WorldWideScience

Sample records for crab pulsar emission

  1. Polarization and emission geometry of the Crab pulsar

    International Nuclear Information System (INIS)

    Kaiyou Chen; Cheng Ho

    1993-01-01

    Optical emission of the Crab pulsar can best be understood as synchrotron radiation of relativistic particles from the outer magnetosphere of the neutron star. The outer gap model was developed specifically to address energy balance and double-pulsed emission (from optical to high-energy gamma-ray) of young pulsars like the Crab. In this paper, we present the polarization properties of the optical pulses calculated from the outer gap model. We found that the theoretical light curves exhibit the same qualitative behavior as observations

  2. Search for gamma ray emission above 20 MeV from the Crab nebula and the NP 0532 pulsar

    International Nuclear Information System (INIS)

    Leray, J.-P.

    1976-08-01

    The search for gamma-ray emission above 20 MeV from the Crab Nebula and Pulsar NP 0532 was undertaken. A critical analysis of the detector is presented together with a study of the background. The observed flux from the sources are compared with a theoretical model for the gamma-ray emission bases on the synchrotron process in the Crab Nebula and Pulsar NP 0532 [fr

  3. The Crab pulsar at VHE

    Directory of Open Access Journals (Sweden)

    Zanin Roberta

    2017-01-01

    Full Text Available The last six years have witnessed major revisions of our knowledge about the Crab Pulsar. The consensus scenario for the origin of the high-energy pulsed emission has been challenged with the discovery of a very-high-energy power law tail extending up to ~400 GeV, above the expected spectral cut off at a few GeV. Now, new measurements obtained by the MAGIC collaboration extend the energy spectrum of the Crab Pulsar even further, on the TeV regime. Above ~400 GeV the pulsed emission comes mainly from the interpulse, which becomes more prominent with energy due to a harder spectral index. These findings require γ -ray production via inverse Compton scattering close to or beyond the light cylinder radius by an underlying particle population with Lorentz factors greater than 5 × 106. We will present those new results and discuss the implications in our current knowledge concerning pulsar environments.

  4. Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar

    International Nuclear Information System (INIS)

    Abbott, B.; Babak, S.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Ajith, P.; Allen, B.; Aulbert, C.; Allen, G.; Amin, R.; Anderson, W. G.; Armor, P.; Arain, M. A.; Aso, Y.; Aston, S.; Aufmuth, P.; Bantilan, H.

    2008-01-01

    We present direct upper limits on gravitational wave emission from the Crab pulsar using data from the first 9 months of the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). These limits are based on two searches. In the first we assume that the gravitational wave emission follows the observed radio timing, giving an upper limit on gravitational wave emission that beats indirect limits inferred from the spin-down and braking index of the pulsar and the energetics of the nebula. In the second we allow for a small mismatch between the gravitational and radio signal frequencies and interpret our results in the context of two possible gravitational wave emission mechanisms.

  5. Line features in the X-ray spectrum of the crab pulsar

    International Nuclear Information System (INIS)

    Hasinger, G.; Pietsch, W.; Reppin, C.; Truemper, J.; Voges, W.; Kendziorra, E.; Staubert, R.

    1982-01-01

    Beside the well-known synchrotron behaviour of the Crab pulsar, there may be another source of high energy emission due to a hot plasma. The similarities between this component and common accretion-fed X-ray binaries are the frame in which the present balloon observation of the Crab pulsar will be discussed. (orig./WL)

  6. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar.

    Science.gov (United States)

    Hankins, T H; Kern, J S; Weatherall, J C; Eilek, J A

    2003-03-13

    The Crab pulsar was discovered by the occasional exceptionally bright radio pulses it emits, subsequently dubbed 'giant' pulses. Only two other pulsars are known to emit giant pulses. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models--the collapse of plasma-turbulent wave packets in the pulsar magnetosphere--can account for the nanopulses we observe.

  7. Giant pulses of pulsar radio emission

    OpenAIRE

    Kuzmin, A. D.

    2007-01-01

    Review report of giant pulses of pulsar radio emission, based on our detections of four new pulsars with giant pulses, and the comparative analysis of the previously known pulsars with giant pulses, including the Crab pulsar and millisecond pulsar PSR B1937+21.

  8. Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager

    Science.gov (United States)

    Vadawale, S. V.; Chattopadhyay, T.; Mithun, N. P. S.; Rao, A. R.; Bhattacharya, D.; Vibhute, A.; Bhalerao, V. B.; Dewangan, G. C.; Misra, R.; Paul, B.; Basu, A.; Joshi, B. C.; Sreekumar, S.; Samuel, E.; Priya, P.; Vinod, P.; Seetha, S.

    2018-01-01

    The Crab pulsar is a typical example of a young, rapidly spinning, strongly magnetized neutron star that generates broadband electromagnetic radiation by accelerating charged particles to near light speeds in its magnetosphere1. Details of this emission process so far remain poorly understood. Measurement of polarization in X-rays, particularly as a function of pulse phase, is thought to be a key element necessary to unravel the mystery of pulsar radiation2-4. Such measurements are extremely difficult, however: to date, Crab is the only pulsar to have been detected in polarized X-rays5-8 and the measurements have not been sensitive enough to adequately reveal the variation of polarization characteristics across the pulse7. Here, we present the most sensitive measurement to date of polarized hard X-ray emission from the Crab pulsar and nebula in the 100-380 keV band, using the Cadmium-Zinc-Telluride Imager9 instrument on-board the Indian astronomy satellite AstroSat10. We confirm with high significance the earlier indication6,7 of a strongly polarized off-pulse emission. However, we also find a variation in polarization properties within the off-pulse region. In addition, our data hint at a swing of the polarization angle across the pulse peaks. This behaviour cannot be fully explained by the existing theoretical models of high-energy emission from pulsars.

  9. Pulsars

    CERN Document Server

    Smith, Francis Graham

    1977-01-01

    The discovery of the pulsars ; techniques for search and for observation ; the identification with rotating neutron stars ; the X-ray pulsars ; the internal structure of neutron stars ; the magnetosphere of neutron stars ; pulse timing ; properties of the integrated radio pulses ; individual radio pulses ; the Crab nebula ; the Crab pulsar ; the interstellar medium as an indicator of pulsar distances ; the interstellar magnetic field ; interstellar scintillation ; radiation processes ; the emission mechanism I : analysis of observed particles ; the emission mechanism II : geometrical considerations ; the emission mechanism : discussion ; supernovae : the origin of the pulsars ; the distribution and the ages of pulsars ; high energies and condensed stars.

  10. A glitch in the Crab pulsar (PSR B0531+21)

    Science.gov (United States)

    Shaw, Benjamin; Lyne, Andrew; Bassa, Cees; Breton, Rene; Jordan, Christine; Keith, Michael; Mickaliger, Mitchell B.; Stappers, Benjamin; Weltevrede, Patrick

    2018-05-01

    We have detected a glitch in the Crab pulsar, B0531+21, on 2018-04-29. The Crab pulsar is regularly monitored with the 42-ft and Lovell telescopes at the Jodrell Bank Observatory as part of the pulsar timing programme.

  11. The surprising Crab pulsar and its nebula: a review.

    Science.gov (United States)

    Bühler, R; Blandford, R

    2014-06-01

    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  12. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    Science.gov (United States)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  13. The largest glitch observed in the Crab pulsar

    Science.gov (United States)

    Shaw, B.; Lyne, A. G.; Stappers, B. W.; Weltevrede, P.; Bassa, C. G.; Lien, A. Y.; Mickaliger, M. B.; Breton, R. P.; Jordan, C. A.; Keith, M. J.; Krimm, H. A.

    2018-05-01

    We have observed a large glitch in the Crab pulsar (PSR B0531+21). The glitch occurred around MJD 58064 (2017 November 8) when the pulsar underwent an increase in the rotation rate of Δν = 1.530 × 10-5 Hz, corresponding to a fractional increase of Δν/ν = 0.516 × 10-6 making this event the largest glitch ever observed in this source. Due to our high-cadence and long-dwell time observations of the Crab pulsar we are able to partially resolve a fraction of the total spin-up of the star. This delayed spin-up occurred over a timescale of ˜1.7 days and is similar to the behaviour seen in the 1989 and 1996 large Crab pulsar glitches. The spin-down rate also increased at the glitch epoch by Δ \\dot{ν } / \\dot{ν } = 7 × 10^{-3}. In addition to being the largest such event observed in the Crab, the glitch occurred after the longest period of glitch inactivity since at least 1984 and we discuss a possible relationship between glitch size and waiting time. No changes to the shape of the pulse profile were observed near the glitch epoch at 610 MHz or 1520 MHz, nor did we identify any changes in the X-ray flux from the pulsar. The long-term recovery from the glitch continues to progress as \\dot{ν } slowly rises towards pre-glitch values. In line with other large Crab glitches, we expect there to be a persistent change to \\dot{ν }. We continue to monitor the long-term recovery with frequent, high quality observations.

  14. Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum

    Science.gov (United States)

    Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.

    2001-01-01

    The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.

  15. Magnetic absorption of VHE photons in the magnetosphere of the Crab pulsar

    Science.gov (United States)

    Bogovalov, S. V.; Contopoulos, I.; Prosekin, A.; Tronin, I.; Aharonian, F. A.

    2018-05-01

    The detection of the pulsed ˜1 TeV gamma-ray emission from the Crab pulsar reported by MAGIC and VERITAS collaborations demands a substantial revision of existing models of particle acceleration in the pulsar magnetosphere. In this regard model independent restrictions on the possible production site of the very high energy (VHE) photons become an important issue. In this paper, we consider limitations imposed by the process of conversion of VHE gamma-rays into e± pairs in the magnetic field of the pulsar magnetosphere. Photons with energies exceeding 1 TeV are effectively absorbed even at large distances from the surface of the neutron star. Our calculations of magnetic absorption in the force-free magnetosphere show that the twisting of the magnetic field due to the pulsar rotation makes the magnetosphere more transparent compared to the dipole magnetosphere. The gamma-ray absorption appears stronger for photons emitted in the direction of rotation than in the opposite direction. There is a small angular cone inside which the magnetosphere is relatively transparent and photons with energy 1.5 TeV can escape from distances beyond 0.1 light cylinder radius (Rlc). The emission surface from where photons can be emitted in the observer's direction further restricts the sites of VHE gamma-ray production. For the observation angle 57° relative to the Crab pulsar axis of rotation and the orthogonal rotation, the emission surface in the open field line region is located as close as 0.4 Rlc from the stellar surface for a dipole magnetic field, and 0.1 Rlc for a force-free magnetic field.

  16. THE CRAB PULSAR AT CENTIMETER WAVELENGTHS. II. SINGLE PULSES

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, T. H.; Eilek, J. A. [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States); Jones, G., E-mail: thankins@aoc.nrao.edu [Columbia University, New York, NY 10027 (United States)

    2016-12-10

    We have carried out new, high-frequency, high-time-resolution observations of the Crab pulsar. Combining these with our previous data, we characterize bright single pulses associated with the Main Pulse, both the Low-Frequency and High-Frequency Interpulses, and the two  High-Frequency Components. Our data include observations at frequencies ranging from 1 to 43 GHz with time resolutions down to a fraction of a nanosecond. We find that at least two types of emission physics are operating in this pulsar. Both Main Pulses and Low-Frequency Interpulses, up to ∼10 GHz, are characterized by nanoshot emission—overlapping clumps of narrowband nanoshots, each with its own polarization signature. High-Frequency Interpulses, between 5 and 30 GHz, are characterized by spectral band emission—linearly polarized emission containing ∼30 proportionately spaced spectral bands. We cannot say whether the longer-duration High-Frequency Components pulses are due to a scattering process, or if they come from yet another type of emission physics.

  17. DID THE CRAB PULSAR UNDERGO A SMALL GLITCH IN 2006 LATE MARCH/EARLY APRIL?

    Energy Technology Data Exchange (ETDEWEB)

    Vivekanand, M., E-mail: viv.maddali@gmail.com [No. 24, NTI Layout 1st Stage, 3rd Main, 1st Cross, Nagasettyhalli, Bangalore 560094 (India)

    2016-08-01

    On 2006 August 23 the Crab Pulsar underwent a glitch, which was reported by the Jodrell Bank and the Xinjiang radio observatories. Neither data are available to the public. However, the Jodrell group publishes monthly arrival times of the Crab Pulsar pulse (their actual observations are done daily), and using these, it is shown that about 5 months earlier the Crab Pulsar probably underwent a small glitch, which has not been reported before. Neither observatory discusses the detailed analysis of data from 2006 March to August; either they may not have detected this small glitch, or they may have attributed it to timing noise in the Crab Pulsar. The above result is verified using X-ray data from RXTE . If this is indeed true, this is probably the smallest glitch observed in the Crab Pulsar so far, whose implications are discussed. This work addresses the confusion possible between small-magnitude glitches and timing noise in pulsars.

  18. Crab Flares and Magnetic Reconnection in Pulsar Winds

    Science.gov (United States)

    Harding, Alice K.

    2012-01-01

    The striped winds of rotation-powered pulsars are ideal sites for magnetic reconnection. The magnetic fields of the wind near the current sheet outside the light cylinder alternate polarity every pulsar period and eventually encounter a termination shock. Magnetic reconnection in the wind has been proposed as a mechanism for transferring energy from electromagnetic fields to particles upstream of the shock (the "sigma" problem), but it is not clear if, where and how this occurs. Fermi and AGILE have recently observed powerful gamma-ray flares from the Crab nebula, which challenge traditional models of acceleration at the termination shock. New simulations are revealing that magnetic reconnection may be instrumental in understanding the Crab flares and in resolving the "sigma" problem in pulsar wind nebulae.

  19. The Crab nebula's ''wisps'' as shocked pulsar wind

    International Nuclear Information System (INIS)

    Gallant, Y.A.; Arons, J.; Langdon, A.B.

    1992-01-01

    The Crab synchrotron nebula has been successfully modelled as the post-shock region of a relativistic, magnetized wind carrying most of the spindown luminosity from the central pulsar. While the Crab is the best-studied example, most of the highest spindown luminosity pulsars are also surrounded by extended synchrotron nebulae, and several additional supernova remnants with ''plerionic'' morphologies similar to the Crab are known where the central object is not seen. All these objects have nonthermal, power-law spectra attributable to accelerated high-energy particles thought to originate in a Crab-like relativistic pulsar wind. However, proposed models have so far treated the wind shock as an infinitesimally thin discontinuity, with an arbitrarily ascribed particle acceleration efficiency. To make further progress, investigations resolving the shock structure seemed in order. Motivated by these considerations, we have performed ''particle-in-cell (PIC) simulations of perpendicularly magnetized shocks in electron-positron and electron-positron-ion plasmas. The shocks in pure electron-positron plasmas were found to produce only thermal distributions downstream, and are thus poor candidates as particle acceleration sites. When the upstream plasma flow also contained a smaller population of positive ions, however, efficient acceleration of positrons, and to a lesser extent of electrons, was observed in the simulations

  20. Gamma-ray pulsars: Emission zones and viewing geometries

    Science.gov (United States)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  1. The Crab pulsar and its pulsar-wind nebula in the optical and infrared

    Science.gov (United States)

    Tziamtzis, A.; Lundqvist, P.; Djupvik, A. A.

    2009-12-01

    Aims. We investigate the emission mechanism and evolution of pulsars that are associated with supernova remnants. Methods: We used imaging techniques in both the optical and near infrared, using images with very good seeing (≤0.primeprime6) to study the immediate surroundings of the Crab pulsar. In the case of the infrared, we took two data sets with a time window of 75 days to check for variability in the inner part of the Crab nebula. We also measure the spectral indices of all these wisps, the nearby knot, and the interwisp medium, using our optical and infrared data. We then compared the observational results with the existing theoretical models. Results: We report variability in the three nearby wisps located to the northwest of the pulsar and also in a nearby anvil wisp in terms of their structure, position, and emissivity within the time window of 75 days. All the wisps display red spectra with similar spectral indices (α_ν = -0.58 ± 0.08, α_ν = -0.63 ± 0.07, α_ν = -0.53 ± 0.08) for the northwest triplet. The anvil wisp (anvil wisp 1) has a spectral index of α_ν = -0.62 ± 0.10. Similarly, the interwisp medium regions also show red spectra similar to those of the wisps, with the spectral index being α_ν = -0.61 ± 0.08, α_ν = -0.50 ± 0.10, while the third interwisp region has a flatter spectrum with spectral α_ν = -0.49 ± 0.10. The inner knot has a spectral index of α_ν = -0.63 ± 0.02. Also, based on archival HST data and our IR data, we find that the inner knot remains stationary for a time period of 13.5 years. The projected average velocity relative to the pulsar for this period is ≲8 ~km s-1. Conclusions: By comparing the spectral indices of the structures in the inner Crab with the current theoretical models, we find that the Del Zanna et al. model for the synchrotron emission fits our observations, although the spectral index is at the flatter end of their modelled spectra. Based on observations made with the Nordic Optical

  2. CORRELATION OF CHANDRA PHOTONS WITH THE RADIO GIANT PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Bilous, A. V.; McLaughlin, M. A.; Kondratiev, V. I.; Ransom, S. M.

    2012-01-01

    No apparent correlation was found between giant pulses (GPs) and X-ray photons from the Crab pulsar during 5.4 hr of simultaneous observations with the Green Bank Telescope at 1.5 GHz and Chandra X-Ray Observatory primarily in the energy range of 1.5-4.5 keV. During the Crab pulsar periods with GPs, the X-ray flux in radio emission phase windows does not change more than by ±10% for main pulse (MP) GPs and ±30% for interpulse (IP) GPs. During GPs themselves, the X-ray flux does not change by more than two times for MP GPs and five times for IP GPs. All limits quoted are compatible with 2σ fluctuations of the X-ray flux around the sets of false GPs with random arrival times. The results speak in favor of changes in plasma coherence as the origin of GPs. However, the results do not rule out variations in the rate of particle creation if the particles that emit coherent radio emission are mostly at the lowest Landau level.

  3. Study of the high energy gamma-ray emission from the crab pulsar with the MAGIC telescope and Fermi-LAT

    International Nuclear Information System (INIS)

    Saito, Takayuki

    2010-01-01

    My thesis deals with a fundamental question of high energy gamma-ray astronomy. Namely, I studied the cut-off shape of the Crab pulsar spectrum to distinguish between the leading scenarios for the pulsar models. Pulsars are celestial objects, which emit periodic pulsed electromagnetic radiation (pulsation) from radio to high energy gamma-rays. Two major scenarios evolved in past 40 years to explain the pulsation mechanism: the inner magnetosphere scenario and the outer magnetosphere scenario. Both scenarios predict a high energy cut-off in the gamma-ray energy spectrum, but with different cut-off sharpness. An exponential cut-off is expected for the outer magnetosphere scenario while a super-exponential cut-off is predicted for the inner magnetosphere scenario. Therefore, one of the best ways to confirm or refute these scenarios is to measure the energy spectrum of a pulsar at around the cut-off energy, i.e., at energies between a few GeV and a few tens of GeV. All past attempts to measure pulsar spectra with ground-based instruments have failed while satellite-borne detectors had a too small area to study detailed spectra in the GeV domain. In this thesis, the gamma-ray emission at around the cut-off energy from the Crab pulsar is studied with the MAGIC telescope. The public data of the satellite-borne gamma-ray detector, Fermi-LAT, are also analyzed in order to discuss the MAGIC observation results in comparison with the adjacent energy band. In late 2007, a new trigger system (SUM trigger system) allowed to reduce the threshold energy of the MAGIC telescope from 50 GeV to 25 GeV and the Crab pulsar was successfully detected during observations from October 2007 and January 2009. My analysis reveals that the energy spectrum is consistent with a simple power law between 25 GeV to 100 GeV. The extension of the energy spectrum up to 100 GeV rules out the inner magnetosphere scenario. Fermi-LAT started operation in August 2008. The Fermi-LAT data reveal that a power

  4. Study of the high energy gamma-ray emission from the crab pulsar with the MAGIC telescope and Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takayuki

    2010-12-06

    My thesis deals with a fundamental question of high energy gamma-ray astronomy. Namely, I studied the cut-off shape of the Crab pulsar spectrum to distinguish between the leading scenarios for the pulsar models. Pulsars are celestial objects, which emit periodic pulsed electromagnetic radiation (pulsation) from radio to high energy gamma-rays. Two major scenarios evolved in past 40 years to explain the pulsation mechanism: the inner magnetosphere scenario and the outer magnetosphere scenario. Both scenarios predict a high energy cut-off in the gamma-ray energy spectrum, but with different cut-off sharpness. An exponential cut-off is expected for the outer magnetosphere scenario while a super-exponential cut-off is predicted for the inner magnetosphere scenario. Therefore, one of the best ways to confirm or refute these scenarios is to measure the energy spectrum of a pulsar at around the cut-off energy, i.e., at energies between a few GeV and a few tens of GeV. All past attempts to measure pulsar spectra with ground-based instruments have failed while satellite-borne detectors had a too small area to study detailed spectra in the GeV domain. In this thesis, the gamma-ray emission at around the cut-off energy from the Crab pulsar is studied with the MAGIC telescope. The public data of the satellite-borne gamma-ray detector, Fermi-LAT, are also analyzed in order to discuss the MAGIC observation results in comparison with the adjacent energy band. In late 2007, a new trigger system (SUM trigger system) allowed to reduce the threshold energy of the MAGIC telescope from 50 GeV to 25 GeV and the Crab pulsar was successfully detected during observations from October 2007 and January 2009. My analysis reveals that the energy spectrum is consistent with a simple power law between 25 GeV to 100 GeV. The extension of the energy spectrum up to 100 GeV rules out the inner magnetosphere scenario. Fermi-LAT started operation in August 2008. The Fermi-LAT data reveal that a power

  5. Phase Evolution of the Crab Pulsar between Radio and X-Ray

    Energy Technology Data Exchange (ETDEWEB)

    Yan, L. L.; Ge, M. Y.; Zheng, S. J.; Lu, F. J.; Tuo, Y. L.; Zhang, S. N.; Lu, Y. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yuan, J. P.; Tong, H. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Han, J. L. [National Astronomical Observatory, Chinese Academy of Sciences, Jia 20 Datun Road, Beijing 100012 (China); Du, Y. J., E-mail: yanlinli@ihep.ac.cn [Qian Xuesen Laboratory of Space Technology, No. 104, Youyi Road, Haidian District, Beijing 100094 (China)

    2017-08-20

    We study the X-ray phases of the Crab pulsar utilizing the 11-year observations from the Rossi X-ray Timing Explorer , 6-year radio observations from Nanshan Telescope, and the ephemeris from Jodrell Bank Observatory. It is found that the X-ray phases in different energy bands and the radio phases from the Nanshan Telescope show similar behaviors, including long-time evolution and short-time variations. Such strong correlations between the X-ray and radio phases imply that the radio and X-ray timing noises are both generated from the pulsar spin that cannot be well described by the the monthly ephemeris from the Jodrell Bank observatory. When using the Nanshan phases as references to study the X-ray timing noise, it has a significantly smaller variation amplitude and shows no long-time evolution, with a change rate of (−1.1 ± 1.1) × 10{sup −7} periods per day. These results show that the distance of the X-ray and radio emission regions on the Crab pulsar has no detectable secular change, and it is unlikely that the timing noises resulted from any unique physical processes in the radio or X-ray emitting regions. The similar behaviors of the X-ray and radio timing noises also imply that the variation of the interstellar medium is not the origin of the Crab pulsar’s timing noises, which is consistent with the results obtained from the multi-frequency radio observations of PSR B1540−06.

  6. SEARCH FOR A CORRELATION BETWEEN VERY-HIGH-ENERGY GAMMA RAYS AND GIANT RADIO PULSES IN THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S., E-mail: schroedter@veritas.sao.arizona.edu, E-mail: mccann@kicp.uchicago.edu, E-mail: nepomuk.otte@gmail.com [DESY, Platanenallee 6, 15738 Zeuthen (Germany); and others

    2012-12-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays (E {sub {gamma}} > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On {approx}8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  7. Search for a Correlation Between Very-High-Energy Gamma Rays and Giant Radio Pulses in the Crab Pulsar

    Science.gov (United States)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; hide

    2012-01-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ( E(sub Gamma) > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On approx. 8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  8. Gamma rays and neutrinos from the Crab Nebula produced by pulsar accelerated nuclei

    OpenAIRE

    Bednarek, W.; Protheroe, R. J.

    1997-01-01

    We investigate the consequences of the acceleration of heavy nuclei (e.g. iron nuclei) by the Crab pulsar. Accelerated nuclei can photodisintegrate in collisions with soft photons produced in the pulsar's outer gap, injecting energetic neutrons which decay either inside or outside the Crab Nebula. The protons from neutron decay inside the nebula are trapped by the Crab Nebula magnetic field, and accumulate inside the nebula producing gamma-rays and neutrinos in collisions with the matter in t...

  9. Crab Pulsar Astrometry and Spin-Velocity Alignment

    Science.gov (United States)

    Romani, Roger W.; Ng, C.-Y.

    2009-01-01

    The proper motion of the Crab pulsar and its orientation with respect to the PWN symmetry axis is interesting for testing models of neutron star birth kicks. A number of authors have measured the Crab's motion using archival HST images. The most detailed study by Kaplan et al. (2008) compares a wide range of WFPC and ACS images to obtain an accurate proper motion measurement. However, they concluded that a kick comparison is fundamentally limited by the uncertainty in the progenitor's motion. Here we report on new HST images matched to 1994 and 1995 data frames, providing independent proper motion measurement with over 13 year time base and minimal systematic errors. The new observations also allow us to estimate the systematic errors due to CCD saturation. Our preliminary result indicates a proper motion consistent with Kaplan et al.'s finding. We discuss a model for the progenitor's motion, suggesting that the pulsar spin is much closer to alignment than previously suspected.

  10. Pulsar observations with the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Jezabel R.; Dazzi, F.; Idec, W.; Moretti, E.; Schweizer, T. [Max-Planck-Institut fuer Physik, Munich (Germany); Bonnefoy, S.; Carreto-Fidalgo, D.; Lopez, M. [Universitad Compultense, Madrid (Spain); Galindo, D.; Zanin, R. [Universitat de Barcelona, ICC/IEEC-UB, Barcelona (Spain); Ona Wilhelmi, E. de [Institute for Space Sciences (CSIC/IEEC), Barcelona (Spain); Reichardt, I. [Istituto Nazionale di Fisica Nucleare (INFN), Padova (Italy); Saito, T. [Kyoto University, Hakubi Center (Japan); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is a stereoscopic system of two IACTs, located at the ORM (Spain). Since 2008, MAGIC has played a big role in Pulsar physics due to the discovery of the first VHE gamma-ray emission from the Crab pulsar. Such a discovery was possible thanks to a revolutionary trigger technique used in the initial MAGIC mono system, the Sum-Trigger, that provided a 25 GeV energy threshold. The study of the Crab keeps providing numerous important results for the understanding of pulsar physics. The most recent ones are the bridge emission at VHE and the detection of the Crab pulsations at TeV energies. MAGIC has been also searching for new pulsars, providing recently interesting results about the Geminga pulsar and nebula. This talk reviews the essential MAGIC results about VHE pulsars and their implications for pulsar physics.Also we discuss the development of a new stereo trigger system, the Sum-Trigger-II, and the importance of the observation windows that this system opens for the study of VHE pulsars.

  11. Pulsar high energy emission due to inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim

    2013-06-15

    We discuss growing evidence that pulsar high energy is emission is generated via Inverse Compton mechanism. We reproduce the broadband spectrum of Crab pulsar, from UV to very high energy gamma-rays - nearly ten decades in energy, within the framework of the cyclotron-self-Compton model. Emission is produced by two counter-streaming beams within the outer gaps, at distances above ∼ 20 NS radii. The outward moving beam produces UV-X-ray photons via Doppler-booster cyclotron emission, and GeV photons by Compton scattering the cyclotron photons produced by the inward going beam. The scattering occurs in the deep Klein-Nishina regime, whereby the IC component provides a direct measurement of particle distribution within the magnetosphere. The required plasma multiplicity is high, ∼10{sup 6} – 10{sup 7}, but is consistent with the average particle flux injected into the pulsar wind nebula.

  12. Near Infrared Activity Close to the Crab Pulsar Correlated with Giant Gamma-ray Flares

    Science.gov (United States)

    Rudy, Alexander R.; Max, Claire E.; Weisskopf, Martin C.

    2014-01-01

    We describe activity observed in the near-infrared correlated with a giant gamma-ray flare in the Crab Pulsar. The Crab Pulsar has been observed by the Fermi and AGILE satellites to flare for a period of 3 to 7 days, once every 1-1.5 years, increasing in brightness by a factor of 3-10 between 100MeV and 1GeV. We used Keck NIRC2 laser guide star adaptive optics imaging to observe the Crab Pulsar and environs before and during the March 2013 flare. We discuss the evidence for the knot as the location of the flares, and the theoretical implications of these observations. Ongoing target-of-opportunity programs hope to confirm this correlation for future flares.

  13. Search for ultrahigh energy emission from the Crab pulsar/nebula

    International Nuclear Information System (INIS)

    Dion, G.M.

    1993-02-01

    A search for steady and episodic emission of Ultra High Energy radiation from the Crab has been carried out using the CYGNUS air shower array telescope. No signal has been observed in the analysis of the data set of more than 2 x 10 8 showers with energies greater than about 10 TeV. A flux upper limit on the unpulsed steady emission above 40 TeV is 2.9 x 10 -13 cm 2 s -1 , at the 90% confidence level limit. A burst was observed for the source transit on April 28, 1989. This day had a probability of 0.71% of being a random fluctuation for the 1621 days of from the Crab region

  14. Spectral analysis of the Crab Pulsar and Nebula with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Loparco, F.

    2011-01-01

    The Crab Pulsar is a relatively young neutron star. The Pulsar is the central star in the Crab Nebula, a remnant of the supernova SN 1054, which was observed on Earth in the year 1054. The Crab Pulsar has been extensively observed in the gamma-ray energy band by the Large Area Telescope (LAT), the main instrument onboard the Fermi gamma-ray space telescope, during its first months of data taking. The LAT data have been used to reconstruct the fluxes and the energy spectra of the pulsed gamma-ray component and of the gamma-rays from the Nebula. The results on the pulsed component are in good agreement with the previous measurement from EGRET, while the results on the Nebula are consistent with the observations from Earth based telescopes.

  15. THE γ-RAY SPECTRUM OF GEMINGA AND THE INVERSE COMPTON MODEL OF PULSAR HIGH-ENERGY EMISSION

    International Nuclear Information System (INIS)

    Lyutikov, Maxim

    2012-01-01

    We reanalyze the Fermi spectra of the Geminga and Vela pulsars. We find that the spectrum of Geminga above the break is well approximated by a simple power law without the exponential cutoff, making Geminga's spectrum similar to that of Crab. Vela's broadband γ-ray spectrum is equally well fit with both the exponential cutoff and the double power-law shapes. In the broadband double power-law fits, for a typical Fermi spectrum of a bright γ-ray pulsar, most of the errors accumulate due to the arbitrary parameterization of the spectral roll-off. In addition, a power law with an exponential cutoff gives an acceptable fit for the underlying double power-law spectrum for a very broad range of parameters, making such fitting procedures insensitive to the underlying Fermi photon spectrum. Our results have important implications for the mechanism of pulsar high-energy emission. A number of observed properties of γ-ray pulsars—i.e., the broken power-law spectra without exponential cutoffs and stretching in the case of Crab beyond the maximal curvature limit, spectral breaks close to or exceeding the maximal breaks due to curvature emission, patterns of the relative intensities of the leading and trailing pulses in the Crab repeated in the X-ray and γ-ray regions, presence of profile peaks at lower energies aligned with γ-ray peaks—all point to the inverse Compton origin of the high-energy emission from majority of pulsars.

  16. Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar.

    Science.gov (United States)

    Aharonian, F A; Bogovalov, S V; Khangulyan, D

    2012-02-15

    Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.

  17. Giant Pulse Studies of Ordinary and Recycled Pulsars with NICER

    Science.gov (United States)

    Lewandowska, Natalia; Arzoumanian, Zaven; Gendreau, Keith C.; Enoto, Teruaki; Harding, Alice; Lommen, Andrea; Ray, Paul S.; Deneva, Julia; Kerr, Matthew; Ransom, Scott M.; NICER Team

    2018-01-01

    Radio Giant Pulses are one of the earliest discovered form of anomalous single pulse emission from pulsars. Known for their non-periodical occurrence, restriction to certain phase ranges, power-law intensity distributions, pulse widths ranging from microseconds to nanoseconds and very high brightness temperatures, they stand out as an individual form of pulsar radio emission.Discovered originally in the case of the Crab pulsar, several other pulsars have been observed to emit radio giant pulses, the most promising being the recycled pulsar PSR B1937+21 and also the Vela pulsar.Although radio giant pulses are apparently the result of a coherent emission mechanism, recent studies of the Crab pulsar led to the discovery of an additional incoherent component at optical wavelengths. No such component has been identified for recycled pulsars, or Vela yet.To provide constraints on possible emission regions in their magnetospheres and to search for differences between giant pulses from ordinary and recycled pulsars, we present the progress of the correlation study of PSR B1937+21 and the Vela pulsar carried out with NICER and several radio observatories.

  18. New results from Ooty EAS array for cosmic sources at PeV energies: Cygnus X-3, Crab pulsar and Sco X-1

    International Nuclear Information System (INIS)

    Tonwar, S.C.; Gupta, S.K.; Gopalakrishnan, N.V.; Rajeev, M.R.; Srivatsan, R.; Sreekantan, B.V.

    1990-01-01

    Ooty group has reported detection of a steady signal from Cyg X-3 based on observations made during 1984-86 through detection of a directional excess. Further analysis of data has revealed a significant flux enhancement during April 1986, confirming observations reported by the CYGNUS group at Los Alamos and the Baksan group. These results show conclusively that the flux from Cyg X-3 is variable over a time scale of few weeks. We also report here the details of an unusual burst from Cyg X-3, consisting of 5 showers in 13 minutes, on June 19, 1985, which shows the variability of the flux from Cyg X-3 on a much shorter time scale of few minutes. Our analysis of showers arriving from the direction of the Crab pulsar has shown only a small time-averaged excess. But these data, when folded with the Crab pulsar period, show a very significant excess at the expected phase of the optical interpulse. This is the first detection of 33 ms pulsation in the PeV energy flux from the Crab pulsar. The exact alignment of the phase of emission over nearly 20 decades of energy, from meter wavelengths to PeV, makes the Crab pulsar a really unique source to study and understand details of mechanisms for emission and acceleration of particles in compact sources. We also present here a discussion of our observations on another X-ray binary, Sco X-1. Ooty data show a very significant excess in the number of showers from the direction of Sco X-1 during a two month period in 1986, in agreement with observations reported by the Mt. Chacaltaya group. These observations establish this X-ray binary as another important source of PeV energy radiation. (orig.)

  19. A search for TeV gamma-ray emission from SNRs, pulsars and unidentified GeV sources in the Galactic plane in the longitude range between -2 deg and 85 deg.

    Science.gov (United States)

    Aharonian, F. A.; Akhperjanian, A. G.; Beilicke, M.; Bernloehr, K.; Bojahr, H.; Bolz, O.; Boerst, H.; Coarasa, T.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Goetting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Puehlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Roehring, A.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Voelk, H. J.; Wiedner, C. A.; Wittek, W.

    2002-12-01

    Using the HEGRA system of imaging atmospheric Cherenkov telescopes, one quarter of the Galactic plane (-2o < l < 85o) was surveyed for TeV gamma-ray emission from point sources and moderately extended sources (φ <= 0.8o). The region covered includes 86 known pulsars (PSR), 63 known supernova remnants (SNR) and nine GeV sources, representing a significant fraction of the known populations. No evidence for emission of TeV gamma radiation was detected, and upper limits range from 0.15 Crab units up to several Crab units, depending on the observation time and zenith angles covered. The ensemble sums over selected SNR and pulsar subsamples and over the GeV-sources yield no indication of emission from these potential sources. The upper limit for the SNR population is 6.7% of the Crab flux and for the pulsar ensemble is 3.6% of the Crab flux.

  20. Stedy emission from recurrent transient pulsar 0535+26

    International Nuclear Information System (INIS)

    Manchanda, R.K.; Bazzano, A.; Polcaro, V.F.; Padula, C.D.L.; Obertini, P.

    1984-01-01

    A steady hard X-ray emission between 20-100 keV was observed from the 104 sec pulsar 0535+26 during the quiescent phase of transient activity. The present observations corespond to the binary phase of 0.7 taking 110d as the binary period. The observed flux was comparable to approx.20 milli-crab and a power law spectrum with spectral index αapprox.1.2 fits the data, and significantly differs from the observed spectrum during the outburst

  1. CORRELATION OF FERMI PHOTONS WITH HIGH-FREQUENCY RADIO GIANT PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Bilous, A. V.; Kondratiev, V. I.; McLaughlin, M. A.; Mickaliger, M.; Ransom, S. M.; Lyutikov, M.; Langston, G. I.

    2011-01-01

    To constrain the giant pulse (GP) emission mechanism and test the model of Lyutikov for GP emission, we have carried out a campaign of simultaneous observations of the Crab pulsar at γ-ray (Fermi) and radio (Green Bank Telescope) wavelengths. Over 10 hr of simultaneous observations we obtained a sample of 2.1 x 10 4 GPs, observed at a radio frequency of 9 GHz, and 77 Fermi photons, with energies between 100 MeV and 5 GeV. The majority of GPs came from the interpulse (IP) phase window. We found no change in the GP generation rate within 10-120 s windows at lags of up to ±40 minutes of observed γ-ray photons. The 95% upper limit for a γ-ray flux enhancement in pulsed emission phase window around all GPs is four times the average pulsed γ-ray flux from the Crab. For the subset of IP GPs, the enhancement upper limit, within the IP emission window, is 12 times the average pulsed γ-ray flux. These results suggest that GPs, at least high-frequency IP GPs, are due to changes in coherence of radio emission rather than an overall increase in the magnetospheric particle density.

  2. Confinement of the crab pulsar's wind by its supernova remnant

    International Nuclear Information System (INIS)

    Kennel, C.F.; Coroniti, F.V.

    1984-01-01

    We construct a steady state, spherically symmetric, magnetohydrodynamic model of the Crab nebual. A highly relativistic, positronic pulsar wind is terminated by a strong MHD shock that decelerates the flow and increases its pressure to match boundary conditions imposed by the recently discovered supernova remnant that surrounds the nebula. If the magnetic luminosity of the pulsar wind upsteam of the shock is about 0.3% of its particle luminosity, the pressure and velocity boundary conditions imposed by the remnant place the shock where we infer it to be; near the outer boundary of an underluminous region observed to surround the pulsar. It is necessary to include the weak magnetization of the wind to satisfy the boundary conditions and to calculate the nebular synchrotron radiation self-consistently

  3. A GIANT SAMPLE OF GIANT PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Mickaliger, M. B.; McLaughlin, M. A.; Lorimer, D. R.; Palliyaguru, N.; Langston, G. I.; Bilous, A. V.; Kondratiev, V. I.; Lyutikov, M.; Ransom, S. M.

    2012-01-01

    We observed the Crab pulsar with the 43 m telescope in Green Bank, WV over a timespan of 15 months. In total we obtained 100 hr of data at 1.2 GHz and seven hours at 330 MHz, resulting in a sample of about 95,000 giant pulses (GPs). This is the largest sample, to date, of GPs from the Crab pulsar taken with the same telescope and backend and analyzed as one data set. We calculated power-law fits to amplitude distributions for main pulse (MP) and interpulse (IP) GPs, resulting in indices in the range of 2.1-3.1 for MP GPs at 1.2 GHz and in the range of 2.5-3.0 and 2.4-3.1 for MP and IP GPs at 330 MHz. We also correlated the GPs at 1.2 GHz with GPs from the Robert C. Byrd Green Bank Telescope (GBT), which were obtained simultaneously at a higher frequency (8.9 GHz) over a span of 26 hr. In total, 7933 GPs from the 43 m telescope at 1.2 GHz and 39,900 GPs from the GBT were recorded during these contemporaneous observations. At 1.2 GHz, 236 (3%) MP GPs and 23 (5%) IP GPs were detected at 8.9 GHz, both with zero chance probability. Another 15 (4%) low-frequency IP GPs were detected within one spin period of high-frequency IP GPs, with a chance probability of 9%. This indicates that the emission processes at high and low radio frequencies are related, despite significant pulse profile shape differences. The 43 m GPs were also correlated with Fermi γ-ray photons to see if increased pair production in the magnetosphere is the mechanism responsible for GP emission. A total of 92,022 GPs and 393 γ-ray photons were used in this correlation analysis. No significant correlations were found between GPs and γ-ray photons. This indicates that increased pair production in the magnetosphere is likely not the dominant cause of GPs. Possible methods of GP production may be increased coherence of synchrotron emission or changes in beaming direction.

  4. A GIANT SAMPLE OF GIANT PULSES FROM THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mickaliger, M. B.; McLaughlin, M. A.; Lorimer, D. R.; Palliyaguru, N. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Langston, G. I. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Bilous, A. V. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Kondratiev, V. I. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Lyutikov, M. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2012-11-20

    We observed the Crab pulsar with the 43 m telescope in Green Bank, WV over a timespan of 15 months. In total we obtained 100 hr of data at 1.2 GHz and seven hours at 330 MHz, resulting in a sample of about 95,000 giant pulses (GPs). This is the largest sample, to date, of GPs from the Crab pulsar taken with the same telescope and backend and analyzed as one data set. We calculated power-law fits to amplitude distributions for main pulse (MP) and interpulse (IP) GPs, resulting in indices in the range of 2.1-3.1 for MP GPs at 1.2 GHz and in the range of 2.5-3.0 and 2.4-3.1 for MP and IP GPs at 330 MHz. We also correlated the GPs at 1.2 GHz with GPs from the Robert C. Byrd Green Bank Telescope (GBT), which were obtained simultaneously at a higher frequency (8.9 GHz) over a span of 26 hr. In total, 7933 GPs from the 43 m telescope at 1.2 GHz and 39,900 GPs from the GBT were recorded during these contemporaneous observations. At 1.2 GHz, 236 (3%) MP GPs and 23 (5%) IP GPs were detected at 8.9 GHz, both with zero chance probability. Another 15 (4%) low-frequency IP GPs were detected within one spin period of high-frequency IP GPs, with a chance probability of 9%. This indicates that the emission processes at high and low radio frequencies are related, despite significant pulse profile shape differences. The 43 m GPs were also correlated with Fermi {gamma}-ray photons to see if increased pair production in the magnetosphere is the mechanism responsible for GP emission. A total of 92,022 GPs and 393 {gamma}-ray photons were used in this correlation analysis. No significant correlations were found between GPs and {gamma}-ray photons. This indicates that increased pair production in the magnetosphere is likely not the dominant cause of GPs. Possible methods of GP production may be increased coherence of synchrotron emission or changes in beaming direction.

  5. Modelling the ArH+ emission from the Crab nebula

    Science.gov (United States)

    Priestley, F. D.; Barlow, M. J.; Viti, S.

    2017-12-01

    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.

  6. Evolution of the magnetic field structure of the Crab pulsar.

    Science.gov (United States)

    Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael

    2013-11-01

    Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.

  7. High-energy gamma-ray emission from the Galactic Center

    DEFF Research Database (Denmark)

    Mayer-Hasselwander, H.A.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    '. A compact sources model hints at an origin in pulsars. While the spectrum suggests middle-aged pulsars like Vela, too many are required to produce the observed flux. The only detected very young pulsar, the Crab pulsar, has an incompatible spectrum. However, it is not proven that the Crab spectrum...... is characteristic for all young pulsars: thus, a single or a few very young pulsars (at the GC not detectable in radio emission), provided their gamma-ray emission is larger than that of the Crab pulsar by a factor of 13, are likely candidates. Alternatively, more exotic scenarios, related to the postulated central...

  8. A STACKED ANALYSIS OF 115 PULSARS OBSERVED BY THE FERMI LAT

    Energy Technology Data Exchange (ETDEWEB)

    McCann, A., E-mail: mccann@kicp.uchicago.edu [Kavli Institute for Cosmological Physics, University of Chicago 933 East 56th Street, Chicago, IL 60637 (United States)

    2015-05-10

    Due to the low gamma-ray fluxes from pulsars above 50 GeV and the small collecting area of space-based telescopes, the gamma-ray emission discovered by the Fermi Large Area Telescope (LAT) in ∼150 pulsars is largely unexplored at these energies. In this regime, the uncertainties on the spectral data points and/or the constraints from upper limits are not sufficient to provide robust tests of competing emission models in individual pulsars. The discovery of power-law-type emission from the Crab pulsar at energies exceeding 100 GeV provides a compelling justification for exploration of other pulsars at these energies. We applied the method of aperture photometry to measure pulsar emission spectra from Fermi-LAT data and present a stacked analysis of 115 pulsars selected from the Second Fermi-LAT catalog of gamma-ray pulsars. This analysis, which uses an average of ∼4.2 yr of data per pulsar, aggregates low-level emission which cannot be resolved in individual objects but can be detected in an ensemble. We find no significant stacked excess at energies above 50 GeV. An upper limit of 30% of the Crab pulsar level is found for the average flux from 115 pulsars in the 100–177 GeV energy range at the 95% confidence level. Stacked searches exclusive to the young pulsar sample, the millisecond pulsar sample, and several other promising sub-samples also return no significant excesses above 50 GeV.

  9. Inverse compton emission of gamma rays near the pulsar surface

    International Nuclear Information System (INIS)

    Morini, M.

    1981-01-01

    The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 10 6 K or of the polar cap temperature is of the order of 5 x 10 6 K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered. (orig.)

  10. Broadband x-ray imaging and spectroscopy of the crab nebula and pulsar with NuSTAR

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Reynolds, Stephen; Harrison, Fiona

    2015-01-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ~9 ke...

  11. Bursts of the Crab Nebula gamma-ray emission at high and ultra-high energies

    Directory of Open Access Journals (Sweden)

    Lidvansky A.S.

    2017-01-01

    Full Text Available Characteristics of the flares of gamma rays detected from the Crab Nebula by the AGILE and Fermi-LAT satellite instruments are compared with those of a gamma ray burst recorded by several air shower arrays on February 23, 1989 and with one recent observation made by the ARGO-YBJ array. It is demonstrated that though pulsar-periodicity and energy spectra of emissions at 100 MeV (satellite gamma ray telescopes and 100 TeV (EAS arrays are different, their time structures seem to be similar. Moreover, maybe the difference between “flares” and “waves” recently found in the Crab Nebula emission by the AGILE team also exists at ultra-high energies.

  12. The Crab Nebula

    International Nuclear Information System (INIS)

    Mitton, S.

    1979-01-01

    The subject is covered in chapters, as follows: A.D.1054, a star explodes (historical account of observations of the supernova of which the Crab Nebula is the remnant); the telescope takes over (discovery and subsequent observation of the Crab Nebula); the message of the fiery remnant (detailed structure and its interpretation); the invisible nebula (electromagnetic radiation from the Crab Nebula and its interpretation); a beacon in the night (the discovery of pulsars, with special reference to the pulsar in the Crab Nebula; observation and theory); the strange world of a neutron star (theory, prediction and observation); magnetic fields and energy flow from the pulsar (stellar magnetosphere; luminosity of the nebula); how does the pulsar pulse (observation; models to explain beaming); outburst and aftermath (types of supernovae and their evolution; nucleosynthesis); supernovae and their remnants (account of observations since early records); the Crab Nebula and modern astronomy. (U.K.)

  13. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    International Nuclear Information System (INIS)

    Rankin, Joanna M.; Mitra, Dipanjan; Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van; Ransom, Scott; Stairs, Ingrid; Straten, Willem van; Weisberg, Joel M.

    2017-01-01

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  14. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, Joanna M.; Mitra, Dipanjan [Physics Department, University of Vermont, Burlington, VT 05405 (United States); Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Ransom, Scott [National Radio Astronomy Observatory, Charlottesville, VA 29201 (United States); Stairs, Ingrid [Physics Department, University of British Columbia, V6T 1Z4, BC (Canada); Straten, Willem van [Institute for Radio Astronomy and Space Research, Auckland University of Technology, Auckland 1142 (New Zealand); Weisberg, Joel M., E-mail: Joanna.Rankin@uvm.edu [Physics and Astronomy Department, Carleton College, Northfield, MN 55057 (United States)

    2017-08-10

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  15. Magnetic Pair Creation Attenuation Altitude Constraints in Gamma-Ray Pulsars

    Science.gov (United States)

    Baring, Matthew; Story, Sarah

    The Fermi gamma-ray pulsar database now exceeds 150 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency at and below the turnover energy. Our updated computations span both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. The altitude bounds, typically in the range of 2-5 stellar radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. However, the exceptional case of the Crab pulsar provides an altitude bound of around 20% of the light cylinder radius if pair transparency persists out to 350 GeV, the maximum energy detected by MAGIC. This is an impressive new physics-based constraint on the Crab's gamma-ray emission locale.

  16. Optical pulsar in the Large Magellanic Cloud remnant 0540-69.3

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.R.

    1984-01-01

    We have detected pulsed optical emission from the Large Magellanic Cloud (LMC) X-ray pulsar PSR 0540-693 (Seward et al. 1984). The pulsed emission has a time averaged magnitude of approximately 22.7. The X-ray pulsar was discovered in the LMC remnant, 0540-69.3 as a pulse repetition period of approx. 50 milliseconds (ms) in Einstein Obsrvatory data (Seward et al. 1984). Earlier, Clark et al. (1982) had noted that this remnant resembles the Crab Nebula because of the X-ray power law spectrum, and suggested that the nebular emission was synchrotron radiation powered by a central pulsar. After the announcement of X-ray pulsed emission, Chanan et al. (1984) measured the broad optical band properties of the nebula and found evidence for synchrotron emission. They reported that the 4.5 arc second continuum emission remnant has only a tenth the luminosity of the Crab Nebula. We have recorded broad-band optical time-series data at 1 ms intervals with the 4-m and 1.5-m Cerro Tololo telescopes and have found strong pulsations, employing the usual Fourier transform methods. A summary of the observations, including magnitudes, barycentric frequencies and times of arrival is given

  17. On the injection of relativistic particles into the Crab Nebula

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1977-01-01

    It is shown that a flux of relativistic electrons from the NP 0532 pulsar magnetosphere, responsible for its synchrotron emission, cannot provide the necessary energy pumping to the Crab Nebula. A conclusion is reached that such a pumping can be effectuated by a flow of relativistic electrons leaving the NP 0532 magnetosphere at small pitch angles and giving therefore no appreciable contribution to the synchrotron emission of the pulsar. An interpretation of the Crab Nebula synchrotron spectrum is given on the assumption of secular ''softening'' of the energy spectrum of the relativistic electrons injected into the Nebula. A possibility of explanation of the observed rapid variability of some features in the central part of the Nebula by ejection of free - neutron - rich dense gas clouds from the pulsar surface during ''starquakes'' is discussed. The clouds of rather dense (nsub(e) approximately 10 7 cm -3 ) plasma, thus formed at about 10 13 cm from pulsar, will be accelerated up to relativistic velocities by the pressure of the magneto-dipole radiation of NP 0532 and will deform the magnetic field in the inner part (R 17 cm) of the Crab Nebula, that is the cause of the variability observed. In this case, favourable conditions for the acceleration of the particles in the cloud up to relativistic energies are realized; that may be an additional source of injection

  18. Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Shantanu [Indian Institute of Technology, Department of Physics, Hyderabad, Telangana (India); Kahya, Emre [Istanbul Technical University, Department of Physics, Istanbul (Turkey)

    2018-02-15

    We calculate the total galactic Shapiro delay to the Crab pulsar by including the contributions from the dark matter as well as baryonic matter along the line of sight. The total delay due to dark matter potential is about 3.4 days. For baryonic matter, we included the contributions from both the bulge and the disk, which are approximately 0.12 and 0.32 days respectively. The total delay from all the matter distribution is therefore 3.84 days. We also calculate the limit on violations of Weak equivalence principle by using observations of ''nano-shot'' giant pulses from the Crab pulsar with time-delay < 0.4 ns, as well as using time differences between radio and optical photons observed from this pulsar. Using the former, we obtain a limit on violation of Weak equivalence principle in terms of the PPN parameter Δγ < 2.41 x 10{sup -15}. From the time-difference between simultaneous optical and radio observations, we get Δγ < 1.54 x 10{sup -9}. We also point out differences in our calculation of Shapiro delay and that from two recent papers (Yang and Zhang, Phys Rev D 94(10):101501, 2016; Zhang and Gong, Astrophys J 837:134, 2017), which used the same observations to obtain a corresponding limit on Δγ. (orig.)

  19. Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation

    International Nuclear Information System (INIS)

    Desai, Shantanu; Kahya, Emre

    2018-01-01

    We calculate the total galactic Shapiro delay to the Crab pulsar by including the contributions from the dark matter as well as baryonic matter along the line of sight. The total delay due to dark matter potential is about 3.4 days. For baryonic matter, we included the contributions from both the bulge and the disk, which are approximately 0.12 and 0.32 days respectively. The total delay from all the matter distribution is therefore 3.84 days. We also calculate the limit on violations of Weak equivalence principle by using observations of ''nano-shot'' giant pulses from the Crab pulsar with time-delay < 0.4 ns, as well as using time differences between radio and optical photons observed from this pulsar. Using the former, we obtain a limit on violation of Weak equivalence principle in terms of the PPN parameter Δγ < 2.41 x 10 -15 . From the time-difference between simultaneous optical and radio observations, we get Δγ < 1.54 x 10 -9 . We also point out differences in our calculation of Shapiro delay and that from two recent papers (Yang and Zhang, Phys Rev D 94(10):101501, 2016; Zhang and Gong, Astrophys J 837:134, 2017), which used the same observations to obtain a corresponding limit on Δγ. (orig.)

  20. Super-Acceleration in the Flaring Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, Marco, E-mail: marco.tavani@inaf.it

    2013-10-15

    The Crab Nebula continues to surprise us. The Crab system (energized by a very powerful pulsar at the center of the Supernova Remnant SN1054) is known to be a very efficient particle “accelerator” which can reach PeV energies. Today, new surprising data concerning the gamma-ray flares produced by the Crab Nebula challenge models of particle acceleration. The total energy flux from the Crab has been considered for many decades substantially stable at X-ray and gamma-ray energies. However, this paradigm was shattered by the AGILE discovery and Fermi confirmation in September 2010 of transient gamma-ray emission from the Crab. Indeed, we can state that four major flaring gamma-ray episodes have been detected by AGILE and Fermi during the period mid-2007/2012. During these events, transient particle acceleration occurs in a regime which apparently violates the MHD conditions and synchrotron cooling constraints. This fact justifies calling “super-acceleration” the mechanism which produces the “flaring Crab phenomenon”. Radiation between 50 MeV and a few GeV is emitted with a quite hard spectrum within a short timescale (hours-days), with no obvious relation with simultaneous optical and X-ray emissions in the inner Nebula. “Super-acceleration” implies overcoming synchrotron cooling by strong (and “parallel”) electric fields most likely produced by magnetic field reconnection within the pulsar wind outflow. This acceleration appears to be very efficient and, remarkably, limited by radiation reaction. It is not clear at the moment where in the Nebula this phenomenon occurs. An intense observational program is now focused on the Crab Nebula to resolve its most challenging mystery.

  1. Space 'beachballs' generate pulsar bursts

    CERN Multimedia

    Wasowicz, L

    2003-01-01

    Researchers have analyzed radio emissions from a pulsar at the center of the Crab Nebula and have found 'subpulses' that last around 2 nanoseconds. They speculate this means the regions in which these ultra-short pulses are generated can be no larger than about 2 feet across - the distance light travels in 2 nanoseconds (2 pages).

  2. Pulsars today

    International Nuclear Information System (INIS)

    Graham-Smith, F.

    1990-01-01

    The theory concerning pulsars is reviewed, with particular attention to possible evolution, life cycle, and rejuvenation of these bodies. Quantum liquids, such as neutron superfluids, and evidence for the existence of superfluid vortices and other internal phenomena are considered with particular attention to the Crab pulsar. Rate of change of the rotation rate is measured and analyzed for the Crab pulsar and the implications of deviations in the pulse times from those of a perfect rotator are examined. Glitches, the sudden increase in rotation rate of a pulsar that has previously exhibited a steady slowdown, are discussed and it is suggested that the movement of the superfluid core relative to the crust is responsible for this phenomenon. It is noted that radio waves from pulsars can be used to determine the intensity and structure of interplanetary and interstellar gas turbulence and to provide a direct measure of the strength of the interstellar magnetic field

  3. ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A.; Dermer, Charles D. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu, E-mail: charlesdermer@outlook.com, E-mail: justin.finke@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-12-20

    The γ -ray flares from the Crab Nebula observed by AGILE and Fermi -LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ -ray synchrotron spectrum. We find that in our model the γ -ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi -LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ -ray flare.

  4. High-Energy Emission from Rotation-Powered Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2007-01-01

    Thirty-five years after the discovery of rotation-powered pulsars, we still do not understand their pulsed emission at any wavelength. In the last few years there have been some fundamental developments in acceleration and emission models. I will review both the basic physics of the models as well as the latest developments in understanding the high-energy emission of rotation-powered pulsars. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately two new gamma-ray telescopes, AGILE and GLAST, with launches expected this year will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  5. Pulsar Emission Spectrum

    OpenAIRE

    Gruzinov, Andrei

    2013-01-01

    Emission spectrum is calculated for a weak axisymmetric pulsar. Also calculated are the observed spectrum, efficiency, and the observed efficiency. The underlying flow of electrons and positrons turns out to be curiously intricate.

  6. Magnetic Pair Creation Transparency in Pulsars

    Science.gov (United States)

    Story, Sarah; Baring, M. G.

    2013-04-01

    The Fermi gamma-ray pulsar database now exceeds 115 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency below the turnover energy. We adopt a semi-analytic approach, spanning both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. Our work clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths. The altitude bounds, typically in the range of 2-6 neutron star radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. For the Crab pulsar, which emits pulsed radiation up to energies of 120 GeV, we obtain a lower bound of around 15 neutron star radii to its emission altitude.

  7. Radio emission region exposed: courtesy of the double pulsar

    Science.gov (United States)

    Lomiashvili, David; Lyutikov, Maxim

    2014-06-01

    The double pulsar system PSR J0737-3039A/B offers exceptional possibilities for detailed probes of the structure of the pulsar magnetosphere, pulsar winds and relativistic reconnection. We numerically model the distortions of the magnetosphere of pulsar B by the magnetized wind from pulsar A, including effects of magnetic reconnection and of the geodetic precession. Geodetic precession leads to secular evolution of the geometric parameters and effectively allows a 3D view of the magnetosphere. Using the two complimentary models of pulsar B's magnetosphere, adapted from the Earth's magnetosphere models by Tsyganenko (ideal pressure confinement) and Dungey (highly resistive limit), we determine the precise location and shape of the coherent radio emission generation region within pulsar B's magnetosphere. We successfully reproduce orbital variations and secular evolution of the profile of B, as well as subpulse drift (due to reconnection between the magnetospheric and wind magnetic fields), and determine the location and the shape of the emission region. The emission region is located at about 3750 stellar radii and has a horseshoe-like shape, which is centred on the polar magnetic field lines. The best-fitting angular parameters of the emission region indicate that radio emission is generated on the field lines which, according to the theoretical models, originate close to the poles and carry the maximum current. We resolved all but one degeneracy in pulsar B's geometry. When considered together, the results of the two models converge and can explain why the modulation of B's radio emission at A's period is observed only within a certain orbital phase region. Our results imply that the wind of pulsar A has a striped structure only 1000 light-cylinder radii away. We discuss the implications of these results for pulsar magnetospheric models, mechanisms of coherent radio emission generation and reconnection rates in relativistic plasma.

  8. DEEP CHANDRA OBSERVATIONS OF THE CRAB-LIKE PULSAR WIND NEBULA G54.1+0.3 AND SPITZER SPECTROSCOPY OF THE ASSOCIATED INFRARED SHELL

    International Nuclear Information System (INIS)

    Temim, Tea; Slane, Patrick; Raymond, John C.; Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2010-01-01

    G54.1+0.3 is a young pulsar wind nebula (PWN), closely resembling the Crab, for which no thermal shell emission has been detected in X-rays. Recent Spitzer observations revealed an infrared (IR) shell containing a dozen point sources arranged in a ring-like structure, previously proposed to be young stellar objects. An extended knot of emission located in the NW part of the shell appears to be aligned with the pulsar's X-ray jet, suggesting a possible interaction with the shell material. Surprisingly, the IR spectrum of the knot resembles the spectrum of freshly formed dust in Cas A, and is dominated by an unidentified dust emission feature at 21 μm. The spectra of the shell also contain various emission lines and show that some are significantly broadened, suggesting that they originate in rapidly expanding supernova (SN) ejecta. We present the first evidence that the PWN is driving shocks into expanding SN ejecta and we propose an alternative explanation for the origin of the IR emission in which the shell is composed entirely of SN ejecta. In this scenario, the freshly formed SN dust is being heated by early-type stars belonging to a cluster in which the SN exploded. Simple dust models show that this interpretation can give rise to the observed shell emission and the IR point sources.

  9. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    Science.gov (United States)

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres. Copyright © 2015, American Association for the Advancement of Science.

  10. The pulsar contribution to the diffuse galactic gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.; Kanbach, G.; Hunter, S.D.

    1997-01-01

    There is active interest in the extent to which unresolved gamma-ray pulsars contribute to the Galactic diffuse emission, and in whether unresolved gamma-ray pulsars could be responsible for the excess of diffuse Galactic emission above 1 GeV that has been observed by EGRET. The diffuse gamma......-ray intensity due to unresolved pulsars is directly linked to the number of objects that should be observed in the EGRET data. We can therefore use our knowledge of the unidentified EGRET sources to constrain model parameters like the pulsar birthrate and their beaming angle. This analysis is based only...... on the properties of the six pulsars that have been identified in the EGRET data and is independent of choice of a pulsar emission model. We find that pulsars contribute very little to the diffuse emission at lower energies, whereas above 1 GeV they can account for 18% of the observed intensity in selected regions...

  11. TOWARD AN EMPIRICAL THEORY OF PULSAR EMISSION. X. ON THE PRECURSOR AND POSTCURSOR EMISSION

    International Nuclear Information System (INIS)

    Basu, Rahul; Mitra, Dipanjan; Rankin, Joanna M.

    2015-01-01

    Precursors and postcursors (PPCs) are rare emission components, which appear beyond the main pulse emission, in some cases far away from it, and are detected in a handful of pulsar. In this paper we attempt to characterize the PPC emission in relation to the pulsar main pulse geometry. In our analysis we find that PPC components have properties very different from that of outer conal emission. The separation of the PPC components from the main pulse center remains constant with frequency. In addition the beam opening angles corresponding to the separation of PPC components from the pulsar center are much larger than the largest encountered in conal emission. Pulsar radio emission is believed to originate within the magnetic polar flux tubes due to the growth of instabilities in the outflowing relativistic plasma. Observationally, there is strong evidence that the main pulse emission originates at altitudes of about 50 neutron star radii for a canonical pulsar. Currently, the most plausible radio emission model that can explain main pulse emission is the coherent curvature radiation mechanism, wherein relativistic charged solitons are formed in a non-stationary electron-positron-pair plasma. The wider beam opening angles of PPC require the emission to emanate from larger altitudes as compared to the main pulse, if both these components originate by the same emission mechanism. We explore this possibility and find that this emission mechanism is probably inapplicable at the height of the PPC emission. We propose that the PPC emission represents a new type of radiation from pulsars with a mechanism different from that of the main pulse

  12. Confirming the nature of the knot near the pulsar B1951+32

    Science.gov (United States)

    Zyuzin, D. A.; Shibanov, Yu A.; Pavlov, G. G.; Danilenko, A. A.

    2017-12-01

    The energetic and fast-moving radio and γ-ray pulsar B1951+32 is associated with the supernova remnant CTB 80. It powers a complex pulsar wind nebula detected in the radio, Hα and X-rays (Moon et al 2004 ApJ 610 L33). A puzzling optical knot was detected about 0″.5 from the pulsar in the optical and near-IR (Moon et al 2004 ApJ 610 L33; Hester 2000 Bulletin of the AAS 32 1542). It is reminiscent of the unique “inner optical knot” located 0″.6 from the Crab pulsar. Until now there has been no evidence that B1951+32 knot is indeed associated with the pulsar. We observed the pulsar field with the Gemini-North telescope in 2016 to check the association. We performed first near-IR high spatial resolution imaging in the K s band using the NIRI+Altair instrument and deep optical imaging in the gr bands using the GMOS instrument. Our observations showed that the current knot position is shifted by ≈ 0″.6 from the position measured with the HST in 1997. This is consistent with the known pulsar proper motion and is direct evidence of the pulsar-knot connection. We compared the spectral energy distribution of the knot emission with that of the Crab knot. Possible implications of the results are discussed.

  13. Gamma rays from pulsar outer gaps

    International Nuclear Information System (INIS)

    Chiang, J.; Romani, R.W.; Cheng Ho

    1993-01-01

    We describe a gamma ray pulsar code which computes the high energy photon emissivities from vacuum gaps in the outer magnetosphere, after the model outlined by Cheng, Ho and Ruderman (1986) and Ho (1989). Pair-production due to photon-photon interactions and radiation processes including curvature, synchrotron and inverse Compton processes are computed with an iterative scheme which converges to self-consistent photon and particle distributions for a sampling of locations in the outer magnetosphere. We follow the photons from these distributions as they propagate through the pulsar magnetosphere toward a distant observer. We include the effects of relativistic aberration, time-of-flight delays and reabsorption by photon-photon pair-production to determine an intensity map of the high energy pulsar emission on the sky. Using data from radio and optical observations to constrain the geometry of the magnetosphere as well as the possible observer viewing angles, we derive light curves and phase dependent spectra which can be directly compared to data from the Compton Observatory. Observations for Crab, Vela and the recently identified gamma ray pulsars Geminga, PSR1706-44 aNd PSR 1509-58 will provide important tests of our model calculations, help us to improve our picture of the relevant physics at work in pulsar magnetospheres and allow us to comment on the implications for future pulsar discoveries

  14. Pulsar Emission: Is It All Relative?

    Science.gov (United States)

    Harding, Alice K.

    2004-01-01

    Thirty-five years after the discovery of pulsars, we still do not understand the fundamentals of their pulsed emission at any wavelength. The fact that even detailed pulse profiles cannot identlfy the origin of the emission in a magnetosphere that extends fiom the neutron star surface to plasma moving at relativistic speeds near the light cylinder compounds the problem. I will discuss the role of special and general relativistic effects on pulsar emission, fiom inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics.

  15. MHD Interaction of Pulsar Wind Nebulae with SNRs and the ISM

    OpenAIRE

    van der Swaluw, Eric

    2005-01-01

    In the late 1960s the discovery of the Crab pulsar in its associated supernova remnant, launched a new field in supernova remnant research: the study of pulsar-driven or plerionic supernova remnants. In these type of remnants, the relativistic wind emitted by the pulsar, blows a pulsar wind nebula into the interior of its supernova remnant. Now, more then forty years after the discovery of the Crab pulsar, there are more then fifty plerionic supernova remnants known, due to the ever-increasin...

  16. BROADBAND X-RAY IMAGING AND SPECTROSCOPY OF THE CRAB NEBULA AND PULSAR WITH NuSTAR

    International Nuclear Information System (INIS)

    Madsen, Kristin K.; Harrison, Fiona; Grefenstette, Brian W.; Reynolds, Stephen; An, Hongjun; Boggs, Steven; Craig, William W.; Zoglauer, Andreas; Christensen, Finn E.; Fryer, Chris L.; Hailey, Charles J.; Nynka, Melania; Markwardt, Craig; Zhang, William; Stern, Daniel

    2015-01-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ∼9 keV in the spectral photon index of the torus structure with a steepening characterized by ΔΓ ∼ 0.25. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power law with break energy at ∼12 keV and ΔΓ ∼ 0.27. We present spectral maps of the inner 100'' of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power law with an index of γ = 0.094 ± 0.018, consistent with the predictions of Kennel and Coroniti. The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a γ-ray flare, but found no increase in flux in the 3-78 keV energy band

  17. Toward an Empirical Theory of Pulsar Emission. X. On the Precursor and Postcursor Emission

    NARCIS (Netherlands)

    Basu, R.; Mitra, D.; Rankin, J.M.

    2015-01-01

    Precursors and postcursors (PPCs) are rare emission components, which appear beyond the main pulse emission, in some cases far away from it, and are detected in a handful of pulsar. In this paper we attempt to characterize the PPC emission in relation to the pulsar main pulse geometry. In our

  18. A large bubble around the Crab Nebula

    Science.gov (United States)

    Romani, Roger W.; Reach, William T.; Koo, Bon Chul; Heiles, Carl

    1990-01-01

    IRAS and 21 cm observations of the interstellar medium around the Crab nebula show evidence of a large bubble surrounded by a partial shell. If located at the canonical 2 kpc distance of the Crab pulsar, the shell is estimated to have a radius of about 90 pc and to contain about 50,000 solar masses of swept-up gas. The way in which interior conditions of this bubble can have important implications for observations of the Crab are described, and the fashion in which presupernova evolution of the pulsar progenitor has affected its local environment is described.

  19. High-Energy Pulsar Models: Developments and New Questions

    Science.gov (United States)

    Venter, C.; Harding, A. K.

    2014-01-01

    our understanding of particle acceleration, emission, and magnetosphere geometry. One may now also study evolutionary trends of the measured or inferred quantities, and probe pulsar visibility and population properties such as radiation beam sizes of different pulsar classes, as well as the distribution of spin-down power, gamma-ray luminosity, conversion efficiency, spectral index, and cutoff energy across the population. Lastly, the recent detection of very-high-energy (VHE) pulsations from the Crab pulsar generated quite a few ideas to explain this emission, leading to an extension of standard models and possibly even a bridge between the physics of pulsars and pulsar wind nebulae (PWNe).

  20. Discovery of powerful gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Tavani, M; Bulgarelli, A; Vittorini, V; Pellizzoni, A; Striani, E; Caraveo, P; Weisskopf, M C; Tennant, A; Pucella, G; Trois, A; Costa, E; Evangelista, Y; Pittori, C; Verrecchia, F; Del Monte, E; Campana, R; Pilia, M; De Luca, A; Donnarumma, I; Horns, D; Ferrigno, C; Heinke, C O; Trifoglio, M; Gianotti, F; Vercellone, S; Argan, A; Barbiellini, G; Cattaneo, P W; Chen, A W; Contessi, T; D'Ammando, F; DePris, G; Di Cocco, G; Di Persio, G; Feroci, M; Ferrari, A; Galli, M; Giuliani, A; Giusti, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Fuschino, F; Marisaldi, M; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Perotti, F; Piano, G; Picozza, P; Prest, M; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Vallazza, E; Zambra, A; Zanello, D; Lucarelli, F; Santolamazza, P; Giommi, P; Salotti, L; Bignami, G F

    2011-02-11

    The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega-electron volts to 10 giga-electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.

  1. Diffuse γ-ray emission from galactic pulsars

    International Nuclear Information System (INIS)

    Calore, F.; Di Mauro, M.; Donato, F.

    2014-01-01

    Millisecond pulsars (MSPs) are old fast-spinning neutron stars that represent the second most abundant source population discovered by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi). As guaranteed γ-ray emitters, they might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT (i.e., the Isotropic Diffuse γ-Ray Background (IDGRB)), which is believed to arise from the superposition of several components of galactic and extragalactic origin. Additionally, γ-ray sources also contribute to the anisotropy of the IDGRB measured on small scales by Fermi-LAT. In this manuscript we aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. To this end, we model the MSPs' spatial distribution in the Galaxy and the γ-ray emission parameters by considering observational constraints coming from the Australia Telescope National Facility pulsar catalog and the Second Fermi-LAT Catalog of γ-ray pulsars. By simulating a large number of MSP populations through a Monte Carlo simulation, we compute the average diffuse emission and the anisotropy 1σ upper limit. We find that the emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10° in latitude. The 1σ upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30°. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude γ-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes (e.g., blazars, misaligned active galactic nuclei, or star-forming galaxies). Nevertheless, because MSPs are more concentrated toward the

  2. The Crab Nebula flaring activity

    Energy Technology Data Exchange (ETDEWEB)

    Montani, G., E-mail: giovanni.montani@frascati.enea.it [ENEA – C.R, UTFUS-MAG, via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Dipartimento di Fisica, Università di Roma “Sapienza”, p.le Aldo Moro 5, I-00185 Roma (Italy); Bernardini, M.G. [INAF – Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy)

    2014-12-12

    The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼10{sup 15} cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼10{sup 9}, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  3. DETECTION OF POLARIZED QUASI-PERIODIC MICROSTRUCTURE EMISSION IN MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    De, Kishalay; Sharma, Prateek [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Gupta, Yashwant, E-mail: kde@caltech.edu [National Centre for Radio Astrophysics, TIFR, Pune University Campus, Post Bag 3, Pune 411007 (India)

    2016-12-10

    Microstructure emission, involving short timescale, often quasi-periodic, intensity fluctuations in subpulse emission, is well known in normal period pulsars. In this Letter, we present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), from Giant Metrewave Radio Telescope observations of two MSPs at 325 and 610 MHz. Similar to the characteristics of microstructure observed in normal period pulsars, we find that these features are often highly polarized and exhibit quasi-periodic behavior on top of broader subpulse emission, with periods of the order of a few μ s. By measuring their widths and periodicities from single pulse intensity profiles and their autocorrelation functions, we extend the microstructure timescale–rotation period relationship by more than an order of magnitude down to rotation periods ∼5 ms, and find it to be consistent with the relationship derived earlier for normal pulsars. The similarity of behavior is remarkable, given the significantly different physical properties of MSPs and normal period pulsars, and rules out several previous speculations about the possible different characteristics of microstructure in MSP radio emission. We discuss the possible reasons for the non-detection of these features in previous high time resolution MSP studies along with the physical implications of our results, both in terms of a geometric beam sweeping model and temporal modulation model for micropulse production.

  4. Physical conditions in the reconnection layer in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Uzdensky, Dmitri A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Spitkovsky, Anatoly, E-mail: uzdensky@colorado.edu, E-mail: anatoly@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-01-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet (CS) beyond the light cylinder (LC). Magnetic reconnection in this CS inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via a hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers—temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial CS, these basic parameters are uniquely determined by the strength of the reconnecting upstream magnetic field. For the case of the Crab pulsar, we find them to be of order 10 GeV, 10{sup 13} cm{sup –3}, and 10 cm, respectively. After accounting for the bulk Doppler boosting due to the pulsar wind, the synchrotron and inverse-Compton emission from the reconnecting CS can explain the observed pulsed high-energy (GeV) and very high energy (∼100 GeV) radiation, respectively. Also, we suggest that the rapid relative motions of the secondary plasmoids in the hierarchical chain may contribute to the production of the pulsar radio emission.

  5. Inductive Spikes in the Crab Nebula: A Theory of γ-Ray Flares.

    Science.gov (United States)

    Kirk, John G; Giacinti, Gwenael

    2017-11-24

    We show that the mysterious, rapidly variable emission at ∼400  MeV observed from the Crab Nebula by the AGILE and Fermi satellites could be the result of a sudden drop in the mass loading of the pulsar wind. The current required to maintain wave activity in the wind is then carried by very few particles of a high Lorentz factor. On impacting the nebula, these particles produce a tightly beamed, high-luminosity burst of hard gamma rays, similar to those observed. This implies that (i) the emission is synchrotron radiation in the toroidal field of the nebula and, therefore, linearly polarized and (ii) this mechanism potentially contributes to the gamma-ray emission from other powerful pulsars, such as the Magellanic Cloud objects J0537-6910 and B0540-69.

  6. Are Crab nanoshots Schwinger sparks?

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, Albert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yoo, Hojin [Univ. of Wisconsin, Madison, WI (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2015-05-21

    The highest brightness temperature ever observed are from "nanoshots" from the Crab pulsar which we argue could be the signature of bursts of vacuum e± pair production. If so this would be the first time the astronomical Schwinger effect has been observed. These "Schwinger sparks" would be an intermittent but extremely powerful, ~103 L, 10 PeV e± accelerator in the heart of the Crab. These nanosecond duration sparks are generated in a volume less than 1 m3 and the existence of such sparks has implications for the small scale structure of the magnetic field of young pulsars such as the Crab. As a result, this mechanism may also play a role in producing other enigmatic bright short radio transients such as fast radio bursts.

  7. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  8. $\\gamma$-Ray Pulsars: Emission Zones and Viewing Geometries

    OpenAIRE

    Romani, Roger W.; Yadigaroglu, I. -A.

    1994-01-01

    There are now a half dozen young pulsars detected in high energy photons by the Compton GRO, showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high energy emission on the sky in a model which posits $\\gamma$-ray production by charge depleted gaps in the outer magnetosphere. This model accounts for the radio to $\\gamma$-ray pulse offsets of the known pulsars, as well as the shape of the high energy pulse profiles. We also show that $...

  9. Monitoring Baby - Listening in on the Youngest Known Pulsar (XTEAO11)

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR~J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type supernova remnant Kes~75. Based on its spin-down rate and X- ray spectrum, PSR~J1846-0258 is likely the youngest known rotation- powered pulsar. Compared to the Crab pulsar, however, its period, spin- down rate, and spin-down to X-ray luminosity conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign to measure the pulsar's braking index, characterize its timing noise, and search for evidence of timing glitches. This pulsar provides important insight into the evolution of the youngest NS-SNR systems.

  10. Listening in on Baby - Monitoring the Youngest Known Pulsar

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type SNR Kes 75. Based on its spin-down rate and X-ray spectrum, PSR J1846-0258 is likely the youngest known rotation-powered pulsar. Compared to the Crab pulsar, however, its period, spin-down rate, and X-ray conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign of PSR~J1846-0258 to measure the braking index, characterize its timing noise, and search for evidence of timing glitches. Furthermore, an X- ray ephemeris contemporal with GLAST is critical to detecting the pulsar at higher energies.

  11. Monitoring Baby - Listening in on the Youngest Known Pulsar

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type supernova remnant Kes 75. Based on its spin-down rate and X- ray spectrum, PSR J1846-0258 is likely the youngest known rotation- powered pulsar. Compared to the Crab pulsar, however, its period, spin- down rate, and spin-down to X-ray luminosity conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign of PSR J1846-0258 to measure the braking index, characterize its timing noise, and search for evidence of glitches. This pulsar provides important insight into the evolution of the youngest NS-SNR systems.

  12. Particle acceleration by pulsars

    International Nuclear Information System (INIS)

    Arons, Jonathan.

    1980-06-01

    The evidence that pulsars accelerate relativistic particles is reviewed, with emphasis on the γ-ray observations. The current state of knowledge of acceleration in strong waves is summarized, with emphasis on the inability of consistent theories to accelerate very high energy particles without converting too much energy into high energy photons. The state of viable models for pair creation by pulsars is summarized, with the conclusion that pulsars very likely lose rotational energy in winds instead of in superluminous strong waves. The relation of the pair creation models to γ-ray observations and to soft X-ray observations of pulsars is outlined, with the conclusion that energetically viable models may exist, but none have yet yielded useful agreement with the extant data. Some paths for overcoming present problems are discussed. The relation of the favored models to cosmic rays is discussed. It is pointed out that the pairs made by the models may have observable consequences for observation of positrons in the local cosmic ray flux and for observations of the 511 keV line from the interstellar medium. Another new point is that asymmetry of plasma supply from at least one of the models may qualitatively explain the gross asymmetry of the X-ray emission from the Crab nebula. It is also argued that acceleration of cosmic ray nuclei by pulsars, while energetically possible, can occur only at the boundary of the bubbles blown by the pulsars, if the cosmic ray composition is to be anything like that of the known source spectrum

  13. Neutron Stars and the Discovery of Pulsars.

    Science.gov (United States)

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  14. Pulsar kicks from majoron emission

    International Nuclear Information System (INIS)

    Farzan, Yasaman; Gelmini, Graciela; Kusenko, Alexander

    2005-01-01

    We show that majoron emission from a hot nascent neutron star can be anisotropic in the presence of a strong magnetic field. If majorons carry a non-negligible fraction of the supernova energy, the resulting recoil velocity of a neutron star can explain the observed velocities of pulsars

  15. RAPID GAMMA-RAY FLUX VARIABILITY DURING THE 2013 MARCH CRAB NEBULA FLARE

    International Nuclear Information System (INIS)

    Mayer, M.; Buehler, R.; Hays, E.; Cheung, C. C.; Grove, J. E.; Dutka, M. S.; Kerr, M.; Ojha, R.

    2013-01-01

    We report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) · 10 –6 cm –2 s –1 on 2013 March 6. This value exceeds the average flux by almost a factor of six and implies a ∼20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time

  16. Discovery of pulsed OH maser emission stimulated by a pulsar.

    Science.gov (United States)

    Weisberg, Joel M; Johnston, Simon; Koribalski, Bärbel; Stanimirovic, Snezana

    2005-07-01

    Stimulated emission of radiation has not been directly observed in astrophysical situations up to this time. Here we demonstrate that photons from pulsar B1641-45 stimulate pulses of excess 1720-megahertz line emission in an interstellar hydroxyl (OH) cloud. As this stimulated emission is driven by the pulsar, it varies on a few-millisecond time scale, which is orders of magnitude shorter than the quickest OH maser variations previously detected. Our 1612-megahertz spectra are inverted copies of the 1720-megahertz spectra. This "conjugate line" phenomenon enables us to constrain the properties of the interstellar OH line-producing gas. We also show that pulsar signals undergo significantly deeper OH absorption than do other background sources, which confirms earlier tentative findings that OH clouds are clumpier on small scales than are neutral hydrogen clouds.

  17. Polarimetric Evidence of the First White Dwarf Pulsar: The Binary System AR Scorpii

    Directory of Open Access Journals (Sweden)

    David A.H. Buckley

    2018-01-01

    Full Text Available The binary star AR Scorpii was recently discovered to exhibit high amplitude coherent variability across the electromagnetic spectrum (ultraviolet to radio at two closely spaced ∼2 min periods, attributed to the spin period of a white dwarf and the beat period. There is strong evidence (low X-ray luminosity, lack of flickering and absense of broad emission lines that AR Sco is a detached non-accreting system whose luminosity is dominated by the spin-down power of a white dwarf, due to magnetohydrodynamical (MHD interactions with its M5 companion. Optical polarimetry has revealed highly pulsed linear polarization on the same periods, reaching a maximum of 40%, consistent with a pulsar-like dipole, with the Stokes Q and U variations reminiscent of the Crab pulsar. These observations, coupled with the spectral energy distribution (SED which is dominated by non-thermal emission, characteristic of synchrotron emission, support the notion that a strongly magnetic (∼200 MG white dwarf is behaving like a pulsar, whose magnetic field interacts with the secondary star’s photosphere and magnetosphere. Radio synchrotron emission is produced from the pumping action of the white dwarf’s magnetic field on coronal loops from the M-star companion, while emission at high frequencies (UV/optical/X-ray comes from the particle wind, driven by large electric potential, again reminiscent of processes seen in neutron star pulsars.

  18. SEARCH FOR VERY HIGH ENERGY GAMMA-RAY EMISSION FROM PULSAR-PULSAR WIND NEBULA SYSTEMS WITH THE MAGIC TELESCOPE

    International Nuclear Information System (INIS)

    Anderhub, H.; Biland, A.; Antonelli, L. A.; Antoranz, P.; Balestra, S.; Barrio, J. A.; Bose, D.; Backes, M.; Becker, J. K.; Baixeras, C.; Bastieri, D.; Bock, R. K.; Gonzalez, J. Becerra; Bednarek, W.; Berger, K.; Bernardini, E.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Tridon, D. Borla

    2010-01-01

    The MAGIC collaboration has searched for high-energy gamma-ray emission of some of the most promising pulsar candidates above an energy threshold of 50 GeV, an energy not reachable up to now by other ground-based instruments. Neither pulsed nor steady gamma-ray emission has been observed at energies of 100 GeV from the classical radio pulsars PSR J0205+6449 and PSR J2229+6114 (and their nebulae 3C58 and Boomerang, respectively) and the millisecond pulsar PSR J0218+4232. Here, we present the flux upper limits for these sources and discuss their implications in the context of current model predictions.

  19. Radio search for pulsed emission from X-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    delli Santi, F S; Delpino, F [Bologna Univ. (Italy). Ist. di Astronomia; Inzani, P; Sironi, G [Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica Cosmica e Tecnologie Relative; Mandolesi, N; Morigi, G [Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. TESRE

    1981-05-01

    An experiment has been performed at 325 MHz, with a 10 m tracking dish, for the search of pulsed radio emission associated with X-ray pulsars. No evidence of radio pulses has been found in the four sources investigated, although the radio pulsar PSR 0329 + 54, used a testing object, has been detected successfully.

  20. Ginga observations of the 50 millisecond pulsar PSR 0540 - 69

    International Nuclear Information System (INIS)

    Nagase, F.; Deeter, J.; Lewis, W.; Dotani, T.; Makino, F.

    1990-01-01

    Extensive Ginga observations of PSR 0540 - 69, the Crab-like 50-msec pulsar in the LMC, have been obtained as a side benefit of a pulsar search project for SN 1987A. Through a coherent pulse-timing analysis of data from 46 separate days between July 1987 and October 1988, precise values have been obtained for the pulse frequency and its first and second derivatives. From these values, a braking index of n = 2.02 + or = 0.01 is obtained for PSR 0540 - 69. This is the first accurate measurement of a pulsar braking index from X-ray observations and the third overall. The braking index is much smaller than those previously determined for the Crab pulsar (n = 2.51) and PSR 1509 - 58 (n = 2.83). 24 refs

  1. Listening in on Baby - Monitoring the Youngest Known Pulsar (core Program)

    Science.gov (United States)

    We have discovered a most remarkable young pulsar, PSR J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type SNR Kes 75. Based on its spin-down rate and X-ray spectrum, PSR J1846-0258 is likely the youngest known rotation-powered pulsar. Compared to the Crab pulsar, however, its period, spin-down rate, and X-ray conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign of PSR~J1846-0258 to measure the braking index, characterize its timing noise, and search for evidence of timing glitches. Furthermore, an X- ray ephemeris contemporal with GLAST is critical to detecting the pulsar at higher energies.

  2. A possible mechanism for the pulsar radio emission

    International Nuclear Information System (INIS)

    Hinata, S.

    1977-01-01

    The possibility of radio emission is considered within a model which produces the beam-plasma system near the pulsar. A longitudinal instability develops near the light cylinder for a particular choice of parameters adopted in the paper. The excited wave strongly oscillates the beam particles perpendicular to its average velocity on one hand, and forms bunches of them on the other hand. Consequently, coherent radiation is expected. The frequency of the emission falls within the radio band, but the intensity turns out to be too low to explain observations. An appreciable enhancement of the beam number density over the Goldreich-Julian value (nsub(b) approximately equal to BΩ/2πec) is needed if the mechanism discussed in the present paper is responsible for the pulsar radio emission. (Auth.)

  3. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary.

    Science.gov (United States)

    Main, Robert; Yang, I-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions 1,2 . Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts 3-5 . As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow 7-9 . During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .

  4. Measurement of the crab flux above 60 GeV with the celeste Cerenkov telescope

    Czech Academy of Sciences Publication Activity Database

    Naurois De, M.; Holder, J.; Bazer-Bachi, R.; Bergeret, H.; Bruel, P.; Cordier, A.; Debais, G.; Dezalay, J. P.; Dumora, D.; Durand, E.; Eschstruth, P.; Espigat, P.; Fabre, B.; Fleury, P.; Hérault, N.; Hrabovský, Miroslav; Incerti, S.; Le Gallou, R.; Moenz, F.; Musquére, A.; Olive, J. F.; Paré, E.; Québert, J.; Rannot, R. C.; Reposeur, T.; Rob, L.; Roy, P.; Sako, T.; Schovánek, Petr; Smith, D. A.; Snabre, P.; Volte, A.

    2002-01-01

    Roč. 566, - (2002), s. 343-357 ISSN 0004-637X R&D Projects: GA ČR GA202/97/1181 Institutional research plan: CEZ:AV0Z1010920 Keywords : gamma ray: observations * ISM:individual (Crab Nebula) * pulsar :individual (Crab Pulsar ) * supernova remnants Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.187, year: 2002

  5. Pulsar Emission Geometry and Accelerating Field Strength

    Science.gov (United States)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  6. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  7. Oldest pulsars in the Universe

    International Nuclear Information System (INIS)

    Shaham, J.

    1987-01-01

    Since the discovery of the Vulpecula pulsar two more superfast pulsars have been reported. In 1983 a 6.13-millisecond pulsar (called 1953 + 29) was announced, and in 1986 a 5.362-millisecond pulsar (called 1855 + 09) was publicized. A candidate for a fourth has been mentioned. As more evidence becomes available, it seems increasingly likely that the superfast pulsars can be explained only as a part of a new class of pulsars. Although many of the details of the class remain obscured, some general facts are emerging. Perhaps most interesting of all is the great age these new celestial objects are thought to have. Ordinary pulsars are relatively young, typically less than a million years old; the Crab pulsar, which is the youngest one known, is a mere infant of 932 years. The superfast pulsars, in comparison, are thought to be ancient. They are probably the result of evolutionary processes that could go back as much as a billion years, or one-twentieth of the age of the universe, and they are likely to live for several billion years more. 8 figures

  8. Search for VHE γ-ray emission from the direction of the two millisecond pulsars PSR J0437-4715 and PSR J1824-2452 and the composite supernova remnant Kes 75 with H.E.S.S

    International Nuclear Information System (INIS)

    Fuessling, Matthias

    2012-01-01

    This work reports on the search for pulsed and steady very-high energy (VHE) gamma-ray emission in the energy range extending from 100 GeV up to 100 TeV from the direction of three pulsars with the High Energy Stereoscopic System (H.E.S.S.). Pulsed gamma-ray radiation from pulsars with energies beyond 100 GeV was found thus far only for the young and energetic Crab pulsar. A special class of pulsar wind nebulae (PWNe) is associated with composite supernova remnants (SNRs) where the PWN is centered in an expanding SNR shell. In the first part of this thesis, the results on the search for pulsed and steady VHE gamma-ray emission from the two millisecond pulsars, PSR J0437-4715 and PSR J1824-2452, are presented. Parts of the observations were conducted in a special trigger setup (the topological trigger with convergent pointing) to reduce the energy threshold of the instrument. No signal of pulsed or steady emission is found and upper limits on the pulsed and steady gamma-ray flux are derived. The upper limits on the pulsed gamma-ray flux are compared to existing model predictions and, in the case of PSR J1824-2452, allow the range of possible viewing geometries in some models to be constrained. In the second part of this work, results on the search for pulsed and steady VHE gamma-ray emission from the direction of the composite SNR Kes 75 are presented. The PWN in the center of Kes 75 is powered by a very young and powerful pulsar, PSR J1846-0258, that has an exceptionally high magnetic field. While no hint for pulsed emission is found, steady VHE gamma-ray emission is detected with a statistical significance of 10 sigma from a point-like source. The VHE gamma-ray emission is spatially coincident with the PWN and the SNR shell. Both are discussed as a possible origin for the observed emission. The pulsar of Kes 75 would be the youngest pulsar known to date to power a VHE PWN.

  9. Infrared study of the Crab pulsar: The ''shoulder'' pulse and the 3.45 micron pulse profile

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.; Burns, M.S.

    1983-01-01

    Infrared measurements of the Crab pulsar with the NASA IRTF 3.0 m telescope show that the spectrum of the main pulse turns downward for wavelengths longer than 3 μm. The ''shoulder'' pulse discovered by Pennypacker is measured in the 0.9--2.4 μm region, but disappears at 3.5 μm. This pulse rises from 0 to 20% of the height of the main pulse within 1 to 2 ms after the main pulse peak and decays with a 4 to 5 ms time constant. Excess infrared flux also appears after the interpulse. The main peak itself may be narrower at 3.45 μm than in the optical to 2.2 μm band

  10. A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2015-04-01

    Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.

  11. Gigahertz-peaked spectra pulsars in Pulsar Wind Nebulae

    Science.gov (United States)

    Basu, R.; RoŻko, K.; Kijak, J.; Lewandowski, W.

    2018-04-01

    We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.

  12. Meter-wavelength observations of pulsars using very long baseline interferometry

    International Nuclear Information System (INIS)

    Vandenberg, N.R.

    1974-07-01

    The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to approximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured. (U.S.)

  13. Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling

    Science.gov (United States)

    Sironi, Lorenzo; Cerutti, Benoît

    We discuss the role of PIC simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.

  14. Electrodynamic coupling between pulsars and surrounding nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolny, M [Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. per il Plasma nello Spazio; L' Aquila Univ. (Italy). Istituto di Fisica); Ferrari, A [Cambridge Univ. (UK). Inst. of Astronomy; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Istituto di Fisica)

    1976-02-01

    In this work a study is presented of collective plasma processes by which pulsars can energetically support young supernova remnants. We show that many of the observed features of the Crab Nebula can be adequately interpreted in terms of a parametric interaction between the low-frequency electromagnetic wave emitted by the pulsar in the oblique rotator model and a relativistic wind of charged particle leaking from the pulsar's inner magnetosphere. In particular we show that there is a relativistic parametric resonant coupling of the strong wave with electrostatic and electromagnetic modes.

  15. Multiband observations of the Crab Nebula

    International Nuclear Information System (INIS)

    Krassilchtchikov, A M; Bykov, A M; Castelletti, G M; Dubner, G M; Kargaltsev, O Yu; Pavlov, G G

    2017-01-01

    Results of simultaneous imaging of the Crab Nebula in the radio (JVLA), optical ( HST ), and X-ray ( Chandra ) bands are presented. The images show a variety of small-scale structures, including wisps mainly located to the north-west of the pulsar and knots forming a ring-like structure associated with the termination shock of the pulsar wind. The locations of the structures in different bands do not coincide with each other. (paper)

  16. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.; Tendulkar, S. P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Burgay, M.; Possenti, A. [INAF–Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Esposito, P.; Rea, N. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Israel, G. [INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Kerr, M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Sarkissian, J. [CSIRO Astronomy and Space Science, Parkes Observatory, P.O. Box 276, Parkes, NSW 2870 (Australia); Scholz, P., E-mail: archibald@astro.utoronto.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada)

    2017-11-10

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.

  17. Image of the Crab Nebula Taken by the High Energy Astronomy Observatory (HEAO)-2

    Science.gov (United States)

    1979-01-01

    This is an x-ray image of the Crab Nebula taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The image is demonstrated by a pulsar, which appears as a bright point due to its pulsed x-ray emissions. The strongest region of diffused emissions comes from just northwest of the pulsar, and corresponds closely to the region of brightest visible-light emission. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  18. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    Science.gov (United States)

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  19. Experimental Constraints on γ-Ray Pulsar Gap Models and the Pulsar GeV to Pulsar Wind Nebula TeV Connection

    Science.gov (United States)

    Abeysekara, A. U.; Linnemann, J. T.

    2015-05-01

    The pulsar emission mechanism in the gamma ray energy band is poorly understood. Currently, there are several models under discussion in the pulsar community. These models can be constrained by studying the collective properties of a sample of pulsars, which became possible with the large sample of gamma ray pulsars discovered by the Fermi Large Area Telescope. In this paper we develop a new experimental multi-wavelength technique to determine the beaming factor ≤ft( {{f}{Ω }} \\right) dependance on spin-down luminosity of a set of GeV pulsars. This technique requires three input parameters: pulsar spin-down luminosity, pulsar phase-averaged GeV flux, and TeV or X-ray flux from the associated pulsar wind nebula (PWN). The analysis presented in this paper uses the PWN TeV flux measurements to study the correlation between {{f}{Ω }} and \\dot{E}. The measured correlation has some features that favor the Outer Gap model over the Polar Cap, Slot Gap, and One Pole Caustic models for pulsar emission in the energy range of 0.1-100 GeV, but one must keep in mind that these simulated models failed to explain many of the most important pulsar population characteristics. A tight correlation between the pulsar GeV emission and PWN TeV emission was also observed, which suggests the possibility of a linear relationship between the two emission mechanisms. In this paper we also discuss a possible mechanism to explain this correlation.

  20. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Sokolov, V.A.; Svertilov, S.I., E-mail: vid.msu@yandex.ru, E-mail: sokolov.sev@inbox.ru, E-mail: sis@coronas.ru [Physics Department, Moscow State University, Moscow (Russian Federation)

    2017-09-01

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.

  1. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    Science.gov (United States)

    Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.

    2000-01-01

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  2. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.

    Science.gov (United States)

    Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell

    2000-06-20

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  3. Determination of the Flux-distance Relationship for Pulsars in the Parkes Multibeam Survey: Violation of the Inverse Square Law Gives Support for a New Model of Pulsar Emission

    Science.gov (United States)

    Singleton, John; Sengupta, P.; Middleditch, J.; Graves, T.; Schmidt, A.; Perez, M.; Ardavan, H.; Ardavan, A.; Fasel, J.

    2010-01-01

    Soon after the discovery of pulsars, it was realized that their unique periodic emissions must be associated with a source that rotates. Despite this insight and forty one years of subsequent effort, a detailed understanding of the pulsar emission mechanism has proved elusive. Here, using data for 983 pulsars taken from the Parkes Multibeam Survey, we show that their fluxes at 1400 MHz (S(1400)) decay with distance d according to a non-standard power-law; we suggest that S(1400) is proportional to 1/d. This distance dependence is revealed by two independent statistical techniques, (i) the Maximum Likelihood Method and (ii) analysis of the distance evolution of the cumulative distribution functions of pulsar flux. Moreover, the derived power law is valid for both millisecond and longer-period pulsars, and is robust against possible errors in the NE2001 method for obtaining pulsar distances from dispersion measure. This observation provides strong support for a mechanism of pulsar emission due to superluminal (faster than light in vacuo) polarization currents. Such superluminal polarization currents have been extensively studied by Bolotovskii, Ginzburg and others, who showed both that they do not violate Special Relativity (since the oppositely-charged particles that make them move relatively slowly) and that they form a bona-fide source term in Maxwell's equations. Subsequently, emission of radiation by superluminal polarization currents was demonstrated in laboratory experiments. By extending these ideas to a superluminal polarization current whose distribution pattern follows a circular orbit, we can explain the 1/d dependence of the flux suggested by our analyses of the observational data. In addition, we show that a model of pulsar emission due to such a rotating superluminal polarization current can predict the the frequency spectrum of nine pulsars over 16 orders of magnitude of frequency quantitatively. This work is supported by the DoE LDRD program at Los

  4. Pulsar glitches in a strangeon star model

    Science.gov (United States)

    Lai, X. Y.; Yun, C. A.; Lu, J. G.; Lü, G. L.; Wang, Z. J.; Xu, R. X.

    2018-05-01

    Pulsar-like compact stars provide us a unique laboratory to explore properties of dense matter at supra-nuclear densities. One of the models for pulsar-like stars is that they are totally composed of "strangeons", and in this paper, we studied the pulsar glitches in a strangeon star model. Strangeon stars would be solidified during cooling, and the solid stars would be natural to have glitches as the result of starquakes. Based on the starquake model established before, we proposed that when the starquake occurs, the inner motion of the star which changes the moment of inertia and has impact on the glitch sizes, is divided into plastic flow and elastic motion. The plastic flow which is induced in the fractured part of the outer layer, would move tangentially to redistribute the matter of the star and would be hard to recover. The elastic motion, on the other hand, changes its shape and would recover significantly. Under this scenario, we could understand the behaviors of glitches without significant energy releasing, including the Crab and the Vela pulsars, in an uniform model. We derive the recovery coefficient as a function of glitch size, as well as the time interval between two successive glitches as the function of the released stress. Our results show consistency with observational data under reasonable ranges of parameters. The implications on the oblateness of the Crab and the Vela pulsars are discussed.

  5. Space Movie Reveals Shocking Secrets Of The Crab Pulsa

    Science.gov (United States)

    2002-09-01

    Just when it seemed like the summer movie season had ended, two of NASA's Great Observatories have produced their own action movie. Multiple observations made over several months with NASA's Chandra X-ray Observatory and the Hubble Space Telescope captured the spectacle of matter and antimatter propelled to near the speed of light by the Crab pulsar, a rapidly rotating neutron star the size of Manhattan. "Through this movie, the Crab Nebula has come to life," said Jeff Hester of Arizona State University in Tempe, lead author of a paper in the September 20th issue of The Astrophysical Journal Letters. "We can see how this awesome cosmic generator actually works." The Crab was first observed by Chinese astronomers in 1054 A.D. and has since become one of the most studied objects in the sky. By combining the power of both Chandra and Hubble, the movie reveals features never seen in still images. By understanding the Crab, astronomers hope to unlock the secrets of how similar objects across the universe are powered. Crab Nebula Composite Image Crab Nebula Composite Image Bright wisps can be seen moving outward at half the speed of light to form an expanding ring that is visible in both X-ray and optical images. These wisps appear to originate from a shock wave that shows up as an inner X-ray ring. This ring consists of about two dozen knots that form, brighten and fade, jitter around, and occasionally undergo outbursts that give rise to expanding clouds of particles, but remain in roughly the same location. "These data leave little doubt that the inner X-ray ring is the location of the shock wave that turns the high-speed wind from the pulsar into extremely energetic particles," said Koji Mori of Penn State University in University Park, a coauthor of the paper. Another dramatic feature of the movie is a turbulent jet that lies perpendicular to the inner and outer rings. Violent internal motions are obvious, as is a slow motion outward into the surrounding nebula of

  6. Discovery of a 50 millisecond pulsar in the Large Magellanic Cloud

    Science.gov (United States)

    Seward, F. D.; Harnden, F. R., Jr.; Helfand, D. J.

    1984-01-01

    The present investigation is concerned with the discovery of a new pulsed X-ray source in the Large Magellanic Cloud (LMC) supernova remnant 0540 - 693. The SNR 0540 - 693 is one of three suspected Crab-like remnants in the LMC. The existing X-ray, optical, and radio observations of the remnant itself are discussed, and an analysis is conducted of the implications of the period, period derivative, and X-ray pulse shape of the new source. It is concluded that the pulsed X-ray source is almost certainly a young, isolated pulsar. Many of its properties are very similar to those of the Crab pulsar.

  7. High-energy Emissions from the Pulsar/Be Binary System PSR J2032+4127/MT91 213

    Energy Technology Data Exchange (ETDEWEB)

    Takata, J. [School of physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Tam, P. H. T. [Institute of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China); Ng, C. W.; Cheng, K. S. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Li, K. L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-2320 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: takata@hust.edu.cn [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2017-02-20

    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25–50 years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR B1259–63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In this paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.

  8. On the interpretation of pulsar braking indices

    International Nuclear Information System (INIS)

    Blandford, R.D.; Romani, R.W.

    1988-01-01

    Timing observations of the Crab pulsar rotation frequency of sufficient accuracy and duration to allow a 10 per cent estimate of the third frequency derivative have been reported (Lyne et al. 1988. Mon. Not. R. astr. Soc., 233, 667). This measurement is consistent with both non-dipolar electromagnetic models and a secular change in the dipole moment. A more accurate determination may discriminate between these two possibilities. Measurements of braking indices in other young pulsars may reveal similar variations. (author)

  9. HIGH-TIME-RESOLUTION MEASUREMENTS OF THE POLARIZATION OF THE CRAB PULSAR AT 1.38 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Słowikowska, Agnieszka [Kepler Institute of Astronomy, University of Zielona Góra, Lubuska 2, 65-265 Zielona Góra (Poland); Stappers, Benjamin W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Harding, Alice K. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); O' Dell, Stephen L.; Elsner, Ronald F.; Weisskopf, Martin C. [Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States); Van der Horst, Alexander J. [Astronomical Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2015-01-20

    Using the Westerbork Synthesis Radio Telescope, we obtained high-time-resolution measurements of the full polarization of the Crab pulsar. At a resolution of 1/8192 of the 34 ms pulse period (i.e., 4.1 μs), the 1.38 GHz linear-polarization measurements are in general agreement with previous lower-time-resolution 1.4 GHz measurements of linear polarization in the main pulse (MP), in the interpulse (IP), and in the low-frequency component (LFC). We find the MP and IP to be linearly polarized at about 24% and 21% with no discernible difference in polarization position angle. However, contrary to theoretical expectations and measurements in the visible, we find no evidence for significant variation (sweep) in the polarization position angle over the MP, the IP, or the LFC. We discuss the implications, which appear to be in contradiction to theoretical expectations. We also detect weak circular polarization in the MP and IP, and strong (≈20%) circular polarization in the LFC, which also exhibits very strong (≈98%) linear polarization at a position angle of 40° from that of the MP or IP. The properties are consistent with the LFC, which is a low-altitude component, and the MP and IP, which are high-altitude caustic components. Current models for the MP and IP emission do not readily account for the absence of pronounced polarization changes across the pulse. We measure IP and LFC pulse phases relative to the MP consistent with recent measurements, which have shown that the phases of these pulse components are evolving with time.

  10. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  11. Hard x-ray to low energy gamma ray spectrum of the Crab Nebula

    International Nuclear Information System (INIS)

    Jung, G.V.

    1986-01-01

    The spectrum of the Crab Nebula has been determined in the energy range 10 keV to 5 MeV from the data of the UCSD/MIT Hard-X-ray and Low Energy Gamma Ray Experiment on the first High Energy Astronomy Observatory, HEAO-1. The x-ray to γ-ray portion of the continuous emission from the Crab is indicative of the electron spectrum, its transport through the nebula, and the physical conditions near the shocked interface between the nebular region and the wind which is the physical link between the nebula and the pulsar, NP0532. The power-law dependence of the spectrum found in the lower-energy decade of this observation (10 to 100 keV) is not continued without modification to higher energies. Evidence for this has been accumulating from previous observations in the γ-ray ranges of 1-10 MeV and above 35 MeV. The observations on which this dissertation is based further characterize the spectral change in the 100 keV to 1 MeV region. These observations provide a crucial connection between the x-ray and γ-ray spectrum of the non-pulsed emission of the Crab Nebula. The continuity of this spectrum suggests that the emission mechanism responsible for the non-pulsed γ-rays observed above 35 MeV is of the same origin as the emission at lower energies, i.e. that of synchrotron radiation in the magnetic field of the nebula

  12. WIDE-BAND SPECTRA OF GIANT RADIO PULSES FROM THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mikami, Ryo; Asano, Katsuaki [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Tanaka, Shuta J. [Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo, 658-8501 (Japan); Kisaka, Shota [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Sekido, Mamoru; Takefuji, Kazuhiro [Kashima Space Technology Center, National Institute of Information and Communications Technology, Kashima, Ibaraki 314-8501 (Japan); Takeuchi, Hiroshi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Misawa, Hiroaki; Tsuchiya, Fuminori [Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kita, Hajime [Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Yonekura, Yoshinori [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Terasawa, Toshio, E-mail: mikami@icrr.u-tokyo.ac.jp, E-mail: asanok@icrr.u-tokyo.ac.jp [iTHES Research Group, RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-12-01

    We present the results of the simultaneous observation of giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse phases, respectively. A few GRPs detected at both 0.3 and 8.4 GHz are the most wide-band samples ever reported. In the frequency range from 0.3 to 2.2 GHz, we find that about 70% or more of the GRP spectra are consistent with single power laws and their spectral indices are distributed from −4 to −1. We also find that a significant number of GRPs have such a hard spectral index (approximately −1) that the fluence at 0.3 GHz is below the detection limit (“dim-hard” GRPs). Stacking light curves of such dim-hard GRPs at 0.3 GHz, we detect consistent enhancement compared to the off-GRP light curve. Our samples show apparent correlations between the fluences and the spectral hardness, which indicates that more energetic GRPs tend to show softer spectra. Our comprehensive studies on the GRP spectra are useful materials to verify the GRP model of fast radio bursts in future observations.

  13. WIDE-BAND SPECTRA OF GIANT RADIO PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Mikami, Ryo; Asano, Katsuaki; Tanaka, Shuta J.; Kisaka, Shota; Sekido, Mamoru; Takefuji, Kazuhiro; Takeuchi, Hiroshi; Misawa, Hiroaki; Tsuchiya, Fuminori; Kita, Hajime; Yonekura, Yoshinori; Terasawa, Toshio

    2016-01-01

    We present the results of the simultaneous observation of giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse phases, respectively. A few GRPs detected at both 0.3 and 8.4 GHz are the most wide-band samples ever reported. In the frequency range from 0.3 to 2.2 GHz, we find that about 70% or more of the GRP spectra are consistent with single power laws and their spectral indices are distributed from −4 to −1. We also find that a significant number of GRPs have such a hard spectral index (approximately −1) that the fluence at 0.3 GHz is below the detection limit (“dim-hard” GRPs). Stacking light curves of such dim-hard GRPs at 0.3 GHz, we detect consistent enhancement compared to the off-GRP light curve. Our samples show apparent correlations between the fluences and the spectral hardness, which indicates that more energetic GRPs tend to show softer spectra. Our comprehensive studies on the GRP spectra are useful materials to verify the GRP model of fast radio bursts in future observations.

  14. Radio emission from Sgr A*: pulsar transits through the accretion disc

    Science.gov (United States)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2017-06-01

    Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ˜ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ˜ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.

  15. Confinement of the Crab Nebula with tangled magnetic field by its supernova remnant

    Science.gov (United States)

    Tanaka, Shuta J.; Toma, Kenji; Tominaga, Nozomu

    2018-05-01

    A pulsar wind is a relativistic outflow dominated by Poynting energy at its base. Based on the standard ideal magnetohydrodynamic (MHD) model of pulsar wind nebulae (PWNe) with the ordered magnetic field, the observed slow expansion vPWN ≪ c requires the wind to be dominated by kinetic energy at the upstream of its termination shock, which conflicts with the pulsar wind theory (σ-problem). In this paper, we extend the standard model of PWNe by phenomenologically taking into account conversion of the ordered to turbulent magnetic field and dissipation of the turbulent magnetic field. Disordering of the magnetic structure is inferred from the recent three-dimensional relativistic ideal MHD simulations, while magnetic dissipation is a non-ideal MHD effect requiring a finite resistivity. We apply this model to the Crab Nebula and find that the conversion effect is important for the flow deceleration, while the dissipation effect is not. Even for Poynting-dominated pulsar wind, we obtain the Crab Nebula's vPWN by adopting a finite conversion time-scale of ˜0.3 yr. Magnetic dissipation primarily affects the synchrotron radiation properties. Any values of the pulsar wind magnetization σw are allowed within the present model of the PWN dynamics alone, and even a small termination shock radius of ≪0.1 pc reproduces the observed dynamical features of the Crab Nebula. In order to establish a high-σw model of PWNe, it is important to extend the present model by taking into account the broadband spectrum and its spacial profiles.

  16. CHANDRA, KECK, AND VLA OBSERVATIONS OF THE CRAB NEBULA DURING THE 2011-APRIL GAMMA-RAY FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; Tennant, Allyn F.; O' Dell, Stephen L. [NASA Marshall Space Flight Center, Astrophysics Office (ZP12), Huntsville, AL 35812 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Blandford, Roger; Funk, Stefan; Romani, Roger W. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Buehler, Rolf [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Caraveo, Patrizia; De Luca, Andrea [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Cheung, Chi C. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Costa, Enrico [INFN Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Ferrigno, Carlo [ISDC, Data Center for Astrophysics of the University of Geneva, chemin d' cogia 16, CH-1290 Versoix (Switzerland); Fu, Hai [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Habermehl, Moritz; Horns, Dieter [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Linford, Justin D. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131-0001 (United States); Lobanov, Andrei [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Max, Claire [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Mignani, Roberto [Mullard Space Science Laboratory, University College London, Holmbury St. Mary Dorking, Surrey RH5 6NT (United Kingdom); and others

    2013-03-01

    We present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the {gamma}-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the 'inner knot', i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the {gamma}-ray flares and suggest that the most dramatic {gamma}-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.

  17. Pair plasma in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Asseo, Estelle

    2003-01-01

    The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able

  18. Timing of the Crab pulsar III. The slowing down and the nature of the random process

    International Nuclear Information System (INIS)

    Groth, E.J.

    1975-01-01

    The Crab pulsar arrival times are analyzed. The data are found to be consistent with a smooth slowing down with a braking index of 2.515+-0.005. Superposed on the smooth slowdown is a random process which has the same second moments as a random walk in the frequency. The strength of the random process is R 2 >=0.53 (+0.24, -0.12) x10 -22 Hz 2 s -1 , where R is the mean rate of steps and 2 > is the second moment of the step amplitude distribution. Neither the braking index nor the strength of the random process shows evidence of statistically significant time variations, although small fluctuations in the braking index and rather large fluctuations in the noise strength cannot be ruled out. There is a possibility that the random process contains a small component with the same second moments as a random walk in the phase. If so, a time scale of 3.5 days is indicated

  19. Very high-energy {gamma}-ray observations of the Crab nebula and other potential sources with the GRAAL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arqueros, F.A.; Ballestrin, J.; Berenguel, M.; Borque, D.M.; Camacho, E.F.; Diaz, M.; Enriquez, R.; Gebauer, H.J.; Plaga, R.

    2001-07-01

    The Gamma Ray Astronomy at Almeria (GRAAL) experiment uses 63 heliostat-mirrors with a total mirror area of {approx}2500 m''2 from the CESA-1 field to collect Cherenkov light from air showers. The detector is located in a central solar tower and detects photon-induced showers with an energy threshold of 250{+-}110 GeV and an asymptotic effective detection area of about 15000 m''2. Data sets taken in the period September 1999-September 2000 in the direction of the Crab pulsar and the active galaxy 3C 454.3 were analysed for high energy {gamma}-ray emission. Evidence for {gamma}-ray flux from the Crab pulsar with an integral flux of 2.2{+-}0.4 (stat) ''1.9{sub 1}.5 (syst x 10''-9 cm''-2 s''-1) above threshold and a significance of 4.5 {sigma} in a total (usable) observing time of 7 hours and 10 minutes on source was found. No evidence for emission from the other sources was seen. The effect of the field-of-view restricted to the central part of a detected air shower on the lateral distribution and iming properties of Cherenkov light and their effect on an efficient {gamma}-hadron separation are discussed. (Author) 6 refs.

  20. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    Directory of Open Access Journals (Sweden)

    López-Coto Rubén

    2016-01-01

    Full Text Available The pulsar wind nebula (PWN 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV gamma-ray source candidates. It has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. According to our results 3C 58 is the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR comparable to CMB photon fields. Hadronic contribution from the hosting supernova remnant (SNR requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.

  1. Polarimetry of the millisecond pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Stinebring, D R

    1983-04-21

    Polarization observations of the millisecond pulsar PSR1937+21 at 1415 and 2380 MHz were made with the 305-m telescope at the Arecibo Observatory in January 1983. The main pulse is found to depolarize substantially, while the interpulse polarization almost doubles. Evidence for orthogonally polarized radiation was detected on the edges facing across the 173 deg of longitude separating the main pulse from the interpulse, accounting for the approximately 90-deg difference in position angle. From the spectral-index difference (close to 1.0 over the frequency range observed) it is inferred that the interpulse may dominate the main pulse below 700 MHz; such behavior is noted to be similar to that of the physically different Crab pulsar.

  2. The Models for Radio Emission from Pulsars – The Outstanding issues

    Indian Academy of Sciences (India)

    tribpo

    in section 4, where existing models for pulsar radio emission are also reviewed. ... pair plasma flowing outward along open magnetic field lines from the polar caps ..... A reactive instability involves an intrinsically growing, phase-coherent wave.

  3. Understanding the spectral and timing behaviour of a newly discovered transient X-ray pulsar Swift J0243.6+6124

    Science.gov (United States)

    Jaisawal, Gaurava K.; Naik, Sachindra; Chenevez, Jérôme

    2018-03-01

    We present the results obtained from timing and spectral studies of the newly discovered accreting X-ray binary pulsar Swift J0243.6+6124 using Nuclear Spectroscopy Telescope Array observation in 2017 October at a flux level of ˜280 mCrab. Pulsations at 9.854 23(5) s were detected in the X-ray light curves of the pulsar. Pulse profiles of the pulsar were found to be strongly energy dependent. A broad profile at lower energies was found to evolve into a double-peaked profile in ≥ 30 keV. The 3-79 keV continuum spectrum of the pulsar was well described with a negative and positive exponential cutoff or high-energy cutoff power-law models modified with a hot blackbody at ˜3 keV. An iron emission line was also detected at 6.4 keV in the source spectrum. We did not find any signature of cyclotron absorption line in our study. Results obtained from phase-resolved and time-resolved spectroscopy are discussed in the paper.

  4. Ultra high energy electrons powered by pulsar rotation.

    Science.gov (United States)

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  5. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ronaldo V.; Malheiro, M. [Departamento de Física, Instituto Tecnológico de Aeronáutica, ITA - DCTA, Vila das Acácias, São José dos Campos, 12228-900 SP (Brazil); Coelho, J. G. [INPE - Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica, Av. dos Astronautas 1758, São José dos Campos, 12227-010 SP (Brazil)

    2015-12-17

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 10{sup 7} − 10{sup 10} G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  6. Are crab-type supernova remnants (plerions) short-lived

    International Nuclear Information System (INIS)

    Weiler, K.W.; Panagia, N.

    1978-01-01

    Arguments are given for a possible picture of the origin, maintenance, and lifetimes of the so-called Crab-like supernova remnants. It is suggested that these objects imply the existence of at least two distinct types of supernova events. A possible connection of the remnant types with the optically defined supernovae of Type I and Type II is discussed. Accepting that a pulsar is formed in at least some supernova events, the proposal is made that a rapidly rotating, rapidly slowing pulsar is necessary to create and maintain a Crab-like supernova remnant. Finally, arguments are presented that such a supernova remnant will be relatively short lived with respect to the more common shell-type of supernova remnant, perhaps surviving only 10000-20000 yr before fading into the Galactic background. The name of plerion is proposed for these filled-center supernova remnants and observational possiblities for confirming their nature are suggested. (orig.) [de

  7. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    Science.gov (United States)

    Cordova, F. A.; Middleditch, J.; Hjellming, R. M.; Mason, K. O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62 percent) and circular (19 percent) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18 percent + or - 6 percent, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar.

  8. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    International Nuclear Information System (INIS)

    Cordova, F.A.; Middleditch, J.; Hjellming, R.M.; Mason, K.O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62%) and circular (19%) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18% + or - 6%, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar. 46 refs

  9. Modeling radio circular polarization in the Crab nebula

    Science.gov (United States)

    Bucciantini, N.; Olmi, B.

    2018-03-01

    In this paper, we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extragalactic ones. Its spectral and polarization properties allow us to infer key information on the particles distribution function and magnetic field geometry. In recent years, our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric techniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.

  10. Radio-quiet Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Lupin Chun-Che Lin

    2016-09-01

    Full Text Available A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400 of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on are also to specified discuss their common and specific features.

  11. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Science.gov (United States)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  12. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2017-09-20

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  13. Pulsar astronomy

    International Nuclear Information System (INIS)

    Lyne, A.G.; Graham-Smith, F.

    1990-01-01

    This account of the properties of pulsars tells an exciting story of discovery in modern astronomy. Pulsars, discovered in 1967, now take their place in a very wide range of astrophysics. They are one of the endpoints of stellar evolution, in which the core of a star collapses to a rapidly spinning neutron star a few kilometres in size. This book is an introductory account for those entering the field. It introduces the circumstances of the discovery and gives an overview of pulsar astrophysics. There are chapters on search techniques, distances, pulse timing, the galactic population of pulsars, binary and millisecond pulsars, geometry and physics of the emission regions, and applications to the interstellar medium. An important feature of this book is the inclusion of an up-to-date catalogue of all known pulsars. (author)

  14. Pulsars and Acceleration Sites

    Science.gov (United States)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  15. On the Radio-emitting Particles of the Crab Nebula: Stochastic Acceleration Model

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shuta J. [Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501 (Japan); Asano, Katsuaki, E-mail: sjtanaka@center.konan-u.ac.jp [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa City, Chiba, 277-8582 (Japan)

    2017-06-01

    The broadband emission of pulsar wind nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the standard shock acceleration model of PWNe does not account for the hard spectrum in radio wavelengths. The origin of the radio-emitting particles is also important to determine the pair production efficiency in the pulsar magnetosphere. Here, we propose a possible resolution for the particle energy distribution in PWNe; the radio-emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside PWNe. We upgrade our past one-zone spectral evolution model to include the energy diffusion, i.e., the stochastic acceleration, and apply the model to the Crab Nebula. A fairly simple form of the energy diffusion coefficient is assumed for this demonstrative study. For a particle injection to the stochastic acceleration process, we consider the continuous injection from the supernova ejecta or the impulsive injection associated with supernova explosion. The observed broadband spectrum and the decay of the radio flux are reproduced by tuning the amount of the particle injected to the stochastic acceleration process. The acceleration timescale and the duration of the acceleration are required to be a few decades and a few hundred years, respectively. Our results imply that some unveiled mechanisms, such as back reaction to the turbulence, are required to make the energies of stochastically and shock-accelerated particles comparable.

  16. Discovery of an Energetic Pulsar Associated with SNR G76.9+1.0

    Science.gov (United States)

    Arzoumanian, Zaven; Gotthelf, E. V.; Ransom, S. M.; Safi-Harb, S.; Kothes, R.; Landecker, T. L.

    2012-01-01

    We report the discovery of PSR J2022-pulsar in the supernova remnant G76.9+i.0, in observations with the Chandra X-ray telescope, the Robert C. Byrd Green Bank Radio Telescope, and the Rossi X-ray Timing Explorer (RXTE). The pulsar's spin-down rate implies a rotation-powered luminosity E = 1.2 X 10(exp 38) erg/s, a surface dipole magnetic field strength B(sub S), = 1.0 X 10(exp 12) G, and a characteristic age of 8.9 kyr. PSR J2022+3842 is thus the second-most energetic Galactic pulsar known, after the Crab, as well as the most rapidly-rotating young, radio-bright pulsar known. The radio pulsations are highly dispersed and broadened by interstellar scattering, and we find that a large (delta f/f approximates 1.9 x 10(exp -6)) spin glitch must have occurred between our discovery and confirmation observations. The X-ray pulses are narrow (0.06 cycles FWHM) and visible up to 20 keV, consistent with magnetospheric emission from a rotation-powered pulsar. The Chandra X-ray image identifies the pulsar with a hard, unresolved source at the midpoint of the double-lobed radio morphology of G76.9+ 1.0 and embedded within faint, compact X-ray nebulosity. The spatial relationship of the X-ray and radio emissions is remarkably similar to extended structure seen around the Vela pulsar. The combined Chandra and RXTE pulsar spectrum is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.3) x 10(exp 22) / sq cm and photon index Gamma = 1.0 +/- 0.2; it implies that the Chandra point-source flux is virtually 100% pulsed. For a distance of 10 kpc, the X-ray luminosity of PSR J2022+3842 is L(sub x){2-1O keV) = 7.0 x 10(exp 33) erg/s. Despite being extraordinarily energetic, PSR J2022+3842 lacks a bright X-ray wind nebula and has an unusually low conversion efficiency of spin-down power to X-ray luminosity, Lx/E = 5.9 X 10(exp-5).

  17. Gamma-rays and neutrinos from the pulsar wind nebulae

    International Nuclear Information System (INIS)

    Bednarek, W.; Bartosik, M.

    2005-01-01

    We construct the time-dependent radiation model for the pulsar wind nebulae (PWNe), assuming that leptons are accelerated in resonant scattering with heavy nuclei, which are injected into the nebula by the pulsar. The equilibrium spectra of these particles inside the nebula are calculated taking into account their radiation and adiabatic energy losses. The spectra of γ-rays produced by these particles are compared with the observations of the PWNe emitting TeV γ-rays and predictions are made for the expected γ-ray fluxes from other PWNe. Expected neutrino fluxes and neutrino event rates in a 1 km 2 neutrino detector from these nebulae are also calculated. It is concluded that only the Crab Nebula can produce a detectable neutrino event rate in the 1 km 2 neutrino detector. Other PWNe can emit TeV γ-rays on the level of a few percent of that observed from the Crab Nebula

  18. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    Science.gov (United States)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  19. Scintillation-based Search for Off-pulse Radio Emission from Pulsars

    Science.gov (United States)

    Ravi, Kumar; Deshpande, Avinash A.

    2018-05-01

    We propose a new method to detect off-pulse (unpulsed and/or continuous) emission from pulsars using the intensity modulations associated with interstellar scintillation. Our technique involves obtaining the dynamic spectra, separately for on-pulse window and off-pulse region, with time and frequency resolutions to properly sample the intensity variations due to diffractive scintillation and then estimating their mutual correlation as a measure of off-pulse emission, if any. We describe and illustrate the essential details of this technique with the help of simulations, as well as real data. We also discuss the advantages of this method over earlier approaches to detect off-pulse emission. In particular, we point out how certain nonidealities inherent to measurement setups could potentially affect estimations in earlier approaches and argue that the present technique is immune to such nonidealities. We verify both of the above situations with relevant simulations. We apply this method to the observation of PSR B0329+54 at frequencies of 730 and 810 MHz made with the Green Bank Telescope and present upper limits for the off-pulse intensity at the two frequencies. We expect this technique to pave the way for extensive investigations of off-pulse emission with the help of existing dynamic spectral data on pulsars and, of course, with more sensitive long-duration data from new observations.

  20. Meterwavelength Single-pulse Polarimetric Emission Survey. III. The Phenomenon of Nulling in Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rahul; Mitra, Dipanjan; Melikidze, George I., E-mail: rahulbasu.astro@gmail.com [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Szafrana 2, 65–516 Zielona Góra (Poland)

    2017-09-10

    A detailed analysis of nulling was conducted for the pulsars studied in the Meterwavelength Single-pulse Polarimetric Emission Survey. We characterized nulling in 36 pulsars including 17 pulsars where the phenomenon was reported for the first time. The most dominant nulls lasted for a short duration, less than five periods. Longer duration nulls extending to hundreds of periods were also seen in some cases. A careful analysis showed the presence of periodicities in the transition from the null to the burst states in 11 pulsars. In our earlier work, fluctuation spectrum analysis showed multiple periodicities in 6 of these 11 pulsars. We demonstrate that the longer periodicity in each case was associated with nulling. The shorter periodicities usually originate from subpulse drifting. The nulling periodicities were more aligned with the periodic amplitude modulation, indicating a possible common origin for both. The most prevalent nulls last for a single period and can be potentially explained using random variations affecting the plasma processes in the pulsar magnetosphere. On the other hand, longer-duration nulls require changes in the pair-production processes, which need an external triggering mechanism for the changes. The presence of periodic nulling puts an added constraint on the triggering mechanism, which also needs to be periodic.

  1. Theoretical Study of Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Kwong Sang Cheng

    2016-06-01

    Full Text Available We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phaseaveraged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.

  2. Ab-initio Pulsar Magnetosphere: Particle Acceleration in Oblique Rotators and High-energy Emission Modeling

    Science.gov (United States)

    Philippov, Alexander A.; Spitkovsky, Anatoly

    2018-03-01

    We perform global particle-in-cell simulations of pulsar magnetospheres, including pair production, ion extraction from the surface, frame-dragging corrections, and high-energy photon emission and propagation. In the case of oblique rotators, the effects of general relativity increase the fraction of the open field lines that support active pair discharge. We find that the plasma density and particle energy flux in the pulsar wind are highly non-uniform with latitude. A significant fraction of the outgoing particle energy flux is carried by energetic ions, which are extracted from the stellar surface. Their energies may extend up to a large fraction of the open field line voltage, making them interesting candidates for ultra-high-energy cosmic rays. We show that pulsar gamma-ray radiation is dominated by synchrotron emission, produced by particles that are energized by relativistic magnetic reconnection close to the Y-point and in the equatorial current sheet. In most cases, the calculated light curves contain two strong peaks, which is in general agreement with Fermi observations. The radiative efficiency decreases with increasing pulsar inclination and increasing efficiency of pair production in the current sheet, which explains the observed scatter in L γ versus \\dot{E}. We find that the high-frequency cutoff in the spectra is regulated by the pair-loading of the current sheet. Our findings lay the foundation for quantitative interpretation of Fermi observations of gamma-ray pulsars.

  3. General-relativistic pulsar magnetospheric emission

    Science.gov (United States)

    Pétri, J.

    2018-06-01

    Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.

  4. X-RAY EMISSION FROM J1446–4701, J1311–3430, AND OTHER BLACK WIDOW PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Arumugasamy, Prakash; Pavlov, George G. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Garmire, Gordon P., E-mail: pxa151@ucs.psu.edu [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2015-12-01

    We present the results of detailed X-ray analysis of two black-widow pulsars (BWPs), J1446–4701 and J1311–3430. PSR J1446–4701 is a BWP with orbital parameters near the median values of the sample of known BWPs. Its X-ray emission that was detected by XMM-Newton is well characterized by a soft power-law (PL) spectrum (photon index Γ ≈ 3), and it shows no significant orbital modulations. In view of a lack of radio eclipses and an optical non-detection, the system most likely has a low orbital inclination. PSR J1311–3430 is an extreme BWP with a very compact orbit and the lowest minimum mass companion. Our Chandra data confirm the hard Γ ≈ 1.3 emission seen in previous observations. Through phase-restricted spectral analysis, we found a hint (∼2.6σ) of spectral hardening around pulsar inferior conjunction. We also provide a uniform analysis of the 12 BWPs observed with Chandra and compare their X-ray properties. Pulsars with soft, Γ > 2.5 emission seem to have lower than average X-ray and γ-ray luminosities. We do not, however, see any other prominent correlation between the pulsar’s X-ray emission characteristics and any of its other properties. The contribution of the intra-binary shock to the total X-ray emission, if any, is not discernible in this sample of pulsars with shallow observations.

  5. Meter-wavelength VLBI. III. Pulsars

    International Nuclear Information System (INIS)

    Vandenberg, N.R.; Clark, T.A.; Clark, W.C.; Erickson, W.C.; Resch, G.M.; Broderick, J.J.

    1976-01-01

    The results and analysis of observations of pulsars, especially the Crab Nebula pulsar, taken during a series of meter-wavelength very long baseline interferometry (VLBI) experiments are discussed. Based on a crude 144 MHz visibility curve which is consistent with a Gaussian brightness distribution, the measured visibilities at 196, 111, and 74 MHz were interpreted to yield apparent angular diameters (at half-power) of 0 .03 +- 0 .01, 0 .07 +- 0 .01, and 0 .18 +- 0 .01, respectively. These sizes scale approximately as wavelength-squared, and the 74 MHz size agrees with recent observations using interplanetary scintillation techniques.The VLBI-measured total flux densities lie on the extrapolation from higher frequencies of the pulsing flux densities. Variations in the total flux density up to 25 percent were observed. A lack of fine structure other than the pulsar in the nebula is indicated by our simple visibility curves. The pulse shapes observed with the interferometer are similar to single-dish measurements at 196 MHz but reveal a steady, nonpulsing component at 111 MHz. The ratio of pulsing to total power was approximately equal to one-half but varied with time. No pulsing power was detected at 74 MHz. It was found that four strong, low-dispersion pulsars were only slightly resolved

  6. Possible Evolution of the Pulsar Braking Index from Larger than Three to About One

    Energy Technology Data Exchange (ETDEWEB)

    Tong, H. [School of Physics and Electronic Engineering, Guangzhou University, 510006 Guangzhou (China); Kou, F. F., E-mail: htong_2005@163.com [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)

    2017-03-10

    The coupled evolution of pulsar rotation and inclination angle in the wind braking model is calculated. The oblique pulsar tends to align. The pulsar alignment affects its spin-down behavior. As a pulsar evolves from the magneto-dipole radiation dominated case to the particle wind dominated case, the braking index first increases and then decreases. In the early time, the braking index may be larger than three. During the following long time, the braking index is always smaller than three. The minimum braking index is about one. This can explain the existence of a high braking index larger than three and a low braking index simultaneously. The pulsar braking index is expected to evolve from larger than three to about one. The general trend is for the pulsar braking index to evolve from the Crab-like case to the Vela-like case.

  7. Possible Evolution of the Pulsar Braking Index from Larger than Three to About One

    International Nuclear Information System (INIS)

    Tong, H.; Kou, F. F.

    2017-01-01

    The coupled evolution of pulsar rotation and inclination angle in the wind braking model is calculated. The oblique pulsar tends to align. The pulsar alignment affects its spin-down behavior. As a pulsar evolves from the magneto-dipole radiation dominated case to the particle wind dominated case, the braking index first increases and then decreases. In the early time, the braking index may be larger than three. During the following long time, the braking index is always smaller than three. The minimum braking index is about one. This can explain the existence of a high braking index larger than three and a low braking index simultaneously. The pulsar braking index is expected to evolve from larger than three to about one. The general trend is for the pulsar braking index to evolve from the Crab-like case to the Vela-like case.

  8. Meterwavelength Single-pulse Polarimetric Emission Survey. IV. The Period Dependence of Component Widths of Pulsars

    Science.gov (United States)

    Skrzypczak, Anna; Basu, Rahul; Mitra, Dipanjan; Melikidze, George I.; Maciesiak, Krzysztof; Koralewska, Olga; Filothodoros, Alexandros

    2018-02-01

    The core component width in normal pulsars, with periods (P) > 0.1 s, measured at the half-power point at 1 GHz, has a lower boundary line (LBL) that closely follows the P ‑0.5 scaling relation. This result is of fundamental importance for understanding the emission process and requires extended studies over a wider frequency range. In this paper we have carried out a detailed study of the profile component widths of 123 normal pulsars observed in the Meterwavelength Single-pulse Polarimetric Emission Survey at 333 and 618 MHz. The components in the pulse profile were separated into core and conal classes. We found that at both frequencies, the core, as well as the conal component widths versus period, had a LBL that followed the P ‑0.5 relation with a similar lower boundary. The radio emission in normal pulsars has been observationally shown to arise from a narrow range of heights around a few hundred kilometers above the stellar surface. In the past the P ‑0.5 relation has been considered as evidence for emission arising from last open dipolar magnetic field lines. We show that the P ‑0.5 dependence only holds if the trailing and leading half-power points of the component are associated with the last open field line. In such a scenario we do not find any physical motivation that can explain the P ‑0.5 dependence for both core and conal components as evidence for dipolar geometry in normal pulsars. We believe the period dependence is a result of a currently unexplained physical phenomenon.

  9. Pulsar Wind Bubble Blowout from a Supernova

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Chevalier, Roger A., E-mail: blondin@ncsu.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2017-08-20

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell is subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.

  10. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Yu, Y. W., E-mail: dzg@nju.edu.cn [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China)

    2017-03-20

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  11. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    International Nuclear Information System (INIS)

    Dai, Z. G.; Wang, J. S.; Yu, Y. W.

    2017-01-01

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  12. Pulsar magnetospheres

    International Nuclear Information System (INIS)

    Kennel, C.F.; Fujimura, F.S.; Pellat, R.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetospehere depends upon the strength of its plasma source near the surface of the star. We review magnetospheric models in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strength, beyond which coherent radio emission is no longer possible. The observed distribution of pulsar spin periods and period derivates, and the distribution of pulsars with missing radio pulses, is quantitatively consistent with the pair production threshold, when its variation of neutron star radius and moment of interia with mass is taken into account. All neutron stars observed as pulsars can have relativistic magneto-hydrodynamic wind exterior magnetospheres. The properties of the wind can be directly related to those of the pair production source. Radio pulsars cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed. (orig.)

  13. Using HAWC to discover invisible pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Tim; Auchettl, Katie; Bramante, Joseph; Cholis, Ilias; Fang, Ke; Hooper, Dan; Karwal, Tanvi; Li, Shirley Weishi

    2017-11-01

    Observations by HAWC and Milagro have detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga and Monogem pulsars. We argue that these observations, along with a substantial population of other extended TeV sources coincident with pulsar wind nebulae, constitute a new morphological class of spatially extended TeV halos. We show that HAWCs wide field-of-view unlocks an expansive parameter space of TeV halos not observable by atmospheric Cherenkov telescopes. Under the assumption that Geminga and Monogem are typical middle-aged pulsars, we show that ten-year HAWC observations should eventually observe 37$^{+17}_{-13}$ middle-aged TeV halos that correspond to pulsars whose radio emission is not beamed towards Earth. Depending on the extrapolation of the TeV halo efficiency to young pulsars, HAWC could detect more than 100 TeV halos from mis-aligned pulsars. These pulsars have historically been difficult to detect with existing multiwavelength observations. TeV halos will constitute a significant fraction of all HAWC sources, allowing follow-up observations to efficiently find pulsar wind nebulae and thermal pulsar emission. The observation and subsequent multi-wavelength follow-up of TeV halos will have significant implications for our understanding of pulsar beam geometries, the evolution of PWN, the diffusion of cosmic-rays near energetic pulsars, and the contribution of pulsars to the cosmic-ray positron excess.

  14. EXCESS OPTICAL ENHANCEMENT OBSERVED WITH ARCONS FOR EARLY CRAB GIANT PULSES

    Energy Technology Data Exchange (ETDEWEB)

    Strader, M. J.; Mazin, B. A.; Spiro Jaeger, G. V.; Gwinn, C. R.; Meeker, S. R.; Szypryt, P.; Van Eyken, J. C.; Marsden, D.; Walter, A. B.; Ulbricht, G. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Johnson, M. D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); O' Brien, K. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Stoughton, C. [Fermilab Center for Particle Astrophysics, Batavia, IL 60510 (United States); Bumble, B. [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91125 (United States)

    2013-12-10

    We observe an extraordinary link in the Crab pulsar between the enhancement of an optical pulse and the timing of the corresponding giant radio pulse. At optical through infrared wavelengths, our observations use the high time resolution of ARray Camera for Optical to Near-IR Spectrophotometry, a unique superconducting energy-resolving photon-counting array at the Palomar 200 inch telescope. At radio wavelengths, we observe with the Robert C. Byrd Green Bank Telescope and the Green Bank Ultimate Pulsar Processing Instrument backend. We see an 11.3% ± 2.5% increase in peak optical flux for pulses that have an accompanying giant radio pulse arriving near the peak of the optical main pulse, in contrast to a 3.2% ± 0.5% increase when an accompanying giant radio pulse arrives soon after the optical peak. We also observe that the peak of the optical main pulse is 2.8% ± 0.8% enhanced when there is a giant radio pulse accompanying the optical interpulse. We observe no statistically significant spectral differences between optical pulses accompanied by and not accompanied by giant radio pulses. Our results extend previous observations of optical-radio correlation to the time and spectral domains. Our refined temporal correlation suggests that optical and radio emission are indeed causally linked, and the lack of spectral differences suggests that the same mechanism is responsible for all optical emission.

  15. EXCESS OPTICAL ENHANCEMENT OBSERVED WITH ARCONS FOR EARLY CRAB GIANT PULSES

    International Nuclear Information System (INIS)

    Strader, M. J.; Mazin, B. A.; Spiro Jaeger, G. V.; Gwinn, C. R.; Meeker, S. R.; Szypryt, P.; Van Eyken, J. C.; Marsden, D.; Walter, A. B.; Ulbricht, G.; Johnson, M. D.; O'Brien, K.; Stoughton, C.; Bumble, B.

    2013-01-01

    We observe an extraordinary link in the Crab pulsar between the enhancement of an optical pulse and the timing of the corresponding giant radio pulse. At optical through infrared wavelengths, our observations use the high time resolution of ARray Camera for Optical to Near-IR Spectrophotometry, a unique superconducting energy-resolving photon-counting array at the Palomar 200 inch telescope. At radio wavelengths, we observe with the Robert C. Byrd Green Bank Telescope and the Green Bank Ultimate Pulsar Processing Instrument backend. We see an 11.3% ± 2.5% increase in peak optical flux for pulses that have an accompanying giant radio pulse arriving near the peak of the optical main pulse, in contrast to a 3.2% ± 0.5% increase when an accompanying giant radio pulse arrives soon after the optical peak. We also observe that the peak of the optical main pulse is 2.8% ± 0.8% enhanced when there is a giant radio pulse accompanying the optical interpulse. We observe no statistically significant spectral differences between optical pulses accompanied by and not accompanied by giant radio pulses. Our results extend previous observations of optical-radio correlation to the time and spectral domains. Our refined temporal correlation suggests that optical and radio emission are indeed causally linked, and the lack of spectral differences suggests that the same mechanism is responsible for all optical emission

  16. EFFECTS OF INTERMITTENT EMISSION: NOISE INVENTORY FOR THE SCINTILLATING PULSAR B0834+06

    International Nuclear Information System (INIS)

    Gwinn, C. R.; Johnson, M. D.; Smirnova, T. V.; Stinebring, D. R.

    2011-01-01

    We compare signal and noise for observations of the scintillating pulsar B0834+06, using very long baseline interferometry and a single-dish spectrometer. Comparisons between instruments and with models suggest that amplitude variations of the pulsar strongly affect the amount and distribution of self-noise. We show that noise follows a quadratic polynomial with flux density, in spectral observations. Constant coefficients, indicative of background noise, agree well with expectation; whereas second-order coefficients, indicative of self-noise, are ∼3 times values expected for a pulsar with constant on-pulse flux density. We show that variations in flux density during the 10 s integration accounts for the discrepancy. In the secondary spectrum, ∼97% of spectral power lies within the pulsar's typical scintillation bandwidth and timescale; an extended scintillation arc contains ∼3%. For a pulsar with constant on-pulse flux density, noise in the dynamic spectrum will appear as a uniformly distributed background in the secondary spectrum. We find that this uniform noise background contains 95% of noise in the dynamic spectrum for interferometric observations; but only 35% of noise in the dynamic spectrum for single-dish observations. Receiver and sky dominate noise for our interferometric observations, whereas self-noise dominates for single-dish. We suggest that intermittent emission by the pulsar, on timescales <300 μs, concentrates self-noise near the origin in the secondary spectrum, by correlating noise over the dynamic spectrum. We suggest that intermittency sets fundamental limits on pulsar astrometry or timing. Accounting of noise may provide means for detection of intermittent sources, when effects of propagation are unknown or impractical to invert.

  17. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  18. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  19. The second fermi large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  20. Polarized curvature radiation in pulsar magnetosphere

    Science.gov (United States)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  1. First detections of nebula with the Fermi-Large Area Telescope and study of their pulsars

    International Nuclear Information System (INIS)

    Grondin, M.H.

    2010-07-01

    The Fermi Gamma-ray Space Telescope was launched on 2008 June 11, carrying the Large Area Telescope (LAT), sensitive to gamma-rays in the 20 MeV - 300 GeV energy range. The Crab Nebula had been detected and studied in the 70 MeV - 30 GeV band using the CGRO-EGRET experiment, but no pulsar wind nebula (PWN) had ever been firmly identified in the high energy gamma-ray domain. PWNe are powered by the constant injection of a relativistic wind of electrons and positrons from their central pulsars. These charged particles are accelerated at the shock front forming the PWN and emit photons which can be observed along the entire electromagnetic spectrum, including the high energy gamma-ray domain. Data provided by the Fermi-LAT during the first two years of the mission have allowed the detection and the identification of three PWNe and their associated pulsars (Crab Nebula, Vela X and MSH 15-52) as well as the PWN HESS J1825-137 discovered by ground-based experiments sensitive to very high energy gamma-rays. Results of temporal, spectral and morphological analyses of the pulsar/PWN systems detected by Fermi- LAT, as well as results of systematic studies performed first around every gamma-ray pulsar detected by the LAT and secondly around every very high energy source identified as a PWN or a PWN candidate are presented in this dissertation. These studies bring new insights and constraints on the physical properties of the sources as well as on emitting processes in pulsar magnetospheres and in PWNe. (author)

  2. Modelling pulsar wind nebulae

    CERN Document Server

    2017-01-01

    In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsa...

  3. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: from Theory to Fermi Observations

    Science.gov (United States)

    Kalapotharakos, Konstantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-01-01

    We compute the patterns of gamma-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed gamma-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model gamma-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and gamma-ray emission on the gamma-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the gamma-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  4. Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope

    Science.gov (United States)

    Venter, Christo; Harding, Alice; Guillemot, L.

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.

  5. EXTREME PARTICLE ACCELERATION IN MAGNETIC RECONNECTION LAYERS: APPLICATION TO THE GAMMA-RAY FLARES IN THE CRAB NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, Benoit; Uzdensky, Dmitri A. [CIPS, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, Mitchell C., E-mail: benoit.cerutti@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

    2012-02-20

    The gamma-ray space telescopes AGILE and Fermi detected short and bright synchrotron gamma-ray flares at photon energies above 100 MeV in the Crab Nebula. This discovery suggests that electron-positron pairs in the nebula are accelerated to PeV energies in a milligauss magnetic field, which is difficult to explain with classical models of particle acceleration and pulsar wind nebulae. We investigate whether particle acceleration in a magnetic reconnection layer can account for the puzzling properties of the flares. We numerically integrate relativistic test-particle orbits in the vicinity of the layer, including the radiation reaction force, and using analytical expressions for the large-scale electromagnetic fields. As they get accelerated by the reconnection electric field, the particles are focused deep inside the current layer where the magnetic field is small. The electrons suffer less from synchrotron losses and are accelerated to extremely high energies. Population studies show that, at the end of the layer, the particle distribution piles up at the maximum energy given by the electric potential drop and is focused into a thin fan beam. Applying this model to the Crab Nebula, we find that the emerging synchrotron emission spectrum peaks above 100 MeV and is close to the spectral shape of a single electron. The flare inverse Compton emission is negligible and no detectable emission is expected at other wavelengths. This mechanism provides a plausible explanation for the gamma-ray flares in the Crab Nebula and could be at work in other astrophysical objects such as relativistic jets in active galactic nuclei.

  6. EXTREME PARTICLE ACCELERATION IN MAGNETIC RECONNECTION LAYERS: APPLICATION TO THE GAMMA-RAY FLARES IN THE CRAB NEBULA

    International Nuclear Information System (INIS)

    Cerutti, Benoît; Uzdensky, Dmitri A.; Begelman, Mitchell C.

    2012-01-01

    The gamma-ray space telescopes AGILE and Fermi detected short and bright synchrotron gamma-ray flares at photon energies above 100 MeV in the Crab Nebula. This discovery suggests that electron-positron pairs in the nebula are accelerated to PeV energies in a milligauss magnetic field, which is difficult to explain with classical models of particle acceleration and pulsar wind nebulae. We investigate whether particle acceleration in a magnetic reconnection layer can account for the puzzling properties of the flares. We numerically integrate relativistic test-particle orbits in the vicinity of the layer, including the radiation reaction force, and using analytical expressions for the large-scale electromagnetic fields. As they get accelerated by the reconnection electric field, the particles are focused deep inside the current layer where the magnetic field is small. The electrons suffer less from synchrotron losses and are accelerated to extremely high energies. Population studies show that, at the end of the layer, the particle distribution piles up at the maximum energy given by the electric potential drop and is focused into a thin fan beam. Applying this model to the Crab Nebula, we find that the emerging synchrotron emission spectrum peaks above 100 MeV and is close to the spectral shape of a single electron. The flare inverse Compton emission is negligible and no detectable emission is expected at other wavelengths. This mechanism provides a plausible explanation for the gamma-ray flares in the Crab Nebula and could be at work in other astrophysical objects such as relativistic jets in active galactic nuclei.

  7. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    Science.gov (United States)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  8. Optical pulsations in the Large Magellanic Cloud remnant 0540-69.3

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.

    1985-01-01

    The X-ray pulsar PSR0540-693 was discovered in the Large Magellanic Cloud (LMC) supernova remnant, 0540-69.3, as a pulse, with repetition period approx. 50 ms, in Einstein Observatory data. Previous workers had noted that this remnant resembles the Crab Nebula because of the X-ray power law spectrum and suggested that the nebular emission was synchrotron radiation powered by a central pulsar. After the announcement of X-ray pulsed emission, other workers measured the broad optical band properties of the nebula and found evidence for synchrotron emission; and reported that the 4.5-arc s continuum emission remnant has only a tenth of the luminosity of the Crab Nebula. The authors have now detected pulsed optical emission for the X-ray pulsar, having a time-averaged magnitude of approx. 22.7. (author)

  9. The temporal behaviour of Taurus X-1 (the Crab Nebula)

    International Nuclear Information System (INIS)

    Davison, P.J.N.

    1975-01-01

    Copernicus data on Taurus X-1 and the Crab pulsar extending over a 2 1/2-yr period indicate that under normal conditions the source has a flux that is constant to within 2.5 per cent at the 90 per cent confidence level. The pulsed/total flux ratio also shows no significant changes during the same time. (author)

  10. Observing and Modeling the Gamma-Ray Emission from Pulsar/Pulsar Wind Nebula Complex PSR J0205+6449/3C 58

    Science.gov (United States)

    Li, Jian; Torres, Diego F.; Lin, Ting Ting; Grondin, Marie-Helene; Kerr, Matthew; Lemoine-Goumard, Marianne; de Oña Wilhelmi, Emma

    2018-05-01

    We present the results of the analysis of eight years of Fermi-LAT data of the pulsar/pulsar wind nebula complex PSR J0205+6449/3C 58. Using a contemporaneous ephemeris, we carried out a detailed analysis of PSR J0205+6449 both during its off-peak and on-peak phase intervals. 3C 58 is significantly detected during the off-peak phase interval. We show that the spectral energy distribution at high energies is the same disregarding the phases considered, and thus that this part of the spectrum is most likely dominated by the nebula radiation. We present results of theoretical models of the nebula and the magnetospheric emission that confirm this interpretation. Possible high-energy flares from 3C 58 were searched for, but none were unambiguously identified.

  11. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  12. X-ray observations of two lunar occultations of the Crab Nebula

    International Nuclear Information System (INIS)

    Ku, W.H.M.

    1976-01-01

    The x-ray source in the Crab nebula was observed during two lunar occultations. The combined results of the two scans of the nebula indicate that the spatial distribution of the X-ray flux from the nebula is centered on a region 10'' to 15'' NW of the pulsar. The half-intensity size, as measured by the FWHM of the best Gaussian representation of each strip flux distribution, is 46.7'' +- 1.5'' along p.a. = 300 0 , and is 42'' +- 2'' along p.a. = 255 0 . A closer examination of the size of the nebular emission region measured along p.a. = 300 0 reveals that the size decreases significantly with increasing photon energy. A power-law function with an exponent of γ = -0.148 +- 0.012 characterizes the optical (approximately 2 eV) to X-ray (approximately 50 keV) size measurements well, but it fails to predict the observed sizes of the radio nebula. Power-law spectral indices derived for different regions of the nebula support this finding. These results are interpreted in terms of existing theoretical models for the motion of electrons in the nebula. The data obtained on 28 December 1974 also provide strong evidence for the existence of a low-luminosity soft X-ray component more than 60'' W of the pulsar. Such emission was not detected in data from the first scan, but the upper limit derived from those data is consistent with the existence of a soft extended source. Several plausible explanations for the origin of this radiation are considered including the interesting possibility of thermal emission from a supernova remnant shell. Data obtained near the time of emergence of the pulsar for both observations are examined for possible flux contribution from a discrete steady radiation source. The null result allows an upper limit of 4.7 x 10 6 0 K (99 percent confidence) to be established on the surface temperature of the neutron star associated with NP 0532. This result is used to set limits on some physical parameters of a neutron star

  13. Hard X-ray Variations in the Crab Nebula

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Connaughton, V.; Finger, M. H.; hide

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/ PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab Nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  14. Gamma-Ray Pulsar Light Curves as Probes of Magnetospheric Structure

    Science.gov (United States)

    Harding, A. K.

    2016-01-01

    The large number of gamma-ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the gamma-ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modeling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.

  15. Understanding the spectral and timing behaviour of a newly discovered transient X-ray pulsar Swift J0243.6+6124

    DEFF Research Database (Denmark)

    Jaisawal, Gaurava K.; Naik, Sachindra; Chenevez, Jérôme

    2018-01-01

    We present the results obtained from timing and spectral studies of the newly discovered accreting X-ray binary pulsar Swift J0243.6+6124 using Nuclear Spectroscopy Telescope Array observation in 2017 October at a flux level of ~280 mCrab. Pulsations at 9.854 23(5) s were detected in the X......-ray light curves of the pulsar. Pulse profiles of the pulsar were found to be strongly energy dependent. A broad profile at lower energies was found to evolve into a double-peaked profile in ≥ 30 keV. The 3-79 keV continuum spectrum of the pulsar was well described with a negative and positive exponential...

  16. Polarization of the coherent radio emission from pulsars

    International Nuclear Information System (INIS)

    Ardavan, H.

    1982-01-01

    The polarization characteristics of the radiation from a quasi-steady pulsar magnetosphere are calculated using the amplitude-modulated-noise interpretation of the data on pulse structures. The total emission consists of three incoherently mixed radiation streams. Two of the independent polarization states are elliptically polarized (modes I and II) and one is linearly polarized (mode III). In the regime where the length scale of the radial distribution of the electric current density is appreciably longer than the wavelength of the radiation, the position angles of modes I and II are orthogonal and those of modes I and III coincident. However, the senses of circular polarization of modes I and II are in general uncorrelated. The degrees of circular polarization of the 'orthogonal' modes are decreasing functions of frequency and both approach zero in the limit where the frequency of the radiation is much higher than the rotation frequency of the pulsar. Longitudinal changes in the position angle and in the sense of circular polarization of each of the elliptically polarized modes are shown to arise, together with mode transitions, in part from the stochastic fluctuations and in part from the systematic variations of the electric current density with the azimuthal angle, in a narrow emitting region adjacent to the light cylinder. (author)

  17. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    Science.gov (United States)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  18. Evidence for free precession in a pulsar

    Science.gov (United States)

    Stairs; Lyne; Shemar

    2000-08-03

    Pulsars are rotating neutron stars that produce lighthouse-like beams of radio emission from their magnetic poles. The observed pulse of emission enables their rotation rates to be measured with great precision. For some young pulsars, this provides a means of studying the interior structure of neutron stars. Most pulsars have stable pulse shapes, and slow down steadily (for example, see ref. 20). Here we report the discovery of long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of the pulsar PSR B1828-11. The variations are best described as harmonically related sinusoids, with periods of approximately 1,000, 500 and 250 days, probably resulting from precession of the spin axis caused by an asymmetry in the shape of the pulsar. This is difficult to understand theoretically, because torque-free precession of a solitary pulsar should be damped out by the vortices in its superfluid interior.

  19. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  20. Radio emissions from pulsar companions: a refutable explanation for galactic transients and fast radio bursts

    Science.gov (United States)

    Mottez, F.; Zarka, P.

    2014-09-01

    Context. The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources that are of unknown origin but extremely energetic. We propose here a new explanation that does not require an extreme release of energy and involves a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. Aims: We investigate a theory of radio waves associated with such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving their properties, we compare them with the observations of various transient radio signals to determine whether they could originate from pulsar-orbiting bodies. Methods: The analysis is based on the theory of Alfvén wings: for a body immersed in a pulsar wind, a system of two stationary Alfvén waves is attached to the body, provided that the wind is highly magnetised. When they are destabilised through plasma instabilities, Alfvén wings can be the locus of strong radio sources that are convected with the pulsar wind. By assuming a cyclotron maser instability operating in the Alfvén wings, we make predictions about the shape, frequencies, and brightness of the resulting radio emissions. Results: Because of the beaming by relativistic aberration, the signal is seen only when the companion is perfectly aligned between its parent pulsar and the observer, as is the case for occultations. For pulsar winds with a high Lorentz factor (≥104), the whole duration of the radio event does not exceed a few seconds, and it is composed of one to four peaks that last a few milliseconds each and are detectable up to distances of several Mpc. The Lorimer burst, the three isolated pulses of PSR J1928+15, and the recently detected fast radio bursts are all compatible with our model. According to it, these transient signals should repeat periodically with the companion's orbital period. Conclusions: The search of pulsar-orbiting bodies could be an exploration

  1. Pulsar magnetosphere-wind or wave

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review wave models of exterior pulsar magnetospheres in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strenght, beyond which coherent radio emission is no longer possible. Since the observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is consistent with the pair production threshold, those neutron stars observed as radio pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres, and cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed

  2. Pulsar timing and general relativity

    Science.gov (United States)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  3. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  4. Implications of emission zone limits for the Ruderman-Sutherland pulsar model

    International Nuclear Information System (INIS)

    Matese, J.J.; Whitmire, D.P.

    1980-01-01

    In the Ruderman-Sutherland (RS) pulsar model the frequency at which coherent radiation is emitted depends upon the source location, v=v (r). In the oblique rotator version of this model the time-averaged tangential velocities of the magnetosphere sources must increase linearly with radius, and this leads to a frequency-dependent aberration and retardation time delay in which higher frequencies lag behind lower frequencies. As previously noted by Cordes, within the context of a given model which specifies v (r), the absence of any anomalous time delay in dispersion measurements allows limits to be placed on the radial position of the source of a given frequency. In this paper we (a) give a time-delay analysis (similar to that of Cordes) appropriate for the RS model and show that existing dispersion measurements are incompatible with RS emission mechanism. If the basic RS emission mechanism is applicable to pulsars, we find that the most plausible modification consistent with the dispersion data is a reduction in the low-energy plasma density by a factor approx.10 -4 to 10 -5 . This has the effect of bringing the radio emission zone closer to the stellar surface, thereby making the model consistent with the dispersion data. In addition, this modification results in a significant decrease in the predicted maximum cone angle and an increase in the predicted maximum frequency by factors which bring these predictions more in line with observation. We also consider implications of a reduced plasma density for radio luminosity

  5. Lunar occultation observations of the Crab Nebula

    International Nuclear Information System (INIS)

    Maloney, F.P.

    1977-01-01

    Three lunar of occultations of the Crab Nebula were observed, two at 114 MHz and one at 26.3 MHz, during the 1974 series of events. The higher frequency observations were deconvolved of diffraction effects to yield four strip integrated brightness profiles of the Nebula, with an effective resolution of 30 arc-seconds. These four profiles were Fourier inverted and cleaned of sidelobe structure to synthesize a two-dimensional map of the Nebula. At 114 MHz, the Nebula is composed of a broad envelope of emission which contains several smaller sources. The attenuation of the low radio frequency radiation by the thermal hydrogen in the filaments is considered as a possible mechanism to explain these new data. The 26.3 MHz observations indicate the presence of a bright, localized source containing greater than 80% of the flux of the Nebula. The position of the source is confined by the data to a narrow strip centered at the pulsar position. Both sets of data are compared with past occultation observations

  6. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; hide

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  7. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Kim, H.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Eatough, R. P.; Keane, E. F.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Anderson, D. [University of California at Berkeley, Berkeley, CA 94720 (United States); Crawford, F.; Rastawicki, D. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Hammer, D.; Papa, M. A.; Siemens, X. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Miller, R. B. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Sarkissian, J., E-mail: benjamin.knispel@aei.mpg.de [CSIRO Parkes Observatory, Parkes, NSW 2870 (Australia); and others

    2013-09-10

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  8. Pulsar kicks from a dark-matter sterile neutrino

    International Nuclear Information System (INIS)

    Fuller, George M.; Kusenko, Alexander; Mocioiu, Irina; Pascoli, Silvia

    2003-01-01

    We show that a sterile neutrino with a mass in the 1-20 keV range and a small mixing with the electron neutrino can simultaneously explain the origin of the pulsar motions and the dark matter in the Universe. An asymmetric neutrino emission from a hot nascent neutron star can be the explanation of the observed pulsar velocities. In addition to the pulsar kick mechanism based on resonant neutrino transitions, we point out a new possibility: an asymmetric off-resonant emission of sterile neutrinos. The two cases correspond to different values of the masses and mixing angles. In both cases we identify the ranges of parameters consistent with the pulsar kick, as well as cosmological constraints

  9. Spectra of short-period pulsars according to the hypothesis of the two types of pulsars

    International Nuclear Information System (INIS)

    Malov, I.F.

    1985-01-01

    The lack of low-frequency turnovers in the spectra of PSR 0531+21 and 1937+21 may be expl ned if the generation of radio emission in these pulsars occurs near the light cylinder. Differences of high frequency cut-offs and spectral inoices for long-period pulsars and short-period ones are discussed

  10. Pulsar discovery by global volunteer computing.

    Science.gov (United States)

    Knispel, B; Allen, B; Cordes, J M; Deneva, J S; Anderson, D; Aulbert, C; Bhat, N D R; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Crawford, F; Demorest, P B; Fehrmann, H; Freire, P C C; Gonzalez, M E; Hammer, D; Hessels, J W T; Jenet, F A; Kasian, L; Kaspi, V M; Kramer, M; Lazarus, P; van Leeuwen, J; Lorimer, D R; Lyne, A G; Machenschalk, B; McLaughlin, M A; Messenger, C; Nice, D J; Papa, M A; Pletsch, H J; Prix, R; Ransom, S M; Siemens, X; Stairs, I H; Stappers, B W; Stovall, K; Venkataraman, A

    2010-09-10

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

  11. Pulsars Magnetospheres

    Science.gov (United States)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  12. Geriatric Pulsar Still Kicking

    Science.gov (United States)

    2009-02-01

    's clearly fading as it ages, it is still more than holding its own with the younger generations." It's likely that two forms of X-ray emission are produced in J0108: emission from particles spiraling around magnetic fields, and emission from heated areas around the neutron star's magnetic poles. Measuring the temperature and size of these heated regions can provide valuable insight into the extraordinary properties of the neutron star surface and the process by which charged particles are accelerated by the pulsar. The younger, bright pulsars commonly detected by radio and X-ray telescopes are not representative of the full population of objects, so observing objects like J0108 helps astronomers see a more complete range of behavior. At its advanced age, J0108 is close to the so-called "pulsar death line," where its pulsed radiation is expected to switch off and it will become much harder, if not impossible, to observe. "We can now explore the properties of this pulsar in a regime where no other pulsar has been detected outside the radio range," said co-author Oleg Kargaltsev of the University of Florida. "To understand the properties of 'dying pulsars,' it is important to study their radiation in X-rays. Our finding that a very old pulsar can be such an efficient X-ray emitter gives us hope to discover new nearby pulsars of this class via their X-ray emission." The Chandra observations were reported by Pavlov and colleagues in the January 20, 2009, issue of The Astrophysical Journal. However, the extreme nature of J0108 was not fully apparent until a new distance to it was reported on February 6 in the PhD thesis of Adam Deller from Swinburne University in Australia. The new distance is both larger and more accurate than the distance used in the Chandra paper, showing that J0108 was brighter in X-rays than previously thought. "Suddenly this pulsar became the record holder for its ability to make X-rays," said Pavlov, "and our result became even more interesting without us

  13. An x-ray nebula associated with the millisecond pulsar B1957+20.

    Science.gov (United States)

    Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G

    2003-02-28

    We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.

  14. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  15. THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, R. M.; Kerr, M.; Dai, S.; Hobbs, G.; Manchester, R. N.; Reardon, D. J.; Toomey, L. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping, NSW 1710 (Australia); Lentati, L. T. [Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Bailes, M.; Osłowski, S.; Rosado, P. A.; Van Straten, W. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Bhat, N. D. R. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Coles, W. A. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Dempsey, J. [CSIRO Information Management and Technology, Box 225, Dickson, ACT 2602 (Australia); Keith, M. J. [Jodrell Bank Centre for Astrophysics, University of Manchester, M13 9PL (United Kingdom); Lasky, P. D.; Levin, Y. [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Ravi, V. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Spiewak, R., E-mail: ryan.shannon@csiro.au [Department of Physics, University of Wisconsin-Milwaukee, Box 413, Milwaukee, WI 53201 (United States); and others

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643−1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  16. THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE

    International Nuclear Information System (INIS)

    Shannon, R. M.; Kerr, M.; Dai, S.; Hobbs, G.; Manchester, R. N.; Reardon, D. J.; Toomey, L.; Lentati, L. T.; Bailes, M.; Osłowski, S.; Rosado, P. A.; Van Straten, W.; Bhat, N. D. R.; Coles, W. A.; Dempsey, J.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Ravi, V.; Spiewak, R.

    2016-01-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643−1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  17. Delayed pulsar kicks from the emission of sterile neutrinos

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Mandal, Bhabani Prasad; Mukherjee, Alok

    2008-01-01

    The observed velocities of pulsars suggest the possibility that sterile neutrinos with mass of several keV are emitted from a cooling neutron star. The same sterile neutrinos could constitute all or part of cosmological dark matter. The neutrino-driven kicks can exhibit delays depending on the mass and the mixing angle, which can be compared with the pulsar data. We discuss the allowed ranges of sterile neutrino parameters, consistent with the latest cosmological and x-ray bounds, which can explain the pulsar kicks for different delay times

  18. Discovery of a ~205 Hz X-ray pulsar in the globular cluster NGC 6440

    NARCIS (Netherlands)

    Altamirano, D.; Strohmayer, T.E.; Heinke, C.O.; Markwardt, C.B.; Swank, J.H.; Pereira, D.; Smith, E.; Wijnands, R.; Linares, M.; Patruno, A.; Casella, P.; van der Klis, M.

    2009-01-01

    Discovery of a 205 Hz X-ray pulsar in the globular cluster NGC 6440 The globular cluster NGC 6440 was observed by the PCA instrument aboard RXTE on August 30, 2009 at 01:42 (UTC). The observation lasted for approximately 3000 seconds and the source was detected with an intensity of ~7 mCrab (2-10

  19. Gravitational waves from pulsars with measured braking index

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jose C.N. de; Coelho, Jaziel G.; Costa, Cesar A. [Instituto Nacional de Pesquisas Espaciais, Divisao de Astrofisica, Sao Jose dos Campos, SP (Brazil)

    2016-09-15

    We study the putative emission of gravitational waves (GWs) in particular for pulsars with measured braking index. We show that the appropriate combination of both GW emission and magnetic dipole brakes can naturally explain the measured braking index, when the surface magnetic field and the angle between the magnetic dipole and rotation axes are time dependent. Then we discuss the detectability of these very pulsars by aLIGO and the Einstein Telescope. We call attention to the realistic possibility that aLIGO can detect the GWs generated by at least some of these pulsars, such as Vela, for example. (orig.)

  20. Experimental Validation of Pulse Phase Tracking for X-Ray Pulsar Based

    Science.gov (United States)

    Anderson, Kevin

    2012-01-01

    Pulsars are a form of variable celestial source that have shown to be usable as aids for autonomous, deep space navigation. Particularly those sources emitting in the X-ray band are ideal for navigation due to smaller detector sizes. In this paper X-ray photons arriving from a pulsar are modeled as a non-homogeneous Poisson process. The method of pulse phase tracking is then investigated as a technique to measure the radial distance traveled by a spacecraft over an observation interval. A maximum-likelihood phase estimator (MLE) is used for the case where the observed frequency signal is constant. For the varying signal frequency case, an algorithm is used in which the observation window is broken up into smaller blocks over which an MLE is used. The outputs of this phase estimation process were then looped through a digital phase-locked loop (DPLL) in order to reduce the errors and produce estimates of the doppler frequency. These phase tracking algorithms were tested both in a computer simulation environment and using the NASA Goddard Space flight Center X-ray Navigation Laboratory Testbed (GXLT). This provided an experimental validation with photons being emitted by a modulated X-ray source and detected by a silicon-drift detector. Models of the Crab pulsar and the pulsar B1821-24 were used in order to generate test scenarios. Three different simulated detector trajectories were used to be tracked by the phase tracking algorithm: a stationary case, one with constant velocity, and one with constant acceleration. All three were performed in one-dimension along the line of sight to the pulsar. The first two had a constant signal frequency and the third had a time varying frequency. All of the constant frequency cases were processed using the MLE, and it was shown that they tracked the initial phase within 0.15% for the simulations and 2.5% in the experiments, based on an average of ten runs. The MLE-DPLL cascade version of the phase tracking algorithm was used in

  1. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    Science.gov (United States)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  2. Science Applications of the RULLI Camera: Photon Thrust, General Relativity and the Crab Nebula

    Science.gov (United States)

    Currie, D.; Thompson, D.; Buck, S.; Des Georges, R.; Ho, C.; Remelius, D.; Shirey, B.; Gabriele, T.; Gamiz, V.; Ulibarri, L.; Hallada, M.; Szymanski, P.

    RULLI (Remote Ultra-Low Light Imager) is a unique single photon imager with very high (microsecond) time resolution and continuous sensitivity, developed at Los Alamos National Laboratory. This technology allows a family of astrophysical and satellite observations that were not feasible in the past. We will describe the results of the analysis of recent observations of the LAGEOS II satellite and the opportunities expected for future observations of the Crab nebula. The LAGEOS/LARES experiments have measured the dynamical General Relativistic effects of the rotation of the earth, the Lense-Thirring effect. The major error source is photon thrust and a required knowledge of the orientation of the spin axis of LAGEOS. This information is required for the analysis of the observations to date, and for future observations to obtain more accurate measurements of the Lense-Thirring effect, of deviations from the inverse square law, and of other General Relativistic effects. The rotation of LAGEOS I is already too slow for traditional measurement methods and Lageos II will soon suffer a similar fate. The RULLI camera can provide new information and an extension of the lifetime for these measurements. We will discuss the 2004 LANL observations of LAGEOS at Starfire Optical Range, the unique software processing methods that allow the high accuracy analysis of the data (the FROID algorithm) and the transformation that allows the use of such data to obtain the orientation of the spin axis of the satellite. We are also planning future observations, including of the nebula surrounding the Crab Pulsar. The rapidly rotating pulsar generates enormous magnetic fields, a synchrotron plasma and stellar winds moving at nearly the velocity of light. Since the useful observations to date rely only on observations of the beamed emission when it points toward the earth, most descriptions of the details of the processes have been largely theoretical. The RULLI camera's continuous

  3. Population Studies of Radio and Gamma-Ray Pulsars

    Science.gov (United States)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  4. TeV Gamma Rays From Galactic Center Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP

    2017-05-25

    Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requires a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.

  5. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K.; Çelik, Ö.; Ferrara, E. C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guillemot, L. [Laboratoire de Physique et Chimie de l' Environnement, LPCE UMR 6115 CNRS, F-45071 Orléans Cedex 02 (France); Smith, D. A.; Hou, X. [Centre d' Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Kramer, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Den Hartog, P. R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Lande, J. [Twitter Inc., 1355 Market Street 900, San Francisco, CA 94103 (United States); Ray, P. S., E-mail: tyrel.j.johnson@gmail.com, E-mail: Christo.Venter@nwu.ac.za, E-mail: ahardingx@yahoo.com [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  6. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Çelik, Ö.; Ferrara, E. C.; Guillemot, L.; Smith, D. A.; Hou, X.; Kramer, M.; Den Hartog, P. R.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed

  7. Rotation and Accretion Powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    everything you ever wanted to know about pulsars but were afraid to ask. Chapter 1 begins a brief and interesting account of the discovery of pulsars, followed by an overview of the rotation-powered and accretion-powered populations. The following four chapters are fairly detailed and reasonably quantitative descriptions of neutron star interiors. This is no easy feat, given that a description of the physics of neutron stars demands a deep understanding of all major physical forces, and must include general relativity as well as detailed particle physics. The historical notes at the beginning of Chapter 2 are particularly fascinating, recounting the path to today's understanding of neutron stars in very interesting detail. Chapter 7 presents rotation-powered pulsar radio properties, and a nice description of pulsar timing, including relativistic and non-relativistic binaries and GR tests. The remaining chapters tackle a variety of topics including binary evolution, superfluidity, accretion-powered pulsar properties, magnetospheres and emission mechanisms, magnetic fields, spin evolution and strange stars. The coverage is somewhat uneven, with the strange star chapter, for example, an obvious afterthought. The utility of an encyclopedia lies in its breadth and in how up-to-date it is. Although admirable in its intentions, the Ghosh book does omit some major pulsar topics. This book leaves the impression that rotation-powered pulsars produce only radio emission; hardly (if at all) mentioned is the vast literature on their infrared, optical, and even more importantly, x-ray and gamma-ray emission, the latter being far more relevant to the pulsar 'machine' than the energetically puny radio output. Also absent are pulsar winds; this is particularly puzzling given both the lovely wind nebula that graces the book's cover, and the central role the wind plays as primary sink of the rotation power. One of the most actively pursued topics in pulsar astrophysics in

  8. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Kaspi, V M

    2008-01-01

    ever wanted to know about pulsars but were afraid to ask. Chapter 1 begins a brief and interesting account of the discovery of pulsars, followed by an overview of the rotation-powered and accretion-powered populations. The following four chapters are fairly detailed and reasonably quantitative descriptions of neutron star interiors. This is no easy feat, given that a description of the physics of neutron stars demands a deep understanding of all major physical forces, and must include general relativity as well as detailed particle physics. The historical notes at the beginning of Chapter 2 are particularly fascinating, recounting the path to today's understanding of neutron stars in very interesting detail. Chapter 7 presents rotation-powered pulsar radio properties, and a nice description of pulsar timing, including relativistic and non-relativistic binaries and GR tests. The remaining chapters tackle a variety of topics including binary evolution, superfluidity, accretion-powered pulsar properties, magnetospheres and emission mechanisms, magnetic fields, spin evolution and strange stars. The coverage is somewhat uneven, with the strange star chapter, for example, an obvious afterthought. The utility of an encyclopedia lies in its breadth and in how up-to-date it is. Although admirable in its intentions, the Ghosh book does omit some major pulsar topics. This book leaves the impression that rotation-powered pulsars produce only radio emission; hardly (if at all) mentioned is the vast literature on their infrared, optical, and even more importantly, x-ray and gamma-ray emission, the latter being far more relevant to the pulsar 'machine' than the energetically puny radio output. Also absent are pulsar winds; this is particularly puzzling given both the lovely wind nebula that graces the book's cover, and the central role the wind plays as primary sink of the rotation power. One of the most actively pursued topics in pulsar astrophysics in the past decade, magnetars

  9. The Einstein@Home Gamma-ray Pulsar Survey. II. Source Selection, Spectral Analysis, and Multiwavelength Follow-up

    Science.gov (United States)

    Wu, J.; Clark, C. J.; Pletsch, H. J.; Guillemot, L.; Johnson, T. J.; Torne, P.; Champion, D. J.; Deneva, J.; Ray, P. S.; Salvetti, D.; Kramer, M.; Aulbert, C.; Beer, C.; Bhattacharyya, B.; Bock, O.; Camilo, F.; Cognard, I.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Ferrara, E. C.; Kerr, M.; Machenschalk, B.; Ransom, S. M.; Sanpa-Arsa, S.; Wood, K.

    2018-02-01

    We report on the analysis of 13 gamma-ray pulsars discovered in the Einstein@Home blind search survey using Fermi Large Area Telescope (LAT) Pass 8 data. The 13 new gamma-ray pulsars were discovered by searching 118 unassociated LAT sources from the third LAT source catalog (3FGL), selected using the Gaussian Mixture Model machine-learning algorithm on the basis of their gamma-ray emission properties being suggestive of pulsar magnetospheric emission. The new gamma-ray pulsars have pulse profiles and spectral properties similar to those of previously detected young gamma-ray pulsars. Follow-up radio observations have revealed faint radio pulsations from two of the newly discovered pulsars and enabled us to derive upper limits on the radio emission from the others, demonstrating that they are likely radio-quiet gamma-ray pulsars. We also present results from modeling the gamma-ray pulse profiles and radio profiles, if available, using different geometric emission models of pulsars. The high discovery rate of this survey, despite the increasing difficulty of blind pulsar searches in gamma rays, suggests that new systematic surveys such as presented in this article should be continued when new LAT source catalogs become available.

  10. X-RAY OBSERVATIONS OF THE YOUNG PULSAR J1357—6429 AND ITS PULSAR WIND NEBULA

    International Nuclear Information System (INIS)

    Chang, Chulhoon; Pavlov, George G.; Kargaltsev, Oleg; Shibanov, Yurii A.

    2012-01-01

    We observed the young pulsar J1357—6429 with the Chandra and XMM-Newton observatories. The pulsar spectrum fits well a combination of an absorbed power-law model (Γ = 1.7 ± 0.6) and a blackbody model (kT = 140 +60 –40 eV, R ∼ 2 km at the distance of 2.5 kpc). Strong pulsations with pulsed fraction of 42% ± 5%, apparently associated with the thermal component, were detected in 0.3-1.1 keV. Surprisingly, the pulsed fraction at higher energies, 1.1-10 keV, appears to be smaller, 23% ± 4%. The small emitting area of the thermal component either corresponds to a hotter fraction of the neutron star surface or indicates inapplicability of the simplistic blackbody description. The X-ray images also reveal a pulsar wind nebula (PWN) with complex, asymmetric morphology comprised of a brighter, compact PWN surrounded by the fainter, much more extended PWN whose spectral slopes are Γ = 1.3 ± 0.3 and Γ = 1.7 ± 0.2, respectively. The extended PWN with the observed flux of ∼7.5 × 10 –13 erg s –1 cm –2 is a factor of 10 more luminous then the compact PWN. The pulsar and its PWN are located close to the center of the extended TeV source HESS J1356-645, which strongly suggests that the very high energy emission is powered by electrons injected by the pulsar long ago. The X-ray to TeV flux ratio, ∼0.1, is similar to those of other relic PWNe. We found no other viable candidates to power the TeV source. A region of diffuse radio emission, offset from the pulsar toward the center of the TeV source, could be synchrotron emission from the same relic PWN rather than from the supernova remnant.

  11. Binary millisecond pulsar discovery via gamma-ray pulsations.

    Science.gov (United States)

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-07

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  12. THE RADIATIVE X-RAY AND GAMMA-RAY EFFICIENCIES OF ROTATION-POWERED PULSARS

    International Nuclear Information System (INIS)

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-01-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev and Pavlov, and we complement this with an analysis of the γ-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and γ-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient γ-ray emitters. We divided the X-ray sample in a young (τ c 4 yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and γ-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L X ∝ P-dot 3 /P 6 . For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency η≡L X / E-dot rot ∼8x10 -5 . For the γ-ray luminosity we confirm that L γ ∝ √E-dot rot . We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  13. STRONG FIELD EFFECTS ON PULSAR ARRIVAL TIMES: GENERAL ORIENTATIONS

    International Nuclear Information System (INIS)

    Wang Yan; Creighton, Teviet; Price, Richard H.; Jenet, Frederick A.

    2009-01-01

    A pulsar beam passing close to a black hole can provide a probe of very strong gravitational fields even if the pulsar itself is not in a strong field region. In the case that the spin of the hole can be ignored, we have previously shown that all strong field effects on the beam can be understood in terms of two 'universal' functions: F(φ in ) and T(φ in ) of the angle of beam emission φ in ; these functions are universal in that they depend only on a single parameter, the pulsar/black hole distance from which the beam is emitted. Here we apply this formalism to general pulsar-hole-observer geometries, with arbitrary alignment of the pulsar spin axis and arbitrary pulsar beam direction and angular width. We show that the analysis of the observational problem has two distinct elements: (1) the computation of the location and trajectory of an observer-dependent 'keyhole' direction of emission in which a signal can be received by the observer; and (2) the determination of an annulus that represents the set of directions containing beam energy. Examples of each are given along with an example of a specific observational scenario.

  14. Pulsar Wind Nebulae, Space Velocities and Supernova Remnant Associations

    Science.gov (United States)

    2002-01-01

    I am pleased to be able to report significant progress in my research relevant to my LTSA grant. This progress I believe is demonstrated by a long list of publications in 2002, as detailed below. I summarize the research results my collaborators and I obtained in 2002. First, my group announced the major discovery of soft-gamma-repeater-like X-ray bursts from the anomalous X-ray pulsars lE-1048.1$-$5937 and lE-2259+586, using the Rossi X-ray Timing Explorer. This result provides an elegant and long-sought-after confirmation that this class of objects and the soft gamma repeaters share a common nature, namely that they are magnetars. Magnetars are a novel manifestation of young neutron stars, quite different from conventional Crab-like radio pulsars. This discovery was made as part of our regular monitoring program, among the goals of which was to detect such outbursts.

  15. The Radiative X-ray and Gamma-ray Efficiencies of Rotation-powered Pulsars

    Science.gov (United States)

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-02-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev & Pavlov, and we complement this with an analysis of the γ-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and γ-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient γ-ray emitters. We divided the X-ray sample in a young (τ c < 1.7 × 104 yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and γ-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L_X ∝ \\dot{P}^3/P^6. For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency η ≡ L_X/\\dot{E}_{rot} ≈ 8× 10^{-5}. For the γ-ray luminosity we confirm that L_γ ∝ √{\\dot{E}_{rot}}. We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  16. Gamma-Ray Light Curves from Pulsar Magnetospheres with Finite Conductivity

    Science.gov (United States)

    Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Contopoulos, I.

    2012-01-01

    The Fermi Large Area Telescope has provided an unprecedented database for pulsar emission studies that includes gamma-ray light curves for over 100 pulsars. Modeling these light curves can reveal and constrain the geometry of the particle accelerator, as well as the pulsar magnetic field structure. We have constructed 3D magnetosphere models with finite conductivity, that bridge the extreme vacuum and force-free solutions used in previous light curves modeling. We are investigating the shapes of pulsar gamma-ray light curves using these dissipative solutions with two different approaches: (l) assuming geometric emission patterns of the slot gap and outer gap, and (2) using the parallel electric field provided by the resistive models to compute the trajectories and . emission of the radiating particles. The light curves using geometric emission patterns show a systematic increase in gamma-ray peak phase with increasing conductivity, introducing a new diagnostic of these solutions. The light curves using the model electric fields are very sensitive to the conductivity but do not resemble the observed Fermi light curves, suggesting that some screening of the parallel electric field, by pair cascades not included in the models, is necessary

  17. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Werner, G. R.; Uzdensky, D. A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, M. C., E-mail: bcerutti@astro.princeton.edu, E-mail: greg.werner@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

    2014-02-20

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  18. X-Rays from the Nearby Solitary Millisecond Pulsar PSR J0030+0451 - the Final ROSAT Observations

    CERN Document Server

    Becker, W; Bäcker, A N; Lommen, D; Becker, Werner; Tr"umper, Joachim; Backer, Andrea N.Lommen & Donald C.

    2000-01-01

    We report on X-ray observations of the solitary 4.8 ms pulsar PSR J0030+0451. The pulsar was one of the last targets observed in DEC-98 by the ROSAT PSPC. X-ray pulses are detected on a $4.5\\sigma$ level and make the source the $11^{th}$ millisecond pulsar detected in the X-ray domain. The pulsed fraction is found to be $69\\pm18%$. The X-ray pulse profile is characterized by two narrow peaks which match the gross pulse profile observed at 1.4 GHz. Assuming a Crab-like spectrum the X-ray flux is in the range $f_x= 2-3\\times 10^{-13}$ erg s$^{-1}$ cm$^{-2} $ ($0.1-2.4$ keV), implying an X-ray efficiency of $L_x/\\dot{E}\\sim 0.5-5 \\times 10^{-3} (d/0.23 {kpc})^2$.

  19. X-RAY STUDIES OF THE BLACK WIDOW PULSAR PSR B1957+20

    International Nuclear Information System (INIS)

    Huang, R. H. H.; Kong, A. K. H.; Takata, J.; Cheng, K. S.; Hui, C. Y.; Lin, L. C. C.

    2012-01-01

    We report on Chandra observations of the black widow pulsar, PSR B1957+20. Evidence for a binary-phase dependence of the X-ray emission from the pulsar is found with a deep observation. The binary-phase-resolved spectral analysis reveals non-thermal X-ray emission of PSR B1957+20, confirming the results of previous studies. This suggests that the X-rays are mostly due to intra-binary shock emission, which is strongest when the pulsar wind interacts with the ablated material from the companion star. The geometry of the peak emission is determined in our study. The marginal softening of the spectrum of the non-thermal X-ray tail may indicate that particles injected at the termination shock are dominated by synchrotron cooling.

  20. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Directory of Open Access Journals (Sweden)

    Alice K. Harding

    2013-09-01

    Full Text Available Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

  1. Search for optical millisecond pulsars in globular clusters

    International Nuclear Information System (INIS)

    Middleditch, J.H.; Imamura, J.N.; Steiman-Cameron, T.Y.

    1988-01-01

    A search for millisecond optical pulsars in several bright, compact globular clusters was conducted. The sample included M28, and the X-ray clusters 47 Tuc, NGC 6441, NGC 6624, M22, and M15. The globular cluster M28 contains the recently discovered 327 Hz radio pulsar. Upper limits of 4 sigma to pulsed emission of (1-20) solar luminosities were found for the globular clusters tested, and 0.3 solar luminosity for the M28 pulsar for frequencies up to 500 Hz. 8 references

  2. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kisaka, Shota [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp [Department of Physics, Konan University, Kobe, Hyogo, 658-8501 (Japan)

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  3. Gravitational wave emission from oscillating millisecond pulsars

    Science.gov (United States)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  4. Nonlinear QED effects in X-ray emission of pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri, Soroush [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Haghighat, Mansour [Department of Physics, Shiraz University, Shiraz 71946-84795 (Iran, Islamic Republic of); Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it [ICRANet, Piazzale della Repubblica 10, 65122, Pescara (Italy)

    2017-10-01

    In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarization characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.

  5. The Emerging Population of Pulsar Wind Nebulae in Hard X-rays

    Science.gov (United States)

    Mattana, F.; Götz, D.; Terrier, R.; Renaud, M.; Falanga, M.

    2009-05-01

    The hard X-ray synchrotron emission from Pulsar Wind Nebulae probes energetic particles, closely related to the pulsar injection power at the present time. INTEGRAL has disclosed the yet poorly known population of hard X-ray pulsar/PWN systems. We summarize the properties of the class, with emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32), and highlight some prospects for the study of Pulsar Wind Nebulae with the Simbol-X mission.

  6. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  7. A transient, flat spectrum radio pulsar near the Galactic Centre

    Science.gov (United States)

    Dexter, J.; Degenaar, N.; Kerr, M.; Deller, A.; Deneva, J.; Lazarus, P.; Kramer, M.; Champion, D.; Karuppusamy, R.

    2017-06-01

    Recent studies have shown possible connections between highly magnetized neutron stars ('magnetars'), whose X-ray emission is too bright to be powered by rotational energy, and ordinary radio pulsars. In addition to the magnetar SGR J1745-2900, one of the radio pulsars in the Galactic Centre (GC) region, PSR J1746-2850, had timing properties implying a large magnetic field strength and young age, as well as a flat spectrum. All characteristics are similar to those of rare, transient, radio-loud magnetars. Using several deep non-detections from the literature and two new detections, we show that this pulsar is also transient in the radio. Both the flat spectrum and large amplitude variability are inconsistent with the light curves and spectral indices of three radio pulsars with high magnetic field strengths. We further use frequent, deep archival imaging observations of the GC in the past 15 yr to rule out a possible X-ray outburst with a luminosity exceeding the rotational spin-down rate. This source, either a transient magnetar without any detected X-ray counterpart or a young, strongly magnetized radio pulsar producing magnetar-like radio emission, further blurs the line between the two categories. We discuss the implications of this object for the radio emission mechanism in magnetars and for star and compact object formation in the GC.

  8. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  9. The Velocity Distribution of Isolated Radio Pulsars

    Science.gov (United States)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for

  10. Gamma ray emission from pulsars

    International Nuclear Information System (INIS)

    Salvati, M.; Massaro, E.

    1978-01-01

    A model for the production of gamma rays in a pulsar environment is presented, together with numerical computations fitted to the observations of PSR 0833-45. It is assumed that the primary particles are accelerated close to the star surface and then injected along the open field lines, which cause them to emit curvature radiation. The equation describing the particles' braking is integrated exactly up to the first order in the pulsar rotational frequency, and the transfer problem for the curvature photons is solved with the aberration, the Doppler shif, and the pair production absorption being taken into account. The latter effect is due not only to the transverse component of the magnetic field, but also to the electric field induced by the rotation. The synchrotron radiation emitted by the secondary particles is also included, subject to the 'on-the-spot' approximation. It is found that the observed gamma rays originate in the innermost regions of the magnetosphere, where the open lines' bundle is narrow and the geometrical beaming is effective. As shown by the computed pulse profiles, the duty cycle turns out to be equal to a few percent, comparable to the one of PSR 0833-45. The averaged spectra indicate that a substantial fraction of the primary photons do outlive the interaction with the magnetisphere; furthermore, the agreement in shape with the observational curves suggests that the acceleration output is fiarly close to a monoenergetic beam of particles. (orig.) [de

  11. Evolution of king crabs from hermit crab ancestors

    Science.gov (United States)

    Cunningham, C. W.; Blackstone, N. W.; Buss, L. W.

    1992-02-01

    KING crabs (Family Lithodidae) are among the world's largest arthropods, having a crab-like morphology and a strongly calcified exoskeleton1-6. The hermit crabs, by contrast, have depended on gastropod shells for protection for over 150 million years5,7. Shell-living has constrained the morphological evolution of hermit crabs by requiring a decalcified asymmetrical abdomen capable of coiling into gastropod shells and by preventing crabs from growing past the size of the largest available shells1-6. Whereas reduction in shell-living and acquisition of a crab-like morphology (carcinization) has taken place independently in several hermit crab lineages, and most dramatically in king crabs1-6, the rate at which this process has occurred was entirely unknown2,7. We present molecular evidence that king crabs are not only descended from hermit crabs, but are nested within the hermit crab genus Pagurus. We estimate that loss of the shell-living habit and the complete carcinization of king crabs has taken between 13 and 25 million years.

  12. Pulsar Wind Nebulae Created by Fast-Moving Pulsars

    OpenAIRE

    Kargaltsev, Oleg; Pavlov, George G.; Klingler, Noel; Rangelov, Blagoy

    2017-01-01

    We review multiwavelength properties of pulsar wind nebulae (PWNe) created by supersonically moving pulsars and the effects of pulsar motion on the PWN morphologies and the ambient medium. Supersonic pulsar wind nebulae (SPWNe) are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in SPWN studies have been made in deep observations with the Chandra and XMM-Newton X-ray Observatories as...

  13. Broadband pulsations from PSR B1821–24: Implications for emission models and the pulsar population of M28

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Guillemot, L.; Freire, P. C. C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Kerr, M.; Romani, R. W.; Wood, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement, LPCE UMR 6115 CNRS, F-45071 Orléans Cedex 02 (France); Ray, P. S.; Wolff, M. T.; Grove, J. E.; Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Bégin, S. [Département de physique, génie physique et optique, Université Laval, Québec (Canada); Janssen, G. H.; Espinoza, C. M. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Casandjian, J. M. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Ferrara, E. C.; Harding, A. K., E-mail: tyrel.j.johnson@gmail.com, E-mail: guillemo@mpifr-bonn.mpg.de, E-mail: kerrm@stanford.edu, E-mail: icognard@cnrs-orleans.fr, E-mail: Paul.Ray@nrl.navy.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2013-12-01

    We report a 5.4σ detection of pulsed gamma rays from PSR B1821–24 in the globular cluster M28 using ∼44 months of Fermi Large Area Telescope (LAT) data that have been reprocessed with improved instrument calibration constants. We constructed a phase-coherent ephemeris, with post-fit residual rms of 3 μs, using radio data spanning ∼23.2 yr, enabling measurements of the multi-wavelength light-curve properties of PSR B1821–24 at the milliperiod level. We fold RXTE observations of PSR B1821–24 from 1996 to 2007 and discuss implications on the emission zones. The gamma-ray light curve consists of two peaks separated by 0.41 ± 0.02 in phase, with the first gamma-ray peak lagging behind the first radio peak by 0.05 ± 0.02 in phase, consistent with the phase of giant radio pulses. We observe significant emission in the off-peak interval of PSR B1821–24 with a best-fit LAT position inconsistent with the core of M28. We do not detect significant gamma-ray pulsations at the spin or orbital periods from any other known pulsar in M28, and we place limits on the number of energetic pulsars in the cluster. The derived gamma-ray efficiency, ∼2%, is typical of other gamma-ray pulsars with comparable spin-down power, suggesting that the measured spin-down rate (2.2 × 10{sup 36} erg s{sup –1}) is not appreciably distorted by acceleration in the cluster potential. This confirms PSR B1821–24 as the second very energetic millisecond pulsar in a globular cluster and raises the question of whether these represent a separate class of objects that only form in regions of very high stellar density.

  14. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    Science.gov (United States)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  15. Discovery of Hard Nonthermal Pulsed X-Ray Emission from the Anomalous X-Ray Pulsar 1E 1841-045

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Méndez, R.M.

    2004-01-01

    We report the discovery of nonthermal pulsed X-ray/soft gamma-ray emission up to ~150 keV from the anomalous 11.8 s X-ray pulsar AXP 1E 1841-045 located near the center of supernova remnant Kes 73 using Rossi X-Ray Timing Explorer (RXTE) Proportional Counter Array and High Energy X-Ray Timing

  16. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Science.gov (United States)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  17. On the nature of pulsars

    International Nuclear Information System (INIS)

    Radhakrishnan, V.

    1982-01-01

    Although neutron stars were predicted nearly half a century ago, their radiations have been received and studied for just over a decade. Called pulsars because of the pulsating nature of their signals, they exhibit a wide variety of periodic phenomena in their radio emission. This article begins with a historical introduction followed by a short review of their main characteristics. The major models proposed to explain these properties are then outlined. Finally, some very recent developments which promise to throw new light on the mechanism of pulsars and their relationship to supernova remnants are briefly described and discussed. (author)

  18. On the Spectral Shape of Non-recycled γ-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Chung-Yue Hui

    2016-06-01

    Full Text Available More than 100 γ−ray pulsars have been discovered by the Fermi Gamma-ray Space Telescope. With a significantly enlarged sample size, it is possible to compare the properties of different classes. Radio-quiet (RQ γ−ray pulsars form a distinct population, and various studies have shown that the properties of the RQ population can be intrinsically different from those of radio-loud (RL pulsars. Utilizing these differences, it is possible to further classify the pulsar-like unidentified γ−ray sources into sub-groups. In this study, we suggest the possibility of distinguishing RQ/RL pulsars by their spectral shape. We compute the probabilities of a pulsar to be RQ or RL for a given spectral curvature. This can provide a key to the estimation of the intrinsic fraction of radio-quietness in the γ−ray pulsar population, which can place a tight constraint on the emission geometry.

  19. Pulsar Magnetospheres and Pulsar Winds

    OpenAIRE

    Beskin, Vasily S.

    2016-01-01

    Surprisingly, the chronology of nearly 50 years of the pulsar magnetosphere and pulsar wind research is quite similar to the history of our civilization. Using this analogy, I have tried to outline the main results obtained in this field. In addition to my talk, the possibility of particle acceleration due to different processes in the pulsar magnetosphere is discussed in more detail.

  20. Tidal pressure induced neutrino emission as an energy dissipation mechanism in binary pulsar systems

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.; Ignatovich, V.K.

    1995-01-01

    We briefly review possible systematic limitations to the inferred General Relativity tests in binary pulsar systems, then propose a new mechanism whereby orbital energy can drive the electron-proton vs. neutron density away from equilibrium, and the concomitant neutrino (or antineutrino) emission represents an orbital energy dissipation. Of the total orbital energy loss rate, we estimate the fractional contribution of this mechanism as 8x10 -6 , whereas the observational accuracy is at the level of 7x10 -3 , and agrees with the predicted rate of gravitational radiation. 10 refs

  1. Pulsar acceleration by asymmetric emission of sterile neutrinos

    CERN Document Server

    Nardi, E; Nardi, Enrico; Zuluaga, Jorge I.

    2001-01-01

    A convincing explanation for the observed pulsar large peculiar velocities is still missing. We argue that any viable particle physics solution would most likely involve the resonant production of a non-interacting neutrino $\

  2. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    Science.gov (United States)

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  3. On the mean profiles of radio pulsars - II. Reconstruction of complex pulsar light curves and other new propagation effects

    Science.gov (United States)

    Hakobyan, H. L.; Beskin, V. S.; Philippov, A. A.

    2017-08-01

    Our previous paper outlined the general aspects of the theory of radio light curve and polarization formation for pulsars. We predicted the one-to-one correspondence between the tilt of the linear polarization position angle of the the circular polarization. However, some of the radio pulsars indicate a clear deviation from that correlation. In this paper, we apply the theory of the radio wave propagation in the pulsar magnetosphere for the analysis of individual effects leading to these deviations. We show that within our theory the circular polarization of a given mode can switch its sign, without the need to introduce a new radiation mode or other effects. Moreover, we show that the generation of different emission modes on different altitudes can explain pulsars, that presumably have the X-O-X light-curve pattern, different from what we predict. General properties of radio emission within our propagation theory are also discussed. In particular, we calculate the intensity patterns for different radiation altitudes and present light curves for different observer viewing angles. In this context we also study the light curves and polarization profiles for pulsars with interpulses. Further, we explain the characteristic width of the position angle curves by introducing the concept of a wide emitting region. Another important feature of radio polarization profiles is the shift of the position angle from the centre, which in some cases demonstrates a weak dependence on the observation frequency. Here we demonstrate that propagation effects do not necessarily imply a significant frequency-dependent change of the position angle curve.

  4. γ-ray emission from slow pulsars

    International Nuclear Information System (INIS)

    Morini, M.; Treves, A.

    1981-01-01

    The scope of this communication is to calculate the expected γ-ray flux from slow pulsars, neglecting the problem of the reliability of the observations. The key hypothesis is that since the γ-ray luminosity is a substantial fraction of Lsub(T) (the intrinsic energy loss), it should be produced in the vicinity of the speed of light radius. This comes from the well known argument of simultaneous conservation of energy and angular momentum. (Auth.)

  5. Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares

    Science.gov (United States)

    Lyutikov, Maxim; Komissarov, Serguei; Sironi, Lorenzo

    2018-04-01

    We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in a highly magnetised relativistic plasma. We first discuss physical parameters of the Crab Nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events [Lyutikov et al., J. Plasma Phys., vol. 83(6), p. 635830601 (2017a); J. Plasma Phys., vol. 83(6), p. 635830602 (2017b)]. It is required that particles producing flares are accelerated in highly magnetised regions of the nebula. Flares originate from the poleward regions at the base of the Crab's polar outflow, where both the magnetisation and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scale magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetised regions, explosive dynamics on the light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.

  6. Movement of the pulsars and neutrino oscillations; Movimiento de los pulsares y oscilaciones de neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Barkovich, M.A

    2005-07-01

    The astronomical observations show that the pulsars are not in the center of the remainder of the supernovae that gave its origin, but rather are displaced of the same one and moving to a speed of about 500 km/s, which is much bigger that of the progenitor star. This fact constitutes a strong evidence that the pulsars is accelerated in the moment of its birth and by this it is denominated to this phenomenon 'pulsars kick'. They exist numerous and varied mechanisms to explain this effect, but none makes it in way completely satisfactory. In this thesis we will study in detail a mechanism proposed originally by Kusenko and Segre and that is based on an asymmetric emission of the neutrinos flow induced by the oscillations of the same ones when its spread in a magnetized media. For this end we will develop, in first instance, the Eddington model. This is based on the transport of the neutrino flux and it describes in a reasonable way the atmosphere of a neutron protostar, place where take place the oscillations. Next we will study the problem of the emission of a neutrino gas from a resonance volume. These results will be applied to the study of the kick in the cases of oscillations among active neutrinos and actives with sterile to determine the magnetic field and the oscillation parameters (difference of the square of the masses of those neutrinos and mixture angle in vacuum) required. Finally we will analyze those neutrino oscillations induced by a possible violation of the Equivalence principle and it implication in the pulsars dynamics. (Author)

  7. Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro.

    Science.gov (United States)

    Linden, Tim; Buckman, Benjamin J

    2018-03-23

    Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models of hadronic γ-ray production, and has been named the "TeV excess." We show that TeV emission from pulsars naturally explains this excess. Recent observations have detected "TeV halos" surrounding pulsars that are either nearby or particularly luminous. Extrapolating this emission to the full population of Milky Way pulsars indicates that the ensemble of "subthreshold" sources necessarily produces bright TeV emission diffusively along the Milky Way plane. Models indicate that the TeV halo γ-ray flux exceeds that from hadronic γ rays above an energy of ∼500  GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.

  8. The High Time Resolution Universe surveys for pulsars and fast transients

    Science.gov (United States)

    Keith, Michael J.

    2013-03-01

    The High Time Resolution Universe survey for pulsars and transients is the first truly all-sky pulsar survey, taking place at the Parkes Radio Telescope in Australia and the Effelsberg Radio Telescope in Germany. Utilising multibeam receivers with custom built all-digital recorders the survey targets the fastest millisecond pulsars and radio transients on timescales of 64 μs to a few seconds. The new multibeam digital filter-bank system at has a factor of eight improvement in frequency resolution over previous Parkes multibeam surveys, allowing us to probe further into the Galactic plane for short duration signals. The survey is split into low, mid and high Galactic latitude regions. The mid-latitude portion of the southern hemisphere survey is now completed, discovering 107 previously unknown pulsars, including 26 millisecond pulsars. To date, the total number of discoveries in the combined survey is 135 and 29 MSPs These discoveries include the first magnetar to be discovered by it's radio emission, unusual low-mass binaries, gamma-ray pulsars and pulsars suitable for pulsar timing array experiments.

  9. A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Dumora, D.; Grondin, M.H.; Guillemot, L.; Lemoine-Goumard, M.; Lovellette, M.N.; Parent, D.; Smith, D.A.; Abdo, A.A.; Chekhtman, A.; Dermer, C.D.; Grove, J.E.; Johnson, W.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wood, K.S.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Edmonds, Y.; Focke, W.B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Panetta, J.H.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.B.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Atwood, W.B.; Dormody, M.; Johnson, R.P.; Porter, T.A.; Sadrozinski, H.F.W.; Schalk, T.L.; Thorsett, S.E.; Ziegler, M.; Axelsson, M.; Carlson, P.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Starck, J.L.

    2009-01-01

    Pulsars are born with sub-second spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface. (authors)

  10. GAMMA-RAY SIGNAL FROM THE PULSAR WIND IN THE BINARY PULSAR SYSTEM PSR B1259-63/LS 2883

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [National Research Nuclear University-MEPHI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-12-01

    Binary pulsar systems emit potentially detectable components of gamma-ray emission due to Comptonization of the optical radiation of the companion star by relativistic electrons of the pulsar wind, both before and after termination of the wind. The recent optical observations of binary pulsar system PSR B1259-63/LS 2883 revealed radiation properties of the companion star which differ significantly from previous measurements. In this paper, we study the implications of these observations for the interaction rate of the unshocked pulsar wind with the stellar photons and the related consequences for fluxes of high energy and very high energy (VHE) gamma rays. We show that the signal should be strong enough to be detected with Fermi close to the periastron passage, unless the pulsar wind is strongly anisotropic or the Lorentz factor of the wind is smaller than 10{sup 3} or larger than 10{sup 5}. The higher luminosity of the optical star also has two important implications: (1) attenuation of gamma rays due to photon-photon pair production and (2) Compton drag of the unshocked wind. While the first effect has an impact on the light curve of VHE gamma rays, the second effect may significantly decrease the energy available for particle acceleration after termination of the wind.

  11. X-ray pulsars in nearby irregular galaxies

    Science.gov (United States)

    Yang, Jun

    2018-01-01

    The Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Irregular Galaxy IC 10 are valuable laboratories to study the physical, temporal and statistical properties of the X-ray pulsar population with multi-satellite observations, in order to probe fundamental physics. The known distance of these galaxies can help us easily categorize the luminosity of the pulsars and their age difference can be helpful for for studying the origin and evolution of compact objects. Therefore, a complete archive of 116 XMM-Newton PN, 151 Chandra (Advanced CCD Imaging Spectrometer) ACIS, and 952 RXTE PCA observations for the pulsars in the Small Magellanic Cloud (SMC) were collected and analyzed, along with 42 XMM-Newton and 30 Chandra observations for the Large Magellanic Cloud, spanning 1997-2014. From a sample of 67 SMC pulsars we generate a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, I generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars.In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison

  12. Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar

    Science.gov (United States)

    Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.; hide

    2012-01-01

    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.

  13. Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    International Nuclear Information System (INIS)

    Anderson, B.; Atwood, W.B.; Dormody, M.; Johnson, R.P.; Porter, T.A.; Primack, J.R.; Sadrozinski, H.F.W.; Parkinson, P.M.S.; Ziegler, M.; Abdo, A.A.; Dermer, C.D.; Grove, J.E.; Gwon, C.; Johnson, W.N.; Lovellette, M.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wolff, M.T.; Wood, K.S.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Axelsson, M.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Pierbattista, M.; Starck, J.L.

    2009-01-01

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants. (authors)

  14. Swings between rotation and accretion power in a binary millisecond pulsar.

    Science.gov (United States)

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  15. Jumping the energetics queue: Modulation of pulsar signals by extraterrestrial civilizations

    Science.gov (United States)

    Chennamangalam, Jayanth; Siemion, Andrew P. V.; Lorimer, D. R.; Werthimer, Dan

    2015-01-01

    It has been speculated that technological civilizations evolve along an energy consumption scale first formulated by Kardashev, ranging from human-like civilizations that consume energy at a rate of ∼1019 erg s-1 to hypothetical highly advanced civilizations that can consume ∼1044 erg s-1. Since the transmission power of a beacon a civilization can build depends on the energy it possesses, to make it bright enough to be seen across the Galaxy would require high technological advancement. In this paper, we discuss the possibility of a civilization using naturally-occurring radio transmitters - specifically, radio pulsars - to overcome the Kardashev limit of their developmental stage and transmit super-Kardashev power. This is achieved by the use of a modulator situated around a pulsar, that modulates the pulsar signal, encoding information onto its natural emission. We discuss a simple modulation model using pulse nulling and considerations for detecting such a signal. We find that a pulsar with a nulling modulator will exhibit an excess of thermal emission peaking in the ultraviolet during its null phases, revealing the existence of a modulator.

  16. Pulsar Wind Nebulae and Cosmic Rays: A Bedtime Story

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, A.

    2014-11-15

    The role pulsar wind nebulae play in producing our locally observed cosmic ray spectrum remains murky, yet intriguing. Pulsar wind nebulae are born and evolve in conjunction with SNRs, which are favored sites of Galactic cosmic ray acceleration. As a result they frequently complicate interpretation of the gamma-ray emission seen from SNRs. However, pulsar wind nebulae may also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current thinking on pulsar wind nebulae and their connection to cosmic ray production from an observational perspective. It also considers how both future technologies and new ways of analyzing existing data can help us to better address the relevant theoretical questions. A number of key points will be illustrated with recent results from the VHE (E > 100 GeV) gamma-ray observatory VERITAS.

  17. SEXTANT X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results

    Science.gov (United States)

    Mitchell, Jason W.; Winternitz, Luke B.; Hassouneh, Munther A.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wolf, Michael T.; Kerr, Matthew; Wood, Kent S.; hide

    2018-01-01

    Millisecond pulsars (MSPs) are rapidly rotating neutron stars that appear to pulsate across the electromagnetic spectrum. Some MSPs have long-term timing stability that rivals that of atomic clocks. Pulse arrival phase can be predicted with great accuracy at any reference point in the Solar System through use of a pulsar timing model on a spacecraft. Comparing observed phase to predictions gives information that may be used in a navigation process. Why X-rays? Some stable MSPs have conveniently detectable X-ray emissions. X-rays are immune to interstellar dispersion effects thought to limit radio pulsar timing models. Highly directional compact detectors possible.

  18. Fermi LAT Pulsed Detection of PSR J0737-3039A in the Double Pulsar System

    Science.gov (United States)

    Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.; Kerr, M.

    2013-01-01

    We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination alpha and the viewing angle zeta to be close to 90 deg., which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  19. Good Crab, Bad Crab

    Science.gov (United States)

    Are crabs friends or foes of marsh grass, benefit or detriment to the salt marsh system? We examined Uca pugilator (sand fiddler) and Sesarma reticulatum (purple marsh crab) with Spartina patens (salt marsh hay) at two elevations (10 cm below MHW and 10 cm above MHW) in mesocosms...

  20. Pulsar searching and timing with the Parkes telescope

    Science.gov (United States)

    Ng, C. W. Y.

    2014-11-01

    Pulsars are highly magnetised, rapidly rotating neutron stars that radiate a beam of coherent radio emission from their magnetic poles. An introduction to the pulsar phenomenology is presented in Chapter 1 of this thesis. The extreme conditions found in and around such compact objects make pulsars fantastic natural laboratories, as their strong gravitational fields provide exclusive insights to a rich variety of fundamental physics and astronomy. The discovery of pulsars is therefore a gateway to new science. An overview of the standard pulsar searching technique is described in Chapter 2, as well as a discussion on notable pulsar searching efforts undertaken thus far with various telescopes. The High Time Resolution Universe (HTRU) Pulsar Survey conducted with the 64-m Parkes radio telescope in Australia forms the bulk of this PhD. In particular, the author has led the search effort of the HTRU low-latitude Galactic plane project part which is introduced in Chapter 3. We discuss the computational challenges arising from the processing of the petabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including the potential pulsar-black hole binaries. We show that under a linear acceleration approximation, a ratio of ~0.1 of data length over orbital period results in the highest effectiveness for this search algorithm. Chapter 4 presents the initial results from the HTRU low-latitude Galactic plane survey. From the 37 per cent of data processed thus far, we have re-detected 348 previously known pulsars and discovered a further 47 pulsars. Two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar (MSP) with a heavy white dwarf companion while its short spin period of 5 ms indicates

  1. Inverse Compton gamma-rays from pulsars

    International Nuclear Information System (INIS)

    Morini, M.

    1983-01-01

    A model is proposed for pulsar optical and gamma-ray emission where relativistic electrons beams: (i) scatter the blackbody photons from the polar cap surface giving inverse Compton gamma-rays and (ii) produce synchrotron optical photons in the light cylinder region which are then inverse Compton scattered giving other gamma-rays. The model is applied to the Vela pulsar, explaining the first gamma-ray pulse by inverse Compton scattering of synchrotron photons near the light cylinder and the second gamma-ray pulse partly by inverse Compton scattering of synchrotron photons and partly by inverse Compton scattering of the thermal blackbody photons near the star surface. (author)

  2. Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu [Institute of Theory and Computation, Center for Astrophysics, Harvard University 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-10

    We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The short temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.

  3. A Laminar Model for the Magnetic Field Structure in Bow-Shock Pulsar Wind Nebulae

    Science.gov (United States)

    Bucciantini, N.

    2018-05-01

    Bow Shock Pulsar Wind Nebulae are a class of non-thermal sources, that form when the wind of a pulsar moving at supersonic speed interacts with the ambient medium, either the ISM or in a few cases the cold ejecta of the parent supernova. These systems have attracted attention in recent years, because they allow us to investigate the properties of the pulsar wind in a different environment from that of canonical Pulsar Wind Nebulae in Supernova Remnants. However, due to the complexity of the interaction, a full-fledged multidimensional analysis is still laking. We present here a simplified approach, based on Lagrangian tracers, to model the magnetic field structure in these systems, and use it to compute the magnetic field geometry, for various configurations in terms of relative orientation of the magnetic axis, pulsar speed and observer direction. Based on our solutions we have computed a set of radio emission maps, including polarization, to investigate the variety of possible appearances, and how the observed emission pattern can be used to constrain the orientation of the system, and the possible presence of turbulence.

  4. Can a Bright and Energetic X-Ray Pulsar Be Hiding Amid the Debris of SN 1987A?

    Science.gov (United States)

    Esposito, Paolo; Rea, Nanda; Lazzati, Davide; Matsuura, Mikako; Perna, Rosalba; Pons, José A.

    2018-04-01

    The mass of the stellar precursor of supernova (SN) 1987A and the burst of neutrinos observed at the moment of the explosion are consistent with the core-collapse formation of a neutron star. However, no compelling evidence for the presence of a compact object of any kind in SN 1987A has been found yet in any band of the electromagnetic spectrum, prompting questions on whether the neutron star survived and, if it did, on its properties. Beginning with an analysis of recent Chandra observations, here we appraise the current observational situation. We derived limits on the X-ray luminosity of a compact object with a nonthermal, Crab-pulsar-like spectrum of the order of ≈(1–5) × 1035 erg s‑1, corresponding to limits on the rotational energy loss of a possible X-ray pulsar in SN 1987A of ≈(0.5–1.5) × 1038 erg s‑1. However, a much brighter X-ray source cannot be excluded if, as is likely, it is enshrouded in a cloud of absorbing matter with a metallicity similar to that expected in the outer layers of a massive star toward the end of its life. We found that other limits obtained from various arguments and observations in other energy ranges either are unbinding or allow a similar maximum luminosity of the order of ≈1035 erg s‑1. We conclude that while a pulsar alike the one in the Crab Nebula in both luminosity and spectrum is hardly compatible with the observations, there is ample space for an “ordinary” X-ray-emitting young neutron star, born with normal initial spin period, temperature, and magnetic field, to be hiding inside the evolving remnant of SN 1987A.

  5. Transitional millisecond pulsars in the low-level accretion state

    Science.gov (United States)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  6. Particle acceleration model for the broad-band baseline spectrum of the Crab nebula

    Science.gov (United States)

    Fraschetti, F.; Pohl, M.

    2017-11-01

    We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.

  7. Pulsed X-Ray Emission from Pulsar A in the Double Pulsar System J0737-3039

    NARCIS (Netherlands)

    Chatterjee, S.; Gaensler, B.M.; Melatos, A.; Brisken, W.F.; Stappers, B.W.

    2007-01-01

    The double pulsar system J0737-3039 is not only a test bed for general relativity and theories of gravity, but also provides a unique laboratory for probing the relativistic winds of neutron stars. Recent X-ray observations have revealed a point source at the position of the J0737-3039 system, but

  8. FERMI LAT PULSED DETECTION OF PSR J0737-3039A IN THE DOUBLE PULSAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Guillemot, L.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Craig, H. A.; Romani, R. W.; Kerr, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ferdman, R. D. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Stairs, I. H., E-mail: guillemo@mpifr-bonn.mpg.de [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2013-05-10

    We report the Fermi Large Area Telescope discovery of {gamma}-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in {gamma} rays. PSR J0737-3039A is a faint {gamma}-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the {gamma}-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the {gamma}-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination {alpha} and the viewing angle {zeta} to be close to 90 Degree-Sign , which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  9. Discovery of the optical counterparts to four energetic Fermi millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Breton, R. P. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Van Kerkwijk, M. H. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Roberts, M. S. E. [Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, 550 West, 120th Street, New York, NY 10027 (United States); McLaughlin, M. A. [Department of Physics, White Hall, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Ray, P. S. [Space Science Division, Naval Research Laboratory, Code 7655, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Stairs, I. H., E-mail: r.breton@soton.ac.uk [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada)

    2013-06-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modeling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10%-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of γ-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.

  10. Detectability of rotation-powered pulsars in future hard X-ray surveys

    International Nuclear Information System (INIS)

    Wang Wei

    2009-01-01

    Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10 33 -10 37 erg s -1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of L X ∝ L sd 1.31 suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100 keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of L X ∝ L sd 1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the L X - L sd relations: L X ∝ L sd 1.31 and L X ∝ L sd 1.5 . More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.

  11. Pulsars at Parkes

    OpenAIRE

    Manchester, R. N.

    2012-01-01

    The first pulsar observations were made at Parkes on March 8, 1968, just 13 days after the publication of the discovery paper by Hewish and Bell. Since then, Parkes has become the world's most successful pulsar search machine, discovering nearly two thirds of the known pulsars, among them many highly significant objects. It has also led the world in pulsar polarisation and timing studies. In this talk I will review the highlights of pulsar work at Parkes from those 1968 observations to about ...

  12. Pulsar wind model for the spin-down behavior of intermittent pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Tong, H.; Yan, W. M.; Yuan, J. P.; Wang, N. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Xu, R. X., E-mail: tonghao@xao.ac.cn [School of Physics, Peking University, Beijing (China)

    2014-06-10

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841–0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the density of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.

  13. Characterizing the nature of subpulse drifting in pulsars

    Science.gov (United States)

    Basu, Rahul; Mitra, Dipanjan

    2018-04-01

    We report a detailed study of subpulse drifting in four long-period pulsars. These pulsars were observed in the Meterwavelength Single-pulse Polarimetric Emission Survey and the presence of phase-modulated subpulse drifting was reported in each case. We carried out longer duration and more sensitive observations lasting 7000-12 000 periods in the frequency range 306-339 MHz. The drifting features were characterized in great detail, including the phase variations across the pulse window. For two pulsars, J0820-1350 and J1720-2933, the phases changed steadily across the pulse window. The pulsar J1034-3224 has five components. The leading component was very weak and was barely detectable in our single-pulse observations. The four trailing components showed subpulse drifting. The phase variations changed in alternate components with a reversal in the sign of the gradient. This phenomenon is known as bi-drifting. The pulsar J1555-3134 showed two distinct peak frequencies of comparable strengths in the fluctuation spectrum. The two peaks did not appear to be harmonically related and were most likely a result of different physical processes. Additionally, the long observations enabled us to explore the temporal variations of the drifting features. The subpulse drifting was largely constant with time but small fluctuations around a mean value were seen.

  14. Probing the properties of the pulsar wind via studying the dispersive effects in the pulses from the pulsar companion in a double neutron-star binary system

    Science.gov (United States)

    Yi, Shu-Xu; Cheng, K.-S.

    2017-12-01

    The velocity and density distribution of e± in the pulsar wind are crucial distinction among magnetosphere models, and contain key parameters determining the high-energy emission of pulsar binaries. In this work, a direct method is proposed, which might probe the properties of the wind from one pulsar in a double-pulsar binary. When the radio signals from the first-formed pulsar travel through the relativistic e± flow in the pulsar wind from the younger companion, the components of different radio frequencies will be dispersed. It will introduce an additional frequency-dependent time-of-arrival delay of pulses, which is function of the orbital phase. In this paper, we formulate the above-mentioned dispersive delay with the properties of the pulsar wind. As examples, we apply the formula to the double-pulsar system PSR J0737-3039A/B and the pulsar-neutron star binary PSR B1913+16. For PSR J0737-3039A/B, the time delay in 300 MHz is ≲ 10 μ s-1 near the superior conjunction, under the optimal pulsar wind parameters, which is approximately half of the current timing accuracy. For PSR B1913+16, with the assumption that the neutron-star companion has a typical spin-down luminosity of 1033 erg s-1, the time delay is as large as 10 - 20 μ s-1 in 300 MHz. The best timing precision of this pulsar is ∼ 5 μ s-1 in 1400 MHz. Therefore, it is possible that we can find this signal in archival data. Otherwise, we can set an upper limit on the spin-down luminosity. Similar analysis can be applied to other 11 known pulsar-neutron star binaries.

  15. Movement of the pulsars and neutrino oscillations

    International Nuclear Information System (INIS)

    Barkovich, M.A.

    2005-01-01

    The astronomical observations show that the pulsars are not in the center of the remainder of the supernovae that gave its origin, but rather are displaced of the same one and moving to a speed of about 500 km/s, which is much bigger that of the progenitor star. This fact constitutes a strong evidence that the pulsars is accelerated in the moment of its birth and by this it is denominated to this phenomenon 'pulsars kick'. They exist numerous and varied mechanisms to explain this effect, but none makes it in way completely satisfactory. In this thesis we will study in detail a mechanism proposed originally by Kusenko and Segre and that is based on an asymmetric emission of the neutrinos flow induced by the oscillations of the same ones when its spread in a magnetized media. For this end we will develop, in first instance, the Eddington model. This is based on the transport of the neutrino flux and it describes in a reasonable way the atmosphere of a neutron protostar, place where take place the oscillations. Next we will study the problem of the emission of a neutrino gas from a resonance volume. These results will be applied to the study of the kick in the cases of oscillations among active neutrinos and actives with sterile to determine the magnetic field and the oscillation parameters (difference of the square of the masses of those neutrinos and mixture angle in vacuum) required. Finally we will analyze those neutrino oscillations induced by a possible violation of the Equivalence principle and it implication in the pulsars dynamics. (Author)

  16. Planetesimals around nearby millisecond pulsars

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1992-05-01

    We predict that it is possible to observe line emissions of OH, CN and C 2 from the planetesimals around some of the nearby millisecond pulsars, such as PSR1257+12. Observation of these lines will provide an independent test of either an existing planetary system or one which is in the process of formation. (author). 11 refs, 1 tab

  17. The Bursting Pulsar GRO J1744-28: the Slowest Transitional Pulsar?

    Science.gov (United States)

    Court, J. M. C.; Altamirano, D.; Sanna, A.

    2018-04-01

    GRO J1744-28 (the Bursting Pulsar) is a neutron star LMXB which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: `missing link' systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known Transitional Pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of oppurtunity to test our understanding of these systems in an entirely unexplored physical regime.

  18. Detections of millisecond pulsars with the FERMI Large Area Telescope

    International Nuclear Information System (INIS)

    Guillemot, L.

    2009-09-01

    The Fermi observatory was launched on June 11, 2008. It hosts the Large Area Telescope (LAT), sensitive to gamma-ray photons from 20 MeV to over 300 GeV. When the LAT began its activity, nine young and energetic pulsars were known in gamma ray range. At least several tens of pulsar detections by the LAT were predicted before launch. The LAT also allowed the study of millisecond pulsars (MSPs), never firmly detected in gamma ray range before Fermi. This thesis first presents the pulsar timing campaign for the LAT, in collaboration with large radio telescopes and X-ray telescopes, allowing for high sensitivity pulsed searches. Furthermore, it lead to quasi-homogeneous coverage of the galactic MSPs, so that the search for pulsations in LAT data for this population of stars was not affected by an a-priori bias. We present a search for pulsations from these objects in LAT data. For the first time, eight galactic MSPs have been detected as sources of pulsed gamma-ray emission over 100 MeV. In addition, a couple of good candidates for future detection are seen. A similar search for globular cluster MSPs was not successful so far. Comparison of the phase-aligned gamma-ray and radio light curves, as well as the spectral shapes, leads to the conclusion that their gamma-ray emission is similar to that of normal pulsars, and is probably produced in the outer-magnetosphere. This discovery suggests that many unresolved gamma-ray sources are unknown MSPs. (author)

  19. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  20. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  1. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  2. HAWC Analysis of the Crab Nebula Using Neural-Net Energy Reconstruction

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2017-01-01

    The HAWC (High-Altitude Water-Cherenkov) experiment is a TeV γ-ray observatory located 4100 m above sea level on the Sierra Negra mountain in Puebla, Mexico. The detector consists of 300 water-filled tanks, each instrumented with 4 photomuliplier tubes that utilize the water-Cherenkov technique to detect atmospheric air showers produced by cosmic γ rays. Construction of HAWC was completed in March, 2015. The experiment's wide field of view (2 sr) and high duty cycle (> 95 %) make it a powerful survey instrument sensitive to pulsar wind nebulae, supernova remnants, active galactic nuclei, and other γ-ray sources. The mechanisms of particle acceleration at these sources can be studied by analyzing their energy spectra. To this end, we have developed an event-by-event energy-reconstruction algorithm employing an artificial neural network to estimate energies of primary γ rays. The Crab Nebula, the brightest source of TeV photons, makes an excellent calibration source for this technique. We will present preliminary results from an analysis of the Crab energy spectrum using this new energy-reconstruction method. This work was supported by the National Science Foundation.

  3. Superluminal Emission Processes as a Key to Understanding Pulsar Radiation

    Science.gov (United States)

    Schmidt, Andrea; Ardavan, H.; Fasel, J., III; Perez, M.; Singleton, J.

    2007-12-01

    Theoretical and experimental work has established that polarization currents can be animated to travel faster than the speed of light in vacuo and that these superluminal distribution patterns emit tightly focused packets of electromagnetic radiation that differ fundamentally from the emission generated by any other known radiation source. Since 2004, a small team at Los Alamos National Laboratory has, in collaboration with UK universities, conducted analytical, computational and practical studies of radiation sources that exceed the speed of light. Numerical evaluations of the Liénard-Wiechert field generated by such sources show that superluminal emission has the following intrinsic characteristics: (i) It is sharply focused along a rigidly rotating spiral-shaped beam that embodies the cusp of the envelope of the emitted wave fronts. (ii) It consists of either one or three concurrent polarization modes that constitute contributions to the field from differing retarded times. (iii) Two of the modes are comparable in strength at both edges of the signal and dominate over the third everywhere except in the middle of the pulse. (iv) The position angles of each of its dominant modes, as well as that of the total field, swing across the beam by as much as 180 degrees and remain approximately orthogonal throughout their excursion across the beam. (v) One of the three modes is highly circularly polarized and differs in its sense of polarization from the other two. (vi) Two of the modes have a very high degree of linear polarization across the entire pulse. Given the fundamental nature of the Liénard-Wiechert field, the coincidence of these characteristics with those of the radio emission received from pulsars is striking, especially coupled with the experimentally demonstrated fact that the radiation intensity on the cusp decays as 1/R instead of 1/R^2 and is therefore intrinsically bright.

  4. Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs

    Science.gov (United States)

    Swartz, Douglas A.; Weisskopf, M. C.; Zavlin, V.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; van der Horst, A.; Yukita, M.

    2013-04-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXO J061705.3+222127, in the supernova remnant IC443 confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by a pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The observations further reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The cometary shape of the nebula, suggesting motion towards the southwest, appears to be subsonic; there is no evidence for a strong bow shock and the ring, presumably formed at a wind termination shock, is not distorted by motion through the ambient medium.

  5. Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs

    Science.gov (United States)

    Swartz, D. A.; Weisskopf, M. C.; Zavlin, V. E.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; O'Dell, S. L.; vanderHorst, A J.; Yukita, M.

    2013-01-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222117, in the supernova remnant IC443 reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by the pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest (or, equivalently, flow of ambient medium to the northeast), appears to be subsonic; there is no evidence for a strong bow shock, and the circular ring is not distorted by motion through the ambient medium.

  6. Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550

    Science.gov (United States)

    Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry

    2009-05-01

    XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.

  7. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  8. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF GAMMA-RAY PULSARS PSR J1057-5226, J1709-4429, AND J1952+3252

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ajello, M.; Bechtol, K.; Berenji, B.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Antolini, E.; Bonamente, E.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Brigida, M.; Bruel, P.; Burnett, T. H.

    2010-01-01

    The Fermi Large Area Telescope (LAT) data have confirmed the pulsed emission from all six high-confidence gamma-ray pulsars previously known from the EGRET observations. We report results obtained from the analysis of 13 months of LAT data for three of these pulsars (PSR J1057-5226, PSR J1709-4429, and PSR J1952+3252) each of which had some unique feature among the EGRET pulsars. The excellent sensitivity of LAT allows more detailed analysis of the evolution of the pulse profile with energy and also of the variation of the spectral shape with phase. We measure the cutoff energy of the pulsed emission from these pulsars for the first time and provide a more complete picture of the emission mechanism. The results confirm some, but not all, of the features seen in the EGRET data.

  9. FERMI-LAT DETECTION OF PULSED GAMMA-RAYS ABOVE 50 GeV FROM THE VELA PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Gene C. K.; Takata, J.; Ng, C. W.; Cheng, K. S. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Kong, A. K. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: gene930@connect.hku.hk, E-mail: takata@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-12-20

    The first Fermi-Large Area Telescope (LAT) catalog of sources above 10 GeV reported evidence of pulsed emission above 25 GeV from 12 pulsars, including the Vela pulsar, which showed evidence of pulsation at >37 GeV energy bands. Using 62 months of Fermi-LAT data, we analyzed the gamma-ray emission from the Vela pulsar and searched for pulsed emission above 50 GeV. Having confirmed the significance of the pulsation in 30-50 GeV with the H test (p-value ∼10{sup –77}), we extracted its pulse profile using the Bayesian block algorithm and compared it with the distribution of the five observed photons above 50 GeV using the likelihood ratio test. Pulsation was significantly detected for photons above 50 GeV with a p-value of =3 × 10{sup –5} (4.2σ). The detection of pulsation is significant above 4σ at >79 GeV and above 3σ at >90 GeV energy bands, making this the highest energy pulsation significantly detected by the LAT. We explore the non-stationary outer gap scenario of the very high-energy emissions from the Vela pulsar.

  10. Observations of Pulsars with the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Parent, D.

    2009-11-01

    The Large Area Telescope (LAT) on Fermi, launched on 2008 June 11, is a space telescope to explore the high energy γ-ray universe. The instrument covers the energy range from 20 MeV to 300 GeV with greatly improved sensitivity and ability to localize γ-ray point sources. It detects γ-rays through conversion to electron-positron pairs and measurement of their direction in a tracker and their energy in a calorimeter. This thesis presents the γ-ray light curves and the phase-resolved spectral measurements of radio-loud gamma-ray pulsars detected by the LAT. The measurement of pulsar spectral parameters (i.e. integrated flux, spectral index, and energy cut-off) depends on the instrument response functions (IRFs). A method developed for the on-orbit validation of the effective area is presented using the Vela pulsar. The cut efficiencies between the real data and the simulated data are compared at each stage of the background rejection. The results are then propagated to the IRFs, allowing the systematic uncertainties of the spectral parameters to be estimated. The last part of this thesis presents the discoveries, using both the LAT observations and the radio and X ephemeris, of new individual γ-ray pulsars such as PSR J0205+6449, and the Vela-like pulsars J2229+6114 and J1048-5832. Timing and spectral analysis are investigated in order to constrain the γ-ray emission model. In addition, we discuss the properties of a large population of γ-ray pulsars detected by the LAT, including normal pulsars, and millisecond pulsars. (author)

  11. DISCOVERY OF PULSED γ-RAYS FROM PSR J0034-0534 WITH THE FERMI LARGE AREA TELESCOPE: A CASE FOR CO-LOCATED RADIO AND γ-RAY EMISSION REGIONS

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bonamente, E.; Brigida, M.; Bruel, P.

    2010-01-01

    Millisecond pulsars (MSPs) have been firmly established as a class of γ-ray emitters via the detection of pulsations above 0.1 GeV from eight MSPs by the Fermi Large Area Telescope (LAT). Using 13 months of LAT data, significant γ-ray pulsations at the radio period have been detected from the MSP PSR J0034-0534, making it the ninth clear MSP detection by the LAT. The γ-ray light curve shows two peaks separated by 0.274 ± 0.015 in phase which are very nearly aligned with the radio peaks, a phenomenon seen only in the Crab pulsar until now. The ≥0.1 GeV spectrum of this pulsar is well fit by an exponentially cutoff power law with a cutoff energy of 1.8 ± 0.6 ± 0.1 GeV and a photon index of 1.5 ± 0.2 ± 0.1, first errors are statistical and second are systematic. The near-alignment of the radio and γ-ray peaks strongly suggests that the radio and γ-ray emission regions are co-located and both are the result of caustic formation.

  12. Coherent radiation from pulsars

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1979-01-01

    Interaction between a relativistic electrom stream and a plasma under conditions believed to exist in pulsar magnetospheres is shown to result in the simultaneous emission of coherent curvature radiation at radio wavelengths and incoherent curvature radiation at X-ray wavelengths from the same spatial volume. It is found that such a stream can propagate through a plasma parallel to a very strong magnetic field only if its length is less than a critical length L/sub asterisk/ic. Charge induced in the plasma by the stream co-moves with the stream and has the same limitation in longitudinal extent. The resultant charge bunching is sufficient to cause the relatively low energy plasma particles to radiate at radio wavelengths coherently while the relatively high energy stream particles radiate at X-ray wavelengths incoherently as the stream-plasma system moves along curved magnetic field lines. The effective number of coherently radiating particles per bunch is estimated to be approx.10 14 --10 15 for a tupical pulsar

  13. HAWC Observations Strongly Favor Pulsar Interpretations of the Cosmic-Ray Positron Excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP; Fang, Ke [Maryland U.

    2017-11-17

    Recent measurements of the Geminga and B0656+14 pulsars by the gamma-ray telescope HAWC (along with earlier measurements by Milagro) indicate that these objects generate significant fluxes of very high-energy electrons. In this paper, we use the very high-energy gamma-ray intensity and spectrum of these pulsars to calculate and constrain their expected contributions to the local cosmic-ray positron spectrum. Among models that are capable of reproducing the observed characteristics of the gamma-ray emission, we find that pulsars invariably produce a flux of high-energy positrons that is similar in spectrum and magnitude to the positron fraction measured by PAMELA and AMS-02. In light of this result, we conclude that it is very likely that pulsars provide the dominant contribution to the long perplexing cosmic-ray positron excess.

  14. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  15. RADIO-QUIET AND RADIO-LOUD PULSARS: SIMILAR IN GAMMA-RAYS BUT DIFFERENT IN X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Mignani, R. P.; Luca, A. De; Salvetti, D. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133, Milano (Italy); Parkinson, P. M. Saz [Santa Cruz Institute for Particle Physics, Department of Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Hartog, P. R. Den [Stanford University HEPL/KIPAC, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Wolff, M. T., E-mail: marelli@iasf-milano.inaf.it [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2015-04-01

    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet (RQ) γ-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from γ-ray pulsar timing. For PSR J2030+4415 we found evidence for a ∼10″-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. and confirm that, on average, the γ-ray-to-X-ray flux ratios (F{sub γ}/F{sub X}) of RQ pulsars are higher than for the radio-loud (RL) ones. Furthermore, while the F{sub γ}/F{sub X} distribution features a single peak for the RQ pulsars, the distribution is more dispersed for the RL ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.

  16. X-Ray Analysis of the Proper Motion and Pulsar Wind Nebula for PSR J1741-2054

    Science.gov (United States)

    Auchettl, Katie; Slane, Patrick; Romani, Roger W.; Posselt, Bettina; Pavlov, George G.; Kargaltsev, Oleg; Ng, C-Y.; Temim, Tea; Weisskopf, Martin C.; Bykov, Andrei; hide

    2015-01-01

    We obtained six observations of PSR J1741-2054 using the Chandra ACIS-S detector totaling approx.300 ks. By registering this new epoch of observations to an archival observation taken 3.2 yr earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at micron = 109 +/- 10 mas yr(exp. -1) in a direction consistent with the symmetry axis of the observed H(alpha) nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index gamma = 2.68 +/- 0.04, plus a blackbody with an emission radius of (4.5(+3.2/-2.5))d(0.38) km, for a DM-estimated distance of 0.38d(0.38) kpc and a temperature of 61.7 +/- 3.0 eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of gamma = 1.67 +/- 0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures.

  17. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    Science.gov (United States)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  18. Deep optical observations of the γ-ray pulsar J0357+3205

    Science.gov (United States)

    Kirichenko, A.; Danilenko, A.; Shibanov, Yu.; Shternin, P.; Zharikov, S.; Zyuzin, D.

    2014-04-01

    Context. A middle-aged radio-quiet pulsar J0357+3205 was discovered in gamma rays with Fermi and later in X-rays with Chandra and XMM-Newton observatories. It produces an unusual thermally emitting pulsar wind nebula that is observed in X-rays. Aims: Deep optical observations were obtained to search for the pulsar optical counterpart and its nebula using the Gran Telescopio Canarias (GTC). Methods: The direct imaging mode in the Sloan g' band was used. Archival X-ray data were reanalysed and compared with the optical data. Results: No pulsar optical counterpart was detected down to g'≥slant 28.1m. No pulsar nebula was identified in the optical either. We confirm early results that the X-ray spectrum of the pulsar consists of a nonthermal power-law component of the pulsar magnetospheric origin dominating at high energies and a soft thermal component from the neutron star surface. Using magnetised, partially ionised hydrogen atmosphere models in X-ray spectral fits, we found that the thermal component can come from the entire surface of the cooling neutron star with a temperature of 36+8-6 eV, making it one of the coldest among cooling neutron stars known. The surface temperature agrees with the standard neutron star cooling scenario. The optical upper limit does not put any additional constraints on the thermal component, however it does imply a strong spectral break for the nonthermal component between the optical and X-rays as is observed in other middle-aged pulsars. Conclusions: The thermal emission from the entire surface of the neutron star very likely dominates the nonthermal emission in the UV range. Observations of PSR J0357+3205 in this range are promising to put more stringent constraints on its thermal properties. Based on observations made with the Gran Telescopio Canarias (GTC), instaled in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma under Programme GTC3-12BMEX

  19. A New Fast Silicon Photomultiplier Photometer

    Directory of Open Access Journals (Sweden)

    F. Meddi

    2011-01-01

    Full Text Available The Crab pulsar is one of the most intensively studied X-ray/optical objects, but up to now only a small number of research groups have based their photometers on SiPM technology. In early February 2011, the Crab pulsar signal was observed with our photometer prototype. With low-cost instrumentation, the results of the analysis are very significant: the processed data acquired on the Crab pulsar gave both a good light curve and a good power spectrum, in comparison with the data analysis results of other more expensive photometer instrumentation.

  20. Coherent emission mechanisms in astrophysical plasmas

    Science.gov (United States)

    Melrose, D. B.

    2017-12-01

    Three known examples of coherent emission in radio astronomical sources are reviewed: plasma emission, electron cyclotron maser emission (ECME) and pulsar radio emission. Plasma emission is a multi-stage mechanism with the first stage being generation of Langmuir waves through a streaming instability, and subsequent stages involving partial conversion of the Langmuir turbulence into escaping radiation at the fundamental (F) and second harmonic (H) of the plasma frequency. The early development and subsequent refinements of the theory, motivated by application to solar radio bursts, are reviewed. The driver of the instability is faster electrons outpacing slower electrons, resulting in a positive gradient ({d}f(v_allel )/{d}v_allel >0) at the front of the beam. Despite many successes of the theory, there is no widely accepted explanation for type I bursts and various radio continua. The earliest models for ECME were purely theoretical, and the theory was later adapted and applied to Jupiter (DAM), the Earth (AKR), solar spike bursts and flare stars. ECME strongly favors the x mode, whereas plasma emission favors the o mode. Two drivers for ECME are a ring feature (implying {d}f(v)/{d}v>0) and a loss-cone feature. Loss-cone-driven ECME was initially favored for all applications. The now favored driver for AKR is the ring-feature in a horseshoe distribution, which results from acceleration by a parallel electric on converging magnetic field lines. The driver in DAM and solar and stellar applications is uncertain. The pulsar radio emission mechanism remains an enigma. Ingredients needed in discussing possible mechanisms are reviewed: general properties of pulsars, pulsar electrodynamics, the properties of pulsar plasma and wave dispersion in such plasma. Four specific emission mechanisms (curvature emission, linear acceleration emission, relativistic plasma emission and anomalous Doppler emission) are discussed and it is argued that all encounter difficulties. Coherent

  1. Featured Image: A Detailed Look at the Crab Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Planning on watching fireworks tomorrow? Heres an astronomical firework to help you start the celebrations! A new study has stunningly detailed the Crab Nebula (click for a closer look), a nebula 6,500 light-years away thought to have been formedby a supernova explosion and the subsequent ultrarelativistic wind emitted by the pulsar at its heart. Led by Gloria Dubner (University of Buenos Aires), the authors of this study obtained new observations of the Crab Nebula from five different telescopes. They compiled these observations to compare the details of the nebulas structure across different wavelengths, which allowedthem to learnabout the sources of various features within the nebula. In the images above, thetop left shows the 3 GHz data from the Very Large Array (radio). Moving clockise, the radio data (shown in red) is composited with: infrared data from Spitzer Space Telescope, optical continuum from Hubble Space Telescope, 500-nm optical datafrom Hubble, and ultraviolet data from XMM-Newton. The final two images are of the nebula center, and they are composites of the radio imagewith X-ray data from Chandra and near-infrared data from Hubble. To read more about what Dubner and collaborators learned (and to see more spectacular images!), check out the paper below.CitationG. Dubner et al 2017 ApJ 840 82. doi:10.3847/1538-4357/aa6983

  2. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J. [West Virginia University, White Hall, Morgantown, WV 26506 (United States); Heatherly, S. A.; Scoles, S. [NRAO, P.O. Box 2, Green Bank, WV 24944 (United States); Lynch, R. [McGill University, Rutherford Physics Building, 3600 Rue University, Montreal, QC H3A 2T8 (Canada); Kondratiev, V. I. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); Ransom, S. M. [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Moniot, M. L.; Thompson, C. [James River High School, 9906 Springwood Road, Buchanan, VA 24066 (United States); Cottrill, A.; Raycraft, M. [Lincoln High School, 100 Jerry Toth Drive, Shinnston, WV 26431 (United States); Weaver, M. [Broadway High School, 269 Gobbler Drive, Broadway, VA 22815 (United States); Snider, A. [Sherando High School, 185 South Warrior Drive, Stephens City, VA 22655 (United States); Dudenhoefer, J.; Allphin, L. [Hedgesville High School, 109 Ridge Road North, Hedgesville, WV 25427 (United States); Thorley, J., E-mail: Rachel.Rosen@mail.wvu.edu [Strasburg High School, 250 Ram Drive, Strasburg, VA 22657 (United States); and others

    2013-05-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg{sup 2} of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  3. Galactic population of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.; Manchester, R.N.

    1985-01-01

    In order to draw statistical conclusions about the overall population of pulsars in the Galaxy, a sample of 316 pulsars detected in surveys carried out at Jodrell Bank, Arecibo, Molonglo, and Green Bank has been analysed. The important selection effects of each survey are quantified and a statistically reliable pulsar distance scale based on a model for the large-scale distribution of free electrons in the Galaxy is described. These results allow the spatial and luminosity distribution functions of galactic pulsars to be computed. It is concluded that the Galaxy contains approximately 70 000 potentially observable pulsars with luminosities above 0.3 mJy kpc 2 . The period and luminosity evolution of pulsars, is also considered. (author)

  4. Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess.

    Science.gov (United States)

    Bartels, Richard; Krishnamurthy, Suraj; Weniger, Christoph

    2016-02-05

    Using γ-ray data from the Fermi Large Area Telescope, various groups have identified a clear excess emission in the Inner Galaxy, at energies around a few GeV. This excess resembles remarkably well a signal from dark-matter annihilation. One of the most compelling astrophysical interpretations is that the excess is caused by the combined effect of a previously undetected population of dim γ-ray sources. Because of their spectral similarity, the best candidates are millisecond pulsars. Here, we search for this hypothetical source population, using a novel approach based on wavelet decomposition of the γ-ray sky and the statistics of Gaussian random fields. Using almost seven years of Fermi-LAT data, we detect a clustering of photons as predicted for the hypothetical population of millisecond pulsar, with a statistical significance of 10.0σ. For plausible values of the luminosity function, this population explains 100% of the observed excess emission. We argue that other extragalactic or Galactic sources, a mismodeling of Galactic diffuse emission, or the thick-disk population of pulsars are unlikely to account for this observation.

  5. The Green Bank North Celestial Cap Pulsar Survey: New Pulsars and Future Prospects

    Science.gov (United States)

    Lynch, Ryan S.; Swiggum, Joe; Stovall, Kevin; Chawla, Pragya; DeCesar, Megan E.; Fonseca, Emmanuel; Levin, Lina; Cui, Bingyi; Kondratiev, Vlad; Archibald, Anne; Boyles, Jason; Hessels, Jason W. T.; Jenet, Fredrick; Kaplan, David; Karako-Argaman, Chen; Kaspi, Victoria; Martinez, Jose; McLaughlin, Maura; Ransom, Scott M.; Roberts, Mallory; Siemens, Xavier; Spiewak, Renee; Stairs, Ingrid; van Leeuwn, Joeri; Green Bank North Celestial Cap Survey Collaboration

    2018-01-01

    The Green Bank North Celestial Cap pulsar survey is the most successful low frequency pulsar survey ever. GBNCC uses the Green Bank telescope to cover the full visible sky at 350 MHz. With the survey over 70% complete, we have discovered over 150 pulsars, including 20 MSPs and 11 RRATs. I will report on the current status of the survey and plans for its completion in the coming years. I will also report on several discoveries including: timing solutions for dozens of new pulsars; new high precision MSPs and their suitability for inclusion in pulsar timing arrays; a new relativistic double neutron star system; new pulsar mass measurements; proper motion measurements for several MSPs; a new mode changing pulsar; interesting new MSP binaries; nulling fraction analyses; and possible implications of the lack of any fast radio bursts in the survey so far.

  6. Maser Emission from Gravitational States on Isolated Neutron Stars

    Science.gov (United States)

    Tepliakov, Nikita V.; Vovk, Tatiana A.; Rukhlenko, Ivan D.; Rozhdestvensky, Yuri V.

    2018-04-01

    Despite years of research on neutron stars, the source of their radio emission is still under debate. Here we propose a new coherent mechanism of pulsar radio emission based on transitions between gravitational states of electrons confined above the pulsar atmosphere. Our mechanism assumes that the coherent radiation is generated upon the electric and magnetic dipole transitions of electrons falling onto the polar caps of the pulsar, and predicts that this radiation occurs at radio frequencies—in full agreement with the observed emission spectra. We show that while the linearly polarized electric dipole radiation propagates parallel to the neutron star surface and has a fan-shape angular spectrum, the magnetic dipole emission comes from the magnetic poles of the pulsar in the form of two narrow beams and is elliptically polarized due to the spin–orbit coupling of electrons confined by the magnetic field. By explaining the main observables of the pulsar radio emission, the proposed mechanism indicates that gravitational quantum confinement plays an essential role in the physics of neutron stars.

  7. Pulsar bi-drifting: implications for polar cap geometry

    Science.gov (United States)

    Wright, Geoff; Weltevrede, Patrick

    2017-01-01

    For many years it has been considered puzzling how pulsar radio emission, supposedly created by a circulating carousel of sub-beams, can produce the drift bands demonstrated by PSR J0815+0939, and more recently PSR B1839-04, which simultaneously drifts in opposing directions. Here, we suggest that the carousels of these pulsars, and hence their beams, are not circular but elliptical with axes tilted with respect to the fiducial plane. We show that certain relatively unusual lines of sight can cause bi-drifting to be observed, and a simulation of the two known exemplars is presented. Although bi-drifting is rare, non-circular beams may be common among pulsars and reveal themselves by having profile centroids displaced from the fiducial plane identified by polarization position angle swings. They may also result in profiles with asymmetric- and frequency-dependent component evolution. It is further suggested that the carousels may change their tilt by specific amounts and later reverse them. This may occur suddenly, accompanying a mode change (e.g. PSR B0943+10), or more gradually and short lived as in `flare' pulsars (e.g. PSR B1859+07). A range of pulsar behaviour (e.g. the shifting drift patterns of PSRs B0818-41 and B0826-34) may also be the result of non-circular carousels with varying orientation. The underlying nature of these carousels - whether they are exclusively generated by polar cap physics or driven by magnetospheric effects - is briefly discussed.

  8. Pulsar discoveries by volunteer distributed computing and the strongest continuous gravitational wave signal

    Science.gov (United States)

    Knispel, Benjamin

    2011-07-01

    Neutron stars are the endpoints of stellar evolution and one of the most compact forms of matter in the universe. They can be observed as radio pulsars and are promising sources for the emission of continuous gravitational waves. Discovering new radio pulsars in tight binary orbits offers the opportunity to conduct very high precision tests of General Relativity and to further our understanding of neutron star structure and matter at super-nuclear densities. The direct detection of gravitational waves would validate Einstein's theory of Relativity and open a new window to the universe by offering a novel astronomical tool. This thesis addresses both of these scientific fields: the first fully coherent search for radio pulsars in tight, circular orbits has been planned, set up and conducted in the course of this thesis. Two unusual radio pulsars, one of them in a binary system, have been discovered. The other half of this thesis is concerned with the simulation of the Galactic neutron star population to predict their emission of continuous gravitational waves. First realistic statistical upper limits on the strongest continuous gravitational-wave signal and detection predictions for realistic all-sky blind searches have been obtained. The data from a large-scale pulsar survey with the 305-m Arecibo radio telescope were searched for signals from radio pulsars in binary orbits. The massive amount of computational work was done on hundreds of thousands of computers volunteered by members of the general public through the distributed computing project Einstein@Home. The newly developed analysis pipeline searched for pulsar spin frequencies below 250 Hz and for orbital periods as short as 11 min. The structure of the search pipeline consisting of data preparation, data analysis, result post-processing, and set-up of the pipeline components is presented in detail. The first radio pulsar, discovered with this search, PSR J2007+2722, is an isolated radio pulsar, likely from

  9. Gamma-ray pulsars and Geminga

    International Nuclear Information System (INIS)

    Ruderman, M.; Halpern, J.P.; Chen, K.; Cheng, K.S.

    1992-01-01

    Observed properties of γ-ray pulsars are related to those of the accelerators which power their radiation. It is argued that the relatively slowly spinning Geminga is a strong γ-ray source only because its magnetic dipole is more inclined than that of the more rapidly spinning Vela. This would also account for special Geminga properties including 180 degrees subpulse separation, soft X-ray spectra and intensities, and suppression of radio emission

  10. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    International Nuclear Information System (INIS)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J.; Heatherly, S. A.; Scoles, S.; Lynch, R.; Kondratiev, V. I.; Ransom, S. M.; Moniot, M. L.; Thompson, C.; Cottrill, A.; Raycraft, M.; Weaver, M.; Snider, A.; Dudenhoefer, J.; Allphin, L.; Thorley, J.

    2013-01-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg 2 of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926–1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400–1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  11. A broadband x-ray study of the Geminga pulsar with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mori, Kaya; Gotthelf, Eric V.; Dufour, Francois

    2014-01-01

    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband......V. The spectral hardening in non-thermal X-ray emission as well as spectral flattening between the optical and X-ray bands argue against the conjecture that a single power law may account for multi-wavelength non-thermal spectra of middle-aged pulsars....

  12. Inclined Pulsar Magnetospheres in General Relativity: Polar Caps for the Dipole, Quadrudipole, and Beyond

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2017-12-01

    In the canonical model of a pulsar, rotational energy is transmitted through the surrounding plasma via two electrical circuits, each connecting to the star over a small region known as a “polar cap.” For a dipole-magnetized star, the polar caps coincide with the magnetic poles (hence the name), but in general, they can occur at any place and take any shape. In light of their crucial importance to most models of pulsar emission (from radio to X-ray to wind), we develop a general technique for determining polar cap properties. We consider a perfectly conducting star surrounded by a force-free magnetosphere and include the effects of general relativity. Using a combined numerical-analytical technique that leverages the rotation rate as a small parameter, we derive a general analytic formula for the polar cap shape and charge-current distribution as a function of the stellar mass, radius, rotation rate, moment of inertia, and magnetic field. We present results for dipole and quadrudipole fields (superposed dipole and quadrupole) inclined relative to the axis of rotation. The inclined dipole polar cap results are the first to include general relativity, and they confirm its essential role in the pulsar problem. The quadrudipole pulsar illustrates the phenomenon of thin annular polar caps. More generally, our method lays a foundation for detailed modeling of pulsar emission with realistic magnetic fields.

  13. Discovery of the 198 s X-Ray Pulsar GRO J2058+42

    Science.gov (United States)

    Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod

    1997-01-01

    GRO J2058+42, a transient 198 second x-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mCrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 s to 196 s during the 46-day outburst. The pulse shape evolved over the course of the outburst and exhibited energy dependent variations. BATSE observed five additional weak outbursts from GRO J2058+427 each with two week duration and peak pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) localized the source to within a 4' radius error circle (90% confidence) centered on R.A. = 20 h 59 m.0, Decl. = 41 deg 43 min (J2000). Additional shorter outbursts with peak pulsed fluxes of about 8 mCrab were detected by BATSE halfway between the first four 15 mCrab outbursts. The RXTE All-Sky Monitor detected 8 weak outbursts with approximately equal durations and intensities. GRO J2058+42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron. No optical counterpart has been identified to date and no x-ray source was present in the error circle in archival ROSAT observations.

  14. Increasing Pulsar Timing Array Sensitivity Through Addition of Millisecond Pulsars

    Science.gov (United States)

    DeCesar, Megan E.; Crawford, Fronefield; Ferrara, Elizabeth; Lynch, Ryan; Mingarelli, Chiara; Levin Preston, Lina; Ransom, Scott; Romano, Joseph; Simon, Joseph; Spiewak, Renee; Stovall, Kevin; Swiggum, Joe; Taylor, Stephen; Green Bank North Celestial Cap Pulsar Survey, Fermi LAT Collaboration, Fermi Pulsar Search Consortium

    2018-01-01

    Siemens et al. (2013) and Taylor et al. (2016) demonstrated the importance of increasing the number of millisecond pulsars (MSPs) in pulsar timing arrays (PTAs) in order to increase the sensitivity of the array and decrease the time-to-detection of a gravitational wave background (GWB). In particular, they predict that adding four MSPs per year to the NANOGrav and International PTAs will likely yield a GWB detection in less than a decade. A more even distribution of MSPs across the sky is also important for discriminating a GWB signal from a non-quadrupolar background (Sampson et al., in prep). Pulsar surveys and targeted searches have consistently led to additions of 4 or more MSPs per year to PTAs. I will describe these ongoing efforts, particularly in the context of the Green Bank North Celestial Cap pulsar survey and Fermi-guided searches at Green Bank and Arecibo that seek to find MSPs in low-pulsar-density regions of the sky.

  15. Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430

    Science.gov (United States)

    Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; Guillemot, L.; Johnston, S.; Keith, M.; Kerr, M.; Kramer, M.; Pletsch, H. J.; Saz Parkinson, P. M.; Wood, K. S.

    2013-01-01

    We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  16. A PROPELLER MODEL FOR THE SUB-LUMINOUS STATE OF THE TRANSITIONAL MILLISECOND PULSAR PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Papitto, A.; Torres, D. F. [Institute of Space Sciences (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193, Cerdanyola del Vallés, Barcelona (Spain)

    2015-07-01

    The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk and emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumptions that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk–magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray bands. The average emission observed from PSR J1023+0038 is modeled by a disk in-flow with a rate of 1–3 × 10{sup −11} M{sub ⊙} yr{sup −1}, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that assume that a rotation-powered pulsar is turned on, showing how the spin-down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.

  17. Pulsar timing and its applications

    OpenAIRE

    Manchester, R N

    2018-01-01

    Pulsars are remarkably precise "celestial clocks" that can be used to explore many different aspects of physics and astrophysics. In this article I give a brief summary of pulsar properties and describe some of the applications of pulsar timing, including tests of theories of gravitation, efforts to detect low-frequency gravitational waves using pulsar timing arrays and establishment a "pulsar timescale".

  18. Pulsar slow-down epochs

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.

    1981-01-01

    The relative importance of magnetospheric currents and low frequency waves for pulsar braking is assessed and a model is developed which tries to account for the available pulsar timing data under the unifying aspect that all pulsars have equal masses and magnetic moments and are born as rapid rotators. Four epochs of slow-down are distinguished which are dominated by different braking mechanisms. According to the model no direct relationship exists between 'slow-down age' and true age of a pulsar and leads to a pulsar birth-rate of one event per hundred years. (Author) [pt

  19. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  20. Millisecond Pulsars, TeV Halos, and Implications For The Galactic Center Gamma-Ray Excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Linden, Tim [UC, Santa Cruz, Inst. Part. Phys.

    2018-03-21

    Observations by HAWC indicate that many young pulsars (including Geminga and Monogem) are surrounded by spatially extended, multi-TeV emitting regions. It is not currently known, however, whether TeV emission is also produced by recycled, millisecond pulsars (MSPs). In this study, we perform a stacked analysis of 24 MSPs within HAWC's field-of-view, finding between 2.6-3.2 sigma evidence that these sources are, in fact, surrounded by TeV halos. The efficiency with which these MSPs produce TeV halos is similar to that exhibited by young pulsars. This result suggests that several dozen MSPs will ultimately be detectable by HAWC, including many "invisible" pulsars without radio beams oriented in our direction. The TeV halos of unresolved MSPs could also dominate the TeV-scale diffuse emission observed at high galactic latitudes. We also discuss the possibility that TeV and radio observations could be used to constrain the population of MSPs that is present in the inner Milky Way, thereby providing us with a new way to test the hypothesis that MSPs are responsible for the Galactic Center GeV excess.

  1. Spatially-Dependent Modelling of Pulsar Wind Nebula G0.9+0.1

    Science.gov (United States)

    van Rensburg, C.; Krüger, P. P.; Venter, C.

    2018-03-01

    We present results from a leptonic emission code that models the spectral energy distribution of a pulsar wind nebula by solving a Fokker-Planck-type transport equation and calculating inverse Compton and synchrotron emissivities. We have created this time-dependent, multi-zone model to investigate changes in the particle spectrum as they traverse the pulsar wind nebula, by considering a time and spatially-dependent B-field, spatially-dependent bulk particle speed implying convection and adiabatic losses, diffusion, as well as radiative losses. Our code predicts the radiation spectrum at different positions in the nebula, yielding the surface brightness versus radius and the nebular size as function of energy. We compare our new model against more basic models using the observed spectrum of pulsar wind nebula G0.9+0.1, incorporating data from H.E.S.S. as well as radio and X-ray experiments. We show that simultaneously fitting the spectral energy distribution and the energy-dependent source size leads to more stringent constraints on several model parameters.

  2. DISCOVERY OF LOW DM FAST RADIO TRANSIENTS: GEMINGA PULSAR CAUGHT IN THE ACT

    International Nuclear Information System (INIS)

    Maan, Yogesh

    2015-01-01

    We report the discovery of several energetic radio bursts at 34 MHz, using the Gauribidanur radio telescope. The radio bursts exhibit two important properties associated with the propagation of astronomical signals through the interstellar medium: (i) frequency dependent dispersive delays across the observing bandwidth and (ii) Faraday rotation of the plane of linear polarization. These bursts sample a range of dispersion measures (DM; 1.4–3.6 pc cm −3 ) and show DM-variation at timescales of the order of a minute. Using groups of bursts having a consistent DM, we show that the bursts have originated from the radio-quiet gamma-ray pulsar Geminga. Detection of these bursts supports the existence of occasional radio emission from Geminga. The rare occurrence of these bursts, and the short timescale variation in their DM (if really caused by the intervening medium or the pulsar magnetosphere), might provide clues as to why the pulsar has not been detected in earlier sensitive searches. We present details of the observations and search procedure used to discover these bursts, a detailed analysis of their properties, and evidences of these bursts being associated with Geminga pulsar, and briefly discuss the possible emission mechanism of these bursts

  3. DISCOVERY OF LOW DM FAST RADIO TRANSIENTS: GEMINGA PULSAR CAUGHT IN THE ACT

    Energy Technology Data Exchange (ETDEWEB)

    Maan, Yogesh, E-mail: ymaan@ncra.tifr.res.in [National Centre for Radio Astrophysics, Pune 411007 (India)

    2015-12-20

    We report the discovery of several energetic radio bursts at 34 MHz, using the Gauribidanur radio telescope. The radio bursts exhibit two important properties associated with the propagation of astronomical signals through the interstellar medium: (i) frequency dependent dispersive delays across the observing bandwidth and (ii) Faraday rotation of the plane of linear polarization. These bursts sample a range of dispersion measures (DM; 1.4–3.6 pc cm{sup −3}) and show DM-variation at timescales of the order of a minute. Using groups of bursts having a consistent DM, we show that the bursts have originated from the radio-quiet gamma-ray pulsar Geminga. Detection of these bursts supports the existence of occasional radio emission from Geminga. The rare occurrence of these bursts, and the short timescale variation in their DM (if really caused by the intervening medium or the pulsar magnetosphere), might provide clues as to why the pulsar has not been detected in earlier sensitive searches. We present details of the observations and search procedure used to discover these bursts, a detailed analysis of their properties, and evidences of these bursts being associated with Geminga pulsar, and briefly discuss the possible emission mechanism of these bursts.

  4. Characterization of the Optical and X-ray Properties of the Northwestern Wisps in the Crab Nebula

    Science.gov (United States)

    Weisskopf, M. C.; Bucciantini, N.; Idec, W.; Nillson, K.; Schweizer, T.; Tennant, A. F.; Zanin, R.

    2013-01-01

    We have studied the wisps to the northwest of the Crab pulsar as part of a multi-wavelength campaign in the visible and in X-rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X-ray observations were made with the Chandra X-ray Observatory. The observing campaign took place from October 2010 until September 2012. About once per year we observe wisps forming and peeling off from (or near) the region commonly associated with the termination shock of the pulsar wind. We find that the exact locations of the northwestern wisps in the optical and in X-rays are similar but not coincident, with X-ray wisps preferentially located closer to the pulsar. This suggests that the optical and X-ray wisps are not produced by the same particle distribution. It is also interesting to note that the optical and radio wisps are also separated from each other (Bietenholz et al. 2004). Our measurements and their implications are interpreted in terms of a Doppler-boosted ring model that has its origin in MHD modeling. While the Doppler boosting factors inferred from the X-ray wisps are consistent with current MHD simulations of PWNe, the optical boosting factors are not, and typically exceed values from MHD simulations by about a factor of 4.

  5. X-ray Emission from the Guitar Nebula

    OpenAIRE

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I. -A.

    1997-01-01

    We have detected weak soft X-ray emission from the Pulsar Wind Nebula trailing the high velocity star PSR 2224+65 (the `Guitar Nebula'). This X-ray flux gives evidence of \\gamma~10^7 eV particles in the pulsar wind and constrains the properties of the post-shock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near equipartition values.

  6. X-Ray Emission from the Guitar Nebula

    Science.gov (United States)

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I.-A.

    1997-01-01

    We have detected weak soft X-ray emission from the pulsar wind nebula trailing the high-velocity star PSR 2224+65 (the "Guitar Nebula"). This X-ray flux gives evidence of gamma approximately 10(exp 7) eV particles in the pulsar wind and constrains the properties of the postshock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near-equipartition values.

  7. Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

    International Nuclear Information System (INIS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.

    2011-01-01

    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3x10 -21 to 1.4x10 -20 on the peak intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0x10 44 to 1.3x10 45 erg.

  8. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    International Nuclear Information System (INIS)

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-01-01

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7σ single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  9. Star's death and rebirth. White dwarfs, supernovae, pulsars, black holes

    Energy Technology Data Exchange (ETDEWEB)

    Otzen Petersen, J [Copenhagen Univ. (Denmark)

    1975-01-01

    The evolution of a star from a main sequence star of approximately solar mass, first to a red giant, thereafter to a white dwarf is described in detail. The evolution of more massive stars to supernovae, neutron stars and pulsars is then discussed with special reference to the Crab Nebula. Black holes and X-ray sources are also discussed, in this case with reference to the Cygnus X-1 system. In conclusion, it is pointed out that after their active phase white dwarfs, neutron stars and black holes may exist as dead bodies in space, and only be observeable through their gravitational fields. It is possible that a great number of such bodies may exist, and contribute to the stability of galaxies, also possibly facilitating the explanation of the galaxies' red shifts by means of simple universe models.

  10. NEW X-RAY OBSERVATIONS OF THE GEMINGA PULSAR WIND NEBULA

    International Nuclear Information System (INIS)

    Pavlov, George G.; Bhattacharyya, Sudip; Zavlin, Vyacheslav E.

    2010-01-01

    Previous observations of the middle-aged pulsar Geminga with XMM-Newton and Chandra have shown an unusual pulsar wind nebula (PWN), with a 20'' long central (axial) tail directed opposite to the pulsar's proper motion and two 2' long, bent lateral (outer) tails. Here, we report on a deeper Chandra observation (78 ks exposure) and a few additional XMM-Newton observations of the Geminga PWN. The new Chandra observation has shown that the axial tail, which includes up to three brighter blobs, extends at least 50'' (i.e., 0.06d 250 pc) from the pulsar (d 250 is the distance scaled to 250 pc). It also allowed us to image the patchy outer tails and the emission in the immediate vicinity of the pulsar with high resolution. The PWN luminosity, L 0.3-8 k eV ∼ 3 x 10 29 d 2 250 erg s -1 , is lower than the pulsar's magnetospheric luminosity by a factor of 10. The spectra of the PWN elements are rather hard (photon index Γ ∼ 1). Comparing the two Chandra images, we found evidence of PWN variability, including possible motion of the blobs along the axial tail. The X-ray PWN is the synchrotron radiation from relativistic particles of the pulsar wind (PW); its morphology is connected with the supersonic motion of Geminga. We speculate that the outer tails are either a sky projection of the limb-brightened boundary of a shell formed in the region of contact discontinuity, where the wind bulk flow is decelerated by shear instability, or polar outflows from the pulsar bent by the ram pressure from the interstellar medium. In the former case, the axial tail may be a jet emanating along the pulsar's spin axis, perhaps aligned with the direction of motion. In the latter case, the axial tail may be the shocked PW collimated by ram pressure.

  11. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA-X PULSAR WIND NEBULA

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bonamente, E.; Brigida, M.; Bruel, P.

    2010-01-01

    We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45 using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 deg. diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray, and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2 deg. x 3 deg. area south of the pulsar known as Vela-X. The LAT flux is significantly spatially extended with a best-fit radius of 0. 0 88 ± 0. 0 12 for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power law with a spectral index of 2.41 ± 0.09 ± 0.15 and integral flux above 100 MeV of (4.73 ± 0.63 ± 1.32) x 10 -7 cm -2 s -1 . The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula system and favor a scenario with two distinct electron populations.

  12. Strong binary pulsar constraints on Lorentz violation in gravity.

    Science.gov (United States)

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  13. Strong Binary Pulsar Constraints on Lorentz Violation in Gravity

    CERN Document Server

    Yagi, Kent; Yunes, Nicolas; Barausse, Enrico

    2014-01-01

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of General Relativity. One of these is Lorentz symmetry which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  14. Pulsars for the Beginner

    Science.gov (United States)

    DiLavore, Phillip; Wayland, James R.

    1971-01-01

    Presents the history of the discovery of pulsars, observations that have been made on pulsar radiation, and theories that have been presented for its presence and origin. Illustrations using pulsar's properties are presented in mechanics, electromagnetic radiation and thermodynamics. (DS)

  15. Spectral and Temporal Properties of the Ultra-Luminous X-Ray Pulsar in M82 from 15 Years of Chandra Observations and Analysis of the Pulsed Emission Using NuSTAR

    Science.gov (United States)

    Brightman, Murray; Harrison, Fiona; Walton, Dominic J.; Fuerst, Felis; Zezas, Andreas; Bachetti, Matteo; Grefenstette, Brian; Ptak, Andrew; Tendulkar, Shriharsh; Yukita, Mihoko

    2016-01-01

    The recent discovery by Bachetti et al. of a pulsar in M82 that can reach luminosities of up to 10(exp 40) erg s(exp -1), a factor of approximately 100 times the Eddington luminosity for a 1.4 solar mass compact object, poses a challenge for accretion physics. In order to better understand the nature of this source and its duty cycle, and in light of several physical models that have been subsequently published, we conduct a spectral and temporal analysis of the 0.58 keV X-ray emission from this source from 15 years of Chandra observations. We analyze 19 ACIS observations where the point-spread function (PSF) of the pulsar is not contaminated by nearby sources. We fit the Chandra spectra of the pulsar with a power-law model and a disk blackbody model, subjected to interstellar absorption in M82. We carefully assess for the effect of pile-up in our observations, where four observations have a pile-up fraction of 10, which we account for during spectral modeling with a convolution model. When fitted with a power-law model, the average photon index when the source is at high luminosity (LX greater than 10(exp 39) erg s(exp -1) is equal to gamma 1.33 +/-.0.15. For the disk blackbody model, the average temperature is T(sub in) 3.24 +/- 0.65 keV, the spectral shape being consistent with other luminous X-ray pulsars. We also investigated the inclusion of a soft excess component and spectral break, finding that the spectra are also consistent with these features common to luminous X-ray pulsars. In addition, we present spectral analysis from NuSTAR over the 3-50 keV range where we have isolated the pulsed component. We find that the pulsed emission in this band is best fit by a power-law with a high-energy cutoff, where gamma is equal to 0.6 +/- 0.3 and E(sub C) is equal to 14(exp +5) (sub -3)) keV. While the pulsar has previously been identified as a transient, we find from our longer-baseline study that it has been remarkably active over the 15-year period, where for 9

  16. Are PSR 0656+14, PSR 0950+08, and PSR 1822-09 gamma ray pulsars?

    Science.gov (United States)

    Brown, Lawrence E.; Hartmann, Dieter H.

    1993-01-01

    The possible discovery of three new gamma-ray pulsars PSR 0656+14, PSR 0950+08, and PSR 1822-09 (Ma, Lu, Yu, and Young, 1993) in data obtained with the COS-B experiment is reinvestigated using a refined technique for pulsar light curve analysis. The results of this study do not confirm the previously claimed gamma-ray pulsar nature of any of these pulsars. Even when using the standard epoch folding technique in conjunction with energy-dependent acceptance cones, we do not detect pulsed gamma-ray emission from these sources. We suspect that insufficient position accuracy is the cause for the discrepancy between our results and those of Ma et al. (1993). We do not rule out that any one of the three candidates, or all of them, is in fact a gamma-ray pulsar, but their spin properties must differ from those derived by Ma et al. (1993). More work is needed to determine the correct high-energy properties of these three sources.

  17. Cosmic Ray Positrons from Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  18. Resolving discrete pulsar spin-down states with current and future instrumentation

    Science.gov (United States)

    Shaw, B.; Stappers, B. W.; Weltevrede, P.

    2018-04-01

    An understanding of pulsar timing noise offers the potential to improve the timing precision of a large number of pulsars as well as facilitating our understanding of pulsar magnetospheres. For some sources, timing noise is attributable to a pulsar switching between two different spin-down rates (\\dot{ν }). Such transitions may be common but difficult to resolve using current techniques. In this work, we use simulations of \\dot{ν }-variable pulsars to investigate the likelihood of resolving individual \\dot{ν } transitions. We inject step changes in the value of \\dot{ν } with a wide range of amplitudes and switching time-scales. We then attempt to redetect these transitions using standard pulsar timing techniques. The pulse arrival-time precision and the observing cadence are varied. Limits on \\dot{ν } detectability based on the effects such transitions have on the timing residuals are derived. With the typical cadences and timing precision of current timing programmes, we find that we are insensitive to a large region of Δ \\dot{ν } parameter space that encompasses small, short time-scale switches. We find, where the rotation and emission states are correlated, that using changes to the pulse shape to estimate \\dot{ν } transition epochs can improve detectability in certain scenarios. The effects of cadence on Δ \\dot{ν } detectability are discussed, and we make comparisons with a known population of intermittent and mode-switching pulsars. We conclude that for short time-scale, small switches, cadence should not be compromised when new generations of ultra-sensitive radio telescopes are online.

  19. An Accretion Model for Anomalous X-Ray Pulsars

    Science.gov (United States)

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  20. Sampling the Radio Transient Universe: Studies of Pulsars and the Search for Extraterrestrial Intelligence

    Science.gov (United States)

    Chennamangalam, Jayanth

    The transient radio universe is a relatively unexplored area of astronomy, offering a variety of phenomena, from solar and Jovian bursts, to flare stars, pulsars, and bursts of Galactic and potentially even cosmological origin. Among these, perhaps the most widely studied radio transients, pulsars are fast-spinning neutron stars that emit radio beams from their magnetic poles. In spite of over 40 years of research on pulsars, we have more questions than answers on these exotic compact objects, chief among them the nature of their emission mechanism. Nevertheless, the wealth of phenomena exhibited by pulsars make them one of the most useful astrophysical tools. With their high densities, pulsars are probes of the nature of ultra-dense matter. Characterized by their high timing stability, pulsars can be used to verify the predictions of general relativity, discover planets around them, study bodies in the solar system, and even serve as an interplanetary (and possibly some day, interstellar) navigation aid. Pulsars are also used to study the nature of the interstellar medium, much like a flashlight illuminating airborne dust in a dark room. Studies of pulsars in the Galactic center can help answer questions about the massive black hole in the region and the star formation history in its vicinity. Millisecond pulsars in globular clusters are long-lived tracers of their progenitors, low-mass X-ray binaries, and can be used to study the dynamical history of those clusters. Another source of interest in radio transient astronomy is the hitherto undetected engineered signal from extraterrestrial intelligence. The Search for Extraterrestrial Intelligence (SETI) is an ongoing attempt at discovering the presence of technological life elsewhere in the Galaxy. In this work, I present my forays into two aspects of the study of the radio transient universe---pulsars and SETI. Firstly, I describe my work on the luminosity function and population size of pulsars in the globular

  1. Observational properties of pulsars.

    Science.gov (United States)

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.

  2. Gravitational waves from a pulsar kick caused by neutrino conversions

    International Nuclear Information System (INIS)

    Loveridge, Lee C.

    2004-01-01

    It has been suggested that the observed pulsar velocities are caused by an asymmetric neutrino emission from a hot neutron star during the first seconds after the supernova collapse. We calculate the magnitude of gravitational waves produced by the asymmetries in the emission of neutrinos. The resulting periodic gravitational waves may be detectable by LIGO and LISA in the event of a nearby supernova explosion

  3. X-Ray Observations of High-Energy Pulsars: PSR B1951+32 and Geminga

    Science.gov (United States)

    Ho, Cheng

    Observations at frequencies across a wide range of electromagnetic spectra are key to the understanding of the origin and mechanisms of high-energy emissions from pulsars. We propose to observe the high-energy pulsars PSR B1951+32 and Geminga with XTE. These two sources emit X-rays at low enough count rate that we can acquire high resolution timing and spectral data, allowing us to perform detailed analysis on the ground. Staring integration of 10 ksec for each source is requested. Data obtained in these observations, together with those from ROSAT, GRO and a planned project for optical counterpart study at Los Alamos, will provide crucial information to advance high-energy pulsar research.

  4. Discovery of a young, 267 millisecond pulsar in the supernova remnant W44

    Science.gov (United States)

    Wolszczan, A.; Cordes, J. M.; Dewey, R. J.

    1991-01-01

    This paper reports the discovery of a 267 msec pulsar, PSR 1853 + 01, in the SNR W44 (G34.7 - 0.4), located south of the W44, well within its radio shell and at the outher edge of the X-ray emission region which fills the SNR interior. The PSR 1853 + 01 is separated only 20 arcmin from the PSR 1854 + 00 pulsar discovered by Mohanty (1983). Results of timing observatons of PSR 1853 + 01 are presented, and a possible relationship between the two objects is examined. It is suggested that the two pulsars may have a common origin in a binary system disrupted by the explosion that produced W44.

  5. Pulsar Magnetohydrodynamic Winds

    Science.gov (United States)

    Okamoto, Isao; Sigalo, Friday B.

    2006-12-01

    The acceleration and collimation/decollimation of relativistic magnetocentrifugal winds are discussed concerning a cold plasma from a strongly magnetized, rapidly rotating neutron star in a steady axisymmetric state based on ideal magnetohydrodynamics. There exist unipolar inductors associated with the field line angular frequency, α, at the magnetospheric base surface, SB, with a huge potential difference between the poles and the equator, which drive electric current through the pulsar magnetosphere. Any ``current line'' must emanate from one terminal of the unipolar inductor and return to the other, converting the Poynting flux to the kinetic flux of the wind at finite distances. In a plausible field structure satisfying the transfield force-balance equation, the fast surface, SF, must exist somewhere between the subasymptotic and asymptotic domains, i.e., at the innermost point along each field line of the asymptotic domain of \\varpaA2/\\varpi2 ≪ 1, where \\varpiA is the Alfvénic axial distance. The criticality condition at SF yields the Lorentz factor, γF = μ\\varepsilon1/3, and the angular momentum flux, β, as the eigenvalues in terms of the field line angular velocity, α, the mass flux per unit flux tube, η, and one of the Bernoulli integrals, μδ, which are assumed to be specifiable as the boundary conditions at SB. The other Bernoulli integral, μɛ, is related to μδ as μɛ = μδ[1-(α2\\varpiA2/c2)]-1, and both μɛ and \\varpiA2 are eigenvalues to be determined by the criticality condition at SF. Ongoing MHD acceleration is possible in the superfast domain. This fact may be helpful in resolving a discrepancy between the wind theory and the Crab-nebula model. It is argued that the ``anti-collimation theorem'' holds for relativistic winds, based on the curvature of field streamlines determined by the transfield force balance. The ``theorem'' combines with the ``current-closure condition'' as a global condition in the wind zone to produce a

  6. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  7. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    Science.gov (United States)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  8. RXTE observations of the Vela Pulsar: The pulsar rosetta stone

    International Nuclear Information System (INIS)

    Strickman, M.S.; Harding, A.K.; Gwinn, C.; McCulloch, P.; Moffett, D.

    2001-01-01

    We report on our analysis of a 274 ks observation of the Vela Pulsar with the Rossi X-Ray Timing Explorer (RXTE). The double-peaked, pulsed emission at 2-30 keV, which we had previously detected during a 93 ks observation, is confirmed with much improved statistics. There is now clear evidence, both in the spectrum and the light curve, that the emission in the RXTE band is a blend of two separate components. The spectrum of the harder component connects smoothly with the OSSE, COMPTEL and EGRET spectra and the peaks in the light curve are in phase coincidence with those of the high-energy light curve. The spectrum of the softer component is consistent with an extrapolation to the pulsed optical flux and the soft component of the second RXTE peak is in phase coincidence with the second optical peak. In addition, we see a peak in the 2-8 keV RXTE light curve at the radio peak phase

  9. NEW DISCOVERIES FROM THE ARECIBO 327 MHz DRIFT PULSAR SURVEY RADIO TRANSIENT SEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Stovall, K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); McLaughlin, M. A.; Bagchi, M.; Garver-Daniels, N. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Bates, S. D. [The Institute of Mathematical Sciences, Chennai, 600113 (India); Freire, P. C. C.; Martinez, J. G. [Max-Planck-Institut für Radioastronomie, Bonn (Germany); Jenet, F. [Center for Advanced Radio Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States)

    2016-04-10

    We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently, isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range 23.5–86.6 pc cm{sup −3} and periods in the range 0.172–3.901 s. The new pulsars have DMs in the range 23.6–133.3 pc cm{sup −3} and periods in the range 1.249–5.012 s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of 10{sup 5} day{sup −1} for bursts with a width of 10 ms and flux density ≳83 mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models.

  10. NEW DISCOVERIES FROM THE ARECIBO 327 MHz DRIFT PULSAR SURVEY RADIO TRANSIENT SEARCH

    International Nuclear Information System (INIS)

    Deneva, J. S.; Stovall, K.; McLaughlin, M. A.; Bagchi, M.; Garver-Daniels, N.; Bates, S. D.; Freire, P. C. C.; Martinez, J. G.; Jenet, F.

    2016-01-01

    We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently, isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range 23.5–86.6 pc cm −3 and periods in the range 0.172–3.901 s. The new pulsars have DMs in the range 23.6–133.3 pc cm −3 and periods in the range 1.249–5.012 s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of 10 5  day −1 for bursts with a width of 10 ms and flux density ≳83 mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models

  11. Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Yen

    2013-09-01

    Full Text Available We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a γ-ray emitting millisecond pulsar (MSP in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the γ-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of γ-ray emitting pulsars -the ‘black widows’- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

  12. THE EINSTEIN-HOME SEARCH FOR RADIO PULSARS AND PSR J2007+2722 DISCOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.; Knispel, B.; Aulbert, C.; Bock, O.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B. [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Cordes, J. M.; Brazier, A.; Chatterjee, S. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); Hessels, J. W. T. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Anderson, D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Demorest, P. B. [NRAO (National Radio Astronomy Observatory), Charlottesville, VA 22903 (United States); Gotthelf, E. V. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hammer, D. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Kaspi, V. M. [Department of Physics, McGill University, Montreal, QC H3A2T8 (Canada); Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); McLaughlin, M. A., E-mail: bruce.allen@aei.mpg.de [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); and others

    2013-08-20

    Einstein-Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein-Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However, there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but cannot prove that PSR J2007+2722 is at least {approx}100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries.

  13. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1982-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the plane due to high space velocities imparted to the pulsars at birth. Statistical studies of the properties of large numbers of pulsars and proper motion measurements demonstrate that the effective magnetic dipole moments decay on a timescale of about 8 million years. This work provides a better knowledge of pulsar evolution and ages and shows that a birthrate of one pulsar every 20 to 50 years is required to sustain the observed galactic population of 300,000. This rate is comparable with most recent estimates of the galactic supernova rate, but requires nearly all supernovae to produce active pulsars. (orig.)

  14. Detonative propagation and accelerative expansion of the Crab Nebula shock front.

    Science.gov (United States)

    Gao, Yang; Law, Chung K

    2011-10-21

    The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected. © 2011 American Physical Society

  15. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory, Center for Particle Astrophysics, Batavia, IL 60510 (United States); Linden, Tim, E-mail: dhooper@fnal.gov, E-mail: linden.70@osu.edu [Ohio State University, Center for Cosmology and AstroParticle Physcis (CCAPP), Columbus, OH 43210 (United States)

    2016-08-01

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  16. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    Science.gov (United States)

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  17. On the adiabatic walking of plasma waves in a pulsar magnetosphere

    International Nuclear Information System (INIS)

    Melikidze, George I.; Gil, Janusz; Mitra, Dipanjan

    2014-01-01

    The pulsar radio emission is generated in the near magnetosphere of the neutron star, and it must propagate through the rest of it to emerge into the interstellar medium. An important issue is whether this propagation affects the planes of polarization of the generated radiation. Observationally, there is sufficient evidence that the emerging radiation is polarized parallel or perpendicular to the magnetic field line planes that should be associated with the ordinary (O) and extraordinary (X) plasma modes, respectively, excited by some radiative process. This strongly suggests that the excited X and O modes are not affected by the so-called adiabatic walking that causes a slow rotation of polarization vectors. In this paper, we demonstrate that the conditions for adiabatic walking are not fulfilled within the soliton model of pulsar radio emission, in which the coherent curvature radiation occurs at frequencies much lower than the characteristic plasma frequency, The X mode propagates freely and observationally represents the primary polarization mode. The O mode has difficulty escaping from the pulsar plasma; however, it is sporadically observed as a weaker secondary polarization mode. We discuss a possible scenario under which the O mode can also escape from the plasma and reach an observer.

  18. Millisecond pulsars: Timekeepers of the cosmos

    Science.gov (United States)

    Kaspi, Victoria M.

    1995-01-01

    A brief discussion on the characteristics of pulsars is given followed by a review of millisecond pulsar discoveries including the very first, PRS B1937+21, discovered in 1982. Methods of timing millisecond pulsars and the accuracy of millisecond pulsars as clocks are discussed. Possible reasons for the pulse residuals, or differences between the observed and predicted pulse arrival times for millisecond pulsars, are given.

  19. MODELING MULTI-WAVELENGTH PULSE PROFILES OF THE MILLISECOND PULSAR PSR B1821–24

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yuanjie; Shuai, Ping; Bei, Xiaomin; Chen, Shaolong; Fu, Linzhong; Huang, Liangwei; Lin, Qingqing; Meng, Jing; Wu, Yaojun; Zhang, Hengbin; Zhang, Qian; Zhang, Xinyuan [Qian Xuesen Laboratory of Space Technology, NO. 104, Youyi Road, Haidian District, Beijing 100094 (China); Qiao, Guojun, E-mail: dyj@nao.cas.cn [School of Physics, Peking University, Beijing 100871 (China)

    2015-03-10

    PSR B1821–24 is a solitary millisecond pulsar that radiates multi-wavelength pulsed photons. It has complex radio, X-ray, and γ-ray pulse profiles with distinct peak phase separations that challenge the traditional caustic emission models. Using the single-pole annular gap model with a suitable magnetic inclination angle (α = 40°) and viewing angle (ζ = 75°), we managed to reproduce its pulse profiles of three wavebands. It is found that the middle radio peak originated from the core gap region at high altitudes, and the other two radio peaks originated from the annular gap region at relatively low altitudes. Two peaks of both X-ray and γ-ray wavebands basically originated from the annular gap region, while the γ-ray emission generated from the core gap region contributes somewhat to the first γ-ray peak. Precisely reproducing the multi-wavelength pulse profiles of PSR B1821–24 enables us to understand emission regions of distinct wavebands and justify pulsar emission models.

  20. Spitzer MIPS Limits on Asteroidal Dust in the Pulsar Planetary System PSR B1257+12

    Science.gov (United States)

    Bryden, G.; Beichman, C. A.; Rieke, G. H.; Stansberry, J. A.; Stapelfeldt, K. R.; Trilling, D. E.; Turner, N. J.; Wolszczan, A.

    2006-01-01

    With the MIPS camera on Spitzer, we have searched for far-infrared emission from dust in the planetary system orbiting pulsar PSR B1257+12. With accuracies of 0.05 mJy at 24 microns and 1.5 mJy at 70 microns, photometric measurements find no evidence for emission at these wavelengths. These observations place new upper limits on the luminosity of dust with temperatures between 20 and 1000 K. They are particularly sensitive to dust temperatures of 100-200 K, for which they limit the dust luminosity to below 3 x 10(exp -5) of the pulsar's spin-down luminosity, 3 orders of magnitude better than previous limits. Despite these improved constraints on dust emission, an asteroid belt similar to the solar system's cannot be ruled out.

  1. High Spatial Resolution X-Ray Spectroscopy of the IC443 Pulsar Wind Nebula

    Science.gov (United States)

    Swartz, Douglas A.; Weisskopf, Martin C.; Bucciantini, Niccolo; Clarke, Tracy E.; Karovska, Margarita; Pavlov, George G.; van der Horst, Alexander; Yukita, Mihoko; Zavlin, Vyacheslav

    2014-08-01

    Deep Chandra ACIS observations of the region around the putative pulsar CXOU J061705.3+222127, in the supernova remnant IC443, reveal a ~5" radius ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar's location. The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest, appears to be subsonic: There is no evidence for a strong bow shock; and the ring is not distorted by motion through the ambient medium. Comparing this observation with historical observations of the same target we set a 99-% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 310 km/s, with the best-fit (but not statistically significant) direction toward the west.

  2. Observations of celestial X-ray sources above 20 keV with the high-energy scintillation spectrometer on board OSO-8

    International Nuclear Information System (INIS)

    Crannell, C.J.; Dennis, B.R.; Dolan, J.F.; Frost, K.J.; Orwig, L.E.; Maurer, G.S.

    1977-01-01

    High-energy x-ray spectra of the Crab Nebula, Cyg XR-1, and Cen A have been determined from observations with the scintillation spectrometer on board the OSO-8 satellite, launched in June, 1975. Each of these sources was observed over two periods of 8 days or more, enabling a search for day-to-day and year-to-year variations in the spectral and temporal characteristics of the x-ray emission. No variation in the light curve of the Crab pulsar has been found from observations which span a 15-day period in March 1976, with demonstrable phase stability. Transitions associated with the binary phase of Cyg XR-1 and a large change in the emission from Cen A are reported

  3. Constraining Parameters in Pulsar Models of Repeating FRB 121102 with High-energy Follow-up Observations

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Di; Dai, Zi-Gao, E-mail: dzg@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-09-10

    Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occurs in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.

  4. Constraining Parameters in Pulsar Models of Repeating FRB 121102 with High-energy Follow-up Observations

    International Nuclear Information System (INIS)

    Xiao, Di; Dai, Zi-Gao

    2017-01-01

    Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occurs in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.

  5. Pulsar Kicks via Spin-1 Color Superconductivity

    International Nuclear Information System (INIS)

    Schmitt, Andreas; Shovkovy, Igor A.; Wang Qun

    2005-01-01

    We propose a new neutrino propulsion mechanism for neutron stars which can lead to strong velocity kicks, needed to explain the observed bimodal velocity distribution of pulsars. The spatial asymmetry in the neutrino emission is naturally provided by a stellar core containing spin-1 color-superconducting quark matter in the A phase. The neutrino propulsion mechanism switches on when the stellar core temperature drops below the transition temperature of this phase

  6. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Battelino, M.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.

    2009-01-01

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power (dot E) = 3.5 x 10 33 ergs s -1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 ± 0.01 and 0.08 ± 0.02 wide, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) x 10 -8 cm -2 s -1 with cut-off energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency L γ /(dot E) ≅ 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  7. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M. /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, M.; /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2011-11-17

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power {dot E} = 3.5 x 10{sup 33} ergs s{sup -1} is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 {+-} 0.01 and 0.08 {+-} 0.02 wide, separated by 0.44 {+-} 0.02 in phase. The first gamma-ray peak falls 0.15 {+-} 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 {+-} 1.05 {+-} 1.35) x 10{sup -8} cm{sup -2} s{sup -1} with cut-off energy (1.7 {+-} 0.4 {+-} 0.5) GeV. Based on its parallax distance of (300 {+-} 90) pc, we obtain a gamma-ray efficiency L{sub {gamma}}/{dot E} {approx_equal} 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  8. Assessing potential impacts of energized submarine power cables on crab harvests

    Science.gov (United States)

    Love, Milton S.; Nishimoto, Mary M.; Clark, Scott; McCrea, Merit; Bull, Ann Scarborough

    2017-12-01

    Offshore renewable energy facilities transmit electricity to shore through submarine power cables. Electromagnetic field emissions (EMFs) are generated from the transmission of electricity through these cables, such as the AC inter-array (between unit) and AC export (to shore) cables often used in offshore energy production. The EMF has both an electric component and a magnetic component. While sheathing can block the direct electric field, the magnetic field is not blocked. A concern raised by fishermen on the Pacific Coast of North America is that commercially important Dungeness crab (Metacarcinus magister Dana, 1852)) might not cross over an energized submarine power cable to enter a baited crab trap, thus potentially reducing their catch. The presence of operating energized cables off southern California and in Puget Sound (cables that are comparable to those within the arrays of existing offshore wind energy devices) allowed us to conduct experiments on how energized power cables might affect the harvesting of both M. magister and another commercially important crab species, Cancer productus Randall, 1839. In this study we tested the questions: 1) Is the catchability of crabs reduced if these animals must traverse an energized power cable to enter a trap and 2) if crabs preferentially do not cross an energized cable, is it the cable structure or the EMF emitted from that cable that deters crabs from crossing? In field experiments off southern California and in Puget Sound, crabs were given a choice of walking over an energized power cable to a baited trap or walking directly away from that cable to a second baited trap. Based on our research we found no evidence that the EMF emitted by energized submarine power cables influenced the catchability of these two species of commercially important crabs. In addition, there was no difference in the crabs' responses to lightly buried versus unburied cables. We did observe that, regardless of the position of the cable

  9. What regulates crab predation on mangrove propagules?

    Science.gov (United States)

    Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid

    2015-02-01

    Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.

  10. WHY ARE PULSAR PLANETS RARE?

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rebecca G.; Livio, Mario; Palaniswamy, Divya [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154 (United States)

    2016-12-01

    Pulsar timing observations have revealed planets around only a few pulsars. We suggest that the rarity of these planets is due mainly to two effects. First, we show that the most likely formation mechanism requires the destruction of a companion star. Only pulsars with a suitable companion (with an extreme mass ratio) are able to form planets. Second, while a dead zone (a region of low turbulence) in the disk is generally thought to be essential for planet formation, it is most probably rare in disks around pulsars, because of the irradiation from the pulsar. The irradiation strongly heats the inner parts of the disk, thus pushing the inner boundary of the dead zone out. We suggest that the rarity of pulsar planets can be explained by the low probability for these two requirements to be satisfied: a very low-mass companion and a dead zone.

  11. Millisecond radio pulsars in globular clusters

    Science.gov (United States)

    Verbunt, Frank; Lewin, Walter H. G.; Van Paradijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  12. 40 Years of Pulsars: The Birth and Evolution of Isolated Radio Pulsars

    OpenAIRE

    Faucher-Giguere, C. -A.; Kaspi, V. M.

    2007-01-01

    We investigate the birth and evolution of isolated radio pulsars using a population synthesis method, modeling the birth properties of the pulsars, their time evolution, and their detection in the Parkes and Swinburne Multibeam (MB) surveys. Together, the Parkes and Swinburne MB surveys have detected nearly 2/3 of the known pulsars and provide a remarkably homogeneous sample to compare with simulations. New proper motion measurements and an improved model of the distribution of free electrons...

  13. The Parkes multibeam pulsar survey and the discovery of new energetic radio pulsars

    International Nuclear Information System (INIS)

    D'Amico, N.; Possenti, A.; Kaspi, V.M.; Manchester, R.N.; Bell, J.F.; Camilo, F.; Lyne, A.G.; Kramer, M.; Hobbs, G.; Stairs, I.H.

    2001-01-01

    The Parkes multibeam pulsar survey is a deep search of the Galactic plane for pulsars. It uses a 13-beam receiver system operating at 1.4 GHz on the 64-m Parkes radio telescope. It has much higher sensitivity than any previous similar survey and is finding large numbers of previously unknown pulsars, many of which are relatively young and energetic. On the basis of an empirical comparison of their properties with other young radio pulsars, some of the new discoveries are expected to be observable as pulsed γ-ray sources. We describe the survey motivation, the experiment characteristics and the results achieved so far

  14. The LOFAR Known Pulsar Data Pipeline

    NARCIS (Netherlands)

    Alexov, A.; Hessels, J.W.T.; Mol, J.D.; Stappers, B.; van Leeuwen, J.

    2010-01-01

    Abstract: Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group (PWG) has been developing the LOFAR Pulsar Data Pipelines to both study known pulsars as well as search for new ones. The pipelines are being

  15. Visualization of Pulsar Search Data

    Science.gov (United States)

    Foster, R. S.; Wolszczan, A.

    1993-05-01

    The search for periodic signals from rotating neutron stars or pulsars has been a computationally taxing problem to astronomers for more than twenty-five years. Over this time interval, increases in computational capability have allowed ever more sensitive searches, covering a larger parameter space. The volume of input data and the general presence of radio frequency interference typically produce numerous spurious signals. Visualization of the search output and enhanced real-time processing of significant candidate events allow the pulsar searcher to optimally processes and search for new radio pulsars. The pulsar search algorithm and visualization system presented in this paper currently runs on serial RISC based workstations, a traditional vector based super computer, and a massively parallel computer. A description of the serial software algorithm and its modifications for massively parallel computing are describe. The results of four successive searches for millisecond period radio pulsars using the Arecibo telescope at 430 MHz have resulted in the successful detection of new long-period and millisecond period radio pulsars.

  16. Convolutional neural network guided blue crab knuckle detection for autonomous crab meat picking machine

    Science.gov (United States)

    Wang, Dongyi; Vinson, Robert; Holmes, Maxwell; Seibel, Gary; Tao, Yang

    2018-04-01

    The Atlantic blue crab is among the highest-valued seafood found in the American Eastern Seaboard. Currently, the crab processing industry is highly dependent on manual labor. However, there is great potential for vision-guided intelligent machines to automate the meat picking process. Studies show that the back-fin knuckles are robust features containing information about a crab's size, orientation, and the position of the crab's meat compartments. Our studies also make it clear that detecting the knuckles reliably in images is challenging due to the knuckle's small size, anomalous shape, and similarity to joints in the legs and claws. An accurate and reliable computer vision algorithm was proposed to detect the crab's back-fin knuckles in digital images. Convolutional neural networks (CNNs) can localize rough knuckle positions with 97.67% accuracy, transforming a global detection problem into a local detection problem. Compared to the rough localization based on human experience or other machine learning classification methods, the CNN shows the best localization results. In the rough knuckle position, a k-means clustering method is able to further extract the exact knuckle positions based on the back-fin knuckle color features. The exact knuckle position can help us to generate a crab cutline in XY plane using a template matching method. This is a pioneering research project in crab image analysis and offers advanced machine intelligence for automated crab processing.

  17. Integral luminosities of radio pulsars

    Science.gov (United States)

    Malov, I.; Malov, O.

    The integral radio luminosities L for 311 normal pulsars and for 27 ones with the rotation period Pfalls for fast ones. The mean values of K are -3.73 and -4.85 for normal and fast pulsars, respectively. There are no changes of L with the kinematic age T = z/V, where z is the pulsar height over the Galactic plane and V = 300 km/s is its mean velocity. The correlation between L and the rate of the rotation energy losses E is detected for both pulsar groups under consideration. It is shown that L= A E^(1/3) for the whole sample. The total number of pulsars in the Galaxy and their birth rate are in agreement with data on the rate of supernova explosions.

  18. Sensitivity of Pulsar Timing Arrays

    Science.gov (United States)

    Siemens, Xavier

    2015-08-01

    For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav, along with similar international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA as well as our sensitivity to gravitational waves from astrophysical sources. I will show that a detection is possible by the end of the decade.

  19. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth

    OpenAIRE

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Rojas, D. Avila; Solares, H. A. Ayala; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.

    2017-01-01

    The unexpectedly high flux of cosmic ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the HighAltitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of ac...

  20. Pulsar-Driven Jets in Supernovae, Gamma-Ray Bursts, and the Universe

    Directory of Open Access Journals (Sweden)

    John Middleditch

    2012-01-01

    Full Text Available The bipolarity of Supernova 1987A can be understood through its very early light curve from the CTIO 0.4 m telescope and IUE FES and following speckle observations of the “Mystery Spot”. These indicate a beam/jet of light/particles, with initial collimation factors >104 and velocities >0.95 c, involving up to 10−5 M⊙ interacting with circumstellar material. These can be produced by a model of pulsar emission from polarization currents induced/(modulated faster than c beyond the pulsar light cylinder by the periodic electromagnetic field (supraluminally induced polarization currents (SLIP. SLIP accounts for the disruption of supernova progenitors and their anomalous dimming at cosmological distances, jets from Sco X-1 and SS 433, the lack/presence of pulsations from the high-/low-luminosity low-mass X-ray binaries, and long/short gamma-ray bursts, and it predicts that their afterglows are the pulsed optical-/near-infrared emission associated with these pulsars. SLIP may also account for the TeV e+/e− results from PAMELA and ATIC, the WMAP “Haze”/Fermi “Bubbles,” and the r-process. SLIP jets from SNe of the first stars may allow galaxies to form without dark matter and explain the peculiar nongravitational motions between pairs of distant galaxies observed by GALEX.

  1. Detection of long nulls in PSR B1706-16, a pulsar with large timing irregularities

    Science.gov (United States)

    Naidu, Arun; Joshi, Bhal Chandra; Manoharan, P. K.; Krishnakumar, M. A.

    2018-04-01

    Single pulse observations, characterizing in detail, the nulling behaviour of PSR B1706-16 are being reported for the first time in this paper. Our regular long duration monitoring of this pulsar reveals long nulls of 2-5 h with an overall nulling fraction of 31 ± 2 per cent. The pulsar shows two distinct phases of emission. It is usually in an active phase, characterized by pulsations interspersed with shorter nulls, with a nulling fraction of about 15 per cent, but it also rarely switches to an inactive phase, consisting of long nulls. The nulls in this pulsar are concurrent between 326.5 and 610 MHz. Profile mode changes accompanied by changes in fluctuation properties are seen in this pulsar, which switches from mode A before a null to mode B after the null. The distribution of null durations in this pulsar is bimodal. With its occasional long nulls, PSR B1706-16 joins the small group of intermediate nullers, which lie between the classical nullers and the intermittent pulsars. Similar to other intermediate nullers, PSR B1706-16 shows high timing noise, which could be due to its rare long nulls if one assumes that the slowdown rate during such nulls is different from that during the bursts.

  2. Radio spectra of pulsars. Pt. 1

    International Nuclear Information System (INIS)

    Izekova, V.A.; Kuzmin, A.D.; Malofeev, V.M.; Shitov, Yu.P.

    1981-01-01

    The results of flux pulsar radioemission measurements at meter wavelength, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value is vsub(m) = 130 +- 80 MHz. Averaged on many pulsars, the spectral index is negative in the 39-61 MHz frequency range (anti ALPHA 39 sub(-) 61 = -1.4 +- 0.4) and passes through zero at frequencies of about 100 MHz, becoming positive in the 100-400 MHz frequency range. It was noticed that the spectral index in the 100-400 MHz interval depends upon such pulsar periods as α 100 sub(-) 400 = 0.7 log p + 0.9. Using the spectra, more precise radio luminosities of pulsars have been computed. (orig.)

  3. Observations of one young and three middle-aged γ-ray pulsars with the Gran Telescopio Canarias

    Science.gov (United States)

    Mignani, R. P.; Testa, V.; Rea, N.; Marelli, M.; Salvetti, D.; Torres, D. F.; De Oña Wilhelmi, E.

    2018-04-01

    We used the 10.4m Gran Telescopio Canarias to search for the optical counterparts to four isolated γ-ray pulsars, all detected in the X-rays by either XMM-Newton or Chandra but not yet in the optical. Three of them are middle-aged pulsars - PSR J1846+0919 (0.36 Myr), PSR J2055+2539 (1.2 Myr), PSR J2043+2740 (1.2 Myr) - and one, PSR J1907+0602, is a young pulsar (19.5 kyr). For both PSR J1907+0602 and PSR J2055+2539 we found one object close to the pulsar position. However, in both cases such an object cannot be a viable candidate counterpart to the pulsar. For PSR J1907+0602, because it would imply an anomalously red spectrum for the pulsar and for PSR J2055+2539 because the pulsar would be unrealistically bright (r' = 20.34 ± 0.04) for the assumed distance and interstellar extinction. For PSR J1846+0919, we found no object sufficiently close to the expected position to claim a possible association, whereas for PSR J2043+2740 we confirm our previous findings that the object nearest to the pulsar position is an unrelated field star. We used our brightness limits (g' ≈ 27), the first obtained with a large-aperture telescope for both PSR J1846+0919 and PSR J2055+2539, to constrain the optical emission properties of these pulsars and investigate the presence of spectral turnovers at low energies in their multi-wavelength spectra.

  4. Gamma-ray pulsar physics: gap-model populations and light-curve analyses in the Fermi era

    International Nuclear Information System (INIS)

    Pierbattista, M.

    2010-01-01

    This thesis research focusses on the study of the young and energetic isolated ordinary pulsar population detected by the Fermi gamma-ray space telescope. We compared the model expectations of four emission models and the LAT data. We found that all the models fail to reproduce the LAT detections, in particular the large number of high E objects observed. This inconsistency is not model dependent. A discrepancy between the radio-loud/radio-quiet objects ratio was also found between the observed and predicted samples. The L γ α E 0.5 relation is robustly confirmed by all the assumed models with particular agreement in the slot gap (SG) case. On luminosity bases, the intermediate altitude emission of the two pole caustic SG model is favoured. The beaming factor f Ω shows an E dependency that is slightly visible in the SG case. Estimates of the pulsar orientations have been obtained to explain the simultaneous gamma and radio light-curves. By analysing the solutions we found a relation between the observed energy cutoff and the width of the emission slot gap. This relation has been theoretically predicted. A possible magnetic obliquity α alignment with time is rejected -for all the models- on timescale of the order of 10 6 years. The light-curve morphology study shows that the outer magnetosphere gap emission (OGs) are favoured to explain the observed radio-gamma lag. The light curve moment studies (symmetry and sharpness) on the contrary favour a two pole caustic SG emission. All the model predictions suggest a different magnetic field layout with an hybrid two pole caustic and intermediate altitude emission to explain both the pulsar luminosity and light curve morphology. The low magnetosphere emission mechanism of the polar cap model, is systematically rejected by all the tests done. (author) [fr

  5. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  6. Exploring Pulsars with Polestar

    Science.gov (United States)

    Cappallo, Rigel; Laycock, Silas; Christodoulou, Dimitris

    2018-06-01

    An X-ray pulsar (XRP) is a highly-magnetized neutron star (NS) that rotates while emitting beams of X-ray radiation produced primarily in the vicinity of its magnetic poles. If these beams happen to cross our line of sight and the NS’s spin and magnetic axes are not aligned, then our telescopes detect it as a periodically pulsating source. With the introduction of a new class of orbit-based observatories over the last quarter of a century the field of X-ray pulsar astronomy has seen an influx of high-resolution data. This windfall demands new models of pulsar behavior and emission geometry be created and subsequently fit to this high-quality data.We have written a model (Polestar) in Python 2.7.6 that mathematically represents a simplified XRP. The code has ten different, tunable geometric parameters that can be individually incorporated or suppressed. Any given XRP has a unique pulse profile which is often energy-dependent, and changes with different luminosity states. A change in luminosity coincides with a change in the system (e.g. a periodic Type-1 outburst is triggered following periastron passage, or the orientation of the decretion disk around the donor star has changed), and as such an increase in luminosity tends to produce an increase in complexity of the accompanying pulse profile. If a particular source in a low-luminosity state can be fit well with Polestar incorporating only a few parameters then an underlying geometry may be inferred. Further, if profiles from the same source in higher-luminosity states can be fit with the addition of only one or two additional parameters it will serve to further solidify current XRP theory (e.g. the emergence of fan-like emission patterns, or the vertical growth of the accretion column).Our initial fitting campaign was directed at the ~ 100 XRPs in the Small Magellanic Cloud. Polestar also includes an interactive slider GUI that allows the user to see in real time how changing the various profiles alter the

  7. Galactic distribution and evolution of pulsars

    International Nuclear Information System (INIS)

    Taylor, J.H.; Manchester, R.N.

    1977-01-01

    The distribution of pulsars with respect to period, z-distance, luminosity, and galactocentric radius has been investigated using data from three extensive pulsar surveys. It is shown that selection effects only slightly modify the observed period and z-distributions but strongly affect the observed luminosity function and galactic distribution. These latter two distributions are computed from the Jodrell Bank and Arecibo data, using an iterative procedure. The largest uncertainties in our results are the result of uncertainty in the adopted distance scale. Therefore, where relevant, separate calculations have been made for two values of the average interstellar electron density, , 0.02 cm -3 and 0.03 cm -3 .The derived luminosity function is closely represented by a power law with index (for logarithmic luminosity intervals) close to -1. For =0.03 cm -3 , the density of potentially observable pulsars is about 90 kpc -2 in the local region and increases with decreasing galactocentric radius. These distributions imply that the total number of pulsars in the Galaxy is about 10 5 . If only a fraction of all pulsars are observable because of beaming effects, then the total number in the Galaxy is correspondingly greater.Recent observations of pulsar proper motions show that pulsars are generally high-velocity objects. The observed z-distribution of pulsars implies that the mean age of observable pulsars does not exceed 2 x 10 6 years. With this mean age the pulsar birthrate required to maintain the observed galactic distribution is 10 -4 yr -1 kpc -2 in the local region and one pulsar birth every 6 years in the Galaxy as a whole. For =0.02 cm -3 , the corresponding rate is one birth every 40 years. These rates exceed most estimates of supernova occurrence rates and may require that all stars with mass greater than approx.2.5 Msun form pulsars at the end of their evolutionary life

  8. SIGPROC: Pulsar Signal Processing Programs

    Science.gov (United States)

    Lorimer, D. R.

    2011-07-01

    SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM), the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank at the Ooty radio telescope (OOTY). The SIGPROC tools should help users look at their data quickly, without the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte swapping is handled automatically).

  9. Ultra high energy gamma rays and observations with CYGNUS/MILAGRO

    International Nuclear Information System (INIS)

    Weeks, D.D.; Yodh, G.B.

    1992-01-01

    This talk discusses high-energy observations of the Crab pulsar/nebula and the pulsar in the X-ray binary, Hercules X-1, and makes the case for continued observations with ground-based γ-ray detectors. The CYGNUS Air Shower Array has a wide field of view on monitors several astrophysical γ-ray sources at the same time, many of which are prime objects observed by the Compton Gamma Ray Observatory (GRO) and air Cerenkov telescopes. This array and the future MILAGRO Water Cerenkov Detector can perform observations that are simultaneous with similar experiments to provide confirmation of emission, and can measure source spectra at a range of high energies previously unexplored

  10. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  11. HUBBLE SPACE TELESCOPE DETECTION OF THE DOUBLE PULSAR SYSTEM J0737–3039 IN THE FAR-ULTRAVIOLET

    International Nuclear Information System (INIS)

    Durant, Martin; Kargaltsev, Oleg; Pavlov, George G.

    2014-01-01

    We report on detection of the double pulsar system J0737–3039 in the far-UV with the Advanced Camera for Surveys/Solar-blind Channel detector aboard Hubble Space Telescope. We measured the energy flux F = (4.6 ± 1.0) × 10 –17  erg cm –2 s –1 in the 1250-1550 Å band, which corresponds to the extinction-corrected luminosity L ≈ 1.5 × 10 28  erg s –1 for the distance d = 1.1 kpc and a plausible reddening E(B – V) = 0.1. If the detected emission comes from the entire surface of one of the neutron stars with a 13 km radius, the surface blackbody temperature is in the range T ≅ (2-5) × 10 5  K for a reasonable range of interstellar extinction. Such a temperature requires an internal heating mechanism to operate in old neutron stars, or, less likely, it might be explained by heating of the surface of the less energetic Pulsar B by the relativistic wind of Pulsar A. If the far-ultraviolet emission is non-thermal (e.g., produced in the magnetosphere of Pulsar A), its spectrum exhibits a break between the UV and X-rays

  12. Crab Rationalization Permit Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crab Rationalization Program (Program) allocates BSAI crab resources among harvesters, processors, and coastal communities. The North Pacific Fishery Management...

  13. Pulsar Timing with the Fermi LAT

    Science.gov (United States)

    2010-12-01

    Pulsar Timing with the Fermi LAT Paul S. Ray∗, Matthew Kerr†, Damien Parent∗∗ and the Fermi PSC‡ ∗Naval Research Laboratory, 4555 Overlook Ave., SW...Laboratory, Washington, DC 20375, USA ‡Fermi Pulsar Search Consortium Abstract. We present an overview of precise pulsar timing using data from the Large...unbinned photon data. In addition to determining the spindown behavior of the pulsars and detecting glitches and timing noise, such timing analyses al

  14. GMRT DISCOVERY OF PSR J1544+4937: AN ECLIPSING BLACK-WIDOW PULSAR IDENTIFIED WITH A FERMI-LAT SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, B.; Roy, J.; Gupta, Y. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Ray, P. S.; Wolff, M. T.; Wood, K. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Bhattacharya, D. [Inter-University Centre for Astronomy and Astrophysics, Pune 411 007 (India); Romani, R. W.; Den Hartog, P. R.; Kerr, M.; Michelson, P. F. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ransom, S. M. [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Ferrara, E. C.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement, LPCE UMR 6115 CNRS, F-45071 Orleans Cedex 02 (France); Johnston, S.; Keith, M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping, NSW 1710 (Australia); Saz Parkinson, P. M. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Wood, D. L. [Praxis Inc., Alexandria, VA 22303 (United States)

    2013-08-10

    Using the Giant Metrewave Radio Telescope, we performed deep observations to search for radio pulsations in the directions of unidentified Fermi-Large Area Telescope {gamma}-ray sources. We report the discovery of an eclipsing black-widow millisecond pulsar, PSR J1544+4937, identified with the uncataloged {gamma}-ray source FERMI J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hr compact circular orbit with a very low mass companion (M{sub c} > 0.017M{sub Sun }). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Using the radio timing ephemeris we were able to detect {gamma}-ray pulsations from this pulsar, confirming it as the source powering the {gamma}-ray emission.

  15. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Atwood, W. B.; Bagagli, R.; Baldini, L.; Bellardi, F.; Bellazzini, R.; Ballet, J.; Band, D. L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bisello, D.; Baughman, B. M.

    2009-01-01

    The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new γ-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E ≥ 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of Γ = 1.51 +0.05 -0.04 with an exponential cutoff at E c = 2.9 ± 0.1 GeV. Spectral fits with generalized cutoffs of the form e -(E/E c ) b require b ≤ 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.

  16. The anatomy of the king crab Hapalogaster mertensii Brandt, 1850 (Anomura: Paguroidea: Hapalogastridae): new insights into the evolutionary transformation of hermit crabs into king crabs

    NARCIS (Netherlands)

    Keiler, J.; Richter, S.; Wirkner, C.S.

    2015-01-01

    The emergence of king crabs from a hermit crab-like ancestor is one of the most curious events in decapod evolution. King crabs comprise two taxa, Lithodidae and Hapalogastridae, and while lithodids have formed the focus of various anatomical studies, the internal anatomy of hapalogastrids has never

  17. Searching for pulsars using image pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H. [Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Brazier, A. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Lynch, R.; Scholz, P. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A. [Center for Advanced Radio Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M., E-mail: zhuww@phas.ubc.ca, E-mail: berndsen@phas.ubc.ca [Center for Gravitation, Cosmology and Astrophysics. University of Wisconsin Milwaukee, Milwaukee, WI 53211 (United States); and others

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  18. Searching for pulsars using image pattern recognition

    International Nuclear Information System (INIS)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M.

    2014-01-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  19. Searching for Pulsars Using Image Pattern Recognition

    Science.gov (United States)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Cohen, S.; Dartez, L. P.; Flanigan, J.; Lunsford, G.; Martinez, J. G.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F. A.; Kaplan, D. L.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Venkataraman, A.

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ~9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  20. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    Science.gov (United States)

    Lee, K. J.; Stovall, K.; Jenet, F. A.; Martinez, J.; Dartez, L. P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C. M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E. D.; Bhat, N. D. R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R. D.; Freire, P.; Hessels, J. W. T.; Karuppusamy, R.; Kaspi, V. M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W. W.

    2013-07-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we introduce an algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning-based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top 0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per cent within the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.

  1. Preliminary results from the Chicago air shower array and the Michigan muon array

    International Nuclear Information System (INIS)

    Krimm, H.A.; Cronin, J.W.; Fick, B.E.; Gibbs, K.G.; Mascarenhas, N.C.; McKay, T.A.; Mueller, D.; Newport, B.J.; Ong, R.A.; Rosenberg, L.J.; Wiedenbeck, M.E.; Green, K.D.; Matthews, J.; Nitz, D.; Sinclair, D.; van der Velde, J.C.

    1991-01-01

    The Chicago Air Shower Array (CASA) is a large area surface array designed to detect extensive air showers (EAS) produced by primaries with energy ∼100 TeV. It operates in coincidence with the underground Michigan Muon Array (MIA). Preliminary results are presented from a search for steady emission and daily emission from three astrophysical sources: Cygnus X-3, Hercules X-1, and the Crab nebula and pulsar. There is no evidence for a significant signal from any of these sources in the 1989 data

  2. Towards Resolving the Crab Sigma-Problem: A Linear Accelerator?

    Science.gov (United States)

    Contopoulos, Ioannis; Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Using the exact solution of the axisymmetric pulsar magnetosphere derived in a previous publication and the conservation laws of the associated MHD flow, we show that the Lorentz factor of the outflowing plasma increases linearly with distance from the light cylinder. Therefore, the ratio of the Poynting to particle energy flux, generically referred to as sigma, decreases inversely proportional to distance, from a large value (typically approx. greater than 10(exp 4)) near the light cylinder to sigma approx. = 1 at a transition distance R(sub trans). Beyond this distance the inertial effects of the outflowing plasma become important and the magnetic field geometry must deviate from the almost monopolar form it attains between R(sub lc), and R(sub trans). We anticipate that this is achieved by collimation of the poloidal field lines toward the rotation axis, ensuring that the magnetic field pressure in the equatorial region will fall-off faster than 1/R(sup 2) (R being the cylindrical radius). This leads both to a value sigma = a(sub s) much less than 1 at the nebular reverse shock at distance R(sub s) (R(sub s) much greater than R(sub trans)) and to a component of the flow perpendicular to the equatorial component, as required by observation. The presence of the strong shock at R = R(sub s) allows for the efficient conversion of kinetic energy into radiation. We speculate that the Crab pulsar is unique in requiring sigma(sub s) approx. = 3 x 10(exp -3) because of its small translational velocity, which allowed for the shock distance R(sub s) to grow to values much greater than R(sub trans).

  3. Grooming behaviors and gill fouling in the commercially important blue crab (Callinectes sapidus and stone crab (Menippe mercenaria

    Directory of Open Access Journals (Sweden)

    Jen L. Wortham

    2017-10-01

    Full Text Available Abstract Grooming behaviors reduce fouling of body regions. In decapods, grooming time budgets, body regions groomed, and grooming appendages are known in several species; however, little data exists on brachyuran crabs. In this study, grooming behaviors of two commercially important crabs were documented (blue crabs: Callinectes sapidus Rathbun, 1896; stone crabs: Menippe mercenaria Say, 1818. These crabs are harvested by fishermen and knowing their grooming behaviors is valuable, as clean crabs are preferred by consumers and the stone crab fishery consequence of removing one cheliped to grooming behaviors is unknown. Crabs were observed individually and agonistically to determine how grooming behaviors vary in the presence of another conspecific. Both species frequently use their maxillipeds and groom, with the gills being cleaned by epipods. Respiratory and sensory structures were groomed frequently in both species. Removal of a grooming appendage resulted in higher fouling levels in the gills, indicating that grooming behaviors do remove fouling. Overall, stone crabs had a larger individual time budget for grooming, but agonistic grooming time budgets were similar. Stone crab chelipeds are used in grooming, especially cleaning the other cheliped. The chelipeds are not the main grooming appendage; however, implications of losing one cheliped may have large impacts.

  4. The Pulsar Luminosity Function

    OpenAIRE

    O. H. Guseinov; E. Yazgan; S. O. Tagieva

    2003-01-01

    Hemos construido y examinado la función de luminosidad para pulsares, usando una nueva lista la cual incluye datos de 1328 radio pulsares. En este trabajo, se construye por primera vez la función de luminosidad en 1400 MHz. También presentamos una función de luminosidad mejorada en 400 MHz. Se comparan las funciones de luminosidad en 400 y 1400 MHz. De igual manera se construyen las funciones de luminosidad excluyendo los pulsares binarios y los de campos magnéticos pequeños. S...

  5. Automated processing of pulsar observations

    Energy Technology Data Exchange (ETDEWEB)

    Byzhlov, B.V.; Ivanova, V.V.; Izvekova, V.A.; Kuz' min, A.D.; Kuz' min, Yu.P.; Malofeev, V.M.; Popov, Yu.M.; Solomin, N.S.; Shabanova, T.V.; Shitov, Yu.P.

    1977-01-01

    Digital computer technology which processes observation results in a real time scale is used on meter-range radiotelescopes DKR-100 of the USSR Academy of Sciences Physics Institute and the BSA of the Physics Institute to study pulsars. A method which calls for the accumulation of impulses with preliminary compensation of pulsar dispersion in a broad band is used to increase sensitivity and resolution capability. Known pulsars are studied with the aid of a ''neuron'' type analyzer. A system for processing observations in an on-line set-up was created on the M-6000 computer for seeking unknown pulsars. 8 figures, 1 table, references.

  6. MAGIC highlights

    Directory of Open Access Journals (Sweden)

    López-Coto Rubén

    2016-01-01

    Full Text Available The present generation of Imaging Air Cherenkov Telescopes (IACTs has greatly improved our knowledge on the Very High Energy (VHE side of our Universe. The MAGIC IACTs operate since 2004 with one telescope and since 2009 as a two telescope stereoscopic system. I will outline a few of our latest and most relevant results: the discovery of pulsed emission from the Crab pulsar at VHE, recently found to extend up to 400 GeV and along the “bridge” of the light curve, the measurement of the Crab nebula spectrum over three decades of energy, the discovery of VHE γ-ray emission from the PWN 3C 58, the very rapid emission of IC 310, in addition to dark matter studies. The results that will be described here and the planned deep observations in the next years will pave the path for the future generation of IACTs.

  7. Mid-UV studies of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states

    Science.gov (United States)

    Rivera Sandoval, L. E.; Hernández Santisteban, J. V.; Degenaar, N.; Wijnands, R.; Knigge, C.; Miller, J. M.; Reynolds, M.; Altamirano, D.; van den Berg, M.; Hill, A.

    2018-05-01

    We report mid-UV (MUV) observations taken with Hubble Space Telescope (HST)/WFC3, Swift/UVOT, and GALEX/NUV of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states. Both systems were detected in our images and showed MUV variability. At similar orbital phases, the MUV luminosities of both pulsars are comparable. This suggests that the emission processes involved in both objects are similar. We estimated limits on the mass ratio, companion's temperature, inclination, and distance to XSS J12270-4859 by using a Markov Chain Monte Carlo algorithm to fit published folded optical light curves. Using the resulting parameters, we modelled MUV light curves in our HST filters. The resulting models failed to fit our MUV observations. Fixing the mass ratio of XSS J12270-4859 to the value reported in other studies, we obtained a distance of ˜3.2 kpc. This is larger than the one derived from dispersion measure (˜1.4 kpc). Assuming a uniform prior for the mass ratio, the distance is similar to that from radio measurements. However, it requires an undermassive companion (˜0.01M⊙). We conclude that a direct heating model alone cannot fully explain the observations in optical and MUV. Therefore, an additional radiation source is needed. The source could be an intrabinary shock which contributes to the MUV flux and likely to the optical one as well. During the radio pulsar state, the MUV orbital variations of PSR J1023+0038 detected with GALEX, suggest the presence of an asymmetric intrabinary shock.

  8. Ecomorphology of crabs and swimming crabs (Crustacea DecapodaBrachyura from coastal ecosystems

    Directory of Open Access Journals (Sweden)

    Murilo Zanetti Marochi

    Full Text Available Abstract Brachyuran crabs are one of the most diverse taxa of crustaceans, occurring in almost all coastal habitats. Due to their high morphological diversification, the authors sought to ascertain the existence of morphological patterns related to the habitat of coastal brachyuran crabs. We analyzed 17 species from mangrove forests, rocky shores, sandy beaches and exclusively aquatic marine/estuarine ecosystems. A total of 16 linear measurements of males and 17 of females were obtained for each habitat. We were able to discriminate three functional groups of crab species, based on their habitat: 1. Complex Substrates, 2. Semiterrestrial, 3. Exclusively Aquatic. The species belonging to the Complex Substrates group had long ambulatory legs, as well as being heteroquely related to uneven terrain. Semiterrestrial species showed ambulatory legs of different sizes, allowing them to walk easily on the terrestrial terrain due to the long fourth ambulatory leg, and long eyestalks which are important for visual communication. Exclusively Aquatic species showed the largest carapace widths and the shortest eyestalks. The presence of different crab lineages in the environments analyzed allows us to demonstrate the clear evolutionary convergence, by which the crabs adapted to their specific habitat and environment.

  9. The Discovery of the Most Accelerated Binary Pulsar

    OpenAIRE

    Cameron, A. D.; Champion, D. J.; Kramer, M.; Bailes, M.; Barr, E. D.; Bassa, C. G.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C. M. L.; Freire, P. C. C.; Jameson, A.; Johnston, S.

    2018-01-01

    Pulsars in relativistic binary systems have emerged as fantastic natural laboratories for testing theories of gravity, the most prominent example being the double pulsar, PSR J0737$-$3039. The HTRU-South Low Latitude pulsar survey represents one of the most sensitive blind pulsar surveys taken of the southern Galactic plane to date, and its primary aim has been the discovery of new relativistic binary pulsars. Here we present our binary pulsar searching strategy and report on the survey's fla...

  10. Inter-relationship between the two emission cones of B1237+25

    Energy Technology Data Exchange (ETDEWEB)

    Maan, Yogesh [Joint Astronomy Programme (JAP), Indian Institute of Science, Bangalore 560012, India. (India); Deshpande, Avinash A., E-mail: yogesh@rri.res.in, E-mail: desh@rri.res.in [Raman Research Institute, Bangalore 560080 (India)

    2014-09-10

    The origin of two distinct pairs of conal emission components in pulsars, associated with the 'outer' and the 'inner' emission cones, as well as the marked difference in their observed spectral properties, is poorly understood. The sub-pulse modulation in the corresponding conal components, if mapped back to the underlying system of sub-beams rotating around the magnetic axis in the polar cap, as envisioned by Ruderman and Sutherland, provides a potential way to investigate the emission morphologies in the two conal regions, and more importantly, any inter-relationship between them. The bright pulsar B1237+25 with its special viewing geometry where the sightline traverses almost through the magnetic axis, along with a rich variety in pulse-to-pulse fluctuations, provides an excellent but challenging opportunity to map the underlying emission patterns across the full transverse slice of its polar emission region. We present here our analysis on a number of pulse sequences from this star to map and study any relationship between the underlying patterns responsible for emission in the two pairs of presumed conal components and a core component of this pulsar. The results from our correlation analysis of the two conal emission patterns strongly support the view that the two cones of this pulsar (the outer and the inner cone) originate from a common system of sub-beams. We also see evidence for a twist in the emission columns, most likely associated with a corresponding twist in the magnetic field structure. We discuss these results, and their implications, including a possibility that the core component of this pulsar shares its origin partly with the conal counterparts.

  11. Soft excess and orbital evolution studies of X-ray pulsars with BeppoSAX

    International Nuclear Information System (INIS)

    Paul, B.; Naik, S.; Bhatt, N.

    2004-01-01

    We present here a spectral study of two accreting binary X-ray pulsars LMC X-4 and SMC X-1 made with the BeppoSAX observatory. The energy spectrum of both the pulsars in 0.1-10.0 keV band can be described by a model consisting of a hard power-law component, a soft excess and an iron emission line at 6.4 keV. In addition, the power-law component of SMC X-1 also has an exponential cutoff at ∼ 6 keV. Pulse-phase resolved spectroscopy confirms a pulsating nature of the soft spectral component in both the pulsars, with a certain phase offset compared to the hard power-law component. A dissimilar pulse profile of the two spectral components and a phase difference between the pulsating soft and hard spectral components are evidence for their different origins. In another study of an accreting binary X-ray pulsar Her X-1, we have made accurate measurements of new mid-eclipse times from pulse arrival time delays using observations made with the BeppoSAX and RXTE observatories. The new measurements, combined with the earlier reported mid-eclipse times are used to investigate orbital evolution of the binary. The most recent observation indicates deviation from a quadratic trend coincident with an anomalous low X-ray state, observed for the second time in this pulsar

  12. LHC crab-cavity aspects and strategy

    International Nuclear Information System (INIS)

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-01-01

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  13. Thermal effects on the cyclotron line formation process in X-ray pulsars

    International Nuclear Information System (INIS)

    Kirk, J.G.; Meszaros, P.

    1980-01-01

    We derive expressions for the scattering and absorption cross sections in a hot plasma including the effects of vacuum polarisation. These expressions are then used in a radiative transfer calculation for frequencies in the neighbourhood of the cyclotron resonance using a simplified model atmosphere for accreting magnetised X-ray pulsars. Cyclotron emission and absorption line model fits are discussed, the conclusion being that an emission line interpretation appears at this stage more likely. (orig.)

  14. SAX J1808.4−3658, an accreting millisecond pulsar shining in gamma rays?

    International Nuclear Information System (INIS)

    Oña Wilhelmi, E. de; Papitto, A.; Li, J.; Rea, N.

    2015-01-01

    We report the detection of a possible gamma-ray counterpart of the accreting millisec- ond pulsar SAXJ1808.4–3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a re- gion of 15° radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6σ (Test Statistic TS = 32), with position compatible with that of SAXJ1808.4–3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 ± 0.5) × 10 -12 erg cm -2 s -1 and the spectrum is well-represented by a power-law function with photon index 2.1±0.1. We searched for significant variation of the flux at the spin frequency of the pulsar and for orbital modulation, taking into account the trials due to the uncertain- ties in the position, the orbital motion of the pulsar and the intrinsic evolution of the pulsar spin. No significant deviation from a constant flux at any time scale was found, preventing a firm identification via time variability. Nonetheless, the association of the LAT source as the gamma-ray counterpart of SAXJ1808.4–3658 would match the emission expected from the millisecond pulsar, if it switches on as a rotation-powered source during X-ray quiescence.

  15. Perceptions of environmental changes and Lethargic crab disease among crab harvesters in a Brazilian coastal community

    Science.gov (United States)

    2011-01-01

    Background Lethargic Crab Disease (LCD) has caused significant mortalities in the population of Ucides cordatus crabs in the Mucuri estuary in Bahia State, Brazil, and has brought social and economic problems to many crab-harvesting communities that depend on this natural resource. The present work examined the perceptions of members of a Brazilian crab harvesting community concerning environmental changes and the Lethargic Crab Disease. Methods Field work was undertaken during the period between January and April/2009, with weekly or biweekly field excursions during which open and semi-structured interviews were held with local residents in the municipality of Mucuri, Bahia State, Brazil. A total of 23 individuals were interviewed, all of whom had at least 20 years of crab-collecting experience in the study region. Key-informants (more experienced crab harvesters) were selected among the interviewees using the "native specialist" criterion. Results According to the collectors, LCD reached the Mucuri mangroves between 2004 and 2005, decimating almost all crab population in the area, and in 2007, 2008 and 2009 high mortalities of U. cordatus were again observed as a result of recurrences of this disease in the region. In addition to LCD, crabs were also suffering great stock reductions due to habitat degradation caused by deforestation, landfills, sewage effluents, domestic and industrial wastes and the introduction of exotic fish in the Mucuri River estuary. The harvesting community was found to have significant ecological knowledge about the functioning of mangrove swamp ecology, the biology of crabs, and the mass mortality that directly affected the economy of this community, and this information was largely in accordance with scientific knowledge. Conclusions The study of traditional knowledge makes it possible to better understand human interactions with the environment and aids in the elaboration of appropriate strategies for natural resource conservation

  16. Perceptions of environmental changes and Lethargic crab disease among crab harvesters in a Brazilian coastal community

    Directory of Open Access Journals (Sweden)

    Firmo Angélica MS

    2011-11-01

    Full Text Available Abstract Background Lethargic Crab Disease (LCD has caused significant mortalities in the population of Ucides cordatus crabs in the Mucuri estuary in Bahia State, Brazil, and has brought social and economic problems to many crab-harvesting communities that depend on this natural resource. The present work examined the perceptions of members of a Brazilian crab harvesting community concerning environmental changes and the Lethargic Crab Disease. Methods Field work was undertaken during the period between January and April/2009, with weekly or biweekly field excursions during which open and semi-structured interviews were held with local residents in the municipality of Mucuri, Bahia State, Brazil. A total of 23 individuals were interviewed, all of whom had at least 20 years of crab-collecting experience in the study region. Key-informants (more experienced crab harvesters were selected among the interviewees using the "native specialist" criterion. Results According to the collectors, LCD reached the Mucuri mangroves between 2004 and 2005, decimating almost all crab population in the area, and in 2007, 2008 and 2009 high mortalities of U. cordatus were again observed as a result of recurrences of this disease in the region. In addition to LCD, crabs were also suffering great stock reductions due to habitat degradation caused by deforestation, landfills, sewage effluents, domestic and industrial wastes and the introduction of exotic fish in the Mucuri River estuary. The harvesting community was found to have significant ecological knowledge about the functioning of mangrove swamp ecology, the biology of crabs, and the mass mortality that directly affected the economy of this community, and this information was largely in accordance with scientific knowledge. Conclusions The study of traditional knowledge makes it possible to better understand human interactions with the environment and aids in the elaboration of appropriate strategies for natural

  17. Perceptions of environmental changes and lethargic crab disease among crab harvesters in a Brazilian coastal community.

    Science.gov (United States)

    Firmo, Angélica M S; Tognella, Mônica M P; Có, Walter L O; Barboza, Raynner R D; Alves, Rômulo R N

    2011-11-16

    Lethargic Crab Disease (LCD) has caused significant mortalities in the population of Ucides cordatus crabs in the Mucuri estuary in Bahia State, Brazil, and has brought social and economic problems to many crab-harvesting communities that depend on this natural resource. The present work examined the perceptions of members of a Brazilian crab harvesting community concerning environmental changes and the Lethargic Crab Disease. Field work was undertaken during the period between January and April/2009, with weekly or biweekly field excursions during which open and semi-structured interviews were held with local residents in the municipality of Mucuri, Bahia State, Brazil. A total of 23 individuals were interviewed, all of whom had at least 20 years of crab-collecting experience in the study region. Key-informants (more experienced crab harvesters) were selected among the interviewees using the "native specialist" criterion. According to the collectors, LCD reached the Mucuri mangroves between 2004 and 2005, decimating almost all crab population in the area, and in 2007, 2008 and 2009 high mortalities of U. cordatus were again observed as a result of recurrences of this disease in the region. In addition to LCD, crabs were also suffering great stock reductions due to habitat degradation caused by deforestation, landfills, sewage effluents, domestic and industrial wastes and the introduction of exotic fish in the Mucuri River estuary. The harvesting community was found to have significant ecological knowledge about the functioning of mangrove swamp ecology, the biology of crabs, and the mass mortality that directly affected the economy of this community, and this information was largely in accordance with scientific knowledge. The study of traditional knowledge makes it possible to better understand human interactions with the environment and aids in the elaboration of appropriate strategies for natural resource conservation.

  18. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  19. Pulsar populations and their evolution

    International Nuclear Information System (INIS)

    Narayan, R.; Ostriker, J.P.

    1990-01-01

    Luminosity models are developed, and an attempt is made to answer fundamental questions regarding the statistical properties of pulsars, on the basis of a large data base encompassing the periods, period derivatives, radio luminosities, vertical Galactic heights, and transverse velocities, for a homogeneous sample of 301 pulsars. A probability is established for two pulsar subpopulations, designated F and S, which are distinguished primarily on the basis of kinematic properties. The two populations are of comparable size, with the F population having an overall birth-rate close to 1 in 200 years in the Galaxy, with the less certain S pulsar birth-rate not higher than that of the F population. 51 refs

  20. Swinging between rotation and accretion power in a binary millisecond pulsar

    Directory of Open Access Journals (Sweden)

    Papitto A.

    2014-01-01

    While accreting mass, the X-ray emission of IGR J18245–2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of the newly established class of transitional pulsars are also briefly discussed.

  1. On the puzzling high-energy pulsations of the energetic radio-quiet γ-ray pulsar J1813–1246

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Pizzocaro, D.; De Luca, A.; Caraveo, P.; Salvetti, D. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano (Italy); Harding, A. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wood, K. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Saz Parkinson, P. M. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Acero, F., E-mail: marelli@lambrate.inaf.it [Laboratoire AIM, CEA-IRFU/CNRS/Universit Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France)

    2014-11-10

    We have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813–1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase. We extended the available Fermi ephemeris to five years. We found two glitches. The γ-ray light curve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the γ-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and γ-ray emission of J1813. The unique X-ray and γ-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.

  2. The Green Bank Northern Celestial Cap Pulsar Survey. II. The Discovery and Timing of 10 Pulsars

    Science.gov (United States)

    Kawash, A. M.; McLaughlin, M. A.; Kaplan, D. L.; DeCesar, M. E.; Levin, L.; Lorimer, D. R.; Lynch, R. S.; Stovall, K.; Swiggum, J. K.; Fonseca, E.; Archibald, A. M.; Banaszak, S.; Biwer, C. M.; Boyles, J.; Cui, B.; Dartez, L. P.; Day, D.; Ernst, S.; Ford, A. J.; Flanigan, J.; Heatherly, S. A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Kondratiev, V. I.; Leake, S.; Lunsford, G.; Martinez, J. G.; Mata, A.; Matheny, T. D.; Mcewen, A. E.; Mingyar, M. G.; Orsini, A. L.; Ransom, S. M.; Roberts, M. S. E.; Rohr, M. D.; Siemens, X.; Spiewak, R.; Stairs, I. H.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.

    2018-04-01

    We present timing solutions for 10 pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program during an analysis of drift-scan data. Following the discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high-precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930‑2301, a pulsar with a nulling fraction lower limit of ∼30% and a nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557‑2948 is an isolated, 44 ms pulsar that has been partially recycled and is likely a former member of a binary system that was disrupted by a second supernova. The paucity of such so-called “disrupted binary pulsars” (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 ms pulsar in a 44-day orbit with a low-mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.

  3. Aspects of pulsar evolution

    International Nuclear Information System (INIS)

    Fujimura, F.S.; Kennel, C.F.

    1980-01-01

    We consider pulsar statistics from the point of view of generalized evolutionary equations that assume that pulsar torques diminish exponentially with a decay-time constant T, to be determined empirically. Decay or alignment of the neutron-star magnetic moment, or a combination, may cause the torque to diminish with time. The Sturrock-Ruderman-Sutherland pair-production model provides a quantitative way to calculate pulsar lifetimes. Different test, which use th data in partially independent ways and involve differnt assumptions, consistently suggest that T is less than a million years and may be as short as several hundred thousand years

  4. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Baring, Matthew G.; /Rice U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of {gamma}-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The {gamma}-ray light curve shows two sharp peaks having phase separation of 0.460 {+-} 0.004, trailing the very narrow radio pulse by 0.200 {+-} 0.003 in phase, very similar to that of other known {gamma}-ray pulsars. The measured {gamma}-ray flux gives an efficiency for the pulsar of {approx}10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  5. Crab As A Coconut Oil Separating Agent

    OpenAIRE

    Margino, Sebastian

    2017-01-01

    The role of sterilized and nonsterilized crab extract on the separation of coconut oil was examined using grated coconut meat as substrate. Sterilized crab extract was prepared by suspension and centrifugation of crushed crab and then filtrated using Millipore Utter. Sterilized crab extract has proteolytic activity but not lipolytic one. It was found that the sterilized crab extract supported the growth of proteolytic microbes, isolated from fermentation process of coconut oil. Both sterilize...

  6. Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars

    Science.gov (United States)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-01-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from

  7. Preservation of crab meat by gamma irradiation

    International Nuclear Information System (INIS)

    Loaharanu, P.; Prompubesara, C.; Kraisorn, K.; Noochpramool, K.

    1972-01-01

    Fresh crab meat from swimming crab (Portunus pelagicus, Linn.) was irradiated at doses of 0.075, 0.15 and 0.25 Mrad and held at 3 0 C. The storage life of non-irradiated crab meat was approximately 7 days compared with 14 days for crab meat irradiated at 0.075 Mrad and 28 days for samples receiving 0.15 or 0.25 Mrad treatment. Total aerobic count, trimethylamine nitrogen, total volatile basic nitrogen, and ammonia contents were used as objective indices of freshness in comparison with sensory evaluation of the crab meat. All objective indices correlated well with the sensory judgement of the samples. The crab meat used in the study was heavily contaminated with microorganisms. Irradiation at 0.15 and 0.25 Mrad reduced approximately 2 log cycles in the total count. Acinetobacter (Achromobacter) was predominated in irradiated crab meat, especially after prolonged storage. High coagulase positive staphylococci count was detected in only non-irradiated crab meat

  8. AFSC/RACE/SAP/Jensen: Bitter crab disease mortality in SE Alaska Tanner crab

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These are data from a laboratory experiment in which wild caught male Tanner crab (Chionoecetes bairdi) from Stephens Passage, SE Alaska were held to evaluate crab...

  9. A New Standard Pulsar Magnetosphere

    Science.gov (United States)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  10. Pulsars: gigantic nuclei

    International Nuclear Information System (INIS)

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction. (author)

  11. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    NARCIS (Netherlands)

    Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; Coles, W.; Cordes, J.; Demorest, P.; Desvignes, G.; Ferdman, R.D.; Finn, L.; Freire, P.; Gonzalez, M.; Hessels, J.; Hotan, A.; Janssen, G.; Jenet, F.; Jessner, A.; Jordan, C.; Kaspi, V.; Kramer, M.; Kondratiev, V.; Lazio, J.; Lazaridis, K.; Lee, K.J.; Levin, Y.; Lommen, A.; Lorimer, D.; Lynch, R.; Lyne, A.; Manchester, R.; McLaughlin, M.; Nice, D.; Oslowski, S.; Pilia, M.; Possenti, A.; Purver, M.; Ransom, S.; Reynolds, J.; Sanidas, S.; Sarkissian, J.; Sesana, A.; Shannon, R.; Siemens, X.; Stairs, I.; Stappers, B.; Stinebring, D.; Theureau, G.; van Haasteren, R.; van Straten, W.; Verbiest, J.P.W.; Yardley, D.R.B.; You, X.P.

    2010-01-01

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to

  12. INTEGRAL detection of the multi-peaked emission from the Be/X-ray binary pulsar GRO J1008-57

    DEFF Research Database (Denmark)

    Fiocchi, M.; Sguera, A.; Chenevez, Jérôme

    2014-01-01

    Crab (3-10 keV) and 70.5 +/-9 mCrab (10-25 keV), during a 4.9 ks effective exposure. This is the third outburst peak observed from this source during the current X-ray activity which started in September (ATEL #6465, #6630, #6656, #6664, #6819). Multiple peaks are a complex morphology occurring in about 1...

  13. The green bank northern celestial cap pulsar survey. I. Survey description, data analysis, and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, K.; Dartez, L. P.; Ford, A. J.; Garcia, A.; Hinojosa, J.; Jenet, F. A.; Leake, S. [Center for Advanced Radio Astronomy, University of Texas at Brownsville, One West University Boulevard, Brownsville, TX 78520 (United States); Lynch, R. S.; Archibald, A. M.; Karako-Argaman, C.; Kaspi, V. M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Ransom, S. M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Banaszak, S.; Biwer, C. M.; Day, D.; Flanigan, J.; Kaplan, D. L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Boyles, J. [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Hessels, J. W. T.; Kondratiev, V. I., E-mail: stovall.kevin@gmail.com [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); and others

    2014-08-10

    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts, at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4096 channels every 81.92 μs. This survey will cover the entire sky visible to the Green Bank Telescope (δ > –40°, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<30 pc cm{sup –3}) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of –1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214+5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636+5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 M{sub J}). PSR J0645+5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434+7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816+4510 is an eclipsing MSP in a short-period orbit (8.7 hr) and may have recently completed its spin-up phase.

  14. Two-stream instability in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Usov, V.V.

    1987-01-01

    If the electron-positron plasma flow from the pulsar environment is stationary, the two-stream instability does not have enough time to develop in the pulsar magnetosphere. In that case the outflowing electron-positron plasma gathers into separate clouds. The clouds move along magnetic field lines and disperse as they go farther from the pulsar. At a distance of about 10 to the 8th cm from the pulsar surface, the high-energy particles of a given cloud catch up with the low-energy particles that belong to the cloud going ahead of it. In this region of a pulsar magnetosphere, the energy distribution of plasma particles is two-humped, and a two-stream instability may develop. The growth rate of the instability is quite sufficient for its development. 17 references

  15. HUBBLE SPACE TELESCOPE DETECTION OF THE DOUBLE PULSAR SYSTEM J0737–3039 IN THE FAR-ULTRAVIOLET

    Energy Technology Data Exchange (ETDEWEB)

    Durant, Martin [Department of Medical Biophysics, Sunnybrook Hospital M6 623, 2075 Bayview Avenue, Toronto M4N 3M5 (Canada); Kargaltsev, Oleg [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Pavlov, George G., E-mail: mdurant@sri.utoronto.ca, E-mail: kargaltsev@email.gwu.edu, E-mail: pavlov@astro.psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2014-03-01

    We report on detection of the double pulsar system J0737–3039 in the far-UV with the Advanced Camera for Surveys/Solar-blind Channel detector aboard Hubble Space Telescope. We measured the energy flux F = (4.6 ± 1.0) × 10{sup –17} erg cm{sup –2} s{sup –1} in the 1250-1550 Å band, which corresponds to the extinction-corrected luminosity L ≈ 1.5 × 10{sup 28} erg s{sup –1} for the distance d = 1.1 kpc and a plausible reddening E(B – V) = 0.1. If the detected emission comes from the entire surface of one of the neutron stars with a 13 km radius, the surface blackbody temperature is in the range T ≅ (2-5) × 10{sup 5} K for a reasonable range of interstellar extinction. Such a temperature requires an internal heating mechanism to operate in old neutron stars, or, less likely, it might be explained by heating of the surface of the less energetic Pulsar B by the relativistic wind of Pulsar A. If the far-ultraviolet emission is non-thermal (e.g., produced in the magnetosphere of Pulsar A), its spectrum exhibits a break between the UV and X-rays.

  16. Relativistic spin precession in the double pulsar.

    Science.gov (United States)

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  17. Recent results on galactic sources with MAGIC telescope

    International Nuclear Information System (INIS)

    De los Reyes, R.

    2009-01-01

    Located at the Canary island of La Palma, the single-dish MAGIC telescope currently has the lowest energy threshold achieved by any Cherenkov telescope, which can be as low as 25 GeV. In the last two years, the MAGIC telescope has detected a significant amount of galactic sources that emit at very high energies (up to several TeV). Here we present the most recent results that have yielded important scientific highlights in astrophysics, which include the first detection of gamma-ray emission from a pulsar, an X-ray binary system and a stellar-mass black hole. We also make a review of the latest results of the MAGIC observations on galactic sources, which will include also γ-ray unidentified sources (TeV J2032+4130), the Galactic Centre, X-ray binaries (LSI +61 303), pulsars (Crab pulsar) and SNRs (IC443).

  18. The prospects of pulsar timing with new-generation radio telescopes and the Square Kilometre Array

    Science.gov (United States)

    Stappers, B. W.; Keane, E. F.; Kramer, M.; Possenti, A.; Stairs, I. H.

    2018-05-01

    Pulsars are highly magnetized and rapidly rotating neutron stars. As they spin, the lighthouse-like beam of radio emission from their magnetic poles sweeps across the Earth with a regularity approaching that of the most precise clocks known. This precision combined with the extreme environments in which they are found, often in compact orbits with other neutron stars and white dwarfs, makes them excellent tools for studying gravity. Present and near-future pulsar surveys, especially those using the new generation of telescopes, will find more extreme binary systems and pulsars that are more precise `clocks'. These telescopes will also greatly improve the precision to which we can measure the arrival times of the pulses. The Square Kilometre Array will revolutionize pulsar searches and timing precision. The increased number of sources will reveal rare sources, including possibly a pulsar-black hole binary, which can provide the most stringent tests of strong-field gravity. The improved timing precision will reveal new phenomena and also allow us to make a detection of gravitational waves in the nanohertz frequency regime. It is here where we expect to see the signature of the binary black holes that are formed as galaxies merge throughout cosmological history. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  19. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  20. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  1. Selection of radio pulsar candidates using artificial neural networks

    OpenAIRE

    Eatough, R. P.; Molkenthin, N.; Kramer, M.; Noutsos, A.; Keith, M. J.; Stappers, B. W.; Lyne, A. G.

    2010-01-01

    Radio pulsar surveys are producing many more pulsar candidates than can be inspected by human experts in a practical length of time. Here we present a technique to automatically identify credible pulsar candidates from pulsar surveys using an artificial neural network. The technique has been applied to candidates from a recent re-analysis of the Parkes multi-beam pulsar survey resulting in the discovery of a previously unidentified pulsar.

  2. Antarctic crabs: invasion or endurance?

    Directory of Open Access Journals (Sweden)

    Huw J Griffiths

    Full Text Available Recent scientific interest following the "discovery" of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This "invasion hypothesis" suggests that decapod crabs were driven out of Antarctica 40-15 million years ago and are only now returning as "warm" enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura, and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60 °S. All are restricted to waters warmer than 0 °C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW. Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day "crab invasion". We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the

  3. Multiwavelength Polarization of Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Alice K.; Kalapotharakos, Constantinos [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-05-10

    Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron–positron pairs and γ -ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180°, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%–60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and γ -ray spectral components would indicate that CR is the γ -ray emission mechanism.

  4. Two-fluid model of the pulsar magnetosphere represented as an axisymmetric force-free dipole

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, S.A., E-mail: petrova@rian.kharkov.ua [Institute of Radio Astronomy of the NAS of Ukraine, Mystetstv Str., 4, Kharkiv 61002 (Ukraine)

    2017-05-01

    Based on the exact dipolar solution of the pulsar equation the self-consistent two-fluid model of the pulsar magnetosphere is developed. We concentrate on the low-mass limit of the model, taking into account the radiation damping. As a result, we obtain the particle distributions sustaining the dipolar force-free configuration of the pulsar magnetosphere in case of a slight velocity shear of the electron and positron components. Over most part of the force-free region, the particles follow the poloidal magnetic field lines, with the azimuthal velocities being small. Close to the Y-point, however, the particle motion is chiefly azimuthal and the Lorentz-factor grows unrestrictedly. This may result in the very-high-energy emission from the vicinity of the Y-point and may also imply the magnetocentrifugal formation of a jet. As for the first-order quantities, the longitudinal accelerating electric field is found to change the sign, hinting at coexistence of the polar and outer gaps. Besides that, the components of the plasma conductivity tensor are derived and the low-mass analogue of the pulsar equation is formulated as well.

  5. Pulsar velocity observations: Correlations, interpretations, and discussion

    International Nuclear Information System (INIS)

    Helfand, D.J.; Tademaru, E.

    1977-01-01

    From an examination of the current sample of 12 pulsars with measured proper motions and the z-distribution of the much larger group of over 80 sources with measured period derivatives, we develop a self-consistent picture of pulsar evolution. The apparent tendency of pulsars to move parallel to the galactic plane is explained as the result of various selection effects. A method for calculating the unmeasurable radial velocity of a pulsar is presented; it is shown that the total space velocities thus obtained are consistent with the assumption of an extreme Population I origin for pulsars which subsequently move away from the plane with a large range of velocities. The time scale for pulsar magnetic field decay is derived from dynamical considerations. A strong correlation of the original pulsar field strength with the magnitude of pulsar velocity is discussed. This results in the division of pulsars into two classes: Class A sources characterized by low space velocities, a small scale height, and low values of P 0 P 0 ; and Class B sources with a large range of velocities (up to 1000 km s -1 ), a much greater scale height, and larger values of initial field strength. It is postulated that Class A sources originate in tight binaries where their impulse acceleration at birth is insufficient to remove them from the system, while the Class B sources arise from single stars or loosely bound binaries and are accelerated to high velocities by their asymmetric radiation force. The evolutionary picture which is developed is shown to be consistent with a number of constraints imposed by supernova rates, the relative frequency of massive binaries and Class A sources, theoretical field-decay times, and the overall pulsar galactic distribution

  6. Dependence of spectrum on period and twist effect of the pulsars magnetic field

    International Nuclear Information System (INIS)

    Shitov, Yu.P.

    1983-01-01

    The analysis of flux depsities at 102, 408 and 2700 MHz shows that the mean spectral radio luminosity of pUlsars anti Lsub(ν) depends on their period P. The radio luminosity on the average, decreases with the increasing period at all three freqUercies. The character and power of the period dependence anti Lsub(ν)(P) are different at different freqUencies caUsing the corresponding period dependence of the mean radio spectrUm and, particularly, of the spectral index anti αsub(1-4)(102-408 MHz), anti αsub(1-4)(P) varies as Psup(1.7) for P 408 (P) varies as Psup(-1.3) in the period interval 0.3 408 and the period derivatives P, between αsub(1-4) and P. In this connection, the arthor draws the conclusion that period dependences of the spectral radio luminosity and of the spectrum of pulsars are caused by geometrical factors. Quantitative estimates show that the twist effect of magnetic field lines caused by the reaction of magnetic-dipole radiation may be such a geometrical factor, which increases the field line curvatUre (as compared to the dipole field). The twist curvature rhosub(rot)sup(-1) varies as PsUp(-3)xrsup(2) (r is the radial distance from a star) causes the observed period dependence anti Lsub(ν)(P) owing to the curvature emission mechanism. The twist effect of the magnetic field gives the possibility to estimate height levels r of the radio emission regions in a pulsar from the observed function anti Lsub(π)(P). At 408 MHz for an ''average statistic'' pulsar with P> or approximately 0.3 s the level r 408 =1x10 9 cm

  7. Caught in the Crab's claws

    CERN Multimedia

    2001-01-01

    'The crab', a new cryo magnet transport vehicle, starts work at CERN. Produced by the ESI group of EST division and built in Finland, it has the job of transporting LHC magnets in buildings SM18 and SMA18. If you see a huge crab scuttling around building SMA18 don't be afraid! It is the new Cryo Magnet Transport Vehicle produced by the ESI group (Engineering Support for Infrastructure, EST Division) for CERN's LHC project and built by Finnish Company ROCLA. This orange vehicle, nicknamed 'The Crab', is perhaps the strangest piece of equipment used for the construction of LHC magnets. It will start work at the end of this month. The crab will be used to transport LHC cryo-magnets and their components in the assembly and preparation building, SMA18, and test building, SM18. It has many capabilities that will allow CERN staff and contractors transport magnets between the two buildings and to locate them in the right position on the test beds. The crab in action during its first tests on 8 February. How does th...

  8. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    Science.gov (United States)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  9. The High Time Resolution Universe Pulsar Survey - XII. Galactic plane acceleration search and the discovery of 60 pulsars

    Science.gov (United States)

    Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.

    2015-07-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.

  10. A Search for Debris Disks Around Variable Pulsars

    Science.gov (United States)

    Shannon, Ryan; Cordes, J.; Lazio, J.; Kramer, M.; Lyne, A.

    2009-01-01

    After a supernova explosion, a modest amount of material will fall back and form a disk surrounding the resultant neutron star. This material can aggregate into rocky debris and the disk can be stable for the entire 10 million year lifetime of a canonical (non-recycled) radio pulsar. Previously, we developed a model that unifies the different classes of radio variability observed in many older pulsars. In this model, rocky material migrates inwards towards the neutron star and is ablated inside the pulsar magnetosphere. This material alters the electrodynamics in the magnetosphere which can cause the observed quiescent and bursting states observed in nulling pulsars, intermittent pulsars, and rotating radio transients. With this model in mind, we observed three nulling pulsars and one intermittent pulsar that are good candidates to host debris disks detectable by the Spitzer IRAC. Here we report how our IRAC observations constrain disk geometry, with particular emphasis on configurations that can provide the in-fall rate to cause the observed radio variability. We place these observations in the context of other searches for debris disks around neutron stars, which had studied either very young or very old (recycled) pulsars. By observing older canonical pulsars, all major classes of radio pulsars have been observed, and we can assess the presence of debris disks as a function of pulsar type. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  11. Pulsars as tools for fundamental physics & astrophysics

    NARCIS (Netherlands)

    Cordes, J.M.; Kramer, M.; Lazio, T.J.W.; Stappers, B.W.; Backer, D.C.; Johnston, S.

    2004-01-01

    The sheer number of pulsars discovered by the SKA, in combination with the exceptional timing precision it can provide, will revolutionize the field of pulsar astrophysics. The SKA will provide a complete census of pulsars in both the Galaxy and in Galactic globular clusters that can be used to

  12. Future X-ray Polarimetry of Relativistic Accelerators: Pulsar Wind Nebulae and Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Niccolò Bucciantini

    2018-03-01

    Full Text Available Supernova remnants (SNRs and pulsar wind nebulae (PWNs are among the most significant sources of non-thermal X-rays in the sky, and the best means by which relativistic plasma dynamics and particle acceleration can be investigated. Being strong synchrotron emitters, they are ideal candidates for X-ray polarimetry, and indeed the Crab nebula is up to present the only object where X-ray polarization has been detected with a high level of significance. Future polarimetric measures will likely provide us with crucial information on the level of turbulence that is expected at particle acceleration sites, together with the spatial and temporal coherence of magnetic field geometry, enabling us to set stronger constraints on our acceleration models. PWNs will also allow us to estimate the level of internal dissipation. I will briefly review the current knowledge on the polarization signatures in SNRs and PWNs, and I will illustrate what we can hope to achieve with future missions such as IXPE/XIPE.

  13. PULSED GAMMA RAYS FROM THE MILLISECOND PULSAR J0030+0451 WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Battelino, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M.; Bruel, P.

    2009-01-01

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power E-dot=3.5x10 33 erg s -1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 ± 0.01 and 0.08 ± 0.02 wide, respectively, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) x 10 -8 cm -2 s -1 with cutoff energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency L γ /E-dot≅15 percent for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  14. Population Synthesis of Radio and Y-ray Normal, Isolated Pulsars Using Markov Chain Monte Carlo

    Science.gov (United States)

    Billman, Caleb; Gonthier, P. L.; Harding, A. K.

    2013-04-01

    We present preliminary results of a population statistics study of normal pulsars (NP) from the Galactic disk using Markov Chain Monte Carlo techniques optimized according to two different methods. The first method compares the detected and simulated cumulative distributions of series of pulsar characteristics, varying the model parameters to maximize the overall agreement. The advantage of this method is that the distributions do not have to be binned. The other method varies the model parameters to maximize the log of the maximum likelihood obtained from the comparisons of four-two dimensional distributions of radio and γ-ray pulsar characteristics. The advantage of this method is that it provides a confidence region of the model parameter space. The computer code simulates neutron stars at birth using Monte Carlo procedures and evolves them to the present assuming initial spatial, kick velocity, magnetic field, and period distributions. Pulsars are spun down to the present and given radio and γ-ray emission characteristics, implementing an empirical γ-ray luminosity model. A comparison group of radio NPs detected in ten-radio surveys is used to normalize the simulation, adjusting the model radio luminosity to match a birth rate. We include the Fermi pulsars in the forthcoming second pulsar catalog. We present preliminary results comparing the simulated and detected distributions of radio and γ-ray NPs along with a confidence region in the parameter space of the assumed models. We express our gratitude for the generous support of the National Science Foundation (REU and RUI), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program.

  15. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Van Straten, W., E-mail: vanstraten.willem@gmail.com [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia)

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  16. Detecting pulsars in the Galactic Centre

    Science.gov (United States)

    Rajwade, K. M.; Lorimer, D. R.; Anderson, L. D.

    2017-10-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (I.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9-13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC.

  17. Sterilizing effect of irradiation processing on drunk crab

    International Nuclear Information System (INIS)

    Chen Xiulan; Shen Qingkang; Bao Jianzhong; Cao Hong; Zhang Yongtai; Han Yuepeng

    2001-01-01

    Drunk crab is a kind of specially processed crab food with the shelf time of 3 months when stored at low temperature of l to 5℃. The shelf time of the tin paked drunk crab can be extend to 9 months when the crab food is irradiated by "6"0Co-γ rays with the dosage of 2 ∼ 8 k Gy. The irradiation processing technology will make drunk crab be supplied the whole year. (authors)

  18. An Arecibo Search for Pulsars and Transient Sources in M33

    Science.gov (United States)

    Bhat, N. D. R.; Cordes, J. M.; Cox, P. J.; Deneva, J. S.; Hankins, T. H.; Lazio, T. J. W.; McLaughlin, M. A.

    2011-05-01

    We report on a systematic and sensitive search for pulsars and transient sources in the nearby spiral galaxy M33, conducted at 1.4 GHz with the Arecibo telescope's seven-beam receiver system, ALFA. Data were searched for both periodic and aperiodic sources, up to 1000 pc cm-3 in dispersion measure and on timescales from ~50 μs to several seconds. The galaxy was sampled with 12 ALFA pointings, or 84 pixels in total, each of which was searched for 2-3 hr. We describe the observations, search methodologies, and analysis strategies applicable to multibeam systems, and comment on the data quality and statistics of spurious events that arise due to radio frequency interference. While these searches have not led to any conclusive signals of periodic or transient nature that originate in the galaxy, they illustrate some of the underlying challenges and difficulties in such searches and the efficacy of simultaneous multiple beams in the analysis of search output. The implied limits are lsim5 μJy Mpc2 in luminosity (at 1400 MHz) for periodic sources in M33 with duty cycles lsim5%. For short-duration transient signals (with pulse widths lsim100 μs ), the limiting peak flux density is 100 mJy, which would correspond to a 5σ detection of bright giant pulses (~20 kJy) from Crab-like pulsars if located at the distance of M33. We discuss the implications of our null results for various source populations within the galaxy and comment on the future prospects to conduct even more sensitive searches with the upcoming next-generation instruments including the Square Kilometer Array and its pathfinders.

  19. AN ARECIBO SEARCH FOR PULSARS AND TRANSIENT SOURCES IN M33

    International Nuclear Information System (INIS)

    Bhat, N. D. R.; Cox, P. J.; Cordes, J. M.; Deneva, J. S.; Hankins, T. H.; Lazio, T. J. W.; McLaughlin, M. A.

    2011-01-01

    We report on a systematic and sensitive search for pulsars and transient sources in the nearby spiral galaxy M33, conducted at 1.4 GHz with the Arecibo telescope's seven-beam receiver system, ALFA. Data were searched for both periodic and aperiodic sources, up to 1000 pc cm -3 in dispersion measure and on timescales from ∼50 μs to several seconds. The galaxy was sampled with 12 ALFA pointings, or 84 pixels in total, each of which was searched for 2-3 hr. We describe the observations, search methodologies, and analysis strategies applicable to multibeam systems, and comment on the data quality and statistics of spurious events that arise due to radio frequency interference. While these searches have not led to any conclusive signals of periodic or transient nature that originate in the galaxy, they illustrate some of the underlying challenges and difficulties in such searches and the efficacy of simultaneous multiple beams in the analysis of search output. The implied limits are ∼ 2 in luminosity (at 1400 MHz) for periodic sources in M33 with duty cycles ∼<5%. For short-duration transient signals (with pulse widths ∼<100 μs ), the limiting peak flux density is 100 mJy, which would correspond to a 5σ detection of bright giant pulses (∼20 kJy) from Crab-like pulsars if located at the distance of M33. We discuss the implications of our null results for various source populations within the galaxy and comment on the future prospects to conduct even more sensitive searches with the upcoming next-generation instruments including the Square Kilometer Array and its pathfinders.

  20. Pulsar signals from relativistic electron beams

    International Nuclear Information System (INIS)

    Elsaesser, K.; Kirk, J.

    1976-01-01

    The possibility of the radio emission from pulsars originating in a beam-plasma system is discussed. We calculate the curvature radiation which arises if this system is placed in a very strong curved magnetic field. Numerical experiments show that the beam instability evolves into a rather stationary wave pattern whose Fourier components are concentrated near the most unstable mode. This result leads us to estimates of the radiation intensity of its autocorrelation function in time, and its bandwidth. The results are compared with measurements of the micro-structure of pulses, and the constraints imposed on radiation mechanisms by longer time-scale properties are shown to be satisfied. (orig.) [de

  1. Magnetospheric structure of rotation powered pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Arons, J. (California Univ., Berkeley, CA (USA) California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics)

    1991-01-07

    I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

  2. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Langston, Glen [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States)

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  3. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  4. Radio Observations of Elongated Pulsar Wind Nebulae

    Science.gov (United States)

    Ng, Stephen C.-Y.

    2015-08-01

    The majority of pulsars' rotational energy is carried away by relativistic winds, which are energetic particles accelerated in the magnetosphere. The confinement of the winds by the ambient medium result in synchrotron bubbles with broad-band emission, which are commonly referred to as pulsar wind nebulae (PWNe). Due to long synchrotron cooling time, a radio PWN reflects the integrated history of the system, complementing information obtained from the X-ray and higher energy bands. In addition, radio polarization measurements can offer a powerful probe of the PWN magnetic field structure. Altogether these can reveal the physical conditions and evolutionary history of a system.I report on preliminary results from high-resolution radio observations of PWNe associated with G327.1-1.1, PSRs J1015-5719, B1509-58, and J1549-4848 taken with the Australia Telescope Compact Array (ATCA). Their magnetic field structure and multiwavelength comparison with other observations are discussed.This work is supported by a ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  5. Exosat observations of the supernova remnant G109.1-1.0 and the X-ray pulsar 1E 2259+586

    International Nuclear Information System (INIS)

    Morini, M.; Robba, N.R.; Smith, A.; Van Der Klis, M.

    1988-01-01

    Exosat observations of the SNR G109.1-1.0 and the X-ray pulsar 1E 2259+586 obtained in December 1984 show a similar spatial distribution of the X-ray emission to that found by the Einstein Observatory, but different spectra for the various source components. A pulsar period of 6.978725 s was found for this epoch. The results indicate that the remnant is in the adiabatic phase, with an age of the order of 10,000 yr, and a SN energy in the range 10 to the 51st-10 to the 52nd ergs. Interpretations for the jet emission as either thermal or nonthermal are considered. 30 references

  6. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1981-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the galactic plane due to high space velocities imparted to the pulsars at birth. The evidence for this model is described and the various factors involved in estimating the total galactic population and the galactic birthrate of pulsars are discussed. The various estimates of the galactic population which cluster around 5 x 10 5 are seen to be critically dependent upon the cut-off at low luminosities and upon the value of the mean electron density within 500 pc of the Earth. Estimates of the lifetimes of pulsars are available from both the characteristic ages and proper motion measurements and both give values of about 5 million years. The implied birthrate of one in every 10 years is barely compatible with most estimates of the galactic supernova rate. (Auth.)

  7. Timing Noise Analysis of NANOGrav Pulsars

    OpenAIRE

    Perrodin, Delphine; Jenet, Fredrick; Lommen, Andrea; Finn, Lee; Demorest, Paul; Ferdman, Robert; Gonzalez, Marjorie; Nice, David; Ransom, Scott; Stairs, Ingrid

    2013-01-01

    We analyze timing noise from five years of Arecibo and Green Bank observations of the seventeen millisecond pulsars of the North-American Nanohertz Observatory for Gravitational Waves (NANOGrav) pulsar timing array. The weighted autocovariance of the timing residuals was computed for each pulsar and compared against two possible models for the underlying noise process. The first model includes red noise and predicts the autocovariance to be a decaying exponential as a function of time lag. Th...

  8. THE PECULIAR PULSAR POPULATION OF THE CENTRAL PARSEC

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; O' Leary, Ryan M., E-mail: jdexter@berkeley.edu, E-mail: oleary@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2014-03-01

    Pulsars orbiting the Galactic center black hole, Sgr A*, would be potential probes of its mass, distance, and spin, and may even be used to test general relativity. Despite predictions of large populations of both ordinary and millisecond pulsars in the Galactic center, none have been detected within 25 pc by deep radio surveys. One explanation has been that hyperstrong temporal scattering prevents pulsar detections, but the recent discovery of radio pulsations from a highly magnetized neutron star (magnetar) within 0.1 pc shows that the temporal scattering is much weaker than predicted. We argue that an intrinsic deficit in the ordinary pulsar population is the most likely reason for the lack of detections to date: a ''missing pulsar problem'' in the Galactic center. In contrast, we show that the discovery of a single magnetar implies efficient magnetar formation in the region. If the massive stars in the central parsec form magnetars rather than ordinary pulsars, their short lifetimes could explain the missing pulsars. Efficient magnetar formation could be caused by strongly magnetized progenitors, or could be further evidence of a top-heavy initial mass function. Furthermore, current high-frequency surveys should already be able to detect bright millisecond pulsars, given the measured degree of temporal scattering.

  9. Resonant spin-flavour precession of neutrinos and pulsar velocities

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Lanza, A.; Sciama, D.W.

    1997-02-01

    Young pulsars are known to exhibit large space velocities, up to 10 3 km/s. We propose a new mechanism for the generation of these large velocities based on an asymmetric emission of neutrinos during the supernova explosion. The mechanism involves the resonant spin-flavour precession of neutrinos with a transition magnetic moment in the magnetic field of the supernova. The asymmetric emission of neutrinos is due the distortion of the resonance surface by matter polarization effects in the supernova magnetic field. The requisite values of the field strengths and neutrino parameters are estimated for various neutrino conversions caused by their Dirac or Majorana-type transition magnetic moments. (author). 30 refs, 1 tab

  10. Plerions and pulsar-powered nebulae

    OpenAIRE

    Gaensler, Bryan

    2000-01-01

    In this brief review, I discuss recent developments in the study of pulsar-powered nebulae ("plerions"). The large volume of data which has been acquired in recent years reveals a diverse range of observational properties, demonstrating how differing environmental and pulsar properties manifest themselves in the resulting nebulae.

  11. Pilot pulsar surveys with LOFAR

    NARCIS (Netherlands)

    Coenen, T.

    2013-01-01

    We are performing two complementary pilot pulsar surveys as part of LOFAR commissioning. The LOFAR Pilot Pulsar Survey (LPPS) is a shallow all-sky survey using an incoherent combination of LOFAR stations. The LOFAR Tied-Array Survey (LOTAS) is a deeper pilot survey using 19 simultaneous tied-array

  12. Pulsar glitch dynamics

    Science.gov (United States)

    Morley, P. D.

    2018-01-01

    We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.

  13. A Bayesian Classifier for X-Ray Pulsars Recognition

    Directory of Open Access Journals (Sweden)

    Hao Liang

    2016-01-01

    Full Text Available Recognition for X-ray pulsars is important for the problem of spacecraft’s attitude determination by X-ray Pulsar Navigation (XPNAV. By using the nonhomogeneous Poisson model of the received photons and the minimum recognition error criterion, a classifier based on the Bayesian theorem is proposed. For X-ray pulsars recognition with unknown Doppler frequency and initial phase, the features of every X-ray pulsar are extracted and the unknown parameters are estimated using the Maximum Likelihood (ML method. Besides that, a method to recognize unknown X-ray pulsars or X-ray disturbances is proposed. Simulation results certificate the validity of the proposed Bayesian classifier.

  14. Nonlinear temporal modulation of pulsar radioemission

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1984-01-01

    A nonlinear theory is discussed for self-modulation of pulsar radio pulses. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron-positron plasma. The nonlinearities arising from wave intensity induced relativistic particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary wave forms may account for the formation of pulsar microstructures. (Author) [pt

  15. Radio emission from embryonic superluminous supernova remnants

    Science.gov (United States)

    Omand, Conor M. B.; Kashiyama, Kazumi; Murase, Kohta

    2018-02-01

    It has been widely argued that Type-I superluminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of B ˜ 1013-1015 G. Murase, Kashiyama & Mészáros proposed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a relevant counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array can detect the radio nebula from SNe at DL ˜ 1 Gpc in a few years after the explosion, while the Jansky Very Large Array can also detect the counterpart in a few decades. The proposed radio follow-up observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.

  16. Fermi-LAT Constraints on the Pulsar Wind Nebula Nature of HESS J1857+026

    Science.gov (United States)

    Rousseau, R.; Grondin, M.-H.; VanEtten, A.; Lemoine-Goumard, M.; Bogdanov, S.; Hessels, J. W. T.; Kaspi, V. M.; Arzoumanian, Z.; Camilo, F.; Casandjian, J. M.; hide

    2012-01-01

    Since its launch, the Fermi satellite has firmly identified 5 pulsar wind nebulae plus a large number of candidates, all powered by young and energetic pulsars. HESS J1857+026 is a spatially extended gamma-ray source detected by H.E.S.S. and classified as a possible pulsar wind nebula candidate powered by PSR J1856+0245. Aims. We search for -ray pulsations from PSR J1856+0245 and explore the characteristics of its associated pulsar wind nebula. Methods. Using a rotational ephemeris obtained from the Lovell telescope at Jodrell Bank Observatory at 1.5 GHz, we phase.fold 36 months of gamma-ray data acquired by the Large Area Telescope (LAT) aboard Fermi. We also perform a complete gamma-ray spectral and morphological analysis. Results. No pulsation was detected from PSR J1856+0245. However, significant emission is detected at a position coincident with the TeV source HESS J1857+026. The gamma-ray spectrum is well described by a simple power law with a spectral index of Gamma = 1.53 +/- 0.11(sub stat) +/- 0.55(sub syst) and an energy flux of G(0.1 C100 GeV) = (2.71 +/- 0.52(sub stat) +/- 1.51(sub syst) X 10(exp -11) ergs/ sq cm/s. This implies a gamma.ray efficiency of approx 5 %, assuming a distance of 9 kpc, the gamma-ray luminosity of L(sub gamma) (sub PWN) (0.1 C100 GeV) = (2.5 +/- 0.5(sub stat) +/- 1.5(sub syst)) X 10(exp 35)(d/(9kpc))(exp 2) ergs/s and E-dot = 4.6 X 10(exp 36) erg /s, in the range expected for pulsar wind nebulae. Detailed multi-wavelength modeling provides new constraints on its pulsar wind nebula nature.

  17. Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations

    CERN Document Server

    Yagi, Kent; Barausse, Enrico; Yunes, Nicolás

    2014-01-01

    Binary pulsars are ideal to test the foundations of General Relativity, such as Lorentz symmetry, which requires that experiments produce the same results in all free-falling (i.e.inertial) frames. We here break this symmetry in the gravitational sector by specifying a preferred time direction, and thus a preferred frame, at each spacetime point. We then examine the consequences of this gravitational Lorentz symmetry breaking in the orbital evolution of binary pulsars, focusing on the dissipative effects. We find that Lorentz symmetry breaking modifies these effects, and thus the orbital dynamics, in two different ways. First, it generically causes the emission of dipolar radiation, which makes the orbital separation decrease faster than in General Relativity. Second, the quadrupole component of the emission is also modified. The orbital evolution depends critically on the sensitivities of the stars, which measure how their binding energies depend on the motion relative to the preferred frame. We calculate th...

  18. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, G; Burke-Spolaor, S; Champion, D [Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710 (Australia); Archibald, A [Department of Physics, McGill University, Montreal, PQ, H3A 2T8 (Canada); Arzoumanian, Z [CRESST/USRA, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Backer, D [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Bailes, M; Bhat, N D R [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn VIC 3122 (Australia); Burgay, M [Universita di Cagliari, Dipartimento di Fisica, SP Monserrato-Sestu km 0.7, 09042 Monserrato (Canada) (Italy); Cognard, I; Desvignes, G; Ferdman, R D [Station de Radioastronomie de Nanay, Observatoire de Paris, 18330 Nancay (France); Coles, W [Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA (United States); Cordes, J [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Demorest, P [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Finn, L [Center for Gravitational Wave Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Freire, P [Max-Planck-Institut fuer Radioastronomie, Auf Dem Huegel 69, 53121, Bonn (Germany); Gonzalez, M [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hessels, J [Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Hotan, A, E-mail: george.hobbs@csiro.a [Department of Imaging and Applied Physics, Curtin University, Bentley, WA (Australia)

    2010-04-21

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (approx 10{sup -9}-10{sup -8} Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.

  19. A lower limit for the birth rate of pulsars

    International Nuclear Information System (INIS)

    Narayan, R.; Vivekanand, M.

    1981-01-01

    Using experimental data on observed pulsars, a lower limit for the birth rate of pulsars in our galaxy was estimated, taking into account the beam factor which allows for the possibility that only a fraction of all pulsars is beamed towards the earth. The calculation reduces the discrepancy between pulsar and supernova birth rates. (U.K.)

  20. A CANDIDATE OPTICAL COUNTERPART TO THE MIDDLE AGED γ -RAY PULSAR PSR J1741–2054

    Energy Technology Data Exchange (ETDEWEB)

    Mignani, R. P.; Marelli, M.; Luca, A. De; Salvetti, D.; Belfiore, A. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133, Milano (Italy); Testa, V. [INAF—Osservatorio Astronomico di Roma, via Frascati 33, I-00040, Monteporzio (Italy); Pierbattista, M. [Department of Astrophysics and Theory of Gravity, Maria Curie-Sklodowska University, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Razzano, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Shearer, A.; Moran, P. [Centre for Astronomy, National University of Ireland, Newcastle Road, Galway (Ireland)

    2016-07-10

    We carried out deep optical observations of the middle aged γ -ray pulsar PSR J1741−2054 with the Very Large Telescope (VLT). We identified two objects, of magnitudes m {sub v} = 23.10 ± 0.05 and m {sub v} = 25.32 ± 0.08, at positions consistent with the very accurate Chandra coordinates of the pulsar, the faintest of which is more likely to be its counterpart. From the VLT images we also detected the known bow-shock nebula around PSR J1741−2054. The nebula is displaced by ∼0.″9 (at the 3 σ confidence level) with respect to its position measured in archival data, showing that the shock propagates in the interstellar medium consistently with the pulsar proper motion. Finally, we could not find evidence of large-scale extended optical emission associated with the pulsar wind nebula detected by Chandra , down to a surface brightness limit of ∼28.1 mag arcsec{sup −2}. Future observations are needed to confirm the optical identification of PSR J1741−2054 and characterize the spectrum of its counterpart.