIC generates predicted crop yield and environmental outcomes over multiple watersheds. These EPIC results are used to parameterize a regional profit-maximization mathematical programming model that identifies profitable cropping system choices. The bioeconomic model is calibrated to 2007–09 crop production in a 9-county region of southwest Michigan. A simulation of biomass supply in response to rising biomass prices shows that cellulosic residues from corn stover and wheat straw begin to be supplied at minimum delivered biomass:corn grain price ratios of 0.15 and 0.18, respectively. At the mean corn price of $162.6/Mg ($4.13 per bushel) at commercial moisture content during 2007–2009, these ratios correspond to stover and straw prices of $24 and $29 per dry Mg. Perennial bioenergy crops begin to be supplied at price levels 2–3 times higher. Average biomass transport costs to the biorefinery plant range from $6 to $20/Mg compared to conventional crop production practices in the area, biomass supply from annual crop residues increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crop production reduced greenhouse gas emissions and improved water quality. -- Highlights: ► A new bioeconomic model predicts biomass supply and its environmental impacts. ► The model captures the opportunity cost of switching to new cellulosic crops. ► Biomass from crop residues is supplied at lower biomass price than cellulosic crops. ► Biomass from cellulosic crops has

  7. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in

  8. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  9. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    Science.gov (United States)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p impact on the crop growth trend.

  10. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate h...

  11. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    NARCIS (Netherlands)

    Uwimana, B.; Smulders, M.J.M.; Hooftman, D.A.P.; Hartman, Y.; van Tienderen, P.H.; Jansen, J.; McHale, L.K.; Michelmore, R.W.; Visser, R.G.F.; van de Wiel, C.C.M.

    2012-01-01

    Background: After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural

  12. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    NARCIS (Netherlands)

    Uwimana, B.; Smulders, M.J.M.; Hooftman, D.A.P.; Hartman, Y.; Tienderen, van P.H.; Jansen, J.; McHale, L.K.; Michelmore, R.; Visser, R.G.F.; Wiel, van de C.C.M.

    2012-01-01

    After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The

  13. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG-TERM SATELLITE-BASED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Chen

    2018-04-01

    Full Text Available Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001, and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  14. Assessing climate change effects on European crop yields using the Crop Growth

    NARCIS (Netherlands)

    Supit, I.; Diepen, van C.A.; Wit, de A.J.W.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F.

    2012-01-01

    Climate change impacts on potential and rainfed crop yields on the European continent were studied using output of three General Circulation Models and the Crop Growth Monitoring System in combination with a weather generator. Climate change impacts differ per crop type and per CO2 emission

  15. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shujiang [ORNL; Kline, Keith L [ORNL; Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Dr Jeff A [ORNL; Post, Wilfred M [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL

    2013-01-01

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

  16. Engineering insect-resistant crops: A review

    African Journals Online (AJOL)

    dgeorge

    African Journal of Biotechnology ... Transgenic crops engineered for enhanced levels of resistance to insect ... this background that research work targeting other candidate genes such as ... nisms, and potential deleterious environmental effects. ... The global market value of biotech crops was esti- .... located in repeat 11.

  17. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  18. Analysis of yield advantage in mixed cropping

    NARCIS (Netherlands)

    Ranganathan, R.

    1993-01-01

    It has long been recognized that mixed cropping can give yield advantages over sole cropping, but methods that can identify such yield benefits are still being developed. This thesis presents a method that combines physiological and economic principles in the evaluation of yield advantage.

  19. Crop yield response to increasing biochar rates

    Science.gov (United States)

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  20. Engineering Sclerotinia Sclerotiorum Resistance in Oilseed Crops ...

    African Journals Online (AJOL)

    The fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary is worldwide in distribution and pathogenic to more than 400 plant species. This disease causes significant yield losses of various important crops including sunflower, canola, and soybean. Applying fungicides and crop rotation are currently the major methods of ...

  1. Effects of cropping systems on soil biology

    Science.gov (United States)

    The need for fertilizer use to enhance soil nutrient pools to achieve good crop yield is essential to modern agriculture. Specific management practices, including cover cropping, that increase the activities of soil microorganisms to fix N and mobilize P and micronutrients may reduce annual inputs ...

  2. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  3. Improving selenium nutritional value of major crops

    Science.gov (United States)

    Micronutrient efficiency and development of nutrient-dense crops continue to be one of the most important global challenges. Se is an essential micronutrient to humans and serves as a cancer preventative agent. In order to improve Se nutritional and health promoting values in food crops, a better un...

  4. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  5. Kenaf and cowpea as sugarcane cover crops

    Science.gov (United States)

    The use of cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Typically, a Louisiana sugarcane field is replanted every four years due to declining yields, and,...

  6. Genetic diversity in a crop metapopulation

    NARCIS (Netherlands)

    Heerwaarden, van J.; Eeuwijk, van F.A.; Ross-Ibarra, J.

    2010-01-01

    The need to protect crop genetic resources has sparked a growing interest in the genetic diversity maintained in traditional farming systems worldwide. Although traditional seed management has been proposed as an important determinant of genetic diversity and structure in crops, no models exist that

  7. Mathematical analysis and simulation of crop micrometeorology

    NARCIS (Netherlands)

    Chen, J.

    1984-01-01

    In crop micrometeorology the transfer of radiation, momentum, heat and mass to or from a crop canopy is studied. Simulation models for these processes do exist but are not easy to handle because of their complexity and the long computing time they need. Moreover, up to now such models can

  8. Cover crop and CO2 emissions

    Science.gov (United States)

    Agricultural land management practices account for about 50% of soil organic carbon (SOC) loss. Restoring SOC is important to soil productivity and fertility. Management strategies to rebuild SOC include addition of manure or other organic amendments, increasing root biomass from crops, leaving crop...

  9. Emerging Viral Diseases of Tomato Crops

    NARCIS (Netherlands)

    Hanssen, I.M.; Lapidot, M.; Thomma, B.P.H.J.

    2010-01-01

    Viral diseases are an important limiting factor in many crop production systems. Because antiviral products are not available, control strategies rely on genetic resistance or hygienic measures to prevent viral diseases, or on eradication of diseased crops to control such diseases. Increasing

  10. Characterizing pesticide dissipation in food crops

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, R.; Jolliet, O.

    2013-01-01

    Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Neverth......Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...... degradation is dominating. We are currently testing the regression to predict degradation half-lives in crops. By providing mean degradation half-lives at 20°C for more than 300 pesticides, we reduce uncertainty and improve assumptions in current practice of health risk and impact assessments....

  11. Cotton genetic resources and crop vulnerability

    Science.gov (United States)

    A report on the genetic vulnerability of cotton was provided to the National Genetic Resources Advisory Council. The report discussed crop vulnerabilities associated with emerging diseases, emerging pests, and a narrowing genetic base. To address these crop vulnerabilities, the report discussed the ...

  12. Putting mechanisms into crop production models.

    Science.gov (United States)

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. © 2013 John Wiley & Sons Ltd.

  13. Optimization of the cropping pattern in Egypt

    Directory of Open Access Journals (Sweden)

    Sara Osama

    2017-12-01

    Full Text Available Continuous increase of population in Egypt, limited fresh water, poor maintenance and low efficiency of irrigation systems lead to a real burden on the Egyptian natural water resources. Accordingly, for Egypt, land and water resources management is considered an absolutely strategic priority. In this study, a linear optimization model is developed to maximize the net annual return from the three old regions of Egypt. Data for 28 crops in five years from 2008 to 2012 are being analyzed. The spatial variations of crops, irrigation water needs, crop yields and food requirements are incorporated in the model. The results show that there is a significant reduction in the allocated areas for onion, garlic, barley, flax, fenugreek, chickpeas, lentil and lupine since they are considered as non-strategic crops. On the other side, the allocated areas for strategic crops such as wheat, maize, clover, rice, sugar products and cotton remained almost the same to satisfy their actual food requirements. However, crops with high net returns such as tomatoes have increased substantially. The trend for the gross net benefit is decreasing and is expected to reach a lower value in year 2017. Different approaches and scenarios are analyzed. The developed model proposes a change in the cropping pattern in the old lands of Egypt to increase the gross net return without adding further any other expenses. Keywords: Cropping pattern, Linear programming, Net return, Optimization

  14. 7 CFR 457.166 - Blueberry crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Blueberry crop insurance provisions. 457.166 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.166 Blueberry crop insurance provisions. The Blueberry Crop Insurance Provisions for the 2005 and succeeding crop years are as follows...

  15. Danish farmer’s perception of GM-crops

    DEFF Research Database (Denmark)

    Søndergaard, Janus; Pedersen, Søren Marcus; Gylling, Morten

    2005-01-01

    This paper presents a study of 185 farmer’s perception of GM-crops in Denmark. The respondent’s attitude to GM-crops mainly reflects a conservative view of the adoption of GM-crops. Among farmers only the exciting crops in rotation is seen as their future potential GM-crops. Findings from...

  16. A bioenergy feedstock/vegetable double-cropping system

    Science.gov (United States)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  17. Strategies for Improving Enterprise Standardization Management of Tropical Crop Machinery

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ There are two categories of tropical crop machinery. One comprises operation machinery that is used for planting, managing and harvesting tropical crops, while the other comprises process machinery for processing tropical crops. Tropical crop machinery is distinguished from other agricultural machinery by the special crops that such machinery cultivates and processes.

  18. 7 CFR 457.123 - Almond crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows: FCIC...

  19. 7 CFR 457.162 - Nursery crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Nursery crop insurance provisions. 457.162 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.162 Nursery crop insurance provisions. The Nursery Crop Insurance Provisions for the 2006 and succeeding crop years are as follows: FCIC...

  20. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  1. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Science.gov (United States)

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T.; Mafongoya, Paramu

    2015-01-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  2. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Pauline Chivenge

    2015-05-01

    Full Text Available Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS. The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA, and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i what can grow under water-scarce conditions, (ii water requirements, and (iii water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture.

  3. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach

    2014-01-01

    The current paper reviews content and variation in fiber and nonstarch polysaccharides (NSP) of common crops used in broiler diets. The cereal grain is a complex structure, and its cell walls (CW) differ in their composition and hence properties. Arabinoxylan (AX), mixed linkage (1→3; 1→4)-β...... AX, but β-glucan can also be present mainly in rye and wheat brans. The CW composition of seeds and grains of protein crops and feedstuffs are different from that of cereals. The main CW polymers are pectic substances (homogalacturonan, rhamnogalacturonan type I and II, xylogalacturonan...

  4. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  5. Biodiversity, evolution and adaptation of cultivated crops.

    Science.gov (United States)

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. Automatic crop row detection from UAV images

    DEFF Research Database (Denmark)

    Midtiby, Henrik; Rasmussen, Jesper

    are considered weeds. We have used a Sugar beet field as a case for evaluating the proposed crop detection method. The suggested image processing consists of: 1) locating vegetation regions in the image by thresholding the excess green image derived from the orig- inal image, 2) calculate the Hough transform......Images from Unmanned Aerial Vehicles can provide information about the weed distribution in fields. A direct way is to quantify the amount of vegetation present in different areas of the field. The limitation of this approach is that it includes both crops and weeds in the reported num- bers. To get...... of the segmented image 3) determine the dominating crop row direction by analysing output from the Hough transform and 4) use the found crop row direction to locate crop rows....

  7. Crop insurance: Risks and models of insurance

    Directory of Open Access Journals (Sweden)

    Čolović Vladimir

    2014-01-01

    Full Text Available The issue of crop protection is very important because of a variety of risks that could cause difficult consequences. One type of risk protection is insurance. The author in the paper states various models of insurance in some EU countries and the systems of subsidizing of insurance premiums by state. The author also gives a picture of crop insurance in the U.S., noting that in this country pays great attention to this matter. As for crop insurance in Serbia, it is not at a high level. The main problem with crop insurance is not only the risks but also the way of protection through insurance. The basic question that arises not only in the EU is the question is who will insure and protect crops. There are three possibilities: insurance companies under state control, insurance companies that are public-private partnerships or private insurance companies on a purely commercial basis.

  8. Benefits of seasonal forecasts of crop yields

    Science.gov (United States)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  9. Embodied crop calories in animal products

    International Nuclear Information System (INIS)

    Pradhan, Prajal; Lüdeke, Matthias K B; Reusser, Dominik E; Kropp, Jürgen P

    2013-01-01

    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8–2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on

  10. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  11. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

    NARCIS (Netherlands)

    Zhao, Gang; Hoffmann, Holger; Bussel, Van L.G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, Michaela; Kersebaum, Kurt Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel; Cammarano, Davide; Asseng, Senthold; Krauss, Gunther; Siebert, Stefan

    2015-01-01

    We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 processbased crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and

  12. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses.

    Science.gov (United States)

    Kovar, J L; Moorman, T B; Singer, J W; Cambardella, C A; Tomer, M D

    2011-01-01

    Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.

  13. Effects of Temperature and Growing Seasons on Crop Water ...

    African Journals Online (AJOL)

    PROF HORSFALL

    The crop water requirement (CWR) depends on several factors including temperature and ...... infrastructure for collection, treatment and recycling of wastewater (MOEP, 2010 .... blue and grey water footprint of crops and derived crop products ...

  14. The benefits of herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry.

  15. Functional molecular markers for crop improvement.

    Science.gov (United States)

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.

  16. Mutation Breeding for Crop Improvement

    International Nuclear Information System (INIS)

    Rajbir, S. Sangwan

    2017-01-01

    Chromosomes contain genes responsible of different traits of any organism. Induced mutation using chemical mutagens and radiation to modify molecular structure of plants played a major role in the development of high genetic variability and help develop new superior crop varieties. The Mutation Breeding is applicable to all plants and has generated lot of agronomically interesting mutants, both in vegetatively and seed propagated plants. The technique is easy but long and challenging to detect, isolate and characterize the mutant and gene. A specific dose of irradiation has to be used to obtain desired mutants. However, with modern molecular technique, the gene responsible for mutation can be identified. The CRISPR-Cas9 allows the removal of a specific gene which is responsible of unwanted trait and replacing it with a gene which induces a desired trait. There have been more than 2700 officially released mutant varieties from 170 different plant species in more than 60 countries throughout the world and A more participatory approach, involving all stakeholders in plant breeding, is needed to ensure that it is demand/farmers driven.

  17. Crop improvement projects in Peru

    International Nuclear Information System (INIS)

    Broeshart, H.

    1978-01-01

    Only two percent of the territory of Peru consists of arable land. Sixteen million people depend on the production of about three million hectares of land, which means that on the average only 1800 square metres is available per person. It is clear that Peru is one of the poorest countries of the world as far as available arable land is concerned and consequently it will have to drastically increase its agricultural production per unit area or import large quantities of agricultural products to feed its rapidly growing population. Agricultural research on the efficient use of fertilizers is being carried out by the regional experiment station (CRIA), by the National University of Agriculture, La Molina, Lima, dealing with programmes on maize, potatoes, cereals and forage crops, by national universities in the country and by specialized research institutes for tropical agriculture on sugar-cane, cotton, coffee and tea. Isotope and radiation techniques are a particularly effective means of determining the best cultural practices for the efficient use of fertilizers and water, and the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture has been involved in the organization of field and greenhouse programmes at experiment stations and universities in Peru since 1963

  18. GENETICALLY MODIFIED CROPS: INTERNATIONAL TRADE AND TRADE POLICY EFFECTS

    OpenAIRE

    George Frisvold; Jeanne Reeves

    2015-01-01

    Where approved, producers have adopted genetically modified (GM) crops extensively. Yet, areas not adopting GM crops account for large shares of production and consumption. GM crops differ from previous agricultural innovations because consumers may perceive them as fundamentally different from (and potentially inferior to) conventionally grown crops. Many countries maintain restrictions on production and importation of GM crops. GM crop adoption affects producers and consumers, not only thro...

  19. Short Rotation Crops in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L L

    1998-06-04

    The report is based primarily on the results of survey questions sent to approximately 60 woody and 20 herbaceous crop researchers in the United States and on information from the U.S. Department of Energy's Bioenergy Feedstock Development Program. Responses were received from 13 individuals involved in woody crops research or industrial commercialization (with 5 of the responses coming from industry). Responses were received from 11 individuals involved in herbaceous crop research. Opinions on market incentives, technical and non-technical barriers, and highest priority research and development areas are summarized in the text. Details on research activities of the survey responders are provided as appendices to the paper. Woody crops grown as single-stem systems (primarily Populus and Eucalyptus species) are perceived to have strong pulp fiber and oriented strand board markets, and the survey responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy's Bioenergy Feedstock Development Program are described in an appendix to the paper.

  20. A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa

    Directory of Open Access Journals (Sweden)

    Elodie Vintrou

    2014-02-01

    Full Text Available Crop phenology is essential for evaluating crop production in the food insecure regions of West Africa. The aim of the paper is to study whether satellite observation of plant phenology are consistent with ground knowledge of crop cycles as expressed in agro-simulations. We used phenological variables from a MODIS Land Cover Dynamics (MCD12Q2 product and examined whether they reproduced the spatio-temporal variability of crop phenological stages in Southern Mali. Furthermore, a validated cereal crop growth model for this region, SARRA-H (System for Regional Analysis of Agro-Climatic Risks, provided precise agronomic information. Remotely-sensed green-up, maturity, senescence and dormancy MODIS dates were extracted for areas previously identified as crops and were compared with simulated leaf area indices (LAI temporal profiles generated using the SARRA-H crop model, which considered the main cropping practices. We studied both spatial (eight sites throughout South Mali during 2007 and temporal (two sites from 2002 to 2008 differences between simulated crop cycles and determined how the differences were indicated in satellite-derived phenometrics. The spatial comparison of the phenological indicator observations and simulations showed mainly that (i the satellite-derived start-of-season (SOS was detected approximately 30 days before the model-derived SOS; and (ii the satellite-derived end-of-season (EOS was typically detected 40 days after the model-derived EOS. Studying the inter-annual difference, we verified that the mean bias was globally consistent for different climatic conditions. Therefore, the land cover dynamics derived from the MODIS time series can reproduce the spatial and temporal variability of different start-of-season and end-of-season crop species. In particular, we recommend simultaneously using start-of-season phenometrics with crop models for yield forecasting to complement commonly used climate data and provide a better

  1. Deconstructing crop processes and models via identities

    DEFF Research Database (Denmark)

    Porter, John Roy; Christensen, Svend

    2013-01-01

    This paper is part review and part opinion piece; it has three parts of increasing novelty and speculation in approach. The first presents an overview of how some of the major crop simulation models approach the issue of simulating the responses of crops to changing climatic and weather variables......, mainly atmospheric CO2 concentration and increased and/or varying temperatures. It illustrates an important principle in models of a single cause having alternative effects and vice versa. The second part suggests some features, mostly missing in current crop models, that need to be included...

  2. Jerusalem artichoke as an agricultural crop

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Cosentino, G.P.; Wieczorek, A.; Duvnjak, Z.

    1984-01-01

    The Jerusalem artichoke (Helianthus tuberosus) is an agricultural crop which is of great potential for food, production of fuels, and industrial products. This crop gives a high yield in tubers, it grows better in poor soils than most crops, and it is resistant to pests and common plant diseases as well as to cold temperatures. In this article, the agronomic characteristics of this plant are discussed in detail. Special emphasis is given to the effects of various parameters on the production of both tubers and tops from the Jerusalem artichoke. 74 references.

  3. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  4. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  5. 4F CROPS: Future crops for food, feed, fibre and fuel

    Energy Technology Data Exchange (ETDEWEB)

    E. Alexopoulou, E.; Christou, M.; Eleftheriadis, I. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)

    2008-07-01

    As different sectors - food, feed, fiber, and fuels - compete for land, the yielding potential of the future non-food crops has to be as efficient as possible in order to minimize the competition for land. The main objective of 4F CROPS project is to survey and analyze all the parameters that will play an important role in successful non-food cropping systems in the agriculture of EU27 alongside the existing food crop systems. The work will start with the prediction of the future land use in short term (2020) and long term (2030), taking under consideration restrict factors for agriculture and the market demand for non-food crops. The cropping possibilities based on regional potential levels, ecology and climate will be determined. This group of non-food crops will be then subjected to a comparative cost analysis with conventional crops for the same time framework. Socio-economic impacts, like farmers' income, rural development, public development, and public acceptance will analyze. Then environmental implications will be assessed compared to their respective conventional products (fossil energy, conversional materials). Several environmental impacts will be assessed like soil quality and soil erosion, air quality and climate change, water issues, biodiversity and landscape by using LCA and EIE methods. The regulatory framework of the non-food crops will be considered including existing policies, co-existence and safety measures when the crops used for both food and non-food crops. All the collected information will be used for the formation of scenarios for successful non-food cropping alongside food cropping systems answering whether a completive bioeconomy is a viable option for EU27.

  6. The Crop Journal: A new scientific journal for the global crop science community

    Directory of Open Access Journals (Sweden)

    Jianmin Wan

    2013-10-01

    Full Text Available As global population increases and demands for food supplies become greater, we face great challenges in providing more products and in larger quantities from less arable land. Crop science has gained increasing importance in meeting these challenges and results of scientific research must be communicated worldwide on a regular basis. In many countries, however, crop scientists have to publish the results of their investigations in national journals with heterogeneous contents and in their native languages. As a consequence, valuable work often remains unknown to scientists elsewhere. As a big country with a large number of crop scientists, China has a wide range of climatic and ecological environments, diverse plant species and cropping systems, and different regional needs for food supplies, which justify the recent decision by the Crop Science Society of China and the Institute of Crop Science within the Chinese Academy of Agricultural Sciences, to launch a new communication channel, The Crop Journal. The goal of The Crop Journal is to meet an urgent need for a major Asia-based journal that covers the diverse fields of crop science. Our aim is to create a vital and thought-provoking journal that will highlight state-of-the-art original work and reviews by high-profile crop scientists and investigative groups throughout the world — a journal that will respond to the needs of specialists in strategic crop research. We will work with scientific and publishing colleagues worldwide, using The Plant Journal and Crop Science as models, to establish The Crop Journal as a broadly based high quality journal and a premier forum for issues in crop science. The Crop Journal will cover a wide range of topics, including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The journal also encourages the submission of review

  7. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR).

    Science.gov (United States)

    Malmstrom, Carolyn M; Bigelow, Patrick; Trębicki, Piotr; Busch, Anna K; Friel, Colleen; Cole, Ellen; Abdel-Azim, Heba; Phillippo, Colin; Alexander, Helen M

    2017-09-15

    As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most

  8. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  9. From the Academy: Colloquium perspective. Toward cropping systems that enhance productivity and sustainability.

    Science.gov (United States)

    Cook, R James

    2006-12-05

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding.

  10. African Crop Science Journal: Editorial Policies

    African Journals Online (AJOL)

    The African Crop Science Journal was established with the primary objective of ... and all those concerned with agricultural development issues in the region. .... as possible, the editors avoid appointing reviewers from the country of origin of ...

  11. Sensitivity of annual and seasonal reference crop ...

    Indian Academy of Sciences (India)

    scheduling and water resources management. Ref- ... time, and refers to evapotranspiration rate from a reference ... variable per unit increase in independent variable. Sensitivity ...... Pereira L S 2007 Relating water productivity and crop.

  12. TALE nucleases and next generation GM crops.

    KAUST Repository

    Mahfouz, Magdy M.; Li, Lixin

    2011-01-01

    Site-specific and adaptable DNA binding domains are essential modules to develop genome engineering technologies for crop improvement. Transcription activator-like effectors (TALEs) proteins are used to provide a highly specific and adaptable DNA

  13. Institutional Factors Influencing Crop Farmers Adoption of ...

    African Journals Online (AJOL)

    E M IGBOKWE

    recommended agrochemical practices (RAPs) among crop farmers in Nigeria. A total of 260 ... It would neither be logical nor ethical to expect poor people to forego the benefits of ..... Credit use is expected to assist farmers purchase necessary.

  14. Crop responses to CO2 enrichment

    International Nuclear Information System (INIS)

    Rogers, H.H.; Dahlman, R.C.

    1993-01-01

    Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agroecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO 2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO 2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO 2 . 137 refs., 4 figs., 4 tabs

  15. Smallholder integrated crop management (ICM) research planning ...

    African Journals Online (AJOL)

    Mo

    More women farmers were invited because they do most of the farming. Other participants came from ... smallholders to innovate their land and crop management strategies. This would be ..... Asian Farming Systems Association, 2 (2): 67.

  16. Crop physiology calibration in the CLM

    Directory of Open Access Journals (Sweden)

    I. Bilionis

    2015-04-01

    scalable and adaptive scheme based on sequential Monte Carlo (SMC. The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.

  17. Storage of catch crops to produce biogas

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2014-01-01

    . On the contrary, the poor quality of IR silage, due to its high TS content, made it inappropriate as feedstock for biogas production. A TS content of 25-35% is preferable, to obtain a proper fermentation avoid leachate run-off and growth of Clostridium sp. or mold formation. Avoiding soil particles in the bales......Catch crop biomass is a promising co-substrate for manure-based biogas plants in Denmark since the cultivation of catch crops is mandatory to retain nutrients in the soil, contributing to protect the aquatic environment. In general, the growth period for catch crops is from harvest of the previous...... crop in July-August to the end of the growing season and harvest in late October. Hence, for use of the biomass in biogas production there is a need for storage of the biomass. Storage as silage would guarantee the availability of the feedstock for biogas production during the whole year. A proper...

  18. Energy Crops and the Common Agricultural Policy

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Kes; Nilsson, Helen; Tomescu, Mihail [Lund Univ. (Sweden). International Inst. for Industrial Environmental Economics (IIIEE)

    2006-07-15

    The Biomass Action Plan (BAP) for Europe outlines how to achieve the targets for bioenergy and energy crops defined by the European Commission and member states. However, it is the Common Agricultural Policy (CAP) that shapes the utilisation of agricultural land. This paper therefore reviews the supportive measures for energy crops in recent CAP reforms and investigates the effects on farmers in 'real-life' case studies from Sweden, Italy and Austria. This paper explores if the recent CAP reforms are sufficient to motivate farmers to cultivate energy crops; identifies the barriers and drivers for energy crops from the perspective of farmers; and suggests how to enhance supportive measures in the CAP to overcome barriers and complement the BAP.

  19. Biomass for energy from field crops

    Energy Technology Data Exchange (ETDEWEB)

    Zubr, J.

    1988-01-01

    On the basis of a field experiment, selected crops were evaluated for feasibility in producing biomass applicable as raw material for fuels. Both the main products and byproducts of the crops were investigated in the laboratory for qualitative characteristics and were subjected to methanogenic fermentation under mesophilic conditions. The biogas energy potential and gross energy potential were determined. Under the climatic conditions of Northern Europe, sugar beet (Beta vulgaris) was found to be a superior energy crop. White cabbage (Brassica oleracea var. Capitata), rhubarb (Rheum rhaponticum) and comfrey (Symphytum asperum) can be considered as potential crops for biomass. The agrotechnical and the economic aspects of the biomass production are being subjected to further investigation.

  20. The effect of catch crop species on selenium availability for succeeding crops

    DEFF Research Database (Denmark)

    Stavridou, Eleftheria; Young, Scott D.; Thorup-Kristensen, Kristian

    2012-01-01

    2007–10 investigated the ability of catch crops (Italian ryegrass, fodder radish and hairy vetch) under different fertiliser regimes to reduce soil Se content in the autumn and to increase its availability in spring to the succeeding crop. Results and Conclusions The catch crops (Italian ryegrass...... and fodder radish) increased water-extractable Se content in the 0.25–0.75msoil layer in only one of the experiments. Selenium uptake by the catch crops varied between 65 and 3263 mg ha−1, depending on species, year and fertilisation treatment; this corresponded to 0.1–3.0% of the water-extractable soil Se......Background and Aims Selenium (Se) is an essential nutrient for humans and animals. In order to ensure an optimal concentration of Se in crops, Se fertilisers are applied. Catch crops may be an alternative way to increase Se concentrations in vegetables. Methods Three experiments in Denmark between...

  1. TBscore II

    DEFF Research Database (Denmark)

    Rudolf, Frauke; Lemvik, Grethe; Abate, Ebba

    2013-01-01

    Abstract Background: The TBscore, based on simple signs and symptoms, was introduced to predict unsuccessful outcome in tuberculosis patients on treatment. A recent inter-observer variation study showed profound variation in some variables. Further, some variables depend on a physician assessing...... them, making the score less applicable. The aim of the present study was to simplify the TBscore. Methods: Inter-observer variation assessment and exploratory factor analysis were combined to develop a simplified score, the TBscore II. To validate TBscore II we assessed the association between start...

  2. Influence of crop load on almond tree water status and its importance in irrigation scheduling

    Science.gov (United States)

    Puerto Conesa, Pablo; Domingo Miguel, Rafael; Torres Sánchez, Roque; Pérez Pastor, Alejandro

    2014-05-01

    In the Mediterranean area water is the main factor limiting crop production and therefore irrigation is essential to achieve economically viable yields. One of the fundamental techniques to ensure that irrigation water is managed efficiently with maximum productivity and minimum environmental impact is irrigation scheduling. The fact that the plant water status integrates atmospheric demand and soil water content conditions encourages the use of plant-based water status indicators. Some researchers have successfully scheduled irrigation in certain fruit trees by maintaining the maximum daily trunk diameter shrinkage (MDS) signal intensity at threshold values to generate (or not) water stress. However MDS not only depends on the climate and soil water content, but may be affected by tree factors such as age, size, phenological stage and fruit load. There is therefore a need to quantify the influence of these factors on MDS. The main objective of this work was to study the effects of crop load on tree water relations for scheduling purposes. We particularly focused on MDS vs VPD10-15 (mean air vapor pressure deficit during the period 10.00-15.00 h solar time) for different loads and phenological phases under non-limiting soil water conditions. The experiment was carried out in 2011 in a 1 ha plot in SE Spain with almond trees (Prunus dulcis (Mill.) D.A. Webb cv. 'Marta'). Three crop load treatments were studied according to three crop load levels, i) T100, high crop load, characteristic crop load, ii) T50, medium crop load, in which 50% of the fruits were removed and iii) T0, practically without fruits. Fruits were manually thinned. Each treatment, randomly distributed in blocks, was run in triplicate. Plant water status was assessed from midday stem water potential (Ψs), MDS, daily trunk growth rate (TGR), leaf turgor potential Ψp, fruit water potential (Ψf), stomatal conductance (gs) and photosynthesis (Pn) and transpiration rates (E). Yield, pruning weights and

  3. Potential of irradiation technology in horticultural crops

    International Nuclear Information System (INIS)

    Thomas, P.

    1994-01-01

    Fresh fruits and vegetables are living tissues which are subject to continuous change after harvest leading to senescence, cellular break-down and death. Post harvest losses in quality and quantity of horticultural crops result from physiological, pathological and physical processes, acting separately or in combination. Temperature management, maintenance of proper relative humidity of air, manipulation of storage temperature and exposing to ionizing radiation such as gamma rays enhance the shelf-life of horticultural crops

  4. A database for coconut crop improvement.

    Science.gov (United States)

    Rajagopal, Velamoor; Manimekalai, Ramaswamy; Devakumar, Krishnamurthy; Rajesh; Karun, Anitha; Niral, Vittal; Gopal, Murali; Aziz, Shamina; Gunasekaran, Marimuthu; Kumar, Mundappurathe Ramesh; Chandrasekar, Arumugam

    2005-12-08

    Coconut crop improvement requires a number of biotechnology and bioinformatics tools. A database containing information on CG (coconut germplasm), CCI (coconut cultivar identification), CD (coconut disease), MIFSPC (microbial information systems in plantation crops) and VO (vegetable oils) is described. The database was developed using MySQL and PostgreSQL running in Linux operating system. The database interface is developed in PHP, HTML and JAVA. http://www.bioinfcpcri.org.

  5. Modelling nutrient management in tropical cropping systems

    OpenAIRE

    Delve, R. (ed.); Probert, M. (ed.)

    2004-01-01

    Metadata only record In tropical regions, organic materials are often more important than fertilizers in maintaining soil fertility, yet fertilizer recommendations and most crop models are unable to take account of the level and quality of organic inputs that farmers use. Computer simulation models, such as the Agricultural Production Systems Simulator (APSIM) developed by CSIRO and the Queensland Department of Primary Industries, have proven their value in many cropping environments. Thes...

  6. Will energy crop yields meet expectations?

    International Nuclear Information System (INIS)

    Searle, Stephanie Y.; Malins, Christopher J.

    2014-01-01

    Expectations are high for energy crops. Government policies in the United States and Europe are increasingly supporting biofuel and heat and power from cellulose, and biomass is touted as a partial solution to energy security and greenhouse gas mitigation. Here, we review the literature for yields of 5 major potential energy crops: Miscanthus spp., Panicum virgatum (switchgrass), Populus spp. (poplar), Salix spp. (willow), and Eucalyptus spp. Very high yields have been achieved for each of these types of energy crops, up to 40 t ha −1  y −1 in small, intensively managed trials. But yields are significantly lower in semi-commercial scale trials, due to biomass losses with drying, harvesting inefficiency under real world conditions, and edge effects in small plots. To avoid competition with food, energy crops should be grown on non-agricultural land, which also lowers yields. While there is potential for yield improvement for each of these crops through further research and breeding programs, for several reasons the rate of yield increase is likely to be slower than historically has been achieved for cereals; these include relatively low investment, long breeding periods, low yield response of perennial grasses to fertilizer, and inapplicability of manipulating the harvest index. Miscanthus × giganteus faces particular challenges as it is a sterile hybrid. Moderate and realistic expectations for the current and future performance of energy crops are vital to understanding the likely cost and the potential of large-scale production. - Highlights: • This review covers Miscanthus, switchgrass, poplar, willow, and Eucalyptus. • High yields of energy crops are typically from small experimental plots. • Field scale yields are lower due to real world harvesting losses and edge effects. • The potential for yield improvement of energy crops is relatively limited. • Expectations must be realistic for successful policies and commercial production

  7. Integrated crop protection as a system approach

    OpenAIRE

    Haan, de, J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values connected to integrated crop protection. The role of integrated crop protection in prototyping new systems is discussed. The results of twenty years working with this prototyping methodology are pre...

  8. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Directory of Open Access Journals (Sweden)

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  9. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  10. Effect of acidified drinking water on the recovery of Salmonella enteritidis from broiler crops

    Directory of Open Access Journals (Sweden)

    Avila LAF de

    2003-01-01

    Full Text Available Crop is a known source of Salmonella contamination during broiler carcass processing. The effect of drinking water acidification by lactic acid or citric acid or a combination of those with cupric sulfate and d-limonene in the reduction of Salmonella Enteritidis (SE recovered from the crop of broilers was evaluated. Treatments were administered during 8 hours of preslaughter fasting period (Experiments I and II and during the last 32 hours of preslaughter (Experiment III. It was observed that acidification reduced water intake when treatments began at preslaughter feed withdrawal, and affected the possible reducing effect of these acids on SE recovering (Experiments I and II. Water intake during preslaughter feed withdrawal was not affected when treatment began 32 hours before slaughter (Experiment III. Treatments reduced SE recovering from crop (p<0.05. In Experiment III, 0.470% of lactic acid reduced the number of recovered SE in 99%. This study suggested that the addition of organic acids in the drinking water 24 hours before beginning the preslaughter feed withdrawal might reduce crop SE colonization and might be an important strategy to reduce SE contamination of broiler products during processing.

  11. Ecophysiology of horticultural crops: an overview

    Directory of Open Access Journals (Sweden)

    Restrepo-Díaz Hermann

    2010-04-01

    Full Text Available

    Horticultural crops include a wide range of commodities, such as fruits and vegetables that are highly valuable for humanity. They are extensively grown worldwide, and their production can be described as an open and highly complex system affected by many factors, among which we can count weather, soil and cropping system, as well as the interaction between these factors. The aim of environmental physiology is to characterize the interaction between environmental stress and crop response, in order to maximize both yield quantity and quality. This review presents the most recent findings about the effects of the main abiotic environmental factors (light, temperature, and water on whole plant physiology of horticultural crops. Environmental stresses can cause morpho-anatomical, physiological and biochemical changes in crops, resulting in a strong profit reduction. A clear understanding of environmental factors and their interaction with physiological processes is extremely important for improving horticultural practices (irrigation, light management, mineral nutrition, greenhouse design, etc., optimizing photosynthetic carbon assimilation and increasing fruit productivity and crop quality. In addition, the information obtained by ecophysiological studies can be incorporated into breeding programs or agricultural zoning strategies.

  12. Doses and application seasons of potassium on soybean crop in succession the cover crops

    Directory of Open Access Journals (Sweden)

    Amilton Ferreira Silva

    2014-02-01

    Full Text Available Potassium (K is the second nutrient that is required in larger amounts by soybean crop. With the use of high doses of that nutrient and increase of no-tillage areas in last years, some changes occurred in ways of this nutrient application, as well as the introduction of cover crops in the system for straw formation. Due those facts, the aim with this work was to study doses and times of potassium application for soybean sowed as succession for cover crops in no-tillage system, in a clayey Distrofic Red Latosol, in cerrado region. The experimental design was a randomized block with treatments arranged in 3x3x5 factorial scheme, with the following factors, cover crops: Pearl millet (Pennisetum glaucum and Proso millet (Panicum miliaceum and a control (fallow area, rates of K2O (0, 50 e 100 kg ha-1 and K2O application forms (100% in the cover crops; 100% at sowing of soybean; 100% in topdressing in soybean; 50% at sowing cover crops + 50% at soybean sowing; 50% at soybean sowing + 50% in topdressing in the soybean with four replicates. The Pennisetum glaucum as soybean predecessor crop yields higher dry matter content than the Panicum miliaceum in a short period of time. In clay soil with high content of potassium there was no response to the applied potassium levels. Full doses of potassium maintenance fertilization can be applied in the predecessor cover crop, at sowing or topdressing in soybean crop.

  13. Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Gooding, M.; Ambus, Per

    2009-01-01

    . In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with ‘extra’ barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark......) to grain N yield with 25–30% using the Land Equivalent ratio. In terms of absolute quantities, sole cropped pea accumulated more N in the grains as compared to the additive design followed by the replacement design and then sole cropped barley. The post harvest soil mineral N content was unaffected...

  14. Predicting optimum crop designs using crop models and seasonal climate forecasts.

    Science.gov (United States)

    Rodriguez, D; de Voil, P; Hudson, D; Brown, J N; Hayman, P; Marrou, H; Meinke, H

    2018-02-02

    Expected increases in food demand and the need to limit the incorporation of new lands into agriculture to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, those optimum crop designs should be known, while the main problem is to predict relevant attributes of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test our capacity to inform that "hindsight", by linking a tested crop model (APSIM) with a skillful seasonal climate forecasting system, to answer "What is the value of the skill in seasonal climate forecasting, to inform crop designs?" Results showed that the GCM POAMA-2 was reliable and skillful, and that when linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop designs, increase farmers profits and reduce risks.

  15. New indicators for global crop monitoring in CropWatch -case study in North China Plain

    International Nuclear Information System (INIS)

    Bingfang, Wu; Miao, Zhang; Hongwei, Zeng; Guoshui, Liu; Sheng, Chang; Gommes, René

    2014-01-01

    CropWatch is a monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information. Now in its 15th year of operation, CropWatch was modified several times to be a timely, comprehensive and independent global agricultural monitoring system using advanced remote sensing technology. Currently CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite (FY-3A) and cloud classification products of FY-2. With new satellite data, CropWatch will generate new indicators such as fallow land ratio (FLR), crop condition for irrigated (CCI) and non-irrigated (CCNI) areas separately, photosynthetically active radiation (PAR), radiation use efficiency for the photosynthetically active radiation (RUE PAR ) and cropping index (CI) with crop rotation information (CRI). In this paper, the methods for monitoring the new indicators are applied to the North China Plain which is one of the major grain producing areas in China. This paper shows the preliminary results of the new indicators and methods; they still need to be thoroughly validated before being incorporated into the operational CropWatch system. In the future, the new and improved indicators will help us to better understand the global situation of food security

  16. Chemical oxifertigation through the irrigation of greenhouse hydroponic tomato crop.

    Directory of Open Access Journals (Sweden)

    Freddy Soto-Bravo

    2015-06-01

    Full Text Available   The aim of this study was to evaluate the effect of hydrogen peroxide (H2O2 as an oxygen source in the rhizosphere, in grafted tomato (cv. Durinta/cv Maxifor and using coconut fiber as substrate The study was conducted from 2009 to 2010. Two treatments were used: a control without (H2O2 (T0 and the other with H2O2 (T1 applied in each irrigation. The parameters evaluated were i- fertigation: oxygen concentration ([O2], pH, electrical conductivity (EC, and drainage percentage; ii- growth: basal diameter and plant height; iii- yield and iv- fruit quality: firmness, Brix degrees, dry weight, and pH. The average value of [O2] in the irrigation solution through out the crop cycle increased from 9,92 mg/l at T0 to 12,1 mg/l at T1 (P<0,05, meanwhile in the drained solution the value increased from 8,75 mg/l at T0 to 9,22 mg/l at T1 (P<0,05. Although significant differences (P<0.05 were reached in the [O2] between treatments during some periods of the crop cycle, the [O2] in the T0 did not reach a critical threshold that would affect the proper oxygenation of the roots. Therefore, there was no effect of hydrogen peroxide treatment on the growth, productivity and quality of the fruit.

  17. Molecular and systems approaches towards drought-tolerant canola crops.

    Science.gov (United States)

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Pb II

    African Journals Online (AJOL)

    Windows User

    This investigation describes the use of non-living biomass of Aspergillus caespitosus for removal of ... Pb(II) production has exceeded 3.5 million tons per year. It has been used in the ... This biomass was selected after screening a wide range of microbes. .... prolonged, which proved better biopolymer in metal uptake (Gadd ...

  19. Genetic Diversity and Population Structure of Collard Landraces and their Relationship to Other Brassica oleracea Crops

    Directory of Open Access Journals (Sweden)

    Sandra E. Pelc

    2015-11-01

    Full Text Available Landraces have the potential to provide a reservoir of genetic diversity for crop improvement to combat the genetic erosion of the food supply. A landrace collection of the vitamin-rich specialty crop collard ( L. var. was genetically characterized to assess its potential for improving the diverse crop varieties of . We used the Illumina 60K SNP BeadChip array with 52,157 single nucleotide polymorphisms (SNPs to (i clarify the relationship of collard to the most economically important crop types, (ii evaluate genetic diversity and population structure of 75 collard landraces, and (iii assess the potential of the collection for genome-wide association studies (GWAS through characterization of genomic patterns of linkage disequilibrium. Confirming the collection as a valuable genetic resource, the collard landraces had twice the polymorphic markers (11,322 SNPs and 10 times the variety-specific alleles (521 alleles of the remaining crop types examined in this study. On average, linkage disequilibrium decayed to background levels within 600 kilobase (kb, allowing for sufficient coverage of the genome for GWAS using the physical positions of the 8273 SNPs polymorphic among the landraces. Although other relationships varied, the previous placement of collard with the cabbage family was confirmed through phylogenetic analysis and principal coordinates analysis (PCoA.

  20. Errors in measuring absorbed radiation and computing crop radiation use efficiency

    International Nuclear Information System (INIS)

    Gallo, K.P.; Daughtry, C.S.T.; Wiegand, C.L.

    1993-01-01

    Radiation use efficiency (RUE) is often a crucial component of crop growth models that relate dry matter production to energy received by the crop. RUE is a ratio that has units g J -1 , if defined as phytomass per unit of energy received, and units J J -1 , if defined as the energy content of phytomass per unit of energy received. Both the numerator and denominator in computation of RUE can vary with experimental assumptions and methodologies. The objectives of this study were to examine the effect that different methods of measuring the numerator and denominator have on the RUE of corn (Zea mays L.) and to illustrate this variation with experimental data. Computational methods examined included (i) direct measurements of the fraction of photosynthetically active radiation absorbed (f A ), (ii) estimates of f A derived from leaf area index (LAI), and (iii) estimates of f A derived from spectral vegetation indices. Direct measurements of absorbed PAR from planting to physiological maturity of corn were consistently greater than the indirect estimates based on green LAI or the spectral vegetation indices. Consequently, the RUE calculated using directly measured absorbed PAR was lower than the RUE calculated using the indirect measures of absorbed PAR. For crops that contain senesced vegetation, green LAI and the spectral vegetation indices provide appropriate estimates of the fraction of PAR absorbed by a crop canopy and, thus, accurate estimates of crop radiation use efficiency

  1. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL; Wang, Dali [ORNL; Wullschleger, Stan D [ORNL; Kline, Keith L [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL; Kang, Shujiang [ORNL

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  2. Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector.

    Science.gov (United States)

    Huesing, Joseph E; Andres, David; Braverman, Michael P; Burns, Andrea; Felsot, Allan S; Harrigan, George G; Hellmich, Richard L; Reynolds, Alan; Shelton, Anthony M; Jansen van Rijssen, Wilna; Morris, E Jane; Eloff, Jacobus N

    2016-01-20

    Advances in biotechnology continue to drive the development of a wide range of insect-protected, herbicide-tolerant, stress-tolerant, and nutritionally enhanced genetically modified (GM) crops, yet societal and public policy considerations may slow their commercialization. Such restrictions may disproportionately affect developing countries, as well as smaller entrepreneurial and public sector initiatives. The 2014 IUPAC International Congress of Pesticide Chemistry (San Francisco, CA, USA; August 2014) included a symposium on "Challenges Associated with Global Adoption of Agricultural Biotechnology" to review current obstacles in promoting GM crops. Challenges identified by symposium presenters included (i) poor public understanding of GM technology and the need for enhanced communication strategies, (ii) nonharmonized and prescriptive regulatory requirements, and (iii) limited experience with regulations and product development within some public sector programs. The need for holistic resistance management programs to enable the most effective use of insect-protected crops was also a point of emphasis. This paper provides details on the symposium discussion and provides background information that can be used in support of further adoption of beneficial GM crops. Overall, it emphasizes that global adoption of modern agricultural biotechnology has not only provided benefits to growers and consumers but has great potential to provide solutions to an increasing global population and diminishing agricultural land. This potential will be realized by continued scientific innovation, harmonized regulatory systems, and broader communication of the benefits of the high-yielding, disease-resistant, and nutritionally enhanced crops attainable through modern biotechnology.

  3. Using the DNDC model to compare soil organic carbon dynamics under different crop rotation and fertilizer strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mu, L.; Liang, Y.; Xue, Q.; Chen, C.; Lin, X.

    2014-06-01

    Soil organic carbon (SOC) plays a vital role in determining soil fertility, water holding capacity and susceptibility to land degradation. On the Chinese Loess Plateau, a large amount of crop residues is regularly removed; therefore, this agricultural area mainly depends on fertilizer inputs to maintain crop yields. This paper aims to use a computer simulation model (DeNitrification and DeComposition, or DNDC) to estimate the changes of SOC content and crop yield from 1998 to 2047 under different cropping systems, providing some strategies to maintain the SOC in balance and to increase crop yields. The results demonstrated that: (i) single manure application or combined with nitrogen fertilizer could significantly enhance the SOC content and crop yield on the sloped land, terraced field and flat land; and (ii) in contrast to sloped land and terraced field, the SOC content and crop yield both continuously increased in flat fields, indicating that the flat field in this region is a good soil surface for carbon sequestration. These results emphasize that application of manure combined with nitrogen fertilizer would be a better management practice to achieve a goal of increasing soil carbon sequestration and food security. (Author)

  4. Chemical oxifertigation through the irrigation of greenhouse hydroponic tomato crop

    International Nuclear Information System (INIS)

    Soto-Bravo, Freddy

    2015-01-01

    Evaluate the effect of hydrogen peroxide (H_2O_2) as an oxygen source in the rhizosphere, in grafted tomato (cv. Durinta/cv Maxifor) and using coconut fiber as substrate. The study was conducted form 2009 to 2010 the study. Two treatments were used: a control without (H_2O_2) (T_0) and the other with used: a control without (H_2O_2) (T_1) applied in each irrigation. The parameters evaluated were: i- fertigation: oxygen concentration ([O_2]). pH, electrical conductivity (EC), and drainage percentage; ii- growth: basal diameter and plant height; iii- yield and iv- fruit quality: firmness, Brix degrees, dry weight, and pH. The average value of [O_2] in the irrigation solution through out the crop cycle increased from 9,92 mg/l at T_0 to 12,1 mg/ at T_1 (P [es

  5. Effect of manure vs. fertilizer inputs on productivity of forage crop models.

    Science.gov (United States)

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-06-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha(-1), respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha(-1) of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha(-1) under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  6. Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2011-06-01

    Full Text Available Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV. The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  7. Optimising crop production and nitrate leaching in China: Measured and simulated effects of straw incorporation and nitrogen fertilisation

    DEFF Research Database (Denmark)

    Manevski, Kiril; Børgesen, Christen Duus; Li, Xiaoxin

    2016-01-01

    model Daisy for estimating crop production and nitrate leaching from silty loam fields in the NCP. The main objectives were to: i) calibrate and validate Daisy for the NCP pedo-climate and field management conditions, and ii) use the calibrated model and the field data in a multi-response analyses...

  8. Effects of soil bunds on runoff, soil and nutrient losses, and crop yield in the Central Highlands of Ethiopia

    NARCIS (Netherlands)

    Adimassu Teferi, Z.; Mekonnen, K.; Yirga, C.; Kessler, A.

    2014-01-01

    The effects of soil bunds on runoff, losses of soil and nutrients, and crop yield are rarely documented in the Central Highlands of Ethiopia. A field experiment was set up consisting of three treatments: (i) barley-cultivated land protected with graded soil bunds (Sb); (ii) fallow land (F); and

  9. Nitrate leaching and pesticide use in energy crops

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2006-01-01

    Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well.......Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well....

  10. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  11. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  12. Winter rye cover crop effect on corn seedling pathogens

    Science.gov (United States)

    Cover crops have been grown successfully in Iowa, but sometimes a cereal rye cover crop preceding corn can reduce corn yields. Our research examines the effect of a rye cover crop on infections of the succeeding corn crop by soil fungal pathogens. Plant measurements included: growth stage, height, r...

  13. Winter cover crop effect on corn seedling pathogens

    Science.gov (United States)

    Cover crops are an excellent management tool to improve the sustainability of agriculture. Winter rye cover crops have been used successfully in Iowa corn-soybean rotations. Unfortunately, winter rye cover crops occasionally reduce yields of the following corn crop. We hypothesize that one potential...

  14. 7 CFR 457.142 - Northern potato crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance provisions. 457.142... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.142 Northern potato crop insurance provisions. The Northern Potato Crop Insurance Provisions for the 2008 and succeeding...

  15. Effect of tillage and crop residues management on mungbean (vigna radiata (L.) wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas

    International Nuclear Information System (INIS)

    Mohammad, W.; Shehzadi, S.; Shah, S.M.; Shah, Z.

    2010-01-01

    A field experiment was conducted to study the effect of crop residues and tillage practices on BNF, WUE and yield of mungbean (Vigna radiata (L.) Wilczek) under semi arid rainfed conditions at the Livestock Research Station, Surezai, Peshawar in North West Frontier Province (NWFP) of Pakistan. The experiment comprised of two tillage i) conventional tillage (T1) and ii) no-tillage (T0) and two residues i) wheat crop residues retained (+) and ii) wheat crop residues removed (-) treatments. Basal doses of N at the rate of 20: P at the rate of 60 kg ha-1 were applied to mungbean at sowing time in the form of urea and single super phosphate respectively. Labelled urea having 5% 15N atom excess was applied at the rate of 20 kg N ha-1 as aqueous solution in micro plots (1m2) in each treatment plot to assess BNF by mungbean. Similarly, maize and sorghum were grown as reference crops and were fertilized with 15N labelled urea as aqueous solution having 1% 15N atom excess at the rate of 90 kg N ha/sup -1/. The results obtained showed that mungbean yield (grain/straw) and WUE were improved in notillage treatment as compared to tillage treatment. Maximum mungbean grain yield (1224 kg ha/sup -1/) and WUE (6.61kg ha/sup -1 mm/sup -1/) were obtained in no-tillage (+ residues) treatment. The N concentration in mungbean straw and grain was not significantly influenced by tillage or crop residue treatments. The amount of fertilizer-N taken up by straw and grain of mungbean was higher under no-tillage with residues-retained treatment but the differences were not significant. The major proportion of N (60.03 to 76.51%) was derived by mungbean crop from atmospheric N2 fixation, the remaining (19.6 to 35.91%) was taken up from the soil and a small proportion (3.89 to 5.89%) was derived from the applied fertilizer in different treatments. The maximum amount of N fixed by mungbean (82.59 kg ha/sup -1/) was derived in no-tillage with wheat residue-retained treatment. By using sorghum as

  16. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Science.gov (United States)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  17. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    Science.gov (United States)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  18. Do cover crop mixtures have the same ability to suppress weeds as competitive monoculture cover crops?

    Directory of Open Access Journals (Sweden)

    Brust, Jochen

    2014-02-01

    Full Text Available An increasing number of farmers use cover crop mixtures instead of monoculture cover crops to improve soil and crop quality. However, only little information is available about the weed suppression ability of cover crop mixtures. Therefore, two field experiments were conducted in Baden-Württemberg between 2010 and 2012, to compare growth and weed suppression of monoculture cover crops and cover crop mixtures. In the first experiment, heterogeneous results between yellow mustard and the cover crop mixture occurred. For further research, a field experiment was conducted in 2012 to compare monocultures of yellow mustard and hemp with three cover crop mixtures. The evaluated mixtures were: “MELO”: for soil melioration; “BETA”: includes only plant species with no close relation to main cash crops in Central Europe and “GPS”: for usage as energy substrate in spring. Yellow mustard, MELO, BETA and GPS covered 90% of the soil in less than 42 days and were able to reduce photosynthetically active radiation (PAR on soil surface by more than 96% after 52 days. Hemp covered 90% of the soil after 47 days and reduced PAR by 91% after 52 days. Eight weeks after planting, only BETA showed similar growth to yellow mustard which produced the highest dry matter. The GPS mixture had comparatively poor growth, while MELO produced similar dry matter to hemp. Yellow mustard, MELO and BETA reduced weed growth by 96% compared with a no cover crop control, while hemp and GPS reduced weeds by 85% and 79%. In spring, weed dry matter was reduced by more than 94% in plots with yellow mustard and all mixtures, while in hemp plots weeds were only reduced by 71%. The results suggest that the tested cover crop mixtures offer similar weed suppression ability until spring as the monoculture of the competitive yellow mustard.

  19. Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

    Science.gov (United States)

    Yu, Kangfu

    2012-01-01

    Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops. PMID:21811383

  20. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Jakob Geipel

    2014-10-01

    Full Text Available Precision Farming (PF management strategies are commonly based on estimations of within-field yield potential, often derived from remotely-sensed products, e.g., Vegetation Index (VI maps. These well-established means, however, lack important information, like crop height. Combinations of VI-maps and detailed 3D Crop Surface Models (CSMs enable advanced methods for crop yield prediction. This work utilizes an Unmanned Aircraft System (UAS to capture standard RGB imagery datasets for corn grain yield prediction at three early- to mid-season growth stages. The imagery is processed into simple VI-orthoimages for crop/non-crop classification and 3D CSMs for crop height determination at different spatial resolutions. Three linear regression models are tested on their prediction ability using site-specific (i unclassified mean heights, (ii crop-classified mean heights and (iii a combination of crop-classified mean heights with according crop coverages. The models show determination coefficients \\({R}^{2}\\ of up to 0.74, whereas model (iii performs best with imagery captured at the end of stem elongation and intermediate spatial resolution (0.04m\\(\\cdot\\px\\(^{-1}\\.Following these results, combined spectral and spatial modeling, based on aerial images and CSMs, proves to be a suitable method for mid-season corn yield prediction.

  1. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  2. Future contributions of crop modelling : from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement

    NARCIS (Netherlands)

    Hammer, G.L.; Kropff, M.J.; Sinclair, T.R.; Porter, J.R.

    2002-01-01

    Crop modelling has evolved over the last 30 or so years in concert with advances in crop physiology, crop ecology and computing technology. Having reached a respectable degree of acceptance, it is appropriate to review briefly the course of developments in crop modelling and to project what might be

  3. Weed Control with Cover Crops in Irrigated Potatoes

    OpenAIRE

    G.H. Mehring; J.E. Stenger; H.M. Hatterman-Valenti

    2016-01-01

    Field experiments at Oakes, ND, USA in 2010 and Carrington, ND, USA in 2011 were conducted to evaluate the potential for cover crops grown in the Northern Great Plains, USA in order to reduce weed emergence and density in irrigated potatoes. Treatments included five cover crop treatments and three cover crop termination treatments. Termination of cover crops was done with glyphosate, disk-till, and roto-till. Cover crop biomass accumulation was greatest for rye/canola and triticale at Oakes, ...

  4. Cover Crop (Rye) and No-Till System in Wisconsin

    OpenAIRE

    Alföldi, Thomas

    2014-01-01

    Erin Silva, University of Wisconsin, describes an organic no-till production technique using rye as cover crop to suppress weeds in the following production season. Using a roller-crimper, the overwintering rye is terminated at the time of cash crop planting, leaving a thick mat of plant residue on the soil surface. Soybeans are sown directly into the cover crop residue, allowing the cash crop to emerge through the terminated cover crop while suppressing weeds throughout the season. W...

  5. 78 FR 13454 - Common Crop Insurance Regulations; Pecan Revenue Crop Insurance Provisions

    Science.gov (United States)

    2013-02-28

    ... meaning of the definition to allow a choice of either four or six years of sales records to be used to... adding ``2014'' in its place; 0 b. In section 1 by: 0 i. Revising the definitions of ``approved average... Provisions for the 2013 crop year by changing the definition of two-year coverage module to one crop year...

  6. 78 FR 17606 - Common Crop Insurance Regulations; Arizona-California Citrus Crop Insurance Provisions

    Science.gov (United States)

    2013-03-22

    ... definition of ``crop year'' by removing the term ``citrus'' and adding the term ``insured'' in its place; 0 v... is planning to replace the category of ``type'' in the actuarial documents with four categories named... category of ``practice'' in the actuarial documents with four categories named ``cropping practice...

  7. Crop damage by primates: quantifying the key parameters of crop-raiding events.

    Directory of Open Access Journals (Sweden)

    Graham E Wallace

    Full Text Available Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species.

  8. Genetically modified crops: the fastest adopted crop technology in the history of modern agriculture

    Directory of Open Access Journals (Sweden)

    Khush Gurdev S

    2012-09-01

    Full Text Available Abstract The major scientific advances of the last century featured the identification of the structure of DNA, the development of molecular biology and the technology to exploit these advances. These breakthroughs gave us new tools for crop improvement, including molecular marker-aided selection (MAS and genetic modification (GM. MAS improves the efficiency of breeding programs, and GM allows us to accomplish breeding objectives not possible through conventional breeding approaches. MAS is not controversial and is now routinely used in crop improvement programs. However, the international debate about the application of genetic manipulation to crop improvement has slowed the adoption of GM crops in developing as well as in European countries. Since GM crops were first introduced to global agriculture in 1996, Clive James has published annual reports on the global status of commercialized GM crops as well as special reports on individual GM crops for The International Service for the Acquisition of Agri-biotech Applications (ISAAA. His 34th report, Global Status of Commercialized Biotech/ GM crops: 2011 [1] is essential reading for those who are concerned about world food security.

  9. The green, blue and grey water footprint of crops and derived crop products

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid.

  10. Crop Damage by Primates: Quantifying the Key Parameters of Crop-Raiding Events

    Science.gov (United States)

    Wallace, Graham E.; Hill, Catherine M.

    2012-01-01

    Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species. PMID:23056378

  11. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  12. Genetically modified crops and food security.

    Directory of Open Access Journals (Sweden)

    Matin Qaim

    Full Text Available The role of genetically modified (GM crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15-20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy.

  13. Availability and utility of crop composition data.

    Science.gov (United States)

    Kitta, Kazumi

    2013-09-04

    The safety assessment of genetically modified (GM) crops is mandatory in many countries. Although the most important factor to take into account in these safety assessments is the primary effects of artificially introduced transgene-derived traits, possible unintended effects attributed to the insertion of transgenes must be carefully examined in parallel. However, foods are complex mixtures of compounds characterized by wide variations in composition and nutritional values. Food components are significantly affected by various factors such as cultivars and the cultivation environment including storage conditions after harvest, and it can thus be very difficult to detect potential adverse effects caused by the introduction of a transgene. A comparative approach focusing on the identification of differences between GM foods and their conventional counterparts has been performed to reveal potential safety issues and is considered the most appropriate strategy for the safety assessment of GM foods. This concept is widely shared by authorities in many countries. For the efficient safety assessment of GM crops, an easily accessible and wide-ranging compilation of crop composition data is required for use by researchers and regulatory agencies. Thus, we developed an Internet-accessible food composition database comprising key nutrients, antinutrients, endogenous toxicants, and physiologically active substances of staple crops such as rice and soybeans. The International Life Sciences Institute has also been addressing the same matter and has provided the public a crop composition database of soybeans, maize, and cotton.

  14. Genetically Modified Crops and Food Security

    Science.gov (United States)

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers’ income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15–20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy. PMID:23755155

  15. Crop Biometric Maps: The Key to Prediction

    Directory of Open Access Journals (Sweden)

    Francisco Rovira-Más

    2013-09-01

    Full Text Available The sustainability of agricultural production in the twenty-first century, both in industrialized and developing countries, benefits from the integration of farm management with information technology such that individual plants, rows, or subfields may be endowed with a singular “identity.” This approach approximates the nature of agricultural processes to the engineering of industrial processes. In order to cope with the vast variability of nature and the uncertainties of agricultural production, the concept of crop biometrics is defined as the scientific analysis of agricultural observations confined to spaces of reduced dimensions and known position with the purpose of building prediction models. This article develops the idea of crop biometrics by setting its principles, discussing the selection and quantization of biometric traits, and analyzing the mathematical relationships among measured and predicted traits. Crop biometric maps were applied to the case of a wine-production vineyard, in which vegetation amount, relative altitude in the field, soil compaction, berry size, grape yield, juice pH, and grape sugar content were selected as biometric traits. The enological potential of grapes was assessed with a quality-index map defined as a combination of titratable acidity, sugar content, and must pH. Prediction models for yield and quality were developed for high and low resolution maps, showing the great potential of crop biometric maps as a strategic tool for vineyard growers as well as for crop managers in general, due to the wide versatility of the methodology proposed.

  16. Crop modeling applications in agricultural water management

    Science.gov (United States)

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  17. Genetically modified crops and food security.

    Science.gov (United States)

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15-20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy.

  18. Crop biometric maps: the key to prediction.

    Science.gov (United States)

    Rovira-Más, Francisco; Sáiz-Rubio, Verónica

    2013-09-23

    The sustainability of agricultural production in the twenty-first century, both in industrialized and developing countries, benefits from the integration of farm management with information technology such that individual plants, rows, or subfields may be endowed with a singular "identity." This approach approximates the nature of agricultural processes to the engineering of industrial processes. In order to cope with the vast variability of nature and the uncertainties of agricultural production, the concept of crop biometrics is defined as the scientific analysis of agricultural observations confined to spaces of reduced dimensions and known position with the purpose of building prediction models. This article develops the idea of crop biometrics by setting its principles, discussing the selection and quantization of biometric traits, and analyzing the mathematical relationships among measured and predicted traits. Crop biometric maps were applied to the case of a wine-production vineyard, in which vegetation amount, relative altitude in the field, soil compaction, berry size, grape yield, juice pH, and grape sugar content were selected as biometric traits. The enological potential of grapes was assessed with a quality-index map defined as a combination of titratable acidity, sugar content, and must pH. Prediction models for yield and quality were developed for high and low resolution maps, showing the great potential of crop biometric maps as a strategic tool for vineyard growers as well as for crop managers in general, due to the wide versatility of the methodology proposed.

  19. Enhancing productivity of salt affected soils through crops and cropping system

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The reclamation of salt affected soils needs the addition of soil amendment and enough water to leach down the soluble salts. The operations may also include other simple agronomic techniques to reclaim soils and to know the crops and varieties that may be grown and other management practices which may be followed on such soils (Khan, 2001). The choice of crops to be grown during reclamation of salt affected soils is very important to obtain acceptable yields. This also decides cropping systems as well as favorable diversification for early reclamation, desirable yield and to meet the other requirements of farm families. In any salt affected soils, the following three measures are adopted for reclamation and sustaining the higher productivity of reclaimed soils. 1. Suitable choice of crops, forestry and tree species; 2. Suitable choice of cropping and agroforestry system; 3. Other measures to sustain the productivity of reclaimed soils. (author)

  20. Yield accumulation in irrigated sugarcane. II. Utilization of intercepted radiation

    International Nuclear Information System (INIS)

    Muchow, R.C.; Evensen, C.I.; Osgood, R.V.; Robertson, M.J.

    1997-01-01

    Intercepted radiation is a major driving variable of crop production under high-input irrigated conditions. Quantitative information on the utilization of radiation in yield accumulation allows extrapolation beyond the current season and location, and when this information is incorporated into crop growth simulation models, the effect of crop age on the productivity of different cultivars can be examined under different climatic conditions. This paper examines the differential performance of high-yielding sugarcane (Saccharum spp. hybrids) crops in terms of the amount of short-wave solar radiation intercepted (Si) and the efficiency of use of intercepted radiation (RUE) in biomass production. Biomass accumulation during the 12- to 24-mo crop cycle was examined for two experiments conducted in Hawaii, and three experiments conducted in tropical Australia from 1991 to 1993. The analysis showed that (i) RUE was much less for growth after 12 mo than in the first 12 mo; (ii) maximum RUE of sugarcane approaches 2.0 g MJ(-1); (iii) biomass accumulation beyond 12 mo was not related directly to radiation utilization; and (iv) cultivars differed in Si, but differences in RUE could not be unequivocally assessed due to the confounding effect of variable recovery of trash in biomass estimates. It is concluded that stalk death and consequent biomass loss are important factors contributing to yield variation in sugarcane crops growing for 12 to 24 mo, with a yield plateau occurring at variable crop ages during the second year of growth

  1. RNA interference in designing transgenic crops.

    Science.gov (United States)

    Ali, Nusrat; Datta, Swapan K; Datta, Karabi

    2010-01-01

    RNA interference (RNAi) is a sequence specific gene silencing mechanism, triggered by the introduction of dsRNA leading to mRNA degradation. It helps in switching on and off the targeted gene, which might have significant impact in developmental biology. Discovery of RNAi represents one of the most promising and rapidly advancing frontiers in plant functional genomics and in crop improvement by plant metabolic engineering and also plays an important role in reduction of allergenicity by silencing specific plant allergens. In plants the RNAi technology has been employed successfully in improvement of several plant species- by increasing their nutritional value, overall quality and by conferring resistance against pathogens and diseases. The review gives an insight to the perspective use of the technology in designing crops with innovation, to bring improvement to crop productivity and quality.

  2. FCDD: A Database for Fruit Crops Diseases.

    Science.gov (United States)

    Chauhan, Rupal; Jasrai, Yogesh; Pandya, Himanshu; Chaudhari, Suman; Samota, Chand Mal

    2014-01-01

    Fruit Crops Diseases Database (FCDD) requires a number of biotechnology and bioinformatics tools. The FCDD is a unique bioinformatics resource that compiles information about 162 details on fruit crops diseases, diseases type, its causal organism, images, symptoms and their control. The FCDD contains 171 phytochemicals from 25 fruits, their 2D images and their 20 possible sequences. This information has been manually extracted and manually verified from numerous sources, including other electronic databases, textbooks and scientific journals. FCDD is fully searchable and supports extensive text search. The main focus of the FCDD is on providing possible information of fruit crops diseases, which will help in discovery of potential drugs from one of the common bioresource-fruits. The database was developed using MySQL. The database interface is developed in PHP, HTML and JAVA. FCDD is freely available. http://www.fruitcropsdd.com/

  3. DAMAGE BY GAME ANIMALS IN AGRICULTURAL CROPS

    Directory of Open Access Journals (Sweden)

    Monika Sporek

    2014-06-01

    Full Text Available In the recent years the damage caused by the game animals to the agricultural crops has increased considerably. An immediate cause of this situation is an expanding population of big game, especially wild boar. This increase is primarily due to the changes in agrocenoses, dominated by large area maize cropping. The crop damage is compensated by hunting associations leasing the specific areas. The aim of this paper was to present the costs of the compensation incurred by the lease-holders of the hunting grounds. A cause - effect relationship between greater game damage and increased harvest of the game animals was demonstrated. The analysis was based on the data provided in the Statistical Yearbooks of the Central Statistical Office for 2000-2013. The study also indicated a problem of a decline in roe deer population, caused by more intense harvest resulting from farmer compensation claims.

  4. TALE nucleases and next generation GM crops.

    KAUST Repository

    Mahfouz, Magdy M.

    2011-04-01

    Site-specific and adaptable DNA binding domains are essential modules to develop genome engineering technologies for crop improvement. Transcription activator-like effectors (TALEs) proteins are used to provide a highly specific and adaptable DNA binding modules. TALE chimeric nucleases (TALENs) were used to generate site-specific double strand breaks (DSBs) in vitro and in yeast, Caenorhabditis elegans, mammalian and plant cells. The genomic DSBs can be generated at predefined and user-selected loci and repaired by either the non-homologous end joining (NHEJ) or homology dependent repair (HDR). Thus, TALENs can be used to achieve site-specific gene addition, stacking, deletion or inactivation. TALE-based genome engineering tools should be powerful to develop new agricultural biotechnology approaches for crop improvement. Here, we discuss the recent research and the potential applications of TALENs to accelerate the generation of genomic variants through targeted mutagenesis and to produce a non-transgenic GM crops with the desired phenotype.

  5. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2008-03-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  6. Engineering crop nutrient efficiency for sustainable agriculture.

    Science.gov (United States)

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  7. Energy potential of agricultural crops in Kosovo

    International Nuclear Information System (INIS)

    Sahiti, Naser; Sfishta, Avni; Gramatikov, Plamen

    2015-01-01

    Primary energy mix in Kosovo with 98 % consisting of lignite and only 2 % of water is far from portfolio of primary energy sources which could contribute to a sustainable and environmental friendly energy supply of the country. In order to improve the situation, government is supporting activities in favor of upgrading of electricity production capacities based on Renewable Energy Sources. Corresponding action plans and feed in tariffs are already in place. However, prior to any investment, one needs specific results on available potential. Current study provides results of the analysis of Kosovo potential for energy production by using of agricultural crops. Study is based on national statistics on available agricultural crops in Kosovo and provides results on biomass potential of crops, corresponding energy potential and an assessment of financial cost of energy produced.

  8. Enhancing crop innate immunity: new promising trends

    Directory of Open Access Journals (Sweden)

    Pin-Yao eHuang

    2014-11-01

    Full Text Available Plants are constantly exposed to potentially pathogenic microbes present in their surrounding environment. Due to the activation of the pattern-triggered immunity (PTI response that largely relies on accurate detection of pathogen- or microbe-associated molecular patterns by pattern-recognition receptors (PRRs, plants are resistant to the majority of potential pathogens. However, adapted pathogens may avoid recognition or repress plant PTI and resulting diseases significantly affect crop yield worldwide. PTI provides protection against a wide range of pathogens. Reinforcement of PTI through genetic engineering may thus generate crops with broad-spectrum field resistance. In this review, new approaches based on fundamental discoveries in PTI to improve crop immunity are discussed. Notably, we highlight recent studies describing the interfamily transfer of PRRs or key regulators of PTI signalling.

  9. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2011-02-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  10. Principal component regression for crop yield estimation

    CERN Document Server

    Suryanarayana, T M V

    2016-01-01

    This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...

  11. Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California

    Science.gov (United States)

    Fulton, A.; Snyder, R.; Hillyer, C.; English, M.; Sanden, B.; Munk, D.

    2012-04-01

    Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California Allan Fulton, Richard Snyder, Charles Hillyer, Marshall English, Blake Sanden, and Dan Munk Adoption of scientific methods to decide when to irrigate and how much water to apply to a crop has increased over the last three decades in California. In 1988, less than 4.3 percent of US farmers employed some type of science-based technique to assist in making irrigation scheduling decisions (USDA, 1995). An ongoing survey in California, representing an industry irrigating nearly 0.4 million planted almond hectares, indicates adoption rates ranging from 38 to 55 percent of either crop evapotranspiration (ETc), soil moisture monitoring, plant water status, or some combination of these irrigation scheduling techniques to assist with making irrigation management decisions (California Almond Board, 2011). High capital investment to establish fruit and nut crops, sensitivity to over and under-irrigation on crop performance and longevity, and increasing costs and competition for water have all contributed to increased adoption of scientific irrigation scheduling methods. These trends in adoption are encouraging and more opportunities exist to develop improved irrigation scheduling tools, especially computer decision-making models. In 2009 and 2010, an "On-line Irrigation Scheduling Advisory Service" (OISO, 2012), also referred to as Online Irrigation Management (IMO), was used and evaluated in commercial walnut, almond, and French prune orchards in the northern Sacramento Valley of California. This specific model has many features described as the "Next Generation of Irrigation Schedulers" (Hillyer, 2010). While conventional irrigation management involves simply irrigating as needed to avoid crop stress, this IMO is designed to control crop stress, which requires: (i) precise control of crop water availability (rather than controlling applied water); (ii) quantifying crop

  12. Small Diameter Bomb Increment II (SDB II)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-439 Small Diameter Bomb Increment II (SDB II) As of FY 2017 President’s Budget Defense... Bomb Increment II (SDB II) DoD Component Air Force Joint Participants Department of the Navy Responsible Office References SAR Baseline (Production...Mission and Description Small Diameter Bomb Increment II (SDB II) is a joint interest United States Air Force (USAF) and Department of the Navy

  13. Flower volatiles, crop varieties and bee responses.

    Directory of Open Access Journals (Sweden)

    Björn K Klatt

    Full Text Available Pollination contributes to an estimated one third of global food production, through both the improvement of the yield and the quality of crops. Volatile compounds emitted by crop flowers mediate plant-pollinator interactions, but differences between crop varieties are still little explored. We investigated whether the visitation of crop flowers is determined by variety-specific flower volatiles using strawberry varieties (Fragaria x ananassa Duchesne and how this affects the pollination services of the wild bee Osmia bicornis L. Flower volatile compounds of three strawberry varieties were measured via headspace collection. Gas chromatography showed that the three strawberry varieties produced the same volatile compounds but with quantitative differences of the total amount of volatiles and between distinct compounds. Electroantennographic recordings showed that inexperienced females of Osmia bicornis had higher antennal responses to all volatile compounds than to controls of air and paraffin oil, however responses differed between compounds. The variety Sonata was found to emit a total higher level of volatiles and also higher levels of most of the compounds that evoked antennal responses compared with the other varieties Honeoye and Darselect. Sonata also received more flower visits from Osmia bicornis females under field conditions, compared with Honeoye. Our results suggest that differences in the emission of flower volatile compounds among strawberry varieties mediate their attractiveness to females of Osmia bicornis. Since quality and quantity of marketable fruits depend on optimal pollination, a better understanding of the role of flower volatiles in crop production is required and should be considered more closely in crop-variety breeding.

  14. Crop rotation impact on soil quality

    International Nuclear Information System (INIS)

    Aziz, I.; Ashraf, M.; Mahmood, T.; Islam, K.R.

    2011-01-01

    Management systems influence soil quality over time. A study was carried out on Van meter farm of the Ohio State University South Centers at Piketon Ohio, USA to evaluate the impact of crop rotations on soil quality from 2002 to 2007. The crop rotations comprised of continuous corn (CC), corn-soybean (CS) and corn-soybean-wheat-cowpea (CSW). Ten soil cores were collected at 0-7.5, 7.5-15, 15-22.5 and 22.5-30 cm, and sieved. The soils were analyzed for total microbial biomass (C/sub mic/), basal respiration (BR) and specific maintenance respiration (qCO/sub 2/) rates as biological quality indicators; total organic carbon (TC), active carbon (AC) and total nitrogen (TN) as chemical quality indicators; and aggregate stability (AS), particulate organic matter (POM) and total porosity (ft) as physical quality parameters at different depths of soil. The inductive additive approach based on the concept of 'higher value of any soil property except ft, a better indicator of soil quality' was used to calculate the biological (SBQ), chemical (SCQ), physical (SPQ) and composite soil quality (SQI) indices. The results showed that crop rotation had significant impact on C/sub mic/, BR, qCO/sub 2/, TC, AC, TN, AS and POM except ft at different depths of soil. The CSW had higher soil quality values than CC and CS. The values of selected soil quality properties under the given crop rotation significantly decreased except ft with increasing soil depth. The SBQ (23%), SCQ (16%), SPQ (7%) and SQI (15%) improved under CSW over time. The results imply that multiple cropping systems could be more effective for maintaining and enhancing soil quality than sole-cropping systems. (author)

  15. Impact of GM crops on biodiversity.

    Science.gov (United States)

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  16. Effects of climate change on water requirements and phenological period of major crops in Heihe River basin, China - Based on the accumulated temperature threshold method

    Science.gov (United States)

    Han, Dongmei; Xu, Xinyi; Yan, Denghua

    2016-04-01

    In recent years, global climate change has significantly caused a serious crisis of water resources throughout the world. However, mainly through variations in temperature, climate change will affect water requirements of crop. It is obvious that the rise of temperature affects growing period and phenological period of crop directly, then changes the water demand quota of crop. Methods including accumulated temperature threshold and climatic tendency rate were adopted, which made up for the weakness of phenological observations, to reveal the response of crop phenological change during the growing period. Then using Penman-Menteith model and crop coefficients from the United Nations Food& Agriculture Organization (FAO), the paper firstly explored crop water requirements in different growth periods, and further forecasted quantitatively crop water requirements in Heihe River Basin, China under different climate change scenarios. Results indicate that: (i) The results of crop phenological change established in the method of accumulated temperature threshold were in agreement with measured results, and (ii) there were many differences in impacts of climate warming on water requirement of different crops. The growth periods of wheat and corn had tendency of shortening as well as the length of growth periods. (ii)Results of crop water requirements under different climate change scenarios showed: when temperature increased by 1°C, the start time of wheat growth period changed, 2 days earlier than before, and the length of total growth period shortened 2 days. Wheat water requirements increased by 1.4mm. However, corn water requirements decreased by almost 0.9mm due to the increasing temperature of 1°C. And the start time of corn growth period become 3 days ahead, and the length of total growth period shortened 4 days. Therefore, the contradiction between water supply and water demands are more obvious under the future climate warming in Heihe River Basin, China.

  17. Safety assessment of genetically modified crops

    International Nuclear Information System (INIS)

    Atherton, Keith T.

    2002-01-01

    The development of genetically modified (GM) crops has prompted widespread debate regarding both human safety and environmental issues. Food crops produced by modern biotechnology using recombinant techniques usually differ from their conventional counterparts only in respect of one or a few desirable genes, as opposed to the use of traditional breeding methods which mix thousands of genes and require considerable efforts to select acceptable and robust hybrid offspring. The difficulties of applying traditional toxicological testing and risk assessment procedures to whole foods are discussed along with the evaluation strategies that are used for these new food products to ensure the safety of these products for the consumer

  18. Phytoextraction crop disposal--an unsolved problem

    International Nuclear Information System (INIS)

    Sas-Nowosielska, A.; Kucharski, R.; Malkowski, E.; Pogrzeba, M.; Kuperberg, J.M.; Krynski, K.

    2004-01-01

    Several methods of contaminated crop disposal after phytoextraction process (composting, compaction, incineration, ashing, pyrolysis, direct disposal, liquid extraction) have been described. Advantages and disadvantages of methods are presented and discussed. Composting, compaction and pyrolysis are the pretreatment steps, since significant amount of contaminated biomass will still exist after each of the process. Four methods of final disposal were distinguished: incineration, direct disposal, ashing and liquid extraction. Among them, incineration (smelting) is proposed as the most feasible, economically acceptable and environmentally sound. - Methods of contaminated crop disposal are described and evaluated

  19. Individual plant care in cropping systems

    OpenAIRE

    Griepentrog, Hans W.; Nørremark, Michael; Nielsen, Henning; Blackmore, Simon

    2003-01-01

    Individual plant care cropping systems, embodied in precision farming, may lead to new opportunities in agricultural crop management. The objective of the project was to provide high accuracy seed position mapping of a field of sugar beet. An RTK GPS was retrofitted on to a precision seeder to map the seeds as they were planted. The average error between the seed map and the actual plant map was about 32 mm to 59 mm. The results showed that the overall accuracy of the estimated plant position...

  20. Bioethanol production from crops - recent developments

    International Nuclear Information System (INIS)

    Dalton, Colin

    1992-01-01

    The author notes much higher rates of ethanol production in Brazil and the United States of America than in the European Economic Community. While bioethanol from arable crops makes environmental sense there is, at present, a sizeable difference between the value of fuel ethanol (Pound 100-130/t) and the cost of producing it (Pound 236-Pound 450/t). This gap could be remedied using excise duty. Farmers would like to change crop production but await a political initiative. The technology for bioethanol production still needs some fine tuning, with ETBE (an ether produced from reacting isobutylene with ethanol) being preferred to other methods. (UK)

  1. Climate protection and energy crops. Potential for greenhouse gas emission reduction through crop rotation and crop planning

    International Nuclear Information System (INIS)

    Eckner, Jens; Peter, Christiane; Vetter, Armin

    2015-01-01

    The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.

  2. The effect of cropping sequence on the crop yield and nutrient availability

    International Nuclear Information System (INIS)

    Sisworo, W.H.; Rasjid, H.

    1988-01-01

    A two seasons field experiment was conducted to study the carry over effect of previous crop on the succeeding crop yield and plan nutrient (N and P) availability. The experiment consisted of eight treatments were arranged in a randomized block design with six resplications. Cropping sequence was studied that was soybean followed by corn and a continuous corn system. The effect of added P to the previous crops on the succeeding crops yield was also observed. Labelled fertilizer were used in the experiment to measure dinitrogen fixation of two soybean varieties and the amount of available nutrient in the soil by using isotopic dilution technique. The result obtained showed that corn yield was significantly influenced by cropping sequence, but available nutrient was not. Corn grown after soybean produced about 22 percent more grain than those of the continuous corn system. The phosphorus applied to the first season crops increased significantly the succeeding corn yield. The highest amount of accumulation in soybean was 81 kg N/h, around 40 percent of the amount was obtained through fixation. (authors). 19 refs.; 8 tabs

  3. Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing

    Directory of Open Access Journals (Sweden)

    Betty Mulianga

    2015-10-01

    Full Text Available Over the recent past, there has been a growing concern on the need for mapping cropping practices in order to improve decision-making in the agricultural sector. We developed an original method for mapping cropping practices: crop type and harvest mode, in a sugarcane landscape of western Kenya using remote sensing data. At local scale, a temporal series of 15-m resolution Landsat 8 images was obtained for Kibos sugar management zone over 20 dates (April 2013 to March 2014 to characterize cropping practices. To map the crop type and harvest mode we used ground survey and factory data over 1280 fields, digitized field boundaries, and spectral indices (the Normalized Difference Vegetation Index (NDVI and the Normalized Difference Water Index (NDWI were computed for all Landsat images. The results showed NDVI classified crop type at 83.3% accuracy, while NDWI classified harvest mode at 90% accuracy. The crop map will inform better planning decisions for the sugar industry operations, while the harvest mode map will be used to plan for sensitizations forums on best management and environmental practices.

  4. Screening boreal energy crops and crop residues for methane biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.; Rintala, J.A. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Viinikainen, T.A. [Department of Chemistry, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2008-06-15

    The purpose of the study was to screen potential boreal energy crops and crop residues for their suitability in methane production and to investigate the effect of harvest time on the methane production potential of different crops. The specific methane yields of crops, determined in 100-200 d methane potential assays, varied from 0.17 to 0.49 m{sup 3} CH{sub 4} kg{sup -1} VS{sub added} (volatile solids added) and from 25 to 260 m{sup 3} CH{sub 4} t{sub ww}{sup -1} (tonnes of wet weight). Jerusalem artichoke, timothy-clover grass and reed canary grass gave the highest potential methane yields of 2900-5400 m{sup 3} CH{sub 4} ha{sup -1}, corresponding to a gross energy yield of 28-53 MWh ha{sup -1} and ca. 40,000-60,000 km ha{sup -1} in passenger car transport. The effect of harvest time on specific methane yields per VS of crops varied a lot, whereas the specific methane yields per t{sub ww} increased with most crops as the crops matured. (author)

  5. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. EUE (energy use efficiency) of cropping systems for a sustainable agriculture

    International Nuclear Information System (INIS)

    Alluvione, Francesco; Moretti, Barbara; Sacco, Dario; Grignani, Carlo

    2011-01-01

    Energy efficiency of agriculture needs improvement to reduce the dependency on non-renewable energy sources. We estimated the energy flows of a wheat-maize-soybean-maize rotation of three different cropping systems: (i) low-input integrated farming (LI), (ii) integrated farming following European Regulations (IFS), and (iii) conventional farming (CONV). Balancing N fertilization with actual crop requirements and adopting minimum tillage proved the most efficient techniques to reduce energy inputs, contributing 64.7% and 11.2% respectively to the total reduction. Large differences among crops in energy efficiency (maize: 2.2 MJ kg -1 grain; wheat: 2.6 MJ kg -1 grain; soybean: 4.1 MJ kg -1 grain) suggest that crop rotation and crop management can be equally important in determining cropping system energy efficiency. Integrated farming techniques improved energy efficiency by reducing energy inputs without affecting energy outputs. Compared with CONV, energy use efficiency increased 31.4% and 32.7% in IFS and LI, respectively, while obtaining similar net energy values. Including SOM evolution in the energy analysis greatly enhanced the energy performance of IFS and, even more dramatically, LI compared to CONV. Improved energy efficiency suggests the adoption of alternative farming systems to reduce greenhouse gas emissions from agriculture. However, a thorough evaluation should include net global warming potential assessment. -- Highlights: → We evaluated the energy flows of integrated as alternative to conventional Farming. → Energy flows, soil organic matter evolution included, were analyzed following process analysis. → Energy flows were compared using indicators. → Integrated farming improved energy efficiency without affecting net energy. → Inclusion of soil organic matter in energy analysis accrue environmental evaluation.

  7. Utilization of tropical crop residues and agroindustrial by-products in animal nutrition. Constraints and perspectives

    International Nuclear Information System (INIS)

    Preston, T.R.; Parra, R.

    1983-01-01

    The importance of by-products and crop residues as animal feeds is increasing steadily. This is a consequence of the increasing demand for cereal grains as both human and animal (chiefly poultry) food, and the increasing demand for energy coupled with decreasing availability of fossil fuels. The effects of these two trends are that primary use of land for livestock production (usually grazing systems) will steadily diminish; at the same time, sources of biomass will increase in importance as renewable energy sources, and greater emphasis will be placed on draught animal power. Most by-products and crop residues are fibrous and therefore of only low to moderate nutritive value, or have special physical and chemical characteristics making them difficult to incorporate in conventional ''balanced'' rations. Such feed raw materials may need special processing and/or special forms of supplementation if they are to be used efficiently. It is hypothesized that industrial by-products and crop residues will be more efficiently utilized if they are incorporated in diversified and integrated production systems, i.e. (a) livestock production is integrated with production of cash crops both for food and fuel; (b) different livestock species are utilized in the same enterprise in a complementary way; (c) livestock feeding is based on crop residues (energy) supplemented with protein-rich forages and aquatic plants; and (d) animal wastes are recycled and used for food, fertilizer and fuel. This strategy is particularly suitable for the conditions in (i) tropical countries, whose climate favours high crop/biomass yields per unit area and ease of fermentation of organic wastes, and (ii) family farms, for which diversification means greater opportunity for self-sufficiency and increased possibilities for use of family resources. (author)

  8. Test of a solar crop dryer

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S. [Teknologisk Institut. SolEnergiCentret, Taastrup (Denmark); Floejgaard Kristensen, E. [Danmarks JordbrugsForskning, Tjele (Denmark); Forman, T. [Aidt Miljoe A/S, Thorsoe (Denmark)

    2001-01-01

    One of the major goals of the project 'Test and Research Project into the Drying of Food and Wood Products with Solar Heat' was to develop and test a solar crop dryer for use in Ghana. Based on a survey in Ghana (Jensen, Frank and Kristensen, 1999) it was decided to develop a dryer for drying of maize for seed as the increase in value of the crop due the drying here would be high - the dryer may, however, also be used to dry other crops or other items - one unit will e.g. be erected in Ghana to test drying of fish. The capacity of the dryer was defined to be 500 kg having a collector area of approx 25 m{sup 2}. It was decided to let the dryer consist of 5 separate units each with a transparent collector area of 4.77 m{sup 2} and a capacity of approx. 100 kg. The modulized concept has several benfits: If one drying bed is operated improperly this will not affect the total quantity of crops being dried at that time. It is possible to dry different crops (creating different pressure drop) side by side without risking that the crop with the highest pressure drop will be dried improperly. Small dc fans are often cheaper than larger dc fans. The system will be less complex, and an even air distribution over the drying bed is easier obtainable. Finally it is possible to start with only one unit and then gradually increase the capacity of the solar dryer - this will make it easier to invest in a solar dryer. It was further decided that the fans of the dryer should be powered directly by PV-panels in order to make the dryer independent of an often unreliable, missing or expensive grid. The dryer is going to be erected and tested at Silwood Farms situated close to Accra. Silwood Farms has total land acreage of 210 acres where 176 acres are used for cultivating maize - the rest is used for gowing pineapple. A majority of the maize is processed into seed. The main harvest season for maize at Silwood Farms is August/September with a smaller harvest period in January

  9. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  10. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  11. Impact of sole cropping and multiple cropping on soil humified carbon fractions

    International Nuclear Information System (INIS)

    Radhakrishnan, R.; Lee, I.J.

    2014-01-01

    The present study was planned to improve our understanding how crop rotation can enhance humified C fractions. A long term experiment was conducted on Vanmeter farm of the Ohio State University South Centers at Piketon Ohio, USA from 2002 to 2007. Crop rotation treatments included were continuous corn (CC), corn-soybean (CS) and corn-soybean-wheat-cowpea (CSW) rotations. Randomized complete block design with 6 replications was used under natural field conditions. The findings of this long-term study revealed that multiple cropping had significantly improved humified carbon fractions compared to mono-cropping system. Although total humified carbon (THOC), sugar free humified carbon (HOC) concentration were non-significant however, humin (NH) contents, humic (HA), fulvic acids (FA), humic and fulvic acid associated glucose (HA-NH and FA-NH) were significantly affected by various crop rotations within five years. The soil under CC had 22-52% significantly greater NH concentration than CSW and CS rotations respectively. Similarly all crop rotations had shown 5-16 increase in HA and 5-17% decreased in FA over time. Likewise soil under CC had 16 and 54% greater HA-NH concentration as compared to CSW and CS rotations. The FA-NH concentration increased significantly by 27- 51% in soil under all treatments over time. The soil under CSW had greater HA/FA (1.6) fallowed by CC (1.4) and CS (1.1). Soils under CSW had significantly greater HA/HOC (12-18%) as compare to CC and CS respectively. Conversely, the value of FA/HOC decreased (1-23%) in soil under all crop rotation treatments within five years. Degree of humification (DH) had shown a significant increase (7-12%) in soil under all treatments as compared to 2002. Irrespective of crop rotation THOC, HOC, NH, humin, HA, HR and FA/HOC concentration decreased significantly with increase in soil depth. While fulvic acid concentration HA/HOC in all crop rotation increased with increase in soil depth. The effect of crop rotation

  12. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    Science.gov (United States)

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  13. Nitrogen dynamics following grain legumes and subsequent catch crops and the effects on succeeding cereal crops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2009-01-01

    balances. A 2½-year lysimeter experiment was carried out on a temperate sandy loam soil. Crops were not fertilized in the experimental period and the natural 15N abundance technique was used to determine grain legume N2 fixation. Faba bean total aboveground DM production was significantly higher (1,300 g m...... on the subsequent spring wheat or winter triticale DM production. Nitrate leaching following grain legumes was significantly reduced with catch crops compared to without catch crops during autumn and winter before sowing subsequent spring wheat. Soil N balances were calculated from monitored N leaching from...

  14. Changes in scopoletin concentration in cassava chips from four varieties during storage

    DEFF Research Database (Denmark)

    Gnonlonfin, Gbemenou Joselin Benoit; Gbaguidi, Fernand; Gbenou, Joachim D.

    2011-01-01

    The use of the root crop cassava (Manihot esculenta Crantz) is constrained by its rapid deterioration after harvesting. Chemical and spectroscopic examination earlier revealed the accumulation of the four hydroxycoumarins esculetin, esculin, scopolin and scopoletin derived from the phenylpropanoi...

  15. The green, blue and grey water footprint of crops and derived crop products

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  16. Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data

    Directory of Open Access Journals (Sweden)

    Xiaolong Liu

    2015-01-01

    Full Text Available Identification of crop species is an important issue in agricultural management. In recent years, many studies have explored this topic using multi-spectral and hyperspectral remote sensing data. In this study, we perform dedicated research to propose a framework for mapping crop species by combining hyperspectral and Light Detection and Ranging (LiDAR data in an object-based image analysis (OBIA paradigm. The aims of this work were the following: (i to understand the performances of different spectral dimension-reduced features from hyperspectral data and their combination with LiDAR derived height information in image segmentation; (ii to understand what classification accuracies of crop species can be achieved by combining hyperspectral and LiDAR data in an OBIA paradigm, especially in regions that have fragmented agricultural landscape and complicated crop planting structure; and (iii to understand the contributions of the crop height that is derived from LiDAR data, as well as the geometric and textural features of image objects, to the crop species’ separabilities. The study region was an irrigated agricultural area in the central Heihe river basin, which is characterized by many crop species, complicated crop planting structures, and fragmented landscape. The airborne hyperspectral data acquired by the Compact Airborne Spectrographic Imager (CASI with a 1 m spatial resolution and the Canopy Height Model (CHM data derived from the LiDAR data acquired by the airborne Leica ALS70 LiDAR system were used for this study. The image segmentation accuracies of different feature combination schemes (very high-resolution imagery (VHR, VHR/CHM, and minimum noise fractional transformed data (MNF/CHM were evaluated and analyzed. The results showed that VHR/CHM outperformed the other two combination schemes with a segmentation accuracy of 84.8%. The object-based crop species classification results of different feature integrations indicated that

  17. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  18. Epistatic association mapping in homozygous crop cultivars.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Lü

    Full Text Available The genetic dissection of complex traits plays a crucial role in crop breeding. However, genetic analysis and crop breeding have heretofore been performed separately. In this study, we designed a new approach that integrates epistatic association analysis in crop cultivars with breeding by design. First, we proposed an epistatic association mapping (EAM approach in homozygous crop cultivars. The phenotypic values of complex traits, along with molecular marker information, were used to perform EAM. In our EAM, all the main-effect quantitative trait loci (QTLs, environmental effects, QTL-by-environment interactions and QTL-by-QTL interactions were included in a full model and estimated by empirical Bayes approach. A series of Monte Carlo simulations was performed to confirm the reliability of the new method. Next, the information from all detected QTLs was used to mine novel alleles for each locus and to design elite cross combination. Finally, the new approach was adopted to dissect the genetic basis of seed length in 215 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 19 main-effect QTLs and 3 epistatic QTLs were identified, more than 10 novel alleles were mined and 3 elite parental combinations, such as Daqingdou and Zhengzhou790034, were predicted.

  19. Estimating Canopy Dark Respiration for Crop Models

    Science.gov (United States)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  20. Improving tree establishment with forage crops

    Science.gov (United States)

    Eric J. Holzmueller; Carl W. Mize

    2003-01-01

    Tree establishment in Iowa can be difficult without adequate weed control. Although herbicides are effective at controlling weeds, they may not be desirable in riparian settings and some landowners are opposed to using them. An alternative to herbicides is the use of forage crops to control weeds. A research project was established in 1998 to evaluate the influence of...

  1. Kenaf Fibre Crop for Bioeconomic Industrial Development

    NARCIS (Netherlands)

    Lips, S.J.J.; Dam, van J.E.G.

    2013-01-01

    Kenaf (Hibiscus cannabinus L.) is a high yielding fibre crop that can be utilised as raw material in many industrial applications ranging from traditional fabrics, yarns and ropes to new applications in building materials, composites and lightweight car parts. Kenaf competes in some applications

  2. (Hordeum Vulgare) Crop Coefficient and Comparative Assessment

    African Journals Online (AJOL)

    Bheema

    The second prerequisite for sustainable use of water was developing/ ... Following the construction of .... pond capacity, the irrigation method, soil type, major crops grown in the area, and the ... determines the viability of any irrigation project. .... lack of awareness, lack of skill, technology and lack of adequate knowledge in ...

  3. Possible Health Hazards from Genetically Engineered Crops ...

    African Journals Online (AJOL)

    The paradox of Genetic Engineering of crops is evident from the unending revolution in the seeding and growth of new multibillion naira industries while it also poses the greatest hazards to life on the planet Earth. Recombination DNA technology is used to insert, delete, transpose and substitute new genes in plants that ...

  4. Perception of Innovative Crop Insurance in Australia

    NARCIS (Netherlands)

    Meuwissen, M.P.M.; Molnar, T.A.

    2010-01-01

    Worldwide, extreme climate risks cause stakeholders in food supply chains to search for new risk management tools. In Australia, recently so-called crop yield simulation insurance has been introduced based on an integrated agrometeorological simulation model. Current uptake is relatively low,

  5. Ethical reflections on herbicide resistant crops

    DEFF Research Database (Denmark)

    Madsen, Kathrine Hauge; Sandøe, Peter

    2005-01-01

    The introduction of genetically modified (GM) crops has caused a fierce public debate in Europe.Much of the controversy centres on possible risks to the environment. A specific problem here is thatrisk perception of the scientific experts differs from that of the public. In this paper, risks asso...

  6. Effects of Weather Variability on Crop Abandonment

    Directory of Open Access Journals (Sweden)

    Kelvin Mulungu

    2015-03-01

    Full Text Available In Zambia, every year some parts of the maize fields are abandoned post-planting. Reasons for this are not clearly known. In this paper, we examine the influence of soil and climatic factors on crop abandonment using a six-year (2007–2012 panel data by modeling the planted-to-harvested ratio (a good indicator of crop abandonment using a fractional and linear approach. Therefore, for the first time, our study appropriately (as supported by the model specification tests that favour fractional probit over linear models the fractional nature of crop abandonment. Regression results, which are not very different between the two specifications, indicate that, more than anything, high rainfall immediately after planting and inadequate fertilizer are the leading determinants of crop abandonment. In the agro-ecological region where dry planting takes place, low temperature during planting months negatively affects the harvested area. The results have implications on the sustainability of farming systems in the face of a changing climate.

  7. Farming with future: making crop protection sustainable

    NARCIS (Netherlands)

    Wijnands, F.G.

    2011-01-01

    The project Farming with future works with parties with a vested interest to promote sustainable crop protection in practice. Besides developing new knowledge, it spends a good deal of its energy in the embedding of sustainable practices within relevant organisations, businesses and agrarian

  8. Soil, Plant, and Crop Science. Teacher Edition.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This package contains an instructor's manual, an instructor's resource package, and a student workbook for a course in agricultural production and management as it relates to crop production. The module contains 17 units of instruction, each of which contains some or all of the following components: objective sheet, instructor's guide, information…

  9. Insect Pests of Field Crops. MP-28.

    Science.gov (United States)

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…

  10. Jojoba: a crop whose time has come

    Energy Technology Data Exchange (ETDEWEB)

    Yermanos, D.M.

    1979-01-01

    The prospects of developing Simmondsia chinensis into a profitable energy-related crop are discussed. Apart from yielding seed oil with lubricating properties, it has potential as a landscape and soil conservation plant. Propagation, spacing, temperature and soil requirements, irrigation, pollination, stand establishment, yields and breeding are considered.

  11. Field and Forage Crop Pests. MEP 310.

    Science.gov (United States)

    Morgan, Omar, D.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests that can be found in field and forage crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the…

  12. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  13. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  14. Data summaries | | African Crop Science Journal

    African Journals Online (AJOL)

    (African Crop Science Journal 1999 7(3) Special Issue: Monograph on geographic shifts in highland cooking banana (Musa, group AAA-EA) production in Uganda: 231-243). AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms ...

  15. Radiation balance in the sweet sorghum crop

    International Nuclear Information System (INIS)

    Assis, F.N. de; Mendez, M.E.G.; Martins, S.R.; Verona, L.A.

    1987-01-01

    The fluxes of incident solar radiation, reflected and net radiation were measured during the growing cicle of two fields of sweet sorghum (Sorghum bicolor L.), cus. BR-501 and BR-503, maintained under convenient irrigation level. Resultant data allowed to estimate the crop albedo as well as the estimates of Rn. (M.A.C.) [pt

  16. Characterisation of Seasonal Rainfall for Cropping Schedules ...

    African Journals Online (AJOL)

    El Nino-South Oscillation (ENSO) phenomenon occurs in the Equatorial Eastern Pacific Ocean and has been noted to account significantly for rainfall variability in many parts of the world, particularly tropical regions. This variability is very important in rainfed crop production and needs to be well understood. Thirty years of ...

  17. Site summaries | | African Crop Science Journal

    African Journals Online (AJOL)

    (African Crop Science Journal 1999 7(3) Special Issue: Monograph on geographic shifts in highland cooking banana (Musa, group AAA-EA) production in Uganda: 244-297). AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms ...

  18. Weed Identification and Control in Vegetable Crops.

    Science.gov (United States)

    Ferretti, Peter A., Comp.

    This agriculture extension service publication from Pennsylvania State University examines weed control and identification in vegetable crops. Contents include: (1) Types of weeds; (2) Reducing losses caused by weeds, general control methods and home garden weed control; (3) How herbicides are used; (4) Specific weeds in vegetable plantings; and…

  19. Agronomy of metal crops used in agromining

    Science.gov (United States)

    This review of the agronomy of metal crops used in agromining/phytomining summarizes the history of the development of phytomining and the experimental work to identify the agronomic practices most important to high annual nickel yield when hypernickelophore (accumulate over 1% Ni in dry shoots). Th...

  20. Carotenoid metabolism and regulation in horticultural crops

    Science.gov (United States)

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors in many horticultural crops attribute to overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegeta...

  1. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  2. Agricultural innovations for sustainable crop production intensification

    Directory of Open Access Journals (Sweden)

    Michele Pisante

    2012-10-01

    Full Text Available Sustainable crop production intensification should be the first strategic objective of innovative agronomic research for the next 40 years. A range of options exist (often very location specific for farming practices, approaches and technologies that ensure sustainability, while at the same time improving crop production. The main challenge is to encourage farmers in the use of appropriate technologies,  and  to  ensure  that  knowledge  about  sound  production  practices  is  increasingly accepted and applied by farmers. There is a huge, but underutilized potential to link farmers’ local knowledge with science-based innovations, through favourable institutional arrangements.  The same  holds  for  the  design,  implementation  and  monitoring  of  improved  natural  resource management  that  links  community  initiatives  to  external  expertise.  It is also suggested that a comprehensive effort be undertaken to measure different stages of the innovation system, including technological adoption and diffusion at the farm level, and to investigate the impact of agricultural policies on technological change and technical efficiency. This paper provides a brief review of agronomic management practices that support sustainable crop production system and evidence on developments  in the selection of crops and cultivars; describes farming systems for crop which take a predominantly ecosystem approach; discusses the scientific application of ecosystem principles for the management of pest and weed populations; reviews the  improvements in fertilizer and nutrient management that explain productivity growth; describes the benefits and constraints of irrigation technologies; and suggests a way forward. Seven changes in the context for agricultural development are proposed that heighten the need to examine how innovation occurs in the agricultural sector.

  3. Tomo II

    OpenAIRE

    Llano Zapata, José Eusebio

    2015-01-01

    Memorias, histórico, físicas, crítico, apologéticas de la América Meridional con unas breves advertencias y noticias útiles, a los que de orden de Su Majestad hubiesen de viajar y describir aquellas vastas regiones. Reino Vegetal, Tomo II. Por un anónimo americano en Cádiz por los años de 1757. Muy Señor mío, juzgo que los 20 artículos del libro que remití a Vuestra Merced le habrán hecho formar el concepto que merece la fecundidad de aquellos países en las producciones minerales. Y siendo es...

  4. Fitting maize into sustainable cropping systems on acid soils of the tropics

    International Nuclear Information System (INIS)

    Horst, W.J.

    2000-01-01

    One of the key elements of sustainable cropping systems is the integration of crops and/or crop cultivars with high tolerance of soil acidity and which make most efficient use of the nutrients supplied by soil and fertilizer. This paper is based mainly on on-going work within an EU-funded project combining basic research on plant adaptation mechanisms by plant physiologists, and field experimentation on acid soils in Brazil, Cameroon, Colombia and Guadeloupe by breeders, soil scientists and a agronomists. The results suggest that large genetic variability exists in adaptation of plants to acid soils. A range of morphological and physiological plant characteristics contribute to tolerance of acid soils, elucidation of which has contributed to the development of rapid techniques for screening for tolerance. Incorporation of acid-soil-tolerant species and cultivars into cropping systems contributes to improved nutrient efficiency overall, and thus reduces fertilizer needs. This may help to minimize maintenance applications of fertiliser through various pathways: (i) deeper root growth resulting in more-efficient uptake of nutrients from the sub-soil and less leaching, (ii) more biomass production resulting in less seepage and less leaching, with more intensive nutrient cycling, maintenance of higher soil organic-matter content, and, consequently, less erosion owing to better soil protection by vegetation and mulch. (author)

  5. 76 FR 43606 - Common Crop Insurance Regulations; Onion Crop Insurance Provisions

    Science.gov (United States)

    2011-07-21

    ... higher first stage production guarantee for most onion producing areas. Also, a contracted onion crop... for the damaged onion acreage, then any later appraised unharvested production or harvested production...'', ``Onion production'', ``Production guarantee (per acre)'', ``Storage onions'', ``Topping'', ``Transplanted...

  6. Using participatory risk mapping (PRM to identify and understand people's perceptions of crop loss to animals in Uganda.

    Directory of Open Access Journals (Sweden)

    Amanda D Webber

    Full Text Available Considering how people perceive risks to their livelihoods from local wildlife is central to (i understanding the impact of crop damage by animals on local people and (ii recognising how this influences their interactions with, and attitudes towards, wildlife. Participatory risk mapping (PRM is a simple, analytical tool that can be used to identify and classify risk within communities. Here we use it to explore local people's perceptions of crop damage by wildlife and the animal species involved. Interviews (n = 93, n = 76 and seven focus groups were conducted in four villages around Budongo Forest Reserve, Uganda during 2004 and 2005. Farms (N = 129 were simultaneously monitored for crop loss. Farmers identified damage by wildlife as the most significant risk to their crops; risk maps highlighted its anomalous status compared to other anticipated challenges to agricultural production. PRM was further used to explore farmers' perceptions of animal species causing crop damage and the results of this analysis compared with measured crop losses. Baboons (Papio anubis were considered the most problematic species locally but measurements of loss indicate this perceived severity was disproportionately high. In contrast goats (Capra hircus were considered only a moderate risk, yet risk of damage by this species was significant. Surprisingly, for wild pigs (Potamochoerus sp, perceptions of severity were not as high as damage incurred might have predicted, although perceived incidence was greater than recorded frequency of damage events. PRM can assist researchers and practitioners to identify and explore perceptions of the risk of crop damage by wildlife. As this study highlights, simply quantifying crop loss does not determine issues that are important to local people nor the complex relationships between perceived risk factors. Furthermore, as PRM is easily transferable it may contribute to the identification and development of

  7. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Science.gov (United States)

    Chu, Yingmin; Shen, Yanjun; Yuan, Zaijian

    2017-06-01

    The North China Plain (NCP) has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF) of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1) the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI) of cotton was the largest, and for vegetables, it was the smallest; (2) the total WF, WFblue, WFgreen and WFgrey for 13 years (2000-2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3) winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue) accounted for 74.2 % of the total WFblue in the HSP; (4) the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat-summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  8. The feasibility of crop diversification in rice based cropping systems in haor ecosystem

    OpenAIRE

    Shopan, J.; Bhuiya, M.S.U.; Kader, M.A.; Hasan, M.K.

    2012-01-01

    An experiment was conducted in five farmers’ field in Dingaputa haor of Purba Tetulia village, Mohangonj Upazila in Netrakona district during the period from 20 July 2010 to 15 May 2011. The objective of the study was to determine the feasibility of growing short duration vegetable and oil crops in seasonal fallow of Boro rice-Fallow-Fallow cropping patterns in terms of both combined yields and economic performance. Six short duration vegetables such as potato, red amaranth, stem amaranth, sp...

  9. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Directory of Open Access Journals (Sweden)

    Y. Chu

    2017-06-01

    Full Text Available The North China Plain (NCP has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1 the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI of cotton was the largest, and for vegetables, it was the smallest; (2 the total WF, WFblue, WFgreen and WFgrey for 13 years (2000–2012 of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3 winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue accounted for 74.2 % of the total WFblue in the HSP; (4 the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat–summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  10. Humic substances and its distribution in coffee crop under cover crops and weed control methods

    Directory of Open Access Journals (Sweden)

    Bruno Henrique Martins

    2016-08-01

    Full Text Available ABSTRACT Humic substances (HS comprise the passive element in soil organic matter (SOM, and represent one of the soil carbon pools which may be altered by different cover crops and weed control methods. This study aimed to assess HS distribution and characteristics in an experimental coffee crop area subjected to cover crops and cultural, mechanical, and chemical weed control. The study was carried out at Londrina, in the state of Paraná, southern Brazil (23°21’30” S; 51°10’17” W. In 2008, seven weed control/cover crops were established in a randomized block design between two coffee rows as the main-plot factor per plot and soil sampling depths (0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm as a split-plot. HS were extracted through alkaline and acid solutions and analyzed by chromic acid wet oxidation and UV-Vis spectroscopy. Chemical attributes presented variations in the topsoil between the field conditions analyzed. Cover crop cutting and coffee tree pruning residues left on the soil surface may have interfered in nutrient cycling and the humification process. Data showed that humic substances comprised about 50 % of SOM. Although different cover crops and weed control methods did not alter humic and fulvic acid carbon content, a possible incidence of condensed aromatic structures at depth increments in fulvic acids was observed, leading to an average decrease of 53 % in the E4/E6 ratio. Humin carbon content increased 25 % in the topsoil, particularly under crop weed-control methods, probably due to high incorporation of recalcitrant structures from coffee tree pruning residues and cover crops.

  11. Earthworms lost from pesticides application in potato crops

    Science.gov (United States)

    Garcia-Santos, Glenda; Forrer, Karin; Binder, Claudia R.

    2010-05-01

    Bioturbation from earthworm's activity contributes to soil creep and soil carbon dynamics, and provide enough aeration conditions for agricultural practices all over the world. In developing countries where there is a long term misuse of pesticides for agricultural purposes, lost of these benefits from earthworms activity might already yielded negative effects in the current crop production. Little research has been performed on earthworms avoidance to pesticides in developing countries located in the tropics. Furthermore, the complete avoidance reaction (from attraction to 100% avoidance) from earthworms to most of the pesticides used in potato cultivation in developing countries like Colombia is incomplete as yet. Hence the aim of this study is to assess the lost of earthworm on the soils caused by different concentrations of pesticides and associated agricultural impacts caused by a lost in the soil bioturbation. As a first stage, we have studied earthworm's avoidance to pesticide concentration in a potato agricultural area located in Colombia. Local cultivated Eisenia fetida were exposed to four of the most frequent applied active ingredients in potato crops i.e. carbofuran, mancozeb, methamidophos and chlorpyriphos. Adult earthworm toxicity experiments were carried out in two soils, untreated grasslands under standard (ISO guidelines) and undisturbed conditions, and exposed to six different concentrations of the active ingredients. The results of the avoidance reaction on the standard soils were significant for carbofuran, mancoceb and chlorpyrifos. For each of the three active ingredients, we found i) overuse of pesticide, ii) applied dose of carbofuran, mancoceb and chlorpyrifos by the farmers potentially caused 20%, 11% and 9% of earthworms avoidance on the cultivated soils, respectively.

  12. GENETICALLY MODIFIED CROPS: INTERNATIONAL TRADE AND TRADE POLICY EFFECTS

    Directory of Open Access Journals (Sweden)

    George Frisvold

    2015-04-01

    Full Text Available Where approved, producers have adopted genetically modified (GM crops extensively. Yet, areas not adopting GM crops account for large shares of production and consumption. GM crops differ from previous agricultural innovations because consumers may perceive them as fundamentally different from (and potentially inferior to conventionally grown crops. Many countries maintain restrictions on production and importation of GM crops. GM crop adoption affects producers and consumers, not only through technological change, but also through trade policy responses. This article reviews open economy analyses of impacts of GM crops. To varying degrees, commodities are segmented into GM, conventionally grown, and organic product markets. Recent advances in trade modeling consider the consequences of market segmentation, along with consequences of GM crop import restrictions, product segregation requirements, and coexistence policies.

  13. Effects of Genetically Modified Crops on Food Security

    Directory of Open Access Journals (Sweden)

    MS Hosseini

    2018-03-01

    CONCLUSION: Therefore, discussing the existing concerns about production of GM crops should be with caution because there is little information on the impact of GM crops on sustainable agriculture. Thus, it requires decision making at national and even international levels.

  14. Radiation induced mutant crop varieties: accomplishment and societal deployment

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane

  15. Benefits from cover crops based on plant-microbial interaction

    OpenAIRE

    Manici , L.M.; Kelderer, M.; Caputo, F.; De Luca Picione , F.; Topp, A.

    2014-01-01

    This study was performed on the impact of two different cover crops (cereal and legume) on composition of root fungal endophytes and rhizospheric bacterial communities as a function of crop health in replanted apple orchards.

  16. Crop farmers and pastoralists' socio-economic characteristics ...

    African Journals Online (AJOL)

    Crop farmers and pastoralists' socio-economic characteristics influencing ... Journal of Agricultural Research and Development ... family size and farm size) influenced positively and significantly crop farmers and pastoralists land use conflict.

  17. Genomics of crop wild relatives: expanding the gene pool for crop improvement.

    Science.gov (United States)

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert J

    2016-04-01

    Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Integrated crop management practices for maximizing grain yield of double-season rice crop

    Science.gov (United States)

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-01

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers’ practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha-1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  19. Using genetically modified tomato crop plants with purple leaves for absolute weed/crop classification.

    Science.gov (United States)

    Lati, Ran N; Filin, Sagi; Aly, Radi; Lande, Tal; Levin, Ilan; Eizenberg, Hanan

    2014-07-01

    Weed/crop classification is considered the main problem in developing precise weed-management methodologies, because both crops and weeds share similar hues. Great effort has been invested in the development of classification models, most based on expensive sensors and complicated algorithms. However, satisfactory results are not consistently obtained due to imaging conditions in the field. We report on an innovative approach that combines advances in genetic engineering and robust image-processing methods to detect weeds and distinguish them from crop plants by manipulating the crop's leaf color. We demonstrate this on genetically modified tomato (germplasm AN-113) which expresses a purple leaf color. An autonomous weed/crop classification is performed using an invariant-hue transformation that is applied to images acquired by a standard consumer camera (visible wavelength) and handles variations in illumination intensities. The integration of these methodologies is simple and effective, and classification results were accurate and stable under a wide range of imaging conditions. Using this approach, we simplify the most complicated stage in image-based weed/crop classification models. © 2013 Society of Chemical Industry.

  20. A multi-adaptive framework for the crop choice in paludicultural cropping systems

    Directory of Open Access Journals (Sweden)

    Nicola Silvestri

    2017-03-01

    Full Text Available The conventional cultivation of drained peatland causes peat oxidation, soil subsidence, nutrient loss, increasing greenhouse gas emissions and biodiversity reduction. Paludiculture has been identified as an alternative management strategy consisting in the cultivation of biomass on wet and rewetted peatlands. This strategy can save these habitats and restore the ecosystem services provided by the peatlands both on the local and global scale. This paper illustrates the most important features to optimise the crop choice phase which is the crucial point for the success of paludiculture systems. A multi-adaptive framework was proposed. It was based on four points that should be checked to identify suitable crops for paludicultural cropping system: biological traits, biomass production, attitude to cultivation and biomass quality. The main agronomic implications were explored with the help of some results from a plurennial open-field experimentation carried out in a paludicultural system set up in the Massaciuccoli Lake Basin (Tuscany, Italy and a complete example of the method application was provided. The tested crops were Arundo donax L., Miscanthus×giganteus Greef et Deuter, Phragmites australis L., Populus×canadensis Moench. and Salix alba L. The results showed a different level of suitability ascribable to the different plant species proving that the proposed framework can discriminate the behaviour of tested crops. Phragmites australis L. was the most suitable crop whereas Populus×canadensis Moench and Miscanthus×giganteus Greef et Deuter (in the case of biogas conversion occupied the last positions in the ranking.