Sample records for crab nebula supernova

  1. The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula (United States)

    Temim, Tea; Dwek, Eli


    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  2. The Crab Nebula flaring activity

    Directory of Open Access Journals (Sweden)

    G. Montani


    Full Text Available The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼1015 cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼109, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  3. Monitoring the Crab Nebula with LOFT (United States)

    Wilson-Hodge, Colleen A.


    From 2008-2010, the Crab Nebula was found to decline by 7% in the 15-50 keV band, consistently in Fermi GBM, INTEGRAL IBIS, SPI, and JEMX, RXTE PCA, and Swift BAT. From 2001-2010, the 15-50 keV flux from the Crab Nebula typically varied by about 3.5% per year. Analysis of RXTE PCA data suggests possible spectral variations correlated with the flux variations. I will present estimates of the LOFT sensitivity to these variations. Prior to 2001 and since 2010, the observed flux variations have been much smaller. Monitoring the Crab with the LOFT WFM and LAD will provide precise measurements of flux variations in the Crab Nebula if it undergoes a similarly active episode.

  4. FACT. Energy spectrum of the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Temme, Fabian; Einecke, Sabrina; Buss, Jens [TU Dortmund, Experimental Physics 5, Otto-Hahn-Str.4, 44221 Dortmund (Germany); Collaboration: FACT-Collaboration


    The First G-APD Cherenkov Telescope is the first Imaging Air Cherenkov Telescope which uses silicon photon detectors (G-APDs aka SiPM) as photo sensors. With more than four years of operation, FACT proved an application of SiPMs is suitable for the field of ground-based gamma-ray astronomy. Due to the stable flux at TeV energies, the Crab Nebula is handled as a ''standard candle'' in Cherenkov astronomy. The analysis of its energy spectrum and comparison with other experiments, allows to evaluate the performance of FACT. A modern analysis chain, based on data stream handling and multivariate analysis methods was developed in close cooperation with the department of computer science at the TU Dortmund. In this talk, this analysis chain and its application are presented. Further to this, results, including the energy spectrum of the Crab Nebula, measured with FACT, are shown.

  5. Properties and Spatial Distribution of Dust Emission in the Crab Nebula (United States)

    Sonneborn, G.; Temim, T.; Dwek, E.; Arendt, R.; Gehrz, R.; Slane, P.


    The nature and quantity of dust produced in supernovae (SNe) is still poorly understood. Recent IR observations of freshly-formed dust in supernova remnants (SNRs) have yielded significantly lower dust masses than predicted by theoretical models and observations high-redshift galaxies. The Crab Nebula's pulsar wind is thought to be sweeping up freshly-formed SN dust along with the SN ejecta. The evidence for this dust was found in the form of an IR bump in the integrated spectrum of the Crab and in extinction against the synchrotron nebula that revealed the presence of dust in the filament cores. We present the first spatially-resolved emission spectra of dust in the Crab Nebula acquired with the Spitzer Space Telescope. The IR spectra are dominated by synchrotron emission and show forbidden line emission from both sides of the expanding nebula, including emission from [S III], [Si II], [Ne II], [Ne III], [Ne V], [Ar III], [Ar V], [Fe II], and [Ni II]. We extrapolated a synchrotron spectral data cube from the Spitzer 3.6 and 4.5 micron images, and subtracted this contribution from our 15-40 micron spectral data to produce a map of the residual continuum emission from dust. The emission appears to be concentrated along the ejecta filaments and is well described by astronomical silicates at an average temperature of 65 K. The estimated mass of dust in the Crab Nebula is 0.008 solar masses.

  6. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula. (United States)

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T


    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  7. a Surprise from the Pulsar in the Crab Nebula (United States)


    New observations of the spectrum of the rapidly spinning neutron star (the `pulsar') in the Crab Nebula have been carried out with the ESO 3.5-metre New Technology Telescope (NTT) by a group of Italian astronomers [1]. Because of greatly improved spectral resolution which allows to register even very fine details in the pulsar's spectrum, they are able to determine for the first time with high accuracy the overall dependance of the emission on wavelength, i.e. the `shape' of the spectrum. Quite unexpectedly, they also detect a hitherto unknown 100 A (10 nm) broad `absorption dip', which can be securely attributed to the pulsar. These results open an exciting new window for the study of the extreme physical processes close to a pulsar. The Nature of Pulsars It is estimated that there may be as many as 100 million neutron stars in our Galaxy. A neutron star is the superdense remnant of the extremely violent supernova explosion that occurs at the end of the life of a comparatively massive star. In fact, all stars that are more than about 6 times heavier than the Sun are believed to end their lives as supernovae. During the explosion, the central core of the dying star collapses in a few milliseconds and the matter at the centre is compressed to a density comparable to that of an atomic nucleus. Due to the enormous inward pressure, the atomic particles are squeezed together into a kind of neutron jam. The outcome is the formation of a neutron star with a diameter of 10-15 kilometres, weighing as much as the Sun. In accordance with the physical law that implies that the rotation momentum of the exploding star must be conserved, newborn neutron stars will rotate very rapidly around their axis, in some cases as fast as 100 times per second. In the same way, the new neutron star is expected to possess a strong magnetic field. Of these myriads of neutron stars, about 700 have been observed to emit radio pulses (hence the name `pulsar'). A few of these can also be detected

  8. Infrared Observations of Cassiopeia A and the Crab Nebula (United States)

    Lawrence, S.; Bohigas, J.


    We have used the Camaleon infrared spectrograph/camera on the 2.1-m telescope of the Observatorio Astronomico Nacional of Mexico to image the Cassiopiea A and Crab Nebula supernova remnants in various bands between 1.0 and 2.5 mu m. Camaleon uses a 256x256 NICMOS array detector. The low resolution imaging mode used for these observations has a field of view of 3.63 arcminutes and an image scale of 0.85 arcseconds per pixel. Mosaics of Cas A were observed in J, K', and deeply in H. As expected, extended emission was detected in the H band, arising from the [Fe II] 1.644 mu m line in the ejecta. Abundance anisotropies have been inferred in the fast moving knots on the basis of the relative strengths of their oxygen and sulfur lines. Due to the heavy extinction towards Cas A, the infrared iron line may be best to investigate the distribution of iron-peak elements. We will present calibrated maps of the [Fe II] emission, and compare the intensity distribution with those of the optical oxygen and sulfur lines. We will also discuss the relative strengths of the [Fe II] emission between the fast moving knots and the quasi-stationary flocculi. Mosaics of the Crab Nebula were taken in J, H, K', and deeply in a narrow filter centered on the H2 2.122 mu m line. Our goal is to map the H2 emission from the dense cores of the ejecta filaments (as detected by Graham et al. 1990). We will also present maps of the infrared spectral index variations of the synchrotron nebula.

  9. The surprising Crab pulsar and its nebula: a review. (United States)

    Bühler, R; Blandford, R


    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.


    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea; Sonneborn, George; Dwek, Eli; Arendt, Richard G. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gehrz, Robert D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Roellig, Thomas L., E-mail: [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000 (United States)


    Recent infrared (IR) observations of freshly formed dust in supernova remnants have yielded significantly lower dust masses than predicted by theoretical models and measured from high-redshift observations. The Crab Nebula's pulsar wind is thought to be sweeping up freshly formed supernova (SN) dust along with the ejected gas. The evidence for this dust was found in the form of an IR excess in the integrated spectrum of the Crab and in extinction against the synchrotron nebula that revealed the presence of dust in the filament cores. We present the first spatially resolved emission spectra of dust in the Crab Nebula acquired with the Infrared Spectrograph on board the Spitzer Space Telescope. The IR spectra are dominated by synchrotron emission and show forbidden line emission from S, Si, Ne, Ar, O, Fe, and Ni. We derived a synchrotron spectral map from the 3.6 and 4.5 {mu}m images, and subtracted this contribution from our data to produce a map of the residual continuum emission from dust. The dust emission appears to be concentrated along the ejecta filaments and is well described by an amorphous carbon or silicate grain compositions. We find a dust temperature of 55 {+-} 4 K for silicates and 60 {+-} 7 K for carbon grains. The total estimated dust mass is (1.2-12) Multiplication-Sign 10{sup -3} M{sub Sun }, well below the theoretical dust yield predicted for a core-collapse supernova. Our grain heating model implies that the dust grain radii are relatively small, unlike what is expected for dust grains formed in a Type IIP SN.

  11. Gamma rays and neutrinos from the Crab Nebula produced by pulsar accelerated nuclei


    Bednarek, W.; Protheroe, R. J.


    We investigate the consequences of the acceleration of heavy nuclei (e.g. iron nuclei) by the Crab pulsar. Accelerated nuclei can photodisintegrate in collisions with soft photons produced in the pulsar's outer gap, injecting energetic neutrons which decay either inside or outside the Crab Nebula. The protons from neutron decay inside the nebula are trapped by the Crab Nebula magnetic field, and accumulate inside the nebula producing gamma-rays and neutrinos in collisions with the matter in t...

  12. Multibaseline Observations of the Occultation of Crab Nebula by the ...

    Indian Academy of Sciences (India)

    ... Journal of Astrophysics and Astronomy; Volume 21; Issue 3-4. Multibaseline Observations of the Occultation of Crab Nebula by the Solar Corona at Decameter Wavelengths. K. R. Subramanian. Session X – Cycle Variation in the Quiet Corona & Coronal Holes Volume 21 Issue 3-4 September-December 2000 pp 421-422 ...

  13. Hard X-ray Variations in the Crab Nebula (United States)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Connaughton, V.; Finger, M. H.; hide


    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/ PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab Nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  14. Crab Nebula Variations in Hard X-rays (United States)

    Wilson-Hodge, Colleen A.


    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  15. Modelling the ArH+ emission from the Crab nebula (United States)

    Priestley, F. D.; Barlow, M. J.; Viti, S.


    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.

  16. Discovery of powerful gamma-ray flares from the Crab Nebula. (United States)

    Tavani, M; Bulgarelli, A; Vittorini, V; Pellizzoni, A; Striani, E; Caraveo, P; Weisskopf, M C; Tennant, A; Pucella, G; Trois, A; Costa, E; Evangelista, Y; Pittori, C; Verrecchia, F; Del Monte, E; Campana, R; Pilia, M; De Luca, A; Donnarumma, I; Horns, D; Ferrigno, C; Heinke, C O; Trifoglio, M; Gianotti, F; Vercellone, S; Argan, A; Barbiellini, G; Cattaneo, P W; Chen, A W; Contessi, T; D'Ammando, F; DePris, G; Di Cocco, G; Di Persio, G; Feroci, M; Ferrari, A; Galli, M; Giuliani, A; Giusti, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Fuschino, F; Marisaldi, M; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Perotti, F; Piano, G; Picozza, P; Prest, M; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Vallazza, E; Zambra, A; Zanello, D; Lucarelli, F; Santolamazza, P; Giommi, P; Salotti, L; Bignami, G F


    The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega-electron volts to 10 giga-electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.

  17. Observation and Spectral Measurements of the Crab Nebula with Milagro (United States)

    Abdo, A. A.; Allen, B. T.; Aune, T.; Benbow, W.; Berley, D.; Chen, C.; Christopher, G. E.; DeYoung, T.; Dingus, B. L.; Falcone, A.; hide


    The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV - 100 TeV gamma ray air showers by observing the particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between 1 and 100 TeV. The TeV emission is believed to be caused by inverse-Compton up-scattering scattering of ambient photons by an energetic electron population. The location of a Te V steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fit.

  18. HAWC Analysis of the Crab Nebula Using Neural-Net Energy Reconstruction (United States)

    Marinelli, Samuel; HAWC Collaboration


    The HAWC (High-Altitude Water-Cherenkov) experiment is a TeV γ-ray observatory located 4100 m above sea level on the Sierra Negra mountain in Puebla, Mexico. The detector consists of 300 water-filled tanks, each instrumented with 4 photomuliplier tubes that utilize the water-Cherenkov technique to detect atmospheric air showers produced by cosmic γ rays. Construction of HAWC was completed in March, 2015. The experiment's wide field of view (2 sr) and high duty cycle (> 95 %) make it a powerful survey instrument sensitive to pulsar wind nebulae, supernova remnants, active galactic nuclei, and other γ-ray sources. The mechanisms of particle acceleration at these sources can be studied by analyzing their energy spectra. To this end, we have developed an event-by-event energy-reconstruction algorithm employing an artificial neural network to estimate energies of primary γ rays. The Crab Nebula, the brightest source of TeV photons, makes an excellent calibration source for this technique. We will present preliminary results from an analysis of the Crab energy spectrum using this new energy-reconstruction method. This work was supported by the National Science Foundation.

  19. Gamma-ray flares from the Crab Nebula. (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M


    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  20. On Calibrations Using the Crab Nebula as a Standard Candle (United States)

    Weisskopf, Martin; Guainazzi, Matteo; Jahoda, Keith; Shaposhnikov, Nikolai; ODell, Stephen; Zavlin, Vyacheslav; Wilson-Hodge, Colleen; Elsner, Ronald


    Inspired by a recent paper (Kirsch et al. 2005) on possible use of the Crab Nebula as a standard candle for calibrating X-ray response func tions, we examine possible consequences of intrinsic departures from a single (absorbed) power law upon such calibrations. We limited our analyses to three more modern X-ray instruments -- the ROSAT/PSPC, th e RXTE/PCA, and the XMM-Newton/EPIC-pn. The results are unexpected an d indicate a need to refine two of the three response functions studi ed. The implications for Chandra will be discussed.

  1. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula (United States)


    Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, is the remnant of a star that was observed to explode in 1054 A.D. Chinese astronomers in that year reported a "guest star" that appeared suddenly and remained visible for weeks, even during daytime. From gamma-ray telescopes to radio telescopes, the Crab has been observed using virtually every astronomical instrument that could see that part of the sky. Unraveling the mysteries of the Crab has proven to be the door to insight after insight into the workings of the universe. The Crab convincingly tied the origin of enigmatic "pulsars" to the stellar cataclysms known as supernovas. Observations of the expanding cloud of filaments in the Crab were instrumental in confirming the cosmic origin of the chemical elements from which planets (and people) are made. The nebula is located 6,000 light years from Earth in the constellation Taurus. The Crab pulsar, which was discovered by radio astronomers in 1968, is a neutron star rotating 30 times per second. Neutron stars are formed in the seconds before a supernova explosion when gravity crushes the central core of the star to densities 50 trillion times that of lead and a diameter of only 12 miles. Another consequence of the dramatic collapse is that neutron stars are rapidly rotating and highly magnetized. Like a gigantic cosmic generator, the rotating magnet generates 10 quadrillion volts of electricity, 30 million times that of a typical lightning bolt. "It is an incredibly efficient generator," Ruderman explained. "More than ninety-five percent efficient. There's nothing like it on Earth." Press: Fact Sheet To follow Chandra's progress, visit the Chandra News Web site at: AND NASA's Marshall Space Flight Center manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight

  2. New Observations of the Crab Nebula and Pulsar (United States)

    Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Elsner, Ronald f.; Yakovlev, Dmitry R.; Zavlin, Vyacheslav E.; Becker, Werner


    We present a phase-resolved study of the X-ray spectrum of the Crab Pulsar, using data obtained in a special mode with the Chandra X-ray Observatory. The superb angular resolution easily enables discerning the Pulsar from the surrounding nebulosity, even at pulse minimum. We find that the Pulsar's X-ray spectral index varies sinusoidally with phase---except over the same phase range for which rather abrupt changes in optical polarization magnitude and position angle have been reported. In addition, we use the X-ray data to constrain the surface temperature for various neutron-star equations of state and atmospheres. Finally, we present new data on dynamical variations of structure within the Nebula.

  3. Particle acceleration model for the broad-band baseline spectrum of the Crab nebula (United States)

    Fraschetti, F.; Pohl, M.


    We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.

  4. The Historical Supernovae


    Green, D.A.; F. R. Stephenson


    The available historical records of supernovae occurring in our own Galaxy over the past two thousand years are reviewed. These accounts include the well-recorded supernovae of AD 1604 (Kepler's SN), 1572 (Tycho's SN), 1181, 1054 (which produced the Crab Nebula) and 1006, together with less certain events dating back to AD 185. In the case of the supernovae of AD 1604 and 1572 it is European records that provide the most accurate information available, whereas for earlier supernovae records a...

  5. Life after stellar death: Planetary Nebulae and Supernova Remnants (United States)

    Boumis, P.


    Planetary nebulae (PNe) are powerful tracers of our Galaxy's star formation history. Their study can provide insight to the late stages of stellar evolution, the nucleosynthesis in low and intermediate mass stars (1-8Mo) and the chemical evolution of galaxies. Supernova explosions belong to the most spectacular events in the Universe. Supernova remnants (SNRs), which are the consequent results of these events and come from the late stages of massive stars (>8Mo), are among the strongest radio sources observed. They have a major influence on both the properties of the interstellar medium (ISM) and the evolution of galaxies as a whole. They enrich the ISM with heavy elements, release about 1051 ergs of energy, heat the ISM, compress the magnetic field, and efficiently accelerate, by their shock waves, energetic cosmic rays observed throughout the Galaxy. I will present results of our work on PNe and SNRs, which aims to (a) discover optical SNRs in the Galaxy, (b) study their morphology and kinematics, (c) characterize their properties (such as density, shock velocity etc.) and (d) provide information on their interaction with the ISM, using the "Aristarchos" among other telescopes.

  6. Broadband x-ray imaging and spectroscopy of the crab nebula and pulsar with NuSTAR

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Reynolds, Stephen; Harrison, Fiona


    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ~9 ke...

  7. When a Standard Candle Flickers: Hard X-ray Variations in the Crab Nebula (United States)

    Wilson-Hodge, Colleen; Cherry, Michael L.; Case, Gary L.; Baumgartner, Wayne H.; Beklen, Elif; Bhat, Narayana P.; Briggs, Michael Stephen; Buehler, Rolf; Camero-Arranz, Ascension; Connaughton, Valerie; Diehl, Roland; Finger, Mark H.; Gehrels, Neil; Greiner, Jochen; Harrison, Fiona; Hays, Elizabeth A.; Jahoda, Keith; Jenke, Peter; Kippen, R. Marc; Kouveliotou, Chryssa; Krimm, Hans A.; Kuulkers, Erik; Madsen, Kristin; Markwardt, Craig; Meegan, Charles A.; Natalucci, Lorenzo; Paciesas, William Simon; Preece, Robert D.; Rodi, James; Shaposhnikov, Nikolai; Skinner, Gerald K.; Swartz, Douglas A.; von Kienlin, Andreas; Zhang, Xiao-Ling


    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, a ~7% (70 mcrab) decline was discovered in the overall Crab nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to ~3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. At higher energies, above 50 keV, the Crab flux appears to be slowly recovering to its 2008 levels. I will present updated light curves in multiple energy bands for the Crab nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL, MAXI, and NuSTAR and a 16-year long light curve from RXTE/PCA. We will compare these variations to higher energies as well, e.g. Fermi LAT.

  8. Multi-wavelength observations of pulsar wind nebulae and composite supernova remnants (United States)

    Temim, Tea

    Multi-wavelength studies of pulsar wind nebulae (PWNe) and supernova remnants (SNRs) lead to a better understanding of their evolutionary development, the interaction of supernovae (SNe) and pulsar winds with their surroundings, and nucleosynthesis and production and processing of dust grains by SNe. PWNe and composite supernova remnants, in particular, are unique laboratories for the study of the energetic pulsar winds, particle injection processes, and the impact of PWNe on the evolving SNR. They provide information on SNR shock properties, densities and temperatures, and the chemical composition and the ionization state of the material ejected by SNe. SNRs also serve as laboratories for the study of dust production and processing in SNe. While X-ray observations yield important information about the SN progenitor, hot gas properties, SN explosion energy, and the surrounding interstellar medium (ISM), the IR can provide crucial information about the faint non-thermal emission, continuum emission from dust, and forbidden line emission from SN ejecta. Combining observations at a wide range of wavelengths provides a more complete picture of the SNR development and helps better constrain current models describing a SNR's evolution and its impact on the surrounding medium. This thesis focuses on a multi-wavelength study of PWNe in various stages of their evolution and investigates their interaction with the expanding SN ejecta and dust and the SNR reverse shock. The study of these interactions can provide important information on the SNR properties that may otherwise be unobservable. The work in this thesis has been carried out under the supervision of Patrick Slane at the Harvard-Smithsonian Center for Astrophysics, and Charles E. Woodward and Rebert D. Gehrz at the University of Minnesota. The first part of the thesis summarizes the evolution and observational properties of SNRs and PWNe, with a focus on the evolution of young PWNe that are sweeping up inner SN

  9. When a Standard Candle Flickers: Crab Nebula Variations in Hard X-rays (United States)

    Wilson-Hodge, Colleen A.


    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We will miss RXTE, but will continue our monitoring program using Fermi/GBM, MAXI, and Swift/BAT.

  10. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula. (United States)

    Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell


    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  11. Supernova remnants, pulsar wind nebulae and their interaction

    NARCIS (Netherlands)

    Swaluw, E. van der


    A supernova explosion marks the end of the evolution of a massive star. What remains of the exploded star is a high density neutron star or a black hole. The material which has been ejected by the supernova explosion will manifest itself as a supernova remnant: a hot bubble of gas expanding in the

  12. Bursts of the Crab Nebula gamma-ray emission at high and ultra-high energies

    Directory of Open Access Journals (Sweden)

    Lidvansky A.S.


    Full Text Available Characteristics of the flares of gamma rays detected from the Crab Nebula by the AGILE and Fermi-LAT satellite instruments are compared with those of a gamma ray burst recorded by several air shower arrays on February 23, 1989 and with one recent observation made by the ARGO-YBJ array. It is demonstrated that though pulsar-periodicity and energy spectra of emissions at 100 MeV (satellite gamma ray telescopes and 100 TeV (EAS arrays are different, their time structures seem to be similar. Moreover, maybe the difference between “flares” and “waves” recently found in the Crab Nebula emission by the AGILE team also exists at ultra-high energies.

  13. Detonative propagation and accelerative expansion of the Crab Nebula shock front. (United States)

    Gao, Yang; Law, Chung K


    The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected. © 2011 American Physical Society

  14. Two-zone model for the broadband Crab nebula spectrum: microscopic interpretation

    Directory of Open Access Journals (Sweden)

    Fraschetti F.


    Full Text Available We develop a simple two-zone interpretation of the broadband baseline Crab nebula spectrum between 10−5 eV and ~ 100 TeV by using two distinct log-parabola energetic electrons distributions. We determine analytically the very-high energy photon spectrum as originated by inverse-Compton scattering of the far-infrared soft ambient photons within the nebula off a first population of electrons energized at the nebula termination shock. The broad and flat 200 GeV peak jointly observed by Fermi/LAT and MAGIC is naturally reproduced. The synchrotron radiation from a second energetic electron population explains the spectrum from the radio range up to ~ 10 keV. We infer from observations the energy dependence of the microscopic probability of remaining in proximity of the shock of the accelerating electrons.

  15. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet. (United States)

    Li, C K; Tzeferacos, P; Lamb, D; Gregori, G; Norreys, P A; Rosenberg, M J; Follett, R K; Froula, D H; Koenig, M; Seguin, F H; Frenje, J A; Rinderknecht, H G; Sio, H; Zylstra, A B; Petrasso, R D; Amendt, P A; Park, H S; Remington, B A; Ryutov, D D; Wilks, S C; Betti, R; Frank, A; Hu, S X; Sangster, T C; Hartigan, P; Drake, R P; Kuranz, C C; Lebedev, S V; Woolsey, N C


    The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.

  16. Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST (United States)

    Weisskopf, Martin C.


    Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.


    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Feng, Q. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S., E-mail:, E-mail: [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); and others


    In 2013 March, a flaring episode from the Crab Nebula lasting ∼2 weeks was detected by Fermi-LAT (Large Area Telescope on board the Fermi Gamma-ray Space Telescope). The Very Energetic Radiation Imaging Telescope Array System (VERITAS) provides simultaneous observations throughout this period. During the flare, Fermi-LAT detected a 20 fold increase in flux above the average synchrotron flux >100 MeV seen from the Crab Nebula. Simultaneous measurements with VERITAS are consistent with the non-variable long-term average Crab Nebula flux at TeV energies. Assuming a linear correlation between the very high energy flux change >1 TeV and the flux change seen in the Fermi-LAT band >100 MeV during the period of simultaneous observations, the linear correlation factor can be constrained to be at most 8.6 × 10{sup –3} with 95% confidence.

  18. Observations of the Crab Nebula with the Chandra X-Ray Observatory (United States)

    Weisskopf, Martin C.


    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  19. Resolving the Crab Nebula with Direct Hard X-Ray Imaging (United States)

    Swartz, Douglas A.; Ramsey, Brian D.; Tennant, Allyn F.; Dietz, Kurtis L.; Apple, Jeff A.; Gaskin, Jessica A.; Weisskopf, Martin


    We report the first direct hard (25--60 keV) X-ray imaging observation of the Crab Nebula that resolves structure to approximately 0.25 pc. The observation was performed over a 1.4 hour period during a balloon flight from Ft. Sumner, NM, on 2007 May 27. The source was detected in the energy band above the atmospheric cutoff at approx.25 keV and below the mirror graze angle cutoff at approx.60 keV. The image shows elongation about 25 degrees E of N in the direction along the plane of the torus (and perpendicular to the jet axis) with a slight surface-brightness enhancement NE of the pulsar. The spectrum within a 1.7 arcminute radius region centered on the Crab pulsar can be fitted with a Gamma=2 power law absorbed by an atmospheric column consistent with the balloon altitude at the time of observation.

  20. Optical light curve of the Crab nebula pulsar with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Beskin, G.M.; Neizvestnyj, S.I.; Pimonov, A.A.; Plakhotnichenko, V.L.; Shvartsman, V.F. (AN SSSR, Nizhnij Arkhyz. Spetsial' naya Astrofizicheskaya Observatoriya)


    It is shown that there is no fine time structure in the averaged light curve of the Crab Nebula pulsar. Observations were made at the 6-m telescope in the R band with a resolution of 6 At the time scale of the order of 10 the correspondinq restrictions on are 10% for the main pulse and 15% for the interpulse. The peaks of the main pulse and the interpulse are flattened with the characteristic widths of about 100 and 400 respectively at the 0.97 level of the maximum intensity.

  1. New Results from an Old Friend: The Crab Nebula and its Pulsar (United States)

    Weisskopf, Martin C.


    The Crab nebula and its associated pulsar have been the target of thousands of observations at all wavelengths over the years. Nevertheless, the system continues to provide new surprises and observational insights into its physical mechanisms. We shall discuss a number of new results we have obtained through Chandra observations. Results include highly detailed pulse-phase spectroscopy which poses challenges to our understanding of pulsar emission mechanisms, a new and precise look at the pulsar geometry, the results of a search for the site of the recently-discovered gamma-ray flares, and a study of the spatial and temporal variation(s) of the southern jet.


    Energy Technology Data Exchange (ETDEWEB)

    Machabeli, George; Rogava, Andria; Shapakidze, David, E-mail: [Centre of Theoretical Astrophysics, Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia (United States)


    We consider parametric generation of electrostatic waves in the magnetosphere of the pulsar PSR0531. The suggested mechanism allows us to convert the pulsar rotational energy into the energy of Langmuir waves. The maximum growth rate is achieved in the “superluminal” area, where the phase velocity of perturbations exceeds the speed of light. Therefore, electromagnetic waves do not damp on particles. Instead, they create plasmon condensate, which is carried out outside of the pulsar magnetosphere and reaches the Crab Nebula. It is shown that the transfer of the energy of the plasmon condensate from the light cylinder to the active region of the nebula happens practically without losses. Unlike the plasma of the magnetosphere, the one of the nebula contains ions, i.e., it may sustain modulation instability, that leads to the collapse of the Langmuir condensate. Langmuir wave collapse, in turn, leads to the acceleration of the distribution function particles. Furthermore, the processes that lead to self-trapping of the synchrotron radiation are discussed. The self-trapping results in the growth of the radiation intensity, which manifests itself observationally as a flare. The condition for the self-trapping onset is derived, showing that if the phenomenon takes place at 100 MeV, then it does not happen at lower (or higher) energies. This specific kind of higher-/lower-energy cutoff could explain why when we observe the flare at 100 MeV that no enhanced emission is observed at lower/higher energies!.

  3. Fermi LAT Observations of the Crab Nebula During the Exceptional April 2011 Outburst (United States)

    Hays, Elizabeth


    The Crab Nebula, formerly thought to be steady in gamma rays, shows unexpected and occasionally dramatic variability in high-energy gamma rays. The Large Area Telescope (LAT) on Fermi recorded several strong outbursts, including dedicated pointed observations of the brightest yet seen, a spectacular flare in April 2011. These observations provide a particularly detailed look at the temporal and spectral characteristics of the nebula during the flare. The LAT data show an additional component in the spectral energy distribution that peaks at a maximum of $375\\pm26\\mathrm{MeV}$. In the probable scenario that this component is synchrotron emission, the electrons are accelerated to extreme energies that are difficult to reconcile with the very rapid change in flux and the expectation for acceleration processes and conditions occurring within the pulsar wind nebula. The physical location and mechanism driving the flares remains undetermined despite observations across the spectrum made by a variety of instruments including the Hubble Space Telescope, the Chandra X-ray Observatory, and the Very Large Array. I will present timing and spectral studies of the high-energy gamma-ray data, discuss implications for the origin of the flares, and highlight preparations for the next major flare.

  4. Pulsar Wind Nebulae, Space Velocities and Supernova Remnant Associations (United States)


    I am pleased to be able to report significant progress in my research relevant to my LTSA grant. This progress I believe is demonstrated by a long list of publications in 2002, as detailed below. I summarize the research results my collaborators and I obtained in 2002. First, my group announced the major discovery of soft-gamma-repeater-like X-ray bursts from the anomalous X-ray pulsars lE-1048.1$-$5937 and lE-2259+586, using the Rossi X-ray Timing Explorer. This result provides an elegant and long-sought-after confirmation that this class of objects and the soft gamma repeaters share a common nature, namely that they are magnetars. Magnetars are a novel manifestation of young neutron stars, quite different from conventional Crab-like radio pulsars. This discovery was made as part of our regular monitoring program, among the goals of which was to detect such outbursts.

  5. Whipple Telescope observations of the Crab Nebula with a Pattern Selection Trigger (United States)

    Bradbury, Stella

    For imaging Cherenkov telescopes the single pixel trigger rate is heavily influenced by fluctuating night sky brightness. The random trigger rate of an N pixel coincidence quickly escalates with decreasing energy threshold. To keep the data rate to a manageable level, by further requiring that N signals are adjacent, we developed CAMAC Pattern Selection Trigger modules, in which the pixel fire pattern is compared with the contents of a delay memory pre-programmed with allowed patterns of 2, 3 or 4 pixels. This system has been used as a next neighbour trigger for the 331 pixel camera of the Whipple 10m telescope, to acquire data at a 20% lower discriminator threshold than that sustainable with a simple multiplicity trigger. We discuss the performance of the trigger modules and present the results of our analysis of data recorded on the Crab Nebula at this reduced threshold.

  6. The interstellar oxygen edge in the X-ray spectrum of the Crab Nebula (United States)

    Charles, P. A.; Kahn, S. M.; Bowyer, S.; Blissett, R. J.; Culhane, J. L.; Cruise, A. M.; Garmire, G.


    Measurement of the X-ray spectrum of the Crab Nebula by the HEAO 1 A-2 low-energy (0.15-3 keV) detectors is reported. The spectral restoration techniques described by Blissett and Cruise (1979) and Kahn and Blissett (1979) are used to demonstrate explicitly the existence of a 'negative' feature near 0.5 keV that is consistent with the edge expected due to absorption by interstellar oxygen. For a simple power-law model with photon index -2.08, the data require a column density of 3.0 + or - 0.1 x 10 to the 21st per sq cm and an oxygen abundance of 1.0 + or - 0.1 times the Brown and Gould (1970) value. Satisfactory fits can also be achieved with the more sophisticated Fireman (1974) models, but no model can be adjusted to fit the data without the inclusion of interstellar oxygen.

  7. Adventures in Modern Time Series Analysis: From the Sun to the Crab Nebula and Beyond (United States)

    Scargle, Jeffrey


    With the generation of long, precise, and finely sampled time series the Age of Digital Astronomy is uncovering and elucidating energetic dynamical processes throughout the Universe. Fulfilling these opportunities requires data effective analysis techniques rapidly and automatically implementing advanced concepts. The Time Series Explorer, under development in collaboration with Tom Loredo, provides tools ranging from simple but optimal histograms to time and frequency domain analysis for arbitrary data modes with any time sampling. Much of this development owes its existence to Joe Bredekamp and the encouragement he provided over several decades. Sample results for solar chromospheric activity, gamma-ray activity in the Crab Nebula, active galactic nuclei and gamma-ray bursts will be displayed.

  8. Gamma-Ray Activity in the Crab Nebula: The Exceptional Flare of April 2011 (United States)

    Buehler, R.; Scargle, J. D.; Blandford, R. D.; Baldini, L; Baring, M. G.; Belfiore, A.; Charles, E.; Chiang, J.; DAmmando, F.; Dermer, C. D.; hide


    The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of approximately 11 ly across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 +/- 6) x 10(exp -7) /square cm/s above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 +/- 26) MeV at flare maximum. The observations imply that the emission region was relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.

  9. Star Trek: The Search for the First Alleged Crab Supernova Rock Art (United States)

    Krupp, E. C.


    Since the 1950s, star/crescent combinations in prehistoric rock art in the American Southwest have become broadly accepted as eyewitness records of the Crab supernova explosion, a spectacular event visible in 1054 A.D. For more than three decades, images of this "supernova" rock art have routinely appeared in astronomy textbooks, in popular articles, on websites, and in television programs. As this Crab supernova interpretation became more fashionable, Griffith Observatory Director E.C. Krupp began a long-term effort to inspect each of these sites in person. His field work eventually led him, in 2008, to the two sites in northern Arizona that started this cottage industry in supernova rock art, sites that had been lost and had not been revisited for 50 years. Developments in the study of rock art, Pueblo Indian iconography, and Pueblo ceremonialism have permitted a greater appreciation of the role of the sky in the ancient Southwest. The best known star/crescent sites are surveyed to clarify the discipline required for cross-disciplinary research. Through this exploration of an aspect of the relationship between astronomy and culture, the presentation acknowledges the intent of American Institute of Physics Andrew Gemant Award.

  10. Model for the broadband Crab nebula spectrum with injection of a log-parabola electron distribution at the wind termination shock (United States)

    Fraschetti, F.; Pohl, M.


    We develop a model of the steady-state spectrum of the Crab nebula encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting photon differential energy spectrum. We find an impressive agreement with the observations in the synchrotron region. The predicted synchrotron self-Compton accommodates the previously unsolved origin of the broad 200 GeV peak that matches the Fermi/LAT data beyond 1 GeV with the MAGIC data. A natural interpretation of the deviation from power-law of the photon spectrum customarily fit with empirical broken power-laws is provided. This model can be applied to the radio-to- multi-TeV spectra of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants. We also show that MeV-range energetic particle distribution at interplanetary shocks typically fit with broken-power laws or Band function can be accurately reproduced by log-parabolas.

  11. Near-Infrared, Kilosecond Variability of the Wisps And Jet in the Crab Pulsar Wind Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Melatos, Andrew; Scheltus, D.; /Melbourne U.; Whiting, M.T.; /New South Wales U.; Eikenberry, S.S.; /Florida U.; Romani, R.W.; /Stanford U., Phys. Dept.; Rigaut, F.; /Gemini; Spitkovsky, A.; /KIPAC, Menlo Park; Arons, J.; /UC, Berkeley, Astron. Dept.; Payne, D.J.B.; /Melbourne U.


    We present a time-lapse sequence of 20 near-infrared (J- and K'-band) snapshots of the central 20'' x 20'' of the Crab pulsar wind nebula, taken at sub-arcsecond resolution with the Hokupa'a/QUIRC adaptive optics camera on the Gemini North Telescope, and sampled at intervals of 10 minutes and 24 hours. It is observed that the equatorial wisps and polar knots in the termination shock of the pulsar wind appear to fluctuate in brightness on kilosecond time-scales. Maximum flux variations of {+-}24 {+-} 4 and {+-}14 {+-} 4 per cent relative to the mean (in 1.2 ks) are measured for the wisps and knots respectively, with greatest statistical significance in J band where the nebula background is less prominent. The J and K' flux densities imply different near-infrared spectra for the nonthermal continuum emission from the wisps and outermost polar knot (''sprite''), giving F{sub {nu}} {proportional_to} {nu}{sup -0.56{+-}0.12} and F{sub {nu}} {proportional_to} {nu}{sup -0.21{+-}0.13} respectively. The data are compared with existing optical and UV photometry and applied to constrain theories of the variability of the wisps (relativistic ion-cyclotron instability) and knots (relativistic fire hose instability).


    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Kristin K.; Harrison, Fiona; Grefenstette, Brian W. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Reynolds, Stephen [Physics Department, NC State University, Raleigh, NC 27695 (United States); An, Hongjun [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Boggs, Steven; Craig, William W.; Zoglauer, Andreas [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektronvej 327, DK-2800 Lyngby (Denmark); Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Livermore, CA 94550 (United States); Hailey, Charles J.; Nynka, Melania [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Markwardt, Craig; Zhang, William [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)


    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ∼9 keV in the spectral photon index of the torus structure with a steepening characterized by ΔΓ ∼ 0.25. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power law with break energy at ∼12 keV and ΔΓ ∼ 0.27. We present spectral maps of the inner 100'' of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power law with an index of γ = 0.094 ± 0.018, consistent with the predictions of Kennel and Coroniti. The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a γ-ray flare, but found no increase in flux in the 3-78 keV energy band.

  13. Mapping supernova remnants and pulsar wind nebulae across decades of energy (United States)

    Hewitt, John W.


    Ground- and space-based gamma ray observatories of the past decade have given us a new understanding of particle accelerators in our galaxy. The improved spatial resolution and sensitivity of recent gamma-ray surveys of the Galactic plane have resolved confusion of sources identified numerous sources to study the physics of particle acceleration and the diffusion of energetic particles into the galaxy. Here I highlight some recent studies of Galactic accelerators from GeV to TeV energies, that allow us to disentangle hadronic from leptonic emission, constrain cosmic ray diffusion, and measure the conditions of particle acceleration. Supernova remnants and pulsar wind nebulae are found to be the two most common Galactic sources identified in very high energy gamma rays, and the future capabilities of CTA promise a dramatic increase in our knowledge of these classes which are currently limited to only a few of the most well-studied cases.

  14. Evolution of a Pulsar Wind Nebula within a Composite Supernova Remnant (United States)

    Kolb, Christopher; Blondin, John; Slane, Patrick; Temim, Tea


    The interaction between a pulsar wind nebula (PWN) and its host supernova remnant (SNR) can produce a vast array of observable structures. Asymmetry present within these structures derives from the complexity of the composite system, where many factors take turns playing a dominating hand throughout the stages of composite SNR evolution. Of particular interest are systems characterized by blastwave expansion within a nonuniform interstellar medium (ISM), which contain an active pulsar having a substantial “kick” velocity (upward of 300 {km} {{{s}}}-1), because these systems tend to produce complex morphologies. We present a numerical model that employs these and several other factors in an effort to generate asymmetry similar to that seen in various X-ray and radio observations. We find that the main parameters driving structure are ISM uniformity and total pulsar spin-down energy, with secondary contributions from factors such as pulsar trajectory and initial spin-down luminosity. We also investigate the dynamics behind PWN “tails,” which may form to link active pulsars to a crushed, relic nebula as the reverse shock passes. We find that the directions of such tails are not good indicators of pulsar motion, but direction does reveal the flow of ejecta created by the passage of a reverse shock.

  15. Time-Dependent Electron Acceleration in Pulsar Wind Termination Shocks: Application the 2011 April Crab Nebula Gamma-ray Flare (United States)

    Kroon, John; Becker, Peter A.; Finke, Justin


    The strongest gamma-ray flare from the Crab nebula observed by Fermi-LAT took place in 2011 April. Emission (up to a few GeV) exceeded the quiescent flux level by more than an order of magnitude. The Crab nebula gamma-ray flares challenge classical particle acceleration models in pulsar wind nebulae, because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. However, numerical simulations have suggested that the classical synchrotron limit can be exceeded if electrons experience shock-driven electrostatic acceleration due to magnetic reconnection. In this talk, I present and summarize a new time-dependent model based on a transport equation that accounts for electrostatic acceleration, synchrotron losses, and particle escape. We implement a “blob” paradigm in which magnetically confined electrons from the upstream pulsar wind encounter and cross through the termination shock, producing a flare. We show that our model can reproduce the gamma-ray spectra and the integrated light curve for the 2011 April event, and we find that electrostatic acceleration occurs on both sides of the termination shock, driven by magnetic reconnection. We conclude that the dominant mode of particle escape changes from diffusive escape to advective escape as the blob passes through the shock.

  16. Neutrino Analysis of the September 2010 Crab Nebula Flare and Time-integrated Constraints on Neutrino Emission From the Crab Using IceCube (United States)

    Stamatikos, M.; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguliar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; hide


    We present the results for a search of high-energy muon neutrinos with the IceCube detector in coincidence with the Crab nebula flare reported on September 2010 by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E(sub nu)(sup -2) neutrino spectrum typical of 1st order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab [35]. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cut-offs as observed for various galactic sources in gamma-rays. The 90% CL best upper limits on the Crab flux during the 10 day flare are 4.73 x 10(exp -11) per square centimeter per second TeV (sup -1) for an E(sub nu) (sup -2) neutrino spectrum and 2.50 x 10(exp -10) per square centimeter per second TeV(sup -1) for a softer neutrino spectra of E(sub nu)(sup -2.7), as indicated by Fermi measurements during the flare. IceCube has also set a time-integrated limit on the neutrino emission of the Crab using 375.5 days of livetime of the 40-string configuration data. This limit is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL.

  17. Scale hierarchy in Hořava-Lifshitz gravity: strong constraint from synchrotron radiation in the Crab Nebula. (United States)

    Liberati, Stefano; Maccione, Luca; Sotiriou, Thomas P


    Hořava-Lifshitz gravity models contain higher-order operators suppressed by a characteristic scale, which is required to be parametrically smaller than the Planck scale. We show that recomputed synchrotron radiation constraints from the Crab Nebula suffice to exclude the possibility that this scale is of the same order of magnitude as the Lorentz breaking scale in the matter sector. This highlights the need for a mechanism that suppresses the percolation of Lorentz violation in the matter sector and is effective for higher-order operators as well.

  18. The Variable Crab Nebula: Evidence for a Connection between GeV flares and Hard X-ray Variations (United States)

    Wilson-Hodge, Colleen A.; Kust Harding, Alice; Hays, Elizabeth A.; Cherry, Michael L.; Case, Gary L.; Finger, Mark H.; Jenke, Peter; Zhang, Xiao-Ling


    In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.

  19. The Variable Crab Nebula: Evidence for a Connection Between GeV Flares and Hard X-ray Variations (United States)

    Wilson-Hodge, Colleen A.; Harding, A. K.; Hays, E. A.; Cherry, M. L.; Case, G. L.; Finger, M. H.; Jenke, P.; Zhang, X.


    In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.

  20. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April (United States)

    Weisskopf, Martin C.


    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  1. A Renewed Look at the Planetary Nebula Luminosity Function: Circumstellar Extinction and Contamination From Compact Supernova Remnants (United States)

    Davis, Brian; Ciardullo, Robin; Feldmeier, John; Jacoby, George H.; McCarron, Adam; Herrmann, Kimberly


    The planetary nebula luminosity function (PNLF) has been used as an extragalactic distance indicator since 1988, but there are still unsolved problems associated with its use. The two most serious involve PNLF distances beyond ~ 10 Mpc, which tend to be slightly smaller than those of other methods, and the lack of a theoretical explanation for the technique. We investigate these questions using a combination of narrow-band imaging data from the KPNO 4-m telescope, and recent LRS2 spectroscopy from the Hobby-Eberly Telescope.For the first project, we consider the implications of spectroscopic investigations by Kreckel et al. (2017), who found that in M74, several of the brightest planetary nebula (PN) candidates found by Herrmann et al. (2008) are actually compact supernova remnants (SNRs). First, we measure the [O III] and H-alpha fluxes of all the known SNRs in M31 and M33, and test whether those objects could be misidentified as bright PNe at distances beyond ~ 8 Mpc. We also obtain spectroscopy of bright PN candidates in the Fireworks Galaxy, NGC 6946, to test for PN/SNR confusion via the strengths of the [N II] and [S II] emission lines. Both experiments suggest that compact supernova remnants are not an important source of contamination in photometric surveys for extragalactic PNe.For the second project, we, for the first time, determine the de-reddened PNLF of an old stellar population. By performing spectroscopy of the brightest PN in M31’s bulge and measuring the objects’ Balmer decrements, we remove the effects of circumstellar extinction and derive the true location of the PNLF’s bright-end cutoff. In future studies, these data can be used to directly test the latest PNLF models, which combine modern post-AGB stellar evolutionary tracks with the physics of expanding nebulae.

  2. Supernovae astrophysics from Middle Age documents


    Polcaro, Francesco; Martocchia, Andrea


    in: Proc. of the IAU Symposium no.230, "Populations of High Energy Sources in Galaxies", held in Dublin (Ireland), August 15-19, 2005. Evert J.A. Meurs & G. Fabbiano, eds. (in press); The supernova explosion of 1054 AD, which originated the Crab Nebula and Pulsar, is probably the astronomical event which has been most deeply studied by means of historical sources. However, many mysteries and inconsistencies, both among the different sources and between what is deduced by the historical record...

  3. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet


    Li, C. K.; Tzeferacos, P.; Lamb, D.; Gregori, G.; Norreys, P. A.; M.J. Rosenberg; Follett, R. K.; Froula, D. H.; Koenig, M.; Seguin, F. H.; Frenje, J. A.; Rinderknecht, H. G.; Sio, H; Zylstra, A. B.; Petrasso, R. D.


    The remarkable discovery by the Chandra X-ray observatory that the Crab nebula’s jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be dir...

  4. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae (United States)

    Zrake, Jonathan; Arons, Jonathan


    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  5. Generation of Cosmic rays in Historical Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.Y.


    Full Text Available We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181 and Geminga (probably plerion. The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV gamma-rays in Tycho's supernova remnant. The data obtainedsuggest that the very high energy gamma-ray emission in the objects being discussedis different in origin.

  6. Studies of Pulsar Wind Nebula in the Supernova Remnant IC443: Preliminary Observations from the Chandra Data (United States)

    Ariyibi, E. A.


    Preliminary observations of the Chandra data were made in order to study the Pulsar Wind Nebula in the Supernova Remnant IC443. The Chandra X-ray observatory short observation on IC443 was centred on 13 chip ACIS. The CIAO analytical programme was used for the data analysis. The data were separated into point source, with an energy range of 2.1 to 10.0 keV, and diffuse source with energy less than 2.1 Kev. The resulting spectra were fitted to a power law. The observed density numbers and the normalised counts of both the point source and the diffuse source were used to describe the X-ray source. Afin d'étudier la "Pulsar wind Nebula" dans le reste de la Supernova IC 443, nous avons mené une exploitation préliminaire des observations provenant du satellite spatiale Chandra. L'observation brêve de IC 443, par Chandra fut centrée sur les composantes du spectromètre identifiées par la séquence 13. Le programme informatique CIAO fut utilisé pour l'analyse des données. Les données furent groupées en sources ponctuelles, chacune ayant des énergies allant de 2.1 a 10.0 kev ; et en sources diffuses chacune avec des énergies de moins de 2.1 kev. Les spectres obtenus furent interpolés à l'aide de fonction puissance. La densité de flux ainsi que le décompte des particules induites au détecteur par le rayonnement provenant des sources ponctuelles et diffuses furent utilisés pour décrire la source de rayon-X.

  7. Characterization of the optical and X-ray properties of the north-western wisps in the Crab nebula (United States)

    Schweizer, T.; Bucciantini, N.; Idec, W.; Nilsson, K.; Tennant, A.; Weisskopf, M. C.; Zanin, R.


    We have studied the wisps to the north-west of the Crab pulsar as part of a multiwavelength campaign in the visible and in X-rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X-ray observations were made with the Chandra X-ray Observatory. The observing campaign took place from 2010 October until 2012 September. About once per year we observe wisps forming and peeling off from (or near) the region commonly associated with the termination shock of the pulsar wind. We find that the exact locations of the north-western wisps in the optical and in X-rays are similar but not coincident, with X-ray wisps preferentially located closer to the pulsar. This suggests that the optical and X-ray wisps are not produced by the same particle distribution. Our measurements and their implications are interpreted in terms of a Doppler-boosted ring model that has its origin in magnetohydrodynamic (MHD) modelling. While the Doppler boosting factors inferred from the X-ray wisps are consistent with current MHD simulations of pulsar wind nebulae, the optical boosting factors are not, and typically exceed values from MHD simulations by about a factor of 3.

  8. Spectral analysis of the Crab Nebula and GRB 160530A with the Compton Spectrometer and Imager (United States)

    Sleator, Clio; Boggs, Steven E.; Chiu, Jeng-Lun; Kierans, Carolyn; Lowell, Alexander; Tomsick, John; Zoglauer, Andreas; Amman, Mark; Chang, Hsiang-Kuang; Tseng, Chao-Hsiung; Yang, Chien-Ying; Lin, Chih H.; Jean, Pierre; von Ballmoos, Peter


    The Compton Spectrometer and Imager (COSI) is a balloon-borne soft gamma-ray (0.2-5 MeV) telescope designed to study astrophysical sources including gamma-ray bursts and compact objects. As a compact Compton telescope, COSI has inherent sensitivity to polarization. COSI utilizes 12 germanium detectors to provide excellent spectral resolution. On May 17, 2016, COSI was launched from Wanaka, New Zealand and completed a successful 46-day flight on NASA’s new Superpressure balloon. To perform spectral analysis with COSI, we have developed an accurate instrument model as required for the response matrix. With carefully chosen background regions, we are able to fit the background-subtracted spectra in XSPEC. We have developed a model of the atmosphere above COSI based on the NRLMSISE-00 Atmosphere Model to include in our spectral fits. The Crab and GRB 160530A are among the sources detected during the 2016 flight. We present spectral analysis of these two point sources. Our GRB 160530A results are consistent with those from other instruments, confirming COSI’s spectral abilities. Furthermore, we discuss prospects for measuring the Crab polarization with COSI.

  9. Characterization of the Optical and X-ray Properties of the Northwestern Wisps in the Crab Nebula (United States)

    Weisskopf, Martin C.; Schweitzer, T.; Bucciantini, N.; Idec, W.; Nilsson, K.; Tennant, A.; Zanin, R.


    We have studied the variability of the Crab Nebula both in the visible and in X-rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X-ray observations were made with the Chandra X-Ray Observatory. We observe wisps forming and peeling off from the region commonly associated with the termination shock of the pulsar wind. We measure a number of properties of the wisps to the Northwest of the pulsar. We find that the exact locations of the wisps in the optical and in X-rays are similar but not coincident, with the X-ray wisp preferentially located closer to the pulsar. Our measurements and their implications are interpreted in terms of a MHD model. We find that the optical wisps are more strongly Doppler boosted than X-ray wisps, a result inconsistent with current MHD simulations. Indeed the inferred optical boosting factors exceed MHD simulation values by about one order of magnitude. These findings suggest that the optical and X-ray wisps are not produced by the same particle distribution, a result which is consistent with the spatial differences. Further, the X-ray wisps and optical wisps are apparently developing independently from each other, but every time a new X-ray wisp is born so is an optical wisp, thus pointing to a possible common cause or trigger. Finally, we find that the typical wisp formation rate is approximately once per year, interestingly at about the same rate of production of the large gamma-ray flares.

  10. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis. (United States)

    Brennecka, Gregory A; Borg, Lars E; Wadhwa, Meenakshi


    The isotopic composition of our Solar System reflects the blending of materials derived from numerous past nucleosynthetic events, each characterized by a distinct isotopic signature. We show that the isotopic compositions of elements spanning a large mass range in the earliest formed solids in our Solar System, calcium-aluminum-rich inclusions (CAIs), are uniform, and yet distinct from the average Solar System composition. Relative to younger objects in the Solar System, CAIs contain positive r-process anomalies in isotopes A 140. This fundamental difference in the isotopic character of CAIs around mass 140 necessitates (i) the existence of multiple sources for r-process nucleosynthesis and (ii) the injection of supernova material into a reservoir untapped by CAIs. A scenario of late supernova injection into the protoplanetary disk is consistent with formation of our Solar System in an active star-forming region of the galaxy.

  11. Why did Supernova 1054 shine at late times?


    Sollerman, Jesper; Kozma, Cecilia; Lundqvist, Peter


    The Crab nebula is the remnant of supernova 1054 (SN 1054). The progenitor of this supernova has, based on nucleosynthesis arguments, been modeled as an 8-10 solar mass star. Here we point out that the observations of the late light curve of SN 1054, from the historical records, are not compatible with the standard scenario, in which the late time emission is powered by the radioactive decay of small amounts of Ni-56. Based on model calculations we quantify this discrepancy. The rather large ...


    Energy Technology Data Exchange (ETDEWEB)

    Matheson, H.; Safi-Harb, S. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Kothes, R., E-mail:, E-mail:, E-mail: [Dominion Radio Astrophysical Observatory, National Research Council Herzberg, P.O. Box 248, Penticton, British Columbia, V2A 6J9 (Canada)


    Pulsar wind nebulae (PWNe) studies with the Chandra X-Ray Observatory have opened a new window to address the physics of pulsar winds, zoom on their interaction with their hosting supernova remnant (SNR) and interstellar medium, and identify their powering engines. We here present a new 70 ks, plus an archived 18 ks, Chandra ACIS observation of the SNR CTB 87 (G74.9+1.2), classified as a PWN with unusual radio properties and poorly studied in X-rays. We find that the peak of the X-ray emission is clearly offset from the peak of the radio emission by {approx}100'' and located at the southeastern edge of the radio nebula. We detect a point source-the putative pulsar-at the peak of the X-ray emission and study its spectrum separately from the PWN. This new point source, CXOU J201609.2+371110, is surrounded by a compact nebula displaying a torus-like structure and possibly a jet. A more extended diffuse nebula is offset from the radio nebula, extending from the point source to the northwest for {approx}250''. The spectra of the point source, compact nebula, and extended diffuse nebula are all well described by a power-law model with a photon index of 1.1 (0.7-1.6), 1.2 (0.9-1.4), and 1.7 (1.5-1.8), respectively, for a column density N{sub H} = 1.38 (1.21-1.57) Multiplication-Sign 10{sup 22} cm{sup -2} (90% confidence). The total X-ray luminosity of the source is {approx}1.6 Multiplication-Sign 10{sup 34} erg s{sup -1} at an assumed distance of 6.1 kpc, with {approx}2% and 6% contribution from the point source and compact nebula, respectively. The observed properties suggest that CTB 87 is an evolved ({approx}5-28 kyr) PWN, with the extended radio emission likely a ''relic'' PWN, as in Vela-X and G327.1-1.1. To date, however, there is no evidence for thermal X-ray emission from this SNR, and the SNR shell is still missing, suggesting expansion into a low-density medium (n{sub 0} < 0.2 D{sup -1/2}{sub 6.1} cm{sup -3}), likely


    Energy Technology Data Exchange (ETDEWEB)

    Amenomori, M. [Department of Physics, Hirosaki University, Hirosaki 036-8561 (Japan); Bi, X. J.; Chen, W. Y.; Ding, L. K.; Feng, Zhaoyang; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, H. B.; Huang, J. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, D. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Chen, T. L.; Danzengluobu; Hu, Haibing [Department of Mathematics and Physics, Tibet University, Lhasa 850000 (China); Cui, S. W.; He, Z. T. [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Feng, C. F. [Department of Physics, Shandong University, Jinan 250100 (China); Feng, Z. Y. [Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031 (China); Hibino, K. [Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Hotta, N. [Faculty of Education, Utsunomiya University, Utsunomiya 321-8505 (Japan); Collaboration: Tibet ASγ Collaboration; and others


    A 100 m{sup 2} muon detector (MD) was successfully constructed under the existing Tibet air shower (AS) array in the late fall of 2007. The sensitivity of the Tibet AS array to cosmic gamma rays can be improved by selecting muon-poor events with the MD. Our MC simulation of the MD response reasonably agrees with the experimental data in terms of the charge distribution for one-muon events and the background rejection power. Using the data collected by the Tibet AS array and the 100 m{sup 2} MD taken from 2008 March to 2010 February, we search for continuous gamma-ray emission from the Crab Nebula above ∼100 TeV. No significant excess is found, and the most stringent upper limit is obtained above 140 TeV.

  14. Limiting Superluminal Electron and Neutrino Velocities Using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events (United States)

    Stecker, Floyd W.


    The observation of two PetaelectronVolt (PeV)-scale neutrino events reported by Ice Cube allows one to place constraints on Lorentz invariance violation (LIV) in the neutrino sector. After first arguing that at least one of the PetaelectronVolt IceCube events was of extragalactic origin, I derive an upper limit for the difference between putative superluminal neutrino and electron velocities of less than or equal to approximately 5.6 x 10(exp -19) in units where c = 1, confirming that the observed PetaelectronVolt neutrinos could have reached Earth from extragalactic sources. I further derive a new constraint on the superluminal electron velocity, obtained from the observation of synchrotron radiation from the Crab Nebula flare of September, 2010. The inference that the greater than 1 GigaelectronVolt gamma-rays from synchrotron emission in the flare were produced by electrons of energy up to approx. 5.1 PetaelectronVolt indicates the nonoccurrence of vacuum Cerenkov radiation by these electrons. This implies a new, strong constraint on superluminal electron velocities delta(sub e) less than or equal to approximately 5 x 10(exp -21). It immediately follows that one then obtains an upper limit on the superluminal neutrino velocity alone of delta(sub v) less than or equal to approximately 5.6 x 10(exp -19), many orders of magnitude better than the time-of-flight constraint from the SN1987A neutrino burst. However, if the electrons are subluminal the constraint on the absolute value of delta(sub e) less than or equal to approximately 8 x 10(exp -17), obtained from the Crab Nebula gamma-ray spectrum, places a weaker constraint on superluminal neutrino velocity of delta(sub v) less than or equal to approximately 8 x 10(exp -17).

  15. Time-dependent Electron Acceleration in Pulsar Wind Termination Shocks: Application to the 2011 April Crab Nebula Gamma-Ray Flare (United States)

    Kroon, John J.; Becker, Peter A.; Finke, Justin D.


    The γ-ray flares from the Crab Nebula observed by AGILE and Fermi-LAT between 2007 and 2013 reached GeV photon energies and lasted several days. The strongest emission, observed during the 2011 April “superflare”, exceeded the quiescent level by more than an order of magnitude. These observations challenge the standard models for particle acceleration in pulsar wind nebulae, because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron emission. Particle-in-cell simulations have suggested that the classical synchrotron limit can be exceeded if the electrons also experience electrostatic acceleration due to shock-driven magnetic reconnection. In this paper, we revisit the problem using an analytic approach based on solving a fully time-dependent electron transport equation describing the electrostatic acceleration, synchrotron losses, and escape experienced by electrons in a magnetically confined plasma “blob” as it encounters and passes through the pulsar wind termination shock. We show that our model can reproduce the γ-ray spectra observed during the rising and decaying phases of each of the two sub-flare components of the 2011 April superflare. We integrate the spectrum for photon energies ≥slant 100 MeV to obtain the light curve for the event, which also agrees with the observations. We find that strong electrostatic acceleration occurs on both sides of the termination shock, driven by magnetic reconnection. We also find that the dominant mode of particle escape changes from diffusive escape to advective escape as the blob passes through the shock.

  16. Very high-energy /γ-ray observations of the Crab nebula and other potential sources with the GRAAL experiment (United States)

    Arqueros, F.; Ballestrin, J.; Berenguel, M.; Borque, D. M.; Camacho, E. F.; Diaz, M.; Gebauer, H.-J.; Enriquez, R.; Plaga, R.


    The "γ-ray astronomy at Almeria" (GRAAL) experiment uses 63 heliostat-mirrors with a total mirror area of ≈2500 m 2 from the CESA-1 field at the "Plataforma Solar de Almeria" to collect Cherenkov light from air showers. The detector is located in a central solar tower and detects photon-induced showers with an energy threshold of 250±110 GeV and an asymptotic effective detection area of about 15 000 m 2. A comparison between the results of detailed Monte-Carlo simulations and data is presented. Data sets taken in the period September 1999-September 2000 in the direction of the Crab pulsar, the active galaxy 3C 454.3, the unidentified γ-ray source 3EG J1835+59 and a "pseudosource" were analyzed for high energy γ-ray emission. Evidence for a γ-ray flux from the Crab pulsar with an integral flux of 2.2±0.4 ( stat) +1.7-1.3( syst)×10 -9 cm-2 s-1 above threshold and a significance of 4.5 σ in a total measuring time of 7 h and 10 min on source was found. No evidence for emission from the other sources was found. Some difficulties with the use of heliostat fields for γ-ray astronomy are pointed out. In particular the effect of field-of-view restricted to the central part of a detected air shower on the lateral distribution and timing properties of Cherenkov light are discussed. Upon restriction the spread of the timing front of proton-induced showers sharply decreases and the reconstructed direction becomes biased towards the pointing direction. This is shown to make efficient γ-hadron separation difficult.

  17. Characterization of the Optical and X-ray Properties of the Northwestern Wisps in the Crab Nebula (United States)

    Weisskopf, M. C.; Bucciantini, N.; Idec, W.; Nillson, K.; Schweizer, T.; Tennant, A. F.; Zanin, R.


    We have studied the wisps to the northwest of the Crab pulsar as part of a multi-wavelength campaign in the visible and in X-rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X-ray observations were made with the Chandra X-ray Observatory. The observing campaign took place from October 2010 until September 2012. About once per year we observe wisps forming and peeling off from (or near) the region commonly associated with the termination shock of the pulsar wind. We find that the exact locations of the northwestern wisps in the optical and in X-rays are similar but not coincident, with X-ray wisps preferentially located closer to the pulsar. This suggests that the optical and X-ray wisps are not produced by the same particle distribution. It is also interesting to note that the optical and radio wisps are also separated from each other (Bietenholz et al. 2004). Our measurements and their implications are interpreted in terms of a Doppler-boosted ring model that has its origin in MHD modeling. While the Doppler boosting factors inferred from the X-ray wisps are consistent with current MHD simulations of PWNe, the optical boosting factors are not, and typically exceed values from MHD simulations by about a factor of 4.

  18. Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1 (United States)

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccolo


    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock(RS) that can occur as a result of a density gradient in the ambient medium and or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a approx. 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RSPWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.


    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kolb, Christopher; Blondin, John [North Carolina State University, 421 Riddick Hall, Raleigh, NC 27695 (United States); Hughes, John P. [Rutgers University, 57 US Highway 1, New Brunswick, NJ 08901 (United States); Bucciantini, Niccoló [INAF Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi, 5, 50125, Firenze Italy (Italy)


    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology: a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for a mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock (RS), whichcan occur as a result of a density gradient in the ambient medium and/or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a ∼17,000-year-old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar’s motion. We also show that the RS/PWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to γ-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  20. Common continuum polarization properties: a possible link between proto-planetary nebulae and Type Ia Supernova progenitors (United States)

    Cikota, Aleksandar; Patat, Ferdinando; Cikota, Stefan; Spyromilio, Jason; Rau, Gioia


    The lines of sight to highly reddened SNe Ia show peculiar continuum polarization curves, growing towards blue wavelengths and peaking at λ _{max} ≲ 0.4 μ m, like no other sightline to any normal Galactic star. We examined continuum polarization measurements of a sample of asymptotic giant branch (AGB) and post-AGB stars from the literature, finding that some proto-planetary nebulae (PPNe) have polarization curves similar to those observed along SN Ia sightlines. These polarization curves are produced by scattering on circumstellar dust. We discuss the similarity and the possibility that at least some SNe Ia might explode during the post-AGB phase of their binary companion. Furthermore, we speculate that the peculiar SN Ia polarization curves might provide observational support to the core-degenerate progenitor model.


    Energy Technology Data Exchange (ETDEWEB)

    Murase, Kohta [Institute for Advanced Study, Princeton, NJ 08540 (United States); Kashiyama, Kazumi [Center for Particle and Gravitational Astrophysics, Department of Physics, Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Kiuchi, Kenta [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Kyoto 606-8502 (Japan); Bartos, Imre [Department of Physics, Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States)


    It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X-rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ∼1–10 months after the explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein–Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescopes such as NuSTAR can observe such early PWN emission by follow-up observations in months to years. GeV gamma-rays may also be detected by Fermi for nearby SNe, which serve as counterparts of these GW sources. Detecting the signals will give us an interesting probe of particle acceleration at early times of PWNe, as well as clues to driving mechanisms of luminous SNe and GRBs. Since the Bethe–Heitler cross section is lower than the Thomson cross section, gamma rays would allow us to study subphotospheric dissipation. We encourage searches for high-energy emission from nearby SNe, especially SNe Ibc including super-luminous objects.

  2. Light-element nucleosynthesis in a molecular cloud interacting with a supernova remnant and the origin of beryllium-10 in the protosolar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Tatischeff, Vincent; Duprat, Jean [Centre de Sciences Nucléaires et de Sciences de la Matière, IN2P3-CNRS and Univ Paris-Sud, F-91405 Orsay Cedex (France); De Séréville, Nicolas, E-mail: [Institut de Physique Nucléaire d' Orsay, IN2P3-CNRS and Univ Paris-Sud, F-91405 Orsay Cedex (France)


    The presence of short-lived radionuclides (t {sub 1/2} < 10 Myr) in the early solar system provides important information about the astrophysical environment in which the solar system formed. The discovery of now extinct {sup 10}Be (t {sub 1/2} = 1.4 Myr) in calcium-aluminum-rich inclusions (CAIs) with Fractionation and Unidentified Nuclear isotope anomalies (FUN-CAIs) suggests that a baseline concentration of {sup 10}Be in the early solar system was inherited from the protosolar molecular cloud. In this paper, we investigate various astrophysical contexts for the nonthermal nucleosynthesis of {sup 10}Be by cosmic-ray-induced reactions. We first show that the {sup 10}Be recorded in FUN-CAIs cannot have been produced in situ by irradiation of the FUN-CAIs themselves. We then show that trapping of Galactic cosmic rays (GCRs) in the collapsing presolar cloud core induced a negligible {sup 10}Be contamination of the protosolar nebula, the inferred {sup 10}Be/{sup 9}Be ratio being at least 40 times lower than that recorded in FUN-CAIs ({sup 10}Be/{sup 9}Be ∼ 3 × 10{sup –4}). Irradiation of the presolar molecular cloud by background GCRs produced a steady-state {sup 10}Be/{sup 9}Be ratio ≲ 1.3 × 10{sup –4} at the time of the solar system formation, which suggests that the presolar cloud was irradiated by an additional source of CRs. Considering a detailed model for CR acceleration in a supernova remnant (SNR), we find that the {sup 10}Be abundance recorded in FUN-CAIs can be explained within two alternative scenarios: (1) the irradiation of a giant molecular cloud by CRs produced by ≳ 50 supernovae exploding in a superbubble of hot gas generated by a large star cluster of at least 20,000 members, and (2) the irradiation of the presolar molecular cloud by freshly accelerated CRs escaped from an isolated SNR at the end of the Sedov-Taylor phase. In the second picture, the SNR resulted from the explosion of a massive star that ran away from its parent OB

  3. Modelling pulsar wind nebulae

    CERN Document Server


    In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsa...

  4. Has the Crab Pulsar Magnetic Field Grown after its Birth?

    Indian Academy of Sciences (India)


    Application of these results to the Crab pulsar strongly indicates that its parameters cannot be ... mass transfer effects in such systems, it will be most likely the second explosion and not the first one which will ... If the Crab pulsar were born in the explosion of AD 1054 which created the nebula, its age is. Also, at present. (9).

  5. Observing nebulae

    CERN Document Server

    Griffiths, Martin


    This book enables anyone with suitable instruments to undertake an examination of nebulae and see or photograph them in detail. Nebulae, ethereal clouds of gas and dust, are among the most beautiful objects to view in the night sky. These star-forming regions are a common target for observers and photographers. Griffiths describes many of the brightest and best nebulae and includes some challenges for the more experienced observer. Readers learn the many interesting astrophysical properties of these clouds, which are an important subject of study in astronomy and astrobiology. Non-mathematical in approach, the text is easily accessible to anyone with an interest in the subject. A special feature is the inclusion of an observational guide to 70 objects personally observed or imaged by the author. The guide also includes photographs of each object for ease of identification along with their celestial coordinates, magnitudes and other pertinent information. Observing Nebulae provides a ready resource to allow an...

  6. Chandra Associates Pulsar and Historic Supernova (United States)


    SAN DIEGO -- Scientists using NASA’s Chandra X-ray Observatory have found new evidence that a pulsar in the constellation of Sagittarius was created when a massive star exploded, witnessed by Chinese astronomers in the year 386 AD. If confirmed, this will be only the second pulsar to be clearly associated with a historic event. These results were presented today by Victoria Kaspi and Mallory Roberts of McGill University at the American Astronomical Society meeting. Also participating in the research were Gautum Vasisht from the Jet Propulsion Laboratory, Eric Gotthelf from Columbia University, Michael Pivovaroff from Therma-Wave, Inc., and Nobuyuki Kawai from the Institute of Physical and Chemical Research, Japan. The scientists used Chandra to locate the pulsar exactly at the geometric center of the supernova remnant known as G11.2-0.3. This location provides very strong evidence that the pulsar, a neutron star that is rotating 14 times a second, was formed in the supernova of 386 AD, and therefore has an age of 1615 years. "Determining the true ages of astronomical objects is notoriously difficult, and for this reason, historical records of supernovas are of great importance,"said Kaspi."In roughly the past 2,000 years, fewer than 10 reports of probable supernovae have been archived mostly by Asian astronomers. Of those handful, the remnant of 1054 AD, the Crab Nebula, was until now the only pulsar whose birth could be associated with a historic event - and, hence, the only neutron star that has a firm age." Between mid-April and mid-May in the year 386 AD, a young "guest star", presumably a supernova, was recorded by Chinese observers in the direction of the sky now known as the constellation of Sagittarius. In the 1970s, radio astronomers discovered an expanding nebula of gas and high-energy particles, called G11.2-0.3, that is believed to be the remnant of that explosion. In 1997, a team of X-ray astronomers used Japan’s ASCA satellite to discover a pulsar

  7. Numerical nebulae

    NARCIS (Netherlands)

    Rijkhorst, Erik-Jan


    The late stages of evolution of stars like our Sun are dominated by several episodes of violent mass loss. Space based observations of the resulting objects, known as Planetary Nebulae, show a bewildering array of highly symmetric shapes. The interplay between gasdynamics and radiative processes

  8. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    Directory of Open Access Journals (Sweden)

    López-Coto Rubén


    Full Text Available The pulsar wind nebula (PWN 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV gamma-ray source candidates. It has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. According to our results 3C 58 is the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR comparable to CMB photon fields. Hadronic contribution from the hosting supernova remnant (SNR requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.

  9. Neutron Star/Supernova Remnant Associations


    Kaspi, V. M.


    The evidence for associations between neutron stars and supernova remnants is reviewed. After summarizing the situation for young radio pulsars, I consider the evidence from associations that young neutron stars can have properties very different from those of radio pulsars. This, though still controversial, shakes our simple perception of the Crab pulsar as prototypical of the young neutron star population.

  10. Supernova explosions

    CERN Document Server

    Branch, David


    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  11. Gamma-rays from pulsar wind nebulae in starburst galaxies (United States)

    Mannheim, Karl; Elsässer, Dominik; Tibolla, Omar


    Recently, gamma-ray emission at TeV energies has been detected from the starburst galaxies NGC253 (Acero et al., 2009) [1] and M82 (Acciari et al., 2009) [2]. It has been claimed that pion production due to cosmic rays accelerated in supernova remnants interacting with the interstellar gas is responsible for the observed gamma rays. Here, we show that the gamma-ray pulsar wind nebulae left behind by the supernovae contribute to the TeV luminosity in a major way. A single pulsar wind nebula produces about ten times the total luminosity of the Sun at energies above 1 TeV during a lifetime of 105 years. A large number of 3 × 104 pulsar wind nebulae expected in a typical starburst galaxy at a distance of 4 Mpc can readily produce the observed TeV gamma rays.

  12. Smoking Supernovae


    Gomez, Haley Louise; Eales, Stephen Anthony; Dunne, L.


    The question ‘Are supernovae important sources of dust?’ is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is i...

  13. Aspherical supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kasen, Daniel Nathan [Univ. of California, Berkeley, CA (United States)


    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3

  14. Emission Lines of Northern Planetary Nebulae (United States)

    Aksaker, Nazim; Yerli, Sinan K.; Kızıloǧlu, Ümit; Atalay, Betül


    In this work, we present results of long slit spectrophotometric emission line flux observations of selected planetary nebulae (PNe). We have measured absolute fluxes and equivalent widths (EW) of all observable emission lines. In addition to these observations, electron temperatures (Te), densities (Ne), and chemical abundances were also calculated. The main purpose of this work is to fill the gaps in emission line flux standards for the northern hemisphere. It is expected that the measured fluxes would be used as standard data set for further photometric and spectrometric measurements of HII regions, supernova remnants etc.

  15. Supernova 1604, Kepler's supernova, and its remnant


    Vink, Jacco


    Supernova 1604 is the last Galactic supernova for which historical records exist. Johannes Kepler's name is attached to it, as he published a detailed account of the observations made by himself and European colleagues. Supernova 1604 was very likely a Type Ia supernova, which exploded 350 pc to 750 pc above the Galactic plane. Its supernova remnant, known as Kepler's supernova remnant, shows clear evidence for interaction with nitrogen-rich material in the north/northwest part of the remnant...

  16. Crab Rationalization Permit Program (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crab Rationalization Program (Program) allocates BSAI crab resources among harvesters, processors, and coastal communities. The North Pacific Fishery Management...

  17. Saturn Nebula (NGC 7009) (United States)

    Murdin, P.


    A planetary nebula in the constellation Aquarius, position RA 21 h 04.4 m, dec. -11° 22'. It measures 25'' and shines with a greenish hue. It is of eighth magnitude and for a planetary nebula has a high surface brightness. Two small lobes on either side give it the appearance of the planet Saturn....

  18. Crab Cavity Development

    CERN Document Server

    Calaga, R; Burt, G; Ratti, A


    The HL-LHC upgrade will use deflecting (or crab) cavities to compensate for geometric luminosity loss at low β* and non-zero crossing angle. A local scheme with crab cavity pairs across the IPs is used employing compact crab cavities at 400 MHz. Design of the cavities, the cryomodules and the RF system is well advanced. The LHC crab cavities will be validated initially with proton beam in the SPS.

  19. A Shocking Solar Nebula?


    Liffman, Kurt


    It has been suggested that shock waves in the solar nebula formed the high temperature materials observed in meteorites and comets. It is shown that the temperatures at the inner rim of the solar nebula could have been high enough over a sufficient length of time to produce chondrules, CAIs, refractory dust grains and other high-temperature materials observed in comets and meteorites. The solar bipolar jet flow may have produced an enrichment of 16O in the solar nebula over time and the chond...

  20. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  1. First supernova companion star found (United States)


    , 2100 seconds and 330W, 1200 seconds) shown in purple and blue, a deep blue filter (435W, 1000 seconds) shown in green and a green filter (555W, 1120 seconds) shown in red. The quarter-circle around the supernova companion is a so-called light echo originating from sheets of dust in the galaxy reflecting light from the original supernova explosion. The timing of the appearance of these echoes can be used to map out the dust structure around the supernova. The light echo was detected in late 2002 and early 2003 by two competing groups of scientists. Messier 81 spiral arm (WFPC2 image) hi-res Size hi-res: 1502 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Messier 81 spiral arm (WFPC2 image) This NASA/ESA Hubble Space Telescope image shows a small portion of one of Messier 81’s spiral arms. It extends about 0.03 x 0.03 degrees. The supernova companion is the bluish star in the upper right hand corner. Dust lanes in the spiral arms of the galaxy are seen, as well as many other stars and a few star forming nebulae. The image is composed of four separate exposures from the ESO/ST-ECF Archive through a blue filter, a green filter, a red filter and a near-infrared filter. The image was taken with Hubble’s Wide Field and Planetary Camera 2. Acknowledgement: Bob Kirshner (Harvard University, USA) Grand Spiral Messier 81 (ground-based) hi-res Size hi-res: 1502 kb Credits: ESA/INT/DSS2 Grand Spiral Messier 81 (ground-based) This ground-based image shows the spiral galaxy Messier 81 in its entirety. The image is a combination of exposures from the Isaac Newton Telescope on La Palma (courtesy of Jonathan Irwin) and Digitized Sky Survey 2 images. The dynamic duo, Messier 81 and 82 (ground-based) hi-res Size hi-res: 1502 kb Credits: Robert Gendler ( The dynamic duo, Messier 81 and 82 (ground-based) This wide-angle image taken by astrophotographer Robert Gendler shows the amazing duo of Messier 81 (right) and Messier 82 (left

  2. Helix Nebula (NGC 7293) (United States)

    Murdin, P.


    A planetary nebula in the constellation Aquarius, position RA 22 h 29.6 m, dec. -20° 48'. It is the nearest planetary nebula to Earth, it has the largest angular size, at 15' by 12', and its magnitude of 6.5 makes it the brightest (though like all extended objects it does not have a high surface brightness). It is illuminated by its hot thirteenth-magnitude central star. The Helix gets its name f...

  3. Constraining the Turbulence Scale and Mixing of a Crushed Pulsar Wind Nebula (United States)

    Ng, Chi Yung; Ma, Y. K.; Bucciantini, Niccolo; Slane, Patrick O.; Gaensler, Bryan M.; Temim, Tea


    Pulsar wind nebulae (PWNe) are synchrotron-emitting nebulae resulting from the interaction between pulsars' relativistic particle outflows and the ambient medium. The Snail PWN in supernova remnant G327.1-1.1 is a rare system that has recently been crushed by supernova reverse shock. We carried out radio polarization observations with the Australia Telescope Compact Array and found highly ordered magnetic field structure in the nebula. This result is surprising, given the turbulent environment expected from hydrodynamical simulations. We developed a toymodel and compared simple simulations with observations to constrain the characteristic turbulence scale in the PWN and the mixing with supernova ejecta. We estimate that the turbulence scale is about one-eighth to one-sixth of the nebula radius and a pulsar wind filling factor of 50-75%. The latter implies substantial mixing of the pulsar wind with the surrounding supernova ejecta.This work is supported by an ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  4. Solar nebula heterogeneity in p-process samarium and neodymium isotopes. (United States)

    Andreasen, Rasmus; Sharma, Mukul


    Bulk carbonaceous chondrites display a deficit of approximately 100 parts per million (ppm) in 144Sm with respect to other meteorites and terrestrial standards, leading to a decrease in their 142Nd/144Nd ratios by approximately 11 ppm. The data require that samarium and neodymium isotopes produced by the p process associated with photodisintegration reactions in supernovae were heterogeneously distributed in the solar nebula. Other samarium and neodymium isotopes produced by rapid neutron capture (r process) in supernovae and by slow neutron capture (s process) in red giants were homogeneously distributed. The supernovae sources supplying the p- and r-process nuclides to the solar nebula were thus disconnected or only weakly connected.

  5. Cool gaseous nebulae

    CERN Document Server

    Shaver, P A; Pottasch, S R


    The electron temperatures of diffuse gaseous nebulae have long been thought to be close to 10/sup 4/K. Much lower temperatures were derived from some of the early radio continuum and recombination line work, but these were generally considered to be wrong for a variety of reasons. While there is little doubt that the bright nebulae do indeed have temperatures of approximately 8000-9000K, there are strong indications that some nebulae of lower densities have much lower temperatures, nebulae were made in order to determine electron temperatures in the absence of such effects as collisional de-excitation, stimulated emission, and pressure broadening. Several of these nebulae have been found to have temperatures below 5000K and for two of them which are discussed (RCW94 and G339.1-0.2) absolute upper limits of approximately 4700 K are imposed by the line widths alone. (11 refs).

  6. Multibaseline Observations of the Occultation of Crab Nebula by the ...

    Indian Academy of Sciences (India)


    Information about the outer solar corona can be obtained by observing the occultation of radio sources by the solar corona. As the radio waves pass through the corona they get scattered due to the fact that the electron density and consequently the refractive index varies from point to point. The effect of scattering is ...



    In the most active starburst region in the local universe lies a cluster of brilliant, massive stars, known to astronomers as Hodge 301. Hodge 301, seen in the lower right hand corner of this image, lives inside the Tarantula Nebula in our galactic neighbor, the Large Magellanic Cloud. This star cluster is not the brightest, or youngest, or most populous star cluster in the Tarantula Nebula -- that honor goes to the spectacular R136. In fact, Hodge 301 is almost 10 times older than the young cluster R136. But age has its advantages; many of the stars in Hodge 301 are so old that they have exploded as supernovae. These exploded stars are blasting material out into the surrounding region at speeds of almost 200 miles per second. This high speed ejecta are plowing into the surrounding Tarantula Nebula, shocking and compressing the gas into a multitude of sheets and filaments, seen in the upper left portion of the picture. Note for your calendar; Hodge 301 contains three red supergiants - stars that are close to the end of their evolution and are about to go supernova, exploding and sending more shocks into the Tarantula. Also present near the center of the image are small, dense gas globules and dust columns where new stars are being formed today, as part of the overall ongoing star formation throughout the Tarantula region. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  8. Si isotope homogeneity of the solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 (United States); Jackson, Matthew G. [Department of Earth Science, University of California, Santa Barbara, CA 93109 (United States); Barrat, Jean-Alix, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Université Européenne de Bretagne, Université de Brest, CNRS UMR 6538 (Domaines Océaniques), I.U.E.M., Place Nicolas Copernic, F-29280 Plouzané Cedex (France)


    The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.

  9. Catalogues of planetary nebulae. (United States)

    Acker, A.

    Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.

  10. Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop (United States)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru


    We report on a discovery of a diffuse nebula containing a point-like source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the point-like source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F(sub nebula)/F(sub point-like) approx. 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1x10(exp 31)(d/540pc)(exp 2)ergss/2, where d is the distance to the Loop. This implies a spin-down loss-energy E approx. 2.6x10(exp 35)(d/540pc)(exp 2)ergs/s. The location of the neutron star candidate, approx.2deg away from the geometric center of the Loop, implies a high transverse velocity of approx.1850(theta/2deg)(d/540pc)(t/10kyr)/k/s assuming the currently accepted age of the Cygnus Loop.

  11. Radio emission from embryonic superluminous supernova remnants (United States)

    Omand, Conor M. B.; Kashiyama, Kazumi; Murase, Kohta


    It has been widely argued that Type-I superluminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of B ˜ 1013-1015 G. Murase, Kashiyama & Mészáros proposed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a relevant counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array can detect the radio nebula from SNe at DL ˜ 1 Gpc in a few years after the explosion, while the Jansky Very Large Array can also detect the counterpart in a few decades. The proposed radio follow-up observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.

  12. Supernova Detection with SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Schumaker, M.A. [Department of Physics, Laurentian University, Sudbury, Ontario, P3E 2C6 (Canada)


    Part of the SNO+ experimental program is the preparation for detection of neutrinos from a supernova. Tests of the acquisition chain, neutrino collective effects, and the SuperNova Early-Warning System (SNEWS) are discussed.

  13. The Global Supernova Project (United States)

    Howell, Dale Andrew; Global Supernova Project


    The Global Supernova Project is worldwide collaboration to study 600 supernovae of all types between May 2017 and July 2020. It is a Key Project at Las Cumbres Observatory, whose global robotic telescope network will provide lightcurves and spectra. Follow-up observations will be obtained on many other facilities, including Swift, VLA, K2, the NTT, IRTF, Keck, and Gemini. Observations are managed by the Supernova Exchange, a combination observatin database and telescope control system run by LCO. Here we report on results from the previous Supernova Key Project, and first results from the Global Supernova Project.

  14. Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs (United States)

    Swartz, D. A.; Weisskopf, M. C.; Zavlin, V. E.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; O'Dell, S. L.; vanderHorst, A J.; Yukita, M.


    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222117, in the supernova remnant IC443 reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by the pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest (or, equivalently, flow of ambient medium to the northeast), appears to be subsonic; there is no evidence for a strong bow shock, and the circular ring is not distorted by motion through the ambient medium.

  15. Handbook of supernovae

    CERN Document Server

    Murdin, Paul


    This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/r...

  16. Constraining pulsar birth properties with supernova X-ray observations (United States)

    Gallant, Y. A.; Bandiera, R.; Bucciantini, N.; Amato, E.


    A large fraction of core-collapse supernovae are thought to result in the birth of a rotation-powered pulsar, which is later observable as a radio pulsar up to great ages. The birth properties of these pulsars, and in particular the distribution of their initial rotation periods, are however difficult to infer from studies of the radio pulsar population in our Galaxy. Yet the distributions of their birth properties is an important assumption for scenarios in which ultra-high-energy cosmic rays (UHECRs) originate in very young, extragalactic pulsars with short birth periods and/or high magnetic fields. Using a model of the very young pulsar wind nebula's dynamical and spectral evolution, with pulsar wind and accelerated particle parameters assumed similar to those inferred from modeling young pulsar wind nebulae (PWNe) in our Galaxy, we show that X-ray observations of supernovae, a few years to decades after the explosion, constitute a favored window to obtain meaningful constraints on the initial spin-down luminosity of the newly-formed pulsar. We examine the expected emerging PWN spectral component, taking into account the X-ray opacity of the expanding supernova ejecta, and find that it is typically best detectable in building on the work of Perna et al. (2008). We note that a resulting limit on spin-down luminosity corresponds univocally to a limit on the maximum magnetospheric acceleration potential, irrespective of the specific combination of magnetic field and rotation period that achieves it. We use available X-ray observations of supernovae to place constraints on the birth spin-down luminosity and period distribution of classical pulsars. We also examine the case of magnetars, born with much higher magnetic fields, and show that their much shorter initial spin-down time implies that any plausible signature of young magnetar wind nebulae can only be observed in harder X-ray or gamma-rays.

  17. Supernovae and mass extinctions (United States)

    Vandenbergh, S.


    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  18. Outflows from Magnetorotational Supernovae


    Moiseenko, S. G.; Bisnovatyi-Kogan, G. S.


    We discuss results of 2D simulations of magnetorotational(MR) mechanism of core collapse supernova explosions. Due to the nonuniform collapse the collapsed core rotates differentially. In the presence of initial poloidal magnetic field its toroidal component appears and grows with time. Increased magnetic pressure leads to foramtion of compression wave which moves outwards. It transforms into the fast MHD shock wave (supernova shock wave). The shape of the MR supernova explosion qualitatively...

  19. The historical supernovae

    CERN Document Server

    Clark, David H


    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  20. Matching Supernovae to Galaxies (United States)

    Kohler, Susanna


    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  1. Evolution of Supernova Remnants (United States)

    Arbutina, B.


    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  2. Supernovae and supernova remnants at high energies (United States)

    Chevalier, Roger A.


    The physical phenomena that are observable with X- and gamma-ray observations of supernovae are discussed with respect to possible high-energy astrophysics experiments. Prompt photospheric emission and its echo are discussed, supernova radioactivity and neutron star effects are examined, and circumstellar and interstellar interaction are reviewed. The primary uncertainties are found to be the hardening of the spectrum by non-LTE effects and the amount of absorption of the radiation from the initial soft X-ray burst. The radioactivity in supernovae is theorized to lead to gamma-ray lines and continuum emission unless the event is low-mass type II. Gamma-ray observations are proposed to examine the efficiency of particle acceleration, and high-resolution spectroscopy can provide data regarding ionization, temperature, composition, and velocities of the X-ray-emitting gas.



    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes

  4. Dust in planetary nebulae (United States)

    Sloan, G. C.


    Infrared spectra from the Spitzer Space Telescope trace the evolution of carbon-rich dust from the asymptotic giant branch (AGB) to young planetary nebulae (PNe). On the AGB, amorphous carbon dominates the dust, but SiC and MgS also appear. In more evolved systems with warmer central stars, the spectra reveal the unidentified 21 μm feature, features from aliphatic hydrocarbons, and spectra from polycyclic aromatic hydrocarbons (PAHs), often with shifted feature positions indicative of the presence of aliphatics. More evolved systems with hot central stars show more typical PAH spectra, along with fullerenes and/or an emission feature known as the big-11 feature at ~11 μm. This features arises from a combination of SiC and PAHs, and it is usually accompanied by a shoulder at 18 μm, which while unidentified might be from cool silicate grains. The strong emission from MgS and SiC in young PNe probably arises from coatings on carbonaceous grains.

  5. XMM-Newton Observations of Two Candidate Supernova Remnants


    Kargaltsev, O.; Schmitt, B. M.; Pavlov, G. G.; Misanovic, Z.


    Candidate supernova remnants G23.5+0.1 and G25.5+0.0 were observed by XMM-Newton in the course of a snap-shot survey of plerionic and composite SNRs in the Galactic plane. In the field of G23.5+0.1, we detected an extended source, ~3' in diameter, which we tentatively interpret as a pulsar-wind nebula (PWN) of the middle-aged radio pulsar B1830-08. Our analysis suggests an association between PSR B1830-08 and the surrounding diffuse radio emission. If the radio emission is due to the SNR, the...

  6. The Formation of a Planetary Nebula. (United States)

    Harpaz, Amos


    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  7. Multiband nonthermal radiative properties of pulsar wind nebulae (United States)

    Zhu, Bo-Tao; Zhang, Li; Fang, Jun


    Aims: The nonthermal radiative properties of 18 pulsar wind nebulae (PWNe) are studied in the 1D leptonic model. Methods: The dynamical and radiative evolution of a PWN in a nonradiative supernova remnant are self-consistently investigated in this model. The leptons (electrons/positrons) are injected with a broken power-law form, and nonthermal emission from a PWN is mainly produced by time-dependent relativistic leptons through synchrotron radiation and inverse Compton process. Results: Observed spectral energy distributions (SEDs) of all 18 PWNe are reproduced well, where the indexes of low-energy electron components lie in the range of 1.0-1.8 and those of high-energy electron components in the range of 2.1-3.1. Our results show that FX/Fγ > 10 for young PWNe; 1 age negatively correlate with X-ray luminosity, the ratio of X-ray to gamma-ray luminosities, and the synchrotron luminosity.

  8. The ultraviolet extinction properties of the 30 Dor Nebula (United States)

    De Marchi, Guido; Panagia, Nino


    Recent investigation of the extinction law in 30 Dor and the Tarantula Nebula, at optical and near infrared wavelengths, has revealed a ratio of total to selective extinction RV=AV/E(B-V) of about 4.5. This indicates a larger proportion of large grains than in the Galactic diffuse interstellar medium. Possible origins include coalescence of small grains, grain growth, selective destruction of small grains, and fresh injection of large grains. From a study of the ultraviolet extinction properties of three Wolf-Rayet stars in 30 Dor (R 139, R 140, R 145), observed with the International Ultraviolet Explorer, we show that the excess of large grains does not come at the expense of small grains, which are still present. Fresh injection of large grains by supernova explosions appears to be the dominant mechanism.

  9. Crab as a Coconut Oil Separating Agent




    The role of sterilized and nonsterilized crab extract on the separation of coconut oil was examined using grated coconut meat as substrate. Sterilized crab extract was prepared by suspension and centrifugation of crushed crab and then filtrated using Millipore Utter. Sterilized crab extract has proteolytic activity but not lipolytic one. It was found that the sterilized crab extract supported the growth of proteolytic microbes, isolated from fermentation process of coconut oil. Both sterilize...

  10. Crab As A Coconut Oil Separating Agent


    Margino, Sebastian


    The role of sterilized and nonsterilized crab extract on the separation of coconut oil was examined using grated coconut meat as substrate. Sterilized crab extract was prepared by suspension and centrifugation of crushed crab and then filtrated using Millipore Utter. Sterilized crab extract has proteolytic activity but not lipolytic one. It was found that the sterilized crab extract supported the growth of proteolytic microbes, isolated from fermentation process of coconut oil. Both sterilize...

  11. Unsolved Problems about Supernovae


    Panagia, Nino


    A number of unsolved problems and open questions about the nature and the properties of supernovae are identified and briefly discussed. Some suggestions and directions toward possible solutions are also considered.

  12. Handbook of Supernovae (United States)

    Athem Alsabti, Abdul


    Since the discovery of pulsars in 1967, few celestial phenomena have fascinated amateur and professional astronomers, and the public, more than supernovae - dying stars that explode spectacularly and, in so doing, may outshine a whole galaxy. Thousands of research papers, reviews, monographs and books have been published on this subject. These publications are often written either for a highly specific level of expertise or education, or with respect to a particular aspect of supernovae research. However, the study of supernovae is a very broad topic involving many integral yet connected aspects, including physics, mathematics, computation, history, theoretical studies and observation. More specifically, areas of study include historical supernovae, the different types and light curves, nucleosynthesis, explosion mechanisms, formation of black holes, neutron stars, cosmic rays, neutrinos and gravitational waves. Related questions include how supernovae remnants interact with interstellar matter nearby and how do these events affect the formation of new stars or planetary systems? Could they affect existing planetary systems? Closer to home, did any supernovae affect life on earth in the past or could they do so in the future? And on the larger scale, how did supernovae observations help measure the size and expansion of the universe? All these topics, and more, are to be covered in a new reference work, consisting of more than 100 articles and more than 1700 pages. It is intended to cover all the main facets of current supernovae research. It will be pitched at or above the level of a new postgraduate student, who will have successfully studied physics (or a similar scientific subject) to Bachelor degree level. It will be available in both print and electronic (updatable) formats, with the exception of the first section, which will consist of a review of all the topics of the handbook at a level that allows anyone with basic scientific knowledge to grasp the

  13. What regulates crab predation on mangrove propagules? (United States)

    Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid


    Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.

  14. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. (United States)

    Lyons, J R; Young, E D


    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO.

  15. Golden Crab Logbook Survey (Vessels) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In November 1995, a voluntary logbook program for the golden crab fishery in the waters under the jurisdiction of the South Atlantic Fishery Management Council...

  16. Antarctic crabs: invasion or endurance?

    Directory of Open Access Journals (Sweden)

    Huw J Griffiths

    Full Text Available Recent scientific interest following the "discovery" of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This "invasion hypothesis" suggests that decapod crabs were driven out of Antarctica 40-15 million years ago and are only now returning as "warm" enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura, and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60 °S. All are restricted to waters warmer than 0 °C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW. Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day "crab invasion". We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the

  17. Modeling Core Collapse Supernovae (United States)

    Mezzacappa, Anthony


    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  18. Nearby supernova factory announces 34 supernovae in one year'; best Rookie year ever for supernova search

    CERN Document Server


    The Nearby Supernova Factory (SNfactory), an international collaboration based at Lawrence Berkeley National Laboratory, announced that it had discovered 34 supernovae during the first year of the prototype system's operation (2 pages).

  19. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations...... compared to most low redshift (z 1) redshift SNe. This is mainly due to the change in specific star-formation rate as a function of redshift. This can potentially impact the use of high redshift SN Ia as standard candels...

  20. Exploring Cosmology with Supernovae

    DEFF Research Database (Denmark)

    Li, Xue

    distribution of strong gravitational lensing is developed. For Type Ia supernova (SNe Ia), the rate is lower than core-collapse supernovae (CC SNe). The rate of SNe Ia declines beyond z 1:5. Based on these reasons, we investigate a potential candidate to measure cosmological distance: GRB......-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB-SNe. The first...

  1. Neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Cooperstein, J.


    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs.

  2. Recording of Supernovae in Rock Art, A Case Study at the Paint Rock Pictograph Site (United States)

    Houston, Gordon L.; Simonia, Irakli; NA


    The Paint Rock pictographs in central Texas and their use as solar markers were formally reported for the first time by Dr. R. Robert Robbins at the 1999 AAS meeting #193 in Austin, Texas. He reported the operations of the winter solstice marker and suggested the possibility of more, including a summer solstice solar marker. Since this first report, there have been many informal studies of the Paint Rock site. In 1955, William C. Miller made the first interpretation of rock art as depicting images of the Crab supernova of AD 1054, which has produced many reports at other rock art sites in the American Southwest, including one at Paint Rock. All of these claims have a star and crescent configuration. Recently, these claims have been dismissed. We propose that the second panel at Paint Rock is representative of Tycho Brahe's supernovae SN1572. Miller set up a set of restrictions and criteria to evaluate these potential claims. We discuss Miller's criteria and two additional sets of criteria to evaluate representations of historical records of supernovae sightings. Two sets of characteristics of supernovae are provided, the first being galactic location and the second observational characteristics of naked eye supernovae. Employing astronomical software, we show that the panel at Paint Rock meets the restrictions and criteria discussed, that leads to high confidence in stating it records Tycho Brahe's supernova SN1572.

  3. Supernovae and cosmic rays

    CERN Document Server

    Woltjer, L


    The energetic requirements for cosmic-ray acceleration are evaluated and the abundances of various elements, electrons, and positrons, are reviewed. Various models for cosmic-ray production involving different aspects of the supernova process are evaluated. The difficulties in theories which make pulsars the main source of cosmic rays are stressed. (4 refs).

  4. Caught in the Crab's claws

    CERN Multimedia


    'The crab', a new cryo magnet transport vehicle, starts work at CERN. Produced by the ESI group of EST division and built in Finland, it has the job of transporting LHC magnets in buildings SM18 and SMA18. If you see a huge crab scuttling around building SMA18 don't be afraid! It is the new Cryo Magnet Transport Vehicle produced by the ESI group (Engineering Support for Infrastructure, EST Division) for CERN's LHC project and built by Finnish Company ROCLA. This orange vehicle, nicknamed 'The Crab', is perhaps the strangest piece of equipment used for the construction of LHC magnets. It will start work at the end of this month. The crab will be used to transport LHC cryo-magnets and their components in the assembly and preparation building, SMA18, and test building, SM18. It has many capabilities that will allow CERN staff and contractors transport magnets between the two buildings and to locate them in the right position on the test beds. The crab in action during its first tests on 8 February. How does th...

  5. The imprints of the last jets in core collapse supernovae (United States)

    Bear, Ealeal; Grichener, Aldana; Soker, Noam


    We analyse the morphologies of three core collapse supernova remnants (CCSNRs) and the energy of jets in other CCSNRs and in Super Luminous Supernovae (SLSNe) of type Ib/Ic/IIb, and conclude that these properties are well explained by the last jets' episode as expected in the jet feedback explosion mechanism of core collapse supernovae (CCSNe). The presence of two opposite protrusions, termed ears, and our comparison of the CCSNR morphologies with morphologies of planetary nebulae strengthen the claim that jets play a major role in the explosion mechanism of CCSNe. We crudely estimate the energy that was required to inflate the ears in two CCSNRs and assume that the ears were inflated by jets. We find that the energies of the jets which inflated ears in 11 CCSNRs span a range that is similar to that of jets in some energetic CCSNe (SLSNe) and that this energy, only of the last jets' episode, is much less than the explosion energy. This finding is compatible with the jet feedback explosion mechanism of CCSNe, where only the last jets, which carry a small fraction of the total energy carried by earlier jets, are expected to influence the outer parts of the ejecta. We reiterate our call for a paradigm shift from neutrino-driven to jet-driven explosion models of CCSNe.

  6. Are Crab nanoshots Schwinger sparks?

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, Albert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yoo, Hojin [Univ. of Wisconsin, Madison, WI (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)


    The highest brightness temperature ever observed are from "nanoshots" from the Crab pulsar which we argue could be the signature of bursts of vacuum e± pair production. If so this would be the first time the astronomical Schwinger effect has been observed. These "Schwinger sparks" would be an intermittent but extremely powerful, ~103 L, 10 PeV e± accelerator in the heart of the Crab. These nanosecond duration sparks are generated in a volume less than 1 m3 and the existence of such sparks has implications for the small scale structure of the magnetic field of young pulsars such as the Crab. As a result, this mechanism may also play a role in producing other enigmatic bright short radio transients such as fast radio bursts.

  7. Using Planetary Nebulae to Teach Physics (United States)

    Kwitter, Karen B.


    We have developed an interactive website, "Gallery of Planetary Nebula Spectra," ( that contains high-quality optical-to-near-infrared spectra, atlas information, and bibliographic references for more than 160 planetary nebulae that we have observed in the Milky Way Galaxy. To make the material more accessible to students, I have created three undergraduate-level exercises that explore physics-related aspects of planetary nebulae. "Emission Lines and Central Star Temperature” uses the presence or absence of emission lines from species with different ionization potentials to rank the temperatures of the exciting stars in a selection of nebulae. "Interstellar Reddening” uses the observed Balmer decrement in a sample of planetary nebulae at different Galactic latitudes to infer the distribution of interstellar dust in the Milky Way. Finally, "Determining the Gas Density in Planetary Nebulae,” which I will focus on here, uses the observed intensity ratio of the 6717 Å and 6731 Å emission lines from singly ionized sulfur to determine the electron density in the nebular gas. These exercises demonstrate that planetary nebula spectra are useful real-world examples illustrating a variety of physical principles, including the behavior of blackbodies, wavelength-dependent particle scattering, recombination-line ratios, atomic physics, and statistical mechanics.

  8. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value


    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  9. Abundances of planetary nebula NGC 5315

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Koornneef, J; Feibelman, WA


    The ISO and IUE spectra of the elliptical nebula NGC 5315 is presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous

  10. A Smoking Gun in the Carina Nebula (United States)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua


    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  11. On the origin of pulsed emission from the young supernova remnant SN 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M.; Kluzniak, W.; Shaham, J. (Columbia Univ., New York, NY (USA))


    To overcome difficulties in understanding the origin of the sub-msec optical pulses from SN 1987A, a model similar to that of Kundt and Krotscheck (1977) for pulsed synchotron emission from the Crab is applied. The interaction of the expected ultrarelativistic electron-positron pulsar wind with pulsar dipole EM wave or wind-carried toroidal magnetic field reflected from the walls of the expected pulsar cavity within the SN 1987A nebula can generate pulsed optical emission with efficiency at most 0.001. The maximum luminosity of the source is reproduced, and other observational constraints can be satisfied for an average wind energy flow of about 10 to the 38th erg/sec sr and for wind electron Lorentz factor gamma of about 100,000. This model applied to the Crab yields pulsations of much lower luminosity and frequency. 17 refs.

  12. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428. (United States)

    Santander-García, M; Rodríguez-Gil, P; Corradi, R L M; Jones, D; Miszalski, B; Boffin, H M J; Rubio-Díez, M M; Kotze, M M


    The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (M(⊙)). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ∼1.76M(⊙), which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4M(⊙). This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae.

  13. Supernova 2008J

    DEFF Research Database (Denmark)

    Tadddia, F.; Stritzinger, Maximilian David; Phillips, M.M.


    Aims: We provide additional observational evidence that some Type Ia supernovae (SNe Ia) show signatures of circumstellar interaction (CSI) with hydrogen-rich material. Methods: Early phase optical and near-infrared (NIR) light curves and spectroscopy of SN 2008J obtained by the Carnegie Supernova...... Project are studied and compared to those of SNe 2002ic and 2005gj. Our NIR spectrum is the first obtained for a 2002ic-like object extending up to 2.2 μm. A published high-resolution spectrum is used to provide insight on the circumstellar material (CSM). Results: SN 2008J is found to be affected by AV...... ~ 1.9 mag of extinction and to closely resemble SN 2002ic. Spectral and color comparison to SNe 2002ic and 2005gj suggests RV J is as luminous as SN 2005gj (Vmax = -20.3 mag), we conclude...

  14. Supernova Science Center

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Woosley


    The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

  15. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations...... mechanisms that governs the SN explosions. In the first of three papers I investigate the host galaxy of the first SN Ia found in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) SN search. From long slit spectroscopy using the Xshooter spectrograph and broadband photometry I determine...... the gasphase metallicity, stellar mass and stellar age for this z = 1.55 host galaxy. I am also able to rule out the presence of any AGN though emission-line ratios. The host is classified as a highly star forming, low mass, low metallicity galaxy. It is a clear outlier in star formation and stellar mass...

  16. STRESS Counting Supernovae (United States)

    Botticella, M. T.; Cappellaro, E.; Riello, M.; Greggio, L.; Benetti, S.; Patat, F.; Turatto, M.; Altavilla, G.; Pastorello, A.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.


    The rate of occurrence of supernovae (SNe) is linked to some of the basic ingredients of galaxy evolution, such as the star formation rate, the chemical enrichment and feedback processes. SN rates at intermediate redshift and their dependence on specific galaxy properties have been investigated in the Southern inTermediate Redshift ESO Supernova Search (STRESS). The rate of core collapse SNe (CC SNe) at a redshift of around 0.25 is found to be a factor two higher than the local value, whereas the SNe Ia rate remains almost constant. SN rates in red and blue galaxies were also measured and it was found that the SNe Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe.

  17. Superluminous Supernovae hydrodynamic models (United States)

    Orellana, M.


    We use our radiation hydrodynamic code in order to simulate magnetar powered Superluminous Supernovae (SLSNe). It is assumed that a central rapidly rotating magnetar deposits all its rotational energy into the ejecta where is added to the usual power. The magnetar luminosity and spin-down timescale are adopted as the free parameters of the model. For the case of ASASSN-15lh, which has been claimed as the most luminous supernova ever discovered, we have found physically plausible magnetar parameters can reproduce the overall shape of the bolometric light curve (LC) provided the progenitor mass is ≍ 8M⊙. The ejecta dynamics of this event shows signs of the magnetar energy input which deviates the expansion from the usually assumed homologous behaviour. Our numerical experiments lead us to conclude that the hydrodynamical modeling is necessary in order to derive the properties of powerful magnetars driving SLSNe.

  18. Where Do Messy Planetary Nebulae Come From? (United States)

    Kohler, Susanna


    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a

  19. NIF Discovery Science Eagle Nebula (United States)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto


    The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Molecular studies of Planetary Nebulae (United States)

    Zhang, Yong


    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C60 + in the ISM reinforce the view that the mass-loss from PNe can significantly enrich the ISM with molecular species, some of which may be responsible for the diffuse interstellar bands. In this contribution, I briefly summarize some recent observations of molecules in PNe, with emphasis on their implications on circumstellar chemistry.

  1. NIF Discovery Science Eagle Nebula (United States)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Huntington, Channing; Casner, Alexis; Villette, Bruno; Mancini, Roberto


    For almost 20 years a team of astronomers, theorists and experimentalists have investigated the creation of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds, using a combination of astronomical observations, astrophysical simulations, and recently, scaled laboratory experiments. Eagle Nebula, one of the National Ignition Facility (NIF) Discovery Science programs, has completed four NIF shots to study the dense `shadowing' model of pillar formation, and been awarded more shots to study the `cometary' model. These experiments require a long-duration drive, 30 ns or longer, to generate deeply nonlinear ablative hydrodynamics. A novel x-ray source featuring multiple UV-driven hohlraums driven is used. The source directionally illuminates a science package, mimicking a cluster of stars. The first four NIF shots generated radiographs of shadowing-model pillars, and suggested that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at millimeter observatories, and indicate cometary growth is key to matching observations. Supported in part by a Grant from the DOE OFES HEDLP program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. From Supernovae To Equatorial Ionosphere, Following a Tortuous Path Through Computer Sciences, Oceanography, and Much, Much More (United States)

    de La Beaujardiere, O.


    From as early as I can remember, I always wanted to be a scientist. My interests were oriented towards cataclysmic and catastrophic events. I first wanted to study volcanoes, then earthquakes. As I ended my PhD, my interests had gone a little higher, towards supernovae and the Crab Nebula. This was in Paris. I then immigrated to the US. My first job in the US was in computer sciences. I joined a team who made one of the first computer movies. I then switched fields once more. I went into ionospheric physics, where I stayed for more than 2 decades. I then did two "tours of duty" at National Sciences Foundation. I was first in the Magnetospheric Program. Then I started a multidisciplinary program that covered all sciences related to the arctic - from the bottom o f the ocean to the confines of the magnetosphere, passing through biology, glaciology, etc. Presently, I lead a team of about 20 scientists at the Air Force Research Laboratory. We work on basic and applied ionospheric sciences problems as they relate to communications and navigation. As a woman scientist, the hardest obstacle I had to overcome was probably the permanent guilt of not staying home with my children. I raised 3 boys, and, although they are happy, successful and well adjusted, I continue to feel guilt about not staying home for them, and working so long hours and with so much intensity. When they were small, society was not too accepting of working mothers. In one of my kids' first grade class, he was the only child whose mother was working. As a teenager I also had to overcome rejection from boys who "could not stand" girls who studied science. My own father was not too encouraging to continue studies, warning me that women who are too bright have a hard time finding husbands. One University professor told the class that women were wasting taxpayers' money since they would never put their degree to use. My greatest support was my husband, always there, sharing chores, and understanding my ups


    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T.; Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Cannon, A.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C., E-mail: [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); and others


    We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0.23 Degree-Sign .23 {+-} 0. Degree-Sign 03{sub stat-0 Degree-Sign .02sys}{sup +0 Degree-Sign .04} and its spectrum is well-characterized by a differential power law (dN/dE = N{sub 0} Multiplication-Sign (E/TeV){sup -{Gamma}}) with a photon index of {Gamma} = 2.37 {+-} 0.14{sub stat} {+-} 0.20{sub sys} and a flux normalization of N{sub 0} = 1.5 {+-} 0.2{sub stat} {+-} 0.4{sub sys} Multiplication-Sign 10{sup -12} photon TeV{sup -1} cm{sup -2} s{sup -1}. This yields an integral flux of 5.2 {+-} 0.8{sub stat} {+-} 1.4{sub sys} Multiplication-Sign 10{sup -12} photon cm{sup -2} s{sup -1} above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock.

  4. Processing NASA Earth Science Data on Nebula Cloud (United States)

    Chen, Aijun; Pham, Long; Kempler, Steven


    Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.

  5. AFSC/RACE/SAP/Jensen: Bitter crab disease mortality in SE Alaska Tanner crab (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These are data from a laboratory experiment in which wild caught male Tanner crab (Chionoecetes bairdi) from Stephens Passage, SE Alaska were held to evaluate crab...

  6. So You Think the Crab is Described by a Power-Law Spectrum (United States)

    Weisskopf, Martin C.


    X-ray observations of the Crab Nebula and its pulsar have played a prominent role in the history of X-ray astronomy. Discoveries range from the detection of the X-ray Nebula and pulsar and the measurement of the Nebula-averaged X-ray polarization, to the observation of complex X-ray morphology, including jets emanating from the pulsar and the ring defining the shocked pulsar wind. The synchrotron origin of much of the radiation has been deduced by detailed studies across the electromagnetic spectrum, yet has fooled many X-ray astronomers into believing that the integrated spectrum from this system ought to be a power law. In many cases, this assumption has led observers to adjust the experiment response function(s) to guarantee such a result. We shall discuss why one should not observe a power-law spectrum, and present simulations using the latest available response matrices showing what should have been observed for a number of representative cases including the ROSAT IPC, XMM-Newton, and RXTE. We then discuss the implications, if any, for current calibrations.

  7. Gravitational Lensing of Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; /Fermilab /Rome U.; Mocioiu, Irina; /Penn State U.; Quigg, Chris; /Fermilab


    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  8. Pulsar/Supernova Remnant Associations (United States)

    Kaspi, Victoria M.


    We list and review proposed pulsar/supernova remnant associations, summarize recent highlights in the field, including searches for young pulsars, searches for remnants, recent studies of previously proposed associations, and attempts at pulsar/remnant association synthesis. we argue that most proposed pulsar/supernova remnant associations require additional investigation before they can be considered secure, and we suggest directions for future work.

  9. The Lick Observatory Supernova Search


    Li, W.D.; Filippenko, A. V.; Treffers, R. R.; Friedman, A.; Halderson, E.; Johnson, R A; King, J. Y.; Modjaz, M.; Papenkova, M.; Sato, Y.; Shefler, T.


    We report here the current status of the Lick Observatory Supernova Search (LOSS) with the Katman Automatic Imaging Telescope (KAIT). The progress on both the hardware and the software of the system is described, and we present a list of recent discoveries. LOSS is the world' most successful search engine for nearby supernovae.

  10. Thermal synchrotron radiation from RRMHD simulations of the double tearing mode reconnection - application to the Crab flares (United States)

    Takamoto, M.; Pétri, J.; Baty, H.


    We study the magnetohydrodynamic tearing instability occurring in a double current sheet configuration when a guide field is present. This is investigated by means of resistive relativistic magnetohydrodynamic simulations. Following the dynamics of the double tearing mode (DTM), we are able to compute synthetic synchrotron spectra in the explosive reconnection phase. The pulsar-striped wind model represents a site where such current sheets are formed, including a guide field. The variability of the Crab nebula/pulsar system, seen as flares, can be therefore naturally explained by the DTM explosive phase in the striped wind. Our results indicate that the Crab GeV flare can be explained by the DTM in the striped wind region if the magnetization parameter σ is around 105.

  11. Cosmic Ray Production in Supernovae (United States)

    Bykov, A. M.; Ellison, D. C.; Marcowith, A.; Osipov, S. M.


    We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above 10^{18} eV over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.

  12. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1. (United States)

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M


    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.

  13. Supernovae Discovery Efficiency (United States)

    John, Colin


    Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.

  14. Nebulae and how to observe them

    CERN Document Server

    Coe, Steven


    This "Astronomers' Observing Guides" are designed for practical amateur astronomers who not only want to observe, but want to know the details of exactly what they are looking at. Nebulae are the places where the stars are born. For amateur astronomers, the many different kinds of nebulae vary from "easy" targets that can be seen with modest equipment under mediocre skies, to "challenging" objects that require experienced observers, large telescopes and excellent seeing. The concept of the book - and of the series - is to present an up-to-date detailed description and categorisation (part one); and then (part two) to consider how best to successfully observe and record the large range of astronomical objects that fall under the general heading of "nebulae". "Nebulae, and How to Observe Them" is a mine of information for all levels of amateur observers, from the beginner to the experienced.

  15. Nuclear Physics and Supernovae

    CERN Document Server

    Austin, S M


    At the end of the life of a massive star, its iron core collapses under the unopposed attraction of gravity and initiates the supernova process. A violent explosion ensues and blows off the surface layers of the star, leaving behind a neutron star or a black hole. Both the nature of the collapse and nucleosynthesis by the r-process that synthesizes half of the heavier elements, depend upon the strengths of Gamow Teller transitions in the nuclei involved: those with masses near iron and larger. We will discuss progress made obtaining the needed strengths, with special attention to data on radioactive nuclei and how one may obtain it using radioactive beams.

  16. Things begin to happen around Supernova 1987A (United States)


    On 23 February 1994, it will be exactly seven years since the explosion of Supernova 1987A in the Large Magellanic Cloud [1] was first observed, at a distance of approx. 160,000 light-years. It was the first naked-eye supernova to be seen in almost four hundred years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and this famous object has been under constant surveillance ever since. After several years of relative quiescence, things are now beginning to happen in the immediate neighbourhood of SN 1987A. Recent observations with the ESO 3.5 m New Technology Telescope (NTT) indicate that interaction between the stellar material which was ejected during the explosion and the surrounding ring-shaped nebulae has started. This signals the beginning of a more active phase during which the supernova is likely to display a number of new and interesting phenomena, never before observed. SEVEN YEARS IN THE LIFE OF A SUPERNOVA After brightening to maximum light at about magnitude 3 a few months after the explosion, the long period of steady fading which is typical for supernovae, set in by mid-1987. The matter ejected by the explosion took the form of an expanding fireball, which began to spread through the nearly empty space around the supernova with a velocity of almost 10,000 km/sec. As it cooled, the temperature and therefore the total brightness decreased and the supernova became fainter and fainter. At the present moment, the magnitude of SN 1987A is about 18.5, that is almost 2 million times fainter than it was at maximum. Various phenomena have been observed around SN 1987A during the past years. Already in early 1988, light echoes were seen as concentric, slowly expanding luminous circles; they represent the reflections of the explosion light flash in interstellar clouds inside the Large Magellanic Cloud, between the supernova and us. In 1989, high-resolution observations with the NTT showed an elliptical ``ring-nebula

  17. Understanding Galactic planetary nebulae with precise/reliable nebular abundances (United States)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; di Criscienzo, M.; Yagüe, A.


    We compare recent precise/reliable nebular abundances - as derived from high-quality optical spectra and the most recent ICFs - in a sample of Galactic planetary nebulae (PNe) with nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) ATON models in the metallicity range Z ⊙/4 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios can be obtained. Two DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6 M⊙). Their actual C/O ratios, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.


    Energy Technology Data Exchange (ETDEWEB)

    Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Koeppel, Ari H. D. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States)


    Deep Hα images of a faint emission complex 4.°0 × 5.°5 in angular extent and located far off the Galactic plane at l = 70.°0, b = −21.°5 reveal numerous thin filaments suggestive of a supernova remnant’s (SNR’s) shock emission. Low dispersion optical spectra covering the wavelength range 4500–7500 Å show only Balmer line emissions for one filament while three others show a Balmer dominated spectrum along with weak [N i] 5198, 5200 Å, [O i] 6300, 6364 Å, [N ii] 6583 Å, [S ii] 6716, 6731 Å, and in one case [O iii] 5007 Å line emission. Many of the brighter Hα filaments are visible in near-UV GALEX images presumably due to C iii] 1909 Å line emission. ROSAT All Sky Survey images of this region show a faint crescent-shaped X-ray emission nebula coincident with the portion of the Hα nebulosity closest to the Galactic plane. The presence of long, thin Balmer dominated emission filaments with associated UV emission and coincident X-ray emission suggests this nebula is a high latitude Galactic SNR despite a lack of known associated nonthermal radio emission. Relative line intensities of the optical lines in some filaments differ from commonly observed [S ii]/Hα ≥ 0.4 radiative shocked filaments and typical Balmer filaments in SNRs. We discuss possible causes for the unusual optical SNR spectra.

  19. LHC crab cavity final report

    CERN Document Server

    Burt, G et al


    A compact 400 MHz SRF crab cavity is designed for LHC. The design has low surface fields, has no hard multipactor barriers and fits within the transverse space available on the HL-LHC. The structure has been designed to have a constant deflecting voltage across the beam-pipe aperture and this has been verified on an aluminium model. The structure includes designs for the input and lower order mode couplers.

  20. Automated Supernova Discovery (Abstract) (United States)

    Post, R. S.


    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  1. Physics of Supernovae (United States)

    Nadyozhin, D. K.; Imshennik, V. S.

    The origin of cosmic rays (CR) is supposed to be closely connected with supernovae (SNe) which create the conditions favorable for various mechanisms of the CR acceleration to operate effectively. First, modern ideas about the physics of the SN explosion are briefly discussed: the explosive thermonuclear burning in degenerate white dwarfs resulting in Type Ia SNe and the gravitational collapse of stellar cores giving rise to other types of SNe (Ib, Ic, IIL, IIP). Next, we survey some global properties of the SNe of different types: the total explosion energy distribution of various components (kinetic energy of the hydrodynamic flow, electromagnetic radiation, temporal behavior of the neutrino emission and individual energies of different neutrino flavors). Then, we discuss in the possibility of direct hydrodynamic acceleration by the shock wave breakout and the properties of the SN shocks in the circumstellar medium. Then the properties of the neutrino radiation from the core-collapse SNe and a possibility to incorporate both the LSD Mont Blanc neutrino event and that recorded by the K II and IMB detectors into a single scenario are described in detail. Finally, the issues of the neutrino nucleosynthesis and of the connection between supernova and gamma-ray bursts are discussed.

  2. CSI in Supernova Remnants (United States)

    Chu, You-Hua


    Supernovae (SNe) explode in environments that have been significantly modified by the SN progenitors. For core-collapse SNe, the massive progenitors ionize the ambient interstellar medium (ISM) via UV radiation and sweep the ambient ISM via fast stellar winds during the main sequence phase, replenish the surroundings with stellar material via slow winds during the luminous blue variable (LBV) or red supergiant (RSG) phase, and sweep up the circumstellar medium (CSM) via fast winds during the Wolf-Rayet (WR) phase. If a massive progenitor was in a close binary system, the binary interaction could have caused mass ejection in certain preferred directions, such as the orbital plane, and even bipolar outflow/jet. As a massive star finally explodes, the SN ejecta interacts first with the CSM that was ejected and shaped by the star itself. As the newly formed supernova remnant (SNR) expands further, it encounters interstellar structures that were shaped by the progenitor from earlier times. Therefore, the structure and evolution of a SNR is largely dependent on the initial mass and close binarity of the SN progenitor. The Large Magellanic Cloud (LMC) has an excellent sample of over 50 confirmed SNRs that are well resolved by Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope. These multi-wavelength observations allow us to conduct stellar forensics in SNRs and understand the wide variety of morphologies and physical properties of SNRs observed.

  3. Photoionization modelling of planetary nebulae - II. Galactic bulge nebulae, a comparison with literature results

    NARCIS (Netherlands)

    van Hoof, PAM; Van de Steene, GC


    We have constructed photoionization models of five galactic bulge planetary nebulae using our automatic method, which enables a fully self-consistent determination of the physical parameters of a planetary nebula. The models are constrained using the spectrum, the IRAS and radio fluxes and the

  4. Double Engine for a Nebula (United States)


    ESO has just released a stunning new image of a field of stars towards the constellation of Carina (the Keel). This striking view is ablaze with a flurry of stars of all colours and brightnesses, some of which are seen against a backdrop of clouds of dust and gas. One unusual star in the middle, HD 87643, has been extensively studied with several ESO telescopes, including the Very Large Telescope Interferometer (VLTI). Surrounded by a complex, extended nebula that is the result of previous violent ejections, the star has been shown to have a companion. Interactions in this double system, surrounded by a dusty disc, may be the engine fuelling the star's remarkable nebula. The new image, showing a very rich field of stars towards the Carina arm of the Milky Way, is centred on the star HD 87643, a member of the exotic class of B[e] stars [1]. It is part of a set of observations that provide astronomers with the best ever picture of a B[e] star. The image was obtained with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the 2400-metre-high La Silla Observatory in Chile. The image shows beautifully the extended nebula of gas and dust that reflects the light from the star. The central star's wind appears to have shaped the nebula, leaving bright, ragged tendrils of gas and dust. A careful investigation of these features seems to indicate that there are regular ejections of matter from the star every 15 to 50 years. A team of astronomers, led by Florentin Millour, has studied the star HD 87643 in great detail, using several of ESO's telescopes. Apart from the WFI, the team also used ESO's Very Large Telescope (VLT) at Paranal. At the VLT, the astronomers used the NACO adaptive optics instrument, allowing them to obtain an image of the star free from the blurring effect of the atmosphere. To probe the object further, the team then obtained an image with the Very Large Telescope Interferometer (VLTI). The sheer range of this set of observations

  5. Emission-line Diagnostics of Nearby HII Regions Including Supernova Hosts (United States)

    Xiao, Lin; Eldridge, J. J.; Stanway, Elizabeth; Galbany, L.


    We present a new model of the optical nebular emission from HII regions by combining the results of the Binary Population and Spectral Synthesis (bpass) code with the photoionization code cloudy (Ferland et al. 1998). We explore a variety of emission-line diagnostics of these star-forming HII regions and examine the effects of metallicity and interacting binary evolution on the nebula emission-line production. We compare the line emission properties of HII regions with model stellar populations, and provide new constraints on their stellar populations and supernova progenitors. We find that models including massive binary stars can successfully match all the observational constraints and provide reasonable age and mass estimation of the HII regions and supernova progenitors.

  6. The Population of Supernova Remnants in M51 (United States)

    Long, Knox S.; Blair, William P.; Kuntz, K. D.; Winkler, P. Frank


    The nearby, actively star-forming, nearly face-on spiral galaxy, M51 (NGC 5194/5), has been the site of four supernovae since 1941. As a result it should have a rich population of young supernova remnants (SNRs). Here we describe a search for optical SNRs in M51 among the 298 X-ray sources discovered inside the D25 contour in deep Chandra observations. The search uses interference filter images obtained with the WFC3 on Hubble Space Telescope and more recent images from GMOS on Gemini North. Of 80 emission nebulae identified in the HST images as SNR candidates based on elevated [SII]: Ha ratios compared to HII regions, 40 have X-ray counterparts. The diameters of the SNRs and SNR candidates detected with HST are systematically smaller than seen in SNR populations of other galaxies at comparable distances. However, this is most likely an instrumental effect, which our ongoing analysis of the new GMOS images will correct. At that point, we will be able to make of fair multi-wavelength comparison of the SNR population in M51 with other nearby, actively star-forming spiral galaxies, such as M83 and NGC6946.

  7. Supernova 1987A: The Supernova of a Lifetime (United States)

    Kirshner, Robert


    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  8. Invasive Crabs in the Barents Sea

    DEFF Research Database (Denmark)

    Kaiser, Brooks; Fernandez, Linda; Kourantidou, Melina

    The recent invasions of the red king crab (RKC) and the snow crab (SC) in the Barents Sea represent the sorts of integrated ecological and economic shifts we may expect as climate change affects arctic seas. Economic incentives and ecological unknowns have combined to change the current and poten...

  9. The Crab Boat Engineering Design Challenge (United States)

    Love, Tyler S.; Ryan, Larry


    Crab cakes and football, that's what Maryland does!" (Abrams, Levy, Panay, & Dobkin, 2005). Although the Old Line State is notorious for harvesting delectable blue crabs, the movie "Wedding Crashers" failed to highlight something else Maryland does well: engineering design competitions. This article discusses how a multistate…

  10. Particle beam and crabbing and deflecting structure (United States)

    Delayen, Jean [Yorktown, VA


    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  11. The radio-gamma time delay of the Crab pulsar. (United States)

    Masnou, J. L.; Agrinier, B.; Barouch, E.; Comte, R.; Costa, E.; Christy, J. C.; Cusumano, G.; Gerardi, G.; Lemoine, D.; Mandrou, P.; Massaro, E.; Matt, G.; Mineo, T.; Niel, M.; Olive, J. F.; Parlier, B.; Sacco, B.; Salvati, M.; Scarsi, L.


    Gamma-ray observations of the pulsar of the Crab nebula, PSR0531+21, have been performed in the low energy range (0.15-4.0 MeV) with FIGARO II, a large area balloon borne NaI(Tl) detector, during two flights performed on 1986 July 11 and 1990 July 9. A Kernel estimator built from the phases of the individual gamma-ray arrival times has allowed an accurate derivation of the radio-gamma time delay from those short duration gamma-ray observations. The gamma-ray pulse is found ahead of the radio pulse by 600+/-145μs and 375+/-148μs for the 1986 and 1990 observations respectively. Both radio-gamma delays could be attributed to variability of the interstellar dispersion since dispersion measures are available from radio measurements respectively two months before the 1986 flight and six days after the 1990 flight. An alternative explanation, particularly from the 1990 observation, could be that maximum gamma-ray and radio emissions originate from spatially different regions of the magnetosphere, distant by about 100 km.

  12. Neutrinos and nucleosynthesis in supernova

    Energy Technology Data Exchange (ETDEWEB)

    Solis, U [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); D' Olivo, J C [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico)


    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

  13. Supernovae Rates: A Cosmic History


    Yungelson, L. R.; Livio, M.


    We discuss the cosmic history of supernovae on the basis of various assumptions and recent data on the star formation history. We show that supernova rates as a function of redshift can be used to place significant constraints on progenitor models, on the star formation history, and on the importance of dust obscuration. We demonstrate that it is unlikely that the current observational indications for the existence of a cosmological constant are merely an artifact of the dominance of differen...

  14. Ozone Depletion from Nearby Supernovae (United States)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)


    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  15. High energy neutrinos from pulsar wind nebulae (United States)

    Di Palma, Irene


    Several Pulsar Wind Nebulae have been detected in the TeV band in the last decade.The TeV emission is typically interpreted in a purely leptonic scenario, but this usually requires that the magnetic field in the Nebula be much lower than the equipartition value and the assumption of an enhanced target radiation at IR frequencies. In this work we consider the possibility that, in addition to the relativistic electrons, also relativistic hadrons are present in these nebulae. Assuming that part of the emitted TeV photons are of hadronic origin, we compute the associated flux of ˜ 1 - 100 TeV neutrinos. We use the IceCube non detection to put constraints on the fraction of TeV photons that might be contributed by hadrons and estimate the number of neutrino events that can be expected from these sources in IceCube, ANTARES and in KM3Net.

  16. Planetary Nebulae Beyond the Milky Way

    CERN Document Server

    Stanghellini, L; Douglas, N. G; Proceedings of the ESO Workshop held at Garching, Germany, 19-21 May, 2004


    In the last decade extra-galactic planetary nebulae (PNe) have gained increasing importance. Improved observational capabilities have allowed fainter and fainter PNe to be studied in galaxies well beyond the Milky Way. Planetary nebulae can be detected to at least 30Mpc. They are found in galaxies of all types and also between the galaxies in nearby galaxy clusters. They are valuable as probes, both for providing the velocity of their host stars and also the evolutionary status and relation to the stellar population from which they formed. This book contains the proceedings of a workshop held at ESO headquarters in Garching in 2004, the first meeting devoted entirely to Extra-galactic Planetary Nebulae. A wide range of topics is covered, from stellar and nebular astrophysics to galactic dynamics and galaxy clusters, making this volume a unique and timely reference of broad astrophysical interest.

  17. Hubble Space Telescope Image of Omega Nebula (United States)


    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  18. Novel Geometries for the LHC CRAB Cavity

    CERN Document Server

    Hall, Ben


    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme b...

  19. How Bright Can Supernovae Get? (United States)

    Kohler, Susanna


    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  20. Three-dimensional hydrodynamic modeling of SN 1987A from the supernova explosion till the Athena era (United States)

    Orlando, Salvatore


    The proximity of SN 1987A and the wealth of observations collected at all wavelenght bands since its outburst allow us to study in details the evolution of a supernova remnant (SNR) from the immediate aftermath of the SN explosion till its expansion through the highly inhomogeneous circumstellar medium (CSM). We investigate the interaction between SN 1987A and the surrounding CSM through three-dimensional hydrodynamic modeling. The aim is to determine the contribution of shocked ejecta and shocked CSM to the detected X-ray flux and to derive the density structure of the inhomogeneous CSM and clues on the early structure of ejecta. We show that the physical model reproducing the main observables of SN 1987A reproduces also the X-ray emission of the subsequent expanding remnant, thus bridging the gap between supernovae and supernova remnants. By comparing model results with observations, we constrain the explosion energy in the range 1.2 - 1.4 × 10^(51) erg and the envelope mass in the range 15 - 17 M_{⊙}) . We find that the shape of X-ray lightcurves and spectra at early epochs (< 15 years) reflect the structure of outer ejecta. At later epochs, the shape of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, to disentangle the imprint of the supernova on the remnant emission from the effects of the remnant interaction with the environment, and to constrain the pre-supernova structure of the nebula. Finally the remnant evolution is followed for 40 years, providing predictions on the future of SN 1987A until the adventof Athena.

  1. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    Energy Technology Data Exchange (ETDEWEB)

    Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo


    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

  2. Supernova Explosions Stay In Shape (United States)


    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  3. Final focus designs for crab waist colliders

    CERN Document Server

    AUTHOR|(CDS)2084369; Levichev, Evgeny; Piminov, Pavel


    The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DA$\\Phi$NE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DA$\\Phi$NE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  4. Supernova Physics at DUNE

    CERN Document Server

    Ankowski, Artur; Benhar, Omar; Chen, Sun; Cherry, John; Cui, Yanou; Friedland, Alexander; Gil-Botella, Ines; Haghighat, Alireza; Horiuchi, Shunsaku; Huber, Patrick; Kneller, James; Laha, Ranjan; Li, Shirley; Link, Jonathan; Lovato, Alessandro; Macias, Oscar; Mariani, Camillo; Mezzacappa, Anthony; O'Connor, Evan; O'Sullivan, Erin; Rubbia, Andre; Scholberg, Kate; Takeuchi, Tatsu


    The DUNE/LBNF program aims to address key questions in neutrino physics and astroparticle physics. Realizing DUNE's potential to reconstruct low-energy particles in the 10-100 MeV energy range will bring significant benefits for all DUNE's science goals. In neutrino physics, low-energy sensitivity will improve neutrino energy reconstruction in the GeV range relevant for the kinematics of DUNE's long-baseline oscillation program. In astroparticle physics, low-energy capabilities will make DUNE's far detectors the world's best apparatus for studying the electron-neutrino flux from a supernova. This will open a new window to unrivaled studies of the dynamics and neutronization of a star's central core in real time, the potential discovery of the neutrino mass hierarchy, provide new sensitivity to physics beyond the Standard Model, and evidence of neutrino quantum-coherence effects. The same capabilities will also provide new sensitivity to `boosted dark matter' models that are not observable in traditional direc...

  5. An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI (United States)

    Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian


    Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.

  6. An Expanding Radio Nebula Produced by a Giant Flare from the Magnetar SGR 1806-20

    Energy Technology Data Exchange (ETDEWEB)

    Gaensler, B.


    Soft gamma repeaters (SGRs) are ''magnetars'', a small class of slowly spinning neutron stars with extreme surface magnetic fields, B {approx} 10{sup 15} gauss. On 2004 December 27, a giant flare was detected from the magnetar SGR 1806-20, the third such event ever recorded. This burst of energy was detected by a variety of instruments and even caused an ionospheric disturbance in the Earth's upper atmosphere recorded around the globe. Here we report the detection of a fading radio afterglow produced by this outburst, with a luminosity 500 times larger than the only other detection of a similar source. From day 6 to day 19 after the flare from SGR 1806-20, a resolved, linearly polarized, radio nebula was seen, expanding at approximately a quarter the speed of light. To create this nebula, at least 4 x 10{sup 43} ergs of energy must have been emitted by the giant flare in the form of magnetic fields and relativistic particles. The combination of spatially resolved structure and rapid time evolution allows a study in unprecedented detail of a nearby analog to supernovae and gamma-ray bursts.

  7. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.


    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  8. Comparative analysis of the proximate and elemental composition of the blue crab Callinectes sapidus, the warty crab Eriphia verrucosa, and the edible crab Cancer pagurus


    Zotti, Maurizio; Coco, Laura Del; Pascali, Sandra Angelica De; Migoni, Danilo; Vizzini, Salvatrice; Mancinelli, Giorgio; Fanizzi, Francesco Paolo


    The proximate composition and element contents of claw muscle tissue of Atlantic blue crabs (Callinectes sapidus) were compared with the native warty crab (Eriphia verrucosa) and the commercially edible crab (Cancer pagurus). The scope of the analysis was to profile the chemical characteristics and nutritive value of the three crab species. Elemental fingerprints showed significant inter-specific differences, whereas non-significant variations in the moisture and ash contents were observed. I...


    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Douglas A.; Zavlin, Vyacheslav E. [USRA, Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States); Pavlov, George G. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Clarke, Tracy [Remote Sensing Division, Code 7213, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC (United States); Castelletti, Gabriela [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC67, Suc. 28, 1428, Buenos Aires (Argentina); Bucciantini, Niccolò [INAF—Osservatorio Astrofisico di Arcetri, L. go E. Fermi 5, I-50125 Firenze (Italy); Karovska, Margarita [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Horst, Alexander J. van der [Department of Physics, The George Washington University, 725 21 Street NW, Washington, DC 20052 (United States); Yukita, Mihoko [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Weisskopf, Martin C. [Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States)


    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222127, in the supernova remnant (SNR) IC 443 reveal an ∼5″ radius ring-like structure surrounding the pulsar and a jet-like feature oriented roughly north–south across the ring and through the pulsar's location at 06{sup h}17{sup m}5.{sup s}200 + 22°21′27.″52 (J2000.0 coordinates). The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the SNR. The cometary shape of the nebula, suggesting motion toward the southwest, appears to be subsonic: There is no evidence either spectrally or morphologically for a bow shock or contact discontinuity; the nearly circular ring is not distorted by motion through the ambient medium; and the shape near the apex of the nebula is narrow. Comparing this observation with previous observations of the same target, we set a 99% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 44 mas yr{sup −1} (310 km s{sup −1} for a distance of 1.5 kpc), with the best-fit (but not statistically significant) projected direction toward the west.

  10. Supernova Neutrino Detection With Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ianni, Aldo, E-mail: [I.N.F.N. Gran Sasso Laboratory, S.S. 17bis, 67100, Assergi (Italy)


    Core collapse supernovae are a remarkable source of neutrinos. These neutrinos can also be detected by means of massive liquid scintillators located underground. Observations of supernova neutrinos can shed light on the explosion mechanism and on neutrino properties. In this paper we review the detection channels for neutrinos in liquid scintillators. We consider present and future experiments for supernova neutrino searches.

  11. The Core-Collapse Supernova Explosion Mechanism (United States)

    Müller, Bernhard


    The explosion mechanism of core-collapse supernovae is a long-standing problem in stellar astrophysics. We briefly outline the main contenders for a solution and review recent efforts to model core-collapse supernova explosions by means of multi-dimensional simulations. Focusing on the neutrino-driven mechanism, we summarize currents efforts to predict supernova explosion and remnant properties.

  12. Abundances in planetary nebulae : NGC 6826

    NARCIS (Netherlands)

    Surendiranath, R.; Pottasch, S. R.

    Aims. We determine the chemical abundances and other parameters of the nebula NGC 6826 and its central star. Methods. We present new ISO spectra and combine them with archival IUE and optical spectra from the literature to get a complete, extinction-corrected, spectrum. The chemical composition of

  13. Abundances of planetary nebula NGC2392

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.; Roellig, T. L.

    The spectra of the planetary nebula NGC2392 is reanalysed using spectral measurements made in the mid-infrared with the Spitzer Space Telescope. The aim is to determine the chemical composition of this object. We also make use of IUE and ground based spectra. Abundances determined from the

  14. Abundances in planetary nebulae : NGC 2792

    NARCIS (Netherlands)

    Pottasch, S. R.; Surendiranath, R.; Bernard-Salas, J.; Roellig, T. L.

    The mid-infrared spectrum of the rather circular planetary nebula NGC2792 taken with the Spitzer Space Telescope is presented. This spectrum is combined with the ultraviolet IUE spectrum and with the spectrum in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The

  15. Argon and neon in Galactic nebulae (United States)

    Simpson, Janet P.; Bregman, Jesse D.; Dinerstein, H. L.; Lester, Dan F.; Rank, David M.; Witteborn, F. C.; Wooden, D. H.


    KAO observations of the 6.98 micron line of (Ar II), and KAO and ground-based observations of the 8.99 micron line of (Ar III) and the 12.8 micron line of (Ne II) are presented for a number of Galactic H II regions and planetary nebulae.

  16. Crab Orchard National Wildlife Refuge : Hunting Plan (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan provides guidelines for the administration of hunting activity and for the development, maintenance, and enforcement of regulations and guidelines on Crab...

  17. Epizoic and ectoparasitic protozoans from crab larvae

    Digital Repository Service at National Institute of Oceanography (India)

    Santhakumari, V.

    A suctorian, Ephelota gemmipara Hertwig, infesting the zoea of the peacrab, Porcellana and an ectoparasitic flagellate Ellobiopsis chattoni Caullery infecting the zoea of the crab were observed from off Cape Comorin, the south-east coast of India...

  18. The anatomy of the king crab Hapalogaster mertensii Brandt, 1850 (Anomura: Paguroidea: Hapalogastridae): new insights into the evolutionary transformation of hermit crabs into king crabs

    NARCIS (Netherlands)

    Keiler, J.; Richter, S.; Wirkner, C.S.


    The emergence of king crabs from a hermit crab-like ancestor is one of the most curious events in decapod evolution. King crabs comprise two taxa, Lithodidae and Hapalogastridae, and while lithodids have formed the focus of various anatomical studies, the internal anatomy of hapalogastrids has never

  19. Comets Kick up Dust in Helix Nebula (United States)


    This infrared image from NASA's Spitzer Space Telescope shows the Helix nebula, a cosmic starlet often photographed by amateur astronomers for its vivid colors and eerie resemblance to a giant eye. The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae. Discovered in the 18th century, these colorful beauties were named for their resemblance to gas-giant planets like Jupiter. Planetary nebulae are the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers. These layers are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years. In Spitzer's infrared view of the Helix nebula, the eye looks more like that of a green monster's. Infrared light from the outer gaseous layers is represented in blues and greens. The white dwarf is visible as a tiny white dot in the center of the picture. The red color in the middle of the eye denotes the final layers of gas blown out when the star died. The brighter red circle in the very center is the glow of a dusty disk circling the white dwarf (the disk itself is too small to be resolved). This dust, discovered by Spitzer's infrared heat-seeking vision, was most likely kicked up by comets that survived the death of their star. Before the star died, its comets and possibly planets would have orbited the star in an orderly fashion. But when the star blew off its outer layers, the icy bodies and outer planets would have been tossed about and into each other, resulting in an ongoing cosmic dust storm. Any inner planets in the system would have burned up or been swallowed as their dying star expanded. So far, the Helix nebula is one of only a few dead-star systems in which evidence for comet survivors has been found. This image is made up of data from Spitzer

  20. Red supergiants as supernova progenitors (United States)

    Davies, Ben


    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  1. Animal behaviour: coalition among male fiddler crabs. (United States)

    Backwell, Patricia R Y; Jennions, Michael D


    Until now, no compelling evidence has emerged from studies of animal territoriality to indicate that a resident will strategically help a neighbour to defend its territory against an intruder. We show here that territory-owning Australian fiddler crabs will judiciously assist other crabs in defending their neighbouring territories. This cooperation supports the prediction that it is sometimes less costly to assist a familiar neighbour than to renegotiate boundaries with a new, and possibly stronger, neighbour.

  2. Dominance and population structure of freshwater crabs ...

    African Journals Online (AJOL)


    Feb 6, 1997 ... E-mail: Despite freshwater crabs of the genus Potamonautes being locally abundant (up .... mm deep, and 10-20 m below the dam wall. At site 2 the river was ca 2 m wide and 400 mm deep and 600 m down- stream from the dam. Crabs were collected from both sites on. 22 October 1993 ...

  3. Bi-polar Supernova Explosions


    Wang, Lifan; Howell, D. Andrew; Hoeflich, Peter; Wheeler, J. Craig


    We discuss the optical spectropolarimetry of several core-collapse supernovae, SN 1996cb (Type IIB), SN 1997X (Type Ic), and SN 1998S (Type IIn). The data show polarization evolution of several spectral features at levels from 0.5% to above 4%. The observed line polarization is intrinsic to the supernovae and not of interstellar origin. These data suggest that the the distribution of ejected matter is highly aspherical. In the case of SN 1998S, the minimum major to minor axis ratio must be la...


    NARCIS (Netherlands)


    We have surveyed two PG 1159 class stars for the presence of ancient planetary nebulae by direct Her imaging. While we easily found an 11' diameter nebula around PG 1520+525, no nebula was detected around PG 1424+535. This nebula is the tenth member of the class of planetary nebulae surrounding PG

  5. Molecular environment, reverberation, and radiation from the pulsar wind nebula in CTA 1 (United States)

    Martín, Jonatan; Torres, Diego F.; Pedaletti, Giovanna


    We estimate the molecular mass around CTA 1 using data from Planck and the Harvard CO survey. We observe that the molecular mass in the vicinity of the complex is not enough to explain the TeV emission observed by VERITAS, even under favorable assumptions for the cosmic ray acceleration properties of the supernova remnant. This supports the idea that the TeV emission comes from the pulsar wind nebula (PWN). Here, we model the spectrum of the PWN at possible different stages of its evolution, including both the dynamics of the PWN and the supernova remnant and their interaction via the reverse shock. We have included in the model the energy lost via radiation by particles and the particles escape when computing the pressure produced by the gas. This leads to an evolving energy partition, since for the same instantaneous sharing of the injection of energy provided by the rotational power, the field and the particles are affected differently by radiation and losses. We present the model, and study in detail how the spectrum of a canonical isolated PWN is affected during compression and re-expansion and how this may impact on the CTA 1 case. By exploring the phase-space of parameters that lead to radii in agreement with those observed, we then analyse different situations that might represent the current stage of the CTA 1 PWN, and discuss caveats and requirements of each one.

  6. Magnetar-Powered Supernovae in Two Dimensions. I. Superluminous Supernovae (United States)

    Chen, Ke-Jung; Woosley, S. E.; Sukhbold, Tuguldur


    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.

  7. Crabs

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.

    stream_size 2 stream_content_type text/plain stream_name Biodiversity_Western_Ghats_Inf_Kit_1994_3.6_1.pdf.txt stream_source_info Biodiversity_Western_Ghats_Inf_Kit_1994_3.6_1.pdf.txt Content-Encoding ISO-8859-1 Content-Type text.../plain; charset=ISO-8859-1 ...

  8. Uncertainties in Core Collapse Supernovae Simulations (United States)

    Duggan, Jefferson; Cunningham, J.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Spinka, H.


    We present the results of a study of selection criteria to identify Type Ia supernovae photometrically in a simulated mixed sample of Type Ia supernovae and core collapse supernovae. The simulated sample is a mockup of the expected results of the Dark Energy Survey (DES) using the supernovae simulation and fitting package of SNANA [Kessler et al. arXiv:0908.4280]. This is an extension of a previous analysis, [Gjergo et al. arXiv:1205.1480], with updated core collapse templates that are used to simulate the supernovae. We have also studied how systematic variations in the input parameters of the core collapse supernovae, such as absolute brightness and brightness smearing, affect the measured purity of the Type Ia supernova sample.

  9. Perceptions of environmental changes and Lethargic crab disease among crab harvesters in a Brazilian coastal community

    Directory of Open Access Journals (Sweden)

    Firmo Angélica MS


    Full Text Available Abstract Background Lethargic Crab Disease (LCD has caused significant mortalities in the population of Ucides cordatus crabs in the Mucuri estuary in Bahia State, Brazil, and has brought social and economic problems to many crab-harvesting communities that depend on this natural resource. The present work examined the perceptions of members of a Brazilian crab harvesting community concerning environmental changes and the Lethargic Crab Disease. Methods Field work was undertaken during the period between January and April/2009, with weekly or biweekly field excursions during which open and semi-structured interviews were held with local residents in the municipality of Mucuri, Bahia State, Brazil. A total of 23 individuals were interviewed, all of whom had at least 20 years of crab-collecting experience in the study region. Key-informants (more experienced crab harvesters were selected among the interviewees using the "native specialist" criterion. Results According to the collectors, LCD reached the Mucuri mangroves between 2004 and 2005, decimating almost all crab population in the area, and in 2007, 2008 and 2009 high mortalities of U. cordatus were again observed as a result of recurrences of this disease in the region. In addition to LCD, crabs were also suffering great stock reductions due to habitat degradation caused by deforestation, landfills, sewage effluents, domestic and industrial wastes and the introduction of exotic fish in the Mucuri River estuary. The harvesting community was found to have significant ecological knowledge about the functioning of mangrove swamp ecology, the biology of crabs, and the mass mortality that directly affected the economy of this community, and this information was largely in accordance with scientific knowledge. Conclusions The study of traditional knowledge makes it possible to better understand human interactions with the environment and aids in the elaboration of appropriate strategies for natural

  10. 'Peony Nebula' Star Settles for Silver Medal (United States)


    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way. Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina. If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity. The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle. The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope. This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array

  11. The supernova: A stellar spectacle (United States)

    Straka, W. C.


    The life of a star, the supernova, related objects and their importance in astronomy and science in general are discussed. Written primarily for science teachers of secondary school chemistry, physics, and earth sciences, the booklet contains a glossary, reference sources, suggested topics for discussion, and projects for individual or group assignment.

  12. Spallation reactions in shock waves at supernova explosions and related problems (United States)

    Ustinova, G. K.


    The isotopic anomalies of some extinct radionuclides testify to the outburst of a nearby supernova just before the collapse of the protosolar nebula, and to the fact that the supernova was Sn Ia, i.e. the carbon-detonation supernova. A key role of spallation reactions in the formation of isotopic anomalies in the primordial matter of the Solar System is revealed. It is conditioned by the diffusive acceleration of particles in the explosive shock waves, which leads to the amplification of rigidity of the energy spectrum of particles and its enrichment with heavier ions. The quantitative calculations of such isotopic anomalies of many elements are presented. It is well-grounded that the anomalous Xe- HL in meteoritic nanodiamonds was formed simultaneously with nanodiamonds themselves during the shock wave propagation at the Sn Ia explosion. The possible effects of shock wave fractionation of noble gases in the atmosphere of planets are considered. The origin of light elements Li, Be and B in spallation reactions, predicted by Fowler in the middle of the last century, is argued. All the investigated isotopic anomalies give the evidence for the extremely high magneto- hydrodynamics (MHD) conditions at the initial stage of free expansion of the explosive shock wave from Sn Ia, which can be essential in solution of the problem of origin of cosmic rays. The specific iron-enriched matter of Sn Ia and its MHD-separation in turbulent processes must be taking into account in the models of origin of the Solar System.

  13. Discovery of optical candidate supernova remnants in Sagittarius (United States)

    Alikakos, J.; Boumis, P.; Christopoulou, P. E.; Goudis, C. D.


    During an [O III] survey of planetary nebulae, we identified a region in Sagittarius containing several candidate supernova remants (SNRs) and obtained deep optical narrow-band images and spectra to explore their nature. We obtained images of the area of interest by acquiring observations in the emission lines of Hα + [N II], [S II] and [O III]. The resulting mosaic covers an area of 1.4° × 1.0°, where both filamentary and diffuse emission was discovered, suggesting that there is more than one SNR in the area. Deep long-slit spectra were also taken of eight different regions. Both the flux-calibrated images and the spectra show that the emission from the filamentary structures originates from shock-heated gas, while the photo-ionization mechanism is responsible for the diffuse emission. Part of the optical emission is found to be correlated with the radio at 4850 MHz suggesting that they are related, while the infrared emission found in the area at 12 μm and 22 μm marginally correlates with the optical. The presence of the [O III] emission line in one of the candidate SNRs implies that the shock velocities in the interstellar "clouds" are between 120 km s-1 and 200 km s-1, while its absence in the other candidate SNRs indicates that the shock velocities there are slower. For all candidate remnants, the [S II] λλ 6716/6731 ratio indicates that the electron densities are below 240 cm-3, while the Hα emission is measured to be between 0.6 and 41 × 10-17 erg s-1 cm-2 arcsec-2. The existence of eight pulsars within 1.5° of the center of the candidate SNRs also implies that there are many SNRs in the area as well as that the detected optical emission could be part of a number of supernovae explosions.

  14. Confirmation of dust condensation in the ejecta of supernova 1987a. (United States)

    Gehrz, R D; Ney, E P


    Shortly after its outburst, we suggested that supernova 1987a might condense a dust shell of substantial visual optical thickness as many classical novae do and predicted that dust might form within a year after the explosion. A critical examination of recent optical and infrared observations reported by others confirms that dust grains had begun to grow at a temperature of 1000 K after 300 days and that the dust shell had become optically thick by day 600. After day 600, the infrared luminosity closely followed the intrinsic luminosity expected for thermalized 56Co gamma rays, demonstrating that the luminosity is powered by radioactivity and that the dust is outside the radioactivity zone. The infrared luminosity sets an upper limit to the soft intrinsic bolometric luminosity of a pulsar central engine. This upper limit for the pulsar in supernova 1987a is the same luminosity as the Crab pulsar has today 936 years after its formation. It is unlikely that the rotation rate for a pulsar in supernova 1987a can be much higher than approximately 30 revolutions per sec. The relatively long time required for the shell to grow to maximum optical depth as compared with the dust in nova shells may be related to the relatively low outflow velocity of the condensible ejecta.

  15. Chemical Abundances of Compact Planetary Nebulae (United States)

    Lee, Ting-Hui; Shaw, Richard A.; Stanghellini, letizia; Riley, Ben


    We present preliminary results from an optical spectroscopic survey of compact planetary nebulae (PNe) in the Galactic disk. This is an ongoing optical+infrared spectral survey of 150 compact PNe to build a deep sample of PN chemical abundances. We obtained optical spectra of PNe with the Southern Astrophysical Research (SOAR) Telescope and Goodman High-Throughput Spectrograph between 2012 and 2015. These data were used to calculate the nebulae diagnostics such as electron temperature and density for each PN, and to derive the elemental abundances of He, N, O Ne, S and Ar. These abundances are vital to understanding the nature of the PNe, and their low- to intermediate-mass progenitor stars.

  16. 50 CFR Table 2 to Part 680 - Crab Species Code (United States)


    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Crab Species Code 2 Table 2 to Part 680..., Table 2 Table 2 to Part 680—Crab Species Code Species code Common name Scientific name 900 Box Lopholithodes mandtii. 910 Dungeness Cancer magister. 921 Red king crab Paralithodes camtshaticus. 922 Blue king...

  17. Genetic population structure of the Japanese mitten crab Eriocheir ...

    African Journals Online (AJOL)

    Fragment of 376 bp at the mitochondrial ND2 gene was sequenced for 133 individuals of Japanese mitten crab, Eriocheir japonica from 17 localities of Japan and 30 individuals of Chinese mitten crab, E. sinensis from 2 localities of China. In Japanese mitten crab, sequence comparison of this segment revealed 23 ...

  18. Cannibalistic interactions of juvenile mud crabs Scylla serrata : the ...

    African Journals Online (AJOL)

    In the culture of mud crab Scylla serrata, cannibalism is often the greatest cause of mortality. A laboratory study was conducted to compare the influence of size class differences and shelter on cannibalism and limb loss in juvenile mud crabs (20–70 mm internal carapace width; ICW). Four size classes of juvenile crab (A: ...

  19. Nutritional quality of selected Ghanaian crab species | Oduro ...

    African Journals Online (AJOL)

    Crabs form a substantial proportion of the diet of the Ghanaian populace. However, effective management of this food resource is lacking, due to paucity of data on the food value of these species. Studies were carried out to determine the nutritional quality of three commonly consumed crab species, the African ghost crab, ...

  20. Shell utilization and morphometries of the hermit crab Diogenes ...

    African Journals Online (AJOL)

    Fecundity, shell utilization, and crab and associated shell morphometries were investigated for the hermit crab Diogenes brevirostris collected from three intertidal sites in the eastern Cape. The relationship between crab fresh mass and egg number was linear. D. brevirostris was found to occupy 33 gastropod shell species ...

  1. Mud Crab (Scylla serrata) Culture: Understanding the Technology in ...

    African Journals Online (AJOL)

    Cost-return analysis on a per year basis/50 crabs showed that the use of either bamboo or fito as cage construction material was economically viable with a return on capital investment of 122.3 -181.7%. Therefore the integration of mud crab culture in mangrove forest is feasible in Kenya. Keywords: Mud crab, Pens, Cages, ...

  2. Rossby Waves in the Protoplanetary Nebula (United States)

    Sheehan, Daniel P.


    Fluid waves and instabilities are considered critical to the evolution of protoplanetary nebulae, particularly for their roles in mass, angular momentum, and energy transport. A number have been identified, however, notably absent, is an influential wave commonly found in planetary atmospheres and oceans: the planetary Rossby wave (PRW). Since, in the Earth's atmosphere, the PRW is of primary importance in shaping large-scale meteorological phenomena, it is reasonable to consider whether it might have similar importance in the protoplanetary nebula. The thrust of the research project this summer (1998) was to determine whether a nebular analog to the PRW is viable, a so-called nebular Rossby wave (NRW), and if so, to explore possible ramifications of this wave to the evolution of the nebula. This work was carried out primarily by S. Davis, J. Cuzzi and me, with significant discussions with P. Cassen. We believe we have established a good case for the NRW and as a result believe we have opened up a new and possibly interesting line of research in regard to the nebular development, in particular with regard to zonal jet formation, a potent accretion mechanism, and possible ties to vortex formation. The standard model of the protoplanetary nebula consists of a large disk of gas with about 1% entrained dust gravitationally bound to a large central mass, m(sub c) i.e., the protostar. The planet-forming region of the disk extends to roughly 100 A.U. in radius. Disk thickness, H, is believed to be on the order of 10-100 times less than disk radius. Disk lifetime is on the order of a million years.

  3. Nebula observations. Catalogues and archive of photoplates (United States)

    Shlyapnikov, A. A.; Smirnova, M. A.; Elizarova, N. V.


    A process of data systematization based on "Academician G.A. Shajn's Plan" for studying the Galaxy structure related to nebula observations is considered. The creation of digital versions of catalogues of observations and publications is described, as well as their presentation in HTML, VOTable and AJS formats and basic principles of work in the interactive application of International Virtual Observatory the Aladin Sky Atlas.

  4. Nebula Instruction Set Architecture (ISA) Evaluation. (United States)


    Shaman , P., Lamb, D., "Evaluation of Computer Archi- tectures Via Test Programs," 1977 National Computer Conference Pro- ceedings, Volume 46...times" is a Chinese curse not usually appreciated by westerners, unless they have been software project managers. 11-2.9 .o *0 ,. o...%* ". , "" -" 4...8217 ., ". :" .-’ .". ,.,.. , . , " ,,. .-. . . . -, . ’ .-. • , - . ,. ... . - ,.. ... , , . ", .. ,.- . , .. •. ,. ., .,. ., . -,. WU . " .wr.’.-..\\.. -. . -- w . 7.j" . Nebula and Portability

  5. High scale anisotropies in planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Pascoli, G.


    We present a new classification of Planetary Nebulae (PN) grounded on their characteristic symmetries: bipolarity, ring shape, spiral structure, etc... The different anisotropic models (rotation of nucleus, binary progenitor intranebular magnetic field, nebular rotation, etc...) which have been lately proposed, are analysed and their explanatory power is tested with certain morphological criterious. The comparison with the other classifications (Acker, 1980; Kaler, 1978; Peimbert, 1978) reveals that the morphology has been insufficiently discussed in these latters.

  6. of Planetary Nebulae III. NGC 6781

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz


    Full Text Available Continuing our series of papers on the three-dimensional (3D structures and accurate distances to Planetary Nebulae (PNe, we present our study of the planetary nebula NGC6781. For this object we construct a 3D photoionization model and, using the constraints provided by observational data from the literature we determine the detailed 3D structure of the nebula, the physical parameters of the ionizing source and the first precise distance. The procedure consists in simultaneously fitting all the observed emission line morphologies, integrated intensities and the two-dimensional (2D density map from the [SII] (sulfur II line ratios to the parameters generated by the model, and in an iterative way obtain the best fit for the central star parameters and the distance to NGC6781, obtaining values of 950±143 pc (parsec – astronomic distance unit and 385 LΘ (solar luminosity for the distance and luminosity of the central star respectively. Using theoretical evolutionary tracks of intermediate and low mass stars, we derive the mass of the central star of NGC6781 and its progenitor to be 0.60±0.03MΘ (solar mass and 1.5±0.5MΘ respectively.

  7. 3He Abundances in Planetary Nebulae (United States)

    Guzman-Ramirez, Lizette


    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  8. The Carnegie Supernova Project: Second Photometry Data Release of Low-redshift Type Ia Supernovae

    National Research Council Canada - National Science Library

    Stritzinger, Maximilian D; Phillips, M. M; Boldt, Luis N; Burns, Chris; Campillay, Abdo; Contreras, Carlos; Gonzalez, Sergio; Folatelli, Gastón; Morrell, Nidia; Krzeminski, Wojtek; Roth, Miguel; Salgado, Francisco; DePoy, D. L; Hamuy, Mario; Freedman, Wendy L; Madore, Barry F; Marshall, J. L; Persson, Sven E; Rheault, Jean-Philippe; Suntzeff, Nicholas B; Villanueva, Steven; Li, Weidong; Filippenko, Alexei V


    The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of similar to 100 low-redshift Type Ia supernovae (SNe Ia...

  9. Black yeast-like fungi associated with Lethargic Crab Disease (LCD) in the mangrove-land crab, Ucides cordatus (Ocypodidae)

    NARCIS (Netherlands)

    Vicente, V.A.; Orelis-Ribeiro, R.; Najafzadeh, M.J.; Sun, J.; Schier Guerra, R.; Miesch, S.; Ostrensky, A.; Meis, J.F.; Klaassen, C.H.; de Hoog, G.S.; Boeger, W.A.


    Lethargic Crab Disease (LCD) caused extensive epizootic mortality of the mangrove land crab Ucides cordatus (Brachyura: Ocypodidae) along the Brazilian coast, mainly in the Northeastern region. The disease was named after the symptoms of slow movement of infected crabs. Causative agents were

  10. Positive feedback fishery: Population consequences of `crab-tiling' on the green crab Carcinus maenas (United States)

    Sheehan, E. V.; Thompson, R. C.; Coleman, R. A.; Attrill, M. J.


    Collection of marine invertebrates for use as fishing bait is a substantial activity in many parts of the world, often with unknown ecological consequences. As new fisheries develop, it is critical for environmental managers to have high quality ecological information regarding the potential impacts, in order to develop sound management strategies. Crab-tiling is a largely unregulated and un-researched fishery, which operates commercially in the south-west UK. The target species is the green crab Carcinus maenas. Those crabs which are pre-ecdysis and have a carapace width greater than 40 mm are collected to be sold to recreational anglers as bait. Collection involves laying artificial structures on intertidal sandflats and mudflats in estuaries. Crabs use these structures as refugia and are collected during low tide. However, the effect that this fishery has on populations of C. maenas is not known. The impact of crab-tiling on C. maenas population structure was determined by sampling crabs from tiled estuaries and non-tiled estuaries using baited drop-nets. A spatially and temporarily replicated, balanced design was used to compare crab abundance, sizes and sex ratios between estuaries. Typically, fisheries are associated with a reduction in the abundance of the target species. Crab-tiling, however, significantly increased C. maenas abundance. This was thought to be a result of the extra habitat in tiled estuaries, which probably provides protection from natural predators, such as birds and fish. Although crabs were more abundant in tiled estuaries than non-tiled estuaries, the overall percentage of reproductively active crabs in non-tiled estuaries was greater than in tiled estuaries. As with most exploited fisheries stocks, crabs in exploited (tiled) estuaries tended to be smaller, with a modal carapace width of 20-29 mm rather than 30-39 mm in non-tiled estuaries. The sex ratio of crabs however; was not significantly different between tiled and non

  11. Improvements to type Ia supernova models (United States)

    Saunders, Clare M.

    Type Ia Supernovae provided the first strong evidence of dark energy and are still an important tool for measuring the accelerated expansion of the universe. However, future improvements will be limited by systematic uncertainties in our use of Type Ia supernovae as standard candles. Using Type Ia supernovae for cosmology relies on our ability to standardize their absolute magnitudes, but this relies on imperfect models of supernova spectra time series. This thesis is focused on using data from the Nearby Supernova Factory both to understand current sources of uncertainty in standardizing Type Ia supernovae and to develop techniques that can be used to limit uncertainty in future analyses. (Abstract shortened by ProQuest.).

  12. Efficient Monitoring of CRAB Jobs at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J. M.D. [Sao Paulo, IFT; Balcas, J. [Caltech; Belforte, S. [INFN, Trieste; Ciangottini, D. [INFN, Perugia; Mascheroni, M. [Fermilab; Rupeika, E. A. [Vilnius U.; Ivanov, T. T. [Sofiya U.; Hernandez, J. M. [Madrid, CIEMAT; Vaandering, E. [Fermilab


    CRAB is a tool used for distributed analysis of CMS data. Users can submit sets of jobs with similar requirements (tasks) with a single request. CRAB uses a client-server architecture, where a lightweight client, a server, and ancillary services work together and are maintained by CMS operators at CERN. As with most complex software, good monitoring tools are crucial for efficient use and longterm maintainability. This work gives an overview of the monitoring tools developed to ensure the CRAB server and infrastructure are functional, help operators debug user problems, and minimize overhead and operating cost. This work also illustrates the design choices and gives a report on our experience with the tools we developed and the external ones we used.

  13. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang


    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  14. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    B. Hall,G. Burt,C. Lingwood,Robert Rimmer,Haipeng Wang; Hall, B. [CI Lancaster University (Great Britain); Burt, G. [CI Lancaster University (Great Britain); Lingwood, C. [CI Lancaster University (Great Britain); Rimmer, Robert [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)


    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  15. Efficient monitoring of CRAB jobs at CMS (United States)

    Silva, J. M. D.; Balcas, J.; Belforte, S.; Ciangottini, D.; Mascheroni, M.; Rupeika, E. A.; Ivanov, T. T.; Hernandez, J. M.; Vaandering, E.


    CRAB is a tool used for distributed analysis of CMS data. Users can submit sets of jobs with similar requirements (tasks) with a single request. CRAB uses a client-server architecture, where a lightweight client, a server, and ancillary services work together and are maintained by CMS operators at CERN. As with most complex software, good monitoring tools are crucial for efficient use and longterm maintainability. This work gives an overview of the monitoring tools developed to ensure the CRAB server and infrastructure are functional, help operators debug user problems, and minimize overhead and operating cost. This work also illustrates the design choices and gives a report on our experience with the tools we developed and the external ones we used.

  16. Distortion of Crabbed Bunch Due to the Electron Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L; Raubenheimer, T.; /SLAC


    In order to improve the luminosity, two crab cavities have been installed in KEKB HER and LER [1]. Since there is only one crab cavity in each ring, the crab cavity generates a horizontally titled bunch along the whole ring. The achieved specific luminosity with crabbed bunch is higher, but it is not as high as that from beam-beam simulation [2]. One of the suspicions is the electron cloud. The electron cloud in LER (positron beam) may distort the crabbed bunch and cause the luminosity drop. This note briefly estimates the bunch shape distortion due to the electron cloud in KEKB LER.

  17. The evolution of planetary nebulae. VII. Modelling planetary nebulae of distant stellar systems (United States)

    Schönberner, D.; Jacob, R.; Sandin, C.; Steffen, M.


    Aims: By means of hydrodynamical models we do the first investigations of how the properties of planetary nebulae are affected by their metal content and what can be learned from spatially unresolved spectrograms of planetary nebulae in distant stellar systems. Methods: We computed a new series of 1D radiation-hydrodynamics planetary nebulae model sequences with central stars of 0.595 M⊙ surrounded by initial envelope structures that differ only by their metal content. At selected phases along the evolutionary path, the hydrodynamic terms were switched off, allowing the models to relax for fixed radial structure and radiation field into their equilibrium state with respect to energy and ionisation. The analyses of the line spectra emitted from both the dynamical and static models enabled us to systematically study the influence of hydrodynamics as a function of metallicity and evolution. We also recomputed selected sequences already used in previous publications, but now with different metal abundances. These sequences were used to study the expansion properties of planetary nebulae close to the bright cut-off of the planetary nebula luminosity function. Results: Our simulations show that the metal content strongly influences the expansion of planetary nebulae: the lower the metal content, the weaker the pressure of the stellar wind bubble, but the faster the expansion of the outer shell because of the higher electron temperature. This is in variance with the predictions of the interacting-stellar-winds model (or its variants) according to which only the central-star wind is thought to be responsible for driving the expansion of a planetary nebula. Metal-poor objects around slowly evolving central stars become very dilute and are prone to depart from thermal equilibrium because then adiabatic expansion contributes to gas cooling. We find indications that photoheating and line cooling are not fully balanced in the evolved planetary nebulae of the Galactic halo

  18. Spontaneous alternation and locomotor activity in three species of marine crabs: green crab (Carcinus maenas), blue crab (Callinectes sapidus), and fiddler crab (Uca pugnax). (United States)

    Balcı, Fuat; Ramey-Balcı, Patricia A; Ruamps, Perrine


    Spontaneous alternation refers to the tendency of organisms to explore places that they have least recently visited. Our previous work showed that alternation performance of Carcinus maenas (invasive European green crab) was significantly higher than Callinectes sapidus (native blue crab), and chance level performance (Ramey, P. A., Teichman, E., Oleksiak, J., & Balcı, F. [2009]. Spontaneous alternation in marine crabs: Invasive versus native species. Behavioural Processes, 82, 51-55.). In the current study, we first tested the robustness of these findings in the absence of visual cues, longer test durations, and wider maze dimensions. These manipulations enabled us to determine whether these two crab species relied on the visual cues provided during the spontaneous alternation task in our prior work, and allowed for better characterization of their exploratory activity in the maze. Our original findings were reproduced in the present study under these new task conditions, suggesting no role for visual cues during alternation, and emphasizing the robustness and generalizability of the corresponding interspecies differences in alternation performance. We also tested whether the lower alternation performance of C. sapidus also applied to another native crab species, Uca pugnax (fiddler crab). Spontaneous alternation performance of U. pugnax was significantly lower than C. maenas but indistinguishable from C. sapidus. Finally, we examined whether the potentially higher inherent risk-sensitivity of C. sapidus could have contributed to their lower alternation performance by testing C. maenas in the presence of a larger natural predator (stressor). Higher risk sensitivity presumably induced by the stressor led to locomotor activity patterns that better resembled those of C. sapidus, however the resultant reduction in alternation performance was not statistically significant. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. Modeling the effect of small-scale magnetic turbulence on the X-ray properties of Pulsar Wind Nebulae (United States)

    Bucciantini, N.; Bandiera, R.; Olmi, B.; Del Zanna, L.


    Pulsar Wind Nebulae (PWNe) constitute an ideal astrophysical environment to test our current understanding of relativistic plasma processes. It is well known that magnetic fields play a crucial role in their dynamics and emission properties. At present, one of the main issues concerns the level of magnetic turbulence present in these systems, which in the absence of space resolved X-ray polarization measures cannot be directly constrained. In this work, we investigate, for the first time using simulated synchrotron maps, the effect of a small-scale fluctuating component of the magnetic field on the emission properties in X-ray. We illustrate how to include the effects of a turbulent component in standard emission models for PWNe and which consequences are expected in terms of net emissivity and depolarization, showing that the X-ray surface brightness maps can provide already some rough constraints. We then apply our analysis to the Crab and Vela nebulae and by comparing our model with Chandra and Vela data, we found that the typical energies in the turbulent component of the magnetic field are about 1.5-3 times the one in the ordered field.

  20. Convection in Type 2 supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Douglas Scott [Univ. of California, Davis, CA (United States)


    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of ~ 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for γ-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of ~ 200. When convection is allowed, the bubble reaches ~60 then the bubble begins to move upward into the cooler, denser material above it.

  1. Antiprotons Produced in Supernova Remnants


    Berezhko, E. G.; Ksenofontov, L. T.


    We present the energy spectrum of antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNR). The model includes reacceleration of already existing in interstellar medium antiprotons as well as creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shock. It is shown that antiprotons production in SNRs produces considerable effect in their result...

  2. Frequency Tuning for a DQW Crab Cavity

    CERN Document Server

    Verdú-Andrés, Silvia; Ben-Zvi, Ilan; Calaga, Rama; Capatina, Ofelia; Leuxe, Raphael; Skaritka, John; Wu, Qiong; Xiao, Binping; Zanoni, Carlo


    The nominal operating frequency for the HL-LHC crab cavities is 400.79 MHz within a bandwidth of ±60kHz. Attaining the required cavity tune implies a good understanding of all the processes that influence the cavity frequency from the moment when the cavity parts are being fabricated until the cavity is installed and under operation. Different tuning options will be available for the DQW crab cavity of LHC. This paper details the different steps in the cavity fabrication and preparation that may introduce a shift in the cavity frequency and introduces the different tuning methods foreseen to bring the cavity frequency to meet the specifications.

  3. Dust formation and the binary companions of supernovae (United States)

    Kochanek, C. S.


    Supernovae (SNe) should both frequently have a binary companion at death and form significant amounts of dust. This implies that any binary companion must lie at the centre of an expanding dust cloud and the variable obscuration of the companion as the SN remnant expands will both unambiguously mark the companion and allow the measurement of the dust content through absorption rather than emission for decades after the explosion. However, sufficiently hot and luminous companions can suppress dust formation by rapidly photoionizing the condensible species in the ejecta. This provides a means of reconciling the Type IIb SNe Cas A, which lacks a luminous companion and formed a significant amount of dust (Md ≳ 0.1 M⊙), with the Type IIb SNe 1993J and 2011dh, both of which appear to have a luminous companion and to have formed a negligible amount of dust (Md ≲ 10-3 M⊙). The Crab and SN 1987A are consistent with this picture, as both lack a luminous companion and formed significant amounts of dust. An unrecognized dependence of dust formation on the properties of binary companions may help to explain why the evidence for dust formation in SNe appears so contradictory.

  4. The first ten years of Swift supernovae (United States)

    Brown, Peter J.; Roming, Peter W. A.; Milne, Peter A.


    The Swift Gamma Ray Burst Explorer has proven to be an incredible platform for studying the multiwavelength properties of supernova explosions. In its first ten years, Swift has observed over three hundred supernovae. The ultraviolet observations reveal a complex diversity of behavior across supernova types and classes. Even amongst the standard candle type Ia supernovae, ultraviolet observations reveal distinct groups. When the UVOT data is combined with higher redshift optical data, the relative populations of these groups appear to change with redshift. Among core-collapse supernovae, Swift discovered the shock breakout of two supernovae and the Swift data show a diversity in the cooling phase of the shock breakout of supernovae discovered from the ground and promptly followed up with Swift. Swift observations have resulted in an incredible dataset of UV and X-ray data for comparison with high-redshift supernova observations and theoretical models. Swift's supernova program has the potential to dramatically improve our understanding of stellar life and death as well as the history of our universe.

  5. A spitzer space telescope study of SN 2002hh: An infrared echo from a type llP supernova

    DEFF Research Database (Denmark)

    Meikle, W. P. S.; Mattila, S.; Gerardy, C. L.


    Stars: Supernovae: General, supernovae: individual (NGC 6946), Stars: Supernovae: Individual: Alphanumeric: SN 2002hh Udgivelsesdato: May 22......Stars: Supernovae: General, supernovae: individual (NGC 6946), Stars: Supernovae: Individual: Alphanumeric: SN 2002hh Udgivelsesdato: May 22...

  6. Abundances in planetary nebulae : Me 2-1

    NARCIS (Netherlands)

    Surendiranath, R; Pottasch, [No Value; Garcia-Lario, P

    ISO and IUE spectra of the round planetary nebula Me 2-1 are combined with Visual spectra taken from the literature to obtain for the first time a complete extinction-corrected spectrum. With this, the physico-chemical characteristics of the nebula and its central star are determined by various

  7. Abundances of the planetary nebula Hu 1-2

    NARCIS (Netherlands)

    Pottasch, [No Value; Hyung, S; Aller, LH; Beintema, DA; Bernard-Salas, J; Feibelman, WA; Klockner, HR

    The ISO and IUE spectra of the "elliptical" nebula Hu 1-2 are presented. These spectra are combined with new, high resolution spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebula is then calculated and compared to

  8. Optical observations of planetary nebula candidates from the northern hemisphere

    NARCIS (Netherlands)

    VandeSteene, GC; Jacoby, GH; Pottasch, [No Value

    We present H alpha+[N II] images of 17 and low resolution spectra of 14 IRAS-selected planetary nebula candidates. The H alpha+[N II] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images accurate optical positions and mean optical

  9. An Analysis of Spectra in the Red Rectangle Nebula

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... This paper presents an analysis of a series of spectra in the Red Rectangle nebula. Only the reddest part of the spectra can safely be attributed to light from the nebula, and indicates Rayleigh scattering by the gas, in conformity with the large angles of scattering involved and the proximity of the star. In the ...

  10. The Planetary Nebula Spectrograph : The green light for galaxy kinematics

    NARCIS (Netherlands)

    Douglas, NG; Arnaboldi, M; Freeman, KC; Kuijken, K; Merrifield, MR; Romanowsky, AJ; Taylor, K; Capaccioli, M; Axelrod, T; Gilmozzi, R; Hart, J; Bloxham, G; Jones, D


    Planetary nebulae (PNe) are now well established as probes of galaxy dynamics and as standard candles in distance determinations. Motivated by the need to improve the efficiency of planetary nebulae searches and the speed with which their radial velocities are determined, a dedicated instrument-the

  11. Planetary nebulae with UVIT: Far ultra-violet halo around the Bow Tie nebula (NGC 40) (United States)

    Kameswara Rao, N.; Sutaria, F.; Murthy, J.; Krishna, S.; Mohan, R.; Ray, A.


    Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high-speed wind from WC8 central star (CS) with the nebula. It shows strong C IV 1550 Å emission that cannot be explained by thermal processes alone. We present here the first map of this nebula in C IV emission using broad band filters on the Ultra-Violet Imaging Telescope (UVIT). Aim. We aim to map the hot C IV-emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions in order to study the shock interaction between the nebula and the ISM. We also aim to illustrate the potential of UVIT for nebular studies. Methods: We carry out a morphological study of images of the nebula obtained at an angular resolution of about 1.3″ in four UVIT filter bands that include C IV 1550 Å and [C II] 2326 Å lines as well as UV continuum. We also make comparisons with X-ray, optical, and IR images from the literature. Results: The [C II] 2326 Å images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extent to that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint far UV (FUV) halo in an FUV filter with λeff of 1608 Å. The UV halo is not present in any other UV filter. The FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, the FUV halo trails predominantly towards the south-east side of the nebular core, opposite to the CS's proper motion direction. Conclusions: Morphological similarity of C IV 1550 Å and X-ray emission in the core suggests that it results mostly from the interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the extensive existence of H2 molecules in the regions even beyond the optical and IR halos. Thus UV studies are important to estimate the amount of H2, which is

  12. An XMM-Newton Search for Crab-like Supernova Remnants (United States)

    Mushotzky, Richard (Technical Monitor); Slane, Patrick


    The primary goals of the study are to search for evidence of non-thermal emission that would suggest the presence of a pulsar in this compact SNR. We have performed the reduction of the EPIC data for this observation, cleaning the data to remove time intervals of enhanced particle background, and have created maps in several energy bands, and on a variety of smoothing scales. We find no evidence for emission from the SNR. Given the small angular size of the SNR, we conclude that rather than being a young remnant, it is actually fairly old, but distant. At its current stage of evolution, the remnant shell has apparently entered the radiative phase, wherein the shell temperature has cooled sufficiently to be either below X-ray-emitting temperatures or at temperatures easily absorbed the foreground interstellar material. We have thus concluded that this SNR is not a viable candidate for a young ejecta-rich or pulsar-driven SNR.

  13. Pulsar wind nebulae created by fast-moving pulsars (United States)

    Kargaltsev, O.; Pavlov, G. G.; Klingler, N.; Rangelov, B.


    We review multiwavelength properties of pulsar wind nebulae created by supersonically moving pulsars and the effects of pulsar motion on the pulsar wind nebulae morphologies and the ambient medium. Supersonic pulsar wind nebulae are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in supersonic pulsar wind nebula studies have been made in deep observations with the Chandra and XMM-Newton X-ray observatories and the Hubble Space Telescope. In particular, these observations have revealed very diverse supersonic pulsar wind nebula morphologies in the pulsar vicinity, different spectral behaviours of long pulsar tails, the presence of puzzling outflows misaligned with the pulsar velocity and far-UV bow shocks. Here we review the current observational status focusing on recent developments and their implications.

  14. Gamma-ray constraints on supernova nucleosynthesis (United States)

    Leising, Mark D.


    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  15. Ices Under Conditions of Planetary Nebulae (United States)

    Yeghikyan, A. G.


    A large number of molecules are observed in planetary nebulae, both simple, the most common (H2, CO and OH), and more complex (H2O, SiO, HCN, HNC, HCO+), and even the polycyclic aromatic hydrocarbons and fullerenes containing a few dozen and more atoms. The water molecules are observed, as a rule, in the young objects, in the gas phase (water "fountains" and related water masers) and solid phase (emission of crystalline ice particles), and, regardless of the C/O ratio, water and carbon-containing molecules may be linked to the same object. On the other hand, the results of calculations by the well known Cloudy computer program given in this paper for stationery models, show that the abundance of water ice in planetary nebulae, other conditions being equal, is dependent on the ionization rate of hydrogen, which depends in turn on the flux of energetic particles (protons and alpha particles) in the range of MeV energies and higher. The possibility of the increased flux of such particles in planetary nebulae under conditions of the standard interacting stellar winds scenario is discussed, when the flux may locally exceed by 1-3 orders of magnitude that of caused by galactic cosmic rays. Calculated water ice column densities reach values up to 1018-1019 cm-2 at the usual average ISM H2 ionisation rate of 10-16s -1 and sharply decrease for the thousands times larger rates. Known observed results of NGC 6302 show for the column density of crystalline ice about 1019cm-2 close to the calculated one.


    African Journals Online (AJOL)

    The freezing points of the haemolymph samples were determined using the method and apparatus described by Ramsay & Brown (1955). The freezing point of the haemolymph collected from the arthrodial membrane at the base of the first pereiopod of any particular crab did not differ from that collected from its heart or.

  17. Ocean acidification impairs crab foraging behaviour. (United States)

    Dodd, Luke F; Grabowski, Jonathan H; Piehler, Michael F; Westfield, Isaac; Ries, Justin B


    Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Comparative Histopathology of Gladiator Swimming Crab ...

    African Journals Online (AJOL)


    ABSTRACT: Callinectes pallidus is an economically important species of crab which inhabits both inshore and estuaries often susceptible to contamination from anthropogenic sources. The present study examined histopathology of the tissues of Callinectes pallidus from two coastal areas in Lagos, Nigeria, as a possible ...

  19. Comparative histopathology of gladiator swimming crab ...

    African Journals Online (AJOL)

    Callinectes pallidus is an economically important species of crab which inhabits both inshore and estuaries often susceptible to contamination from anthropogenic sources. The present study examined histopathology of the tissues of Callinectes pallidus from two coastal areas in Lagos, Nigeria, as a possible measure of ...

  20. Corneal laceration caused by river crab

    Directory of Open Access Journals (Sweden)

    Vinuthinee N


    Full Text Available Naidu Vinuthinee,1,2 Anuar Azreen-Redzal,1 Jaafar Juanarita,1 Embong Zunaina2 1Department of Ophthalmology, Hospital Sultanah Bahiyah, Alor Setar, 2Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia Abstract: A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal. Keywords: corneal ulcer, pediatric trauma, ocular injury

  1. The tree-climbing crabs of Trinidad

    NARCIS (Netherlands)

    Hagen, von Heinrich-Otto


    An annotated list of the brachyuran (12) and anomuran (1) tree-climbing crabs of Trinidad (West Indies) is presented (see Table 1 for species names). Some of the species mentioned (e.g. Aratus pisonii, Goniopsis cruentata) are well-known treeclimbers, in others (e.g. Sesarma roberti, S. ricordi)


    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y. K.; Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bucciantini, N. [INAF—Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125 Firenze (Italy); Slane, P. O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gaensler, B. M. [Dunlap Institute for Astronomy and Astrophysics, The University of Toronto, Toronto, ON M5S 3H4 (Canada); Temim, T., E-mail: [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    Pulsar wind nebulae (PWNe) are suggested to be acceleration sites of cosmic rays in the Galaxy. While the magnetic field plays an important role in the acceleration process, previous observations of magnetic field configurations of PWNe are rare, particularly for evolved systems. We present a radio polarization study of the “Snail” PWN inside the supernova remnant G327.1−1.1 using the Australia Telescope Compact Array. This PWN is believed to have been recently crushed by the supernova (SN) reverse shock. The radio morphology is composed of a main circular body with a finger-like protrusion. We detected a strong linear polarization signal from the emission, which reflects a highly ordered magnetic field in the PWN and is in contrast to the turbulent environment with a tangled magnetic field generally expected from hydrodynamical simulations. This could suggest that the characteristic turbulence scale is larger than the radio beam size. We built a toy model to explore this possibility, and found that a simulated PWN with a turbulence scale of about one-eighth to one-sixth of the nebula radius and a pulsar wind filling factor of 50%–75% provides the best match to observations. This implies substantial mixing between the SN ejecta and pulsar wind material in this system.

  3. Hints of a second explosion (a quark nova) in Cassiopeia A supernova (United States)

    Ouyed, Rachid; Leahy, Denis; Koning, Nico


    We show that the explosive transition of the neutron star (NS) to a quark star (QS) (a Quark Nova) in Cassiopeia A (Cas A) a few days following the supernova (SN) proper can account for several of the puzzling kinematic and nucleosynthetic features that are observed. The observed decoupling between Fe and 44Ti and the lack of Fe emission within 44Ti regions is expected in the QN model owing to the spallation of the inner SN ejecta by relativistic QN neutrons. Our model predicts the 44Ti to be more prominent to the NW of the central compact object (CCO) than in the SE and little of it along the NE-SW jets, in agreement with NuStar observations. Other intriguing features of Cas A are addressed, such as the lack of a pulsar wind nebula and the reported few percent drop in the CCO temperature over a period of 10 yr.

  4. Binary progenitor models of type IIb supernovae

    NARCIS (Netherlands)

    Claeys, J.S.W.A.|info:eu-repo/dai/nl/326158707; de Mink, S.E.|info:eu-repo/dai/nl/304833231; Pols, O.R.|info:eu-repo/dai/nl/111811155; Eldridge, J.J.; Baes, M.|info:eu-repo/dai/nl/304824739


    Massive stars that lose their hydrogen-rich envelope down to a few tenths of a solar mass explode as extended type IIb supernovae, an intriguing subtype that links the hydrogen-rich type II supernovae with the hydrogen-poor type Ib and Ic. The progenitors may be very massive single stars that lose

  5. Supernova remnants: the X-ray perspective

    NARCIS (Netherlands)

    Vink, J.


    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And

  6. The CHilean Automatic Supernova sEarch

    DEFF Research Database (Denmark)

    Hamuy, M.; Pignata, G.; Maza, J.


    The CHilean Automatic Supernova sEarch (CHASE) project began in 2007 with the goal to discover young, nearby southern supernovae in order to (1) better understand the physics of exploding stars and their progenitors, and (2) refine the methods to derive extragalactic distances. During the first...

  7. SN 1006 and other historical supernovae (United States)

    Stephenson, F. Richard


    The supernova which appeared in AD 1006 is unique in history for its brilliance, duration of visibility, and the interest it aroused. Almost thirty separate records of the star are preserved from various parts of the world. This paper briefly summarizes historical records of SN 1006 and discusses the prospects of uncovering further historical records of supernovae.

  8. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)


    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  9. Supernovae and cosmology with future European facilities. (United States)

    Hook, I M


    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.

  10. Supernova 1987A at 29 years (United States)

    McCray, Richard


    In the 29 years since it was discovered, SN 1987A has evolved from supernova to supernova remnant, in the sense that its luminosity is now dominated by radiation from its shock interaction with circumstellar matter rather than radioactive decay of newly synthesized elements. The circumstellar matter has a complex structure and the impact of the supernova debris results in a complex distribution of shocks, with velocities ranging from a few hundred to several thousand km/s. The supernova blast wave is overtaking dense knots in the equatorial ring, resulting in rapidly brightening optical “hotspots”, while the interaction with less dense matter gives rise to X-rays. The X-rays illuminate the outer supernova debris, causing it to glow at optical wavelengths. The ALMA telescope provides a new window at mm/sub-mm wavelengths, enabling us to probe the structure of the cold inner debris through molecular emission lines.

  11. Modeling PAH chemistry in the solar nebula (United States)

    Kress, M.; Tielens, A.; Frenklach, M.

    Polycyclic aromatic hydrocarbons (PAHs) are one of the predominant carriers of carbon in interstellar space, after CO. PAHs are also common in carbonaceous chondrites, which were likely an important source of organic carbon on the early Earth. Several outstanding questions in astrobiology address the relationship between the interstellar PAHs and those in meteorites: are meteoritic PAHs directly inherited from the interstellar medium? Are these compounds modified in the solar nebula, and if so, where and when? Can the abundances and varieties of PAHs in chondrites give more insight into the evolution of the solar nebula and other protoplanetary disks? To this end, we are modeling the chemical kinetics of PAH formation, growth and destruction within a parameter space of nebular timescales, pressures, temperatures, C/O ratios and other factors to begin to address these questions. The chemical kinetics of PAHs has been well studied at the higher temperatures present in plug flow reactors and flames (> 1000 K). We hope that our results will motivate more detailed studies of PAH chemistry at the lower temperatures characteristic of those in which meteorite parent bodies condensed (˜ a few hundred K). This work has been supported by NASA Astrobiology Institute's Virtual Planetary Laboratory and the Institute for Geophysics and Planetary Physics at Lawrence Livermore National Laboratory.

  12. Physics and chemistry of the solar nebula. (United States)

    Lunine, J I


    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  13. X-ray Studies of Planetary Nebulae (United States)

    Montez, Rodolfo


    X-ray emission from planetary nebulae (PNe) provides unique insight on the formation and evolution of PNe. Past observations and the ongoing Chandra Planetary Nebulae Survey (ChanPlaNS) provide a consensus on the two types of X-ray emission detected from PNe: extended and compact point-like sources. Extended X-ray emission arises from a shocked ``hot bubble'' plasma that resides within the nebular shell. Cooler than expected hot bubble plasma temperatures spurred a number of potential solutions with one emerging as the likely dominate process. The origin of X-ray emission from compact sources at the location of the central star is less clear. These sources might arise from one or combinations of the following processes: self-shocking stellar winds, spun-up binary companions, and/or accretion, perhaps from mass transfer, PN fallback, or debris disks. In the discovery phase, X-ray studies of PNe have mainly focused on the origin of the various emission processes. New directions incorporate multi-wavelength observations to study the influence of X-ray emission on the rest of the electromagnetic spectrum.

  14. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony


    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  15. The VELA-X-Pulsar Wind Nebula Revisited with Four Years of Fermi Large Area Telescope Observations (United States)

    Grondin, M. -H.; Romani, R. W.; Lemoine-Goumard, M.; Guillemot, L.; Harding, Alice K.; Reposeur, T.


    The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2deg × 3deg south of the pulsar and observed in the radio, X-ray, and very high energy ?-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.

  16. Supernova forecast with strong lensing (United States)

    Suwa, Yudai


    In the coming Large Synoptic Survey Telescope era, we will observe O(100) of lensed supernovae (SNe). In this paper, we investigate the possibility for predicting time and sky position of an SN using strong lensing. We find that it will be possible to predict the time and position of the fourth image of SNe which produce four images by strong lensing, with combined information from the three previous images. It is useful to perform multimessenger observations of the very early phase of SN explosions including the shock breakout.

  17. Relativistic EOS for supernova simulations

    Directory of Open Access Journals (Sweden)

    Shen H.


    Full Text Available We study the relativistic equation of state (EOS of dense matter covering a wide range of temperature, proton fraction, and baryon density for the use of supernova simulations. This work is based on the relativistic mean-field theory (RMF and the Thomas-Fermi approximation. The Thomas-Fermi approximation in combination with assumed nucleon distribution functions and a free energy minimization is adopted to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. We treat the uniform matter and non-uniform matter consistently using the same RMF theory. We compare the EOS tables in detail.

  18. Grooming behaviors and gill fouling in the commercially important blue crab (Callinectes sapidus and stone crab (Menippe mercenaria

    Directory of Open Access Journals (Sweden)

    Jen L. Wortham


    Full Text Available Abstract Grooming behaviors reduce fouling of body regions. In decapods, grooming time budgets, body regions groomed, and grooming appendages are known in several species; however, little data exists on brachyuran crabs. In this study, grooming behaviors of two commercially important crabs were documented (blue crabs: Callinectes sapidus Rathbun, 1896; stone crabs: Menippe mercenaria Say, 1818. These crabs are harvested by fishermen and knowing their grooming behaviors is valuable, as clean crabs are preferred by consumers and the stone crab fishery consequence of removing one cheliped to grooming behaviors is unknown. Crabs were observed individually and agonistically to determine how grooming behaviors vary in the presence of another conspecific. Both species frequently use their maxillipeds and groom, with the gills being cleaned by epipods. Respiratory and sensory structures were groomed frequently in both species. Removal of a grooming appendage resulted in higher fouling levels in the gills, indicating that grooming behaviors do remove fouling. Overall, stone crabs had a larger individual time budget for grooming, but agonistic grooming time budgets were similar. Stone crab chelipeds are used in grooming, especially cleaning the other cheliped. The chelipeds are not the main grooming appendage; however, implications of losing one cheliped may have large impacts.

  19. 146Sm-142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula. (United States)

    Gannoun, Abdelmouhcine; Boyet, Maud; Rizo, Hanika; El Goresy, Ahmed


    The short-lived (146)Sm-(142)Nd chronometer (T(1/2) = 103 Ma) is used to constrain the early silicate evolution of planetary bodies. The composition of bulk terrestrial planets is then considered to be similar to that of primitive chondrites that represent the building blocks of rocky planets. However for many elements chondrites preserve small isotope differences. In this case it is not always clear to what extent these variations reflect the isotope heterogeneity of the protosolar nebula rather than being produced by the decay of parent isotopes. Here we present Sm-Nd isotopes data measured in a comprehensive suite of enstatite chondrites (EC). The EC preserve (142)Nd/(144)Nd ratios that range from those of ordinary chondrites to values similar to terrestrial samples. The EC having terrestrial (142)Nd/(144)Nd ratios are also characterized by small (144)Sm excesses, which is a pure p-process nuclide. The correlation between (144)Sm and (142)Nd for chondrites may indicate a heterogeneous distribution in the solar nebula of p-process matter synthesized in supernovae. However to explain the difference in (142)Nd/(144)Nd ratios, 20% of the p-process contribution to (142)Nd is required, at odds with the value of 4% currently proposed in stellar models. This study highlights the necessity of obtaining high-precision (144)Sm measurements to interpret properly measured (142)Nd signatures. Another explanation could be that the chondrites sample material formed in different pulses of the lifetime of asymptotic giant branch stars. Then the isotope signature measured in SiC presolar would not represent the unique s-process signature of the material present in the solar nebula during accretion.

  20. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.


    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  1. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Brian D.; Margalit, Ben [Columbia Astrophysics Laboratory, New York, NY 10027 (United States); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)


    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  2. The Effects of Season and Sex on the Nutritional Quality of Muscle Types of Blue Crab Callinectes sapidus and Swimming Crab Portunus segnis


    AYAS, Deniz


    The effects of season and sex on the nutritional quality of muscle types (lump crab meatLCM, claw crab meat-CCM) of swimming crab (Portunus segnis) and blue crab (Callinectes sapidus) were investigated. Carapace width, carapace length and total weight of both crab species were measured. High protein content in spring and low protein content in autumn were observed for both crab species. The levels of lipid content of both crab species were found to be similar. Higher lipid contents in spri...

  3. Characterization of the Inner Knot of the Crab: the Site of the Gamma-ray Flares? (United States)

    Weisskopf, Martin C.


    One of the most intriguing recent discoveries has been the detection of powerful gamma-ray flares from the Crab Nebula. Such events, with a recurrence time of about once per year, can be so dramatic to make the system the brightest source in the gamma-ray sky as occurred, e.g. in April 2011. These flares challenge our understanding of how pulsar wind nebulae work and defy current astrophysical models for particle acceleration. We present here our study of the inner knot located within a fraction of an arcsecond from the pulsar with the aim of characterizing the feature and asking if this might be the site of the origin of the gamma-ray flares. We took data using Keck, HST, and Chandra obtained as part of our multi-wavelength campaign to identify the source of the enigmatic flares. We set an upper limit as to the gamma-ray flux from the knot. We also find that the dimensions, surface brightness, flux, etc. of the optical and infrared knot are all correlated with distance from the pulsar. This distance, in turn, varies with time. In addition to this most thorough characterization of the inner knot's properties, we examine the hypothesis that the knot may be the site of the flares by examining the knot separation versus the Fermi/LAT gamma-ray flux. Finally, as part of this research, we make use of a new approach employing singular value decomposition (SVD) for analyzing time series of images and compare the approach to more traditional methods. Our conclusions are only refined but not impacted by using the new approach.

  4. GBT, VLA Team Up to Produce New Image of Orion Nebula (United States)


    , both the individual images from each telescope as well as the combined image were produced using the AIPS++ (Astronomical Information Processing System) software, developed, in part, by NRAO. The observers worked with Tim Cornwell, NRAO's Associate Director for Data Management, to develop the techniques used to combine the images. The Orion Nebula, easily visible in amateur telescopes, is a giant cloud of gas some 1,500 light-years away in which new stars are forming. The GBT-VLA radio image, Shepherd said, shows new details that will allow scientists to better understand how ionized gas near the young, hot stars at the nebula's center flows outward toward the edge of the nebula. The ability to produce combined GBT-VLA images also may revise scientists' understanding of other objects. For example, says NRAO Director Paul Vanden Bout, "Astronomers have seen many pockets of ionized Hydrogen gas in star-forming clouds with the VLA that are thought to be ultra-compact. It may be that they are, in fact, larger than thought and, using the GBT in addition to the VLA will show us the true picture." The importance of this observing technique lies in its ability to greatly improve the fidelity of images. "By fidelity we mean how closely the image actually reflects reality. We now have a powerful new tool for improving the fidelity of our images when we look at objects that are close enough to appear relatively large in the sky but which also contain fine detail within the larger structure," Shepherd said. "This will have a big impact on a number of research areas such as star formation in our Galaxy, planetary nebulae, supernova remnants, as well as dynamics and star formation in near-by galaxies," she added. The new technique also paves the way for effective use of the Expanded VLA, which will incorporate state-of-the-art electronics and digital equipment to replace now-aging technologies dating from the VLA's construction in the 1970s. In addition, the new capabilities can be

  5. Nebular Spectroscopy: A Guide on Hii Regions and Planetary Nebulae (United States)

    Peimbert, Manuel; Peimbert, Antonio; Delgado-Inglada, Gloria


    We present a tutorial on the determination of the physical conditions and chemical abundances in gaseous nebulae. We also include a brief review of recent results on the study of gaseous nebulae, their relevance for the study of stellar evolution, galactic chemical evolution, and the evolution of the universe. One of the most important problems in abundance determinations is the existence of a discrepancy between the abundances determined with collisionally excited lines and those determined by recombination lines: this is called abundance discrepancy factor (ADF) problem, and we review results related to it. Finally, we discuss the possible reasons for the large t 2 values observed in gaseous nebulae.

  6. Extragalactic Planetary Nebulae Candidates Found with HST/LEGUS (United States)

    Kowalski, Laura; Churnetski, Kristen; Pellerin, Anne; Annibali, Francesca; LEGUS


    We present the results of an extensive search for planetary nebulae in nearby galaxies observed for the Legacy ExtraGalactic Ultraviolet Survey. A total of 32 galaxies were examined and 166 planetary nebula candidates were found. Images from the Hubble Space Telescope in ~BVI filters were visually inspected to identify potential candidates based on their color. The presence of strong emission lines from [OIII]4959, 5007A in planetary nebulae enhances their brightness in the F555W or F606W filter compared to other, more ordinary stars. Making use of the LEGUS stellar photometric catalogs, color-magnitude and color-color diagrams were used to eliminate outliers.

  7. Estimating the Binary Fraction of Central Stars of Planetary Nebulae (United States)

    Douchin, Dimitri


    Planetary nebulae are the end-products of intermediate-mass stars evolution, following a phase of expansion of their atmospheres at the end of their lives. Observationally, it has been estimated that 80% of them have non-spherical shapes. Such a high fraction is puzzling and has occupied the planetary nebula community for more than 30 years. One scenario that would allow to justify the observed shapes is that a comparable fraction of the progenitors of central stars of planetary nebula (CSPN) are not single, but possess a companion. The shape of the nebulae would then be the result of an interaction with this companion. The high fraction of non-spherical planetary nebulae would thus imply a high fraction of binary central stars of planetary nebulae, making binarity a preferred channel for planetary nebula formation. After presenting the current state of knowledge regarding planetary nebula formation and shaping and reviewing the diverse efforts to find binaries in planetary nebulae, I present my work to detect a near-infrared excess that would be the signature of the presence of cool companions. The first part of the project consists in the analysis of data and photometry acquired and conducted by myself. The second part details an attempt to make use of archived datasets: the Sloan Digital Sky Survey Data Release 7 optical survey and the extended database assembled by Frew (2008). I also present results from a radial velocity analysis of VLT/UVES spectra for 14 objects aiming to the detection of spectroscopic companions. Finally I give details of the analysis of optical photometry data from our observations associated to the detection of companions around central stars of planetary nebulae using the photometric variability technique. The main result of this thesis is from the near-infrared excess studies which I combine with previously published data. I conclude that if the detected red and NIR flux excess is indicative of a stellar companion then the binary

  8. Induced massive star formation in the trifid nebula? (United States)

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras


    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  9. Supernova Remnants in High Definition (United States)

    Slane, Patrick; Badenes, Carles; Freyer, Chris; Hughes, Jack; Lee, Herman Shiu-Hang; Lopez, Laura; Patnaude, Daniel; Reynolds, Steve; Temim, Tea; Williams, Brian; Wongwathanarat, Annop; Yamaguchi, Hiroya


    As the observable products of explosive stellar death, supernova remnants reveal some of the most direct information on the physics of the explosions, the properties of the progenitor systems, and the demographics of compact objects formed in the supernova events. High sensitivity X-ray observations have allowed us to probe the properties of the shocked plasma, providing constraints on abundances and ionization states that connect directly progenitor masses and metallicities, the nature of the explosions (core-collapse vs. thermonuclear), and the physics of shock heating and particle acceleration in fast shocks. Studies of SNRs in the Magellanic Clouds have provided information on source demographics in a low metallicity environment, and deep searches for point sources in Galactic SNRs imply that many remnants contain rapidly cooling neutron stars or black holes. Based on Chandra observations, we know that crucial measurements required to advance our knowledge in these areas are possible only with much more sensitive observations at high angular resolution. From identifying the effects of particle acceleration on the post-shock gas in young SNRs like Tycho to obtaining spatially resolved spectra - and identifying compact objects - for young SNRs in the Magellanic Clouds, the capabilities of a facility like the X-ray Surveyor are required. Here I present a summary of recent advances brought about by spectral investigations of SNRs, and discuss particular examples of new advances that will be enabled by X-ray Surveyor capabilities.

  10. The Carnegie Supernova Project I

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Taddia, F.; Burns, C. R.


    We aim to improve upon contemporary methods to estimate host-galaxy reddening of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova Project (CSP-I) SE SNe photometry data release, consisting of nearly three dozen objects, is used to identify a minimally reddened sub......-sample for each traditionally defined spectroscopic sub-types (i.e, SNe~IIb, SNe~Ib, SNe~Ic). Inspection of the optical and near-infrared (NIR) colors and color evolution of the minimally reddened sub-samples reveals a high degree of homogeneity, particularly between 0d to +20d relative to B-band maximum......_(V)^(host). In the case of the SE SNe with relatively low amounts of reddening, a preferred value of R_(V)^(host) is adopted for each sub-type, resulting in estimates of A_(V)^(host) through Fitzpatrick (1999) reddening law model fits to the observed color excess measurements. Our analysis suggests SE SNe reside...

  11. Predatory blue crabs induce stronger nonconsumptive effects in eastern oysters Crassostrea virginica than scavenging blue crabs

    Directory of Open Access Journals (Sweden)

    Avery E. Scherer


    Full Text Available By influencing critical prey traits such as foraging or habitat selection, predators can affect entire ecosystems, but the nature of cues that trigger prey reactions to predators are not well understood. Predators may scavenge to supplement their energetic needs and scavenging frequency may vary among individuals within a species due to preferences and prey availability. Yet prey reactions to consumers that are primarily scavengers versus those that are active foragers have not been investigated, even though variation in prey reactions to scavengers or predators might influence cascading nonconsumptive effects in food webs. Oysters Crassostrea virginica react to crab predators by growing stronger shells. We exposed oysters to exudates from crabs fed live oysters or fed aged oyster tissue to simulate scavenging, and to controls without crab cues. Oysters grew stronger shells when exposed to either crab exudate, but their shells were significantly stronger when crabs were fed live oysters. The stronger response to predators than scavengers could be due to inherent differences in diet cues representative of reduced risk in the presence of scavengers or to degradation of conspecific alarm cues in aged treatments, which may mask risk from potential predators subsisting by scavenging.

  12. Prevalence, characterization and sources of Listeria monocytogenes in blue crab (Callinectus sapidus) meat and blue crab processing plants. (United States)

    Pagadala, Sivaranjani; Parveen, Salina; Rippen, Thomas; Luchansky, John B; Call, Jeffrey E; Tamplin, Mark L; Porto-Fett, Anna C S


    Seven blue crab processing plants were sampled to determine the prevalence and sources of Listeria spp. and Listeria monocytogenes for two years (2006-2007). A total of 488 raw crabs, 624 cooked crab meat (crab meat) and 624 environmental samples were tested by standard methods. Presumptive Listeria spp. were isolated from 19.5% of raw crabs, 10.8% of crab meat, and 69.5% of environmental samples. L. monocytogenes was isolated from 4.5% of raw crabs, 0.2% of crab meat, and 2.1% of environmental samples. Ninety-seven percent of the isolates were resistant to at least one of the ten antibiotics tested. Eight different serotypes were found among 76 L. monocytogenes isolates tested with the most common being 4b, 1/2b and 1/2a. Automated EcoRI ribotyping differentiated 11 ribotypes among the 106 L. monocytogenes isolates. Based on ribotyping analysis, the distribution of the ribotypes in each processing plant had a unique contamination pattern. A total of 92 ApaI and 88 AscI pulsotypes among the 106 L. monocytogenes isolates were found and distinct pulsotypes were observed in raw crab, crab meat and environmental samples. Ribotypes and serotypes recovered from crab processing plants included subtypes that have been associated with listeriosis cases in other food outbreaks. Our findings suggest that molecular methods may provide critical information about sources of L. monocytogenes in crab processing plants and will augment efforts to improve food safety control strategies such as targeting specific sources of contamination and use of aggressive detergents prior to sanitizing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Blue supergiant progenitors from binary mergers for SN 1987A and other Type II-peculiar supernovae (United States)

    Menon, Athira; Heger, Alexander


    We present results of a systematic and detailed stellar evolution study of binary mergers for blue supergiant (BSG) progenitors of Type II supernovae, particularly for SN 1987A. We are able to reproduce nearly all observational aspects of the progenitor of SN 1987A, Sk -69 °202, such as its position in the HR diagram, the enrichment of helium and nitrogen in the triple-ring nebula and its lifetime before its explosion. We build our evolutionary model based on the merger model of Podsiadlowski et al. (1992), Podsiadlowski et al. (2007) and empirically explore an initial parameter consisting of primary masses, secondary masses and different depths up to which the secondary penetrates the He core during the merger. The evolution of the post-merger star is continued until just before iron-core collapse. Of the 84 pre-supernova models (16 M⊙ - 23 M⊙) computed, the majority of the pre-supernova models are compact, hot BSGs with effective temperature >12 kK and 30 R⊙ - 70 R⊙ of which six match nearly all the observational properties of Sk -69 °202.

  14. Chiral transport of neutrinos in supernovae

    Directory of Open Access Journals (Sweden)

    Yamamoto Naoki


    Full Text Available The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.

  15. Supernovae and Gamma-Ray Bursts (United States)

    Livio, Mario; Panagia, Nino; Sahu, Kailash


    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  16. Study of supernovae important for cosmology (United States)

    Baklanov, P. V.; Blinnikov, S. I.; Potashov, M. Sh.; Dolgov, A. D.


    The dense shell method for the determination of distances to type-IIn supernovae has been briefly reviewed. Applying our method to SN 2006gy, SN 2009ip, and SN 2010jl supernovae, we have obtained distances in excellent agreement with the previously known distances to the parent galaxies. The dense shell method is based on the radiation hydrodynamic model of a supernova. The method of the blackbody model, as well as the correctness of its application for simple estimates of distances from observation data, has been justified.

  17. Assembling the HST Carina Nebula Mosaic (United States)

    Levay, Zoltan G.; Smith, N.; Bond, H. E.; Christian, C. A.; Frattare, L. M.; Hamilton, F.; Januszewski, W.; Mutchler, M.; Knoll, K. S.


    Hubble Space Telescope has obtained numerous images of the Carina Nebula with ACS/WFC using the F658N filter (Hα+[N II]), revealing exquisite detail in this active star-forming region rich in finely detailed structure. Forty-eight overlapping fields were composited into a nearly contiguous mosaic of WFC pointings, resulting in a monochrome image of roughly 500 megapixels spanning ˜24'×12'. In addition, overlapping, wider-field images obtained with the CTIO 4m and MOSAIC2 camera in three narrow-band filters were combined into a color composite. We demonstrate a luminosity layering technique (LRGB) to reconstruct a high-resolution color image by combining the monochrome HST image with the color composite CTIO data which preserves the high spatial resolution brightness structure superimposed on the lower spatial resolution color values. We also touch on some cosmetic techniques to clean the image, including filling in small areas of data gaps and saturation.

  18. Spitzer IRS spectroscopy of planetary nebulae (United States)

    Ramos-Larios, G.; Guerrero, M. A.; Mata, H.; Fang, X.; Nigoche-Netro, A.; Toalá, J. A.; Rubio, G.


    We present Spitzer Space Telescope archival mid-infrared (mid-IR) spectroscopy of a sample of eleven planetary nebulae (PNe). The observations, acquired with the Spitzer Infrared Spectrograph (IRS), cover the spectral range 5.2-14.5 μm that includes the H2 0-0 S(2) to S(7) rotational emission lines. This wavelength coverage has allowed us to derive the Boltzmann distribution and calculate the H2 rotational excitation temperature (Tex). The derived excitation temperatures have consistent values ~= 900 +/-70 K for different sources despite their different structural components. We also report the detection of mid-IR ionic lines of [Ar III], [S IV], and [Ne II] in most objects, and polycyclic aromatic hydrocarbon (PAH) features in a few cases.

  19. ISO Spectroscopy of Proto-Planetary Nebulae (United States)

    Hrivnak, Bruce J.


    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  20. Status of the ILC Crab Cavity Development

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Dexter, A.; /Cockcroft Inst. Accel. Sci. Tech.; Beard, C.; Goudket, P.; McIntosh, P.; /Daresbury; Bellantoni, L.; /Fermilab; Grimm, T.; Li, Z.; Xiao, L.; /SLAC


    The International Linear Collider (ILC) will require two dipole cavities to 'crab' the electron and positron bunches prior to their collision. It is proposed to use two 9 cell SCRF dipole cavities operating at a frequency of 3.9 GHz, with a transverse gradient of 3.8MV/m in order to provide the required transverse kick. Extensive numerical modelling of this cavity and its couplers has been performed. Aluminium prototypes have been manufactured and tested to measure the RF properties of the cavity and couplers. In addition single cell niobium prototypes have been manufactured and tested in a vertical cryostat. The International Collider (ILC) [1] collides bunches of electrons and positrons at a crossing angle of 14 mrad. The angle between these bunches causes a loss in luminosity due to geometric effects [2]. The luminosity lost from this geometric effect can be recovered by rotating the bunches into alignment prior to collision. One possible method of rotating the bunches is to use a crab cavity [3]. A crab cavity is a transverse defecting cavity, where the phase of the cavity is such that the head and tail of the bunch receive equal and opposite kicks. As the bunches are only 500 nm wide in the horizontal plane, the cavity phase must be strictly controlled to avoid the bunch centre being deflected too much. In order to keep the phase stability within the required limits it is required that the cavity be superconducting to avoid thermal effects in both the cavity and its RF source. At the location of the crab cavity in the ILC there is only 23 cm separation between the centre of the cavity and the extraction line, hence the cavity must be small enough to fit in this space. This, along with the difficulty of making high frequency SRF components, set the frequency of the cavity to 3.9 GHz.

  1. Bacteriological survey of the blue crab industry. (United States)

    Phillips, F A; Peeler, J T


    During sanitation inspections of 46 crabmeat processing plants on the Atlantic and Gulf Coasts, 487 samples of whole crabs immediately after cooking, cooked crabs after cooling, backed or washed (or both) crab bodies and whole crab claws, as well as 1,506 retail units of finished product were collected and analyzed bacteriologically. The 1,506 retail units (1-lb [373.24-g] cans) included 518 cans of regular (special) meat, 487 cans of claw meat, and 501 cans of lump meat. Statistical analyses showed that crabmeat from plants in Mississippi, Louisiana, and Texas had higher counts in 19 of 24 cases for the four bacteriological indices than crabmeat from plants located along the Atlantic Coast and the Gulf Coast of Florida. Aerobic plate counts of retail units collected from a previous day's production were significantly higher than those collected on the day of inspection. Regular crabmeat had consistently higher aerobic plate counts than claw or lump meat. When the product was handled expeditiously under good sanitary conditions, the bacteriological results were significantly better than the results from plants operating under poor sanitary conditions. Crabmeat produced in plants operating under good sanitary conditions had the following bacteriological content: (i) coliform organisms average most-probable-number values (geometric) of less than 20 per g; (ii) no Escherichia coli; (iii) coagulase-positive staphylococci average most-probable-number values (geometric) of less than 30 per g in 93% of the plants; (iv) aerobic plate count average values (geometric) of less than 100,000 per g in 93% of the plants, with the counts from 85% of these plants below 50,000 per g.

  2. Characterization of a Freshwater Crab Sudanonautes aubryi ...

    African Journals Online (AJOL)



    Jan 31, 2014 ... Apart from fish, other groups of animals subject to exploitation in ... Moyle, 1990). Student's test was used to determine the ... Sex Ratio. 1.62. 0.68. 3.3. Measurements of all crabs: Overall, the weight is between 0.19 and 19.95 g, width of the cephalothorax width that ranges from 8.71 to 42.35 mm and the clip.


    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellon, Sergio; Roth, Miguel [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Hamuy, Mario; Anderson, Joseph P. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Krzeminski, Wojtek [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Prieto, Jose L. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Ln., Princeton, NJ 08544 (United States); Suntzeff, Nicholas B.; Krisciunas, Kevin, E-mail: [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); and others


    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of Almost-Equal-To 0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a Almost-Equal-To 2{sigma}-3{sigma} correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.

  4. Distinguishing between symbiotic stars and planetary nebulae (United States)

    Iłkiewicz, K.; Mikołajewska, J.


    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  5. Watching Young Planetary Nebulae Grow: The Movie (United States)

    Balick, Bruce


    The development of magneto-hydro gas dynamical models is the key to the understanding of both the physics {processes} and astronomy {initial conditions} of astrophysical nebulae of all sorts. The models are reaching their highest degree of accuracy when applied to and compared against pre Planetary Nebulae {pPNe} thanks to the simplicity, relative lack of extinction, and the detail of the imaging and kinematic data that have bcome available for these objects. The primary barrier to progress is inadequate kinematic data of pPNe against which the predictions models can be tested. Unlike PNe, pPNe do not emit emission lines for detailed Doppler measurements. Therefore it is essential to find another way to monitor the morphological evolution. Only HST can uncover the dynamics of the growth patterns by subtracting multi-epoch images spanning a decade or more. We have selected four pPNe with highly collimated outflows in different evolutionary stages for which high-quality first-epoch images were obtained from 1996 to 2002. All of them display regularly shaped thin rims, sharp edges, and symmetric pairs of knots or bowshocks that are ideal for our purposes. We will closely mimic many of the earlier exposures using ACS and to monitor changes in structures. The morphology and its evolution will be compared to 3-D MHD models with adaptive grids in order to build a far clearer picture of the nuclear geometry which shaped the outflows and constrained their propagation to the present. We shall also obtain R, J, and H images for use with a 3-D dust radiative transfer code LELUYA to model the dust distribution deep into the nuclear zones.

  6. Pulsar Wind Nebulae and Cosmic Rays: A Bedtime Story

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, A.


    The role pulsar wind nebulae play in producing our locally observed cosmic ray spectrum remains murky, yet intriguing. Pulsar wind nebulae are born and evolve in conjunction with SNRs, which are favored sites of Galactic cosmic ray acceleration. As a result they frequently complicate interpretation of the gamma-ray emission seen from SNRs. However, pulsar wind nebulae may also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current thinking on pulsar wind nebulae and their connection to cosmic ray production from an observational perspective. It also considers how both future technologies and new ways of analyzing existing data can help us to better address the relevant theoretical questions. A number of key points will be illustrated with recent results from the VHE (E > 100 GeV) gamma-ray observatory VERITAS.

  7. The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database

    Energy Technology Data Exchange (ETDEWEB)

    Tagmount, Abderrahmane; Wang, Mei; Lindquist, Erika; Tanaka, Yoshihiro; Teranishi, Kristen S.; Sunagawa, Shinichi; Wong, Mike; Stillman, Jonathon H.


    Background: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes. Methodology/Principal Findings: A set of ~;;30K unique sequences (UniSeqs) representing ~;;19K clusters were generated from ~;;98K high quality ESTs from a set of tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66percent of the UniSeqs had homology in at least one of the databases. All EST and UniSeq sequences along with annotation results and coordinated cDNA microarray datasets have been made publicly accessible at the Porcelain Crab Array Database (PCAD), a feature-enriched version of the Stanford and Longhorn Array Databases.Conclusions/Significance: The EST project presented here represents the third largest sequencing effort for any crustacean, and the largest effort for any crab species. Our assembly and clustering results suggest that our porcelain crab EST data set is equally diverse to the much larger EST set generated in the Daphnia pulex genome sequencing project, and thus will be an important resource to the Daphnia research community. Our homology results support the pancrustacea hypothesis and suggest that Malacostraca may be ancestral to Branchiopoda and Hexapoda. Our results also suggest that our cDNA microarrays cover as much of the transcriptome as can reasonably be captured in

  8. Observational data on Galactic supernova remnants: II. The supernova remnants within l = 90°-270°

    Directory of Open Access Journals (Sweden)

    Guseinov O.H.


    Full Text Available We have collected all the available data on Galactic supernova remnants given in the literature. The data of Galactic supernova remnants located in the Galactic longitude interval l=90° - 270° in all spectral bands are represented in this work. We have adopted distance values for the SNRs by examining these data. The data of various types on neutron stars connected to these supernova remnants are also represented. Remarks of some authors and by ourselves regarding the data and some properties of both the supernova remnants and the point sources are given.

  9. Complex molecules in the Orion Kleinmann-Low nebula


    Despois D.; Brouillet N.; Peng T.-C.; Baudry A.; Favre C; Combes F.; Wlodarczak G.; Guélin M.


    In the framework of the delivery to the early Earth of extraterrestrial molecules, we have studied complex molecular species toward the Orion Kleinmann-Low nebula. This nebula is rich in molecules as well as in nascent stars and planetary systems. We focus here on HCOOCH3, CH3OCH3 and deuterated methanol. Upper limits on species of prebiotic interest like glycine were also obtained.


    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Yagi, Masafumi; Komiyama, Yutaka; Kashikawa, Nobunari [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Ohyama, Youichi [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C. (China); Tanaka, Hisashi [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Okamura, Sadanori, E-mail: [Department of Advanced Sciences, Faculty of Science and Engineering, Hosei University, Koganei, Tokyo 184-8584 (Japan)


    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ∼90 kpc in diameter and the total Hα luminosity amounts to L{sub Hα} ≈ 1.6 × 10{sup 42} erg s{sup −1}. The volume filling factor and the mass of the warm ionized gas are ∼10{sup −4}–10{sup −5} and ∼5 × 10{sup 8} M{sub ⊙}, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ∼10{sup 2} Myr ago, formed the extended ionized gas nebula of NGC 6240.

  11. Complex molecules in the Orion Kleinmann-Low nebula

    Directory of Open Access Journals (Sweden)

    Despois D.


    Full Text Available In the framework of the delivery to the early Earth of extraterrestrial molecules, we have studied complex molecular species toward the Orion Kleinmann-Low nebula. This nebula is rich in molecules as well as in nascent stars and planetary systems. We focus here on HCOOCH3, CH3OCH3 and deuterated methanol. Upper limits on species of prebiotic interest like glycine were also obtained.

  12. Radio Observations of the Pulsar Wind Nebula HESS J1303-631 with ATCA (United States)

    Sushch, Iurii; Oya, Igor; Schwanke, Ullrich; Johnston, Simon; Dalton, Matthew


    Based on its enregy-dependent morphology the initially unidentified very high energy (VHE; E > 100 GeV) gamma-ray source HESS J1303-631 was recently associated with the pulsar PSR J1301-6305. Subsequent detection of X-ray and GeV counterparts further supports the identification of the H.E.S.S. source as evolved pulsar wind nebula (PWN). Recent radio observations of the PSR J1301-6305 region with ATCA dedicated to search for the radio counterpart of HESS J1303-631 are reported here. Observations at 5.5 GHz and 7.5 GHz do not reveal any extended emission associated with the pulsar. The analysis of the archival 1.384 GHz and 2.368 GHz data also does not show any significant emission. The 1.384 GHz data reveal a hint of an extended shell-like emission in the same region which might be a supernova remnant. The implications of the non-detection at radio wavelengths on the nature and evolution of the PWN as well as the possibility of the SNR candidate being a birth place of PSR J1301-6305 are discussed.

  13. Central powering of the largest Lyman-α nebula is revealed by polarized radiation. (United States)

    Hayes, Matthew; Scarlata, Claudia; Siana, Brian


    High-redshift Lyman-α (Lyα) blobs are extended, luminous but rare structures that seem to be associated with the highest peaks in the matter density of the Universe. Their energy output and morphology are similar to those of powerful radio galaxies, but the source of the luminosity is unclear. Some blobs are associated with ultraviolet or infrared bright galaxies, suggesting an extreme starburst event or accretion onto a central black hole. Another possibility is gas that is shock-excited by supernovae. But not all blobs are associated with galaxies, and these ones may instead be heated by gas falling into a dark-matter halo. The polarization of the Lyα emission can in principle distinguish between these options, but a previous attempt to detect this signature returned a null detection. Here we report observations of polarized Lyα from the blob LAB1 (ref. 2). Although the central region shows no measurable polarization, the polarized fraction (P) increases to ∼20 per cent at a radius of 45 kiloparsecs, forming an almost complete polarized ring. The detection of polarized radiation is inconsistent with the in situ production of Lyα photons, and we conclude that they must have been produced in the galaxies hosted within the nebula, and re-scattered by neutral hydrogen.

  14. Potential Impact of Submarine Power Cables on Crab Harvest (United States)

    Bull, A. S.; Nishimoto, M.


    Offshore renewable energy installations convert wave or wind energy to electricity and transfer the power to shore through transmission cables laid on or buried beneath the seafloor. West coast commercial fishermen, who harvest the highly prized Dungeness crab (Metacarcinus magister) and the rock crab (Cancer spp.), are concerned that the interface of crabs and electromagnetic fields (EMF) from these cables will present an electrified fence on the seafloor that their target resource will not cross. Combined with the assistance of professional fishermen, submarine transmission cables that electrify island communities and offshore oil platforms in the eastern Pacific provide an opportunity to test the harvest of crab species across power transmission cables. In situ field techniques give commercial crab species a choice to decide if they will cross fully energized, EMF emitting, power transmission cables, in response to baited traps. Each independent trial is either one of two possible responses: the crab crosses the cable to enter a trap (1) or the crab does not cross the cable to enter a trap (0). Conditions vary among sample units by the following categorical, fixed factors (i.e., covariates) of cable structure (buried or unburied); direction of cable from crab position (west or east, north or south); time and season. A generalized linear model is fit to the data to determine whether any of these factors affect the probability of crabs crossing an energized cable to enter baited traps. Additionally, the experimental design, aside from the number of runs (set of sample trials) and the dates of the runs, is the same in the Santa Barbara Channel for rock crab and Puget Sound for Dungeness crab, and allows us to compare the capture rates of the two species in the two areas. We present preliminary results from field testing in 2015.

  15. Progenitors of Supernovae Type Ia (United States)

    Toonen, S.; Nelemans, G.; Bours, M.; Portegies Zwart, S.; Claeys, J.; Mennekens, N.; Ruiter, A.


    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.


    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E. G.; Ksenofontov, L. T., E-mail: [Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Avenue, 677891 Yakutsk (Russian Federation)


    We present the energy spectrum of an antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNRs). The model includes the reacceleration of antiprotons already existing in the interstellar medium as well as the creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shocks. It is shown that the production of antiprotons in SNRs produces a considerable effect in their resultant energy spectrum, making it essentially flatter above 10 GeV so that the spectrum at TeV energies increases by a factor of 5. The calculated antiproton spectrum is consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check, we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

  17. Antiprotons Produced in Supernova Remnants (United States)

    Berezhko, E. G.; Ksenofontov, L. T.


    We present the energy spectrum of an antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNRs). The model includes the reacceleration of antiprotons already existing in the interstellar medium as well as the creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shocks. It is shown that the production of antiprotons in SNRs produces a considerable effect in their resultant energy spectrum, making it essentially flatter above 10 GeV so that the spectrum at TeV energies increases by a factor of 5. The calculated antiproton spectrum is consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check, we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

  18. Comparative analysis of the proximate and elemental composition of the blue crab Callinectes sapidus, the warty crab Eriphia verrucosa, and the edible crab Cancer pagurus

    Directory of Open Access Journals (Sweden)

    Maurizio Zotti


    Full Text Available The proximate composition and element contents of claw muscle tissue of Atlantic blue crabs (Callinectes sapidus were compared with the native warty crab (Eriphia verrucosa and the commercially edible crab (Cancer pagurus. The scope of the analysis was to profile the chemical characteristics and nutritive value of the three crab species. Elemental fingerprints showed significant inter-specific differences, whereas non-significant variations in the moisture and ash contents were observed. In the blue crab, protein content was significantly lower than in the other two species, while its carbon content resulted lower than that characterizing only the warty crab. Among micro-elements, Ba, Cr, Cu, Li, Mn, Ni, and Pb showed extremely low concentrations and negligible among-species differences. Significant inter-specific differences were observed for Na, Sr, V, Ba, Cd and Zn; in particular, cadmium and zinc were characterized in the blue crab by concentrations significantly lower than in the other two species. The analysis of the available literature on the three species indicated a general lack of comparable information on their elemental composition. The need to implement extended elemental fingerprinting techniques for shellfish quality assessment is discussed, in view of other complementary profiling methods such as NMR-based metabolomics.

  19. Comparative analysis of the proximate and elemental composition of the blue crab Callinectes sapidus, the warty crab Eriphia verrucosa, and the edible crab Cancer pagurus. (United States)

    Zotti, Maurizio; Coco, Laura Del; Pascali, Sandra Angelica De; Migoni, Danilo; Vizzini, Salvatrice; Mancinelli, Giorgio; Fanizzi, Francesco Paolo


    The proximate composition and element contents of claw muscle tissue of Atlantic blue crabs (Callinectes sapidus) were compared with the native warty crab (Eriphia verrucosa) and the commercially edible crab (Cancer pagurus). The scope of the analysis was to profile the chemical characteristics and nutritive value of the three crab species. Elemental fingerprints showed significant inter-specific differences, whereas non-significant variations in the moisture and ash contents were observed. In the blue crab, protein content was significantly lower than in the other two species, while its carbon content resulted lower than that characterizing only the warty crab. Among micro-elements, Ba, Cr, Cu, Li, Mn, Ni, and Pb showed extremely low concentrations and negligible among-species differences. Significant inter-specific differences were observed for Na, Sr, V, Ba, Cd and Zn; in particular, cadmium and zinc were characterized in the blue crab by concentrations significantly lower than in the other two species. The analysis of the available literature on the three species indicated a general lack of comparable information on their elemental composition. The need to implement extended elemental fingerprinting techniques for shellfish quality assessment is discussed, in view of other complementary profiling methods such as NMR-based metabolomics.

  20. Supernovae, dark energy and the accelerating universe

    CERN Multimedia

    Perlmutter, Saul


    Based on an analysis of 42 high-redshift supernovae discovered by the supernovae cosmology project, we have found evidence for a positive cosmological constant, Lambda, and hence an accelerating universe. In particular, the data are strongly inconsistent with a Lambda=0 flat cosmology, the simplest inflationary universe model. The size of our supernova sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We will discuss results of these and other studies and the ongoing hunt for further loopholes to evade the apparent consequences of the measurements. We will present further work that begins to constrain the alternative physics theories of "dark energy" that have been proposed to explain these results. Finally, we propose a new concept for a definitive supernova measurement of the cosmological parameters.

  1. Classification of 5 DES supernova by Magellan (United States)

    Galbany, L.; Almeida, A.; Forster, F.; Gonzalez-Gaitan, S.; Hamuy, M.; Prieto, Jose Luis; Olivares, F.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Gupta, R.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Papadopoulos, A.; Morganson, E.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Lidman, C.; Moller, A.; Muthukrishna, D. R.; Tucker, B. E.; Yuan, F.; Zhang, B.; Davis, T. M.; Hinton, S.; Asorey, J.; Lewis, G. F.; Uddin, S.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Macaulay, E.; Nichol, R.; Maartens, R.; Childress, M.; Prajs, S.; Smith, M.; Sullivan, M.


    We report optical spectroscopy of 5 supernova discovered by the Dark Energy Survey (ATel #4668). The spectra (425-1050) were obtained using the IMACS on the 6.5m Baade telescope at the Las Campinas Observatory.

  2. Classification of 2 DES supernova by NTT (United States)

    Angus, C. R.; Smith, M.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Gupta, R.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Papadopoulos, A.; Morganson, E.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Lidman, C.; Moller, A.; Muthukrishna, D. R.; Tucker, B. E.; Yuan, F.; Zhang, B.; Davis, T. M.; Hinton, S.; Asorey, J.; Lewis, G. F.; Uddin, S.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Macaulay, E.; Nichol, R.; Maartens, R.; Childress, M.; Prajs, S.; Sullivan, M.; Kovacs, E.; Kuhlmann, S.; Spinka, H.


    We report optical spectroscopy of 2 supernova discovered by the Dark Energy Survey (ATel #4668). The spectra were obtained using the ESO New Technology Telescope at La Silla on 2017 Dec 06 and 2017 Dec 08 using EFOSC2.

  3. Classification of 10 DES supernova by Magellan (United States)

    Galbany, L.; Martinez, J.; Forster, F.; Gonzalez-Gaitan, S.; Hamuy, M.; Prieto, Jose Luis; Olivares, F.; Childress, M.; Prajs, S.; Smith, M.; Sullivan, M.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Gupta, R.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Papadopoulos, A.; Morganson, E.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Lidman, C.; Moller, A.; Muthukrishna, D. R.; Tucker, B. E.; Yuan, F.; Zhang, B.; Asorey, J.; Davis, T. M.; Hinton, S.; Lewis, G. F.; Parkinson, D.; Uddin, S.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Macaulay, E.; Nichol, R.; Maartens, R.


    We report optical spectroscopy of 10 supernova discovered by the Dark Energy Survey (ATel #4668). The spectra (425-1050) were obtained using the LDSS3 on the 6.5m Clay telescope at the Las Campinas Observatory.

  4. Classification of 5 DES supernovae by Magellan (United States)

    Lasker, J.; Kessler, R.; Scolnic, D.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.


    We report optical spectroscopy of 5 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (580-1050nm) were obtained using LDSS-3C on the 6.5m Clay telescope at the Las Campanas Observatory.

  5. SALT Classification of DES Supernova Candidates (United States)

    Kasai, E.; Bassett, B.; Crawford, S.; Smith, M.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Scolnic, D.; Covarrubias, R. A.; Brout, D. J.; Fischer, J. A.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; D'Andrea, C.; Nichol, R.; Papadopoulos, A.; Sullivan, M.; Maartens, R.


    We report optical spectroscopy of a supernova candidates discovered by the Dark Energy Survey. The spectra (400-850 nm) were obtained using the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT).

  6. Classification of 17 DES supernovae by SALT (United States)

    Kasai, E.; Bassett, B.; Crawford, S.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.


    We report optical spectroscopy of 17 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (380-820nm) were obtained using the Robert Stobie Spectrograph (RSS) on the South African Large Telescope (SALT).

  7. Classification of 14 DES supernovae by Magellan (United States)

    Galbany, L.; Gonzalez-Gaitan, S.; Smith, M.; ForsterÂ, F.; Hamuy, M.; Prieto, Jose Luis; Sullivan, M.; NicholÂ, R.; Sako, M.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Wolf, R. C.


    We report optical spectroscopy of 14 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (425-1050nm) were obtained using LDSS3 on the 6.5m Clay telescope at the Las Campinas Observatory.

  8. Physical processes in collapse driven supernova

    Energy Technology Data Exchange (ETDEWEB)

    Mayle, R.W.


    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  9. Optical spectrosopy of HiTS supernovae (United States)

    Anderson, J.; Forster, F.; Smith, C.; Vivas, K.; Pignata, G.; Olivares, F.; Hamuy, M.; Martin, J. San; Maureira, J. C.; Cabrera, G.; Gonzalez-Gaitan, S.; Galbany, L.; Bufano, F.; de Jaeger, T.; Hsiao, E.; Munoz, R.; Vera, E.


    We report optical wavelength spectroscopy obtained using the Goodman instrument mounted on the SOAR at CTIO on UT 2015-03-30, for two supernovae discovered by HiTS, the High Cadence Transient Survey (see ATELs #7289, #7290).

  10. Supernova Classification Using Swift UVOT Photometry (United States)

    Smith, Madison; Brown, Peter J.


    With the great influx of supernova discoveries over the past few years, the observation time needed to acquire the spectroscopic data needed to classify supernova by type has become unobtainable. Instead, using the photometry of supernovae could greatly reduce the amount of time between discovery and classification. For this project we looked at the relationship between colors and supernova types through machine learning packages in Python. Using data from the Swift Ultraviolet/Optical Telescope (UVOT), each photometric point was assigned values corresponding to colors, absolute magnitudes, and the relative times from the peak brightness in several filters. These values were fed into three classifying methods, the nearest neighbors, decision tree, and random forest methods. We will discuss the success of these classification systems, the optimal filters for photometric classification, and ways to improve the classification.

  11. Multiple Supernova Explosions in a Forming Galaxy

    National Research Council Canada - National Science Library

    Masayuki Umemura; Andrea Ferrara


    Ultra-high resolution hydrodynamic simulations using 1024 3 grid points are performed of a very large supernova burst in a forming galaxy, with properties similar to those inferred for Lyman Break Galaxies (LBGs...

  12. Magnetar-powered ordinary Type IIP supernovae (United States)

    Sukhbold, Tuguldur; Thompson, Todd A.


    We investigate the properties of Type IIP supernovae that are dominantly powered by the rotational kinetic energy of the newly born neutron star. While the spin-down of a magnetar has previously been proposed as a viable energy source in the context of superluminous supernovae, we show that a similar mechanism could produce both normal and peculiar Type IIP supernova light curves from red supergiant progenitors for a range of initial spin periods and equivalent dipole magnetic field strengths. Although the formation channel for such magnetars in a typical red supergiant progenitor is unknown, it is tantalizing that this proof of concept model is capable of producing ordinary Type IIP light-curve properties, perhaps implying that rotation rate and magnetic field strength may play important roles in some ordinary looking Type IIP supernova explosions.


    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. C.; Nugent, P. [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94611 (United States); Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, 75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622 Lyon (France); and others


    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II {lambda}6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s{sup -1}) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22{sup +10}{sub -6%} of SNe Ia exhibit spectroscopic C II signatures as late as -5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II {lambda}6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  14. A Probabilistic Approach to Classifying Supernovae UsingPhotometric Information

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, Natalia V.; Connolly, Brian M.


    This paper presents a novel method for determining the probability that a supernova candidate belongs to a known supernova type (such as Ia, Ibc, IIL, etc.), using its photometric information alone. It is validated with Monte Carlo, and both space- and ground-based data. We examine the application of the method to well-sampled as well as poorly sampled supernova light curves and investigate to what extent the best currently available supernova models can be used for typing supernova candidates. Central to the method is the assumption that a supernova candidate belongs to a group of objects that can be modeled; we therefore discuss possible ways of removing anomalous or less well understood events from the sample. This method is particularly advantageous for analyses where the purity of the supernova sample is of the essence, or for those where it is important to know the number of the supernova candidates of a certain type (e.g., in supernova rate studies).

  15. The supernova cosmology cookbook: Bayesian numerical recipes


    Karpenka, Natallia V.


    Theoretical and observational cosmology have enjoyed a number of significant successes over the last two decades. Cosmic microwave background measurements from the Wilkinson Microwave Anisotropy Probe and Planck, together with large-scale structure and supernova (SN) searches, have put very tight constraints on cosmological parameters. Type Ia supernovae (SNIa) played a central role in the discovery of the accelerated expansion of the Universe, recognised by the Nobel Prize in Physics in 2011...

  16. The SuperNova Early Warning System


    Scholberg, K.


    A core collapse in the Milky Way will produce an enormous burst of neutrinos in detectors world-wide. Such a burst has the potential to provide an early warning of a supernova's appearance. I will describe the nature of the signal, the sensitivity of current detectors, and SNEWS, the SuperNova Early Warning System, a network designed to alert astronomers as soon as possible after the detected neutrino signal.

  17. Infrared opportunities for supernova 1987A (United States)

    Dwek, Eli


    IR observations of SN 1987A are reviewed, focusing on the IR processes in the supernova. IR line emission, IR emission from supernova condensates, IR echoes, IR emission from shock-heated dust, and IR emission from a cometary cloud are examined. A list is given of IR studies of SN 1987A and the characteristics of the instruments used in these studies. Preliminary results from several IR studies are considered.

  18. A Polarization Sequence for Type Ia Supernovae?


    Meng, Xiangcun; Zhang, Jujia; Han, Zhanwen


    Early polarization observations on Type Ia supernovae (SNe Ia) may reveal the geometry of supernova ejecta, and then put constraints on their explosion mechanism and their progenitor model. We performed a literature search of SNe Ia with polarization measurements and determined the polarization and relative equivalent width (REW) of Si II 635.5-nm absorption feature at -5 days after the maximum light. We found that either the distribution of observed polarization degree is bimodal, i.e. the b...

  19. Radioactivity and Electron Acceleration in Supernova Remnants


    Zirakashvili, V. N.; Aharonian, F. A.


    We argue that the decays of radioactive nuclei related to $^{44}$Ti and $^{56}$Ni ejected during supernova explosions can provide a vast pool of mildly relativistic positrons and electrons which are further accelerated to ultrarelativistic energies by reverse and forward shocks. This interesting link between two independent processes - the radioactivity and the particle acceleration - can be a clue for solution of the well known theoretical problem of electron injection in supernova remnants....

  20. Experimental infections of Orchitophrya stellarum (Scuticociliata) in American blue crabs (Callinectes sapidus) and fiddler crabs (Uca minax). (United States)

    Miller, Terrence L; Small, Hamish J; Peemoeller, Bhae-Jin; Gibbs, David A; Shields, Jeffrey D


    Outbreaks of an unidentified ciliate have occurred on several occasions in blue crabs from Chesapeake Bay held during winter months in flow-through systems. The parasite was initially thought to be Mesanophrys chesapeakensis, but molecular analysis identified it as Orchitophyra stellarum, a facultative parasite of sea stars (Asteroidea). We investigated the host-parasite association of O. stellarum in the blue crab host. Crabs were inoculated with the ciliate, or they were held in bath exposures after experimentally induced autotomy of limbs in order to determine potential mechanisms for infection. Crabs inoculated with the ciliate, or exposed to it after experimental autotomy, rapidly developed fatal infections. Crabs that were not experimentally injured, but were exposed to the ciliate, rarely developed infections; thus, indicating that the parasite requires a wound or break in the cuticle as a portal of entry. For comparative purposes, fiddler crabs, Uca minax, were inoculated with the ciliate in a dose-titration experiment. Low doses of the ciliate (10 per crab) were sometimes able to establish infections, but high intensity infections developed quickly at doses over 500 ciliates per crab. Chemotaxis studies were initiated to determine if the ciliate preferentially selected blue crab serum (BCS) over other nutrient sources. Cultures grown on medium with BCS or fetal bovine serum showed some conditioning in their selection for different media, but the outcome in choice experiments indicated that the ciliate was attracted to BCS and not seawater. Our findings indicate that O. stellarum is a facultative parasite of blue crabs. It can cause infections in exposed crabs at 10-15°C, but it requires a portal of entry for successful host invasion, and it may find injured hosts using chemotaxis. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Neutrino signal from pair-instability supernovae (United States)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.


    A very massive star with a carbon-oxygen core in the range of 64M ⊙evolution at the extreme of stellar masses. Much will be sought within the electromagnetic radiation we detect from such a supernova but we should not forget that the neutrinos from a pair-instability supernova contain unique signatures of the event that unambiguously identify this type of explosion. We calculate the expected neutrino flux at Earth from two, one-dimensional pair-instability supernova simulations which bracket the mass range of stars which explode by this mechanism taking into account the full time and energy dependence of the neutrino emission and the flavor evolution through the outer layers of the star. We calculate the neutrino signals in five different detectors chosen to represent present or near future designs. We find the more massive progenitors explode as pair-instability supernova which can easily be detected in multiple different neutrino detectors at the "standard" supernova distance of 10 kpc producing several events in DUNE, JUNO, and Super-Kamiokande, while the lightest progenitors produce only a handful of events (if any) in the same detectors. The proposed Hyper-Kamiokande detector would detect neutrinos from a large pair-instability supernova as far as ˜50 kpc allowing it to reach the Megallanic Clouds and the several very high mass stars known to exist there.

  2. The Distant Type Ia Supernova Rate (United States)

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.


    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  3. The distant type Ia supernova rate

    Energy Technology Data Exchange (ETDEWEB)

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R.S.; Aldering, G.; Astier, P.; Deustua, S.E.; Fruchter, A.S.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Hardin, D.; Hook, I.M.; Howell, D.A.; Irwin, M.J.; Kim, A.G.; Kim, M.Y.; Knop, R.A.; Lee, J.C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N.A.


    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  4. The biology of the burrowing crab, Corystes cassivelaunus

    NARCIS (Netherlands)

    Hartnoll, R.G.


    Corystes cassivelaunus (Brachyura, Corystidae), a crab which burrows in clean sublittoral sand, was investigated at several inshore locations around the Isle of Man. It usually buries itself so as to leave little or no external sign of its presence. Immature crabs remain buried by day throughout the

  5. Ghost crabs on a treadmill: Oxygen uptake and haemocyanin ...

    African Journals Online (AJOL)


    Apr 17, 1990 ... change gases. Full (1987) studied the aerobic and anaerobic energetics of the ghost crab Ocypode quadrata during and after locomotion. He found considerable amounts of I-lac- tate production in both large (16 g) and small (2 g) crabs. Morris & Bridges (1985) studied the oxygen affinity of non-exercised ...

  6. How to get more collisions at the LHC / crab cavities

    CERN Multimedia


    (short version) HL-LHC crab cavity engineer Ofelia Capatin, HL-LHC RF system leader Rama Calaga and HL-LHC project leader Lucio Rossiexplain how the introduction of the new Crab Cavities will enable higher luminosities at the HL-LHC.

  7. Evolutionary diversification of coral-dwelling gall crabs (Cryptochiridae)

    NARCIS (Netherlands)

    Meij, Sancia Esmeralda Theonilla van der


    Gall crabs (Crustacea : Cryptochiridae) are small, coral-dwelling crabs that live in obligate association with their host corals (Scleractinia), on which they rely for food and shelter. They have been recorded from shallow and deeper waters (over 500 m), but the majority of the species live in reef

  8. Fecundity of the Pantropical Fiddler Crab Uca annulipes (H. Milne ...

    African Journals Online (AJOL)

    Uca annulipes (H. Milne Edwards, 1837) is probably the most abundant brachyuran crab inhabiting mangrove forests in East Africa. However, its fecundity is poorly understood. Crabs were randomly sampled during spring low tides from January to April 2002 at Costa do Sol mangrove, Maputo Bay, southern Mozambique.

  9. The Rhizocephalan parasite of the crab Xantho incisus (Leach)

    NARCIS (Netherlands)

    Boschma, H.


    As shown by Holthuis (1954), the correct name for the European crab commonly referred to as Xantho floridus (Montagu) is Xantho incisus (Leach). A Rhizocephalan parasite of this crab was first mentioned (without an indication of specific characters) by Gerbe (1862); afterwards specimens were

  10. Glitches and pinned vorticity in the Crab pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Alpar, M.A. (Bogazici Univ., Istanbul, Turkey); Anderson, P.W.; Pines, D.; Shaham, J.


    It is suggested that the glitch behavior observed in the Crab pulsar is associated with vorticity jumps induced by a starquake or a comparable external fluctuation in the weakly pinned vortex region expected in the crust of a young neutron star, and that the differences in the glitch behavior of the Crab, Vela, and older pulsars may be explained on evolutionary grounds.

  11. Subsistence utilization of the crab Neosarmatium meinerti in the ...

    African Journals Online (AJOL)

    Subsistence utilization of the crab Neosarmatium meinerti in the Kosi Lakes ecosystem, KwaZulu-Natal, South Africa. ... The red mangrove crab Neosarmatium meinerti de Man, 1884 (Crustacea: Decapoda: Grapsidae: Sesarminae) constituted the major proportion of these catches, while Scylla serrata and Cardisoma ...

  12. Crabbed Waist Collisions in DAFNE and Super-B Design

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, P.; Alesini, D.; Biagini, M.E.; Biscari, C.; Boni, R.; Boscolo, M.; Bossi, F.; Buonomo, B.; Clozza, A.; Delle Monache, G.O.; Demma, T.; Di Pasquale, E.; Di Pirro, G.; Drago, A.; Gallo, A.; Ghigo, A.; Guiducci, S.; Ligi, C.; Marcellini, F.; Mazzitelli, Giovanni; Milardi, C.; /Frascati /Orsay, LAL /CERN /Rome III U. /Rome U. /Novosibirsk, IYF /KEK, Tsukuba /INFN, Pisa /INFN, Cosenza /SLAC /Frascati


    The new idea of increasing the luminosity of a collider with crab waist collisions and first experimental results from the DA{Phi}NE {Phi}-Factory at LNF, Frascati, using this concept are presented. Consequences for the design of future factories will be discussed. An outlook to the performance reach with crab waist collisions is given, with emphasis on future B Factories.

  13. Cas A and the Crab were not stellar binaries at death (United States)

    Kochanek, C. S.


    The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb model (meaning no binary interactions), with a flat mass ratio distribution and a Salpeter IMF, the resulting 90 per cent confidence upper limit on the initial binary fraction of F < 63 per cent is in tension with observed massive binary statistics. Allowing a significant fraction fM ≃ 25 per cent of stellar binaries to merge reduces the tension, with F < 63({1-f}M)^{-1}{ per cent} ˜eq 81{ per cent}, but allowing for the significant fraction in higher order systems (triples, etc.) reintroduces the tension. That Cas A was not a stellar binary at death also shows that a surviving massive binary companion at the time of the explosion is not necessary for producing a Type IIb SNe. Much larger surveys for binary companions to Galactic SNe will become feasible with the release of the full Gaia proper motion and parallax catalogues providing a powerful probe of the statistics of such binaries and their role in massive star evolution, neutron star velocity distributions and runaway stars.

  14. Type Ia supernova rate at a redshift of ­0.1

    DEFF Research Database (Denmark)

    Blanc ...[et al], G.; Andersen, J.


    stars: supernovae: general; galaxies: evolution; cosmology: miscellaneous; methods: observational......stars: supernovae: general; galaxies: evolution; cosmology: miscellaneous; methods: observational...

  15. The carbon budget in the outer solar nebula. (United States)

    Simonelli, D P; Pollack, J B; McKay, C P; Reynolds, R T; Summers, A L


    Detailed models of the internal structures of Pluto and Charon, assuming rock and water ice as the only constituents, indicate that the mean silicate mass fraction of this two-body system is on the order of 0.7; thus the Pluto/Charon system is significantly "rockier" than the satellites of the giant planets (silicate mass fraction approximately 0.55). This compositional contrast reflects different formation mechanisms: it is likely that Pluto and Charon formed directly from the solar nebula, while the circumplanetary nebulae that produced the giant planet satellites were derived from envelopes that surrounded the forming giant planets (envelopes in which icy planetesimals dissolved more readily than rocky planetesimals). Simple cosmic abundance calculations, and the assumption that the Pluto/Charon system formed directly from solar nebula condensates, strongly suggest that the majority of the carbon in the outer solar nebula was in the form of carbon monoxide; these results are consistent with (1) inheritance from the dense molecular clouds in the interstellar medium (where CH4/CO nebula chemistry. Theoretical predictions of the C/H enhancements in the atmospheres of the giant planets, when compared to the actual observed enhancements, suggest that 10%, or slightly more, of the carbon in the outer solar nebula was in the form of condensed materials (although the amount of condensed C may have dropped slightly with increasing heliocentric distance). Strict compositional limits computed for the Pluto/Charon system using the densities of CH4 and CO ices indicate that these pure ices are at best minor components in the interiors of these bodies, and imply that CH4 and CO ices were not the dominant C-bearing solids in the outer nebula. Clathrate-hydrates could not have appropriated enough CH4 or CO to be the major form of condensed carbon, although such clathrates may be necessary to explain the presence of methane on Pluto after its formation from a CO-rich nebula

  16. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H.T. [Max-Planck-Institut fuer Astrophysik, Garching (Germany)


    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  17. Are the models for type Ia supernova progenitors consistent with the properties of supernova remnants?,

    NARCIS (Netherlands)

    Badenes, C.; Hughes, J.P.; Bravo, E.; Langer, N.


    We explore the relationship between the models for progenitor systems of Type Ia supernovae and the properties of the supernova remnants that evolve after the explosion. Most models for Type Ia progenitors in the single-degenerate scenario predict substantial outflows during the presupernova

  18. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.


    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  19. Modelling the interaction of thermonuclear supernova remnants with circumstellar structures: the case of Tycho's supernova remnant

    NARCIS (Netherlands)

    Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.; Kaastra, J.S.


    The well-established Type Ia remnant of Tycho's supernova (SN 1572) reveals discrepant ambient medium-density estimates based on either the measured dynamics or the X-ray emission properties. This discrepancy can potentially be solved by assuming that the supernova remnant (SNR) shock initially

  20. Signatures of Chemical Evolution in Protostellar Nebulae (United States)

    Nuth, Joseph A., III; Johnson, Natasha


    A decade ago observers began to take serious notice of the presence of crystalline silicate grains in the dust flowing away from some comets. While crystallinity had been seen in such objects previously, starting with the recognitions by Campins and Ryan (1990) that the 10 micron feature of Comet Halley resembled that of the mineral forsterite, most such observations were either ignored or dismissed as no path to explain such crystalline grains was available in the literature. When it was first suggested that an outward flow must be present to carry annealed silicate grains from the innermost regions of the Solar Nebula out to the regions where comets could form (Nuth, 1999; 2001) this suggestion was also dismissed because no such transport mechanism was known at the time. Since then not only have new models of nebular dynamics demonstrated the reality of long distance outward transport (Ciesla, 2007; 2008; 2009) but examination of older models (Boss, 2004) showed that such transport had been present but had gone unrecognized for many years. The most unassailable evidence for outward nebular transport came with the return of the Stardust samples from Comet Wild2, a Kuiper-belt comet that contained micron-scale grains of high temperature minerals resembling the Calcium-Aluminum Inclusions found in primitive meteorites (Zolensky et aI., 2006) that formed at T > 1400K. Now that outward transport in protostellar nebulae has been firmly established, a re-examination of its consequences for nebular gas is in order that takes into account both the factors that regulate both the outward flow as well as those that likely control the chemical composition of the gas. Laboratory studies of surface catalyzed reactions suggest that a trend toward more highly reduced carbon and nitrogen compounds in the gas phase should be correlated with a general increase in the crystallinity of the dust (Nuth et aI., 2000), but is such a trend actually observable? Unlike the Fischer-Tropsch or

  1. Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants. (United States)

    Hajji, Sawssen; Ghorbel-Bellaaj, Olfa; Younes, Islem; Jellouli, Kemel; Nasri, Moncef


    Crab shells waste were fermented using six protease-producing Bacillus species (Bacillus subtilis A26, Bacillus mojavensis A21, Bacillus pumilus A1, Bacillus amyloliquefaciens An6, Bacillus licheniformis NH1 and Bacillus cereus BG1) for the production of chitin and fermented-crab supernatants (FCSs). In medium containing only crab shells, the highest demineralization DM was obtained with B. licheniformis NH1 (83±0.5%) and B. pumilus A1 (80±0.6%), while the highest deproteinization (DP) was achieved with A1 (94±1%) followed by NH1 (90±1.5%) strains. Cultures conducted in medium containing crab shells waste supplemented with 5% (w/v) glucose, were found to remarkably promote demineralization efficiency, and enhance slightly deproteinization rates. FTIR spectra of chitins showed the characteristics bands of α-chitin. FCSs showed varying degrees of antioxidant activities which were in a dose-dependent manner (p<0.01). In fact, FCS produced by B. amyloliquefaciens An6 exhibited the highest DPPH free radical-scavenging activity (92% at 4 mg/ml), while the lowest hydroxyl radical-scavenging activity (60% at 4 mg/ml) was obtained with B. subtilis A26 hydrolysates. However, the highest reducing power (OD700nm=2 at 0.5 mg/ml) was obtained by B.amyloliquefaciens An6 hydrolysates. These results suggest that crab hydrolysates are good sources of natural antioxidants. Further, FCSs were found to exhibit antibacterial activity against Gram-positive and Gram-negative bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Supernova Remnant Science with AXIS (United States)

    Williams, Brian J.; Yamaguchi, Hiroya; AXIS Science Team


    We present an overview of the supernova remnant (SNR) science that will be achieved with the Advanced X-ray Imaging Satellite (AXIS). AXIS follows in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10 keV band. These capabilities enable major advances in several areas of SNR science. These include, but are not limited to: 1) a more thorough spatial mapping of the ejecta products of both intermediate-mass and iron-group elements in core-collapse and Type Ia SNRs, particularly in remnants with a small diameter. The iron-group elements, specifically Cr, Mn, and Ni, are extremely important for constraining the explosion mechanism for SNe, but are generally weak and difficult to detect with Chandra, XMM-Newton, and Suzaku. 2) Studying the interface of a shock wave with the ambient ISM/CSM to constrain the degree of particle heating and acceleration at shock fronts. Chandra has only provided upper limits on shock precursor emission, and a detailed study of the thermal and nonthermal emission at the shock with greatly increased photon count rates will constrain the properties of the immediate post-shock plasma. 3) A high spatial resolution X-ray observatory will continue to build on the legacy begun by Chandra of studying the proper motion of young remnants. Directly measuring the dynamics of an SNR's evolution is crucial for understanding the explosion mechanism, and with the order of magnitude increase collecting area, we can measure the expansion of individual elemental species in the ejecta. 4) We will greatly increase the statistics of SNRs in nearby galaxies, going much faster and deeper than Chandra's observations. The increased depth of coverage would allow us to do spectroscopy in places where it was previously possible only to do rudimentary statistics. We can compare the local SNR population with the local star-formation rates for galaxies

  3. A technology analysis of the U.S. Atlantic blue crab (Callinectes sapidus) processing industry


    Hong, Gi-Pyo


    The dehydration rates of crabs during low temperature storage and various cooking processes were determined. Season, cooking time, and cooking method significantly affected the weight loss of crabs. The thermal energy (F250 ) crabs received during a commercial cooking process was evaluated by season, cooking method and time, and crab type. The effects of sex, size, and type (sexual maturity) of crab and season on the yields of lump, top flake, bottom flake, and claw...

  4. Identification of irradiated crab using EPR

    Energy Technology Data Exchange (ETDEWEB)

    Maghraby, A. [Radiation Dosimetry Department, National Institute for Standards (NIS), Ministry of Scientific Research, Haram, 12211- Giza, P.O. Box: 136 (Egypt)]. E-mail:


    EPR spectroscopy is a fast and powerful technique for the identification of irradiated food. Crab exoskeleton was divided into six parts: dactyl, cheliped, carapace, apron, swimming legs, and walking legs. Samples of the exoskeleton were prepared and irradiated to Cs-137 gamma radiation in the range (1.156-5.365 kGy). EPR spectra of unirradiated as well as irradiated samples were recorded and analyzed. Response to gamma radiation was plotted for each part of the exoskeleton, dactyl was found to be the most sensitive part, followed by the apron (38%), cheliped (37%), walking legs (30%), swimming legs (24%), and carapace (21%) relative to the dactyl response.

  5. LHC Crab Cavity Coupler Test Boxes

    CERN Document Server

    Mitchell, James; Burt, Graeme; Calaga, Rama; Macpherson, Alick; Montesinos, Eric; Silva, Subashini; Tutte, Adam; Xiao, Binping


    The LHC double quarter wave (DQW) crab cavities have two different types of Higher Order Mode (HOM) couplers in addition to a fundamental power coupler (FPC). The FPC requires conditioning, so to achieve this we have designed a radio-frequency (RF) quarter wave resonator to provide high transmission between two opposing FPCs. For the HOM couplers we must ensure that the stop-band filter is positioned at the cavity frequency and that peak transmission occurs at the same frequencies as the strongest HOMs. We have designed two test boxes which preserve the cavity spectral response in order to test the couplers.

  6. [WN] central stars of planetary nebulae (United States)

    Todt, H.; Miszalski, B.; Toalá, J. A.; Guerrero, M. A.


    While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of these H-deficient central stars exhibit spectra very similar to massive Wolf-Rayet stars of the carbon sequence, i.e. with broad emission lines of carbon, helium, and oxygen. In analogy to the massive Wolf-Rayet stars, they are classified as [WC] stars. Their formation, which is relatively well understood, is thought to be the result of a (very) late thermal pulse of the helium burning shell. It is therefore surprising that some H-deficient central stars which have been found recently, e.g. IC 4663 and Abell 48, exhibit spectra that resemble those of the massive Wolf-Rayet stars of the nitrogen sequence, i.e. with strong emission lines of nitrogen instead of carbon. This new type of central stars is therefore labelled [WN]. We present spectral analyses of these objects and discuss the status of further candidates as well as the evolutionary status and origin of the [WN] stars.

  7. Planetary Nebulae and How to Observe Them

    CERN Document Server

    Griffiths, Martin


    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what is it they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Planetary Nebulae and How to Observe Them is intended for amateur astronomers who want to concentrate on one of the most beautiful classes of astronomical objects in the sky. This book will help the observer to see these celestial phenomena using telescopes of various apertures. As a Sun-like star reaches the end of its life, its hydrogen fuel starts to run out. It collapses until helium nuclei begin nuclear fusion, whereupon the star begins to pulsate, each pulsation throwing off a layer of the star's atmosphere. Eventually the atmosphere has all been ejected as an expanding cloud of gas, the star's core is exposed and ultraviolet photons cause the shell of gas to glow brilliantly - that's planetary ...

  8. Pinwheel Nebula around WR 98a. (United States)

    Monnier; Tuthill; Danchi


    We present the first near-infrared images of the dusty Wolf-Rayet star WR 98a. Aperture-masking interferometry has been utilized to recover images at the diffraction limit of the Keck I telescope, less, similar50 mas at 2.2 µm. Multiepoch observations spanning about 1 yr have resolved the dust shell into a "pinwheel" nebula, the second example of a new class of dust shell first discovered around WR 104 by Tuthill, Monnier, & Danchi. Interpreting the collimated dust outflow in terms of an interacting winds model, the binary orbital parameters and apparent wind speed are derived: a period of 565+/-50 days, a viewing angle of 35&j0;+/-6 degrees from the pole, and a wind speed of 99+/-23 mas yr-1. This period is consistent with a possible approximately 588 day periodicity in the infrared light curve, linking the photometric variation to the binary orbit. Important implications for binary stellar evolution are discussed by identifying WR 104 and WR 98a as members of a class of massive, short-period binaries whose orbits were circularized during a previous red supergiant phase. The current component separation in each system is similar to the diameter of a red supergiant, which indicates that the supergiant phase was likely terminated by Roche lobe overflow, leading to the present Wolf-Rayet stage.

  9. Scaled Eagle Nebula Experiments on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Pound, Marc W. [Univ. of Maryland, College Park, MD (United States)


    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubble Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.

  10. Accounting for planet-shaped planetary nebulae (United States)

    Sabach, Efrat; Soker, Noam


    By following the evolution of several observed exoplanetary systems, we show that by lowering the mass-loss rate of single solar-like stars during their two giant branches, these stars will swallow their planets at the tip of their asymptotic giant branch (AGB) phase. This will most likely lead the stars to form elliptical planetary nebulae (PNe). Under the traditional mass-loss rate these stars will hardly form observable PNe. Stars with a lower mass-loss rate as we propose, about 15 per cent of the traditional mass-loss rate of single stars, leave the AGB with much higher luminosities than what traditional evolution produces. Hence, the assumed lower mass-loss rate might also account for the presence of bright PNe in old stellar populations. We present the evolution of four exoplanetary systems that represent stellar masses in the range of 0.9-1.3 M⊙. The justification for this low mass-loss rate is our assumption that the stellar samples that were used to derive the traditional average single-star mass-loss rate were contaminated by stars that suffer binary interaction.

  11. Neutron Stars and the Discovery of Pulsars. (United States)

    Greenstein, George


    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  12. The Supernovae Analysis Application (SNAP) (United States)

    Bayless, Amanda J.; Fryer, Chris L.; Wollaeger, Ryan; Wiggins, Brandon; Even, Wesley; de la Rosa, Janie; Roming, Peter W. A.; Frey, Lucy; Young, Patrick A.; Thorpe, Rob; Powell, Luke; Landers, Rachel; Persson, Heather D.; Hay, Rebecca


    The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginning to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.

  13. Supernova Remnant in 3-D (United States)


    [figure removed for brevity, see original site] Click on the image for the movie For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created. This stunning visualization of Cassiopeia A, or Cas A, the result of an explosion approximately 330 years ago, uses data from several telescopes: X-ray data from NASA's Chandra X-ray Observatory, infrared data from NASA's Spitzer Space Telescope and optical data from the National Optical Astronomy Observatory 4-meter telescope at Kitt Peak, Ariz., and the Michigan-Dartmouth-MIT 2.4-meter telescope, also at Kitt Peak. In this visualization, the green region is mostly iron observed in X-rays. The yellow region is a combination of argon and silicon seen in X-rays, optical, and infrared including jets of silicon plus outer debris seen in the optical. The red region is cold debris seen in the infrared. Finally, the blue reveals the outer blast wave, most prominently detected in X-rays. Most of the material shown in this visualization is debris from the explosion that has been heated by a shock moving inwards. The red material interior to the yellow/orange ring has not yet encountered the inward moving shock and so has not yet been heated. These unshocked debris were known to exist because they absorb background radio light, but they were only recently discovered in infrared emission with Spitzer. The blue region is composed of gas surrounding the explosion that was heated when it was struck by the outgoing blast wave, as clearly seen in Chandra images. To create this visualization, scientists took advantage of both a previously known phenomenon the Doppler effect and a new technology that bridges astronomy and medicine. When elements created inside a supernova, such as iron, silicon and argon, are heated they emit light at certain wavelengths. Material moving towards the observer will have shorter wavelengths and material moving away will have longer wavelengths. Since the amount

  14. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants (United States)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter


    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and superluminous supernovae (SNe). We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳10-100 yr. In the rapidly rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Secondly, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (≲10-100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  15. Crab death assemblages from Laguna Madre and vicinity, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Plotnick, R.E.; McCarroll, S. (Univ. of Illinois, Chicago (USA)); Powell, E. (Texas A M Univ., College Station (USA))


    Crabs are a major component of modern marine ecosystems, but are only rarely described in fossil assemblages. Studies of brachyuran taphonomy have examined either the fossil end-products of the taphonomic process or the very earliest stages of decay and decomposition. The next logical step is the analysis of modern crab death assemblages; i.e., studies that examine taphonomic loss in areas where the composition of the living assemblage is known. The authors studied crab death assemblages in shallow water sediments at several localities in an near Laguna Madre, Texas. Nearly every sample examined contained some crab remains, most commonly in the form of isolated claws (dactyl and propodus). A crab fauna associated with a buried grass bed contained abundant remains of the xanthid crab Dyspanopeus texanus, including carapaces, chelipeds, and thoraxes, as well as fragments of the portunid Callinectes sapidus and the majiid Libinia dubia. Crab remains may be an overlooked portion of many preserved benthic assemblages, both in recent and modern sediments.


    Directory of Open Access Journals (Sweden)

    Manami Sasaki


    Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.

  17. Some nuclear physics aspects of core-collapse supernovae


    Qian, Yong-Zhong


    Here I review some nuclear physics aspects of core-collapse supernovae concerning neutrinos. Studies of neutrino emission and interactions in supernovae are crucial to our understanding of the explosion mechanism, the heavy element nucleosynthesis, and pulsar proper motions. I discuss the effects of reduced neutrino opacities in dense nuclear matter on supernova neutrino emission and their implications for the delayed supernova explosion mechanism and the synthesis of neutron-rich heavy eleme...

  18. Eta Carinae and the Supernova Impostors

    CERN Document Server

    Humphreys, Roberta


    In 1965 Fritz Zwicky proposed a class of supernovae that he called "Type V", described as "excessively faint at maximum." There were only two members, SN1961v and eta Carinae. We now know that eta Carinae was not a true supernova, but if it were observed today in a distant galaxy we would call it a "supernova impostor." 170 years ago it experienced a "great eruption" lasting 20 years, expelling 10 solar masses or more, and survived. Eta Carinae is now acknowledged as the most massive, most luminous star in our region of the Galaxy, and it may be our only accessible example of a very massive star in a pre-supernova state. In this book the editors and contributing authors review its remarkable history, physical state of the star and its ejecta, and its continuing instability. Chapters also include its relation to other massive, unstable stars, the massive star progenitors of supernovae, and the "first" stars in the Universe.

  19. The porcelain crab transcriptome and PCAD, the porcelain crab microarray and sequence database.

    Directory of Open Access Journals (Sweden)

    Abderrahmane Tagmount

    Full Text Available BACKGROUND: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes. METHODOLOGY/PRINCIPAL FINDINGS: A set of approximately 30K unique sequences (UniSeqs representing approximately 19K clusters were generated from approximately 98K high quality ESTs from a set of tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66% of the UniSeqs had homology in at least one of the databases. All EST and UniSeq sequences along with annotation results and coordinated cDNA microarray datasets have been made publicly accessible at the Porcelain Crab Array Database (PCAD, a feature-enriched version of the Stanford and Longhorn Array Databases. CONCLUSIONS/SIGNIFICANCE: The EST project presented here represents the third largest sequencing effort for any crustacean, and the largest effort for any crab species. Our assembly and clustering results suggest that our porcelain crab EST data set is equally diverse to the much larger EST set generated in the Daphnia pulex genome sequencing project, and thus will be an important resource to the Daphnia research community. Our homology results support the pancrustacea hypothesis and suggest that Malacostraca may be ancestral to Branchiopoda and Hexapoda. Our results also suggest that our cDNA microarrays cover as much of the

  20. AFSC/RACE/SAP/Long: Data from: Effects of Ocean Acidification on Juvenile Red King Crab (Paralithodes camtschaticus) and Tanner Crab (Chionoecetes bairdi) Growth, Condition, Calcification, and Survival (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is the results of a laboratory experiment. Juvenile red king crab and Tanner crab were reared in individual containers for nearly 200 days in flowing...

  1. The Effects of Season and Sex on the Nutritional Quality of Muscle Types of Blue Crab Callinectes sapidus and Swimming Crab Portunus segnis

    Directory of Open Access Journals (Sweden)

    Deniz Ayas


    Full Text Available The effects of season and sex on the nutritional quality of muscle types (lump crab meatLCM, claw crab meat-CCM of swimming crab (Portunus segnis and blue crab (Callinectes sapidus were investigated. Carapace width, carapace length and total weight of both crab species were measured. High protein content in spring and low protein content in autumn were observed for both crab species. The levels of lipid content of both crab species were found to be similar. Higher lipid contents in spring and winter, lower lipid contents in summer and autumn for both sexes were found. Although both crab species contain small amounts of fat, they are good sources of n-3 PUFA content (especially EPA and DHA for all seasons regardless of sex and muscle types.

  2. The Supernova Spectropolarimetry (SNSPOL) Project; Probing the Geometry of Supernova Explosions (United States)

    Williams, George Grant; Leonard, Douglas; Smith, Nathan; Smith, Paul; Milne, Peter; Hoffman, Jennifer L.; Bilinski, Christopher


    In recent years, evidence has grown that most supernovae exhibit departures from spherical symmetry. These results, together with full three-dimensional modeling, are exposing the possibility that asymmetries are not simply an observable feature of some supernovae, but may, in fact, be a necessity of the explosion mechanism itself. However, with the exception of SN 1987A, a supernova photosphere cannot be resolved through direct imaging from ground or space. Only the powerful technique of polarimetry can directly probe asymmetries on those spatial scales. Spectropolarimetry enhances the power of this technique by revealing wavelength-dependent variations that may result from differences in the geometrical distributions of the various ionic species. Multi-epoch observations over several months can be used to follow the evolution of these asymmetries as a supernova evolves and its photosphere recedes through the ejecta. The Supernova Spectropolarimetry (SNSPOL) Project aims to study the predominance and characteristics of asymmetries in all types of supernovae by decoding their complex, time-dependent polarimetric behavior. This is accomplished through multi-epoch observations using the CCD Imaging/Spectropolarimeter (SPOL) on the 61” Kuiper, the 90” Bok, and the 6.5-m MMT telescopes. During the past six years, the SNSPOL Project has observed more than 95 supernovae, approximately 2/3 of which have been observed at multiple epochs. Here we present a summary of the project, its current status, and a few selected results.

  3. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86 (United States)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.


    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  4. The interaction of Type Ia supernovae with their circumstellar medium

    NARCIS (Netherlands)

    Chiotellis, A.


    This thesis is focused on the study of a specific class of supernovae, named Type Ia (or thermonuclear) supernovae. In particular, we attempt to gain information about their origin through the study of the interaction of these supernovae with circumstellar structures that have been shaped by their

  5. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing (United States)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.


    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly

  6. Kinetic model of ammonia synthesis in the solar nebula (United States)

    Norris, T. L.


    Kinetic model of ammonia formation by iron catalysis in the primordial solar nebula is developed. The maximum time to reach equilibrium concentration is determined for various temperatures between 1000 and 200 K on the basis of reaction rates derived from industrial data on iron catalysts for ammonia. Application of the method for calculating the equilibrium time to an arbitrary nebula cooling model which maximizes the time available for ammonia synthesis results in an upper limit of 3% of the equilibrium value to the proportion of nitrogen in the form of ammonia at the time of planetary accretion, with ammonia abundance decreasing with distance from the sun. It is concluded that kinetic rather than equilibrium considerations control the abundance of ammonia in the solar nebula, and implications of the dominance of nitrogen for the evolution of the atmospheres of the terrestrial and Jovian planets and the composition of comets are indicated.

  7. Lifetime of the solar nebula constrained by meteorite paleomagnetism. (United States)

    Wang, Huapei; Weiss, Benjamin P; Bai, Xue-Ning; Downey, Brynna G; Wang, Jun; Wang, Jiajun; Suavet, Clément; Fu, Roger R; Zucolotto, Maria E


    A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation. Copyright © 2017, American Association for the Advancement of Science.

  8. Supernova Recognition using Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Raquel A.; Aragon, Cecilia R.; Ding, Chris


    We introduce a novel application of Support Vector Machines(SVMs) to the problem of identifying potential supernovae usingphotometric and geometric features computed from astronomical imagery.The challenges of this supervised learning application are significant:1) noisy and corrupt imagery resulting in high levels of featureuncertainty,2) features with heavy-tailed, peaked distributions,3)extremely imbalanced and overlapping positiveand negative data sets, and4) the need to reach high positive classification rates, i.e. to find allpotential supernovae, while reducing the burdensome workload of manuallyexamining false positives. High accuracy is achieved viaasign-preserving, shifted log transform applied to features with peaked,heavy-tailed distributions. The imbalanced data problem is handled byoversampling positive examples,selectively sampling misclassifiednegative examples,and iteratively training multiple SVMs for improvedsupernovarecognition on unseen test data. We present crossvalidationresults and demonstrate the impact on a largescale supernova survey thatcurrently uses the SVM decision value to rank-order 600,000 potentialsupernovae each night.

  9. Probing Exotic Physics With Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Chris; Hooper, Dan


    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  10. Electron capture in carbon dwarf supernovae (United States)

    Mazurek, T. J.; Truran, J. W.; Cameron, A. G. W.


    The rates of electron capture on heavier elements under the extreme conditions predicted for dwarf star supernovae have been computed, incorporating modifications that seem to be indicated by present experimental results. An estimate of the maximum possible value of such rates is also given. The distribution of nuclei in nuclear statistical equilibrium has been calculated for the range of expected supernovae conditions, including the effects of the temperature dependence of nuclear partition functions. These nuclide abundance distributions are then used to compute nuclear equilibrium thermodynamic properties. The effects of the electron capture on such equilibrium matter are discussed. In the context of the 'carbon detonation' supernova model, the dwarf central density required to ensure core collapse to a neutron star configuration is found to be slightly higher than that obtained by Bruenn (1972) with the electron capture rates of Hansen (1966).-

  11. Magnetorotational Explosions of Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan


    Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.

  12. On the Brightness of Supernova Ia

    CERN Document Server

    Zheng, Yijia


    Before 1998 the universe expansion was thought to be slowing down. After 1998 the universe expansion is thought to be accelerating up. The key evidence came from the observed brightness of high redshift supernovae Ia in 1998. Astronomers found that the observed brightness of high redshift supernovae Ia is fainter than expected. Astronomers believe this means that the universe expansion is accelerating up. In this paper it is argued that if the ionized gas in the universe space is taken into account, then the brightness of the high redshift supernova Ia should be fainter than expected. The universe expansion does not need to be accelerating up. The exotic form of energy (dark energy) does not need to be introduce

  13. An Interactive Gallery of Planetary Nebula Spectra (United States)

    Kwitter, K. B.; Henry, R. B. C.


    We have created a website containing high-quality moderate-resolution spectra of 88 planetary nebulae (PNe) from 3600 to 9600 Å, obtained at KPNO and CTIO. Spectra are displayed in a zoomable window, and there are templates available that show wavelength and ion identifications. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution, and a table with atlas information for each object along with a link to an image. This table can be re-ordered by object name, galactic or equatorial coordinates, distance from the sun, the galactic center, or the galactic plane. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users. PN researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and finally, teachers of introductory astronomy can use this database to illustrate basic principles of atomic physics and radiation. To encourage such use, we have written two simple exercises at a basic level to introduce beginning astronomy students to the wealth of information that PN spectra contain. We are grateful to Adam Wang of the Williams College OIT and to his summer student teams who worked on various apects of the implementation of this website. This work has been supported by NSF grant AST-9819123 and by Williams College and the University of Oklahoma.

  14. The Stellar Origins of Supernovae (United States)

    Van Dyk, Schulyer


    Supernovae (SNe) have a profound effect on galaxies and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 10000 classified SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the trends from 15 detections for Type II-Plateau SNe appear to be red supergiant progenitors of relatively low mass (8 to 17 Msun) - although this upper mass limit still requires testing - and warmer, envelope-stripped supergiant progenitors for 5 Type IIb SNe. Additionally, evidence is accumulating that some Type II-narrow SNe may arise from exploding stars in a luminous blue variable phase. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with gamma-ray bursts, still remains ambiguous. Furthermore, we continue in the embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In Cycles 16, 17, and 20 through 24 we have had great success with our approved ToO programs. As of this proposal deadline, we have already triggered on SN 2016jbu with our Cycle 24 program. We therefore propose to continue this project in Cycles 25 and 26, to determine the identities of the progenitors of 8 SNe within about 20 Mpc through ToO observations using WFC3/UVIS.

  15. Detecting First Supernovae with JWST (United States)

    Regos, Eniko; FLARE


    We have applied for a JWST ERS First Transients Survey, FLARE to answer empirically how the Universe made its first stars. To quest the epoch of reionization we target what happened to these first stars by observing the most luminous events, supernovae. These transients provide direct constraints on star formation rates and the initial mass function.These very rare events can be reached by JWST at 27 mag AB in 2 micron and 4.4 micron over a field of 0.1 square degree visited multiple times each year.The survey may detect massive Pop III SNe at redshifts up to 10, pinpointing the redshift of first stars, a key scientific goal of JWST.We explore all models of star formation history (derived from UV luminosity densities and IR data), DTD, top heavy IMF of early, low metallicity stars, and normalizations to data of SN Ia, II rates (SNLS, CLASH, CANDELS, SDSS, SVISS), as well as SLSN (ROTSE, SNLS) to estimate the expected SN rates as function of redshift.Population synthesis of double degenerate and single degenerate scenarios of SN Ia shows that the shape of the DTD is rather insensitive to the assumptions (common envelope prescription and metallicities, or retention efficiency of accreted H to white dwarf core and mass transfer rate).Indeed GOODS High z SN Ia rates imply substantial delay in their progenitor model, and Hubble Higher z SN search constrains delay time distribution models as well.SLSN (I, II /H/ and extreme rare pulsational pair instability) are magnetars (ULGRB) in high local star formation rate, faint, low metallicity galaxies.

  16. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing (United States)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce


    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  17. Experimental simulations of sulfide formation in the solar nebula. (United States)

    Lauretta, D S; Lodders, K; Fegley, B


    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  18. The origin of the most luminous Planetary Nebulae (United States)

    Galera-Rosillo, Rebeca; Corradi, Romano L. M.; Balick, Bruce; Kwitter, Karen; Mampaso, Antonio; García-Rojas, Jorge


    As part of a systematic effort to characterize the properties and progenitors of the most luminous planetary nebulae (PNe), we obtained a sample among the brightest PNe in two stellar systems of different metallicities: LMC (Z/Z⊙~0.5) and M31 (Z/Z⊙~1) by means of a combined effort with the VLT and the 10mGTC. Modelling of these data will allow us to infer the masses of the stellar progenitors, gaining insights into the controversial origin of the universal cutoff of the Planetary Nebulae Luminosity Function (PNLF).

  19. Observing by hand sketching the nebulae in the nineteenth century

    CERN Document Server

    Nasim, Omar W


    Today we are all familiar with the iconic pictures of the nebulae produced by the Hubble Space Telescope's digital cameras. But there was a time, before the successful application of photography to the heavens, in which scientists had to rely on handmade drawings of these mysterious phenomena.           Observing by Hand sheds entirely new light on the ways in which the production and reception of handdrawn images of the nebulae in the nineteenth century contributed to astronomical observation. Omar W. Nasim investigates hundreds of unpublished observing books and paper records from six ninete

  20. Superluminous Supernovae in the Dark Energy Survey (United States)

    D'Andrea, Christopher; Smith, Mathew; Sullivan, Mark; Nichol, Bob; Pan, Yen-Chen; Thomas, Ben; Prajs, Szymon; Angus, Charlotte; Dark Energy Survey


    The Dark Energy Survey Supernova Program (DES-SN) has begun its fifth and final season of operations. With a six-day cadence over 27 deg2 in each 6-month observing season and griz depths of 23.5-24.5 mag (AB), DES-SN presents an impressive data set for obtaining high-quality superluminous supernova (SLSN) light curves. I present highlights of the discoveries of DES SLSNe to date. These include at least 18 spectroscopically-classified SLSNe over a redshift range 0.2 2 SLSNe which should be well above the limiting magnitude of the DES-SN data.

  1. The Asiago Supernova Catalogue- 10 years after


    Barbon, R.; Buondi', V.; Cappellaro, E.; Turatto, M.


    Ten years after the publication of the previous release, we present a new edition of the Asiago Supernova Catalogue updated to December 31, 1998 and containing data for 1447 supernovae and their parent galaxies\\footnote{Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to ( or via}. In addition to list the data for a large number of new SNe, we made an effort to search the literature for ...

  2. Condensation of carbon in radioactive supernova gas. (United States)

    Clayton, D D; Liu, W; Dalgarno, A


    Chemistry resulting in the formation of large carbon-bearing molecules and dust in the interior of an expanding supernova was explored, and the equations governing their abundances were solved numerically. Carbon dust condenses from initially gaseous carbon and oxygen atoms because energetic electrons produced by radioactivity in the supernova cause dissociation of the carbon monoxide molecules, which would otherwise form and limit the supply of carbon atoms. The resulting free carbon atoms enable carbon dust to grow faster by carbon association than the rate at which the dust can be destroyed by oxidation. The origin of presolar micrometer-sized carbon solids that are found in meteorites is thereby altered.

  3. An outflow from the nebula around the LBV candidate S 119


    Weis, Kerstin; Duschl, Wolfgang J.; Bomans, Dominik J.


    We present an analysis of the kinematic and morphological structure of the nebula around the LMC LBV candidate S 119. On HST images, we find a predominantly spherical nebula which, however, seems to be much better confined in its eastern hemisphere than in the western one. The filamentary western part of the nebula is indicative of matter flowing out of the nebula's main body. This outflow is even more evidenced by our long-slit echelle spectra. They show that, while most of the nebula has an...

  4. Crab Cavities: Past, Present, and Future of a Challenging Device

    CERN Document Server

    Wu, Q


    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab- crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience in earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electronion collider under design at BNL (eRHIC).

  5. Narrative report : 1973 [Crab Orchard National Wildlife Refuge (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments during the 1973 fiscal year. The report begins by summarizing...

  6. Narrative report : 1967. Crab Orchard National Wildlife Refuge. (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments during the 1967 calendar year. The report begins by...

  7. Domoic acid excretion in dungeness crabs, razor clams and mussels. (United States)

    Schultz, Irvin R; Skillman, Ann; Woodruff, Dana


    Domoic acid (DA) is a neurotoxic amino acid produced by several marine algal species of the Pseudo-nitzschia (PN) genus. We studied the elimination of DA from hemolymph after intravascular (IV) injection in razor clams (Siliqua patula), mussels (Mytilus edulis) and Dungeness crabs (Cancer magister). Crabs were also injected with two other organic acids, dichloroacetic acid (DCAA) and kainic acid (KA). For IV dosing, hemolymph was repetitively sampled and DA concentrations measured by HPLC-UV. Toxicokinetic analysis of DA in crabs suggested most of the injected dose remained within hemolymph compartment with little extravascular distribution. This observation is in sharp contrast to results obtained from clams and mussels which exhibited similarly large apparent volumes of distribution despite large differences in overall clearance. These findings suggest fundamentally different storage and elimination processes are occurring for DA between bivalves and crabs.

  8. Crab Orchard National Wildlife Refuge : Furbearer Management Plan (United States)

    US Fish and Wildlife Service, Department of the Interior — The Crab Orchard National Wildlife Refuge Furbearer Management Plan directs the management and regulation of trapping. The furbearer management program directly...

  9. Narrative report : 1969. Crab Orchard National Wildlife Refuge. (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments during the 1969 calendar year. The report begins by...

  10. Crab Orchard National Wildlife Refuge : Wildlife Inventory Plan (United States)

    US Fish and Wildlife Service, Department of the Interior — The Crab Orchard National Wildlife Refuge Wildlife Inventory Plan outlines the strategy, techniques and purpose of a wildlife inventory on the Refuge. Futhermore the...

  11. Crab Orchard National Wildlife Refuge [Annual narrative : May - August, 1950 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from May through August of 1950. The report begins by summarizing the...

  12. Crab Orchard National Wildlife Refuge [Annual narrative : January - April, 1956 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from January through April of 1956. The report begins by summarizing...

  13. Crab Orchard National Wildlife Refuge [Annual narrative : September - December, 1956 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from September through December of 1956. The report begins by...

  14. Narrative report : 1966. Crab Orchard National Wildlife Refuge. (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments during the 1966 calendar year. The report begins by...

  15. Crab Orchard National Wildlife Refuge [Annual narrative : January - April, 1957 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from January through April of 1957. The report begins by summarizing...

  16. Narrative report : 1965. Crab Orchard National Wildlife Refuge. (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments during the 1965 calendar year. The report begins by...

  17. Narrative report : 1971. Crab Orchard National Wildlife Refuge. (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments during the 1971 calendar year. The report begins by...

  18. Narrative report : 1970. Crab Orchard National Wildlife Refuge. (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments during the 1970 calendar year. The report begins by...

  19. Crab Orchard National Wildlife Refuge [Annual narrative : May - August, 1948 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from May through August of 1948. The report begins by summarizing the...

  20. Crab Orchard National Wildlife Refuge [Annual narrative : September - December, 1951 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from September through December of 1951. The report begins by...

  1. AFSC/RACE/SAP/Urban: Golden King Crab tagging (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is comprised of the records of individual male golden king crab (GKC) tagged at the Kodiak Laboratory. Initial size, shell condition and missing limbs was...

  2. Crab Orchard National Wildlife Refuge [Annual narrative : September - December, 1952 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from September through December of 1952. The report begins by...

  3. Crab Orchard National Wildlife Refuge [Annual narrative : September - December, 1949 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from September through December of 1949. The report begins by...

  4. Morphometric characteristics in the horseshoe crab Tachypleus gigas (Arthropoda: Merostomata)

    Digital Repository Service at National Institute of Oceanography (India)

    Vijayakumar, R.; Das, S.; Chatterji, A.; Parulekar, A.H.

    The relationships observed between total carapace length with carapace width, carapace weight, telson length, body weight were found statistically significant (p < 0.05) in the male and female horseshoe crab, Tachypleus gigas (Muller). In females...

  5. AFSC/REFM: BSAI Crab Economic Data Report (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Economic data collected for years 1998, 2001, 2004, and 2005 and onward for the BSAI Crab Economic Data Report (EDR). Reporting is required of any owner or...

  6. Economic Assessment of the Atlantic Coast Horseshoe Crab Fishery (United States)

    US Fish and Wildlife Service, Department of the Interior — In this report, Industrial Economics, Incorporated (lEc) provides an assessment of the economic value of the Atlantic Coast horseshoe crab fishery. We accomplish...

  7. Crab Orchard National Wildlife Refuge [Annual narrative : May - August, 1956 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from May through August of 1956. The report begins by summarizing the...

  8. Crab Orchard National Wildlife Refuge [Annual narrative : September - December, 1955 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from September through December of 1955. The report begins by...

  9. Crab Orchard National Wildlife Refuge [Annual narrative : September - December, 1950 (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Crab Orchard National Wildlife Refuge outlines Refuge accomplishments from September through December of 1950. The report begins by...

  10. Type Ia supernova rate studies from the SDSS-II Supernova Study

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin [Univ. of Chicago, IL (United States)


    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  11. The ASAS-SN bright supernova catalogue - III. 2016 (United States)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.


    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  12. Emittance Growth due to Crab Cavity Ramping for LHC Beam-1 Lattice

    CERN Document Server

    Morita, A


    In LHC upgrade scenarios using global crab crossing, it is desired to turn on the crab cavity only at top energy. Turning on the crab cavity could increase the emittance of the stored beam, since the transverse kick of the crab cavity excites betatron oscillations. For a sufficiently slow ramping speed of the crab cavity voltage, however, the changes in z-dependent closed orbit are sufficiently adiabatic that the emittance growth becomes negligible. In order to determine the safe ramping speed of the LHC crab-cavity voltage, the dependence of the emittance growth on the ramping speed is estimated via a 6D particle-tracking simulation.

  13. Lincoln Co. Scrap Metal, Crab Orchard, Kentucky (United States)

    The City of Crab Orchard, KY (population less than 1,000) received a $200,000 EPA Brownfields cleanup grant in 2010 to cleanup up the Lincoln County ScrapMetal property. The site, a former scrap metal recycler and general junkyard, was located in the middle of downtown. The city has experienced a dramatic decline in growth over the past few years. The abandoned two-acre site is located in the city’s center, directly across the street from City Hall. It is the largest property on Main Street. The property was an eyesore, and posed potential health risks to area residents, and deterred investment. Its blighted status did little to help the commercial and private properties that surround it. The site was also home to a dilapidated building that once served as the Odd Fellows meeting hall.

  14. Burrowing and foraging activity of marsh crabs under different ... (United States)

    New England salt marshes are susceptible to degradation and habitat loss as a result of increased periods of inundation as sea levels rise. Increased inundation may exacerbate marsh degradation that can result from crab burrowing and foraging. Most studies to date have focused on how crab burrowing and foraging can impact the dominant low marsh plant species, Spartina alterniflora. Here we used a mesocosm experiment to examine the relationship of foraging and burrowing activity in two dominant New England crab species, Sesarma reticulatum and Uca pugilator, and the combined effect of inundation, on the dominant high marsh plant species Spartina patens using a 3 × 2 factorial design with three crab treatments (Sesarma, Uca, control) at two levels of inundation (low, high). Plants were labeled with a nitrogen (N) stable isotope tracer to estimate plant consumption by the two crab species. At both levels of inundation, we found that S. reticulatum had a significant negative impact on both above- and below-ground biomass by physically clipping and uprooting the plants, whereas U. pugilator had no significant impact. Low inundation treatments for both crab species had significantly greater aboveground biomass than high inundation. Stable N isotope tracer levels were roughly the same for both S. reticulatum and U. pugilator tissue, suggesting that the impact of S. reticulatum on S. patens was not through consumption of the plants. Overall, our results suggest the pot

  15. Photodestruction of PAHs in Planetary Nebulae (United States)

    Boechat-Roberty, H. M.; Neves, R.; Pilling, S.; de Souza G. G., B.; Lago, A.

    It is known that polycyclic aromatic hydrocarbons (PAHs) are mainly formed in the dust shells of late stages of AGB type carbon rich stars. After the ejection of H-rich envelope those stars become the proto-planetary nebulae (PPNs). The chemistry in PPNs has been strongly modified by the UV photons coming from the hot central star and by the X-rays associated with its high-velocity winds. Benzene (C6H6) and small PAHs like Anthracene (C14H10) were effectively detected in the PPNs CRL 618 (Cernicharo et al. 2001) and Red Rectangle (Vijh, Witt & Gordon 2004) respectively. The goal of this work is to experimentally study photoabsorption, photoionization and photodissociation processes of the benzene, biphenyl (C12H10), naphthalene (C10H8), phenanthrene (C14H10) and methyl-anthracene (C14H9(CH3)). The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), using soft X-ray and UV photons from a toroidal grating monochromator TGM beamline (12-310 eV). The experimental set-up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for some molecules were also determined (see for example: Boechat-Roberty, Pilling & Santos 2005). We have observed that PAHs molecules are extreme resistant to UV photons, confirming that PAHs absorb the UV photons and after some internal energetic rearrangements, they can emit in the IR range. However, these molecules are destroyed by soft X-rays photons producing several ionic fragments, some of them with great kinetic energy. In the mass spectra of the Benzene and methyl-anthracene molecules, the observed ionic fragments C4H2+, C6H2+, C4HCH3 and C2HCH3, could correspond to the same

  16. The first frost in the Pipe Nebula (United States)

    Goto, Miwa; Bailey, Jeffrey D.; Hocuk, Seyit; Caselli, Paola; Esplugues, Gisela B.; Cazaux, Stephanie; Spaans, Marco


    Context. Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). Aims: We test how well the picture applies to more diffuse and quiescent clouds where the formation of the first layers of ice mantles can be witnessed. Methods: Medium-resolution near-infrared spectra are obtained toward background field stars behind the Pipe Nebula. Results: The water ice absorption is positively detected at 3.0 μm in seven lines of sight out of 21 sources for which observed spectra are successfully reduced. The peak optical depth of the water ice is significantly lower than those in Taurus with the same AV. The source with the highest water-ice optical depth shows CO ice absorption at 4.7 μm as well. The fractional abundance of CO ice with respect to water ice is 16-6+7%, and about half as much as the values typically seen in low-mass star-forming regions. Conclusions: A small fractional abundance of CO ice is consistent with some of the existing simulations. Observations of CO2 ice in the early diffuse phase of a cloud play a decisive role in understanding the switching mechanism between polar and apolar ice formation. Based on data collected by SpeX at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration.Based also on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.The final reduced spectra (FITS format) are available at the CDS via anonymous ftp to ( or via

  17. Expansion patterns and parallaxes for planetary nebulae (United States)

    Schönberner, D.; Balick, B.; Jacob, R.


    Aims: We aim to determine individual distances to a small number of rather round, quite regularly shaped planetary nebulae by combining their angular expansion in the plane of the sky with a spectroscopically measured expansion along the line of sight. Methods: We combined up to three epochs of Hubble Space Telescope imaging data and determined the angular proper motions of rim and shell edges and of other features. These results are combined with measured expansion speeds to determine individual distances by assuming that line of sight and sky-plane expansions are equal. We employed 1D radiation-hydrodynamics simulations of nebular evolution to correct for the difference between the spectroscopically measured expansion velocities of rim and shell and of their respective shock fronts. Results: Rim and shell are two independently expanding entities, driven by different physical mechanisms, although their model-based expansion timescales are quite similar. We derive good individual distances for 15 objects, and the main results are as follows: (i) distances derived from rim and shell agree well; (ii) comparison with the statistical distances in the literature gives reasonable agreement; (iii) our distances disagree with those derived by spectroscopic methods; (iv) central-star "plateau" luminosities range from about 2000 L⊙ to well below 10 000 L⊙, with a mean value at about 5000 L⊙, in excellent agreement with other samples of known distance (Galactic bulge, Magellanic Clouds, and K648 in the globular cluster M 15); (v) the central-star mass range is rather restricted: from about 0.53 to about 0.56 M⊙, with a mean value of 0.55 M⊙. Conclusions: The expansion measurements of nebular rim and shell edges confirm the predictions of radiation-hydrodynamics simulations and offer a reliable method for the evaluation of distances to suited objects. Results of this paper are based on observations made with the NASA/ESA Hubble Space Telescope in Cycle 16 (GO11122

  18. Abundant Solar Nebula Solids in Comets (United States)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.


    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  19. Simulations of Particle Acceleration beyond the Classical Synchrotron Burnoff Limit in Magnetic Reconnection: An Explanation of the Crab Flares (United States)

    Cerutti, B.; Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.


    It is generally accepted that astrophysical sources cannot emit synchrotron radiation above 160 MeV in their rest frame. This limit is given by the balance between the accelerating electric force and the radiation reaction force acting on the electrons. The discovery of synchrotron gamma-ray flares in the Crab Nebula, well above this limit, challenges this classical picture of particle acceleration. To overcome this limit, particles must accelerate in a region of high electric field and low magnetic field. This is possible only with a non-ideal magnetohydrodynamic process, like magnetic reconnection. We present the first numerical evidence of particle acceleration beyond the synchrotron burnoff limit, using a set of two-dimensional particle-in-cell simulations of ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that includes self-consistently the radiation reaction force in the equation of motion of the particles. We demonstrate that the most energetic particles move back and forth across the reconnection layer, following relativistic Speiser orbits. These particles then radiate >160 MeV synchrotron radiation rapidly, within a fraction of a full gyration, after they exit the layer. Our analysis shows that the high-energy synchrotron flux is highly variable in time because of the strong anisotropy and inhomogeneity of the energetic particles. We discover a robust positive correlation between the flux and the cut-off energy of the emitted radiation, mimicking the effect of relativistic Doppler amplification. A strong guide field quenches the emission of >160 MeV synchrotron radiation. Our results are consistent with the observed properties of the Crab flares, supporting the reconnection scenario.


    Energy Technology Data Exchange (ETDEWEB)

    Kothes, R.; Foster, T. J. [National Research Council Herzberg, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, British Columbia, V2A 6J9 (Canada); Sun, X. H. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Reich, W., E-mail: [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)


    We report the discovery of the new pulsar wind nebula (PWN) G141.2+5.0 in data observed with the Dominion Radio Astrophysical Observatory's Synthesis Telescope at 1420 MHz. The new PWN has a diameter of about 3.'5, which translates to a spatial extent of about 4 pc at a distance of 4.0 kpc. It displays a radio spectral index of α ≈ –0.7, similar to the PWN G76.9+1.1. G141.2+5.0 is highly polarized up to 40% with an average of 15% in the 1420 MHz data. It is located in the center of a small spherical H I bubble, which is expanding at a velocity of 6 km s{sup –1} at a systemic velocity of v {sub LSR} = –53 km s{sup –1}. The bubble could be the result of the progenitor star's mass loss or the shell-type supernova remnant (SNR) created by the same supernova explosion in a highly advanced stage. The systemic LSR velocity of the bubble shares the velocity of H I associated with the Cygnus spiral arm, which is seen across the second and third quadrants and an active star-forming arm immediately beyond the Perseus arm. A kinematical distance of 4 ± 0.5 kpc is found for G141.2+5.0, similar to the optical distance of the Cygnus arm (3.8 ± 1.1 kpc). G141.2+5.0 represents the first radio PWN discovered in 17 years and the first SNR discovered in the Cygnus spiral arm, which is in stark contrast with the Perseus arm's overwhelming population of shell-type remnants.

  1. Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex (United States)

    Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.


    Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only

  2. Ideal bandpasses for type Ia supernova cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tamara M.; Schmidt, Brian P.; Kim, Alex G.


    To use type Ia supernovae as standard candles for cosmologywe need accurate broadband magnitudes. In practice the observed magnitudemay differ from the ideal magnitude-redshift relationship either throughintrinsic inhomogeneities in the type Ia supernova population or throughobservational error. Here we investigate how we can choose filterbandpasses to reduce the error caused by both these effects. We find thatbandpasses with large integral fluxes and sloping wings are best able tominimise several sources of observational error, and are also leastsensitive to intrinsic differences in type Ia supernovae. The mostimportant feature of a complete filter set for type Ia supernovacosmology is that each bandpass be a redshifted copy of the first. Wedesign practical sets of redshifted bandpasses that are matched totypical high resistivity CCD and HgCdTe infra-red detector sensitivities.These are designed to minimise systematic error in well observedsupernovae, final designs for specific missions should also considersignal-to-noise requirements and observing strategy. In addition wecalculate how accurately filters need to be calibrated in order toachieve the required photometric accuracy of future supernova cosmologyexperiments such as the SuperNova-Acceleration-Probe (SNAP), which is onepossible realisation of the Joint Dark-Energy mission (JDEM). We considerthe effect of possible periodic miscalibrations that may arise from theconstruction of an interference filter.

  3. Supernovae and how to observe them

    CERN Document Server

    Mobberley, Martin


    Supernovae represent the most violent stellar explosions in the universe. This book presents supernovo facts and explains what they are, and how to observe and discover them. It contains detailed galaxy images and is aimed at amateur astronomers who are readers of astronomy periodicals.

  4. Simulating Supernovae Driven Outflows in Dwarf Galaxies (United States)

    Rodriguez, Jaimee-Ian


    Galactic outflows, or winds, prove to be a necessary input for galactic simulations to produce results comparable to observation, for it solves issues caused by what previous literature dubbed the “angular momentum catastrophe.” While it is known that the nature of outflows depends on the nature of the Interstellar Medium (ISM), the mechanisms behind outflows are still not completely understood. We investigate the driving force behind galactic outflows and the factors that influence their behavior, hypothesizing that supernovae within the galaxy drive these winds. We study isolated, high-resolution, smooth particle hydrodynamic simulations, focusing specifically on dwarf galaxies due to their shallow potential wells, which allow for more significant outflows. We find that outflows follow star formation (and associated supernovae) suggesting the causal relationship between the two. Furthermore, simulations with higher diffusivity differ little in star formation rate, but show significantly lower outflow rates, suggesting that environmental factors that have little effect on regulating star formation can greatly influence outflows, and so efficient outflows can be driven by a constant rate of supernovae, depending on ISM behavior. We are currently analyzing disk morphology and ambient density in order to comprehend the effect of supernovae on the immediate interstellar gas. By attaining greater understanding of the origin of galactic outflows, we will be able to not only improve the accuracy of simulations, we will also be able to gain greater insight into galactic formation and evolution, as outflows and resultant inflows may be vital to the regulation of galaxies throughout their lifetimes.

  5. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.


    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  6. Einstein Observations of Galactic supernova remnants (United States)

    Seward, Frederick D.


    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  7. Classification of 9 DES supernova by Magellan (United States)

    Challis, P.; Kirshner, R.; Mandel, K.; Avelino, A.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.


    We report optical spectroscopy of 9 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra were obtained using LDSS-3C (covering 420-950nm) on the 6.5m Clay telescope at the Las Campanas Observatory.

  8. Classification of 20 DES supernovae by Magellan (United States)

    Challis, P.; Kirshner, R.; Mandel, K.; Avelino, A.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.


    We report optical spectroscopy of 20 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra were obtained using IMACS (covering 460-820nm) on the 6.5m Baade telescope, and LDSS-3C (covering 420-950nm) on the 6.5m Clay telescope at the Las Campanas Observatory.

  9. Supernova constraints on neutrino mass and mixing

    Indian Academy of Sciences (India)

    the effect of oscillations of neutrinos from a nearby supernova explosion in future detectors will also be discussed. .... fractions respectively and М s are the temperatures of the respective neutrino-spheres. In. Pramana – J. Phys., Vol. ..... tors can be very sensitive to neutrino flavour conversion as the s coming from flavour.

  10. The likelihood for supernova neutrino analyses

    CERN Document Server

    Ianni, A; Strumia, A; Torres, F R; Villante, F L; Vissani, F


    We derive the event-by-event likelihood that allows to extract the complete information contained in the energy, time and direction of supernova neutrinos, and specify it in the case of SN1987A data. We resolve discrepancies in the previous literature, numerically relevant already in the concrete case of SN1987A data.

  11. Essential ingredients in core-collapse supernovae

    Directory of Open Access Journals (Sweden)

    W. Raphael Hix


    Full Text Available Carrying 1044 joules of kinetic energy and a rich mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up our solar system and ourselves. Signaling the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae combine physics over a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale down to femtometer-scale nuclear reactions. We will discuss our emerging understanding of the convectively-unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have recently motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of the births of neutron stars and the supernovae that result. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  12. Supernova constraints on neutrino mass and mixing

    Indian Academy of Sciences (India)

    In this article I review the constraints on neutrino mass and mixing coming from type-II supernovae. The bounds obtained on these parameters from shock reheating, -process nucleosynthesis and from SN1987A are discussed. Given the current constraints on neutrino mass and mixing the effect of oscillations of neutrinos ...

  13. Evolution of Dust Extinction and Supernova Cosmology. (United States)

    Totani; Kobayashi


    We have made a quantitative calculation for the systematic evolution of the average extinction by interstellar dust in host galaxies of high-redshift Type Ia supernovae by using a realistic model of photometric and chemical evolution of galaxies and supernova rate histories in various galaxy types. We find that the average B-band extinction at z approximately 0.5 is typically 0.1-0.2 mag larger than the present value, under a natural assumption that dust optical depth is proportional to gas column density and gas metallicity. This systematic evolution causes average reddening with E(B-V&parr0; approximately 0.025-0.05 mag with the standard extinction curve, and this is comparable with the observational uncertainty of the reddening of high-redshift supernovae. Therefore, our result does not contradict the observations that show no significant reddening in high-z supernovae. However, the difference in apparent magnitude between an open universe and a Lambda-dominated flat universe is only approximately 0.2 mag at z approximately 0.5, and hence this systematic evolution of extinction should be taken into account in a reliable measurement of cosmological parameters. Considering this uncertainty, we show that it is difficult to discriminate between open and Lambda-dominated flat cosmologies from the current data.


    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Turner, Neal J.; Masiero, Joseph [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi, E-mail: [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)


    Chondritic meteorites provide valuable opportunities to investigate the origins of the solar system. We explore impact jetting as a mechanism of chondrule formation and subsequent pebble accretion as a mechanism of accreting chondrules onto parent bodies of chondrites, and investigate how these two processes can account for the currently available meteoritic data. We find that when the solar nebula is ≤5 times more massive than the minimum-mass solar nebula at a ≃ 2–3 au and parent bodies of chondrites are ≤10{sup 24} g (≤500 km in radius) in the solar nebula, impact jetting and subsequent pebble accretion can reproduce a number of properties of the meteoritic data. The properties include the present asteroid belt mass, the formation timescale of chondrules, and the magnetic field strength of the nebula derived from chondrules in Semarkona. Since this scenario requires a first generation of planetesimals that trigger impact jetting and serve as parent bodies to accrete chondrules, the upper limit of parent bodies’ masses leads to the following implications: primordial asteroids that were originally ≥10{sup 24} g in mass were unlikely to contain chondrules, while less massive primordial asteroids likely had a chondrule-rich surface layer. The scenario developed from impact jetting and pebble accretion can therefore provide new insights into the origins of the solar system.

  15. OpenNebula KVM SR-IOV driver

    CSIR Research Space (South Africa)

    Macleod, D


    Full Text Available With the recent release of an OFED which supports SR-IOV on Infiniband HCAs it is now possible to use verbs from inside a VM. This VMM driver supports these Infiniband HCAs, and any other SR-IOV network device, in OpenNebula....

  16. Abundances of planetary nebula M1-42

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.; Roellig, T. L.

    The spectra of the planetary nebula M1-42 is reanalysed using spectral measurements made in the mid-infrared with the Spitzer Space Telescope. The aim is to determine the chemical composition of this object. We also make use of ISO, IUE and ground based spectra. Abundances determined from the

  17. Abundances of planetary nebulae NGC 3242 and NGC 6369

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.


    The spectra of the planetary nebulae NGC3242 and NGC6369 are reanalysed using spectral measurements made in the mid-infrared with the Spitzer Space Telescope and the Infrared Space Observatory (ISO). The aim is to determine the chemical composition of these objects. We also make use of International

  18. Multifrequency study of the ring nebula SG13 (United States)

    Vasquez, J.; Cappa, C. E.; Pineault, S.


    We investigate the morphology and kinematics of the interstellar medium in the environs of the open cluster Mrk50, which includes the Wolf-Rayet star WR157 and a number of early B-type stars. The analysis was performed using radio continuum images at 408 and 1420 MHz, and HI 21-cm line data taken from the Canadian Galactic Plane Survey, molecular observations of the 12CO (J = 1 -> 0) line at 115 GHz from the Five College Radio Astronomy Observatory and available mid- and far-infrared (FIR) observations obtained with the Midcourse Space Experiment and IRAS satellites, respectively. This study allowed the identification of the radio continuum and molecular counterpart of the ring nebula SG13, while no neutral atomic structure was found to be associated. The nebula is also detected in the images in the mid- and FIR, showing the existence of dust well mixed with the ionized gas. We estimate the main physical parameters of the material linked to the nebula. The interstellar gas distribution in the environs of Mrk50 is compatible with a stellar wind bubble created by the mass loss from WR157. The distribution of young stellar object candidates in the region shows that the stellar formation activity may be present in the molecular shell that encircles the ring nebula.

  19. Modern techniques in galaxy kinematics : Results from planetary nebula spectroscopy

    NARCIS (Netherlands)

    Romanowsky, AJ; Douglas, NG; Kuijken, K; Arnaboldi, M; Gerssen, J; Merrifield, MR; Kwok, S; Dopita, M; Sutherland, R


    We have observed planetary nebulae (PNe) in several early-type galaxies using new techniques on 4- to 8-meter-class telescopes. We obtain the first large data sets (greater than or similar to 100 velocities each) of PN kinematics in galaxies at greater than or similar to 15 Mpc, and present some

  20. Physical conditions in Photo-Dissociation Regions around Planetary Nebulae

    NARCIS (Netherlands)

    Bernard-Salas, J; Tielens, AGGM

    We present observations of the infrared fine-structure lines of [Si II] (34.8 mum), [O I] (63.2 and 145.5 mum) and [C II] (157.7 mum) obtained with the ISO SWS and LWS spectrographs of nine Planetary Nebulae (PNe). These lines originate in the Photo-Dissociation Regions (PDRs) associated with the

  1. Large-Scale Structure of the Carina Nebula. (United States)

    Smith; Egan; Carey; Price; Morse; Price


    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  2. The ISO-SWS spectrum of planetary nebula NGC 7027

    NARCIS (Netherlands)

    Salas, JB; Pottasch, [No Value; Beintema, DA; Wesselius, PR

    We present the infrared spectrum of the planetary nebula NGC7027 observed with the Short Wavelength Spectrometer (SWS), on board the Infrared Space Observatory (ISO). These data allow us to derive the electron density and, together with the IUE and optical spectra, the electron temperature for

  3. The central star of the Planetary Nebula NGC 6537

    NARCIS (Netherlands)

    Pottasch, [No Value


    The fact that Space Telescope WFPC2 images of the planetary nebula NGC 6537 fail to show the central star is used to derive a limit to its magnitude: it is fainter than a magnitude of 22.4 in the visible. This is used to derive a lower limit to the temperature of the star. The Zanstra temperature is

  4. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence (United States)

    Hartlep, Thomas; Cuzzi, Jeffrey N.


    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  5. A 100 kpc nebula associated with the `Teacup' fading quasar (United States)

    Villar-Martín, M.; Cabrera-Lavers, A.; Humphrey, A.; Silva, M.; Ramos Almeida, C.; Piqueras-López, J.; Emonts, B.


    We report the discovery of an ˜100 kpc ionized nebula associated with the radio-quiet type 2 quasar (QSO2) nicknamed the `Teacup' (z = 0.085). The giant nebula is among the largest known around active galaxies at any z. We propose that it is part of the circumgalactic medium (CGM) of the QSO2 host, which has been populated with tidal debris by galactic interactions. This rich gaseous medium has been rendered visible due to the illumination by the powerful active nucleus (AGN). Subsolar abundances (˜0.5 Z⊙) are tentatively favoured by AGN photoionization models. We also report the detection of coronal emission (Fe+6) from the NE bubble, at ˜9 kpc from the AGN. The detection of coronal lines at such large distances from the AGN and the [N II] λ6583/Hα, [S II] λλ6716,6731/Hα, [O I] λ6300/Hα optical emission-line ratios of the giant nebula are consistent with the fading quasar scenario proposed by Gagne et al. The fading rate appears to have been faster in the last ˜46 000 yr. Deep wide field integral field spectroscopy of giant nebulae around powerful AGN such as the `Teacup's' with instruments such as MUSE on VLT opens up a way to detect and study the elusive material from the CGM around massive active galaxies thanks to the illumination by the luminous AGN.


    NARCIS (Netherlands)



    We have studied the IRAS colors of the ring nebula RCW 58 surrounding the Wolf-Rayet star HD 96548 (= WR 40; type WN 8) by analyzing the IRAS survey data with the Groningen Exportable High-Resolution Analysis system (GEISHA) and by using the Chopped Photometric Channel high-resolution imaging at

  7. Local space density and formation rate of planetary nebulae

    NARCIS (Netherlands)

    Pottasch, [No Value

    Individual distances of 50 nearby planetary nebulae are determined using a variety of methods, but excluding statistical methods or distance scales. These distances, together with a discussion of the sample completeness, are used to determine local PN formation rate. Together with the brightness of

  8. The Extended Region Around the Planetary Nebula NGC 3242 (United States)


    This ultraviolet image from NASA's Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as 'Jupiter's Ghost.' The unfortunate name of 'planetary nebula' for this class of celestial object is a historical legacy credited to William Herschel during the 18th century a time when telescopes where small and objects like these, at least the central region, looked very similar to gas-giant planets such as Saturn and Jupiter. In fact, NGC 3242 has no relation to Jupiter or any other planet. Telescopes and their detectors have dramatically improved over the past few centuries. Our understanding of what planetary nebulae truly are has improved accordingly. When stars with a mass similar to our sun approach the end of their lives by exhausting supplies of hydrogen and helium fuel in their cores, they swell up into cool red-giant stars. In a last gasp before death, they expel the layers of gas in their outer atmosphere. This exposes the core of the dying star, a dense hot ball of carbon and oxygen called a white dwarf. The white dwarf is so hot that it shines very brightly in the ultraviolet. The ultraviolet light from the white dwarf, in turn, ionizes the gaseous material expelled by the star causing it to glow. A planetary nebula is really the death of a low-mass star. Although low-mass stars like our sun live for billions of years, planetary nebulae only last for about ten thousand years. As the central white dwarf quickly cools and the ultraviolet light dwindles, the surrounding gas also cools and fades. In this image of NGC 3242 from the Galaxy Evolution Explorer, the extended region around the planetary nebula is shown in dramatic detail. The small circular white and blue area at the center of the image is the well-known portion of the famous planetary nebula. The precise origin and composition of the extended wispy white features is not known for certain. It is most likely material ejected during the star's red-giant phase before the white


    Energy Technology Data Exchange (ETDEWEB)

    Bhalerao, Jayant; Park, Sangwook [Department of Physics, University of Texas at Arlington, P.O. Box 19059, Arlington, TX 76019 (United States); Dewey, Daniel [MIT Kavli Institute, Cambridge, MA 02139 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Mori, Koji [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Lee, Jae-Joon, E-mail: [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)


    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of –2300 ≲ v{sub r}  ≲ 1400 km s{sup –1}. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ∼90'' (corresponding to ∼3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ∼4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 10{sup 51} erg, we estimate the total ejecta mass to be ≲8 M {sub ☉}, and we propose an upper limit of ≲35 M {sub ☉} on the progenitor's mass.

  10. A Massive Shell of Supernova-formed Dust in SNR G54.1+0.3

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dwek, Eli; Arendt, Richard G. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borkowski, Kazimierz J.; Reynolds, Stephen P. [North Carolina State University, Raleigh, NC 27695 (United States); Slane, Patrick; Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gelfand, Joseph D. [New York University, Abu Dhabi (United Arab Emirates)


    While theoretical models of dust condensation predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present an analysis of observations from the Spitzer Space Telescope , Herschel Space Observatory , Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 μ m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, which exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed infrared continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3 M {sub ⊙}. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16–27 M {sub ⊙} and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN explosion and sheds light on the properties of pristine SN-condensed dust.

  11. Evidence of Historical Supernovae in Ice Cores (United States)

    Young, Donna


    Within the framework of the U.S. Greenland Ice Core Science Project (GISP2), an ice core, known as the GISP H-Core, was collected in June, 1992 adjacent to the GISP2 summit drill site. The project scientists, Gisela A.M. Dreschhoff and Edward J. Zeller, were interested in dating solar proton events with volcanic eruptions. The GISP2-H 122-meter firn and ice core is a record of 415 years of liquid electrical conductivity (LEC) and nitrate concentrations, spanning the years 1992 at the surface through 1577 at the bottom. At the National Ice Core Laboratory in Denver, Colorado, the core (beneath the 12-meter firn) was sliced into 1.5 cm sections and analyzed. The resulting data set consisted of 7,776 individual analyses. The ultrahigh resolution sampling technique resulted in a time resolution of one week near the surface and one month at depth. The liquid electrical conductivity (LEC) sequence contains signals from a number of known volcanic eruptions and provides a dating system at specific locations along the core. The terrestrial and solar background nitrate records show seasonal and annual variations, respectively. However, major nitrate anomalies within the record do not correspond to any known terrestrial or solar events. There is evidence that these nitrate anomalies could be a record of supernovae events. Cosmic X-rays ionize atmospheric nitrogen, producing excess nitrate that is then deposited in the Polar Regions. The GISP2-H ice core has revealed nitrate anomalies at the times of the Tycho and Kepler supernovae. The Cassiopeia A supernova event may be documented in the core as well. We have developed a classroom activity for high school and college students, in which they examine several lines of evidence in the Greenland ice core, discriminating among nearby and mid-latitude volcanic activity, solar proton events, and supernovae. Students infer the date of the Cassiopeia A supernova.

  12. The efficacy of crab condos in capturing small crab species and their use in invasive marine species monitoring

    Directory of Open Access Journals (Sweden)

    Matthew J. Hewitt


    Full Text Available Crab condos are designed to sample for invasive species, which are not specifically targeted using current Australian biosecuritymethodologies. Smaller crab species are often excluded, overlooked and damaged to be collected via current trapping or collection methods.An artificial habitat collector such as the ‘crab condo’ (PVC tubes 25cm long and 50mm diameter arranged in a 3×3 square matrix aims toprovide shelter among an animal’s natural environment. Twenty condos were deployed on a weekly basis for 48 hours during the months ofApril and July 2012 within Hillarys Boat marina, Western Australia. Condos proved to be highly successful, capturing a total of 555specimens from five different phyla, with over half (n=332 of specimens identified as crabs. The detection of 223 other smaller non-crabindividuals, covering four different phyla highlighted the versatility of condos to sample a range of other small species, not only crabs. Giventhe recognized importance of early detection of marine pests at their early life stages and current lack of methods targeting small andcryptogenic species, the crab condo sampling method may fill an important gap in marine pest surveillance capacity.

  13. Cooling of young neutron stars in GRB associated to supernovae (United States)

    Negreiros, R.; Ruffini, R.; Bianco, C. L.; Rueda, J. A.


    Context. The traditional study of neutron star cooling has been generally applied to quite old objects such as the Crab Pulsar (957 years) or the central compact object in Cassiopeia A (330 years) with an observed surface temperature ~106 K. However, recent observations of the late (t = 108-109 s) emission of the supernovae (SNe) associated to GRBs (GRB-SN) show a distinctive emission in the X-ray regime consistent with temperatures ~107-108 K. Similar features have been also observed in two Type Ic SNe SN 2002ap and SN 1994I that are not associated to GRBs. Aims: We advance the possibility that the late X-ray emission observed in GRB-SN and in isolated SN is associated to a hot neutron star just formed in the SN event, here defined as a neo-neutron star. Methods: We discuss the thermal evolution of neo-neutron stars in the age regime that spans from ~1 min (just after the proto-neutron star phase) all the way up to ages atmosphere for young neutron stars. In this way we match the neo-neutron star luminosity to the observed late X-ray emission of the GRB-SN events: URCA-1 in GRB980425-SN1998bw, URCA-2 in GRB030329-SN2003dh, and URCA-3 in GRB031203-SN2003lw. Results: We identify the major role played by the neutrino emissivity in the thermal evolution of neo-neutron stars. By calibrating our additional heating source at early times to ~1012-1015 erg/g/s, we find a striking agreement of the luminosity obtained from the cooling of a neo-neutron stars with the prolonged (t = 108-109 s) X-ray emission observed in GRB associated with SN. It is therefore appropriate a revision of the boundary conditions usually used in the thermal cooling theory of neutron stars, to match the proper conditions of the atmosphere at young ages. The traditional thermal processes taking place in the crust might be enhanced by the extreme high-temperature conditions of a neo-neutron star. Additional heating processes that are still not studied within this context, such as e+e- pair creation by

  14. The Progenitor-Remnant Connection of Neutrino-Driven Supernovae Across the Stellar Mass Range (United States)

    Ertl, Thomas


    We perform hydrodynamic supernova (SN) simulations in spherical symmetry for progenitor models with solar metallicity across the stellar mass range from 9.0 to 120 M ⊙ to explore the progenitor-explosion and progenitor-remnant connections based on the neutrino-driven mechanism. We use an approximative treatment of neutrino transport and replace the high-density interior of the neutron star (NS) by an inner boundary condition based on an analytic proto-NS core-cooling model, whose free parameters are chosen to reproduce the observables of SN 1987A and the Crab SN for theoretical models of their progenitor stars. Judging the fate of a massive star, either a neutron star (NS) or a black hole (BH), solely by its structure prior to collapse has been ambiguous. Our work and previous attempts find a non-monotonic variation of successful and failed supernovae with zero-age main-sequence mass. We identify two parameters based on the ``critical luminosity'' concept for neutrino-driven explosions, which in combination allows for a clear separation of exploding and non-exploding cases. Continuing our simulations beyond shock break-out, we are able to determine nucleosynthesis, light curves, explosion energies, and remnant masses. The resulting NS initial mass function has a mean gravitational mass near 1.4 M ⊙. The average BH mass is about 9 M ⊙ if only the helium core implodes, and 14 M ⊙ if the entire pre-SN star collapses. Only ~10% of SNe come from stars over 20 M ⊙, and some of these are Type Ib or Ic.

  15. High-Energy X-rays from J174545.5-285829, the Cannonball: a Candidate Pulsar Wind Nebula Associated with Sgr a East (United States)

    Nynka, Melania; Hailey, Charles J.; Mori, Kaya; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; hide


    We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity (v(proj) approximately 500 km s(exp -1)) pulsar candidate with a cometary pulsar wind nebula (PWN) located approximately 2' north-east from Sgr A*, just outside the radio shell of the supernova remnant Sagittarius A (Sgr A) East. Its non-thermal X-ray spectrum, measured up to 30 keV, is well characterized by a Gamma is approximately 1.6 power law, typical of a PWN, and has an X-ray luminosity of L(3-30 keV) = 1.3 × 10(exp 34) erg s(exp -1). The spectral and spatial results derived from X-ray and radio data strongly suggest a runaway neutron star born in the Sgr A East supernova event. We do not find any pulsed signal from the Cannonball. The NuSTAR observations allow us to deduce the PWN magnetic field and show that it is consistent with the lower limit obtained from radio observations.

  16. Effect of lunar periodicity on the abundance of crabs from the Goa Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A; Ansari, Z.A; Ingole, B.S.; Sreepada, R.A; Kanti, A; Parulekar, A

    Lunar periodicity showed a significant influence on the occurrence of edible crabs (@iPortunus pelagicus, Charybdis cruciata and Portunus sanguinolentus@@). High density of these crabs was recorded in the trawl catches during full moon and new moon...

  17. Spawning migration of the horseshoe crab, Tachypleus gigas (Muller), in relation to lunal cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Rathod, V.; Parulekar, A.H.

    Effects of lunar phases and tidal height on the spawning migration of the horseshoe crab, Tachypleus gigas, along the northeastern coast of India were studied. Mature pairs of crabs migrate towards the shore and build their nests in sandy beaches...

  18. AFSC/RACE/SAP/Long: Data from: Embryo development in golden king crab, Lithodes aequispina. (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data from this study, describes embryo development in Golden king crab, Lithodes aequispinus. Six female multiparous golden king crab were captured from the...

  19. Type Ia supernovae: explosions and progenitors (United States)

    Kerzendorf, Wolfgang Eitel


    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests

  20. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others


    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.