WorldWideScience

Sample records for cr ferritic steels

  1. Age-hardening susceptibility of high-Cr ODS ferritic steels and SUS430 ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongsheng, E-mail: chen.dongsheng85@gmail.com [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko; Han, Wentuo; Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2015-10-15

    Highlights: • The role of oxide particles in α/α′ phase decomposition behavior; microstructure of phase decomposition observed by TEM. • The characteristics of ductility loss caused by age-hardening. • Correlation of phase decomposition and age-hardening explained by dispersion strengthened models. • Age-hardening susceptibility of ODS steels and SUS430 steel. - Abstract: The effect of aging on high-Cr ferritic steels was investigated with focusing on the role of oxide particles in α/α′ phase decomposition behavior. 12Cr-oxide dispersion strengthened (ODS) steel, 15Cr-ODS steel and commercial SUS430 steel were isothermally aged at 475 °C for up to 10,000 h. Thermal aging caused a larger hardening in SUS430 than 15Cr-ODS, while 12Cr-ODS showed almost no hardening. A characteristic of the ODS steels is that the hardening was not accompanied by the significant loss of ductility that was observed in SUS430 steel. After aging for 2000 h, SUS430 steel shows a larger ductile–brittle transition temperature (DBTT) shift than 15Cr-ODS steel, which suggests that the age-hardening susceptibility is lower in 15Cr-ODS steel than in conventional SUS430 steel. Thermal aging leaded to a large number of Cr-rich α′ precipitates, which were confirmed by transmission electron microscopy (TEM). Correlation of age-hardening and phase decomposition was interpreted by Orowan type strengthening model. Results indicate that oxide particles cannot only suppress ductility loss, but also may influence α/α′ phase decomposition kinetics.

  2. Microstructure development of welding joints in high Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubushiro, Keiji; Takahashi, Satoshi; Morishima, Keiko [IHI Corporation (Japan). Research Lab.

    2010-07-01

    Creep failure in high Cr ferritic steels welding joints are Type IV failure. Type IV-failure was ruptured in fine grained region of heat affected zone, microstructure and phase transformation process at welding in fine grained region were very important to clarify. Microstructure difference of heat affected zone was investigated in Gr.91, Gr.92, Gr.122 welding joint. The fraction of 60 degree block boundary, packet boundary, random boundary (including prior gamma boundary) length was compared in three ferritic steels by EBSP(Electron Backscatter Diffraction Pattern) analysis. HAZ was almost fully martensite phase in Gr.122 weld joint. On the other hand, HAZ in Gr.91 welding joint were some equiaxial grain and martensite structure. (orig.)

  3. Embrittlement of a 17Cr ferritic steel irradiated in Phenix

    International Nuclear Information System (INIS)

    Allegraud, G.; Boutard, J.L.; Boyer, J.M.

    1987-01-01

    Charpy V and tensile tests have been performed with samples made of 17Cr ferritic steel irradiated in Phenix at temperatures between 390 and 540C up to a maximum dose of 83.3 dpaF. All over the temperature and dose ranges, irradiation leads to an increase of the ductile brittle transition temperature (DBTT). The DBTT and hardening are decreasing functions of the irradiation temperature. Fast neutron flux at 390C hardens the material more than a sole thermal ageing does

  4. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  5. Sigma phases in an 11%Cr ferritic/martensitic steel with the normalized and tempered condition

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhou, Xiaoling; Shi, Tiantian; Huang, Xi [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Shang, Zhongxia [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu, Wenwen; Ji, Bo; Xu, Zhiqiang [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-12-15

    At the present time 9–12% Cr ferritic/martensitic (F/M) steels with target operating temperatures up to 650 °C and higher are being developed in order to further increase thermal efficiency so as to reduce coal consumption and air pollution. An 11% Cr F/M steel was prepared by reference to the nominal chemical composition of SAVE12 steel with an expected maximum use temperature of 650 °C. The precipitate phases of the 11% Cr F/M steel normalized at 1050 °C for 0.5 h and tempered at 780 °C for 1.5 h were investigated by transmission electron microscopy. Except for Cr-/Cr-Fe-Co-rich M{sub 23}C{sub 6}, Nb-/V-/Ta-Nb-/Nd-rich MX, Fe-rich M{sub 5}C{sub 2}, Co-rich M{sub 3}C and Fe-Co-rich M{sub 6}C phases previously identified in the steel, two types of sigma phases consisting of σ-FeCr and σ-FeCrW were found to be also present in the normalized and tempered steel. Identified σ-FeCr and σ-FeCrW phases have a simple tetragonal crystal structure with estimated lattice parameters a/c = 0.8713/0.4986 and 0.9119/0.5053 nm, respectively. The compositions in atomic pct of the observed sigma phases were determined to be approximately 50Fe-50Cr for the σ-FeCr, and 30Fe-55Cr-10W in addition to a small amount of Ta, Co and Mn for the σ-FeCrW. The sigma phases in the steel exhibit various blocky morphologies, and appear to have a smaller amount compared with the dominant phases Cr-rich M{sub 23}C{sub 6} and Nb-/V-/Ta-Nb-rich MX of the steel. The σ-FeCr phase in the steel was found to precipitate at δ-ferrite/martensite boundaries, suggesting that δ-ferrite may rapidly induce the formation of sigma phase at δ-ferrite/martensite boundaries in high Cr F/M steels containing δ-ferrite. The formation mechanism of sigma phases in the steel is also discussed in terms of the presence of δ-ferrite, M{sub 23}C{sub 6} precipitation, precipitation/dissolution of M{sub 2}X, and steel composition. - Highlights: •Precipitate phases in normalized and tempered 11%Cr F/M steel are

  6. Material physical properties of 11Cr-ferritic/martensitic steel (PNC-FMS) wrapper tube materials

    International Nuclear Information System (INIS)

    Yano, Yasuhide; Kaito, Takeji; Ohtsuka, Satoshi; Tanno, Takashi; Uwaba, Tomoyuki; Koyama, Shinichi

    2012-09-01

    It is necessary to develop core materials for fast reactors in order to achieve high-burnup. Ferritic steels are expected to be good candidate core materials to achieve this objective because of their excellent void swelling resistance. Therefore, oxide dispersion strengthened (ODS) ferritic steel and 11Cr-ferritic/martensitic steel (PNC-FMS) have been respectively developed for cladding and wrapper tube materials in Japan Atomic Energy Agency. In this study, various physical properties of PNC-FMS wrapper materials were measured and equations and future standard measurement technique of physical properties for the design and evaluation were conducted. (author)

  7. Development of oxide dispersion strengthened 9Cr ferritic-martensitic steel clad tube for fast reactor

    International Nuclear Information System (INIS)

    Laha, K.; Saroja, S.; Mathew, M.D.; Jayakumar, T.; Vijay, R.; Venugopal Reddy, A.; Lakshminarayana, B.; Kapoor, Komal; Jha, S.K.; Tonpe, S.S.

    2012-01-01

    One of the key issues in the economical operation of FBR is to achieve high burn-up of fuel (200-250 GWd/t) which considerably reduces the fuel cycle cost. This imposes stringent requirements of void swelling resistance upto 200 dpa for the core structural materials. Presently used alloy 09 (a modified austenitic stainless steel, 15Cr-15Ni-Ti) for PFBR has void swelling limit less than 150 dpa. Because of the inherent void swelling resistance, 9-12Cr steels ferritic/martensitic steels are qualified for irradiation upto 200 dpa but their low creep strength at temperatures above 600 deg C restricts their application as a clad material. Oxide dispersion strengthening is found to be promising means of extending the creep resistance of ferritic/martensitic steels beyond 650 deg C without sacrificing the inherent advantages of high thermal conductivity and low swelling of ferritic steels

  8. Conversion of MX Nitrides to Modified Z-Phase in 9-12%Cr Ferritic Steels

    DEFF Research Database (Denmark)

    Cipolla, Leonardo

    for Z-phase formation was highlighted during the studies. Several 9-12%Cr commercial steels with prolonged high-temperature exposures have been investigated, too. The same mechanism of Z-phase formation observed in 12%Cr model alloys was identified in industrial 9-12%Cr steels after thousands of hours......The 9-12%Cr ferritic steels are extensively used in modern steam power plants at service temperature up to 620°C. Currently the best perform ing ferritic creep resistance steel is the ASTM Grade 92, whose high temperature strength has recently been assessed by European Creep Collaborative Committee...... in 2005 as 600°C/113MPa/10 5h. All previous attempts made in the last twenty years to develop ferritic steels for 650°C applications have failed due to the incapacity to combine the superior oxidation resistance, given by 12%Cr content, with excellent creep resistance of high-alloyed ferritic steels...

  9. High purity ferritic Cr-Mo stainless steel

    International Nuclear Information System (INIS)

    Knoth, J.

    1977-01-01

    In five years, E-BRITE 26-1 ferritic stainless steel has won an important place in the spectrum of materials suitable for use in chemical process equipment. It provides, in stainless steel, performance-capability characteristics comparable to more expensive alloys. It has demonstrated cost-effectiveness in equipment used for caustic, nitric-urea, organic chemicals, pulping liquors, refinery streams, and elsewhere. User confidence in the reliability and integrity of Grade XM 27 has increased to the point where large critical systems are now routinely specified in the alloy. The market acceptance of this material has attracted attempts to produce substitute versions of the alloy. Imitation, should be viewed with caution. Stabilized 26-IS must be examined over a lengthy period of time to determine if its own corrosion resistance, ductility, fabricability and reproducibility properties could ever be likened to those of E-BRITE 26-1. (orig.) [de

  10. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    International Nuclear Information System (INIS)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D.

    2008-01-01

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years

  11. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D. [POSCO Technical Reseaarch Lab., Pohang (Korea, Republic of)

    2008-12-15

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years.

  12. Influence of chloride and bromide anions on localized corrosion of 15%Cr ferritic stainless steel

    International Nuclear Information System (INIS)

    Lee, Seung Uk; Ahn, Jae Chen; Kim, Dong Hyun; Hong, Seung Chan; Lee, Kyung Sub

    2006-01-01

    The influence of Cl - (919 ppm) and a mixture of Cl - (919 ppm) and Br - (51 ppm) on the corrosion behavior of 15%Cr ferritic stainless steel was investigated. Potentiodynamic and immersion tests were performed to examine the corrosion behavior. The size and the shape of pits were observed by optical microscope and scanning electron microscope. The oxide films formed on stainless steel were investigated by X-ray photoelectron spectroscopy (XPS). During the immersion test at 93 deg. C for 600 h, Fe and Cr were mostly corroded to iron and chromium oxides. The results of depth profiling indicate higher corrosion rate of solution containing chloride than the mixture solution. It was clear that the addition of Br - to the solution containing Cl - inhibited the localized corrosion of 15%Cr ferritic stainless steel

  13. The influence of Cr content on the mechanical properties of ODS ferritic steels

    Science.gov (United States)

    Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei

    2014-12-01

    The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.

  14. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Science.gov (United States)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  15. Creep behaviour of modified 9Cr-1Mo ferritic steel

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Isaac Samuel, E.

    2011-01-01

    Creep deformation and fracture behaviour of indigenously developed modified 9Cr-1Mo steel for steam generator (SG) tube application has been examined at 823, 848 and 873 K. Creep tests were performed on flat creep specimens machined from normalised and tempered SG tubes at stresses ranging from 125 to 275 MPa. The stress dependence of minimum creep rate obeyed Norton's power law. Similarly, the rupture life dependence on stress obeyed a power law. The fracture mode remained transgranular at all test conditions examined. The analysis of creep data indicated that the steel obey Monkman-Grant and modified Monkman-Grant relationships and display high creep damage tolerance factor. The tertiary creep was examined in terms of the variations of time to onset of tertiary creep with rupture life, and a recently proposed concept of time to reach Monkman-Grant ductility, and its relationship with rupture life that depends only on damage tolerance factor. SG tube steel exhibited creep-rupture strength comparable to those reported in literature and specified in the nuclear design code RCC-MR.

  16. Effects of nickel and cobalt addition on creep strength and microstructure of the precipitation-strengthened 15Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Masachika; Toda, Yoshiaki; Sawada, Kota; Kushima, Hideaki; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength of 15Cr ferritic steel with ferrite matrix was increased by precipitation strengthening of intermetallic compounds. It was higher than those of 9-12Cr ferritic steels with a tempered martensitic microstructure strengthened by carbide and carbonitride. Addition of nickel was confirmed to improve Charpy impact toughness of the 15Cr steels, however, creep strength was slightly reduced by the addition of nickel. Microstructure of the 15Cr steel changes from ferrite single phase to dual phases of ferrite and martensite with the addition of nickel which is an austenite stabilizing element. The 15Cr steels investigated in the previous study, contain 3mass% of cobalt which is also an austenite stabilizing element, therefore, the influence of nickel and cobalt combination on mechanical properties and microstructure of the 15Cr-1Mo-6W-V-Nb steel is investigated in this study. Creep strength, Charpy impact toughness and microstructure of the steel were strongly influenced by the composition of nickel and cobalt. Design guideline of the 15Cr steel is discussed with respect to a role of microstructure and combination of nickel and cobalt addition. (orig.)

  17. Annealing effect on the microstructure and magnetic properties of 14%Cr-ODS ferritic steel

    International Nuclear Information System (INIS)

    Ding, H.L.; Gao, R.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.

    2015-01-01

    Graphical abstract: TEM images of microstructure for 14%Cr-ODS ferritic steel annealed for 2 h at different temperatures: (a) 600 °C, (b) 800 °C, (c) 950 °C, and (d) 1150 °C, and the evolution trends of coercivity field (H_C) and Vickers microhardness for samples annealed at above temperatures for 2 h and 50 h. - Highlights: • The thermal stability of annealed 14%Cr-ODS ferritic steel was investigated. • The particle size keeps fairly constant with increasing annealing temperature. • The grain size is still 2–4 μm even after annealing for 50 h at 1150 °C. • The hardness and H_C are almost unchanged after annealing from 800 °C to 1150 °C. - Abstract: The microstructure and magnetic properties of the 14%Cr oxide dispersion strengthened (ODS) ferritic steel fabricated by sol–gel and HIP method were investigated by annealing in vacuum for 2 h (at 300, 600, 800, 950 and 1150 °C) and 50 h (at 600, 800, 950 and 1150 °C). Microstructure analysis shows that as the annealing temperature increases, the size of oxide nanoparticles becomes smaller and their dispersion in matrix becomes more homogeneous. Grain size remains stable when the annealing temperature is below 800 °C, while above 800 °C, grain size grows with the increasing annealing temperature and time. The Vickers microhardness and coercivity (H_C) display almost similar evolution trend with annealing temperature for 2 h and 50 h. No obvious recrystallization appears after 1150 °C annealing, which indicates the high microstructural stability of 14%Cr-ODS ferritic steel. The possible mechanism for above behaviors is discussed in this paper.

  18. Mechanical properties of friction stir welded 11Cr-ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Yano, Y.; Sato, Y.S.; Sekio, Y.; Ohtsuka, S.; Kaito, T.; Ogawa, R.; Kokawa, H.

    2013-01-01

    Friction stir welding was applied to the wrapper tube materials, 11Cr-ferritic/martensitic steel, designed for fast reactors and defect-free welds were successfully produced. The mechanical and microstructural properties of the friction stir welded steel were subsequently investigated. The hardness values of the stir zone were approximately 550 Hv (5.4 GPa) with minimal dependence on the rotational speed, even though they were much higher than those of the base material. However, tensile strengths and elongations of the stir zones were high at 298 K, compared to those of the base material. The excellent tensile properties are attributable to the fine grain formation during friction stir welding

  19. Impact behavior of 9-Cr and 12-Cr ferritic steels after low-temperature irradiation

    International Nuclear Information System (INIS)

    Klueh, R.L.; Vitek, J.M.; Corwin, W.R.; Alexander, D.J.

    1987-01-01

    Miniature Charpy impact specimens of 9Cr-1MoVNb and 12Cr-1MoVW steels and these steels with 1 and 2% Ni were irradiated in the High-Flux Isotope Reactor (HFIR) at 50 0 C to displacement damage levels of up to 9 dpa. Nickel was added to study the effect of transmutation helium. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT). The 9Cr-1MoVNb steels, with and without nickel, showed a larger shift than the 12Cr-1MoVW steels, with and without nickel. The results indicated that helium also increased the DBTT. The same steels were previously irradiated at higher temperatures. From the present and past tests, the effect of irradiation temperature on the DBTT behavior can be evaluated. For the 9Cr-1MoVNb steel, there is a continuous decrease in the magnitude of the DBTT increase up to an irradiation temperature of about 400 0 C, after which the shift drops rapidly to zero at about 450 0 C. The DBTT of the 12Cr-1MoVW steel shows a maximum increase at an irradiation temperature of about 400 0 C and less of an increase at either higher or lower irradiation temperatures

  20. Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • Diffusion bonding was employed to join 9Cr oxide dispersion strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure, and the microstructure and tensile properties of the joints were investigated. • ODS steel was successfully diffusion bonded at an austenization temperature to migrate a residual diffusion bonding interface. • The tensile properties of the joint region were comparable with that of the base metal with a ductile fracture occurred far from the bonding interface. • It is considered that diffusion bonding with a phase transformation can be a very useful joining method for fabricating components in next-generation nuclear systems using 9Cr ODS ferritic/martensitic steel. - Abstract: Diffusion bonding was employed to join oxide-dispersion-strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure using a high vacuum hot press, and the microstructure and tensile properties of the joints were investigated. 9Cr oxide dispersion strengthened (ODS) steel was successfully diffusion bonded at 1150 °C for 1 h to migrate a residual bonding interface. Following heat treatment, including normalising at 1050 °C and tempering at 800 °C for 1 h, comparable results without inclusions or micro-voids at the bonding interface, or degradation in the base metal were achieved. Transmission electron microscopy (TEM) observation revealed that the nano-oxide particles in the bonding region were uniformly distributed in the matrix. At room temperature, the joint had nearly the same tensile properties with that of the base metal. The tensile strength of the joint region at elevated temperatures was comparable with that of the base metal. The total elongation of the joint region decreased slightly, but reached 80% of the base metal at 700 °C, and a ductile fracture occurred far from the bonding interface. Therefore, it is considered that diffusion bonding with a phase transformation can be a very useful joining method for

  1. Mitigation of sensitisation effects in unstabilised 12%Cr ferritic stainless steel welds

    International Nuclear Information System (INIS)

    Warmelo, Martin van; Nolan, David; Norrish, John

    2007-01-01

    Sensitisation in the heat-affected zones of ferritic stainless steel welds is typically prevented by stabilisation of the parent material with titanium or niobium, and suitable design of the overall composition to produce a suitably high ferrite factor. However, such alloy modification has proven to be economically unviable for thick gauge (>10 mm) plate products and therefore unstabilised 12%Cr (3CR12) material is still currently being used for heavy gauge structural applications in many parts of the world. The aim of the current work was to review the mechanisms responsible for sensitisation in these unstabilised ferritic stainless steels, and to characterise the sensitisation effects arising from multipass welding procedures. The objective was to determine the influence of welding parameters, and thereby to recommend mitigating strategies. Two particular sensitisation modes were found to occur in the current work, although only one was predominant and considered problematic from a practical perspective. It was found that with proper positioning of weld capping runs and control of weld overlap, it is possible to ensure that sensitising isotherms remain buried beneath the parent surface, and so reduce harmful corrosion effects

  2. Wrought Cr--W--V bainitic/ferritic steel compositions

    Science.gov (United States)

    Klueh, Ronald L.; Maziasz, Philip J.; Sikka, Vinod Kumar; Santella, Michael L.; Babu, Sudarsanam Suresh; Jawad, Maan H.

    2006-07-11

    A high-strength, high-toughness steel alloy includes, generally, about 2.5% to about 4% chromium, about 1.5% to about 3.5% tungsten, about 0.1% to about 0.5% vanadium, and about 0.05% to 0.25% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy is heated to an austenitizing temperature and then cooled to produce an austenite transformation product.

  3. Creep deformation of high Cr-Mo ferritic/martensitic steels by material softening

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Song, B. J.; Ryu, Woo Seog

    2005-01-01

    High Cr (9-12%Cr) ferritic/martensitic steels represent a valuable alternative to austenitic stainless steel for high temperature applications up to 600 .deg. C both in power and petrochemical plant, as well as good resistance to oxidation and corrosion. Material softening is the main physical phenomenon observed in the crept material. Thermally-induced change (such as particle coarsening or matrix solute depletion) and strain-induced change (such as dynamic subgrain growth) of microstructure degraded the alloy strength. These microstructural changes during a creep test cause the material softening, so the strength of the materials decreased. Many researches have been performed for the microstructural changes during a creep test, but the strength of crept materials has not been measured. In the present work, we measured the yield and tensile strength of crept materials using Indentationtyped Tensile Test System (AIS 2000). Material softening was quantitatively evaluated with a creep test condition, such as temperature and applied stress

  4. Compression behavior of a ferritic-martensitic Cr-Mo steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Pantleon, Wolfgang

    2012-01-01

    The compression behavior of a ferritic-martensitic Cr-Mo steel is characterized for strain rates ranging from 10-4 s-1 to 10-1 s-1 and engineering strains up to 40%. Adiabatic heating causes a reduction in flow stress during continuous compression at a strain rate of 10-1 s-1. No reduction...... in the flow stress is observed if interrupted compression tests are performed with loading and holding steps. Two work-hardening stages with work-hardening rates decreasing linearly with the flow stress are identified and interpreted in terms of the KocksMecking model. The microstructural evolution...

  5. Microstructural evolution during creep deformation of an 11CrMoVNb ferritic heat resistant steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Ho; Park, Dae-Bum [Korea Institute of Science and Technology, Seoul (Korea, Republic of). Materials and Devices Div.; Korea Univ., Seoul (Korea, Republic of). Dept. of Materials Science; Kwun, S.I. [Korea Univ., Seoul (Korea, Republic of). Dept. of Materials Science; Suh, Jin-Yoo; Jung, Woo-Sang [Korea Institute of Science and Technology, Seoul (Korea, Republic of). Materials and Devices Div.

    2010-07-01

    The effect of creep deformation on the microstructural development of an 11CrMoVNb ferritic heat resistant steel during high temperature creep test is investigated. Coarsening behavior of the precipitates, M{sub 23}C{sub 6} and MX, and growth behavior of martensite laths of crept specimens are carefully observed from both gage and grip parts of the specimens in order to discuss the effect of deformation. Particle coarsening and martensite lath widening are pronounced in the gage part due to the creep deformation. (orig.)

  6. Methodology for corrosion evaluation in HAZ of 11%-Cr ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Carmem C. F.; Rodrigues, Samul F. [Dept. of Mechanic and MaterialsFederal Institute of Education, Science and Technology of Maranhao, Sao Luis (Brazil); De Morais, Vinicius M.; Vilarinho, Louriel O. [Dept. of Mechanic Engineering, Federal University of Uberlandia, Uberlandia (Brazil)

    2016-08-15

    A novel methodology is proposed for corrosion-wear measurement in the Heat affected zone (HAZ) of 11%-Cr ferritic stainless steel. Weld beads with different stress-concentration were manufactured by using MIG/MAG process. After, the welded sample is extracted from the plate, the beads were bended and external stress was applied. Finally, they were inserted in ferric-chloride solution. Corrosive wear were assessed by means of optical microscopy in the HAZ by using polymeric resin mask and comparing profiles before and after inserting the sample into the solution. The results demonstrate the feasibility of the proposed methodology for assessing corrosive wear in the HAZ.

  7. Solid-state diffusion bonding of high-Cr ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: sh-noh@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Kasada, Ryuta; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan)

    2011-05-15

    Research highlights: > Oxide dispersion strengthened ferritic steel joined by solid-state diffusion bonding. > Free of precipitates and micro-voids at the bonding interface was existed. > Joints had the same tensile properties with anisotropy of the base material. > USE of joints was fully reserved in L-R bonding orientation. > Cracks did not propagate on the bonding interface at the Charpy impact test. - Abstract: Solid-state diffusion bonding (SSDB) was employed to join high-Cr oxide dispersion strengthened (ODS) ferritic steel (Fe-15Cr-2W-0.2Ti-0.35Y{sub 2}O{sub 3}) blocks under uniaxial hydrostatic pressure using a high-vacuum hot press, and the microstructure and mechanical properties of the joints were investigated. High-Cr ODS ferritic steels were successfully diffusion bonded at 1200 deg. C for 1 h, without precipitates and microvoids at the bonding interface or degradation in the base materials. Transmission electron microscopic observation revealed that the nano-oxide particles near the bonding interface were uniformly distributed in the matrix and that the chemical composition across the bonding interface was virtually constant. At room temperature, the joint had nearly the same tensile properties and exhibited anisotropic behavior similar to that of the base material. The tensile strength of the joint region at elevated temperatures is nearly the same as that of the base material, with necking behavior at several micrometers from the bonding interface. The total elongation of the joint region decreased slightly at 700 {sup o}C, with an exfoliation fracture surface at the bonding interface. Although a small ductile-brittle transition temperature shift was observed in the joints, the upper shelf energy was fully reserved in the case of joints with L-R bonding orientation, for which cracks did not propagate on the bonding interface. Therefore, it is concluded that SSDB can be potentially employed as a joining method for high-Cr ODS ferritic steel owing to

  8. Microstructural stability of fast reactor irradiated 10 to 12% Cr ferritic-martensitic stainless steels

    International Nuclear Information System (INIS)

    Little, E.A.; Stoter, L.P.

    1982-01-01

    The strength and microstructural stability of three 10 to 12% Cr ferritic-martensitic stainless steels have been characterized following fast reactor irradiation to damage levels of 30 displacements per atom (dpa) at temperatures in the range 380 to 615 0 C. Irradiation results in either increases or decreases in room temperature hardness depending on the irradiation temperature. These strength changes can be qualitatively rationalized in terms of the combined effects of irradiation-induced interstitial dislocation loop formation and recovery of the dislocation networks comprising the initial tempered martensite structures. Precipitate evolution in the irradiated steels is associated with the nonequilibrium segregation of the elements nickel, silicon, molybdenum, chromium and phosphorus, brought about by solute-point defect interactions. The principal irradiation-induced precipitates identified are M 6 X, intermetallic chi and sigma phases and also α' (Cr-rich ferrite). The implications of the observed microstructural changes on the selection of martensitic stainless steels for fast reactor wrapper applications are briefly considered

  9. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  10. Microstructure examination of Fe–14Cr ODS ferritic steels produced through different processing routes

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: z.oksiuta@pb.edu.pl [Bialystok University of Technology, Mechanical Department (Poland); Hosemann, P. [University of California Berkeley, Nuclear Engineering, 4169 Etcheverry Hall, Berkeley, CA 94720 (United States); Vogel, S.C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, PO Box 1663, NM (United States); Baluc, N. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Villigen PSI 5232 (Switzerland)

    2014-08-01

    Various thermo-mechanical treatments were applied to refine and homogenise grain size and improve mechanical properties of hot-isostatically pressed (HIP) 14%Cr ODS ferritic steel. The grain size was reduced, improving mechanical properties, tensile strength and Charpy impact, however bimodal-like distribution was also observed. As a result, larger, frequently elongated grains with size above 1 μm and refined, equiaxed grains with a diameter ranging from 250 to 500 nm. Neutron diffraction measurements revealed that for HIP followed by hydrostatic extrusion material the strongest fiber texture was observed oriented parallel to the extrusion direction. In comparison with hot rolling and hot pressing methods, this material exhibited promising mechanical properties: the ultimate tensile strength of 1350 MPa, yield strength of 1280 MPa, total elongation of 21.7% and Charpy impact energy of 5.8 J. Inferior Charpy impact energy of ∼3.0 J was measured for HIP and hot rolled material, emphasising that parameters of this manufacturing process still have to be optimised. As an alternative manufacturing route, due to the uniform microstructure and simplicity of the process, hot pressing might be a promising method for production of smaller parts of ODS ferritic steels. Besides, the ductile-to-brittle transition temperature of all thermo-mechanically treated materials, in comparison with as-HIPped ODS steel, was improved by more than 50%, the transition temperature ranging from 50 to 70 °C (323 and 343 K) remains still unsatisfactory.

  11. Intergranular corrosion of Ti-stabilized 11 wt% Cr ferritic stainless steel for automotive exhaust systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Kil [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, San 31, Pohang 790-784 (Korea, Republic of); Kim, Yeong Ho; Uhm, Sang Ho; Lee, Jong Sub [POSCO Technical Research Center, Pohang, 790-704 (Korea, Republic of); Kim, Kyoo Young [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, San 31, Pohang 790-784 (Korea, Republic of)], E-mail: kykim@postech.ac.kr

    2009-11-15

    Intergranular corrosion (IGC) of type 409L ferritic stainless steel (FSS) was investigated. A free-exposure corrosion and a double loop electrochemical potentiokinetic reactivation (DL-EPR) tests were conducted to examine IGC of the FSS. IGC occurred in the specimens aged at the temperature range of 400-600 deg. C that has the sensitization nose located around 600 deg. C. The critical I{sub r}/I{sub a} value was determined to be about 0.03 above which IGC occurred. Based on the analysis of the intergranular precipitates by an energy dispersive spectroscopy (EDS) and a transmission electron microscopy (TEM), IGC was induced by the Cr depletion zone formation due to Cr segregation around intergranular TiC.

  12. Effects of Static Recrystallization and Precipitation on Mechanical Properties of 00Cr12 Ferritic Stainless Steel

    Science.gov (United States)

    Shao, Yi; Liu, Chenxi; Yue, Tengxiao; Liu, Yongchang; Yan, Zesheng; Li, Huijun

    2018-05-01

    The 00Cr12 ferritic stainless steel samples were isothermally held at different temperatures in the range of 700 °C to 1000 °C to investigate the effect of static recrystallization and precipitation on mechanical properties, such as microhardness, tensile strength, and yield strength. The results show that the formation of the fine recrystallized grain, as well as precipitation, coarsening, and dissolution of the second-phase particles, influences the mechanical properties remarkably. The fine recrystallized grain can provide a positive grain boundary-strengthening effect in the sample under a relatively high holding temperature. Coarsening and dissolution of M23C6 result in partial depletion of precipitate hardening. In contrast, the size and number density of MX particles are almost constant, regardless of the holding temperature; therefore, it can provide a better precipitation-hardening effect.

  13. Mechanical characterization of a reduced activation 9 Cr ferritic/martensitic steel of spanish production

    International Nuclear Information System (INIS)

    Rodriguez, D.; Serrano, M.

    2012-01-01

    This paper shows the first results concerning the characterization of two heats of a reduced activation 9 Cr ferritic/martensitic steel (RAFM) made in Spain, called AF1B and AF2A. The results of this characterization are compared with their European counterparts, EUROFER97-2, which was chosen as reference material. All activities described were performed in the Structural Materials Unit of CIEMAT, within the national project TECNO-FUS CONSOLIDER INGENIO.The two Spanish heats have the same production process and heat treatment. Both heats have a similar tensile behaviour similar to EUROFER97-2, but on the other hand impact properties are lower. The microstructure of AF1B reveals large biphasic inclusions that affecting its mechanical properties, especially the impact properties. AF2A casting was free of these inclusions. (Author) 24 refs.

  14. Characterizing microstructural changes in ferritic steels by positron annihilation spectroscopy: Studies on modified 9Cr-1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Hari Babu, S., E-mail: shb@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Rajkumar, K.V. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Hussain, S. [UGC-DAE CSR, Kokilamedu 603 104, TN (India); Amarendra, G.; Sundar, C.S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Positron lifetime technique probing microstructure of ferritic/martensitic steels. Black-Right-Pointing-Pointer Correlation between positron lifetime, ultrasonic and hardness. Black-Right-Pointing-Pointer Complementary nature of positron annihilation spectroscopy in probing defects. Black-Right-Pointing-Pointer Distinguishing precipitation stages by positron annihilation spectroscopy. - Abstract: Applicability of positron annihilation spectroscopy in probing the microstructural changes in ferritic steels has been investigated with thermal treatment studies on modified 9Cr-1Mo steel, during 300-1273 K. Positron lifetime results are compared with those of ultrasonic velocity and hardness techniques with two initial microstructural conditions i.e., normalized and tempered condition as well as only normalized condition. In first case, positron lifetime is found to be sensitive to small changes in metal carbide precipitation which could not be probed by other two techniques. In later case, positron lifetime is found to be sensitive to defect annealing until 673 K and in distinguishing the growth and coarsening of metal carbide precipitation stages during 773-1073 K. The present study suggests that by combining positron lifetime, ultrasonic velocity and hardness measurements, it is possible to distinguish distinct microstructures occurring at different stages.

  15. Tensile anisotropy and creep properties of a Fe-14CrWTi ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Steckmeyer, A., E-mail: antonin.steckmeyer@cea.fr [CEA Saclay, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France); Rodrigo, Vargas Hideroa [CEA Saclay, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France); Gentzbittel, J.M. [CEA Grenoble, DRT/LITEN/DTBH/LCTA, 38054 Grenoble Cedex 9 (France); Rabeau, V.; Fournier, B. [CEA Saclay, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France)

    2012-07-15

    A Fe-14Cr oxide dispersion strengthened (ODS) ferritic steel is studied as a potential material for cladding tube application for the next generation of fast-breeder nuclear reactors. Tensile specimens machined out from a hot extruded round bar in three different orientations are used to evaluate the mechanical anisotropy of this steel for temperatures in the range 20-750 Degree-Sign C. Its anisotropy is discussed both in terms of mechanical strength and fracture mode. At high temperatures (HTs), above 500 Degree-Sign C, the longitudinal direction appears to be the most ductile and most resistant direction. Longitudinal creep tests between 650 Degree-Sign C and 900 Degree-Sign C were also carried out. They show this ODS steel has a high HT creep lifetime and a low creep failure strain. Intergranular cracks aligned along the loading axis were observed on fractured creep specimens. They reveal a particular weakness of prior particle boundaries and suggest to modify the elaboration process through mechanical alloying and hot extrusion.

  16. The morphology and ageing behaviour of δ-ferrite in a modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Kishore, R.; Singh, R.N.; Sinha, T.K.; Kashyap, B.P.

    1992-01-01

    Dual phase (martensite + δ-ferrite) microstructures were developed in a modified 9Cr-1Mo steel, by austenitising at 1523-1623 K, followed by water-quenching. These duplex structures were thermally aged at 973 K for ageing periods varying from 30 min to 21 h. Morphological aspects of δ-ferrite phase and its response to age-hardening were studied by optical, scanning electron and transmission electron microscopy, X-ray diffraction, electron probe microanalysis and microhardness testing. It was observed that austenitizing at 1523 K produced fine, acicular δ-ferrite while the δ-ferrite formed by austenitising at higher temperatures (1573-623 K) were massive, irregular-shaped and banded. Moreover the presence of δ-ferrite caused an abnormally strong (110) reflection, observed in X-ray diffraction patterns of martensite plus δ-ferrite structures. This behaviour is thought to be due to development of (110) texture in δ-ferrite phase. Thermal ageing at 973 K caused age-hardening of δ-ferrite with a peak hardness attained after 3.6 ks of ageing. Electron microscopic results suggest that the observed hardening was caused by the formation of Fe 2 Mo Laves phase. (orig.)

  17. Parametrical limits of SCC-susceptibility of austenitic and austenitic-ferritic Cr-Ni steels

    International Nuclear Information System (INIS)

    Starosvetskij, D.I.; Baru, R.L.; Bondarenko, A.I.; Bogoyavlenskij, V.L.; Timonin, V.A.

    1990-01-01

    Comparative investigations into corrosion cracking (CC) of austenitic (12Kh18N10T) and austenitic-ferritic (08Kh22N6T) chromium-nickel steels are performed for various chloride media in a wide range of chloride concentrations and temperatures. It is shown that the ratio between steels in terms of their CC-susceptibility is not definite and can undergo a reversal depending on parameters of medium, level and conditions of loading. Differences in mechanisms of corrosion cracking of austenitic and austenitic-ferritic steels are established

  18. Studies of fracture processes in Cr-Mo-V ferritic steel with various types of microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Dzioba, I., E-mail: pkmid@tu.kielce.p [Fundamentals of Machine Design Chair, Kielce University of Technology, Al.1000-lecia PP 7, 25-314 Kielce (Poland); Gajewski, M., E-mail: gajem@tu.kielce.p [Fundamentals of Machine Design Chair, Kielce University of Technology, Al.1000-lecia PP 7, 25-314 Kielce (Poland); Neimitz, A., E-mail: neimitz@tu.kielce.p [Fundamentals of Machine Design Chair, Kielce University of Technology, Al.1000-lecia PP 7, 25-314 Kielce (Poland)

    2010-10-15

    In this paper, the authors report on analysis of the influence of microstructure on ductile and cleavage fracture mechanisms. The question investigated was whether microstructure observations alone can provide sufficient information to predict the possible fracture mechanism or change in fracture mechanism. Four different microstructures of ferritic steel were tested after four different heat treatments. The microstructures examined were ferritic, ferritic-pearlitic, ferritic-bainitic, and tempered martensitic types. It was concluded that the ratio (S{sub C}/S{sub 0}) of the area covered by carbides to the total area of a ferritic grain (measured by taking into account large carbides) is the only possible quantitative measure that can be used to predict cleavage fracture.

  19. Microstructure of HFIR-irradiated 12-Cr 1 MoVW ferritic steel

    International Nuclear Information System (INIS)

    Vitek, J.M.; Klueh, R.L.

    1983-01-01

    As part of the fusion materials development program in the United States, a 12 Cr-1 MoVW ferritic steel was irradiated in the High Flux Isotope Reactor (HFIR) to a damage level of 36 dpa at 300, 400, 500, and 600 0 C. During irradiation in HFIR, a transmutation reaction of nickel results in the production of helium, to a level of 99 at. ppM in the present experiment. The microstructures were evaluated after irradiation and the results are presented. Cavities were found at all temperatures. Small cavities (3 to 9 nm) were observed after irradiation at 300, 500 and 600 0 C. At 500 and 600 0 C, the cavities were found preferentially at dislocations, lath boundaries, and prior austenite grain boundaries. After irradiation at 400 0 C, larger cavities (4 to 30 nm) were observed homogeneously distributed throughout the tempered martensite structure. The maximum swelling was 0.07% after irradiation at 400 0 C. Comparision of the results with other studies in which helium was not present at such high levels indicated helium enhances the swelling of 12 Cr-1 MoVW

  20. Influence of Nb content on grain size and mechanical properties of 18 wt% Cr ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Y. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Mao, W.M., E-mail: weiminmao@263.net [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chen, Y.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jing, J.; Cheng, M. [Taizhou Xinyu Precision Manufacture Company Limited, Jiangyan 225500, Jiangsu (China)

    2016-11-20

    The influence of Nb contents between 0.20 and 1.20 wt% on the grain size and mechanical properties of 18 wt% Cr ferritic stainless steel produced by investment casting was investigated. The average grain sizes of the three steels decreased apparently with increasing Nb content mainly due to the increasing number of pre-existing oxides formed at higher temperature, which were more likely to be the nuclei of heterogeneous nucleation. The thermodynamic analysis of Nb(C,N) formation was in conformity to the experimental result that the Nb(C,N) precipitates became larger with increasing Nb content. The as-cast specimen with the smallest grain size of steel C had the worse tensile strength and elongation in comparison with the as-cast specimens of steels A and B, mostly owing to the catenarian and dendritic Nb(C,N) particles distributed densely at the grain boundaries. The mechanical properties of specimens were not improved remarkably through high temperature solid-solution, whereas the mechanical properties of normalized specimens in the three steels were improved to different degrees. The coalescence and sparse distribution of smaller precipitates at grain boundaries after normalizing effectively weakened the local stress concentration arising from the reticular distribution of particles. The normalized specimen of steel A with 0.24 wt% Nb still showed good mechanical properties. Normalizing at 850 °C for 2 h is the appropriate heat treatment for the 18 wt% Cr ferritic stainless steel. The comparatively rational Nb content of the ferritic stainless steel is between 0.20 and 0.40 wt% for investment casting production.

  1. Influence of stress on creep deformation properties of 9-12Cr ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K.; Sawada, K.; Kushima, H. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep deformation property of 9-12Cr ferritic creep resistant steels was investigated. With decrease in stress, a magnitude of creep strain at the onset of accelerating creep stage decreased from about 2% in the short-term to less than 1% in the longterm. A time to 1% total strain was observed in the transient creep stage in the short term regime, however, it shifted to the accelerating creep stage in the long-term regime. Life fraction of the times to 1% creep strain and 1% total strain tended to increase with decrease in stress. Difference in stress dependence of the minimum creep rate was observed in the high- and low-stress regimes with a boundary condition of 50% of 0.2% offset yield stress. Stress dependence of the minimum creep rate in the high stress regime was equivalent to a strain rate dependence of the flow stress evaluated by tensile test, and a magnitude of stress exponent, n, in the high stress regime decreased with increase in temperature from 20 at 550 C to 10 at 700 C. On the other hand, n value in the low stress regime was about 5, and creep deformation in the low stress regime was considered to be controlled by dislocation climb. Creep rupture life was accurately predicted by a region splitting method by considering a change in stress dependence of creep deformation. (orig.)

  2. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    Rieth, M.; Materna-Morris, E.; Dudarev, S.L.; Boutard, J.-L.; Keppler, H.; Mayor, J.

    2009-01-01

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  3. Nondestructive testing for microstructural characterization in 9Cr-1Mo ferritic steel towards assessment of fabrication quality and in-service degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T.; Rao, K.B.S.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1999-07-01

    The paper discusses the usefulness of non destructive testing for microstructural characterization in 9Cr-1Mo ferritic steel. Ultrasonic velocity and attenuation measurements and spectral analysis have been used in a complementary way for characterizing Ac{sub 1} and Ac{sub 3} temperatures, amount of martensite and ferrite, dissolution of V{sub 4}C{sub 3} and NbC and formation of {delta}-ferrite. The microstructural degradation occurring due to thermal ageing and creep has also been studied by ultrasonic velocity measurements. Magnetic Barkhausen noise technique has been used for estimating the extent of various regions in heat affected zone (HAZ) of 9Cr-1Mo ferritic steel weldment. The same technique has been used for the assessment of low cycle fatigue damage in 9Cr-1Mo steel. The study establishes that non destructive methods can be used for the assessment of fabrication quality and in service degradation of the components. (author)

  4. Oxidation Behavior of Some Cr Ferritic Steels for High Temperature Fuel Cells

    International Nuclear Information System (INIS)

    Mohamed, H.E.

    2012-01-01

    The oxidation behavior of three high Cr ferritic steels designated 1Al, RA and 5Al with different levels of Al, Si, Mn and Hf has been investigated in the present work. These steels have been developed as candidates for Solid Oxide Fuel Cell (SOFC) interconnect. Specimens of these alloys have been subjected to isothermal as well as cyclic oxidation in air. Isothermal oxidation tests are conducted in the temperature range 800 - 1000 degree C for time periods up to 1000 h. cyclic oxidation tests were carried out at 800 and 1000 degree C for twenty 25 - h cycles giving a total cyclic exposure time of 500 h. The growth rate of the oxide scales was found to follow a parabolic law over a certain oxidation period which changed with alloy composition and oxidation temperature. The value of the parabolic rate constant increased with increasing oxidation temperature. At 800 and 900 degree C alloy 1Al exhibited higher oxidation resistance compared to the other two alloys. Alloy RA showed spalling behavior when oxidized at 900 degree C and the extent of spalling increased with increasing the oxidation temperature to 1000 degree C. Alloy 5Al oxidized at 1000 degree C showed the highest oxidation resistance among the investigated alloys. Alloy 1Al and RA showed similar scale morphology and composition. X- ray diffraction analysis revealed that the scales developed on these alloys consist of Cr 2 O 3 with an outer layer of MnCr 2 O 4 and a minor amount of FeCr 2 O 4 spinels. Alloy 5Al developed scale consisting of γ- Al 2 O 3 at 800 degree C and γ and α- Al 2 O 3 at 900 degree C. Oxidation of alloy 5Al at 1000 degree C led to formation of a scale consisting mainly of the protective phase α Al 2 O 3 . The presence of 0.84 wt% Al and 0.95 wt % Si in alloy 1Al enhanced its oxidation resistance compared to alloy RA which contains only 0.29 wt% Si and is Al - free. This enhancement was attributed to formation of internal oxidation zone in alloy 1Al just beneath the oxide / alloy

  5. Effects of Mn addition on microstructures and mechanical properties of 10Cr ODS ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Jin, Hyun Ju; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic (FM) steels are very attractive for the structural materials of fast fission reactors such as a sodium cooled fast reactor (SFR) owing to their excellent irradiation resistance to a void swelling, but are known to reveal an abrupt loss of their creep and tensile strengths at temperatures above 600 .deg. C. Accordingly, high temperature strength should be considerably improved for an application of the FM steel to the structural materials of SFR. Oxide dispersion strengthened (ODS) FM steels are considered to be promising candidate materials for high- temperature components operating in severe environments such as nuclear fusion and fission systems due to their excellent high temperature strength and radiation resistance stemming from the addition of extremely thermally stable oxide particles dispersed in the ferritic/martensitic matrix.. To develop an advanced ODS steel for core structural materials for next generation nuclear reactor system applications, it is important to optimize its compositions to improve the high temperature strength and radiation resistance. This study investigates effects of Mn addition on microstructures and mechanical properties of 10Cr ODS FM steel. For this, two 10 Cr ODS FM steels were prepared by mechanical alloying (MA), hot isostatic pressing (HIP), and hot rolling process. Tensile tests were carried out at room temperature and 700 .deg. C to evaluate the influences of the Mn element on the mechanical properties. The microstructures were observed using SEM, electron back-scatter diffraction (EBSD) and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS). In the present study, the effects of Mn addition on the microstructure and mechanical properties of ODS FM steels were investigated. The ODS FM steels were manufactured by the MA, HIP and hot-rolling processes

  6. Dislocation structures in cyclically strained X10CrAl24 ferritic steel

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Man, Jiří

    2006-01-01

    Roč. 54, č. 13 (2006), s. 3429-3443 ISSN 1359-6454. [Micromechanics and Microstructure Evolution : Modeling Simulation and Experiments. Madrid, 11.09.2005-16.09.2006] R&D Projects: GA ČR(CZ) GP106/05/P521 Institutional research plan: CEZ:AV0Z20410507 Keywords : Transmission electron microscopy * Ferritic steel * Fatigue Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.549, year: 2006

  7. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    Science.gov (United States)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  8. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: z.oksiuta@pb.edu.pl [Bialystok Technical University, Mechanical Department, Wiejska 45c, 15-351 Bialystok (Poland); Ozieblo, A.; Perkowski, K.; Osuchowski, M. [Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw (Poland); Lewandowska, M. [Warsaw University of Technology, Woloska 141, 02-504 Warsaw (Poland)

    2014-02-15

    Highlights: • The HIPping parameters of the 14Cr–2W–0.3Ti–0.3Y{sub 2}O{sub 3} ODS steel powder were investigated. • The density and microstructure of the tested specimens after HIPping were studied. • The mechanical properties, high temperature tensile tests, were performed. • Residual porosity was observed in all tested specimens. • HIPping pressure has negligible influence on the strength of the ODS steel however improves material ductility. - Abstract: An oxide dispersion strengthened ferritic steel with a nominal composition of Fe–14Cr–2W–0.3Ti–0.3Y{sub 2}O{sub 3} (in wt.%) was consolidated by hot isostatic pressing at 1150 °C under various pressures in the range of 185–300 MPa for 3 h. The microstructure, microhardness and high temperature tensile properties of the steel were investigated. With increasing compaction pressure the density of specimens also increased, however OM and SEM observations revealed residual porosity in all tested specimens and similar ferritic microstructure with bimodal-like grains and numerous of large oxide particles, located at the grain boundaries. Mechanical testing revealed that compaction pressure has negligible influence on the hardness and tensile strength of the ODS steel, however improves the material ductility.

  9. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Ozieblo, A.; Perkowski, K.; Osuchowski, M.; Lewandowska, M.

    2014-01-01

    Highlights: • The HIPping parameters of the 14Cr–2W–0.3Ti–0.3Y 2 O 3 ODS steel powder were investigated. • The density and microstructure of the tested specimens after HIPping were studied. • The mechanical properties, high temperature tensile tests, were performed. • Residual porosity was observed in all tested specimens. • HIPping pressure has negligible influence on the strength of the ODS steel however improves material ductility. - Abstract: An oxide dispersion strengthened ferritic steel with a nominal composition of Fe–14Cr–2W–0.3Ti–0.3Y 2 O 3 (in wt.%) was consolidated by hot isostatic pressing at 1150 °C under various pressures in the range of 185–300 MPa for 3 h. The microstructure, microhardness and high temperature tensile properties of the steel were investigated. With increasing compaction pressure the density of specimens also increased, however OM and SEM observations revealed residual porosity in all tested specimens and similar ferritic microstructure with bimodal-like grains and numerous of large oxide particles, located at the grain boundaries. Mechanical testing revealed that compaction pressure has negligible influence on the hardness and tensile strength of the ODS steel, however improves the material ductility

  10. Metallurgical aspects of the weldability of Cr-Mo stabilised ferritic steels

    International Nuclear Information System (INIS)

    Colombe, Gerard; Petrequin, Pierre; Donati, J.R.; Zacharie, C.

    1977-01-01

    Results of tests performed to compare the tendency of 2.25 Cr-Mo and 9 Cr-2 Mo steels stabilised with niobium and niobium + vanadium, to different cracking phenomena susceptible to occur during welding, stress-relieving and service in the conditions of fast breeder reactors are presented

  11. Irradiation performance of 9--12 Cr ferritic/martensitic stainless steels and their potential for in-core application in LWRs

    International Nuclear Information System (INIS)

    Jones, R.H.; Gelles, D.S.

    1993-08-01

    Ferritic-martensitic stainless steels exhibit radiation stability and stress corrosion resistance that make them attractive replacement materials for austenitic stainless steels for in-core applications. Recent radiation studies have demonstrated that 9% Cr ferritic/martensitic stainless steel had less than a 30C shift in ductile-to-brittle transition temperature (DBTT) following irradiation at 365C to a dose of 14 dpa. These steels also exhibit very low swelling rates, a result of the microstructural stability of these alloys during radiation. The 9 to 12% Cr alloys to also exhibit excellent corrosion and stress corrosion resistance in out-of-core applications. Demonstration of the applicability of ferritic/martensitic stainless steels for in-core LWR application will require verification of the irradiation assisted stress corrosion cracking behavior, measurement of DBTT following irradiation at 288C, and corrosion rates measurements for in-core water chemistry

  12. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Paul, V.; Saroja, S.; Albert, S.K.; Jayakumar, T.; Rajendra Kumar, E., E-mail: vtp@igcar.gov.in

    2014-10-15

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering process has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.

  13. Effect of Microstructures and Tempering Heat Treatment on the Mechanical Properties of 9Cr-2W Reduced-Activation Ferritic-Martensitic Steel

    International Nuclear Information System (INIS)

    Park, Min-Gu; Kang, Nam Hyun; Moon, Joonoh; Lee, Tae-Ho; Lee, Chang-Hoon; Kim, Hyoung Chan

    2015-01-01

    The aim of this study was to investigate the effect of microstructures (martensite, ferrite, or mixed ferrite and martensite) on the mechanical properties. Of particular interest was the Charpy impact results for 9Cr-2W reduced-activation ferritic-martensitic (RAFM) steels. Under normalized conditions, steel with martensitic microstructure showed superior tensile strength and Charpy impact results. This may result from auto-tempering during the transformation of martensite. On the other hand, both ferrite, and ferrite mixed with martensite, showed unusually poor Charpy impact results. This is because the ferrite phases, and coarse M_23C_6 carbides at the ferrite-grain boundaries acted as cleavage crack propagation paths, and as preferential initiation sites for cleavage cracks, respectively. After the tempering heat treatment, although tensile strength decreased, the energy absorbed during the Charpy impact test drastically increased for martensite, and ferrite mixed with martensite. This was due to the tempered martensite. On the other hand, there were no distinctive differences in tensile and Charpy impact properties of steel with ferrite microstructure, when comparing normalized and tempered conditions.

  14. Hydrogen embrittlement of the 22 Cr5 Ni austeno-ferritic stainless steel. Role of the microstructure

    International Nuclear Information System (INIS)

    Iacoviello, Francesco

    1997-01-01

    Austenitic-ferritic stainless steels are characterised by very good mechanical properties and by a high corrosion resistance, especially to stress-corrosion and to pitting. However, their duplex structure shows a sensitivity to hydrogen embrittlement. Among duplex stainless steels, the 22 Cr 5 Ni grade has gradually became the most used. In this work the tensile properties and the resistance to fatigue crack propagation of 22 Cr5 Ni duplex stainless steel have been analysed, with and without hydrogen charging, after it had been treated at temperatures ranging between 200-1050 deg. C for varying times. The heat treatment times and temperatures were chosen to characterise completely the effects of the different intermetallic and the carbide and nitride phases and to compare these results with those from the tensile tests and those in the literature. A technique for obtaining the hydrogen diffusion coefficient in the steel was optimised and was shown to be alternative to the permeation technique. Thermal analysis was used to determine the activation energy of the hydrogen traps in the steel. From the results the following conclusions were established: - Grain boundaries and dislocations have very little influence on the process of hydrogen diffusion. - The quantity of hydrogen absorbed depends in that any type of precipitate decrease the absorption. This decrease was probably due to changes in the diffusivity and solubility of hydrogen caused by the precipitation. - The charging with hydrogen caused a large decrease in ε m pc for the steel for all heat treatments temperature, except 1050 deg. C. At this temperature the effect was much less as the dislocation density was very low and the precipitates were now in solution. - Hydrogen charging of the steel did not affect the YS and the decrease in UTS produced depended on the microstructure. Use of the embrittlement index 'F' showed that spinodal decomposition and precipitation of G phase decrease hydrogen embrittlement

  15. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Steckmeyer, A., E-mail: antonin.steckmeyer@cea.f [Service de Recherches Metallurgiques Appliquees, CEA Saclay, Gif-sur-Yvette (France); Praud, M.; Fournier, B.; Malaplate, J.; Garnier, J.; Bechade, J.L.; Tournie, I.; Tancray, A.; Bougault, A. [Service de Recherches Metallurgiques Appliquees, CEA Saclay, Gif-sur-Yvette (France); Bonnaillie, P. [Service de Recherche en Metallurgie Physique, CEA Saclay, Gif-sur-Yvette (France)

    2010-10-15

    The search for a new cladding material is part of the research studies carried out at CEA to develop a sodium-cooled fast reactor meeting the expectations of the Generation IV International Forum. In this study, the tensile properties of a ferritic oxide dispersion strengthened steel produced by hot extrusion at CEA have been evaluated. They prove the studied alloy to be as resistant as and more ductile than the other nano-reinforced alloys of literature. The effects of the strain rate and temperature on the total plastic strain of the material remind of diffusion phenomena. Intergranular damage and intergranular decohesion are clearly highlighted.

  16. Evaluation of the material in creep-exposed critical 12Cr-1Mo-V ferritic steel components of the pressure section of power plant steam boilers

    International Nuclear Information System (INIS)

    Dobrzanski, J.

    2002-01-01

    Metallographic examinations were carried out on ferritic 12Cr-1Mo-V steel with tempered martensite structure after 68,000 - 145,000 hr service in creep conditions. Structural evolution related to the form of martensite, carbide precipitation and internal damage due to long-term action of thermally activated processes was discussed. A generalised scheme of structural evolution and progress of the internal damage was developed in correlation with the life exhaustion ratio. Principles of the classification for ferritic 12Cr-1Mo-V steel after long-term-service were proposed together with the method for evolution of the state of the material for the industrial practice. (author)

  17. Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min-Gu [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Lee, Chang-Hoon, E-mail: lee1626@kims.re.kr [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Moon, Joonoh; Park, Jun Young; Lee, Tae-Ho [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Kang, Namhyun [Pusan National University, Busan 609-735 (Korea, Republic of); Chan Kim, Hyoung [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

    2017-03-15

    The influence of microstructural changes caused by aging condition on tensile and Charpy impact properties was investigated for reduced activation ferritic-martensitic (RAFM) 9Cr-1WVTa steels having single martensite and a mixed microstructure of martensite and ferrite. For the mixed microstructure of martensite and ferrite, the Charpy impact properties deteriorated in both as-normalized and tempered conditions due to the ferrite and the accompanying M{sub 23}C{sub 6} carbides at the ferrite grain boundaries which act as path and initiation sites for cleavage cracks, respectively. However, aging at 550 °C for 20–100 h recovered gradually the Charpy impact toughness without any distinct drop in strength, as a result of the spheroidization of the coarse M{sub 23}C{sub 6} carbides at the ferrite grain boundaries, which makes crack initiation more difficult.

  18. Factors Affecting Impact Toughness in Stabilized Intermediate Purity 21Cr Ferritic Stainless Steels and Their Simulated Heat-Affected Zones

    Science.gov (United States)

    Anttila, Severi; Alatarvas, Tuomas; Porter, David A.

    2017-12-01

    The correlation between simulated weld heat-affected zone microstructures and toughness parameters has been investigated in four intermediate purity 21Cr ferritic stainless steels stabilized with titanium and niobium either separately or in combination. Extensive Charpy V impact toughness testing was carried out followed by metallography including particle analysis using electron microscopy. The results confirmed that the grain size and the number density of particle clusters rich in titanium nitride and carbide with an equivalent circular diameter of 2 µm or more are statistically the most critical factors influencing the ductile-to-brittle transition temperature. Other inclusions and particle clusters, as well as grain boundary precipitates, are shown to be relatively harmless. Stabilization with niobium avoids large titanium-rich inclusions and also suppresses excessive grain growth in the heat-affected zone when reasonable heat inputs are used. Thus, in order to maximize the limited heat-affected zone impact toughness of 21Cr ferritic stainless steels containing 380 to 450 mass ppm of interstitials, the stabilization should be either titanium free or the levels of titanium and nitrogen should be moderated.

  19. Study of the first stages of oxidation of a ferritic-martensitic steel Fe-12Cr in CO2

    International Nuclear Information System (INIS)

    Bouhieda, S.

    2012-01-01

    In the framework of the development of Sodium Fast Reactors in France, supercritical carbon dioxide integrated in the Brayton cycle is proposed as new cycle energy conversion system to replace current steam generators. Ferritic-Martensitic steels with 9-12 wt% Cr are good candidates for heat exchanger application because they have good mechanical properties up to a temperature of 600 C, a high thermal conductivity, a low coefficient of thermal expansion and a lower cost than that of austenitic steels. However, it has been found that these steels present a high parabolic oxide growth rate and a strong carburization in the temperature and pressure conditions of the SC-CO 2 cycle (550 C, 250 bar). This study aims to investigate the influence of different parameters (impurities present in CO 2 , thermal ramp rate and surface state) on the oxidation mechanism of a Fe-12 Cr steel in CO 2 at 550 C. It has been shown that depending on these parameters, a thin protective oxide scale without any strong carburization can be obtained. A model is proposed to explain the experimental results. (author) [fr

  20. Fabrication and characterization of reference 9Cr and 12Cr-ODS low activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Muroga, T., E-mail: muroga@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Nagasaka, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Li, Y.; Abe, H. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Ukai, S. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Okuda, T. [Kobelco Research Institute, 1-5-5 Takatsukadai, Nishi-ku, Kobe, Hyogo 651-2271 (Japan)

    2014-10-15

    For the purpose of arranging reference alloys available for various characterization efforts by Japanese fusion research groups, fabrication of reference 9Cr and 12Cr-ODS steels have been carried out with similar manufacturing processes followed by various characterizations. The fabrication proceeded with powder mixing, MA, encapsulation into mild steel cases, hot extrusion and hot forging, followed by final heat treatments. Each alloy was extruded into three bars. The characterization included chemical composition analysis, SEM and TEM microstructural observations, hardness tests, tensile tests at RT and 973 K, and relatively short-term thermal creep tests at 973 K. Room temperature hardness for 9Cr-ODS was larger than 12Cr-ODS, the former showing large increase when annealing temperature exceeded 1200 K and the latter showing no significant change with annealing temperature. Tensile strength of 9Cr-ODS was significantly larger than that of 12Cr-ODS at RT but comparable at 973 K. 9Cr-ODS showed longer and shorter creep rupture time than 12Cr-ODS at high and low stress levels, respectively. The mechanism of the difference in creep properties of the two alloys was discussed.

  1. Ferritic steels for French LMFBR steam generators

    International Nuclear Information System (INIS)

    Aubert, M.; Mathieu, B.; Petrequin, P.

    1983-06-01

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 530 0 C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  2. AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel

    International Nuclear Information System (INIS)

    Man, J.; Petrenec, M.; Obrtlik, K.; Polak, J.

    2004-01-01

    Atomic force microscopy and high resolution scanning electron microscopy were applied to the study of surface relief evolution at emerging persistent slip bands (PSBs) in individual grains of ferritic X10CrAl24 stainless steel cycled with constant plastic strain amplitude. Only the combination of both methods can reveal the true shape and fine details of extrusions and intrusions. Quantitative data on the changes of the surface topography of persistent slip markings and on the kinetics of extrusion growth during the fatigue life were obtained. Transmission electron microscopy of surface foils revealed PSBs with the typical, well-known ladder structure. Experimental data on cyclic slip localization in PSBs are compared with those in fcc metals and discussed in terms of vacancy models of surface relief evolution and fatigue crack initiation

  3. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additional elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr

  4. Impact Strength of Austenitic and Ferritic-Austenitic Cr-Ni Stainless Cast Steel in -40 and +20°C Temperature

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2014-10-01

    Full Text Available Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.

  5. Effect of Silicon on Intergranular Corrosion Resistance of Ti-stabilized 11 wt% Cr Ferritic Stainless Steels

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2013-01-01

    Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than 650 .deg. C and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy

  6. Effect of Silicon on Intergranular Corrosion Resistance of Ti-stabilized 11 wt% Cr Ferritic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik Univ., Sejong (Korea, Republic of)

    2013-06-15

    Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than 650 .deg. C and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy.

  7. Effect of the thermal ageing on the tensile and impact properties of a 18%Cr ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Rouffié, A.L., E-mail: anne-laure.rouffie@cea.fr [CEA, DEN, DANS, DMN, SRMA, Bât 453, F-91191 Gif-sur-Yvette (France); Mines ParisTech, Centre des Matériaux P.M. Fourt, UMR CNRS 7633, BP 87, 91003 Evry (France); Crépin, J.; Sennour, M. [Mines ParisTech, Centre des Matériaux P.M. Fourt, UMR CNRS 7633, BP 87, 91003 Evry (France); Tanguy, B. [CEA, DEN, DANS, DMN, SEMI, Bât 625, F-91191 Gif-sur-Yvette (France); Pineau, A. [Mines ParisTech, Centre des Matériaux P.M. Fourt, UMR CNRS 7633, BP 87, 91003 Evry (France); Hamon, D.; Wident, P.; Vincent, S. [CEA, DEN, DANS, DMN, SRMA, Bât 453, F-91191 Gif-sur-Yvette (France); Garat, V. [AREVA NP, 10 rue J. Récamier, 69006 Lyon (France); Fournier, B. [Manoir Industries – Petrochem and Nuclear, Metallurgy Dpt., 12 rue des Ardennes, BP 8401 Pitres, 27108 Val de Reuil Cedex (France)

    2014-02-01

    The effects of the thermal ageing at 400 °C, 500 °C and 600 °C during 5000 h on the mechanical properties of a 18%Cr ODS ferritic steel are investigated. A hardening effect is observed after ageing at 400 °C and 500 °C, probably due to the presence of chromium rich α′ particles as suggested by the literature. The impact resistance and the ductility of the material are strongly lowered by the ageing at 600 °C. This embrittlement is characterized on the fracture surfaces by the presence of cleavage facets on the whole range of testing temperatures. The intermetallic σ phase is found to be responsible for the occurrence of cleavage fracture on the material aged at 600 °C, and thus for the significant embrittlement of this material. M{sub 23}C{sub 6} carbides are also observed before and after thermal ageing. The lattice parameters of the σ phase and the M{sub 23}C{sub 6} carbides observed in this 18%Cr ODS steel aged at 600 °C during 5000 h are measured.

  8. Optimization of consolidation parameters of 18Cr-ODS ferritic steel through microstructural and microtexture characterization

    Science.gov (United States)

    Dash, Manmath Kumar; Mythili, R.; Dasgupta, Arup; Saroja, S.

    2018-04-01

    This paper reports the optimization of consolidation process based on the evolution of microstructure, microtexture and densification in 18%-Cr Oxide Dispersion Strengthened steel. The steel powder of composition Fe-18Cr-0.01C-2W-0.25Ti-0.35Y2O3 has been consolidated by cold isostatic pressing (CIP) for green compaction after mechanical milling. Sintering (1000-1250 °C) and hot isostatic pressing (HIP) at 1150 °C has been employed to achieve good densification on compacted CIP specimen. The effect of sintering temperatures on densification behavior was evaluated and sintering at 1150°C was identified to be optimum for achieving good compaction (92% density) and homogeneous polygonal microstructure with a uniform distribution of fine pores. In addition, HIP of CIP product at 1150°C was found to yield a more homogeneous microstructure as compared to sintered product with 97% density. A static/dynamic recrystallization associated with (1 1 1) texture is observed during consolidation process. A statistical comparison has been made based on frequency of grain boundary distribution and associated texture with its theoretical attributes.

  9. Initiation of Stress Corrosion Cracking of 26Cr-1Mo Ferritic Stainless Steels in Hot Chloride Solution

    International Nuclear Information System (INIS)

    Kwon, H. S.; Hehemann, R. F.

    1987-01-01

    Elongation measurements of 26Cr-1Mo ferritic stainless steels undergoing stress corrosion in boiling LiCl solution allow the induction period to be distinguished from the propagation period of cracks by the deviation of elongation from the logarithmic creep law. Localised corrosion cells are activated exclusively at slip steps by loading and developed into corrosion trenches. No cracks have developed from the corrosion trenches until the induction period is exceeded. The induction period is regarded as a time for localised corrosion cells to achieve a critical degree of occlusion for crack initiation. The repassivation rate of exposed metal by creep or emergence of slip steps decreases as the load increases and is very sensitive to the microstructural changes that affect slip tep height. The greater susceptibility to stress corrosion cracking of either prestrained or grain coarsened 26Cr-1Mo alloy compared with that of mill annealed material results from a significant reduction of repassivation rate associated with the increased slip step height. The angular titanium carbonitrides particles dispersed in Ti-stabilized 26Cr-1Mo alloy have a detrimental effect on the resistance to stress corrosion cracking

  10. Mechanical properties and microstructure changes of low-activation 3Cr-2W-V-Ti ferritic steels developed for nuclear applications

    International Nuclear Information System (INIS)

    Asakura, Kentaro; Kohyama, Akira; Yamada, Takemi.

    1990-01-01

    The effects of alloying elements such as Cr, W, V and Mn on tensile strength at elevated temperatures, creep-rupture properties and toughness of low activation (2.25-3)Cr-(2-2.5)W-V-Ti steels were investigated together with their microstructure change during high temperature exposure. These steels were normalized to produce bainitic structures in the same manner as that for a conventional 2.25Cr-1Mo steel. They presented superior tensile strength at elevated temperatures and creep-rupture strength in comparison with a conventional 2.25Cr-1Mo steel. The creep-rupture strength of the steels at 500degC for 100 000 h demonstrated about twice that of the conventional 2.25Cr-1Mo steel. The 3Cr-2.5W-0.2V-0.01Ti steel is recommended as a potential low activation ferritic steel for nuclear applications with well optimized mechanical properties, such as tensile strength at elevated temperatures, creep-rupture strength and toughness. The effects of alloying elements were discussed with correlating microstructural and mechanical aspects. (author)

  11. Isothermal steam oxidation of the ferritic 11% Cr steel (DIN No. 1.4914) at 900 to 13000C

    International Nuclear Information System (INIS)

    Zurek, Z.

    1982-11-01

    The steam oxidation of ferritic 11% Cr steel tube and sheet samples at 900 to 1300 0 C has been studied gravimetrically, metallographically, by X-ray diffraction and in detail by electron probe microanalysis. The reaction rate could be described by parabolic kinetics of mass increase. During the oxidation a three-layer scale was formed on the surface. The inner layer was composed of iron-chromium spinel, the intermediate layer consisted of a mixture wustite and magnetite, the very thin outer layer was composed of magnetite. Within the inner scale layer small metallic particles enriched of nickel could be observed. The scale cohesion was generally poor for tube as well as for sheet material and was improving with oxidation time and temperature. After oxidation Pt-markers indicated the growth of inner and outer layer in relation to the initial metal surface. The sheet material specimens exposed at 1000-1100 0 C had blisters on their surfaces. A swelling of about 12-15% was measured for the oxidized tubing. Isotherme Dampf-Oxidation des ferritischen 11% Cr-Stahls (Werkstoff Nr. 1.4914) bei 900 - 1300 0 C. (orig.) [de

  12. Future directions for ferritic/martensitic steels for nuclear applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Swindeman, R.W.

    2000-01-01

    High-chromium (7-12% Cr) ferritic/martensitic steels are being considered for nuclear applications for both fission and fusion reactors. Conventional 9-12Cr Cr-Mo steels were the first candidates for these applications. For fusion reactors, reduced-activation steels were developed that were patterned on the conventional steels but with molybdenum replaced by tungsten and niobium replaced by tantalum. Both the conventional and reduced-activation steels are considered to have an upper operating temperature limit of about 550degC. For improved reactor efficiency, higher operating temperatures are required. For ferritic/martensitic steels that could meet such requirements, oxide dispersion-strengthened (ODS) steels are being considered. In this paper, the ferritic/martensitic steels that are candidate steels for nuclear applications will be reviewed, the prospect for ODS steel development and the development of steels produced by conventional processes will be discussed. (author)

  13. Boron-bearing Influences of 9Cr-0.5Mo-2W-V-Nb Ferritic/Martensitic Steels for a SFR Fuel Cladding

    International Nuclear Information System (INIS)

    Baek, Jong-Hyuk; Han, Chang-Hee; Kim, Woo-Gon; Kim, Sung-Ho; Lee, Chan-Bock

    2008-01-01

    Currently the principal materials in a SFR (sodium-cooled fast reactor) of Gen-IV nuclear system are considering stainless steels (e.g. austenitic steels and ferritic/martensitic steels) for pressure boundary and structural applications in the primary circuit (cladding, duct, cold and hot leg piping, and pressure vessel). There are sound technical justifications for these material selections, and the adoption of these stainless steels for a wide range of nuclear and non-nuclear applications has generated much industrial technology and experience. However, there are strong incentives to develop advanced materials, especially cladding, for the Gen-IV SFR. The Gen-IV SFR is to have a considerable increase in safety and be economically competitive when compared with the conventional water reactors. To accomplish these objectives, the development of the fuel cladding material should be set forth as a premise because its integrity is directly related to those of the reactor system as well as the fuel in the Gen-IV SFR. Since last year, a R and D program was launched to develop the improved ferritic/martensitic steel for the Gen-IV SFR fuel cladding. Categories of materials considered in the program included 8 - 12% Cr ferritic/ martensitic steels. A strong recommendation was made for the development of a high strength steel equivalent to or superior to ASTM Gr.92 steel to offset the difficulties encountered with commercial available steels of the 8 - 12% Cr group. That is, since fuel cladding in the Gen-IV SFR would operate under higher temperatures than 600 .deg. C, contacting with liquid sodium, and be irradiated by neutrons to as high as 200dpa, the cladding should thus sustain both superior irradiation and temperature stabilities during an operational life. The newly developed advanced steel should overcome the severe drawback; mechanical properties, especially creep, are deteriorated at a higher temperature over 600 .deg. C. In this study, as one of the composition

  14. Triple ion-beam studies of radiation damage in 9Cr2WVTa ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Lee, E.H.; Hunn, J.D.; Rao, G.R.; Klueh, R.L.; Mansur, L.K.

    1997-01-01

    To simulate radiation damage under a future Spallation Neutron Source (SNS) environment, irradiation experiments were conducted on a candidate 9Cr-2WVTa ferritic/martensitic steel using the Triple Ion Facility (TIF) at ORNL. Irradiation was conducted in single, dual, and triple ion beam modes using 3.5 MeV Fe ++ , 360 keV He + , and 180 keV H + at 80, 200, and 350 degrees C. These irradiations produced various defects comprising black dots, dislocation loops, line dislocations, and gas bubbles, which led to hardening. The largest increase in hardness, over 63 %, was observed after 50 dpa for triple beam irradiation conditions, revealing that both He and H are augmenting the hardening. Hardness increased less than 30 % after 30 dpa at 200 degrees C by triple beams, compatible with neutron irradiation data from previous work which showed about a 30 % increase in yield strength after 27.2 dpa at 365 degrees C. However, the very large concentrations of gas bubbles in the matrix and on lath and grain boundaries after these simulated SNS irradiations make predictions of fracture behavior from fission reactor irradiations to spallation target conditions inadvisable

  15. Irradiation effects on tensile ductility and dynamic toughness of ferritic-martensitic 7-12 Cr steels

    International Nuclear Information System (INIS)

    Preininger, D.

    2006-01-01

    The superimposed effect of irradiation-induced hardening by small defects (clusters, dislocation loops) and chromium-rich - precipitate formations on tensile ductility and Charpy-impact behaviour of various ferritic-martensitic (7-13)CrWVTa(Ti)-RAFM steels have been examined by micro-mechanical deformation and ductile/dynamic fracture models. Analytical relations have been deduced describing irradiation-induced changes of uniform ductility and fracture strain as well as ductile-to-brittle transition temperature DBTT and ductile upper shelf energy USE observed from impact tests. The models apply work-hardening with competitive action of relevant dislocation multiplication and annihilation reactions. The impact model takes into account stress intensity with local plasticity and fracture within the damage zone of main crack. Especially, the influences of radiation-induced changes in ductile and dynamic fracture stresses have been considered together with effects from strain rate sensitivity of strength, precipitate morphology as mean size dp and volume fraction fv as well as deformation temperature and strain rate. For these, particularly the correlation between tensile ductility and impact properties have been examined. Strengthening by clusters and loops generally reduces uniform ductility, and more stronger fracture strain as well as ductile upper shelf energy USE and additionally increases DBTT for constant fracture stresses. A superimposed precipitation hardening by formation of 3-6 nm, f v 6 nm, which clear above the sharable limit of coherent precipitates increases with increasing fraction fv and but strongly reduces with increasing matrix strength due to full martensitic structure, higher C, N alloying contents and pronounced hardening by irradiation-induced cluster and loop formations. A combined increase of fracture stresses due to irradiation-induced changes of the grain boundary structure diminishes the strength-induced increase in DBTT and more stronger

  16. Characterization of 2.25Cr1Mo welded ferritic steel plate by using diffractometric and ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cernuschi, F.; Ghia, S. [Ente Nazionale per l`Energia Elettrica, Milan (Italy); Albertini, G.; Ceretti, M.; Rustichelli, F. [Ancona Univ. (Italy). Ist. di Fisica Medica; Castelnuovo, A.; Depero, L. [Univ. degli studi, Brescia.Fac. di ingegneria, dip. di ingegneria meccanica (Italy); Giamboni, S.; Gori, M. [Centro Elettrotecnico Sperimentale Italiano (CESI), Milan (Italy)

    1995-12-01

    Four different techniques (X-ray and neutron diffraction, ultrasonic birefringence and incremental hole drilling method) were applied for evaluating residual stress in a butt-welded ferritic steel palte. Measurements were carried out both before and after welding. Effects of post-welding heat treatment is also considered. A comparison between results obtained by using four different techniques is done.

  17. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Peng, E-mail: doup@tsinghua.edu.cn [School of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko, E-mail: kimura@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Okuda, Takanari, E-mail: okuda.takanari@kki.kobelco.com [Kobelco Research Institute, 1-5-5 Takatsukadai, Nishi-ku, Kobe, Hyogo 651-2271 (Japan); Inoue, Masaki, E-mail: inoue.masaki@jaea.go.jp [Advanced Nuclear System R& D Directorate, Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan); Ukai, Shigeharu, E-mail: s-ukai@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Ohnuki, Somei, E-mail: ohnuki@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Fujisawa, Toshiharu, E-mail: fujisawa@esi.nagoya-u.ac.jp [EcoTopia Science Institute, Nagoya University, Furo, Chikusa-ku, Nagoya 464-8603 (Japan); Abe, Fujio, E-mail: ABE.Fujio@nims.go.jp [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Jiang, Shan, E-mail: js93518@gmail.com [School of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Yang, Zhigang, E-mail: zgyang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-03-15

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y{sub 2}O{sub 3}), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y{sub 2}O{sub 3}), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y{sub 2}Hf{sub 2}O{sub 7} oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y{sub 2}Hf{sub 2}O{sub 7} oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  18. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    International Nuclear Information System (INIS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-01-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y 2 O 3 ), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y 2 O 3 ), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y 2 Hf 2 O 7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y 2 Hf 2 O 7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  19. Ferritic stainless steels: corrosion resistance + economy

    International Nuclear Information System (INIS)

    Remus, A.L.

    1976-01-01

    Ferritic stainless steels provide corrosion resistance at lower cost. They include Type 409, Type 439, 18SR, 20-Mo (1.6 Mo), 18-2 (2 Mo), 26-1S, E-Brite 26-1, 29 Cr-4 Mo, and 29 Cr-4 Mo-2 Ni. Their corrosion and mechanical properties are examined. Resistance to stress-corrosion cracking is an advantage compared to austenitic types

  20. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Sham, T.-L.; Tan, L.; Yamamoto, Y.

    2013-01-01

    Summary of creep, thermal aging and weldability aspects: • The creep resistance of advanced 9Cr FM steels was greatly enhanced by optimizing their compositions as well as by using TMT. – Up to about 700 times increase in creep life, compared to Gr91, was achieved under the accelerated test conditions at 600°C. • The increased density of ultrafine precipitates facilitated the increase in strength and thermal aging resistance, leading to the improved creep resistance. • Properties of four candidate austenitic alloys, HT-UPS, NF709, and two modified HT-UPS alloy (designated Alloys A and B), have been evaluated and compared with 316H. – Alloys A and B showed successful improvement in weldability. – Only a little difference in thermal stability of the alloys in solution annealed conditions. 10% cold work increased the yield strength of the alloys for more than 200% compared to the HT-UPS without cold work. – HT-UPS exhibited the best creep properties among the alloys with and without cold work, and NF709 followed

  1. Effect of zirconium addition on the microstructure and mechanical properties of 15Cr-ODS ferritic Steels consolidated by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haijian, E-mail: haijianxu@eis.hokudai.ac.jp [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Material Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Lu, Zheng; Wang, Dongmei; Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2017-01-15

    The influence of Zr addition on the microstructure and mechanical properties of mechanically alloyed (MA) ODS ferritic steels were studied in this work. The microstructure characteristics included the grain size, oxide particles number densities, size distributions, crystal structures and compositions. TEM foils measurements were complemented by studies of alloys on carbon extraction replica and focus ion beam (FIB) foils. The tensile properties were carried out at different temperatures. The microstructure and mechanical properties were analyzed and compared with nominal compositions (wt.%): Fe-15Cr-2W-0.3Y{sub 2}O{sub 3} and Fe-15Cr −2W-0.3Zr-0.3Y{sub 2}O{sub 3}. The experimental revealed that the addition of Zr increased the volume fraction of the smallest and equiaxed ferritic grains, number density of nano-oxide particles and decreased the average size of oxide particles within the ferritic matrix, promoting the formation of fine trigonal δ-phase Y{sub 4}Zr{sub 3}O{sub 12} nano-oxides and leading to the enhancement of the mechanical properties of the ODS steels.

  2. The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe-Cr-Al-REM ferritic stainless steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Qu, H.P., E-mail: quhuapeng0926@163.com [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Lang, Y.P. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Yao, C.F. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Zhuozhou Works, Central Iron and Steel Research Institute (CISRI), 2 HuoJuNan Road, Zhuozhou 072750, Hebei (China); Chen, H.T.; Yang, C.Q. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China)

    2013-02-01

    This study presents research works about the effects of heat treatment on recrystallized equiaxed grain size, precipitation, room temperature (RT) toughness and ductile to brittle transition temperature (DBTT) of Fe-Cr-Al-REM ferritic stainless steel (FSS) hot-rolled sheet. Results showed that the recrystallization of hot-rolled Fe-Cr-Al-REM FSS sheet could be completed after annealing treatment at 750 Degree-Sign C for 15 min with the equiaxed grain diameter of approximately 50 {mu}m. Inappropriate annealing treatment would inevitably leads to the unexpected grain coarsening. On the other hand, a great deal of needle-like or spot-like fine aluminum-lanthanum compound Al{sub 11}La{sub 3} precipitates were observed in the ferrite matrix after 1 h aging treatment at 750 Degree-Sign C. The microstructure observation results associated with the impact test definitely illustrated that the Al{sub 11}La{sub 3} precipitates was the reason for the brittle crack in the as-casted ingot and as-forged slab. The real DBTT of the annealed Fe-Cr-Al-REM FSS sheet with average grain size of about 50 {mu}m was -4 Degree-Sign C. Meanwhile, the DBTT of the hot-rolled Fe-Cr-Al-REM stainless steel sheet was evidently increased as the recrystallized grain size increased.

  3. AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Petrenec, Martin; Obrtlík, Karel; Polák, Jaroslav

    2004-01-01

    Roč. 52, č. 19 (2004), s. 5551-5561 ISSN 1359-6454 R&D Projects: GA ČR GA106/00/D055; GA ČR GA106/01/0376; GA AV ČR IAA2041201 Institutional research plan: CEZ:AV0Z2041904 Keywords : ferritic steel * fatigue * persistent slip band Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.490, year: 2004

  4. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  5. Influences of Mo and W on the precipitation of secondary phases and the associated localized corrosion and embrittlement in 29%Cr ferritic stainless steels

    International Nuclear Information System (INIS)

    Park, Chan Jin; Ahn, Myung Kyu; Kwon, Hyuk Sang

    2005-01-01

    Influences of molybdenum (Mo) substitution by tungsten (W) on the formation kinetics of secondary phases and the associated localized corrosion and embrittlement of Fe-29Cr-4Mo. Fe-29Cr-4W, and Fe-29Cr-8W ferritic stainless steels were investigated. Fine χ phase formed first in grain boundaries in an early stage of aging and it was gradually substituted by σ phase with further aging. The precipitation rate of σ phase appears to be determined by both the diffusion rates of W and Mo for the formation of the σ phase as well as by the affinity of χ phase, as a competitor, for the elements. Due to the high affinity of χ phase for W with a slow diffusion rate, the nucleation of σ phase was significantly delayed in Fe-29Cr-4W and Fe-29Cr-8W alloys compared with that in Fe-29Cr-4Mo alloy. In addition, the deterioration of ductility and localized corrosion resistance by the precipitation of secondary phases was significantly retarded in Fe-29Cr-4W alloy compared with that in Fe-29Cr-4Mo alloy, due to the delayed precipitation of secondary phases in Fe-29Cr-4W alloy. In particular, retardation of degradation in localized corrosion resistance by the formation of σ phase, which induced significant depletion of Cr and W (or Mo) around the phase, was prominent in the W-containing alloys. The W-containing alloys exhibited effective delay of σ phase formation

  6. Irradiation creep in ferritic steels

    International Nuclear Information System (INIS)

    Vandermeulen, W.; Bremaecker, A. de; Burbure, S. de; Huet, J.J.; Asbroeck, P. van

    Pressurized and non-pressurized capsules of several ferritic steels have been irradiated in Rapsodie between 400 and 500 0 C up to 3.7 x 10 22 n/cm 2 (E>0.1 MeV). Results of the diameter measurements are presented and show that the total in-pile deformation is lower than for austenitic steels

  7. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making

    Science.gov (United States)

    Klueh, R.L.; Maziasz, P.J.

    1994-03-08

    This work describes a high strength, high toughness bainitic/ferritic steel alloy comprising about 2.75% to 4.0% chromium, about 2.0% to 3.5% tungsten, about 0.10% to 0.30% vanadium, and about 0.1% to 0.15% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy having been heated to an austenitizing temperature and then cooled at a rate sufficient to produce carbide-free acicular bainite. 15 figures.

  8. Influence of dynamic sodium environment on the creep-fatigue behaviour of Modified 9Cr-1Mo ferritic-martensitic steel

    International Nuclear Information System (INIS)

    Kannan, R.; Ganesan, V.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Mathew, M.D.; Bhanu Sankara Rao, K.

    2011-01-01

    Highlights: → The effects of dynamic sodium on the CFI behaviour of Mod. 9Cr-1Mo steel has investigated. → The cyclic stress response of Mod. 9Cr-1Mo steel under flowing sodium environment is similar to that of air environment. → The creep-fatigue endurance of the alloy is found to decrease with introduction of hold time and with increase in the duration of hold time and the factor of life increase in sodium compared to air environment is reduced with increase in hold time. → In contrast to air environment, tensile holds were found to be more damaging than compression hold in sodium environment. → Design rules based on air environment can be safely applied for the components operating in sodium environment. - Abstract: The use of liquid sodium as a heat transfer medium for sodium-cooled fast reactors (SFRs) necessitates a clear understanding of the effects of dynamic sodium on low cycle fatigue (LCF), creep and creep-fatigue interaction (CFI) behaviour of reactor structural materials. Mod. 9Cr-1Mo ferritic steel is the material of current interest for the steam generator components of sodium cooled fast reactors. The steam generator has a design life of 30-40 years. The effects of dynamic sodium on the LCF and CFI behaviour of Mod. 9Cr-1Mo steel have been investigated at 823 and 873 K. The CFI life of the steel showed marginal increase under flowing sodium environment when compared to air environment. Hence, the design rules for creep-fatigue interaction based on air tests can be safely applied for components operating in sodium environment. This paper attempts to explain the observed LCF and CFI results based on the detailed metallography and fractography conducted on the failed samples.

  9. Boundary and sub-boundary hardening in high-Cr ferritic steels during long-term creep at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Abe, F. [National Institute for Materials Science (NIMS) (Japan)

    2008-07-01

    The sub-boundary hardening is shown to be the most important strengthening mechanism in creep of the 9% Cr steel base metal and welded joints. The addition of boron reduces the coarsening rate of M{sub 23}C{sub 6} carbides along boundaries near prior austenite grain boundaries during creep, enhancing the sub-boundary hardening. This improves long-term creep strength. The enhancement of boundary and subboundary hardening by fine distribution of precipitates along boundaries is significantly reduced in fine-grained region of Ac{sub 3} HAZ simulated specimens of conventional steels P92 and P122. In NIMS 9% Cr boron steel welded joints, the grain size and distribution of carbonitrides are substantially the same between the HAZ and base metal, where fine carbonitrides are distributed along the lath and block boundaries as well as along prior austenite grain boundaries. This is essential for the suppression of Type IV fracture in NIMS 9% Cr boron steel welded joints. (orig.)

  10. Development of ferritic steels for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs.

  11. Development of ferritic steels for fusion reactor applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs

  12. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...

  13. Effect of heat treatment and irradiation temperature on mechanical properties and structure of reduced-activation Cr-W-V steels of bainitic, martensitic, and martensitic-ferritic classes

    International Nuclear Information System (INIS)

    Gorynin, I.V.; Rybin, V.V.; Kursevich, I.P.; Lapin, A.N.; Nesterova, E.V.; Klepikov, E.Yu.

    2000-01-01

    Effects of molybdenum replacement by tungsten in steels of the bainitic, martensitic, and martensitic-ferritic classes containing 2.5%, 8% and 11% Cr, respectively, were investigated. The phase composition and structure of the bainitic steels were varied by changing the cooling rates from the austenitization temperature (from values typical for normalization up to V=3.3 x 10 -2 deg. C/s) and then tempering. The steels were irradiated to a fluence of 4x10 23 n/m 2 (≥0.5 MeV) at 270 deg. C and to fluences of 1.3x10 23 and 1.2x10 24 n/m 2 (≥0.5 MeV) at 70 deg. C. The 2.5Cr-1.4WV and 8Cr-1.5WV steels have shown lower values of the shifts in ductile-brittle transition temperature (DBTT) under irradiation in comparison with corresponding Cr-Mo steels. Radiation embrittlement at elevated irradiation temperature was lowest in bainitic 2.5Cr-1.4WV steel and martensitic-ferritic 11Cr-1.5WV steel. The positive effect of molybdenum replacement by tungsten at irradiation temperature ∼300 deg. C is reversed at T irr =70 deg. C

  14. Effect of Si and Mn additions on ferrite and austenite phase fractions in 25Cr-7Ni-1.5Mo-3W base super duplex stainless steels

    International Nuclear Information System (INIS)

    Jeong, S.W.; Lee, Z.-H.; Lee, H.M.

    2000-01-01

    The effect of heat treatment and Si and Mn additions on the ferrite and austenite phase fractions of the super duplex stainless steel (SDSS), Fe-25Cr-7Ni-1.5Mo-3W-Si-Mn-0.25N (numbers are all in wt.% unless specified otherwise), was investigated. The thermodynamic calculations of phase equilibria and phase fractions were performed using the Thermo-Calc program. Based on the calculated results, specific compositions of Si and Mn were selected and alloys with these compositions were analysed by Feritscope, X-ray diffractometry and scanning electron microscopy. The calculated phase fractions and experimentally analysed ones were compared and there was a good agreement between calculations and measurements. The optimum heat treatment condition for Fe-25Cr-7Ni-1.5Mo-3W-0.5Si-0.5Mn-0.25N is to hold at 1050 to 1100 C for 2 h in considering the ferrite to austenite ratio of 50:50 and to avoid second phase precipitation such as the σ phase. It was suggested that an excessive addition of more than 0.8Si and 1.0Mn may induce the σ phase precipitation. (orig.)

  15. Radiation induced microstructural evolution in ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Kohno, Y.; Kohyama, A.; Asakura, K.; Gelles, D.S.

    1993-01-01

    R and D of ferritic/martensitic steels as structural materials for fusion reactor is one of the most important issues of fusion technology. The efforts to characterize microstructural evolution under irradiation in the conventional Fe-Cr-Mo steels as well as newly developed Fe-Cr-Mn or Fe-Cr-W low activation ferritic/ martensitic steels have been continued. This paper provides some of the recent results of heavy irradiation effects on the microstructural evolution of ferritic/martensitic steels neutron irradiated in the FFTF/MOTA (Fast Flux Test Facility/Materials Open Test Assembly). Materials examined are Fe-10Cr-2Mo dual phase steel (JFMS: Japanese Ferritic/Martensitic Steel), Fe-12Cr-XMn-1Mo manganese stabilized martensitic steels and Fe-8Cr-2W Tungsten stabilized low activation martensitic steel (F82H). JFMS showed excellent void swelling resistance similar to 12Cr martensitic steel such as HT-9, while the manganese stabilized steels and F82H showed less void swelling resistance with small amount of void swelling at 640-700 K (F82H: 0.14% at 678 K). As for irradiation response of precipitate behavior, significant formation of intermetallic χ phase was observed in the manganese stabilized steels along grain boundaries which is though to cause mechanical property degradation. On the other hand, precipitates identified were the same type as those in unirradiated condition in F82H with no recognition of irradiation induced precipitates, which suggested satisfactory mechanical properties of F82H after the irradiation. (author)

  16. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel

    International Nuclear Information System (INIS)

    Hosoi, Y.; Wade, N.; Kunimitsu, S.; Urita, T.

    1986-01-01

    This study clarified the relationship between the toughness of a 9Cr-2Mo dual phase steel and precipitates formed during aging, with special attention to the Laves phase (Fe 2 Mo). The ductile-brittle transition temperature (DBTT) is increased and the upper shelf energy decreased when the Laves phase begins to precipitate during aging. Electron microscopy and X-ray diffraction indicate that elimination of Si in the steel reduces the precipitation of the Laves phase and results in maintaining good toughness. It is also noted that the toughness of the steel is controlled by the total amount of precipitates (Laves + carbides) in the aging at 873 K for more than 3.6x10 3 ks. A time-temperature-precipitation diagram for the Laves phase is established and it clearly shows that the precipitation of the Laves phase is markedly retarded by the decrease of Si content. In Si-free steel, no Laves phase is observed in the temperature and time range investigated. (orig.)

  17. Preliminary results of effect of environment on the low cycle fatigue behaviour of type 316 stainless steel and 9% Cr ferritic steel

    International Nuclear Information System (INIS)

    Wood, D.S.; Slattery, G.F.; Wynn, J.; Connaughton, M.D.; Lambert, M.E.

    1976-06-01

    Strain controlled fatigue tests on Type 316 steel at 625 0 C and 9% Cr steel at 525 0 C have been performed in air and in helium containing 200 μ atm H 2 and 1 μ atm H 2 O. In rapid cycling the endurance of Type 316 steel in this helium mixture was found to be about five times longer than in air. When a hold time was introduced into the tension part of the cycle however the endurance in the two environments was found to be virtually identical. Fractomicrographic examinations have been performed which have helped to explain some of these findings which are attributed to differences in oxidation behaviour at the crack tip. In the case of the 90% Cr steel the endurance in the helium mixture was found to be only slightly better than in air. The implications of these results are considered in relation to thermal shock effects on sodium cooled fast reactor components. (author)

  18. Influence of Powder Outgassing Conditions on the Chemical, Microstructural, and Mechanical Properties of a 14 wt% Cr Ferritic ODS Steel

    Science.gov (United States)

    Sornin, D.; Giroux, P.-F.; Rigal, E.; Fabregue, D.; Soulas, R.; Hamon, D.

    2017-11-01

    Oxide dispersion-strengthened ferritic stainless steels are foreseen as fuel cladding tube materials for the new generation of sodium fast nuclear reactors. Those materials, which exhibit remarkable creep properties at high temperature, are reinforced by a dense precipitation of nanometric oxides. This precipitation is obtained by mechanical alloying of a powder and subsequent consolidation. Before consolidation, to obtain a fully dense material, the powder is vacuumed to outgas trapped gases and species adsorbed at the surface of the powder particles. This operation is commonly done at moderate to high temperature to evacuate as much as possible volatile species. This paper focuses on the influence of outgassing conditions on some properties of the further consolidated materials. Chemical composition and microstructural characterization of different materials obtained from various outgassing cycles are compared. Finally, impact toughness of those materials is evaluated by using Charpy testing. This study shows a significant influence of the outgassing conditions on the mechanical properties of the consolidated material. However, microstructure and oxygen contents seem poorly impacted by the various outgassing conditions.

  19. Microstructural evolution in modified 9Cr-1Mo ferritic/martensitic steel irradiated with mixed high-energy proton and neutron spectra at low temperatures

    International Nuclear Information System (INIS)

    Sencer, B.H.; Garner, F.A.; Gelles, D.S.; Bond, G.M.; Maloy, S.A.

    2002-01-01

    Modified 9Cr-1Mo ferritic/martensitic steel was exposed at 32-57 deg. C to a mixed proton/neutron particle flux and spectrum at the Los Alamos Neutron Science Center. The microstructure of unirradiated 9Cr-1Mo consists of laths, dislocations and carbides. Examination of electron diffraction patterns obtained from extraction replicas of unirradiated 9Cr-1Mo revealed that the precipitate microstructure was primarily dominated by M 23 C 6 carbides. The post-irradiation microstructure contained black-spot damage in addition to precipitates and dislocations. Examination of electron diffraction patterns revealed diffuse rings from M 23 C 6 carbides, indicating amorphization and/or nanocrystallinity. Crystalline MC carbides were also found. No cavity formation was found although a significant amount of helium and hydrogen generation had been generated. TEM-EDS examination of extraction replicas for carbides from unirradiated and irradiated samples did not show any detectable changes in composition of either M 23 C 6 or MC carbides. There was also no evident change in carbide size. Lattice images of M 23 C 6 carbides revealed an amorphous microstructure following irradiation, but MC carbides were still crystalline

  20. Influence of microstructural development during annealing at 780oC on creep resistance of ferritic-martensitic T91 (9%Cr-1%Mo-V-Nb) steel

    International Nuclear Information System (INIS)

    De Cicco, H; Zavaleta Gutierrez, N; Marrero, J; Luppo, M.I; Danon, C.A

    2006-01-01

    Due to its good properties of creep resistance, toughness and rust resistance, martensitic-ferritic 9%Cr-1%Mo steels are widely used for the production of heating plant components, boilers, heat exchangers, piping and tubing, etc. The effectiveness in steels of MX carbonitrides such as (Nb,V) (C,N) on improving creep resistance at high temperatures is well known. Controlling the behavior of the MX phases to precipitation, during annealing, is essential for obtaining a stable microstructure that can resist high temperatures. This study investigates the relationship between creep resistance and the microstructural changes that occur at different annealing times at a temperature of 780 o C -used industrially during the production and post-welding- in T91 steel. Creep trials were carried out at 600 o C and 190 MPa, and the samples were characterized using optic microscopy (OM), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and transmission electron microscopy (TEM), the latter including a facility for energy dispersive spectroscopy (EDS). Based on its morphological characteristics, the MX precipitates are classified into three types, types I, II and III. Tempering time at 780 o C has been found to be one of the factors that determines which MX is dominant in the annealed steel. The presence of type MX-III, formed by the secondary precipitation of a VN particle adhering to a NbX, commonly called 'wing', seems to favor creep resistance in these steels. This type of of precipitate, then, fills an effective role in the anchoring of dislocations during creep (cw)

  1. Microstructure and mechanical properties in the weld heat affected zone of 9Cr-2W-VTa reduced activation ferritic/martensitic steel for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh; Lee, Changhoon; Lee, Taeho; Jang, Minho; Park, Mingu [Korea Institute of Materials Science, Changwon (Korea, Republic of); Kim, Hyoung Chan [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Reduced activation ferritic/martensitic (RAFM) steel demonstrated excellent resistance to the neutron irradiation and mechanical properties. The investigation of weldability in company with the development of RAFM steel is essential for construction of the fusion reactor. Generally, the superior mechanical properties of the RAFM steel can be upset during welding process due to microstructural change by rapid heating and cooling in the weld heat affected zone (HAZ). The phase transformation and mechanical properties in the weld HAZ of RAFM steel were investigated. The base steel consisted of tempered martensite and two carbides. During rapid welding thermal cycle, the microstructure of the base steel was transformed into martensite and δ-ferrite. In addition, the volume fraction of δ-ferrite and grain size increased with increase in the peak temperature and heat input. The strength of the HAZs was higher than that of the base steel due to the formation of martensite, whereas the impact properties of the HAZs deteriorated as compared with the base steel due to the formation of δ-ferrite. The PWHT improved the impact properties of the HAZs, resulting from the formation of tempered martensite.

  2. Helium influence on the microstructure and swelling of 9%Cr ferritic steel after neutron irradiation to 16.3 dpa

    International Nuclear Information System (INIS)

    Klimenkov, M.; Möslang, A.; Materna-Morris, E.

    2014-01-01

    Specially fabricated samples of the European reference 9Cr-WTaV steel EUROFER 97 alloyed with 0.081 mass% natural B and 0.081 and 0.114 mass% pure isotope 10 B were neutron-irradiated with about 16.3 dpa at temperatures in the range from 523 K to 723 K to study the influence of helium produced by 10 B(n,α) 7 Li transmutation reaction on microstructure, swelling and hardness. The spatial and size distributions of helium bubbles or cavities after irradiation at different temperatures were investigated by transmission electron microscopy. Vickers microhardness HV0.1 tests were performed on the as received specimens and specimens after irradiation. The influence of irradiation temperature and helium concentration on the size and density of the bubbles or cavities was analyzed and correlations with the hardness, tensile properties, and the fracture surface were discussed

  3. Effect of free Cr content on corrosion behavior of 3Cr steels in a CO2 environment

    Science.gov (United States)

    Li, Wei; Xu, Lining; Qiao, Lijie; Li, Jinxu

    2017-12-01

    The corrosion behavior of 3Cr steels with three microstructures (martensite, bainite, combined ferrite and pearlite) in simulated oil field formation water with a CO2 partial pressure of 0.8 MPa was investigated. The relationships between Cr concentrations in corrosion scales and corrosion rates were studied. The precipitated phases that contained Cr were observed in steels of different microstructures, and free Cr content levels were compared. The results showed that steel with the martensite microstructure had the highest free Cr content, and thus had the highest corrosion resistance. The free Cr content of bainite steel was lower than that of martensite steel, and the corrosion rate of bainite steel was higher than that of martensite steel. Because large masses of Cr were combined in ferrite and pearlite steel, the corrosion rates of ferrite and pearlite steel were the highest. Free Cr content in steel affects its corrosion behavior greatly.

  4. Corrosion Study of Super Ferritic Stainless Steel UNS S44660 (26Cr-3Ni-3Mo) and Several Other Stainless Steel Grades (UNS S31603, S32101, and S32205) in Caustic Solution Containing Sodium Sulfide

    Science.gov (United States)

    Chasse, Kevin R.; Singh, Preet M.

    2013-11-01

    Electrochemical techniques, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used in this study to show how the corrosion mechanism of several commercial grades of stainless steel in hot caustic solution is strongly influenced by the presence of sodium sulfide. Experimental results from super ferritic stainless steel UNS S44660 (26Cr-3Ni-3Mo) were compared to austenitic stainless steel UNS S31603, lean duplex stainless steel (DSS) UNS S32101, and standard DSS UNS S32205 in caustic solution, with and without sodium sulfide, at 443 K (170 °C). Weight loss measurements indicated that corrosion rates of UNS44660 were much lower than the other grades of stainless steel in the presence of the sodium sulfide. Potentiodynamic polarization and linear polarization resistance measurements showed that the electrochemical behavior was altered by the adhesion of sulfur species, which reduced the polarization resistances and increased the anodic current densities. SEM and XPS results imply that the surface films that formed in caustic solution containing sodium sulfide were defective due to the adsorption of sulfide, which destabilized the passive film and led to the formation of insoluble metal sulfide compounds.

  5. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  6. Development of ferritic steels for reduced activation: the US program

    International Nuclear Information System (INIS)

    Klueh, R.L.; Gelles, D.S.; Lechtenberg, T.A.

    1986-01-01

    The Cr-Mo ferritic (martensitic) steels are candidates for the structural components of fusion reactors. Irradiation of such steels in a fusion environment produces long-lived radioactive isotopes, which lead to difficult radioactive waste disposal problems once the structure is removed from service. Such problems could be reduced by using steels that contain only elements that produce radioactive isotopes that decay to low levels in a reasonable time (tens of years instead of hundreds or thousands of years). The US Department of Energy has a program to develop steels to meet the criteria for shallow land burial as opposed to deep geologic storage. A review of the alloy development programs indicates that ferritic steels that meet these criteria can be developed

  7. Microstructure and mechanical properties of unirradiated low activation ferritic steel

    International Nuclear Information System (INIS)

    Hsu, C.Y.; Lechtenberg, T.A.

    1986-01-01

    Transmission electron micrographs of normalized and tempered 9Cr-2.5W-0.3V-0.15C low activation ferritic steel showed tempered lath-type martensite with precipitation of rod and plate-like carbides at lath and grain boundaries. X-ray diffraction analysis of the extracted replicas revealed nearly 100% M 23 C 6 carbides (a=1.064 nm), with no indication of Fe 2 W-type Laves phase even after thermal aging at 600 0 C/1000 h. Thermal aging increased the number density of rod-like M 23 C 6 along prior austenite grain boundaries and martensite lath boundaries. The elevated-temperature tensile strengths of this steel are about 10% higher than the average strengths of commercial heats of 9Cr-1Mo and modified 9Cr-1Mo steels up to 650 0 C, with equivalent uniform elongation and ∝50% decrease in total elongation. The DBTT was determined to be -25 0 C which is similar to other 9Cr-1Mo steels. Fractographic examination of tensile tested specimens shows a mixed mode of equiaxed and elongated dimples at test temperatures above 400 0 C. Modification of the Ga3X alloy composition for opimization of materials properties is discussed. However, the proposed low activation ferritic steel shows the promise of improved mechanical properties over 9Cr-1Mo steels. (orig.)

  8. Ferritic/martensitic steels: Promises and problems

    International Nuclear Information System (INIS)

    Klueh, R.L.; Ehrlich, K.; Abe, F.

    1992-01-01

    Ferritic/martensitic steels are candidate structural materials for fusion reactors because of their higher swelling resistance, higher thermal conductivity, lower thermal expansion, and better liquid-metal compatibility than austenitic steels. Irradiation effects will ultimately determine the applicability of these steels, and the effects of irradiation on microstructure and swelling, and on the tensile, fatigue, and impact properties of the ferritic/martensitic steels are discussed. Most irradiation studies have been carried out in fast reactors, where little transmutation helium forms. Helium has been shown to enhance swelling and affect tensile and fracture behavior, making helium a critical issue, since high helium concentrations will be generated in conjunction with displacement damage in a fusion reactor. These issues are reviewed to evaluate the status of ferritic/martensitic steels and to assess the research required to insure that such steels are viable candidates for fusion applications

  9. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    Science.gov (United States)

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  10. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi

    2000-01-01

    Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y 2 O 3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained

  11. Evaluation of welds on a ferritic-austenitic stainless steel

    International Nuclear Information System (INIS)

    Pleva, J.; Johansson, B.

    1984-01-01

    Five different welding methods for the ferritic-austenitic steel 22Cr6Ni3MoN have been evaluated on mill welded heavy wall pipes. The corrosion resistance of the weld joints has been tested both in standard tests and in special environments, related to certain oil and gas wells. The tests were conclusive in that a welding procedure with the addition of sufficient amounts of filler metal should be employed. TIG welds without or with marginal filler addition showed poor resistance to pitting, and to boiling nitric acid. Contents of main alloying elements in ferrite and austenite phases have been measured and causes of corrosion attack in welds are discussed

  12. Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimian, A., E-mail: ebrahimiana@yahoo.com; Ghasemi Banadkouki, S.S.

    2016-11-20

    In this paper, the effect of carbon and other alloying elements partitioning on ferrite hardening behavior were studied in details using a low alloy AISI4340 ferrite-martensite dual phase (DP) steel. To do so, various re-austenitised samples at 860 °C for 60 min were isothermally heated at 650 °C from 3 to 60 min and then water–quenched to obtain the final ferrite-martensite DP microstructures containing different ferrite and martensite volume fractions. Light and electron microscopic observations were supplemented with electron dispersive spectroscopy (EDS) and nanoindentation tests to explore the localized compositional and hardening variations within ferrite grains in DP samples. The experimental results showed that the ferrite hardness was varied with progress of austenite to ferrite phase transformation in DP samples. In the case of a particular ferrite grain in a particular DP sample, despite a homogeneous distribution of carbon concentration, the ferrite hardness was significantly increased by increasing distance from the central location toward the interfacial α/γ areas. Beside a considerable influence of martensitic phase transformation on adjacent ferrite hardness, these results were rationalized in part to the significant level of Cr and Mo pile-up at α/γ interfaces leading to higher solid solution hardening effect of these regions. The reduction of potential energy developed by attractive interaction between C-Cr and C-Mo couples toward the carbon enriched prior austenite areas were the dominating driving force for pile-up segregation.

  13. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  14. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8-12% Cr ferritic-martensitic steels

    Science.gov (United States)

    Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  15. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8–12% Cr ferritic-martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kupriiyanova, Y.E., E-mail: fomenkoj@kipt.kharkov.ua [National Science Centre Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Bryk, V.V.; Borodin, O.V.; Kalchenko, A.S.; Voyevodin, V.N.; Tolstolutskaya, G.D. [National Science Centre Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States)

    2016-01-15

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe–Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr{sup +3}, 40 keV He{sup +}, and 20 keV H{sup +}. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  16. Substitution of modified 9 Cr-1 Mo steel for austentic stainless steels

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1982-04-01

    This report describes the current program to develop a high-strength ferritic-martensitic steel. The alloy is essentially Fe-9% Cr-1% Mo with small additions of V and Nb and is known as modifed 9 Cr-1 Mo steel. Its elevated-temperature properties and design allowable stresses match those of type 304 stainless steel for temperatures up to 600 0 C and exceed those of other ferritic steels by factors of 2 to 3. The improved strength of this alloy permits its use in place of stainless steels for many applications

  17. Orientation relationship in various 9% Cr ferritic/martensitic steels-EBSD comparison between Nishiyama-Wassermann, Kurdjumov-Sachs and Greninger-Troiano

    International Nuclear Information System (INIS)

    Barcelo, F.; Bechade, J. L.; Fournier, B.

    2010-01-01

    EBSD measurements were carried out on four different martensitic steels (T91, P92, EM10 and Eurofer) in various metallurgical conditions (nine different microstructural states). The usual orientation relationships (ORs) between the parent austenitic phase and the resulting martensite in martensitic steels are those of Nishiyama-Wassermann (NW) and Kurjumov-Sachs (KS). The present study first proposes a methodology based on the combined analysis of the misorientation distribution, the pole figures (PFs) and the angle/axis pairs. This methodology leads to the conclusion that neither NW nor KS relationships are able to account for all the features observed whatever the material under study. A third OR proposed by Greninger and Troiano (GT) proves to describe the relationship between austenite and ferrite in all four different martensitic steels much more accurately. (authors)

  18. Microstructural investigations of fast reactor irradiated austenitic and ferritic-martensitic stainless steel fuel cladding

    International Nuclear Information System (INIS)

    Agueev, V.S.; Medvedeva, E.A.; Mitrofanova, N.M.; Romanueev, V.V.; Tselishev, A.V.

    1992-01-01

    Electron microscopy has been used to characterize the microstructural changes induced in advanced fast reactor fuel claddings fabricated from Cr16Ni15Mo3NbB and Cr16Ni15Mo2Mn2TiVB austenitic stainless steels in the cold worked condition and Cr13Mo2NbVB ferritic -martensitic steel following irradiation in the BOR-60, BN-350 and BN-600 fast reactors. The data are compared with the results obtained from a typical austenitic commercial cladding material, Cr16Ni15Mo3Nb, in the cold worked condition. The results reveal a beneficial effect of boron and other alloying elements in reducing void swelling in 16Cr-15Ni type austenitic steels. The high resistance of ferritic-martensitic steels to void swelling has been confirmed in the Cr13Mo2NbVB steel. (author)

  19. Microstructural characterization of ODS ferritic steels at different processing stages

    Energy Technology Data Exchange (ETDEWEB)

    Gil, E., E-mail: egil@ceit.es; Ordás, N.; García-Rosales, C.; Iturriza, I., E-mail: iiturriza@ceit.es

    2015-10-15

    Highlights: • ODS ferritic stainless steel produced by new route without mechanical alloying. • Fully dense ferritic stainless steels containing Y and Ti were obtained by HIPping. • Y and Ti-rich precipitates prevent grain growth during heat treatment up to 1320 °C. • HIPping at 1220 °C dissolves the metastable oxides on PPBs. - Abstract: Nanostructured Oxide Dispersion Strengthened Reduced Activation Ferritic Stainless Steels (ODS RAF) are promising structural materials for fusion reactors, due to their ultrafine microstructure and the presence of a dispersion of Y–Ti–O nanoclusters that provide excellent creep strength at high temperatures (up to 750 °C). The traditional powder metallurgical route to produce these steels is based on Gas Atomization (GA) + Mechanical Alloying (MA) + HIP + ThermoMechanical Treatments (TMTs). Recently, alternative methods have arisen to avoid the MA step. In line with this new approach, ferritic stainless steel powders were produced by gas atomization and HIPped, after adjusting their oxygen, Y and Ti contents to form Y–Ti–O nanoclusters during subsequent heat treatments. The microstructure of as-HIPped steels mainly consists of ferrite grains, Y–Ti precipitates, carbides and oxides on Prior Particle Boundaries (PPBs). Post-HIP heat treatments performed at high temperatures (1270 and 1300 °C) evaluated the feasibility of achieving a complete dissolution of the oxides on PPBs and a precipitation of ultrafine Ti- and Y-rich oxides in the Fe14Cr2W matrix. FEG-SEM with extensive EDS analysis was used to characterize the microstructure of the atomized powders and the ODS-RAF specimens after HIP consolidation and post-HIP heat treatments. A deeper characterization of atomized powder was carried out by TEM.

  20. Creep constitutive equations for a 0.5Cr 0.5 Mo 0.25V ferritic steel in the temperature range 565 deg. C-675 deg. C

    International Nuclear Information System (INIS)

    Mustata, R.; Hayhurst, D.R.

    2005-01-01

    A two damage state variable model is used to describe the softening mechanisms, damage initiation and growth for a low alloy ferritic steel 1/2Cr-1/2Mo-1/4V at 565 and 590 deg. C within the Continuum Damage Mechanics framework. The level of complexity of the constitutive equations and the degree of coupling through damage is high and it is difficult to calibrate values of the constitutive constants without recourse to optimisation techniques. A methodology for the analysis of uni-axial experimental data, coupled with a traditional gradient-based optimisation technique, is presented for the unique determination of the constitutive constants. Two sets of experimental data on parent material are used for inversion purposes: at 565 deg. C, c.f. Cane [Cane BJ. Collaborative programme on the corelation of test data for high temperature design of welded steam pipes. Presentation and analysis of the material data. Note No. RD/L/2101N81, March, CEGB Laboratory; 1981]; and, at 590 deg. C, c.f. Miller [Miller DA. Private communication: 'Creep rupture testing of Cr M V pipe steel. ERA Project 63-01-040320009'. Barnwood, Gloucs, UK: British Energy; 2000]. The variation of the constitutive parameters with temperature in the range 565-590 deg. C has been deduced by considering the values of constitutive parameters for the same alloy deduced by Perrin and Hayhurst [Perrin IJ, Hayhurst DR. Creep constitutive equations for a 0.5Cr-0.5Mo-0.25V ferritic steel in the temperature range 600-675 deg. C. J Strain Anal 1996;31:299-314] in the temperature range 620-675 deg. C

  1. Comparison of the mechanical strength properties of several high-chromium ferritic steels

    International Nuclear Information System (INIS)

    Booker, M.K.; Sikka, V.K.; Booker, B.L.P.

    1981-01-01

    A modified 9 Cr-1 Mo ferritic steel has been selected as an alternative material for breeder reactors. Different 9 Cr-1 Mo steels are already being used commercially in UK and USA and a 9 Cr-2 Mo steel (EM12) is being used commercially in France. The 12% Cr steel alloy HT9 is also often recommended for high-temperature service. Creep-rupture data for all six seels were analyzed to yield rupture life as a function of stress, temperature, and lot-to-lot variations. Yield and tensile strength data for the three 9 Cr-1 Mo materials were also examined. All results were compared with Type 304 stainless steel, and the tensile and creep properties of the modified and British 9 Cr-1 Mo materials were used to calculate allowable stress values S 0 per Section VIII, Division 1 and S/sub m/ per code Case N-47 to section III of the ASME Boiler and Pressure Vessel Code. these values were compared with code listings for American commercial 9 Cr-1 Mo steel, 2 1/4 Cr-1 Mo steel, and Type 304 stainless steel. The conclusion is made that the modified 9 Cr-1 Mo steel displays tensile and creep strengths superior to those of the other ferritic materials examined and is at least comparable to Type 304 stainless steel from room temperature to about 625 0 C. 31 figures

  2. Paraequilibrium Carburization of Duplex and Ferritic Stainless Steels

    Science.gov (United States)

    Michal, G. M.; Gu, X.; Jennings, W. D.; Kahn, H.; Ernst, F.; Heuer, A. H.

    2009-08-01

    AISI 301 and E-BRITE stainless steels were subjected to low-temperature (743 K) carburization experiments using a commercial technology developed for carburization of 316 austenitic stainless steels. The AISI 301 steel contained ~40 vol pct ferrite before carburization but had a fully austenitic hardened case, ~20- μm thick, and a surface carbon concentration of ~8 at. pct after treatment; this “colossal” paraequilibrium carbon supersaturation caused an increase in lattice parameter of ~3 pct. The E-BRITE also developed a hardened case, 12- to 18- μm thick, but underwent a more modest (~0.3 pct) increase in lattice parameter; the surface carbon concentration was ~10 at. pct. While the hardened case on the AISI 301 stainless steel appeared to be single-phase austenite, evidence for carbide formation was apparent in X-ray diffractometer (XRD) scans of the E-BRITE. Paraequilibrium phase diagrams were calculated for both AISI 301 and E-BRITE stainless steels using a CALPHAD compound energy-based interstitial solid solution model. In the low-temperature regime of interest, and based upon measured paraequilibrium carbon solubilities, more negative Cr-carbon interaction parameters for austenite than those in the current CALPHAD data base may be appropriate. A sensitivity analysis involving Cr-carbon interaction parameters for ferrite found a strong dependence of carbon solubility on relatively small changes in the magnitude of these parameters.

  3. Material physical properties of 12 chromium ferritic steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Wakai, Takashi; Aoto, Kazumi

    2003-09-01

    High chromium ferritic steel is an attractive candidate for structural material of the next Fast Breeder Reactor, since both of thermal properties and high temperature strength of the steel are superior to those of conventional austenitic stainless steels. In this study, physical properties of 12Cr steels are measured and compared to those obtained in the previous studies to discuss about stochastic dispersions. The effect of measurement technique on Young's modulus and the influence of the specimen size on coefficient of thermal expansion are also investigated. The following conclusions are obtained. (1) Young's modulus of 12Cr steels obtained in this study tends to larger than those obtained in the previous studies especially in high temperature. Such a discrepancy is resulted from the difference in measurement technique. It was clarified that Young's modulus obtained by free vibration method is more adequate those obtained by the cantilever characteristic vibration method. Therefore, the authors recommend using the values obtained by free vibration method as Young's modulus of 12Cr steels. (2) Both instant and mean coefficient of thermal expansion of 12Cr steels obtained in this study is in a good agreement with those obtained in the previous studies. However, the obviously different values are obtained from the measurement by large size specimens. Such a discrepancy is resulted from heterogeneous during heating process of the specimens. Therefore, the authors recommend using the values obtained by φ4 x 20 mm specimens as instant and mean coefficient of thermal expansion of 12Cr steels. (3) Specific heat of 12Cr steels obtained in this study agree with those obtained in the previous studies with a few exceptions. (4)Thermal conductivity of 12Cr steels obtained in this study agree with those obtained in the previous studies. (5) It was confirmed that instant and mean coefficient of thermal expansion, density, specific heat and thermal conductivity of 12Cr steels

  4. Impurity Antimony-Induced Creep Property Deterioration and Its Suppression by Rare Earth Ceriumfor a 9Cr-1Mo Ferritic Heat-Resistant Steel

    Directory of Open Access Journals (Sweden)

    Yewei Xu

    2016-08-01

    Full Text Available The high temperature creep properties of three groups of modified 9Cr-1Mo steel samples, undoped, doped with Sb, and doped with Sb and Ce, are evaluated under the applied stresses from 150 MPa to 210 MPa and at the temperatures from 873–923 K. The creep behavior follows the temperature-compensated power law as well as the Monkman-Grant relation. The creep activation energy for the Sb-doped steel (519 kJ/mol is apparently lower than that for the undoped one (541 kJ/mol, but it is considerably higher for the Sb+Ce-doped steel (621 kJ/mol. Based on the obtained relations, both the creep lifetimes under 50 MPa, 80 MPa, and 100 MPa in the range 853–923 K and the 105 h creep rupture strengths at 853 K, 873 K, and 893 K are predicted. It is demonstrated that the creep properties of the Sb-doped steel are considerably deteriorated but those of the Sb+Ce-doped steel are significantly improved as compared with the undoped steel. Microstructural and microchemical characterizations indicate that the minor addition of Ce can stabilize the microstructure of the steel by segregating to grain boundaries and dislocations, thereby offsetting the deleterious effect of Sb by coarsening the microstructure and weakening the grain boundary.

  5. Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects

    DEFF Research Database (Denmark)

    Chen, Ming; Molin, Sebastian; Zhang, L.

    2015-01-01

    Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell (SOFC) or electrolysis cell (SOEC) stacks. During stack production and operation, nickel from the Ni/YSZ fuel electrode or from the Ni contact component diffuses into the IC plate, causing transformation...... of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume and in mechanical and corrosion properties of the IC plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic stainless steel was conducted, using the CALPHAD...

  6. Microstructural stability of 11Cr ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    Yamashiro, Tetsuya, E-mail: fgsjkr@eng.hokudai.ac.jp [Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Ukai, Shigeharu; Oono, Naoko [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Ohtsuka, Satoshi; Kaito, Takeji [Advanced Nuclear System R& D Directorate, Japan Atomic Energy Agency (JAEA), 4002, Narita, Oarai, Ibaraki-pref. 311-1393 (Japan)

    2016-04-15

    Aiming at further improvement of high-temperature oxidation and corrosion resistance, 11CrODS steel with martensitic base structure has been previously developed, as a candidate fuel cladding material for 4th generation advanced nuclear reactors. In this study, the microstructure of 11CrODS steel was characterized by means of EBSD and nanoindentation hardness measurement. The continuous cooling transformation (CCT) diagram was constructed. Upper critical cooling rate, which is minimum cooling rate necessary to form martensitic structure, was derived to be 60 °C/min (3600 °C/h). In contrast, lower critical cooling rate preventing from martensite formation, was derived to be 10 °C/min (600 °C/h). An area fraction of so called residual ferrite was estimated by image processing of EBSD-IQ map to be 21% of the total area. This fraction of the residual ferrite in 11CrODS steel was evaluated by considering the driving force for α to γ reverse transformation.

  7. Synthesis and Characterization of Oxide Dispersion Strengthened Ferritic Steel via a Sol-Gel Route

    International Nuclear Information System (INIS)

    Sun Qinxing; Zhang Tao; Wang Xianping; Fang Qianfeng; Hu Jing; Liu Changsong

    2012-01-01

    Nanocrystalline oxide dispersion strengthened (ODS) ferritic steel powders with nominal composition of Fe-14Cr-3W-0.3Ti-0.4Y 2 O 3 are synthesized using sol-gel method and hydrogen reduction. At low reduction temperature the impurity phase of CrO is detected. At higher reduction temperature the impurity phase is Cr 2 O 3 which eventually disappears with increasing reduction time. A pure ODS ferritic steel phase is obtained after reducing the sol-gel resultant products at 1200°C for 3 h. The HRTEM and EDS mapping indicate that the Y 2 O 3 particles with a size of about 15 nm are homogenously dispersed in the alloy matrix. The bulk ODS ferritic steel samples prepared from such powders exhibit good mechanical performance with an ultimate tensile stress of 960 MPa.

  8. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  9. Mechanical characterization of a reduced activation 9 Cr ferritic/martensitic steel of spanish production; Caracterizacion mecanica de un acero ferritico/martenitico de activacion reducida de produccion espanola

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Serrano, M.

    2012-07-01

    This paper shows the first results concerning the characterization of two heats of a reduced activation 9 Cr ferritic/martensitic steel (RAFM) made in Spain, called AF1B and AF2A. The results of this characterization are compared with their European counterparts, EUROFER97-2, which was chosen as reference material. All activities described were performed in the Structural Materials Unit of CIEMAT, within the national project TECNO-FUS CONSOLIDER INGENIO.The two Spanish heats have the same production process and heat treatment. Both heats have a similar tensile behaviour similar to EUROFER97-2, but on the other hand impact properties are lower. The microstructure of AF1B reveals large biphasic inclusions that affecting its mechanical properties, especially the impact properties. AF2A casting was free of these inclusions. (Author) 24 refs.

  10. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-12-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.

  11. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    International Nuclear Information System (INIS)

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-01-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ X-ray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 °C, while the screw type dislocations dominate at 600 °C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 °C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 °C may be explained by the activated cross slip of screw segments. - Highlights: • The tensile deformation of 9Cr ODS steel was studied by synchrotron irradiation. • The evolution of internal mean stress was calculated. • The evolution of dislocation character was determined by best-fit method. • Edge type dominates plasticity at RT and 300 °C, while screw type dominates at 600 °C.

  12. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Miao, Yinbin; Liu, Xiang [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2015-12-15

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ X-ray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 °C, while the screw type dislocations dominate at 600 °C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 °C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 °C may be explained by the activated cross slip of screw segments. - Highlights: • The tensile deformation of 9Cr ODS steel was studied by synchrotron irradiation. • The evolution of internal mean stress was calculated. • The evolution of dislocation character was determined by best-fit method. • Edge type dominates plasticity at RT and 300 °C, while screw type dominates at 600 °C.

  13. Corrosion behaviour of high chromium ferritic stainless steels

    International Nuclear Information System (INIS)

    Kiesheyer, H.; Lennartz, G.; Brandis, H.

    1976-01-01

    Ferritic steels developed for seawater desalination and containing 20 to 28% chromium, up to 5% Mo and additions of nickel and copper have been tested with respect to their corrosion behaviour, in particular in chloride containing media. The materials in the sensibilized state were tested for intercrystalline corrosion susceptibility in the Strauss-, Streicher-, nitric acid hydrofluoric acid- and Huey-Tests. No intercrystalline corrosion was encountered in the case of the steels with 28% Cr and 2% Mo. The resistance to pitting was assessed on the basis of rupture potentials determined by potentiokinetic tests. The resistance of the steels with 20% Cr and 5% Mo or 28% Cr and 2% Mo is superior to that of the molybdenum containing austenitic types. Addition of nickel yields a significant increase in crevice corrosion resistance; the same applies to resistance in sulfuric acid. In boiling seawater all the materials tested are resistant to stress corrosion cracking. No sign of any type of corrosion was found on nickel containing steels after about 6,000 hours exposure to boiling 50% seawater brine even under salt deposits. (orig.) [de

  14. Behavior of the elements in the mechanically alloyed and cast ferritic steels and a type 316 stainless steel in a flowing sodium environment

    International Nuclear Information System (INIS)

    Suzuki, T.; Mutoh, I.

    1988-01-01

    Sodium corrosion behavior of a mechanically alloyed ferritic steel, dispersion-strengthened with addition of Y 2 0 3 and Ti, two kinds of melted/cast ferritic steels and a Type 316 stainless steel was examined by using a non-isothermal sodium loop system, constructed of another Type 316 stainless steel, with a direct resistance electrical heater. The sodium conditions were 675 0 C, 4.0 m/s in velocity and 1-2 ppm oxygen concentration and a cumulative exposure time of the specimens was about 3000 h. The absorption of Ni and selective dissolution of Cr played an important role in the corrosion of the mechanically alloyed ferritic steel as in the case of the cast ferritic steels. However, the region of Ni absorption and Cr diminution was deeper than that of the cast ferritic steels. Peculiar finding for the mechanically alloyed ferritic steel was the corroded surface with irregularly shaped protuberance, that might be related with formation of sodium titanate, and the absorption of carbon and nitrogen to form carbide and nitride of titanium. It seems that these facts resulted in the irregular weight loss of the specimens, which depended on the downstream position and the cumulative exposure time. However, the tensile properties of the mechanically alloyed ferritic steel did not noticeably change by the sodium exposure

  15. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H; Koenig, H. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  16. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K H; Koenig, H [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1999-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  17. Welding of heat-resistant 20% Cr-5% Al steels

    International Nuclear Information System (INIS)

    Tusek, J.; Arbi, D.; Kosmac, A.; Nartnik, U.

    2002-01-01

    The paper treats welding of heat-resistant ferritic stainless steels alloyed with approximately 20% Cr and 5% Al. The major part of the paper is dedicated to welding of 20% Cr-5% Al steel with 3 mm in thickness. Welding was carried out with five different welding processes, i. e., manual metal-arc, MIG, TIG, plasma arc, and laser beam welding processes, using a filler material and using no filler material, respectively. The welded joints obtained were subjected to mechanical tests and the analysis of microstructure in the weld metal and the transition zone. The investigations conducted showed that heat-resistant ferritic stainless 20% Cr-5% Al steel can be welded with fusion welding processes using a Ni-based filler material. (orig.)

  18. Alloys influence in ferritic steels with hydrogen attack

    International Nuclear Information System (INIS)

    Moro, L; Rey Saravia, D; Lombardich, J; Saggio, M; Juan, A; Blanco, J

    2003-01-01

    Materials exposed to a corrosive environment and high temperatures, are associated with a decrease of their mechanical properties and embitterment.At room temperatures atomic hydrogen diffuses easily through metals structure, it accumulates in lattice defects forming molecular hydrogen and generating cracking due to internal stresses.Under high temperatures the phenomenon is more complex.The steels in these conditions present different structures of precipitates, that the change under creep conditions period.In this work it is determined the influence of Cr and V alloys, the changes of ferritic steel resistance in a corrosive environment and high temperatures.1.25 Cr 1 Mo 0.25 V and 2.25Cr 1 Mo under different loads and temperatures previously attacked by hydrogen environment.The hydrogen is induced by the electrolytic technique, optimizing the choice of temperatures, current density, electrolyte, etc. In order to control an adequate cathode charge, a follow up procedure is carried out by electronic barrier microscopy.After the attack, the material is settled at room temperatures for certain period of time, to allow the hydrogen to leave and evaluate the residual damage.Creep by torsion assays, under constant load and temperature is used as an experimental technique.With the outcome data curves are drawn in order to study the secondary creep rate, with the applied load and temperature, determining the value of stress exponent n and the activation energy Q.Comparing to equal assays to the same ferritic steels but non attacked by hydrogen, these values allows the prediction of microstructure changes present during these tests

  19. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  20. Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects

    DEFF Research Database (Denmark)

    Chen, Ming; Alimadadi, Hossein; Molin, Sebastian

    2017-01-01

    Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell and electrolysis cell stacks. During stack production and operation, nickel from the Ni/yttria stabilized zirconia fuel electrode or from the Ni contact component layer diffuses into the interconnect plate......, causing transformation of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume, and in mechanical and corrosion properties of the interconnect plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic...

  1. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM

    Science.gov (United States)

    He, P.; Hoffmann, J.; Möslang, A.

    2018-04-01

    The characteristics of strengthening nanoparticles have a major influence on the mechanical property and irradiation resistance of oxide dispersion strengthened (ODS) steels. To determine how to control nanoparticles evolution, 0.3% Ti with 0.3% Y2O3 were added in 13.5%Cr pre-alloyed steel powders via different milling and consolidation conditions, then characterized by transmission electron microscopy (TEM) and X-ray absorption fine structure (XAFS) at synchrotron irradiation facility. The dissolution of Y2O3 is greatly dependent on the milling time at fixed milling speeds. After 24 h of milling, only minor amounts of the initially added Y2O3 dissolve into the steel matrix whereas TEM results reveal nearly complete dissolution of Y2O3 in 80-h-milled powder. The annealed powder FT-A800 (at 800 °C for 1 h) exhibits a structure near to the initially added Y2O3. The slightly deviation may be accounted for considerable lattice distortion related to the presence of atomic vacancies or formation of Y-Ti-O nucleus. The annealed powders FT-A1000 and FT-A1100 contain complex mixtures of Y-O/Y-Ti-O oxides, which cannot be fitted by any single thermally stable compounds. The coordination numbers of these first two shells in the annealed powders significantly raise as a function of the annealing temperature, indicating the formation of more ordered Y-O or Y-Ti-O particles. The extended X-ray absorption fine structure (EXAFS) spectrum could not necessarily distinguish the dominant oxide species.

  2. Preliminary evaluation of microstructure and mechanical properties on low activation ferritic steels

    International Nuclear Information System (INIS)

    Hsu, C.Y.; Lechtenberg, T.A.

    1985-01-01

    Radioactive waste disposal has become a primary concern for the selection of materials for the structural components for fusion reactors. One way to minimize this potential environmental problem is to use structural materials in which the induced radioactivity decays quickly to levels that allow for near-surface disposal under 10CFR61 rules. The primary objective of this work is to develop low activation ferritic steels that exhibit mechanical and physical properties approximately equivalent to the HT-9 and 9Cr-1Mo steels, but which only contain elements that would permit near-surface disposal under 10CFR61 after exposure to fusion neutrons. A preliminary evaluation of the microstructure and mechanical properties of a 9Cr-2.5W-0.3V-0.15C (GA3X) low activation ferritic steel has been performed. An optimum heat treatment condition has been defined for GA3X steel. The properties and microstructure of the quenched and tempered specimens were characterized via hardness measurement and optical metallographic observation. The hot-microhardness and ductility parameter measurements were used to estimate the tensile properties at elevated temperatures. The estimated tensile strengths of GA3X steel at elevated temperatures are comparable to both 9Cr-1Mo and the modified 9Cr-1Mo steels. These preliminary results are encouraging in that they suggest that suitable low activation alloys can be successfully produced in this ferritic alloy class

  3. Effect of heat treatment and irradiation temperature on impact behavior of irradiated reduced-activation ferritic steels

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.

    1998-01-01

    Charpy tests were conducted on eight normalized-and-tempered reduced-activation ferritic steels irradiated in two different normalized conditions. Irradiation was conducted in the Fast Flux Test Facility at 393 C to ∼14 dpa on steels with 2.25, 5, 9, and 12% Cr (0.1% C) with varying amounts of W, V, and Ta. The different normalization treatments involved changing the cooling rate after austenitization. The faster cooling rate produced 100% bainite in the 2.25 Cr steels, compared to duplex structures of bainite and polygonal ferrite for the slower cooling rate. For both cooling rates, martensite formed in the 5 and 9% Cr steels, and martensite with ∼25% δ-ferrite formed in the 12% Cr steel. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy. The difference in microstructure in the low-chromium steels due to the different heat treatments had little effect on properties. For the high-chromium martensitic steels, only the 5 Cr steel was affected by heat treatment. When the results at 393 C were compared with previous results at 365 C, all but a 5 Cr and a 9 Cr steel showed the expected decrease in the shift in DBTT with increasing temperature

  4. Optimum alloy compositions in reduced-activation martensitic 9Cr steels for fusion reactor

    International Nuclear Information System (INIS)

    Abe, F.; Noda, T.; Okada, M.

    1992-01-01

    In order to obtain potential reduced-activation ferritic steels suitable for fusion reactor structures, the effect of alloying elements W and V on the microstructural evolution, toughness, high-temperature creep and irradiation hardening behavior was investigated for simple 9Cr-W and 9Cr-V steels. The creep strength of the 9Cr-W steels increased but their toughness decreased with increasing W concentration. The 9Cr-V steels exhibited poor creep rupture strength, far below that of a conventional 9Cr-1MoVNb steel and poor toughness after aging at 873 K. It was also found that the Δ-ferrite should be avoided, because it degraded both the roughness and high-temperature creep strength. Based on the results on the simple steels, optimized martensitic 9Cr steels were alloy-designed from a standpoint of enough thoughness and high-temperature creep strength. Two kinds of optimized 9Cr steels with low and high levels of W were obtained; 9Cr-1WVTa and 9Cr-3WVTa. These steels indeed exhibited excellent toughness and creep strength, respectively. The 9Cr-1WVTa steel exhibiting an excellent roughness was shown to be the most promising for relatively low-temperature application below 500deg C, where irradiation embrittlement is significant. The 9Cr-3WVTa steel was the most promising for high temperature application above 500deg C from the standpoint of enough high-temperature strength. (orig.)

  5. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  6. Behavior of ferritic steels irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Erler, Jean; Maillard, Arlette; Brun, Gilbert; Lehmann, Jeanne; Dupouy, J.-M.

    1979-01-01

    Ferritic steels were irradiated in Rapsodie and Phenix at varying doses. The swelling and irradiation creep characteristics are reported below as are the mechanical characteristics of these materials [fr

  7. The behaviour of ferritic steels under fast neutron irradiation

    International Nuclear Information System (INIS)

    Erler, J.; Maillard, A.; Brun, G.; Lehmann, J.; Dupouy, J.M.

    1979-07-01

    Ferritic steels have been irradiated in Rapsodie and Phenix to doses up to 150 dpa F. The swelling and irradiation creep characteristics and the mechanical properties of these materials are reported. (author)

  8. The liquid metal embrittlement of iron and ferritic steels in sodium

    International Nuclear Information System (INIS)

    Hilditch, J.P.; Hurley, J.R.; Tice, D.R.; Skeldon, P.

    1995-01-01

    The liquid metal embrittlement of iron and A508 III, 21/4Cr-1Mo and 15Mo3 steels in sodium at 200-400 o C has been studied, using dynamic straining at 10 -6 s -1 , in order to investigate the roles of microstructure and composition. The steels comprised bainitic, martensitic, tempered martensitic and ferritic/pearlitic microstructures. All materials were embrittled by sodium, the embrittlement being associated generally with quasicleavage on fracture surfaces. Intergranular cracking was also found with martensitic and ferritic/pearlitic microstructures. The susceptibility to embrittlement was greater in higher strength materials and at higher temperatures. The embrittlement was similar to that encountered previously in 9Cr steel, which depends upon the presence of non-metallic impurities in the sodium. (author)

  9. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    OpenAIRE

    Fauzi F. A.; Kurniawan T.; Salwani M. S.; Bin Y. S.; Harun W. S. W.

    2016-01-01

    The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on...

  10. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    OpenAIRE

    Je-Kang Du; Chih-Yeh Chao; Yu-Ting Jhong; Chung-Hao Wu; Ju-Hui Wu

    2016-01-01

    Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the anti...

  11. Pit initiation resistance of ferritic stainless steels in chloride environments from 800 to 2600C

    International Nuclear Information System (INIS)

    Cieslak, W.R.; Duquette, D.J.

    1983-01-01

    The pitting resistance of high-purity ferritic stainless steels has been studied by potentiodynamic anodic polarization, mechanical film-rupture (scratch) testing, and microstructural examination. The purpose has been to determine the ability of the Fe-Cr-Mo alloys to resist pit initiation at temperatures up to 260 0 C in chloride environments. At temperatures exceeding about 200 0 C, Cr is shown to become much more effective than Mo to enhance alloy pitting resistance. In fact, at 260 0 C, 2% Mo does not noticeably affect the pitting resistance of 18% Cr or 28% Cr steels. Also, 5% Mo is more effective for the lower Cr than for the higher Cr alloy, unlike lower temperatures, at which the effect of the two elements is greater than additive. Preferential localized attack at microstructural features, e.g. inclusions, is not observed under any of the experimental conditions, rather the pit-initiation resistance is controlled solely by alloy composition

  12. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route

    International Nuclear Information System (INIS)

    Guo Lina; Jia Chengchang; Hu Benfu; Li Huiying

    2010-01-01

    A reduced activation oxide dispersion strengthened (ODS) ferritic steel with nominal composition of Fe-12Cr-2.5W-0.25Ti-0.2V-0.4Y 2 O 3 (designated 12Cr-ODS) was produced by using EDTA-citrate complex method to synthesize and add Y 2 O 3 particles to an argon atomized steel powder, followed by hot isostatic pressing at 1160 deg. C for 3 h under the pressure of 130 MPa, forging at 1150 deg. C, and heat treatment at 1050 deg. C for 2 h. The microstructure, tensile, and Charpy impact properties of the 12Cr-ODS steel were investigated. Transmission electron microscopy studies indicate that the 12Cr-ODS steel exhibits the characteristic ferritic structure containing few dislocations. Tensile characterization has shown that the 12Cr-ODS steel has superior tensile strength accompanied by good elongation at room temperature and 550 deg. C. The material exhibits very attractive Charpy impact properties with upper shelf energy of 22 J and a ductile-to-brittle transition temperature (DBTT) of about -15 deg. C. The formation of small, equiaxed grains and fine dispersion of oxide particles are the main reasons for the good compromise between tensile strength and impact properties.

  13. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route

    Energy Technology Data Exchange (ETDEWEB)

    Guo Lina, E-mail: guoln702@yahoo.com.cn [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jia Chengchang; Hu Benfu; Li Huiying [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-07-25

    A reduced activation oxide dispersion strengthened (ODS) ferritic steel with nominal composition of Fe-12Cr-2.5W-0.25Ti-0.2V-0.4Y{sub 2}O{sub 3} (designated 12Cr-ODS) was produced by using EDTA-citrate complex method to synthesize and add Y{sub 2}O{sub 3} particles to an argon atomized steel powder, followed by hot isostatic pressing at 1160 deg. C for 3 h under the pressure of 130 MPa, forging at 1150 deg. C, and heat treatment at 1050 deg. C for 2 h. The microstructure, tensile, and Charpy impact properties of the 12Cr-ODS steel were investigated. Transmission electron microscopy studies indicate that the 12Cr-ODS steel exhibits the characteristic ferritic structure containing few dislocations. Tensile characterization has shown that the 12Cr-ODS steel has superior tensile strength accompanied by good elongation at room temperature and 550 deg. C. The material exhibits very attractive Charpy impact properties with upper shelf energy of 22 J and a ductile-to-brittle transition temperature (DBTT) of about -15 deg. C. The formation of small, equiaxed grains and fine dispersion of oxide particles are the main reasons for the good compromise between tensile strength and impact properties.

  14. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Guo, Xianglong, E-mail: guoxianglong@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Shen, Zhao [Department of Materials Science, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Zhang, Lefu, E-mail: lfzhang@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China)

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer. - Highlights: • We evaluated the corrosion resistance of three different Cr content ODS steels at 650 °C in supercritical water. • Corrosion behavior of ODS steels is rarely reported and ODS steel may be promising material for generation IV reactors. • We found total opposite phenomenon compared to Lee's work before. Our result may be more reasonable.

  15. Effect of Cr and Mo on strain ageing behaviour of low carbon steel

    International Nuclear Information System (INIS)

    Pereloma, E.V.; Bata, V.; Scott, R.I.; Smith, R.M.

    2010-01-01

    This work explores the effects of Cr (0.26-0.74 wt%) and Mo (0.09-0.3 wt%) additions on the kinetics of strain ageing process in low carbon steel. The strain ageing behaviour of the steels was investigated by using tensile tests and transmission electron microscopy. The results have shown that Mo-alloyed steels undergo the same four stages of ageing as unalloyed low carbon steel, whereas Cr-alloyed steels exhibit only three stages of ageing. At the same time, the addition of Mo accelerates the ageing response, while alloying with Cr reduces the rate of strain ageing by ∼3 times in comparison with non-alloyed low carbon steel. It especially delays the offset of Stage III. This is explained by the reduction of carbon content in ferrite due to the enrichment of cementite with Cr leading to the reduction of its equilibrium solubility in ferrite.

  16. Effect of Cr and Mo on strain ageing behaviour of low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Pereloma, E.V., E-mail: elenap@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Bata, V. [Department of Materials Engineering, Monash University (Australia); Scott, R.I.; Smith, R.M. [BlueScope Steel Limited, Port Kembla (Australia)

    2010-04-25

    This work explores the effects of Cr (0.26-0.74 wt%) and Mo (0.09-0.3 wt%) additions on the kinetics of strain ageing process in low carbon steel. The strain ageing behaviour of the steels was investigated by using tensile tests and transmission electron microscopy. The results have shown that Mo-alloyed steels undergo the same four stages of ageing as unalloyed low carbon steel, whereas Cr-alloyed steels exhibit only three stages of ageing. At the same time, the addition of Mo accelerates the ageing response, while alloying with Cr reduces the rate of strain ageing by {approx}3 times in comparison with non-alloyed low carbon steel. It especially delays the offset of Stage III. This is explained by the reduction of carbon content in ferrite due to the enrichment of cementite with Cr leading to the reduction of its equilibrium solubility in ferrite.

  17. Investigation of the relationships between mechanical properties and microstructure in a Fe-9%Cr ODS steel

    OpenAIRE

    Hary Benjamin; Guilbert Thomas; Wident Pierre; Baudin Thierry; Logé Roland; de Carlan Yann

    2016-01-01

    Ferritic-martensitic Oxide Dispersion Strengthened (ODS) steels are potential materials for fuel pin cladding in Sodium Fast Reactor (SFR) and their optimisation is essential for future industrial applications. In this paper, a feasibility study concerning the generation of tensile specimens using a quenching dilatometer is presented. The ODS steel investigated contains 9%Cr and exhibits a phase transformation between ferrite and austenite around 870 °C. The purpose was to generate different ...

  18. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  19. The effect of spheroidizing by thermal cycling in low concentration Cr-Mo alloy steel

    International Nuclear Information System (INIS)

    Yun, H.S.; Kang, C.Y.

    1979-01-01

    An intensive study was carried out on spheroidizing of pearlite (Sph) and number of spherical carbide in proeutectoid ferrite (No/100) of low concentration Cr-Mo steel with thermal cycling. Physical and mechanical properties of steel containing 0.33 % C with thermal cycling were compared with those of low concentration Cr-Mo steel with thermal cycling. The effect of normal heat treatment and cooling rate on spheroidizing of pearlite and precipitation of fine spherical carbide in the steels were investigated. The results obtained were as follows: 1) Thermal cycling of low concentration Cr-Mo steel promoted the spheroidizing of pearlite compared with that of steel without Cr and Mo to steel had significant effect on spheroidizing of pearlite. 2) Number of fine spherical carbides of low concentration Cr-Mo steel with thermal cycling was over 5 times to that of fine spherical carbides of hypoeutectoid steel with thermal cycling. 3) Spheroidizing of pearlite and number of fine spherical carbide in proeutectoid ferrite of low concentration Cr-Mo steel with increasing thermal cycle and cooling rate. 4) Hardness of steel with thermal cycling was decreased. However, low concentration Cr-Mo steel had little decreasing rate in hardness with increasing thermal cycle on the basis of 100 times in thermal cycle. Therefore, toughness was considered to be increased with increasing spheroidizing of pearlite without changing mechanical properties. (author)

  20. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  1. On the corrosion resistance of 01Kh25 ferritic steel

    International Nuclear Information System (INIS)

    Eremeeva, R.A.; Koval', E.K.

    1989-01-01

    Effect of non-ferrous metal ions on corrosion behaviour of 01Kh25 specific low carbon steel as compared to austenitic 12Kh18N10T and 06KhN28MDT steels in boiling solutions of sulfuric and nitric acids and their mixture is studied. Compositions initating commercial ones are chosen the media. It is shown that trough corrosion resistance of 01Kh25 steel in 10% H 2 SO 4 is two order below 06KhN28MDT austenitic steel in presence of Cu 2+ ions as a result of the surface passivation corrosion resistance of ferritic steel is an order higher the austenitic ones. Ferrite steel resistance in the nitric acid and its mixture with sulfuric acid is five timesas much as in 12Kh18N10T austenitic steel

  2. Effect of Zr addition on intergranular corrosion of low-chromium ferritic stainless steel

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, Jeong Kil; Lee, Bong Ho; Seo, Hyung Suk; Kim, Kyoo Young

    2014-01-01

    Addition of Zr to low-Cr ferritic stainless steel forms a mixture of ZrC and Fe 23 Zr 6 precipitates that can prevent intergranular corrosion. Transmission electron microscopy and three-dimensional atom probe analysis suggest that the ZrC and Fe 23 Zr 6 mixture prevents intergranular corrosion in two ways: by acting as a strong carbide former to suppress the formation of Cr-carbide and by acting as a barrier against the diffusion of the solute Cr towards the grain boundary

  3. Effects of alloying and processing modifications on precipitation and strength in 9%Cr ferritic/martensitic steels for fast reactor cladding

    Science.gov (United States)

    Tippey, Kristin E.

    P92 was modified with respect to alloying and processing in the attempt to enhance high-temperature microstructural stability and mechanical properties. Alloying effects were modeled in ThermoCalcRTM and analyzed with reference to literature. ThermoCalcRTM modeling was conducted to design two low-carbon P92-like low-carbon alloys with austenite stabilized by alternative alloying; full conversion to austenite allows for a fully martensitic structure. Goals included avoidance of Z-phase, decrease of M23C6 phase fraction and maintained or increased MX phase fraction. Fine carbonitride precipitation was optimized by selecting alloying compositions such that all V and Nb could be solutionized at temperatures outside the delta-ferrite phase field. A low-carbon alloy (LC) and a low-carbon-zero-niobium alloy (0Nb) were identified and fabricated. This low-carbon approach stems from the increased creep resistance reported in several low-carbon alloys, presumably from reduced M23C6 precipitation and maintained MX precipitation [1], although these low-carbon alloys also contained additional tungsten (W) and cobalt (Co) compared to the base P92 alloy. The synergistic effect of Co and W on the microstructure and mechanical properties are difficult to deconvolute. Higher solutionizing temperatures allow more V and Nb into solution and increase prior austenite grain size; however, at sufficiently high temperatures delta-ferrite forms. Optimal solutionizing temperatures to maximize V and Nb in solution, while avoiding the onset of the delta ferrite phase field, were analyzed in ThermoCalcRTM. Optical microscopy showed ThermoCalc RTM predicted higher delta-ferrite onset temperatures of 20 °C in P92 alloys to nearly 50 °C in the designed alloys of the critical temperature. Identifying the balance where maximum fine precipitation is achieved and delta-ferrite avoided is a key factor in the design of an acceptable P92-like alloy for Generation IV reactor cladding. Processing was

  4. Investigation of Cr-Ni duplex stainless steel

    International Nuclear Information System (INIS)

    Lu Shiying

    1985-01-01

    At temperatures of 450 - 750 0 C, a laminate-shaped intermetallic phase Fe3Cr3Mo2Si2 has been observed. Intergranular brittle fracture is due to the precipitation of the Fe3Cr3Mo2SI2 phase, but quasi-cleavage fracture is connected with the precipitation of chi and σ phases. The formation of chi and σ during aging at 750 - 900 0 C results in a drastic decrease of the SCC resistance of Cr18Ni5 steel. In order to avoid a fully ferritic microstructure in Cr18Ni5 duplex steel after heating at high temperature or welding, the K value must be kept to 0.42 for thin wall tube. The decrease in SCC resistance after cold deformation is not due to the formation of strain-induced martensite but is connected with significant reduction in the resistance to pitting corrosion. (author)

  5. The relationship between microstructure and mechanical properties of ferritic chromium steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter; Cerjak, Horst [Graz Univ. of Technology (Austria); Toda, Yoshiaki; Hara, Toru; Abe, Fujio [National Institute for Materials Science (Japan)

    2008-07-01

    Welding as the major joining and repair technology for steels in thermal power plants has a significant influence on the steels microstructure and, therefore, on its properties. Heat-resistant martensitic 9-12% chromium steels show an affinity to the retention of delta ferrite in the heat-affected zone of their weldments. This is related to their high level of ferrite stabilizing alloying elements such as Cr, W or Mo. Retained delta ferrite in martensitic steel grades has a significant negative influence on creep strength, fatigue strength, toughness and oxidation resistance. In the long-term range of creep exposure, many weldments of martensitic heatresistant steels fail by Type IV cracking in the fine-grained region of the heat-affected zone. In this work, the formation of the heat-affected zone microstructures in martensitic chromium steels is studied by in-situ X-ray diffraction using synchrotron radiation, optical microscopy as well as most advanced electron microscopical methods. The observed microstructure is directly linked to the mechanical properties, i.e. ductility, toughness and creep strength. Characteristic failure modes are discussed in detail. (orig.)

  6. Influence of delta ferrite on mechanical and creep properties of steel P92

    Energy Technology Data Exchange (ETDEWEB)

    Mohyla, Petr [VSB - Technical Univ. of Ostrava (Czech Republic). Faculty of Mechanical Engineering; Kubon, Zdenek [Material and Metallurgical Research Ltd., Ostrava (Czech Republic)

    2010-07-01

    This article presents some new results obtained during research of chromium modified steel P92. This steel is considered the best modified 9-12% Cr steel for the construction of modern power plants with ultra-super-critical steam parameters. High creep rupture strength of steel P92 is characterized by its chemical composition and by microstructure as well. Optimal microstructure of steel P92 is ideally composed of homogeneous martensite and fine dispersion of secondary particles. During the research program one P92 heat with an occurrence of about 20% delta ferrite was produced. The article describes the microstructure of the heat in various modes of heat treatment, as well as the results of mechanical properties tests at room temperature and also creep test results. The results are confronted with properties of other heats that have no delta ferrite. The relevance is on the significant difference while comparing of creep test results. The comparison of results brings conclusions, defining influence of delta ferrite on mechanical and creep properties of P92 steel. (orig.)

  7. Diffusion Couple Alloying of Refractory Metals in Austenitic and Ferritic/Martensitic Steels

    Science.gov (United States)

    2012-03-01

    stainless steel and ferritic/ martensitic steel can vary from structural and support components in the reactor core to reactor fuel...of ferritic/ martensitic steels compared to type 316 stainless steel after irradiation in Experimental Breeder Reactor-II at 420 ºC to ~80dpa (From...ferritic martensitic steel at Sandia National Laboratories. The 316 stainless steel had a certified composition of:

  8. Current status and recent research achievements in ferritic/martensitic steels

    Science.gov (United States)

    Tavassoli, A.-A. F.; Diegele, E.; Lindau, R.; Luzginova, N.; Tanigawa, H.

    2014-12-01

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe-Cr alloys, the chromium range was narrowed to 7-9% and the first RAFM was industrially produced in Japan (F82H: Fe-8%Cr-2%W-TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe-9%Cr-1%W-TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  9. Thermal expansion characteristics of Fe-9Cr-0.12C-0.56Mn-0.24V-1.38W-0.06Ta (wt.%) reduced activation ferritic-martensitic steel

    Science.gov (United States)

    Subramanian, Raju; Tripathy, Haraprasanna; Rai, Arun Kumar; Hajra, Raj Narayan; Saibaba, Saroja; Jayakumar, Tammana; Rajendra Kumar, Ellappan

    2015-04-01

    The lattice and bulk thermal expansion behavior of an Indian version of reduced activation ferritic-martensitic (INRAFM) steel has been quantified using high temperature X-ray diffraction and dilatometry. The lattice parameter of tempered α-ferrite phase exhibited a smooth quadratic increase with temperature, while that of γ-austenite remained fairly linear up to 1273 K. The results suggest that α-ferrite + Carbides → γ-austenite transformation occurs upon continuous heating in the temperature range, 1146 ⩽ T ⩽ 1173 K. Further, this transformation is found to be accompanied by a reduction in average atomic volume. The mean linear thermal expansion coefficients of tempered α-ferrite and γ-austenite phases are estimated to be about 1.48 × 10-5 and 2.4 × 10-5 K-1 respectively. The magnetic contribution to relative thermal dilatation (Δl/l298)mag is found to be small and negative, as compared to phonon contribution.

  10. Excellent corrosion resistance of 18Cr-20Ni-5Si steel in liquid Pb-Bi

    International Nuclear Information System (INIS)

    Kurata, Y.; Futakawa, M.

    2004-01-01

    The corrosion properties of three austenitic steels with different Si contents were studied under oxygen-saturated liquid Pb-Bi condition for 3000 h. The three austenitic steels did not exhibit appreciable dissolution of Ni and Cr at 450 deg. C. At 550 deg. C, the thick ferrite layer produced by dissolution of Ni and Cr was found in JPCA and 316SS with low Si contents while the protective oxide film composed of Si and O was formed on 18Cr-20Ni-5Si steel and prevented dissolution of Ni and Cr

  11. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  12. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  13. Effects of Temperature and Strain Rate on Tensile Deformation Behavior of 9Cr-0.5Mo-1.8W-VNb Ferritic Heat-Resistant Steel

    Science.gov (United States)

    Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming

    2017-09-01

    A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.

  14. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R.

    2011-01-01

    Highlights: → Oxidation is the primary corrosion phenomenon for the steels exposed to S-CO 2 . → The austenitic steels showed significantly better corrosion resistance than the ferritic-martensitic steels. → Alloying elements (e.g., Mo and Al) showed distinct effects on oxidation behavior. - Abstract: Supercritical carbon dioxide (S-CO 2 ) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO 2 at 650 deg. C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  15. Stress-controlled inelastic behavior of modified 9 Cr-1 Mo steel at elevated temperatures

    International Nuclear Information System (INIS)

    Taguchi, Kosei.

    1989-01-01

    Interest in the ferritic steels of higher chromium concentration has increased recently because of an economical combination of mechanical and corrosion properties at elevated temperatures. A modified 9 Cr-1 Mo ferritic steel, developed in the United States, has been expected as an alternative structural material for fast breeder reactor components, in which Type 304 stainless steel or 2.25 Cr-1 Mo steel is currently used. For application of this material to the structural components, a lot of work has been done to develop evaluation methods for the deformation behavior and strength properties. The authors have studied the inelastic behavior and the creep-fatigue properties of modified 9 Cr-1 Mo steel at elevated temperatures, and proposed a constitutive equation and a creep-fatigue damage equation based on the overstress concept. In this paper, the applicability is discussed of the constitutive equation to stress-controlled inelastic behavior, such as creep strain hardening and stress cycling

  16. Influence of delta ferrite on corrosion susceptibility of AISI 304 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Lawrence O. Osoba

    2016-12-01

    Full Text Available In the current study, the influence of delta (δ ferrite on the corrosion susceptibility of AISI 304 austenitic stainless steel was evaluated in 1Molar concentration of sulphuric acid (H2SO4 and 1Molar concentration of sodium chloride (NaCl. The study was performed at ambient temperature using electrochemical technique—Tafel plots to evaluate the corrosive tendencies of the austenitic stainless steel sample. The as-received (stainless steel specimen and 60% cold-worked (stainless steel specimens were isothermally annealed at 1,100°C for 2 h and 1 h, respectively, and quenched in water. The results obtained show that the heat-treated specimen and the 60% cold-worked plus heat-treated specimen exhibited higher corrosion susceptibility than the as-received specimen, which invariably contained the highest fraction of δ ferrite particles. The finding shows that the presence of δ ferrite, in which chromium (Cr, the main corrosion inhibitor segregates, does not degrade and or reduces the resistance to aqueous corrosion of the austenitic stainless steel material.

  17. Impurity content of reduced-activation ferritic steels and a vanadium alloy

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.; Bloom, E.E.

    1997-01-01

    Inductively coupled plasma mass spectrometry was used to analyze a reduced-activation ferritic/martensitic steel and a vanadium alloy for low-level impurities that would compromise the reduced-activation characteristics of these materials. The ferritic steel was from the 5-ton IEA heat of modified F82H, and the vanadium alloy was from a 500-kg heat of V-4Cr-4Ti. To compare techniques for analysis of low concentrations of impurities, the vanadium alloy was also examined by glow discharge mass spectrometry. Two other reduced-activation steels and two commercial ferritic steels were also analyzed to determine the difference in the level of the detrimental impurities in the IEA heat and steels for which no extra effort was made to restrict some of the tramp impurities. Silver, cobalt, molybdenum, and niobium proved to be the tramp impurities of most importance. The levels observed in these two materials produced with present technology exceeded the limits for low activation for either shallow land burial or recycling. The chemical analyses provide a benchmark for the improvement in production technology required to achieve reduced activation; they also provide a set of concentrations for calculating decay characteristics for reduced-activation materials. The results indicate the progress that has been made and give an indication of what must still be done before the reduced-activation criteria can be achieved

  18. The influence of delta ferrite in the AISI 416 stainless steel hot workability

    International Nuclear Information System (INIS)

    Cardoso, P.H.S.; Kwietniewski, C.; Porto, J.P.; Reguly, A.; Strohaecker, T.R.

    2003-01-01

    Delta ferrite in martensitic stainless steels may have an adverse effect on the mechanical properties of these materials at high temperature. The occurrence of such phase is determined by the material chemical composition (mainly Cr and C), as-received microstructure condition and hot working temperature. The aim of this investigation is to assess the influence of delta ferrite on the hot workability of the martensitic AISI 416 stainless steel. Hence, different heats of this material (differing in chemical composition and as-received microstructure) were submitted to heating tests in order to observe the microstructural transformations that take place at high temperature and then examine the influence of these transformations on the mechanical behaviour. Phase characterisation and quantification were carried out using scanning electron microscopy/energy-dispersive X-ray microanalysis and image analysis. The heating tests were performed in the temperature range of 1100-1350 deg. C and hot workability in two heats with different delta ferrite content was assessed by hot torsion tests in the temperature range of 1000-1250 deg. C. The results have indicated that chemical composition and as-received microstructure strongly affect delta ferrite formation, which in turn deteriorates hot workability of the martensitic AISI 416 stainless steel

  19. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb Bi at 450 and 550 °C

    Science.gov (United States)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-08-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 °C and 550 °C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 °C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 °C. Corrosion depth of ferritic/martensitic steels also decreases at 550 °C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 °C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 °C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr.

  20. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550 deg. C

    International Nuclear Information System (INIS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-01-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 deg. C and 550 deg. C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 deg. C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 deg. C. Corrosion depth of ferritic/martensitic steels also decreases at 550 deg. C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 deg. C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 deg. C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr

  1. Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation

    Science.gov (United States)

    Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.

    1988-07-01

    The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along directions.

  2. Identification of Age, Temperature and Radiation Effect on Ferritic Steel Microstructure Based on Artificial Intelligence

    International Nuclear Information System (INIS)

    Mike Susmikanti; Entin Hartini; Antonius Sitompul

    2008-01-01

    In the construction of nuclear installation, it is important to know the material condition used on it. Considering mechanical properties of these materials, there are some material change affected by ageing, temperature and radiation. For some years, austenitic stainless steel are used as a fuel cladding in fast breeder reactor. However this material will not sufficiently competitive from economic point of view for the next year. Experiment result on ferritic steel gave information of stronger structural properties compared to austenitic stainless steel. Modeling and simulation will support further identification of this material changing caused by such effects. Pattern recognition of these changes base on artificial intelligence is expected to support the research and development activities on nuclear structure materials. Material structure pattern of these materials, observed by SEM, are converted using image processing system. Its characteristic is then analyzed with principal component using perception method, which usually used on identifying and learning neural network system based on artificial intelligence. Specific design and input are needed to identify the change of material structure pattern before and after any applied effect. In this paper, simulation of changing identification on three types ferritic steel F17(17 Cr), EM 12 (9 CR-2 MoNbV), and EMI 0 (9 Cr-I Mo) were done. The microstructure data before and after effect are taken from some references. The whole pattern recognition process are done using MATLAB software package. (author)

  3. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  4. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang, E-mail: thaksang.byun@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hoelzer, David T. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kim, Jeoung Han [Hanbat National University, Daejeon 305-719 (Korea, Republic of); Maloy, Stuart A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-15

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The K{sub JQ} versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  5. Precipitation Kinetics in a Nb-stabilized Ferritic Stainless Steel

    Science.gov (United States)

    Labonne, M.; Graux, A.; Cazottes, S.; Danoix, F.; Cuvilly, F.; Chassagne, F.; Perez, M.; Massardier, V.

    2017-08-01

    The precipitation occurring in a Nb-stabilized ferritic stainless steel, containing initially Nb(C, N) carbonitrides and Fe3Nb3X precipitates, was investigated during aging treatments performed between 923 K and 1163 K (650 °C and 890 °C) by combining different techniques, (thermoelectric power (TEP), scanning/transmission electron microscopy (SEM/TEM), and atom probe tomography (APT)), in order to determine the precipitation kinetics, the nature and morphology of the newly formed precipitates as well as the chemistry of the initial Fe3Nb3X precipitates, where X stands for C or N. The following composition was proposed for these precipitates: (Fe0.81 Cr0.19)3 (Nb0.85 Si0.08 Mo0.07)3 (N0.8 C0.2), highlighting the simultaneous presence of N and C in the precipitates. With regard to the precipitation in the investigated temperature range, two main phenomena, associated with a hardness decrease, were clearly identified: (i) the precipitation of Fe2Nb precipitates from the niobium initially present in solution or coming from the progressive dissolution of the Fe3Nb3X precipitates and (ii) the precipitation of the χ-phase at grain boundaries for longer aging times. From the TEP kinetics, a time-temperature-precipitation diagram has been proposed.

  6. Evaluation of carburization depth in service exposed ferritic steel using magnetic Barkhausen noise analysis

    International Nuclear Information System (INIS)

    Vaidyanathan, S.; Moorthy, V.; Jayakumar, T.; Baldev Raj

    1996-01-01

    The feasibility of using magnetic Barkhausen (MBN) measurement for the evaluation of carburization depth in ferritic steels has been reported in this paper. MBN measurements were carried out on samples from service exposed 0.5Cr-0.5Mo ferritic steel tube at different depths (cross section) from carburised ID surface to simulate the variation in carbon concentration gradient within the skin depth of MBN with increasing time of exposure to carburization. It has been observed that the MBN level increases with increasing depth of measurement. An inverse relation between MBN level and carbon content/hardness value has been observed. This study suggests that, the MBN measurements on the carburised surface can be correlated with the concentration gradient within the skin depth of the MBN which would help in predicting the approximate depth of the carburised layer with proper prior calibration. (author)

  7. Irradiation proposition of ferritic steels in a russian reactor

    International Nuclear Information System (INIS)

    Seran, J.L.; Decours, J.; Levy, L.

    1987-04-01

    Using the low temperatures of russian reactors, a sample irradiation is proposed to study mechanical properties and swelling of martensitic steels (EM10, T91, 1.4914, HT9), ferrito-martensitic (EM12) and ferritic (F17), at temperatures lower than 400 0 C [fr

  8. Aging behaviour of 25Cr-17Mn high nitrogen duplex stainless steel

    OpenAIRE

    Machado, I. F.; Padilha, A. F.

    2000-01-01

    The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainle...

  9. Development of ferritic steels for steam generators of fast breeder reactors

    International Nuclear Information System (INIS)

    Nguyen-Thanh; Vigneron, G.; Vanderschaeghe, A.

    1988-01-01

    STEIN INDUSTRIE, a manufacturer of equipment for the conventional and nuclear power industry, has built up expertise in the use of Cr-Mo steels used at high temperatures. The main ferritic steels developed were 10 CD 9-10 (AFNOR), Z10 CDNb V 9-2 (AFNOR), X 20 Cr Mo V 12-1 (DIN) and ASTM Grade 9.1. For the fast breeder reactor system, STEIN INDUSTRIE proposes the use of these steels in the construction of steam generators. The wide programme of development undertaken by STEIN INDUSTRIE is aimed at the following main subjects: - characterization of materials - welding and bending tests - studies of special junctions. This article reports the results obtained

  10. Application of thermoelectricity to NDE of thermally aged cast duplex stainless steels and neutron irradiated ferritic steels

    International Nuclear Information System (INIS)

    Coste, J.F.; Leborgne, J.M.; Massoud, J.P.; Grisot, O.; Miloudi, S.

    1997-10-01

    The thermoelectric power (TEP) of an alloy depends mainly on its temperature, its chemical composition and its atomic arrangement. The TEP measurement technique is used in order to study and follow two degradation phenomena affecting some components of the primary loop of Pressurized Water Reactors (PWR). The first degradation phenomenon is the thermal aging of cast duplex stainless steel components. The de-mixing of the ferritic Fe-Cr-Ni slid solution is responsible for the decreasing of the mechanical characteristics. Laboratory studies have shown the sensitivity of TEP to the de-mixing phenomenon. TEP increases linearly with the ferrite content and with and Arrhenius-type aging parameter depending on time, temperature and activation energy. TEP is also correlated to mechanic characteristics. The second degradation phenomenon is the aging of ferritic steels due to neutron irradiation at about 290 deg C. In this case, the degradation mechanism is the formation of clusters of solute atoms and/or copper rich precipitates that causes the hardening of the material. As a first approach, a study of binary Fe-Cu alloys irradiated by electrons at 288 deg C has revealed the possibility of following the copper depletion of the ferritic matrix. Moreover, the recovery of the mechanical properties of the alloy by annealing can be monitored. Finally, a correlation between Vickers hardness and TEP has been established. (author)

  11. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pasebani, Somayeh [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Cole, James I. [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Alsagabi, Sultan F. [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States)

    2016-03-15

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La{sub 2}O{sub 3} (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr–Ti–La–O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 10{sup 24} m{sup −3}. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  12. Corrosion behavior of austenitic and ferritic/martensitic steels in oxygen-saturated liquid Pb-Bi eutectic at 450circC and 550circC

    OpenAIRE

    倉田 有司; 二川 正敏; 斎藤 滋

    2005-01-01

    Static corrosion tests of various austenitic and ferritic/martensitic steels were conducted in oxygen-saturated liquid Pb-Bi at 450circC and 550circC for 3000h to study the effects of temperature and alloying elements on corrosion behavior. Oxidation, grain boundary corrosion, dissolution and penetration were observed. The corrosion depth decreases at 450circC with increasing Cr content in steels regardless of ferritic/martensitic or austenitic steels. Appreciable dissolution of Ni and Cr doe...

  13. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... NUCLEAR REGULATORY COMMISSION [[NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in...

  14. Intragranular ferrite morphologies in medium carbon vanadium-microalloyed steel

    Directory of Open Access Journals (Sweden)

    Fadel A.

    2013-01-01

    Full Text Available The aim of this work was to determine TTT diagram of medium carbon V-N micro-alloyed steel with emphasis on the development of intragranular ferrite morphologies. The isothermal treatment was carried out at 350, 400, 450, 500, 550 and 600°C. These treatments were interrupted at different times in order to analyze the evolution of the microstructure. Metallographic evaluation was done using optical and scanning electron microscopy (SEM. The results show that at high temperatures (≥ 500°C polygonal intragranulary nucleated ferrite idiomorphs, combined with grain boundary ferrite and pearlite were produced and followed by an incomplete transformation phenomenon. At intermediate temperatures (450, 500°C an interloced acicular ferrite (AF microstructure is produced, and at low temperatures (400, 350°C the sheave of parallel acicular ferrite plates, similar to bainitic sheaves but intragranularly nucleated were observed. In addition to sheaf type acicular ferrite, the grain boundary nucleated bainitic sheaves are observed. [Projekat Ministartsva nauke Republike Srbije, br. OI174004

  15. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    Science.gov (United States)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  16. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    Directory of Open Access Journals (Sweden)

    Fauzi F. A.

    2016-01-01

    Full Text Available The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on the substrate of steel by pack cementation process for two hours at the temperature of 850ºC, 950ºC and 1050ºC, respectively. XRD analysis indicated that chromium was successfully deposited at all temperatures. Somehow, SEM cross sectional image showed that continuous layer of chromium was not continuously formed at 850oC. Therefore, this research clarify that chromium enrichment by pack cementation may be conducted at the temperature above 950°C.

  17. European development of ferritic-martensitic steels for fast reactor wrapper applications

    International Nuclear Information System (INIS)

    Bagley, K.; Little, E.A.; Levy, V.; Alamo, A.

    1987-01-01

    9-12%Cr ferritic-martensitic stainless steels are under development in Europe for fast reactor sub-assembly wrapper applications. Within this class of alloys, attention is focussed on three key specifications, viz. FV448 and DIN 1.4914 (both 10-12%CrMoVNb steels) and EM10 (an 8-10%Cr-0.15%C steel), which can be optimized to give acceptably low ductile-brittle transition characteristics. The results of studies on these steels, and earlier choices, covering heat treatment and compositional optimization, evolution of wrapper fabrication routes, pre and post-irradiation mechanical property and fracture toughness behaviour, microstructural stability, void swelling and in-reactor creep characteristics are reviewed. The retention of high void swelling to displacement doses in excess of 100 dpa in reactor irradiations reaffirms the selection of 9-12%Cr steels for on-going wrapper development. Moreover, irradiation-induced changes in mechanical properties (e.g. in-reactor creep and impact behaviour), measured to intermediate doses, do not give cause for concern; however, additional data to higher doses and at the lower irradiation temperatures of 370 0 -400 0 C are needed in order to fully endorse these alloys for high burnup applications in advanced reactor systems

  18. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    Science.gov (United States)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  19. Soft zone formation in dissimilar welds between two Cr-Mo steels

    International Nuclear Information System (INIS)

    Albert, S.K.; Gill, T.P.S.; Tyagi, A.K.; Mannan, S.L.; Rodriguez, P.; Kulkarni, S.D.

    1997-01-01

    Two dissimilar weldments between 9Cr-1Mo and 2.25Cr-1Mo ferritic steels have been characterized for their microstructural stability during various postweld heat treatments (PWHTs). The samples for the investigation were extracted from bead-on-plate weldments made by depositing 2.25Cr-1Mo weld metal on 9Cr-1Mo base plate and vice versa. Subsequent application of PWHT resulted in the formation of a soft zone in the low Cr ferritic steel weld or base plate. A carbide-rich hard zone, adjoining the soft zone, was also detected in the high Cr side of the weldment. Unmixed zones in the weld metal provided additional soft and hard zones in the weld metals. The migration of carbon from low-Cr steel to high-Cr steel, driven by the carbon activity gradient, has been shown to be responsible for the formation of soft and hard zones. A carbon activity diagram for 2.25Cr-1Mo/9Cr-1Mo weldments has been proposed to aid in the selection of welding consumables for reducing or preventing the soft zone formation

  20. Steamside Oxidation Behavior of Experimental 9%Cr Steels

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Holcomb, G.R.; Alman, D.E.; Jablonski, P.D.

    2007-10-01

    Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650ºC for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.

  1. Evaluation of mechanical properties and nano-meso structures of 9–11%Cr ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, Takashi, E-mail: tanno.takashi@jaea.go.jp [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Ohtsuka, Satoshi; Yano, Yasuhide; Kaito, Takeji [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Oba, Yojiro; Ohnuma, Masato [National Institute for Materials Science, Tsukuba 305-1195 (Japan); Koyama, Shinichi; Tanaka, Kenya [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan)

    2013-09-15

    Highlights: • We successfully manufactured 11Cr-ODS steels with residual α-ferrite controlled. • Dispersion conditions of nano oxide particles were quantitatively characterized. • Tungsten solid solution could improve only tensile strength of ODS steels at 973 K. • Oxide dispersion strengthening was dominant in creep strength of ODS steels at 973 K. -- Abstract: This study carried out mechanical tests and microstructural characterizations of several 9Cr and 11Cr-ODS tempered martensitic steels. From those results, the appropriate chemical composition range of 11Cr-ODS tempered martensitic steel was discussed from the viewpoint of high temperature strength improvement. It was shown that the residual α-ferrite fraction in 11Cr-ODS steel was successfully controlled to the same level as the 9Cr-ODS steel, which has excellent high temperature strength, by selecting the chemical compositions on the basis of the multi-component phase diagram. The tensile strength decreased with decreasing W content from 2.0 to 1.4 wt%. On the other hand, creep strength at 973 K did not degrade by the decreasing W content. Both tensile strength and creep strength increased with increasing population of the nano-sized oxide particles. Small angle X-ray scattering analysis revealed that titanium and excess oxygen contents were key parameters in order to improve the dispersion conditions of nano-sized oxide particles.

  2. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition

    International Nuclear Information System (INIS)

    Xu, Hai Jian; Lu, Zheng; Wang, Dong Mei; Liu, Chunming

    2017-01-01

    To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of Fe-9Cr-2W-0.3Y_2O-3 and Fe-9Cr-2W-0.3Zr-0.3Y_2O_3 were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal δ-phase Y_4Zr_3O_1_2 oxides and body-centered cubic Y_2O_3 oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of Y_4Zr_3O_1_2 particles is much smaller than that of Y_2O_3. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is 1.1 x 10"2"3/m"3 with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time

  3. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hai Jian; Lu, Zheng; Wang, Dong Mei; Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang (China)

    2017-02-15

    To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of Fe-9Cr-2W-0.3Y{sub 2}O-3 and Fe-9Cr-2W-0.3Zr-0.3Y{sub 2}O{sub 3} were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal δ-phase Y{sub 4}Zr{sub 3}O{sub 12} oxides and body-centered cubic Y{sub 2}O{sub 3} oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of Y{sub 4}Zr{sub 3}O{sub 12} particles is much smaller than that of Y{sub 2}O{sub 3}. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is 1.1 x 10{sup 23}/m{sup 3} with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time.

  4. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhangbo; Lo, Wei-Yang [Department of Materials Science and Engineering, Nuclear Engineering Program, University of Florida, Gainesville, FL 32611 (United States); Chen, Yiren [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Pakarinen, Janne [Belgian Nuclear Research Center (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Wu, Yaqiao [Department of Materials Science and Engineering, Boise State University, Boise, ID 83715 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Allen, Todd [Engineering Physics Department, University of Wisconsin, Madison, WI 53706 (United States); Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Yang, Yong, E-mail: yongyang@ufl.edu [Department of Materials Science and Engineering, Nuclear Engineering Program, University of Florida, Gainesville, FL 32611 (United States)

    2015-11-15

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ∼315 °C to 0.08 dpa (5.6 × 10{sup 19} n/cm{sup 2}, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10{sup −9} dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  5. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    International Nuclear Information System (INIS)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-01-01

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ∼315 °C to 0.08 dpa (5.6 × 10"1"9 n/cm"2, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10"−"9 dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  6. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  7. Ferritic steels for the first generation of breeder blankets

    International Nuclear Information System (INIS)

    Diegele, E.

    2009-01-01

    Materials development in nuclear fusion for in-vessel components, i.e. for breeder blankets and divertors, has a history of more than two decades. It is the specific in-service and loading conditions and the consequentially required properties in combination with safety standards and social-economic demands that create a unique set of specifications. Objectives of Fusion for Energy (F4E) include: 1) To provide Europe's contribution to the ITER international fusion energy project; 2) To implement the Broader Approach agreement between Euratom and Japan; 3) To prepare for the construction and demonstration of fusion reactors (DEMO). Consequently, activities in F4E focus on structural materials for the first generations of breeder blankets, i.e. ITER Test Blanket Modules (TBM) and DEMO, whereas a Fusion Materials Topical Group implemented under EFDA coordinates R and D on physically based modelling of irradiation effects and R and D in the longer term (new and /or higher risk materials). The paper focuses on martensitic-ferritic steels and (i) reviews briefly the challenges and the rationales for the decisions taken in the past, (ii) analyses the status of the main activities of development and qualification, (iii) indicates unresolved issues, and (iv) outlines future strategies and needs and their implications. Due to the exposure to intense high energy neutron flux, the main issue for breeder materials is high radiation resistance. The First Wall of a breeder blanket should survive 3-5 full power years or, respectively in terms of irradiation damage, typically 50-70 dpa for DEMO and double figures for a power plant. Even though the objective is to have the materials and key fabrication technologies needed for DEMO fully developed and qualified within the next two decades, a major part of the task has to be completed much earlier. Tritium breeding test blanket modules will be installed in ITER with the objective to test DEMO relevant technologies in fusion

  8. Caustic cracking of 2 1/4 CrMo steel

    International Nuclear Information System (INIS)

    Cowen, H.C.; Thorley, A.W.

    1983-12-01

    Stress corrosion cracking tests performed on the 21/4 Cr Mo ferritic steel are described. The principal environments studied were strong, aqueous caustic soda, molten anhydrous caustic soda, and caustic soda with an addition of sodium. Emphasis has been placed on material in the quenched-hardened condition. (author)

  9. Current status and recent research achievements in ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F., E-mail: farhad.tavassoli@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA/DEN/DANS/DMN, F-91191 Gif-sur-Yvette (France); Diegele, E., E-mail: eberhard.diegele@kit.edu [Karlsruhe Institut of Technology (KIT), Karlsruhe (Germany); Lindau, R., E-mail: rainer.lindau@kit.edu [Karlsruhe Institut of Technology (KIT), Karlsruhe (Germany); Luzginova, N., E-mail: Natalia.Luzginova@gmail.com [NRG-Petten, 1755 ZG Petten (Netherlands); Tanigawa, H., E-mail: tanigawa.hiroyasu@jaea.go.jp [Japan Atomic Energy Authority (JAEA), Tokai, Ibaraki, 319-1195 (Japan)

    2014-12-15

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe–Cr alloys, the chromium range was narrowed to 7–9% and the first RAFM was industrially produced in Japan (F82H: Fe–8%Cr–2%W–TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe–9%Cr–1%W–TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  10. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  11. Determination of delta ferrite volumetric fraction in austenitic stainless steels

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray difraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Forster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  12. Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe–Cr alloys: the role of Cr segregation

    International Nuclear Information System (INIS)

    Terentyev, D; Bakaev, A

    2013-01-01

    The understanding of radiation-induced strengthening in ferritic FeCr-based steels remains an essential issue in the assessment of materials for fusion and fission reactors. Both early and recent experimental works on Fe–Cr alloys reveal Cr segregation on radiation-induced nanostructural features (mainly dislocation loops), whose impact on the modification of the mechanical response of the material might be key for explaining quantitatively the radiation-induced strengthening in these alloys. In this work, we use molecular dynamics to study systematically the interaction of dislocations with 1/2〈111〉 and 〈100〉 loops in all possible orientations, both enriched by Cr atoms and undecorated, for different temperatures, loop sizes and dislocation velocities. The configurations of the enriched loops have been obtained using a non-rigid lattice Monte Carlo method. The study reveals that Cr segregation influences the interaction mechanisms with both 1/2〈111〉 and 〈100〉 loops. The overall effect of Cr enrichment is to penalize the mobility of intrinsically glissile 1/2〈111〉 loops, modifying the reaction mechanisms as a result. The following three most important effects associated with Cr enrichment have been revealed: (i) absence of dynamic drag; (ii) suppression of complete absorption; (iii) enhanced strength of small dislocation loops (2 nm and smaller). Overall the effect of the Cr enrichment is therefore to increase the unpinning stress, so experimentally ‘invisible’ nanostructural features may also contribute to radiation-induced strengthening. The reasons for the modification of the mechanisms are explained and the impact of the loading conditions is discussed. (paper)

  13. Characterization and Modeling of Grain Boundary Chemistry Evolution in Ferritic Steels under Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, Emmanuelle [Univ. of Michigan, Ann Arbor, MI (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-03-28

    Ferritic/martensitic (FM) steels such as HT-9, T-91 and NF12 with chromium concentrations in the range of 9-12 at.% Cr and high Cr ferritic steels (oxide dispersion strengthened steels with 12-18% Cr) are receiving increasing attention for advanced nuclear applications, e.g. cladding and duct materials for sodium fast reactors, pressure vessels in Generation IV reactors and first wall structures in fusion reactors, thanks to their advantages over austenitic alloys. Predicting the behavior of these alloys under radiation is an essential step towards the use of these alloys. Several radiation-induced phenomena need to be taken into account, including phase separation, solute clustering, and radiation-induced segregation or depletion (RIS) to point defect sinks. RIS at grain boundaries has raised significant interest because of its role in irradiation assisted stress corrosion cracking (IASCC) and corrosion of structural materials. Numerous observations of RIS have been reported on austenitic stainless steels where it is generally found that Cr depletes at grain boundaries, consistently with Cr atoms being oversized in the fcc Fe matrix. While FM and ferritic steels are also subject to RIS at grain boundaries, unlike austenitic steels, the behavior of Cr is less clear with significant scatter and no clear dependency on irradiation condition or alloy type. In addition to the lack of conclusive experimental evidence regarding RIS in F-M alloys, there have been relatively few efforts at modeling RIS behavior in these alloys. The need for predictability of materials behavior and mitigation routes for IASCC requires elucidating the origin of the variable Cr behavior. A systematic detailed high-resolution structural and chemical characterization approach was applied to ion-implanted and neutron-irradiated model Fe-Cr alloys containing from 3 to 18 at.% Cr. Atom probe tomography analyses of the microstructures revealed slight Cr clustering and segregation to dislocations and

  14. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions

    Science.gov (United States)

    Ding, Z. N.; Zhang, C. H.; Yang, Y. T.; Song, Y.; Kimura, A.; Jang, J.

    2017-09-01

    Influence of the nanoscale oxide particles on mechanical properties and irradiation resistance of oxide-dispersion-strengthened (ODS) ferritic steels is of critical importance for the use of the material in fuel cladding or blanket components in advanced nuclear reactors. In the present work, impact of structures of oxide dispersoids on the irradiation hardening of ODS ferritic steels was studied. Specimens of three high-Cr ODS ferritic steels containing oxide dispersoids with different number density and average size were irradiated with high-energy Ni ions at about -50 °C. The energy of the incident Ni ions was varied from 12.73 MeV to 357.86 MeV by using an energy degrader at the terminal so that a plateau of atomic displacement damage (∼0.8 dpa) was produced from the near surface to a depth of 24 μm in the specimens. A nanoindentor (in constant stiffness mode with a diamond Berkovich indenter) and a Vickers micro-hardness tester were used to measure the hardeness of the specimens. The Nix-Gao model taking account of the indentation size effect (ISE) was used to fit the hardness data. It is observed that the soft substrate effect (SSE) can be diminished substantially in the irradiated specimens due to the thick damaged regions produced by the Ni ions. A linear correlation between the nano-hardeness and the micro-hardness was found. It is observed that a higher number density of oxide dispersoids with a smaller average diameter corresponds to an increased resistance to irradiation hardening, which can be ascribed to the increased sink strength of oxides/matrix interfaces to point defects. The rate equation approach and the conventional hardening model were used to analyze the influence of defect clusters on irradiation hardening in ODS ferritic steels. The numerical estimates show that the hardening caused by the interstitial type dislocation loops follows a similar trend with the experiment data.

  15. Effects of alloying elements on sticking occurring during hot rolling of ferritic stainless steels

    International Nuclear Information System (INIS)

    Ha, Dae Jin; Kim, Yong Jin; Lee, Yong Deuk; Lee, Sung Hak; Lee, Jong Seog

    2008-01-01

    In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content

  16. Current status of reduced-activation ferritic/martensitic steels R and D for fusion energy

    International Nuclear Information System (INIS)

    Kimura, Akihiko

    2005-01-01

    Reduced-activation ferritic/martensitic (RAF/M) steels have been considered to be the prime candidate for the fusion blanket structural material. The irradiation data obtained up to now indicates rather high feasibility of the steels for application to fusion reactors because of their high resistance to degradation of material performance caused by both the irradiation-induced displacement damage and transmutation helium atoms. The martensitic structure of RAF/M steels consists of a large number of lattice defects before the irradiation, which strongly retards the formation of displacement damage through absorption and annihilation of the point defects generated by irradiation. Transmutation helium can be also trapped at those defects in the martensitic structure so that the growth of helium bubbles at grain boundaries is suppressed. The major properties of the steels are well within our knowledge, and processing technologies are mostly developed for fusion application. RAF/M steels are now certainly ready to proceed to the next stage, that is, the construction of International Thermo-nuclear Experimental Reactor Test Blanket Modules (ITER-TBM). Oxide dispersion strengthening (ODS) steels have been developed for higher thermal efficiency of fusion power plants. Recent irradiation experiments indicated that the steels were quite highly resistant to neutron irradiation embrittlement, showing hardening accompanied by no loss of ductility. High-Cr ODS steels whose chromium concentration was in the range from 14 to 19 mass% showed high resistance to corrosion in supercritical pressurized water. It is shown that the 14Cr-ODS steel is susceptible to neither hydrogen nor helium embrittlement. A combined utilization of ODS steels with RAF/M steels will be effective to realize fusion power early at a reasonable thermal efficiency. (author)

  17. Internal stresses in an austeno-ferritic duplex stainless steel

    International Nuclear Information System (INIS)

    Verhaeghe, B.; Brechet, Y.; Louchet, F.; Massoud, J.P.; Touzeau, D.

    1996-04-01

    Austeno-ferritic duplex steels possess microstructures containing comparable volume fractions of hard and soft phases which are bi-percolated. They are therefore liable to develop large internal stresses during straining. The evolution and the relaxation of these stresses and the occurrence of damage are characterized using Bauschinger tests. Thermally aged and non-aged material behaviour are compared. Plastic flow in the hard phase is shown to be significantly efficient in releasing these internal stresses. (authors). 15 refs., 8 figs

  18. Friction Stir Welding of HT9 Ferritic-Martensitic Steel: An Assessment of Microstructure and Properties

    Science.gov (United States)

    2013-06-01

    report of FSW on a ferritic- martensitic stainless steel is the work of Chung, which applied this approach to a dissimilar weld between F82H (ferritic... martensitic ) and SUS304 (austenitic stainless ) [43]. 7 D. CORROSION OF FERRITIC/ MARTENSITIC STEELS IN HIGH TEMPERATURE MOLTEN SALT COOLANTS In...Philadelphia, PA, 1992, pp. 1267–1286, March 1990. [15] S. Rosenwasser, ―The application of martensitic stainless steels in a lifelong fusion first wall

  19. Effect of Co deposition on oxidation behavior and electrical properties of ferritic steel for solid oxide fuel cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Kruk, A.; Adamczyk, A.; Gil, A. [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland); Kąc, S. [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Krakow (Poland); Dąbek, J.; Ziąbka, M. [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland); Brylewski, T., E-mail: brylew@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2015-09-01

    In this work, a Co layer deposited on DIN 50049 steel by means of pulsed laser deposition was applied for the protection of solid oxide fuel cell (SOFC) interconnects operating on the cathode side. The coated and uncoated steel samples were oxidized in air at 1073 K for 500 h, and their microstructures as well as electrical resistances were evaluated using X-ray diffraction, atomic force microscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, and the 2-probe 4-point direct current method. It was demonstrated that the Co coating had reduced the oxidation rate of the steel by nearly a half. The area-specific resistance value of the coated steel was 5 × 10{sup −6} Ω·m{sup 2}, which was significantly lower than that of bare steel after 350 h of oxidation at 1073 K. Cr vaporization tests showed that the Co coating was efficient at blocking the outward diffusion of Cr. The obtained results prove that steel coated with a thin film of cobalt was suitable for use as metallic interconnect material in SOFCs operating at intermediate temperatures. - Highlights: • Co layer was deposited on ferritic steel by means of pulsed laser deposition. • Coated and bare ferritic steel samples were exposed to air at 1073 K for 500 h. • Scale growth rate on bare steel is higher than that on coated steel. • Electrical resistance for oxidized coated steel was lower than for bare steel. • Co-coated steel effectively reduced the formation of volatile Cr species.

  20. Kinetics modeling of delta-ferrite formation and retainment during casting of supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Tiedje, Niels Skat; Hald, John

    2017-01-01

    The kinetics model for multi-component diffusion DICTRA was applied to analyze the formation and retainment of δ-ferrite during solidification and cooling of GX4-CrNiMo-16-5-1 cast supermartensitic stainless steel. The obtained results were compared with results from the Schaeffler diagram......, equilibrium calculations and the Scheil model in Thermo-Calc, and validated by using microscopy and energy dispersive X-ray spectroscopy for chemical analysis on a cast ingot. The kinetics model showed that micro-segregation from solidification homogenizes within 2–3 s (70 °C) of cooling, and that retained δ...

  1. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-04-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  2. Response of ferritic steels to nonsteady loading at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1984-01-01

    High-temperature operating experience is lacking in pressure vessel materials that have strength levels above 586 MPa. Because of their tendency toward strain softening, we have been concerned about their behavior under nonsteady loading. Testing was undertaken to explore the extent of softening produced by monotonic and cyclic strains. The specific materials included bainitic 2 1/4Cr-1Mo steel, a micro-alloyed version of 2 1/4Cr-1Mo steel, a micro-alloyed version of 2 1/4Cr-1Mo steel containing vanadium, titanium, and boron, and a martensitic 9Cr-1Mo-V-Nb steel. Tests included tensile, creep, variable stress creep, relaxation, strain cycling, stress cycling, and non-isothermal creep ratchetting experiments. We found that these steels had very low uniform elongation and exhibited small strains to the onset of tertiary creep compared to annealed 2 1/4Cr-1Mo steel. Repeated relaxation test data also indicated a limited capacity for strain hardening. Reversal strains produced softening. The degree of softening increased with increased initial strength level. We concluded that the high strength bainitic and martensitic steels should perform well when used under conditions where severe cyclic operation does not occur

  3. Resistance to pitting corrosion in ferritic and austenitic/ferritic steels

    International Nuclear Information System (INIS)

    De Bouvier, O.

    1995-01-01

    Stainless steel tubes carrying raw water are potentially vulnerable to pitting corrosion. With a view to minimizing the corrosion risk in the river-water-cooled condensers at PWR power plant, a study was conducted to determine initiation conditions and incubation durations for pitting corrosion in stagnant water. As a result, condenser tubes in Z2 CI 18 (439) or Z2 CT 18-10 (304L) steels were phased out in favour of Z2 CND 16-32 (316L) stainless steel. The same question can be yield for other applications and especially for all types of exchangers for use in electrical applications. This study sought to assess alternative methods for estimating pitting corrosion, and to check the results of these methods against the actual behaviour of studied steels. The study covered ferritic steels (439, 444, 290Mo), austenitic steel (316L) and austenitic/ferritic steels (Uranus 35N, 45N, 47N, 52N). Two approaches were adopted: laboratory tests to compare pitting corrosion risks on different materials, and tests for characterizing the behaviour of steels exposed to river water. The study begins with a laboratory tests that yield an arbitrary parameter for quantifying pitting corrosion resistance. One method involves measuring the pitting temperature in an aggressive ferric chloride solution. Other methods measure the pitting potential, either statistically (Multipit method) or deterministically (polarization curve). We then go on to discuss tests under simulated life-like conditions, involving repeated immersions in water from the Seine. (author). 9 refs., 13 figs, 9 tabs

  4. Evaluation of temper embrittlement of martensitic and ferritic-martensitic steels by acoustic emission

    International Nuclear Information System (INIS)

    Lu, Yusho; Takahashi, Hideaki; Shoji, Tetsuo

    1987-01-01

    Martensitic (HT-9) and ferritic-martensitic steels (9Cr-2Mo) are considered as fusion first wall materials. In this investigation in order to understand the sensitivity of temper embrittlement in these steels under actual service condition, fracture toughness testing was made by use of acoustic emission technique. The temper embrittlement was characterized in terms of fracture toughness. The fracture toughness of these steels under 500 deg C, 100 hrs, and 1000 hrs heat treatment was decreased and their changes in micro-fracture process have been observed. The fracture toughness changes by temper embrittlement was discussed by the characteristic of AE, AE spectrum analysis and fractographic investigation. The relation between micro-fracture processes and AE has been clarified. (author)

  5. The correlation between yielding behavior and precipitation in ultra purified ferritic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.Y., E-mail: zyliu@mail.neu.edu.cn [State Key Lab of Rolling Technologies and Automation, Northeastern University, Heping Qu, Wenhua St, P.O. Box 105, Shenyang, Liaoning Province 110004 (China); Gao, F. [State Key Lab of Rolling Technologies and Automation, Northeastern University, Heping Qu, Wenhua St, P.O. Box 105, Shenyang, Liaoning Province 110004 (China); Jiang, L.Z. [Research Institute for Stainless Steels, R and D Center, Baosteel Co., Shanghai 201900 (China); Wang, G.D. [State Key Lab of Rolling Technologies and Automation, Northeastern University, Heping Qu, Wenhua St, P.O. Box 105, Shenyang, Liaoning Province 110004 (China)

    2010-06-25

    Cold rolled sheets of a ultra purified ferritic stainless steel were annealed either by being slowly cooled from 950 deg. C or being rapidly cooled to room temperature from the intermediate holding at 750 deg. C. The former exhibited substantial Lueders elongation during tensile testing, while the later showed continuous yielding behavior. In the slowly cooled sheet, both Nb(C, N) and (Fe, Cr){sub 2}Nb have been formed, and no (Fe, Cr){sub 2}Nb could be observed in the rapidly cooled sheet. The fast growth of (Fe, Cr){sub 2}Nb is believed to have caused local depletion of Nb atoms around fine NbC particles, resulting in their dissolution and having carbon atoms released for the formation of the Cottrell atmosphere. These results have been confirmed by the internal friction measurements and thermodynamic calculations.

  6. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    OpenAIRE

    Zita Iždinská; František Kolenič

    2009-01-01

    The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It w...

  7. Deformation-Induced Dissolution and Precipitation of Nitrides in Austenite and Ferrite of a High-Nitrogen Stainless Steel

    Science.gov (United States)

    Shabashov, V. A.; Makarov, A. V.; Kozlov, K. A.; Sagaradze, V. V.; Zamatovskii, A. E.; Volkova, E. G.; Luchko, S. N.

    2018-02-01

    Methods of Mössbauer spectroscopy and electron microscopy have been used to study the effect of the severe plastic deformation by high pressure torsion in Bridgman anvils on the dissolution and precipitation of chromium nitrides in the austenitic and ferritic structure of an Fe71.2Cr22.7Mn1.3N4.8 high-nitrogen steel. It has been found that an alternative process of dynamic aging with the formation of secondary nitrides affects the kinetics of the dissolution of chromium nitrides. The dynamic aging of ferrite is activated with an increase in the deformation temperature from 80 to 573 K.

  8. Material science and manufacturing of heat-resistant reduced-activation ferritic-martensitic steels for fusion

    International Nuclear Information System (INIS)

    Ioltukhovskiy, A.G.; Blokhin, A.I.; Budylkin, N.I.; Chernov, V.M.; Leont'eva-Smirnova, M.V.; Mironova, E.G.; Medvedeva, E.A.; Solonin, M.I.; Porollo, S.I.; Zavyalsky, L.P.

    2000-01-01

    A number of issues regarding the development and use of 10-12% Cr reduced-activation ferritic-martensitic steels (RAFMS) for fusion are considered. These include: (1) problems of manufacturing and modifying their composition and metallurgical condition; (2) the influence on properties of their composition, purity, δ-ferrite concentration and cooling rates in the final stages of manufacturing; and (3) the effects of neutron irradiation at 320-650 deg. C up to 108 dpa on their mechanical properties. In addition, neutron activation and nuclear accumulation of elements in RAFMS with different initial concentrations of alloying and impurity elements for typical fusion reactor (DEMO) irradiation regimes have been calculated

  9. Magnetic and electrical properties of Cr substituted Ni nano ferrites

    Directory of Open Access Journals (Sweden)

    Katrapally Vijaya Kumar

    2018-03-01

    Full Text Available Nano-ferrites with composition NiCrxFe2-xO4 (where x = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 were synthesized through citrate-gel auto combustion technique at moderately low temperature. X-ray analysis shows cubic spinel structure single phase without any impurity peak and average crystallite size in the range 8.5–10.5 nm. Magnetic properties were measured using a vibrating sample magnetometer at room temperature in the applied field of ±6 KOe. The obtained M-H loop area is very narrow, hence the synthesized nano ferrites are soft magnetic materials with small coercivity. Magnetic parameters such as saturation magnetization (Ms, coercivity (Hc, remanent magnetization (Mr and residual magnetization were measured and discussed with regard to Cr3+ ion concentration. Electrical properties were measured using two probe method from room temperature to well beyond transition temperature. The DC resistivity variation with temperature shows the semiconductor nature. Resistivity, drift mobility and activation energy values are measured and discussed with regard to composition. The Curie temperature was determined using DC resistivity data and Loria-Sinha method. The observed results can be explained in detail on the basis of composition.

  10. Carbon transfer between 2 1/4 Cr 1 Mo alloy and austenitic steels (experiments in anisothermal loops)

    International Nuclear Information System (INIS)

    Baque, P.; Besson, M.; Champeix, L.; Donati, J.R.; Oberlin, C.; Saint-Paul, P.

    1976-01-01

    Studies on carbon transfer between the ferritic steel 2 1/4 Cr 1 Mo and the austenitic steels 316L and 321H have shown that there is not any measurable carbon transfer in the operating conditions of the secondary circuit of PHENIX (475 deg C was the maximal temperature of the 2 1/4 Cr 1 Mo steel). A significant carbon transfer has been observed between the ferritic steel and the 316L steel when the 321H was replaced by the 2 1/4 Cr 1 Mo steel in the same thermohydraulic conditions (the ferritic steel was then used up to 545 deg C). This experiment has demonstrated the importance of the temperature and the initial carbon content of the ferritic steel as parameters in the decarburization process. It appears that decarburization may not be sensitive to the thermohydraulic conditions at least in the range investigated in those experiments. In the other hand the 316L steel is observed to have been carburized, the degree of carburization remaining appreciably constant and independent on the temperature between 400 deg C and 550 deg C [fr

  11. Reduced activation ODS ferritic steel - recent development in high speed hot extrusion processing

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Zbigniew [Faculty of Mechanical Engineering, Bialystok Technical University (Poland); Lewandowska, Malgorzata; Kurzydlowski, Krzysztof [Faculty of Materials Science and Engineering, Warsaw University of Technology (Poland); Baluc, Nadine [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Villigen PSI (Switzerland)

    2010-05-15

    The paper presents the microstructure and mechanical properties of an oxide dispersion strengthened (ODS), reduced activation, ferritic steel, namely the Fe-14Cr-2W-0.3Ti-0.3Y{sub 2}O{sub 3} alloy, which was fabricated by hot isostatic pressing followed by high speed hydrostatic extrusion (HSHE) and heat treatment HT at 1050 C. Transmission electron microscopy (TEM) observations revealed significant differences in the grain size and dislocation density between the as-HIPped and as-HSHE materials. It was also found that the microstructure of the steel is stable after HT. The HSHE process improves significantly the tensile and Charpy impact properties of the as-HIPped steel. The ultimate tensile strength at room temperature increases from 950 up to 1350 MPa, while the upper shelf energy increases from 3.0 up to 6.0 J. However, the ductile-to-brittle transition temperature (DBTT) remains relatively high (about 75 C).These results indicate that HSHE is a promising method for achieving grain refinement and thus improving the mechanical properties of ODS ferritic steels. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel

    Science.gov (United States)

    Sharma, Gaurav; Dwivedi, Dheerendra Kumar; Jain, Pramod Kumar

    2017-12-01

    In this study, friction stir-welded joint of 3-mm-thick plates of 409 ferritic stainless steel (FSS) was characterized in light of microstructure, x-ray diffraction analysis, hardness, tensile strength, ductility, corrosion and work hardening properties. The FSW joint made of ferritic stainless steel comprises of three distinct regions including the base metal. In stir zone highly refined ferrite grains with martensite and some carbide precipitates at the grain boundaries were observed. X-ray diffraction analysis also revealed precipitation of Cr23C6 and martensite formation in heat-affected zone and stir zone. In tensile testing of the transverse weld samples, the failure eventuated within the gauge length of the specimen from the base metal region having tensile properties overmatched to the as-received base metal. The tensile strength and elongation of the longitudinal (all weld) sample were found to be 1014 MPa and 9.47%, respectively. However, in potentiodynamic polarization test, the corrosion current density of the stir zone was highest among all the three zones. The strain-hardening exponent for base metal, transverse and longitudinal (all weld) weld samples was calculated using various equations. Both the transverse and longitudinal weld samples exhibited higher strain-hardening exponents as compared to the as-received base metal. In Kocks-Mecking plots for the base metal and weld samples at least two stages of strain hardening were observed.

  13. The evolution of ferrite grain size in structural steels

    International Nuclear Information System (INIS)

    Hodgson, P.D.

    1999-01-01

    The refinement of the ferrite grain size is the main aim of modern thermomechanical processes for hot rolled steels. The ferrite grain size is determined by the composition, the state of the austenite at the point of transformation and the cooling rate through transformation. By adding microalloying additions of Ti for grain refinement and Nb to retard recrystallisation, it is possible to reduce the ferrite grain size to less than 5μm at moderate to high cooling rates. However, it is not possible under even the most extreme traditional controlled rolling and accelerated cooling conditions to produce an equiaxed ferrite grain size of less than 3μm. More recent work, though, involving rolling with high undercooling and friction conditions that lead to high shear, suggests that it is possible to produce microstructures in a single rolling pass with an average grain size less than 1μm. This appears to involve a dynamic (ie strain induced) transformation process. The current understanding of static and dynamic transformation and the resultant grain size is reviewed and areas requiring further research are highlighted

  14. Effect of surface finishing on the oxidation behaviour of a ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ardigo-Besnard, M.R., E-mail: maria-rosa.ardigo-besnard@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France); Popa, I.; Heintz, O.; Chassagnon, R. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France); Vilasi, M. [Institut Jean Lamour, UMR 7198 CNRS—Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); Herbst, F. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France); Girardon, P. [APERAM, Centre de Recherche, BP15, 62330 Isbergues (France); Chevalier, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France)

    2017-08-01

    Highlights: • Study of surface finishing effect on the corrosion behaviour of a stainless steel. • Mirror polished samples were compared to as-rolled material. • Two oxidation mechanisms were identified depending on the surface finishing. • Before oxidation, native chemical phases are identical for both samples. • Subsurface dislocations generated by the polishing process promote Cr{sub 2}O{sub 3} formation. - Abstract: The corrosion behaviour and the oxidation mechanism of a ferritic stainless steel, K41X (AISI 441), were evaluated at 800 °C in water vapour hydrogen enriched atmosphere. Mirror polished samples were compared to as-rolled K41X material. Two different oxidation behaviours were observed depending on the surface finishing: a protective double (Cr,Mn){sub 3}O{sub 4}/Cr{sub 2}O{sub 3} scale formed on the polished samples whereas external Fe{sub 3}O{sub 4} and (Cr,Fe){sub 2}O{sub 3} oxides grew on the raw steel. Moreover, isotopic marker experiments combined with SIMS analyses revealed different growth mechanisms. The influence of surface finishing on the corrosion products and growth mechanisms was apprehended by means of X-ray photoelectron spectroscopy (XPS) and residual stress analyses using XRD at the sample surfaces before ageing.

  15. Effects of welding on toughness of Mod. 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Ryu, W. S.; Kim, S. H.; Yoon, J. H.

    2008-01-01

    Nuclear energy is being seriously considered to meet the increasing demand for a world-wide energy supply without environmental effects. Generation IV reactors are being developed to produce a reliable energy safely and with an economic benefit. Since these new reactors require an elevated temperature, ferritic/martensitic steels are attracting attention as candidate materials for the reactor vessel of a very high temperature reactor (VHTR) and the cladding of a sodium fast reactor (SFR,) due to their high strength and thermal conductivity, low thermal expansion, and good resistance to corrosion. in recent years, new ferritic/martensitic steels have been developed for ultra supercritical fossil power plants. Advanced technologies for a steel fabrication have improved the elevated temperature properties of ferritic/martensitic steels to make them comparable with austenitic stainless steels. The microstructural stability of the pressure vessel, cladding and core structural materials of the VHTR and SCWR is very important. Welding process affects the microstructure and residual stress, so the toughness of ferritic/martensitic steels decreases in general. In this paper; Mod. 9Cr-1Mo steel is welded by SMAW with V-groove, and the effects of welding on tensile and impact properties are evaluated. The upper self energy of the weldment was only 57% of that of the base metal, and the DBTT T 41J and T 68J index temperatures of the weldment were higher than those of the base metal by 17 deg. C, 38 deg. C and 37 deg. C, respectively. (authors)

  16. Use of microstructure control to toughen ferritic steels for cryogenic use. I. Fe--Ni steels

    International Nuclear Information System (INIS)

    Syn, C.K.; Jin, S.; Morris, J.W. Jr.

    1976-12-01

    Alternation of austenitization and austenite + ferrite two-phase decomposition treatment in a cyclic thermal treatment allows the achievement of ultra-fine grain size in steels containing 8-12% Ni. The grain refinement leads to a substantial improvement in cryogenic mechanical properties. The ductile-brittle transition temperature of a ferritic Fe-12Ni-0.25Ti alloy was suppressed to below liquid helium temperature by this grain refinement procedure; the transition temperature of commercial ''9Ni'' cryogenic steel was similarly reduced by combining the grain refinement with a final temper which introduces a small admixture of retained austenite

  17. Thin slab processing of acicular ferrite steels with high toughness

    Energy Technology Data Exchange (ETDEWEB)

    Reip, Carl-Peter; Hennig, Wolfgang; Hagmann, Rolf [SMS Demag Aktiengesellschaft, Duesseldorf (Germany); Sabrudin, Bin Mohamad Suren; Susanta, Ghosh; Lee, Weng Lan [Megasteel Sdn Bhd, Banting (Malaysia)

    2005-07-01

    Near-net-shape casting processes today represent an important option in steelmaking. High productivity and low production cost as well as the variety of steel grades that can be produced plus an excellent product quality are key factors for the acceptance of such processes in markets all over the world. Today's research focuses on the production of pipe steel with special requirements in terms of toughness at low temperatures. The subject article describes the production of hot strip made from acicular ferritic / bainitic steel grades using the CSP thin-slab technology. In addition, the resulting strength and toughness levels as a function of the alloying concepts are discussed. Optimal control of the CSP process allows the production of higher-strength hot-rolled steel grades with a fine-grain acicular-ferritic/bainitic microstructure. Hot strip produced in this way is characterized by a high toughness at low temperatures. In a drop weight tear test, transition temperatures of up to -50 deg C can be achieved with a shear-fracture share of 85%. (author)

  18. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Baluc, N.

    2009-01-01

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y 2 O 3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  19. Development of an extensive database of mechanical properties for Reduced Activation Ferritic/Martensitic Steels

    International Nuclear Information System (INIS)

    Tanigawa, H.; Shiba, K.; Ando, M.; Wakai, E.; Jitsukawa, S.; Hirose, T.; Kasada, R.; Kimura, A.; Kohyama, A.; Kohno, Y.; Klueh, R.L.; Sokolov, M.; Stoller, R.; Zinklek, S.; Yamamoto, T.; Odette, G.; Kurtz, R.J.

    2007-01-01

    Full text of publication follows: Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H (8Cr-2W-0.2V-0.04Ta-0.1C) and JLF-1 (9Cr-2W-0.2V-0.08Ta-0.1C) are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldablility, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The Japan/US collaboration program also has been conducted with the emphasis on heavy irradiation effects of F82H, JLF-1 and ORNL9Cr2WVTa over the past two decades using Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, and the irradiation condition of the irradiation capsules of those reactors were precisely controlled by the well matured capsule designing and instrumentation. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the database status of RAFMs, mainly on F82H, to identify the key issues for the future development of database. Tensile, fracture toughness, creep and fatigue properties and microstructural studies before and after irradiation are summarized. (authors)

  20. Development of an extensive database of mechanical properties for Reduced Activation Ferritic/Martensitic Steels

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, H.; Shiba, K.; Ando, M.; Wakai, E.; Jitsukawa, S. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kasada, R.; Kimura, A.; Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan); Kohno, Y. [Muroran Institute of Technology, Muroran, Hokkaido (Japan); Klueh, R.L. [0ak Ridge Noational Laboratory, TN (United States); Sokolov, M.; Stoller, R.; Zinklek, S. [0ak Ridge Noational Laboratory, Materials Science and Technology Div., TN (United States); Yamamoto, T.; Odette, G. [UCSB, Dept. of Chemical Engineering UCSB, Santa-Barbara (United States); Kurtz, R.J. [Pacifie Northwest National Laboratory, Richland WA (United States)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H (8Cr-2W-0.2V-0.04Ta-0.1C) and JLF-1 (9Cr-2W-0.2V-0.08Ta-0.1C) are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldablility, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The Japan/US collaboration program also has been conducted with the emphasis on heavy irradiation effects of F82H, JLF-1 and ORNL9Cr2WVTa over the past two decades using Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, and the irradiation condition of the irradiation capsules of those reactors were precisely controlled by the well matured capsule designing and instrumentation. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the database status of RAFMs, mainly on F82H, to identify the key issues for the future development of database. Tensile, fracture toughness, creep and fatigue properties and microstructural studies before and after irradiation are summarized. (authors)

  1. Corrosion of an austenite and ferrite stainless steel weld

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  2. Optimization and testing results of Zr-bearing ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tyburska-Puschel, Beata [Univ. of Wisconsin, Madison, WI (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  3. Tensile flow behaviour of 2.25Cr-1Mo ferritic steel base metal an simulated heat affected zone structures of 2.25 Cr-1Mo weld joint

    International Nuclear Information System (INIS)

    Laha, K.; Chandravathi, K.S.; Rao, K.B.S.; Mannan, S. L.; Sastry, D.H.

    1999-01-01

    Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (σ = K 1 ε n1 ) at higher (>623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower ( 1 ε n1 + exp (K 2 + n 2 ε), was found to describe the flow curve. In general, the flow parameters n 1 , K 1 , n 2 and K 2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n 1 value increased and the K 1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of n 1 with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n 1 . (orig.)

  4. Fatigue and fracture behavior of low alloy ferritic forged steels

    International Nuclear Information System (INIS)

    Chaudhry, V.; Sharma, A.K.; Muktibodh, U.C.; Borwankar, Neeraj; Singh, D.K.; Srinivasan, K.N.; Kulkarni, R.G.

    2016-01-01

    Low alloy ferritic steels are widely used in nuclear industry for the construction of pressure vessels. Pressure vessel forged low alloy steels 20MnMoNi55 (modified) have been developed indigenously. Experiments have been carried out to study the Low Cycle Fatigue (LCF) and fracture behavior of these forged steels. Fully reversed strain controlled LCF testing at room temperature and at 350 °C has been carried out at a constant strain rate, and for different axial strain amplitude levels. LCF material behavior has been studied from cyclic stress-strain responses and the strain-life relationships. Fracture behavior of the steel has been studied based on tests carried out for crack growth rate and fracture toughness (J-R curve). Further, responses of fatigue crack growth rate tests have been compared with the rate evaluated from fatigue precracking carried out for fracture toughness (J-R) tests. Fractography of the samples have been carried out to reveal dominant damage mechanisms in crack propagation and fracture. The fatigue and fracture properties of indigenously developed low alloy steel 20MnMoNi55 (modified) steels are comparable with similar class of steels. (author)

  5. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Je-Kang Du

    2016-03-01

    Full Text Available Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the antibacterial properties, but they are known to damage biofilm. The occurrence of nanoparticles can also improve the antibacterial properties of biomaterials through various methods. In this study, we used Escherichia coli and analyzed the microstructures of American Iron and Steel Institute (AISI 430 stainless steel with a 0.18 mass % N alloy element. During a lower temperature aging, the microstructure of the as-quenched specimen is essentially a ferrite and martensite duplex matrix with some Cr2N precipitates formed. Additionally, the antibacterial properties of the alloy for E. coli ranged from 3% to 60%, consistent with the presence of Cr2N precipitates. When aged at a lower temperature, which resulted in nano-Cr2N precipitation, the specimen possessed the highest antibacterial activity.

  6. Precipitation behaviors of X70 acicular ferrite pipeline steel

    Institute of Scientific and Technical Information of China (English)

    Hao Yu; Yi Sun; Qixiang Chen; Haitao Jiang; Lihong Zhang

    2006-01-01

    The morphology, structure, and chemical composition of precipitates in the final microstructure of Nb-V-Ti microalloyed X70 acicular ferrite pipeline steel were investigated using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Precipitates observed by TEM can be classified into two groups. The large precipitates are complex compounds that comprise square-shaped TiN precipitate as core with fine Nb-containing precipitate nucleated on pre-existing TiN precipitate as caps on one or more faces at high temperature. In contrast, the fine and spherical Nb carbides and/or carbonitrides precipitate heterogeneously on dislocations and sub-boundaries at low temperature. From the analysis in terms of thermodynamics, EDS and chemical composition of the steel, NbC precipitation is considered to be the predominant precipitation behavior in the tested steel under the processing conditions of this research.

  7. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2009-04-01

    Full Text Available The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It was shown, that application of suitable postheat made possible to reduce the ferrite content in weld metal.

  8. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    Science.gov (United States)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  9. Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys

    Science.gov (United States)

    Swenson, M. J.; Wharry, J. P.

    2017-12-01

    The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.

  10. Effect of neutron irradiation on mechanical properties of ferritic steels

    International Nuclear Information System (INIS)

    Kass, S.B.; Murty, K.L.

    1995-01-01

    Effect of neutron radiation exposure was investigated in various ferritic steels with the main emphasis being the effects of thermal neutrons on radiation hardening. Pure iron of varied grain sizes was also used for characterizing the grain size effects on the source hardening before and after neutron irradiation. While many steels are considered in the overall study, the results on 1020, A516 and A588 steels are emphasized. Radiation hardening due to fast neutrons was seen to be sensitive to the composition of the steels with A354 being the least resistant and A490 the least sensitive. Majority of the radiation hardening stems from friction hardening, and source hardening term decreased with exposure to neutron radiation apparently due to the interaction of interstitial impurities with radiation produced defects. Inclusion of thermal neutrons along with fast resulted in further decrease in the source hardening with a slight increase in the friction hardening which revealed a critical grain size below which exposure to total (fast and thermal) neutron spectrum resulted in a slight reduction in the yield stress compared to the exposure to only fast neutrons. This is the first time such a grain size effect is reported and this is shown to be consistent with known radiation effects on friction and source hardening terms along with the observation that low energy neutrons have a nonnegligible effect on the mechanical properties of steels. In ferritic steels, however, despite their small grain size, exposure to total neutron spectrum yielded higher strengths than exposure to only fast neutrons. This behavior is consistent with the fact that the source hardening is small in these alloys and radiation effect is due only to friction stress

  11. Microstructural control and high temperature mechanical property of ferritic/martensitic steels for nuclear reactor application

    International Nuclear Information System (INIS)

    Adetunji, G.J.

    1991-04-01

    The materials under study are 9-12% Cr ferritic/martensitic steels, alternative candidate materials for application in core components of nuclear power reactors. This work involves (1) Investigation of high temperature fracture mechanism during slow tensile and limited creep testing at 600 o C (2) Extensive study of solute element segregation both theoretically and experimentally (3) Investigation of effects by thermal ageing and irradiation on microstructural developments in relation to high temperature mechanical behaviour. From (1) the results obtained indicate that the important microstructural characteristics controlling the fracture of 9-12% Cr ferritic/martensitic steels at high temperature are (a) solute segregation to inclusion-matrix interfaces (b) hardness of the martensitic matrix and (c) carbide particle size distribution. From (2) the results indicate a strong concentration gradient of silicon and molybdenum near lath packet boundaries for certain quenching rates from the austenitizing temperature. From (3) high temperature tensile data were obtained for irradiated samples with thermally aged ones as control. (author)

  12. Study of the microstructure evolution of ferritic stainless ODS steels during hot working

    International Nuclear Information System (INIS)

    Karch, Abdellatif

    2014-01-01

    The production of ODS steels involves a powder consolidation step usually using the hot extrusion (HE) process. The anisotropic properties of extruded materials, especially in the ODS ferritic grades (≥wt%12Cr), need a better understanding of the metallurgical phenomena which may occur during HE and lead to the observed microstructure. The hot working behavior of these materials is of particular interest. The methodology of this work includes the microstructure analysis after interrupted hot extrusion, hot torsion and hot compression (1000-1200 C) tests of ferritic steels with 14%Cr and different amounts in Ti and Y 2 O 3 . The microstructure evolution during hot extrusion process is associated with continuous dynamic recrystallization (CDRX). It leads to the creation of new grains by the formation of low angle boundaries, and then the increase of their misorientation under plastic deformation. The investigations highlight also the role of precipitation on the kinetics of this mechanism; it remains incomplete in the presence of fine and dense nano-precipitates. After hot deformation in torsion and compression, it is noticed that both precipitates and temperature deformation have a significant impact on the deformation mechanisms and microstructure evolution. Indeed, the CDRX is dominant when temperature and amount of reinforcement are limited. However, when they are increased, limited microstructure evolution is observed. In this case, the results are interpreted through a mechanism of strain accommodation at grain boundaries, with low dislocation activity in the bulk of the grains. (author) [fr

  13. Creep constitutive equation of dual phase 9Cr-ODS steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Ukai, Shigeharu; Tamura, Manabu; Ohtsuka, Satoshi; Tanigawa, Hiroyasu; Ogiwara, Hiroyuki; Kohyama, Akira; Fujiwara, Masayuki

    2008-01-01

    9Cr-ODS (oxide dispersion strengthened) steels developed by JAEA (Japan Atomic Energy Agency) have superior creep properties compared with conventional heat resistant steels. The ODS steels can enormously contribute to practical applications of fast breeder reactors and more attractive fusion reactors. Key issues are developments of material processing procedures for mass production and creep life prediction methods in present R and D. In this study, formulation of creep constitutive equation was performed against the backdrop. The 9Cr-ODS steel displaying an excellent creep property is a dual phase steel. The ODS steel is strengthened by the δ ferrite which has a finer dispersion of oxide particles and shows a higher hardness than the α' martensite. The δ ferrite functions as a reinforcement in the dual phase 9Cr-ODS steel. Its creep behavior is very unique and cannot be interpreted by conventional theories of heat resistant steels. Alternative qualitative model of creep mechanism was formulated at the start of this study using the results of microstructural observations. Based on the alternative creep mechanism model, a novel creep constitutive equation was formulated using the exponential type creep equation extended by a law of mixture

  14. TiC reinforced cast Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  15. TiC-reinforced cast Cr steels

    Science.gov (United States)

    Doğan, Ö. N.; Hawk, J. A.; Schrems, K. K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5-4.5Ti, and 1-1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  16. Effect of silicon contents on the microstructures and mechanical properties of heat affected zones for 9Cr2WVTa steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Lu, Shanping, E-mail: shplu@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Rong, Lijian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Li, Dianzhong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China)

    2016-03-15

    The weldability of 9Cr2WVTa steels with silicon content varying from 0.30 wt.% to 1.36 wt.% was studied to meet the requirement of Generation-Ⅳ nuclear reactor. Samples of enlarged HAZs were fabricated by a thermal-mechanical simulator based on the simulation and measurement of non-equilibrium phase transformation. The content of δ-ferrite in the HAZs increased with the silicon content and the peak temperature of welding thermal cycle. The impact toughness in the HAZs decreased in different degrees when the δ-ferrite exhibits stripe (lower than 4.82%) or blocky types (higher than 4.82%). Post weld heat treatment (PWHT) has a significant role on improving the toughness. Adding silicon content increased the volume of δ-ferrite and therefore, decreased the tensile strength of the HAZs for 9Cr2WVTa steels. Silicon also as solid solution strengthening element increased the tensile strength. The 9Cr2WVTa steel has good weldability when the silicon content is lower than 0.60 wt.%. - Highlights: • The weldability of 9Cr2WVTa steel with different silicon contents was studied. • The impact toughness decreased in different degrees owing to the δ-ferrite. • PWHT has a significant role on improving the impact toughness. • The 9Cr2WVTa steel with silicon content not exceeding 0.60 wt.% has good weldability.

  17. Austenitic stainless steel-to-ferritic steel transition joint welding for elevated temperature service

    International Nuclear Information System (INIS)

    King, J.F.; Goodwin, G.M.; Slaughter, G.M.

    1978-01-01

    Transition weld joints between ferritic steels and austenitic stainless steels are required for fossil-fired power plants and proposed nuclear plants. The experience with these dissimilar-metal transition joints has been generally satisfactory, but an increasing number of failures of these joints is occurring prematurely in service. These concerns with transition joint service history prompted a program to develop more reliable joints for application in proposed nuclear power plants

  18. The Cracking Mechanism of Ferritic-Austenitic Cast Steel

    Directory of Open Access Journals (Sweden)

    Stradomski G.

    2016-12-01

    Full Text Available In the high-alloy, ferritic - austenitic (duplex stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very “rich” chemical composition and related with it processes of precipitation of many secondary phases.

  19. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    Science.gov (United States)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  20. Thermal and mechanical behaviour of the reduced-activation-ferritic-martensitic steel EUROFER

    International Nuclear Information System (INIS)

    Lindau, R.; Moeslang, A.; Schirra, M.

    2002-01-01

    Reduced activation ferritic/martensitic (RAFM) steels are being considered for structural application in potential fusion energy systems. Based on the substantial experience with RAFM developmental steels of OPTIFER type, an industrial 3.5 tons batch of a 9CrWVTa-RAFM steel, called EUROFER 97 had been specified and ordered. A characterisation programme has been launched to determine the relevant mechanical and physical-metallurgical properties in order to qualify the steel for fusion application. The hardening, tempering and transformation behaviour of EUROFER is in good agreement with that of other RAFM-steels like OPTIFER and the Japanese industrial scale heat F82H mod. Tensile tests, performed between RT and 750 deg. C, show comparable strength and ductility values that are not strongly affected by different heat treatments and ageing at 580 and 600 deg. C up to 3300 h. Impact bending tests indicate a superior ductile to brittle transition temperature (DBTT) of EUROFER in the as-received condition compared with that of F82H mod. Creep tests between 450 and 650 deg. C up to test times of 15000 h reveal a creep strength similar to other RAFM steels like OPTIFER and F82H mod. EUROFER shows a good low-cycle fatigue behaviour with longer lifetimes than F82H mod. The deformation and softening behaviour is similar

  1. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    Science.gov (United States)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  2. Cyclic oxidation of stainless steel ferritic AISI 409, AISI 439 and AISI 441

    International Nuclear Information System (INIS)

    Salgado, Maria de Fatima; Santos, Diego Machado dos; Oliveira, Givanilson Brito de; Lins, Vanessa de Freitas Cunha

    2014-01-01

    Stainless steels have many industrial applications. The cyclic oxidation of ferritic stainless steels technical and scientific importance presents, because they are less susceptible to peeling the austenitic alloys. For the purpose of investigating the behavior of these steels under thermal cycling, cyclic oxidation of AISI 409, AISI 441 and AISI 439 was carried out in a tubular furnace under two different conditions: oxidation by dipping the steel in the synthetic condensate for 10h and without oxidation immersion in the condensate, for up to 1500h at 300° C temperature. Using techniques: SEM, EDS and XRD revealed a microstructure with increased oxidation in the samples were immersed in the condensate. The oxide film remained intact during oxidation for steels 439 and 441 409 The Steel immersed in the condensate was rupture of the film after the 20th cycle of oxidation. The chemical characterization of the films allowed the identification of elements: Chromium, Iron, Aluminium and Silicon To a great extent, Cr_2O_3. (author)

  3. Controlling the ductile to brittle transition in Fe–9%Cr ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Di Martino, S.F., E-mail: s.f.di-martino@lboro.ac.uk; Riddle, N.B.; Faulkner, R.G.

    2013-11-15

    Probably the most important range of materials for consideration as the blanket material for the tokamak design for fusion reactors ITER and DEMO is the high alloy Fe–9Cr oxide dispersion strengthened ferritic steels. Ferritic steels possess exceptional thermal conductivity and low thermal expansion and are resistant to void swelling. Their main drawback is high ductile to brittle transition temperatures, particularly in the oxide dispersion strengthened versions. This paper describes attempts to reduce the DBTT in an un-irradiated ferritic steel by a novel heat treatment procedure. New batches of high alloy Fe–9Cr oxide dispersion strengthened (Eurofer) ferritic steel have been produced by a powder metallurgy route, and relatively homogeneous material has been produced by hot isostatic pressing (HIP). Mini-Charpy test specimens were made from materials which had been subjected to a matrix of heat treatments with varying solution treatment temperature (ST), cooling rate from the ST temperature, and tempering treatment. The initial DBTT was in the range of 150–200 °C (423–473 K). Downward shifts of up to approximately 200 °C (473 K) have been observed after solution treatment at 1300 °C (1573 K) followed by slow cooling. This paper describes the microstructure of this material, and discussion is made of the likely microstructural factors needed to produce these DBTT downward shifts.

  4. Foucault current testing of ferritic steel fuel cans

    International Nuclear Information System (INIS)

    Stossel, A.

    1984-10-01

    The analysis of impedance involved by a Foucault current test of ferritic steel tubes, is quite different from the classical analysis which refers to non-magnetic tubes; more particularly, volume defects are considered as magnetic anomalies. Contrarily to current instructions which recommend to test the product in a satured magnetic state, it is very interesting to work with a continuous energizing field, comparatively low, corresponding to a sequenced magnetization, of which value is obtained according to the magnetic structure of the product. This analysis is useful when testing fast reactor fuel cans [fr

  5. Phase-separation, partitioning and precipitation in MA956, an ODS ferritic stainless steel

    International Nuclear Information System (INIS)

    Read, H.G.; Hono, K.

    1996-01-01

    The behaviours of as-received and recrystallised (homogenised) MA 956, an Al-containing Cr-rich ferritic stainless steel, aged at 475 C for up to 2900 hours have been investigated. Atom probe microanalysis of the decomposition products revealed that Al did not partition significantly to the Fe-rich phase after =600 hours ageing, contrary to thermodynamic predictions. Ageing to 2900 hours, however, resulted in partitioning. Further thermodynamic analysis showed that the chemical potential of Al in the Cr-rich α' phase increased more rapidly at later stages of phase separation. The wavelength and amplitude of decomposition were found to be significantly larger in aged as-received material compared to aged homogenised material, consistent with coarsening accelerated by the enhanced solute mobilities associated with the highly-dislocated as-received material. Ti- and Si-rich precipitates were found at the α/α' interfaces at later stages of ageing. (orig.)

  6. Some initial considerations on the suitability of Ferritic/ martensitic stainless steels as first wall and blanket materials in fusion reactors

    International Nuclear Information System (INIS)

    Butterworth, G.J.

    1982-01-01

    The constitution of stainless iron alloys and the characteristic properties of alloys in the main ferritic, martensitic and austenitic groups are discussed. A comparison of published data on the mechanical, thermal and irradiation properties of typical austenitic and martensitic/ferritic steels shows that alloys in the latter groups have certain advantages for fusion applications. The ferromagnetism exhibited by martensitic and ferritic alloys has, however, been identified as a potentially serious obstacle to their utilisation in magnetic confinement devices. The paper describes measurements performed in other laboratories on the magnetic properties of two representative martensitic alloys 12Cr-1Mo and 9Cr-2Mo. These observations show that a modest bias magnetic field of magnitude 1 - 2 tesla induces a state of magnetic saturation in these materials. They would thus behave as essentially paramagnetic materials having a relative permeability close to unity when saturated by the toroidal field of a tokamak reactor. The results of computations by the General Atomic research group to assess the implications of such magnetic behaviour on reactor design and operation are presented. The results so far indicate that the ferromagnetism of martensitic/ferritic steels would not represent a major obstacle to their utilisation as first wall or blanket materials. (author)

  7. Precipitation of Epsilon Copper in Ferrite Antibacterial Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Zhixia ZHANG; Gang LIN; Zhou XU

    2008-01-01

    The precipitation of epsilon copper at 1023 K ageing in ferrite antibacterial stainless steel was investigated by a combination of electron microscopy and micro-Vickers hardness measurement. The results show that epsilon copper precipitation occurs within 90 s. Complex rnultilayer structure confirmed as twins and stacking faults on {111}ε-Cu planes was observed in the precipitates. The precipitates grow by the lengthwise enlargement of a set of parallel layers, having [111]ε-Cu and [112]ε-Cu preferred growth orientations. The volume fraction of precipitates f formed within 120 min can be predicted by a modified Avrami equation (In 1/1-f= kt+b).Simultaneously, substituent atom clusters with a size of 5-10 nm was found to occur in the solution and cause matrix strain. The precipitate morphology and distribution on the surface of ferrite antibacterial stainlesss teel are associated with surface crystallographic orientation of the matrix. The precipitates are predominantly located within the ferrite grains of orientation. The precipitates located on {111}α-Fe surface planes have sphere or ellipse shape.

  8. Character evaluation of strength in dispersion strengthened ferritic steel. 5

    International Nuclear Information System (INIS)

    Yoshida, Fuyuki; Nakashima, Hideharu

    1997-03-01

    In order to clarify the high-temperature deformation behaviour and the origin of threshold stress of ODS martensite steel with Y 2 O 3 particles, the stress-strain curves were measured by compression test at 600 to 700degC and at strain rates from 2x10 -5 to 2x10 -3 s -1 , and the threshold stress was measured by stress abruptly loading test (SAL test) at 650degC. Further, the possibility of temperature dependence of threshold stress was discussed by estimating the activation energy for dislocations to detach the Y 2 O 3 particles. The results are summarized as follows. 1) The stress exponents of ODS martensite steel were 22-35. And the activation energy of high-temperature deformation was 742 kJ/mol. Those deformation behaviour of ODS martensite steel agrees with the deformation behaviour of ODS ferritic steel. 2) The Orowan stress and the void-hardening stress calculated from dispersion parameters approximately agreed with the threshold stress obtained by SAL test. It is concluded that the originating mechanism of the threshold stress in ODS martensite steel is the Srolovitz's one. 3) The calculated activation energy for a dislocation to detach the particles was very high compared to the thermal energy. Therefor, the threshold stress is almost independent of temperature. (author)

  9. Dynamic mechanical properties of reduced activation ferritic steels

    International Nuclear Information System (INIS)

    Hirose, T.; Kohyama, A.; Tanigawa, H.; Ando, M.; Jitsukawa, S.

    2003-01-01

    A fatigue test method by a miniaturized hourglass-shaped fatigue specimen has been developed for International Fusion Materials Irradiation Facility (IFMIF) and sufficient potential as the alternative to a conventional large specimen was presented. Furthermore, focused ion beam micro- sampling method was successfully applied to microstructural analysis on fracture process. Where, the effects of displacement damage and transmutation helium on the fatigue properties of Reduced Activation Ferritic/Martensitic Steels, RAFs, were investigated. Neutron irradiation and helium-ion-implantation at ambient temperature caused radiation hardening to degrade fatigue lifetime of F82H steel. Microstructural analysis revealed that local brittle fractures occurred at early stage of fatigue tests was the origin of the degradation.. No significant difference in fatigue life degradation was detected with and without implanted helium. This result suggests that 100 appm helium implanted has no impact on fracture life time under neutron irradiation. (author)

  10. Precipitates and boundaries interaction in ferritic ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Sallez, Nicolas, E-mail: nicolas.sallez@simap.grenoble-inp.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); Hatzoglou, Constantinos [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Normandie Université (France); Delabrouille, Fredéric [EDF–EDF R& D, Les Renardières, 77818 Moret-sur-Loing (France); Sornin, Denis; Chaffron, Laurent [CEA, DEN, Service de Recherches Métallurgiques Appliqué, 91191 Gif-sur-Yvette (France); Blat-Yrieix, Martine [EDF–EDF R& D, Les Renardières, 77818 Moret-sur-Loing (France); Radiguet, Bertrand; Pareige, Philippe [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Normandie Université (France); Donnadieu, Patricia; Bréchet, Yves [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France)

    2016-04-15

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels. - Highlights: • To study the microstructural evolution of a ferritic ODS steel during its extrusion, observations have been carried on samples resulting from a voluntarily interrupted extrusion and extruded materials. • A highly heterogeneous precipitate population have been observed. Nanosized coherent precipitates (2–5 nm) on both sides of the grain boundaries despite grain boundary migration after precipitation due to further thermo-mechanical processing as well as coarse precipitates (10–40 nm) alignments are observed on the grain boundaries and within the grains, parallel to the grain boundaries. • Asymmetrical PFZs can be observed around precipitates alignments and grain boundaries. Using TEM with EDX and APT we have been able to ensure that the PFZs are chemically depleted.

  11. Propagation of semi-elliptical surface cracks in ferritic and austenitic steel plates under thermal cyclic loading

    International Nuclear Information System (INIS)

    Bethge, K.

    1989-05-01

    Theoretical and experimental investigations of crack growth under thermal and thermomechanical fatigue loading are presented. The experiments were performed with a ferritic reactor pressure vessel steel 20 MnMoNi 5 5 and an austenitic stainless steel X6 CrNi 18 11. A plate containing a semi-elliptical surface crack is heated up to a homogeneous temperature and cyclically cooled down by a jet of cold water. On the basis of linear elastic fracture mechanics stress-intensity factors are calculated with the weight function method. The prediction of crack growth under thermal fatigue loading using data from mechanical fatigue tests is compared with the experimental result. (orig.) [de

  12. Development oxide dispersion strengthened ferritic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    Uniaxial tension creep response is reported for an oxide dispersion strengthened (ODS) steel, Fe-13.5Cr-2W-0.5Ti-0.25 Y{sub 2}O{sub 3} (in weight percent) manufactured using the mechanical alloying process. Acceptable creep response is obtained at 900{degrees}C.

  13. Experimental study and modelling of the high temperature mechanical behavior of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Steckmeyer, A.

    2012-01-01

    The strength of metals, and therefore their maximum operating temperature, can be improved by oxide dispersion strengthening (ODS). Numerous research studies are carried out at the French Atomic Energy Commission (CEA) in order to develop a cladding tube material for Gen IV nuclear power reactors. Oxide dispersion strengthened steels appear to be the most promising candidates for such application, which demands a minimum operating temperature of 650 C. The present dissertation intends to improve the understanding of the mechanical properties of ODS steels, in terms of creep lifetime and mechanical anisotropy. The methodology of this work includes mechanical tests between room temperature and 900 C as well as macroscopic and polycrystalline modelling. These tests are carried out on a Fe-14Cr1W0,26Ti + 0,3 Y 2 O 3 ODS ferritic steel processed at CEA by mechanical alloying and hot extrusion. The as-received material is a bar with a circular section. The mechanical tests reveal the high mechanical strength of this steel at high temperature. A strong influence of the strain rate on the ductility and the mechanical strength is also observed. A macroscopic mechanical model has been developed on the basis of some experimental statements such as the high kinematic contribution to the flow stress. This model has a strong ability to reproduce the mechanical behaviour of the studied material. Two different polycrystalline models have also been developed in order to reproduce the mechanical anisotropy of the material. They are based on its specific grain morphology and crystallographic texture. The discrepancy between the predictions of both models and experimental results reveal the necessity to formulate alternate assumptions on the deformation mechanisms of ODS ferritic steels. (author) [fr

  14. Influence of cooling rates on the transformation behaviour of 9Cr-1Mo-0.07C steel

    International Nuclear Information System (INIS)

    Saroja, S.; Vijayalakshmi, M.; Raghunathan, V.S.

    1992-01-01

    The choice of various decomposition mechanisms of austenite in a 9Cr-1 Mo-0.07C steel under different rates of cooling has been studied. The techniques employed were electron probe micro-analysis, X-ray diffraction and electron microscopy. The observed morphological features may be explained based on the predominance of the two types of transformation, austenite → martensite and austenite → ferrite during cooling. In the steel used in this study, decomposition of austenite to proeutectoid ferrite was favoured at cooling rates less than about 2 Ks -1 . The mechanism by which the supersaturated proeutectoid ferrite relieves its excess solute concentration was also studied. A ''microstructural map'' has been proposed to predict the constitution at the end of any given cooling rate for 9Cr-1 Mo-0.07C steel. The choice of commercial treatment has been rationalized with respect to the resultant microstructural constituents. (Author)

  15. Examination of the creep behaviour of microstructurally unstable ferritic steels

    International Nuclear Information System (INIS)

    Williams, K.R.

    1981-01-01

    The inherent microstructural instability of 1/2Cr 1/2Mo 1/4V; 21/4Cr 1Mo and carbon steels creep tested or service exposed at low stresses is demonstrated. Measurements of important dispersion parameters have been made during creep life and have been found to follow normal coarsening kinetics. Using the measured time dependent change of the dispersion parameters, a dislocation source controlled model for recovery creep is used and further developed. The model allows the calculation of the Manson-Haferd plot of log (time to failure) against temperature for unstable steels. In addition, a classification of material stability is proposed, based on the ratio of time to fracture, t(sub f), and time to tertiary creep, tsub(t). This classification enables estimates of remaining creep life to be based either on well established criteria for stable materials or modifications of these criteria for unstable steels. (author)

  16. Control of substrate oxidation in MOD cerawwwmic coating on low-activation ferritic steel with reduced-pressure atmosphere

    Science.gov (United States)

    Tanaka, Teruya; Muroga, Takeo

    2014-12-01

    An Er2O3 ceramic coating fabricated using the metal-organic decomposition (MOD) method on a Cr2O3-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr2O3 layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of baking. Preprocessing to obtain a Cr2O3 layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr2O3 layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr2O3 and MOD oxide ceramic.

  17. Effect of temperature on sintered austeno-ferritic stainless steel microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Munez, C.J. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)], E-mail: claudio.munez@urjc.es; Utrilla, M.V.; Urena, A. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)

    2008-09-08

    The influence of temperature on microstructural changes of sintered austeno-ferritic steels has been investigated. PM stainless steels have been obtained by sintering mixtures of austenitic and ferritic stainless steel powders. Only temperature-induced phase transformation was observed in austenite, as a result of elements interdiffusion between both phases. Microstructural characterization was completed with atomic force microscopy (AFM) and micro- and nano-indentation test, it is revealed an increase in the hardness with respect to the solutionized materials.

  18. High yttria ferritic ODS steels through powder forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  19. Effect of residual stress on fatigue crack propagation at 200 C in a welded joint austenitic stainless steel - ferritic steel

    International Nuclear Information System (INIS)

    Zahouane, A.I.; Gauthier, J.P.; Petrequin, P.

    1988-01-01

    Fatigue resistance of heterogeneous welded joints between austenitic stainless steels and ferritic steels is evaluated for reactor components and more particularly effect of residual stress on fatigue crack propagation in a heterogeneous welded joint. Residual stress is measured by the hole method in which a hole is drilled through the center of a strain gage glued the surface of the materials. In the non uniform stress field a transmissibility function is used for residual stress calculation. High compression residual stress in the ferritic metal near the interface ferritic steel/weld slow down fatigue crack propagation. 5 tabs., 15 figs., 19 refs [fr

  20. Effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels

    International Nuclear Information System (INIS)

    Kim, Jae Young; Park, Yong Soo; Kim, Young Sik

    1998-01-01

    This paper dealt with the effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels. The experimental alloys were made by vacuum induction melting and then hot rolled. The alloys were designed by controlling Cr eq /Ni eq ratio. Two alloys had austenitic phase and one alloy showed (austenite+ferrite) du-plex phase. High nitrogen addition in austenitic alloys stabilized the austenitic structure and then suppressed the formations of ferrite and α martensite, but martensite was formed in the case of large Cr eq /Ni eq ratio and low nitrogen addition. Pitting initiation site was grain boundary in austenitic alloys and was ferrite/austenite phase boundary in duplex alloy in the HCl solution. In sulfuric acids, austenitic alloys showed uniform corrosion, but ferrite phase was preferentially corroded in duplex alloy. The preferential dissolution seems to be related with the distribution of alloying elements between ferrite and austenite. Intergranular corrosion test showed that corrosion rate by immersion Huey test had a linear relation with degree of sensitization by EPR test

  1. Electrochemical approach to corrosion behavior of ferritic steels in Flibe melt

    International Nuclear Information System (INIS)

    Nishimura, H.; Suzuki, A.; Terai, T.; Kondo, M.; Sagara, A.; Noda, N.

    2007-01-01

    Full text of publication follows: A mixture of LiF-BeF 2 , Flibe, is considered as a candidate material for tritium breeding in a fusion liquid blanket. Flibe has favorable characteristics such as high chemical stability and low electric conductivity. However, it produces TF with neutron irradiation, which is corrosive to structural materials. Therefore, the compatibility of structural materials with Flibe is a critical issue. Up to the present, the compatibility of some materials with Flibe was examined by carrying out simple immersion tests under limited conditions. By visual observations and analyses such as XRD on the surfaces after washing out Flibe from specimens, it was found that ferritic steels seemed to have good compatibility. However, strictly speaking, surface condition of the specimens should not be same as that during immersion in melt because these specimens were subjected to heat treatments and washing processes in order to remove solidified Flibe. Therefore, we planed electrochemical experiment to observe corrosion behavior during immersion. In this study, by carrying out cyclic voltammetry on specimens to observe alteration of surface condition of specimen in Flibe melt from moment to moment, the compatibility of ferritic steel with Flibe melt was discussed on. JLF-1 JOYO-II heat ferritic steel (Fe-9.000r-1.98W-0.09C-0.49Mn-0.20V-0.083Ta) which is a candidate low activation ferritic steel as a structural material of fusion reactor was chosen as a test specimen. Fe-9Cr and Fe-2W alloys were also chosen for comparison. The size of all specimens was 20 x 10 x 1 mm. A electrochemical cell was assembled using these specimens as working electrodes. Pt was chosen as a material for quasi-reference electrode. A Ni crucible which was the container of electrolyte, Flibe, was used as a counter electrode. 600 grams of Flibe was prepared and purified by HF/H 2 bubbling before being filled in the Ni crucible. Each specimen was dunked into Flibe at 773, 823 and

  2. Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel

    Science.gov (United States)

    Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.

    2017-05-01

    The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.

  3. Multiscale simulation of yield strength in reduced-activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chen Chong; Zhang, Chi; Yang, Zhigang [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing (China); Zhao, Ji Jun [State Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology and College of Advanced Science and Technology, Dalian University of Technology, Dalian (China)

    2017-04-15

    One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7–9 wt.%Cr) RAFM steels in a condition characterized by 0.1–5 dpa (or 0 dpa) and a temperature range of 25–500°C.

  4. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    International Nuclear Information System (INIS)

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    Highlights: • The morphology of the corrosion of steel in cement paste was studied in situ. • During galvanostatic corrosion, carbon steel reinforcement corroded homogeneously. • On ferritic stainless steel, deep corrosion pits formed and caused wider cracks. • The measured rate of steel loss correlated well with Faraday’s law of electrolysis. - Abstract: In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover

  5. Hot Ductility Behaviors in the Weld Heat-Affected Zone of Nitrogen-Alloyed Fe-18Cr-10Mn Austenitic Stainless Steels

    Science.gov (United States)

    Moon, Joonoh; Lee, Tae-Ho; Hong, Hyun-Uk

    2015-04-01

    Hot ductility behaviors in the weld heat-affected zone (HAZ) of nitrogen-alloyed Fe-18Cr-10Mn austenitic stainless steels with different nitrogen contents were evaluated through hot tension tests using Gleeble simulator. The results of Gleeble simulations indicated that hot ductility in the HAZs deteriorated due to the formation of δ-ferrite and intergranular Cr2N particles. In addition, the amount of hot ductility degradation was strongly affected by the fraction of δ-ferrite.

  6. High yttria ferritic ODS steels through powder forging

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Prakash, Ujjwal, E-mail: ujwalfmt@iitr.ac.in [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Dabhade, Vikram V. [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Laha, K.; Sakthivel, T. [Mechanical Metallurgy Group, IGCAR, Kalpakkam, Tamilnadu 603102 (India)

    2017-05-15

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y{sub 2}O{sub 3} (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility. - Highlights: •ODS steels with yttria contents beyond the conventional limit of 0.5 wt% were fabricated by powder forging in a hydrogen atmosphere. •All the alloys exhibited significant ductility. •This may be attributed to improved inter-particle bonding due to reduction of surface oxides by hydrogen. •Strength in excess of 300 MPa was obtained at 973 K for 0.5%, 1% and 1.5% yttria ODS alloys. •Powder forging is a promising route to fabricate ODS steels and permits development of compositions with up to 1.5% yttria.

  7. TEM characterization of irradiated microstructure of Fe-9%Cr ODS and ferritic-martensitic alloys

    Science.gov (United States)

    Swenson, M. J.; Wharry, J. P.

    2018-04-01

    The objective of this study is to evaluate the effects of irradiation dose and dose rate on defect cluster (i.e. dislocation loops and voids) evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic steels HCM12A and HT9. Complimentary irradiations using Fe2+ ions, protons, or neutrons to doses ranging from 1 to 100 displacements per atom (dpa) at 500 °C are conducted on each alloy. The irradiated microstructures are characterized using transmission electron microscopy (TEM). Dislocation loops exhibit limited growth after 1 dpa upon Fe2+ and proton irradiation, while any voids observed are small and sparse. The average size and number density of loops are statistically invariant between Fe2+, proton, and neutron irradiated specimens at otherwise fixed irradiation conditions of ∼3 dpa, 500 °C. Therefore, we conclude that higher dose rate charged particle irradiations can reproduce the neutron irradiated loop microstructure with temperature shift governed by the invariance theory; this temperature shift is ∼0 °C for the high sink strength alloys studied herein.

  8. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  9. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    Science.gov (United States)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  10. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-01-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe–9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (K JQ ) at represented temperatures: 240–280 MPa √m at room temperature and 160–220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic–martensitic steels such as HT9 and NF616

  11. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    Science.gov (United States)

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  12. Influence of tempering on mechanical properties of ferritic martensitic steels

    International Nuclear Information System (INIS)

    Chun, Y. B.; Han, C. H.; Choi, B. K.; Lee, D. W.; Kim, T. K.; Jeong, Y. H.; Cho, S.

    2012-01-01

    In the mid-1980s research programs for development of low activation materials began. This is based on the US Nuclear Regulatory Commission Guidelines (10CFR part 61) that were developed to reduce long-lived radioactive isotopes, which allows nuclear reactor waste to be disposed of by shallow land burial when removed from service. Development of low activation materials is also key issue in nuclear fusion systems, as the structural components can became radioactive due to nuclear transmutation caused by exposure to high dose neutron irradiation. Reduced-activation ferritic martensitic (RAFM) steels have been developed in the leading countries in nuclear fusion technology, and are now being considered as primary candidate material for the test blanket module (TBM) in the international thermonuclear experiment reactor (ITER). RAFM steels developed so far (e.g., EUROFER 97 and F82H) meet the requirement for structural application in the ITER. However, if such alloys are used in the DEMO or commercial fusion reactor is still unclear, as the reactors are designed to operate under much severe conditions (i.e., higher outlet coolant temperature and neutron fluences). Such harsh operating conditions lead to development of RAFM steels with better creep and irradiation resistances. Mechanical properties of RAFM steels are strongly affected by microstructural features including the distribution, size and type of precipitates, dislocation density and grain size. For a given composition, such microstructural characteristics are determined mainly by thermo-mechanical process employed to fabricate the final product, and accordingly a final heat treatment, i.e., tempering is the key step to control the microstructure and mechanical properties. In the present work, we investigated mechanical properties of the RAFM steels with a particular attention being paid to effects of tempering on impact and creep properties

  13. Investigations of low-temperature neutron embrittlement of ferritic steels

    International Nuclear Information System (INIS)

    Farrell, K.; Mahmood, S.T.; Stoller, R.E.; Mansur, L.K.

    1992-01-01

    Investigations were made into reasons for accelerated embrittlement of surveillance specimens of ferritic steels irradiated at 50C at the High Flux Isotope Reactor (HFIR) pressure vessel. Major suspects for the precocious embrittlement were a highly thermalized neutron spectrum,a low displacement rate, and the impurities boron and copper. None of these were found guilty. A dosimetry measurement shows that the spectrum at a major surveillance site is not thermalized. A new model of matrix hardening due to point defect clusters indicates little effect of displacement rate at low irradiation temperature. Boron levels are measured at 1 wt ppM or less, inadequate for embrittlement. Copper at 0.3 wt % and nickel at 0.7 wt % are shown to promote radiation strengthening in iron binary alloys irradiated at 50 to 60C, but no dependence on copper and nickel was found in steels with 0.05 to 0.22% Cu and 0.07 to 3.3% Ni. It is argued that copper impurity is not responsible for the accelerated embrittlement of the HFIR surveillance specimens. The dosimetry experiment has revealed the possibility that the fast fluence for the surveillance specimens may be underestimated because the stainless steel monitors in the surveillance packages do not record an unexpected component of neutrons in the spectrum at energies just below their measurement thresholds of 2 to 3 MeV

  14. Precipitation behavior in austenitic and ferritic steels during fast neutron irradiation and thermal aging*1

    Science.gov (United States)

    Kawanishi, H.; Hajima, R.; Sekimura, N.; Arai, Y.; Ishino, S.

    1988-07-01

    Precipitation behavior has been studied using a carbon extraction replica technique in Ti-modified Type 316 stainless steels (JPCA-2) and 9Cr-2Mo ferritic/martensitic steels (JFMS) irradiated to 8.1 × 10 24 n/m 2 at 873 and 673 K, respectively, in the experimental fast breeder reactor JOYO. Precipitate identification and compositional analysis were carried out on extracted replicas. The results were compared to those from the as-received steel and a control which had been given the same thermal as-treatment as the specimens received during irradiations. Carbides, Ti-sulphides and phosphides were precipitated in JPCA-2. Precipitate observed in JFMS included carbides, Laves-phases and phosphides. The precipitates in both steels were concluded to be stable under irradiation except for MC and M 6C in JPCA-2. Small MC particles were found precipitated in JPCA-2 during both irradiation and aging. Irradiation proved to promote the precipitation of M 6C in JPCA-2.

  15. Precipitation behavior in austenitic and ferritic steels during fast neutron irradiation and thermal aging

    International Nuclear Information System (INIS)

    Kawanishi, H.; Hajima, R.; Sekimura, N.; Arai, Y.; Ishino, S.

    1988-01-01

    Precipitation behavior has been studied using a carbon extraction replica technique in Ti-modified Type 316 stainless steels (JPCA-2) and 9Cr-2Mo ferritic/martensitic steels (JFMS) irradiated to 8.1x10 24 n/m 2 at 873 and 673 K, respectively, in the experimental fast breeder reactor JOYO. Precipitate identification and compositional analysis were carried out on extracted replicas. The results were compared to those from the as-received steel and a control which had been given the same thermal as-treatment as the specimens received during irradiations. Carbides, Ti-sulphides and phosphides were precipitated in JPCA-2. Precipitate observed in JFMS included carbides, Laves-phases and phosphides. The precipitates in both steels were concluded to be stable under irradiation except for MC and M 6 C in JPCA-2. Small MC particles were found precipitated in JPCA-2 during both irradiation and aging. Irradiation proved to promote the precipitation of M 6 C in JPCA-2. (orig.)

  16. HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Tumey, S; Fluss, M; Serruys, Y; Willaime, F

    2011-08-30

    Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y{sub 4}Al{sub 2}O{sub 9} complex-oxide nanoparticles in the ODS steel imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than {approx}2 nm and amorphous cluster-domains smaller than {approx}2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

  17. Estimation of Oxidation Kinetics and Oxide Scale Void Position of Ferritic-Martensitic Steels in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Li Sun

    2017-01-01

    Full Text Available Exfoliation of oxide scales from high-temperature heating surfaces of power boilers threatened the safety of supercritical power generating units. According to available space model, the oxidation kinetics of two ferritic-martensitic steels are developed to predict in supercritical water at 400°C, 500°C, and 600°C. The iron diffusion coefficients in magnetite and Fe-Cr spinel are extrapolated from studies of Backhaus and Töpfer. According to Fe-Cr-O ternary phase diagram, oxygen partial pressure at the steel/Fe-Cr spinel oxide interface is determined. The oxygen partial pressure at the magnetite/supercritical water interface meets the equivalent oxygen partial pressure when system equilibrium has been attained. The relative error between calculated values and experimental values is analyzed and the reasons of error are suggested. The research results show that the results of simulation at 600°C are approximately close to experimental results. The iron diffusion coefficient is discontinuous in the duplex scale of two ferritic-martensitic steels. The simulation results of thicknesses of the oxide scale on tubes (T91 of final superheater of a 600 MW supercritical boiler are compared with field measurement data and calculation results by Adrian’s method. The calculated void positions of oxide scales are in good agreement with a cross-sectional SEM image of the oxide layers.

  18. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Sarkari Khorrami, Mahmoud; Mostafaei, Mohammad Ali; Pouraliakbar, Hesam, E-mail: hpouraliakbar@alum.sharif.edu; Kokabi, Amir Hossein

    2014-07-01

    In this work, examinations on the microstructure and mechanical properties of plain carbon steel and AISI 430 ferritic stainless steel dissimilar welds are carried out. Welding is conducted in both autogenous and using ER309L austenitic filler rod conditions through gas tungsten arc welding process. The results indicate that fully-ferritic and duplex ferritic–martensitic microstructures are formed for autogenous and filler-added welds, respectively. Carbide precipitation and formation of martensite at ferrite grain boundaries (intergranular martensite) as well as grain growth occur in the heat affected zone (HAZ) of AISI 430 steel. It is found that weld heat input can strongly affect grain growth phenomenon along with the amount and the composition of carbides and intergranular martensite. Acquired mechanical characteristics of weld in the case of using filler metal are significantly higher than those of autogenous one. Accordingly, ultimate tensile strength (UTS), hardness, and absorbed energy during tensile test of weld metal are increased from 662 MPa to 910 MPa, 140 Hv to 385 Hv, and 53.6 J m{sup −3} to 79 J m{sup −3}, respectively by filler metal addition. From fracture surfaces, predominantly ductile fracture is observed in the specimen welded with filler metal while mainly cleavage fracture occurs in the autogenous weld metal.

  19. Forming limit and fracture mechanism of ferritic stainless steel sheets

    International Nuclear Information System (INIS)

    Xu Le; Barlat, Frederic; Ahn, Deok Chan; Bressan, Jose Divo

    2011-01-01

    Research highlights: → Forming limit curves of two ferritic stainless steel sheets were well predicted. → Failure occurs by necking in uniaxial and plane strain tension for both materials. → Failure occurs by shearing in balanced biaxial tension for both materials. → Strain rate sensitivity does not affect the limit strains a lot for both materials. → Strain rate sensitivity likely influences the failure mode for both materials. - Abstract: In this work, the forming limit curves (FLCs) of two ferritic stainless steel sheets, AISI409L and AISI430, were predicted with the Marciniak-Kuczynski (MK) and Bressan-William-Hill (BWH) models, combined with the Yld2000-2d yield function and the Swift hardening law. Uniaxial tension, disk compression and hydraulic bulge tests were performed to determine the yield loci and hardening curves of both materials. Meanwhile, the strain rate sensitivity (SRS) coefficient was measured through uniaxial tension tests carried out at different strain rates. Out-of-plane stretching tests were conducted in sheet specimens to obtain the surface limit strains under different linear strain paths. Micrographs of the specimens fractured in different stress states were obtained by optical and scanning electron microscopy. The overall results show that the BWH model can predict the FLC better than the MK model, and that the SRS does not have much effect on the limit strains for both materials. The predicted FLCs and micrograph analysis both indicate that failure occurs by surface localized necking in uniaxial and plane strain tension states, whereas it occurs by localized shearing in the through thickness direction in balanced biaxial tension state.

  20. Magnetic and magnetoelastic properties of M-substituted cobalt ferrites (M=Mn, Cr, Ga, Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Hoon [Iowa State Univ., Ames, IA (United States)

    2007-12-15

    Magnetic and magnetoelastic properties of a series of M-substituted cobalt ferrites, CoMxFe2-xO4 (M=Mn, Cr, Ga; x=0.0 to 0.8) and Ge-substituted cobalt ferrites Co1+xGexFe2-2xO4 (x=0.0 to 0.6) have been investigated.

  1. Effect of ferrite on the precipitation of σ phase in cast austenitic stainless steel used for primary coolant pipes of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongqiang; Li, Na, E-mail: wangyongqiang1124@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing (China)

    2017-11-15

    The effect of ferrite phase on the precipitation of σ phase in a Z3CN20.09M cast austenitic stainless steel (CASS) used for primary coolant pipes of pressurized water reactor (PWR) nuclear power plants was investigated by using isothermal heat-treatment, optical microscopy (OM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) techniques. The influence of different morphologies and volume fractions of ferrite in the σ phase formation mechanism was discussed. The amount of σ phase precipitated in all specimens with different microstructures increased with increasing of aging time, however, the precipitation rate is significant different. The formation of σ phase in specimens with the coarsest ferrite and the dispersively smallest ferrite is slowest. The lowest level Cr content in ferrite and fewest α/γ interfaces in specimen are the main reasons for the slowest σ precipitation due to they are unfavorable for the kinetics and thermodynamics of phase transformation respectively. By contraries, the fastest formation of σ phase takes place in specimens with narrow and long ferrite due to the most α/γ interfaces and higher Cr content in ferrite which are beneficial for preferential nucleation and formation thermodynamics of σ phase. (author)

  2. High temperature strength and aging behavior of 12%Cr-15%Mn austenitic steels

    International Nuclear Information System (INIS)

    Miyahara, Kazuya; Bae, Dong-Su; Sakai, Hidenori; Hosoi, Yuzo

    1993-01-01

    High Mn-Cr austenitic steels are still considered to be an important high temperature structural material from the point of view of reduced radio-activation. The objective of the present study is to make a fundamental research of mechanical properties and microstructure of 12%Cr-15%Mn austenitic steels. Especially the effects of alloying elements of V and Ti on the mechanical properties and microstructure evolution of high Mn-Cr steels were studied. Precipitation behaviors of carbides, nitrides and σ phase are investigated and their remarkable effects on the high temperature strength are found. The addition of V was very effective for strengthening the materials with the precipitation of fine VN. Ti was also found to be beneficial for the improvement of high temperature strength properties. The results of high temperature strengths of the 12Cr-15Mn austenitic steels were compared with those of the other candidate and/or reference materials, for example, JFMS (modified 9Cr-2Mo ferritic stainless steel) and JPCAs (modified 316 austenitic stainless steels). (author)

  3. High Cr ODS steels R and D for high burnup fuel cladding

    International Nuclear Information System (INIS)

    Kimura, A.; Kasada, R.; Kishimoto, H.; Iwata, N.; Cho, H.-S.; Toda, N.; Yutani, K.; Ukai, S.; Fujiwara, M.

    2007-01-01

    High-performance cladding materials is essential to realize highly efficient and high-burnup operation over 150 GWd/t of so called Generation IV nuclear energy systems, such as supercritical-water-cooled reactor (SCWR) and lead-cooled fast reactor (LFR). Oxide dispersion strengthening (ODS) ferritic/ martensitic steels, which contain 9-12%Cr, show rather high resistance to neutron irradiation embrittlement and high strength at elevated temperatures. However, their corrosion resistance is not good enough in SCW and in lead at high temperatures. High-Cr ODS steels have been developed to improve corrosion resistance. An increase in Cr content an addition resulted in a drastic improvement of corrosion resistance in SCW and in lead. On the contrary, high-Cr steels often show an enhancement of aging embrittlement as well as irradiation embrittlement. Anisotropy in tensile properties is another issue. In order to overwhelm these issues, surveillance tests of the material performance have been performed for high Cr-ODS steels produced by new processing technologies. It is demonstrated that the dispersion of nono-sized oxide particles in high density is effective to attain high-performance and high-Cr ODS steels have a high potential as fuel cladding materials for SCWR and LFR with high efficiency and high burnup. (authors)

  4. Microstructure and mechanical properties of friction stir welded 9Cr ODS steel

    International Nuclear Information System (INIS)

    Min, Hyoung Kee; Kang, Suk Hoon; Noh, Sanghoon; Lee, Jung Gu; Jang, Jinsung; Kim, Tae Kyu

    2013-01-01

    It is well known that the welding of ODS steel with a conventional melting.solidification process is not adequate to reserve nano-oxide particles in the matrix homogeneously. To reserve nano-oxide particles in the matrix homogeneously, friction stir welding (FSW) is the most promising technique to join ODS alloys. In this study, the effects of FSW on the microstructure and mechanical properties of a ODS steel were studied to apply the FSW process to 9Cr ODS steels. Microstructures were observed by means of optical microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). A tensile test and hardness test were carried out to the investigate mechanical properties. FSW could successfully produce defect-free welds on ODS plates. FSW produced a fine grain structure consisting of ferrite and martensite. Tensile strengths and elongations of the SZs were excellent at 298 K, compared to those of the BM. This study suggests that FSW might be an appropriate welding method of ODS steels. Oxide dispersion strengthened (ODS) ferritic-martensitic (FM) steel containing 9 wt%Cr is a promising candidate material for high temperature components operating in aggressive environments such as nuclear fusion and fission systems because of the excellent elevated temperature strength, corrosion and radiation resistance. These characteristics come from microstructures consisting of fine grains and nano-oxide particles dispersed in high number density. However, for more applications of ODS steel in nuclear systems, its weldability is the one of the barrier to be solved

  5. Mechanical properties of irradiated 9Cr-2WVTa steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.; Rieth, M.

    1998-01-01

    An Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) steel has excellent strength and impact toughness before and after irradiation in the Fast Flux Test Facility and the High Flux Reactor (HFR). The ductile-brittle transition temperature (DBTT) increased only 32 C after 28 dpa at 365 C in FFTF, compared to a shift of ∼60 C for a 9Cr-2WV steel--the same as the 9Cr-2WVTa steel but without tantalum. This difference occurred despite the two steels having similar tensile but without tantalum. This difference occurred despite the two steels having similar tensile properties before and after irradiation. The 9Cr-2WVTa steel has a smaller prior-austenite grain size, but otherwise microstructures are similar before irradiation and show similar changes during irradiation. The irradiation behavior of the 9Cr-2WVTa steel differs from the 9Cr-2WV steel and other similar steels in two ways: (1) the shift in DBTT of the 9Cr-2WVTa steel irradiated in FFTF does not saturate with fluence by ∼28 dpa, whereas for the 9Cr-2WV steel and most similar steels, saturation occurs at <10 dpa, and (2) the shift in DBTT for 9Cr-2WVTa steel irradiated in FFTF and HFR increased with irradiation temperature, whereas it decreased for the 9Cr-2WV steel, as it does for most similar steels. The improved properties of the 9Cr-2WVTa steel and the differences with other steels were attributed to tantalum in solution

  6. Influence of initial thermomechanical treatment on high temperature properties of laves phase strengthened ferritic steels

    International Nuclear Information System (INIS)

    Talik, Michal

    2016-01-01

    The aim of this work was to design 17 wt%Cr Laves phase strengthened HiperFer (High performance Ferrite) steels and evaluate their properties. This class of steel is supposed to be used in Advanced Ultra Super Critical power plants. Such cycles exhibit higher efficiency and are environmentally friendly, but improved materials with high resistance to reside/steam oxidation and sufficient creep strength are required. The work focused on the characterization of creep properties of 17Cr2.5W0.5Nb0.25Si heat resistant steel. Small batches of steels with nominal compositions of 17Cr3W0.5Nb0.25Si and 17Cr3W0.9Nb0.25Si were used to analyze the influence of chemical composition on the precipitation behaviour in comparison to 17Cr2.5W0.5Nb0.25Si steel. Creep strength of HiperFer steels is ensured by ne dispersion of thermodynamically stable Laves phase particles, while maintaining high corrosion resistance by a relatively high chromium content. Design of HiperFer steels was accomplished by thermodynamic modeling (Thermocalc) with the main tasks of elimination of the unwelcome brittle (Fe,Cr)-σ phase and maximization of the content of the strengthening C14 Fe_2Nb type Laves phase particles. Long term annealing experiments of all HiperFer steels were performed at 650 C in order to evaluate the role of chemical composition and initial thermo-mechanical treatment state on precipitation behaviour. Laves phase particles formed quickly after few hours and the size of precipitates did not change significantly within 1,000 hours. The observed development of Laves phase particles was compared with thermodynamical calculations (TC-Prisma). The creep properties of 17Cr2.5W0.5Nb0.25Si steel in different initial thermo-mechanical treatment states were tested at 650 C. The influence of different cold rolling procedures, and heat treatments was investigated. Increased cold rolling deformation had a positive effect resulting not only from work hardening, but from the acceleration of Laves

  7. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  8. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1996-01-01

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations

  9. Effect of boron on the hot ductility of 2.25Cr1Mo steel

    International Nuclear Information System (INIS)

    Song, S.-H.; Guo, A.-M.; Shen, D.-D.; Yuan, Z.-X.; Liu, J.; Xu, T.-D.

    2003-01-01

    The effect of boron on the hot ductility of 2.25Cr1Mo steel is investigated by means of a Gleeble 2000 thermomechanical simulator. There is a trough in the hot ductility-temperature curve, which is located between 1000 and 700 deg. C. The ductility trough shifts to lower temperatures with increasing boron content and the hot brittle range becomes shallow and narrow. In general, boron may improve the steel hot ductility in that it may retard the formation of pro-eutectoid ferrite and increase grain boundary cohesion. These effects may be related to the segregation of boron to austenite grain boundaries

  10. Development of ODS (oxide dispersion strengthened) ferritic-martensitic steels for fast reactor fuel cladding

    International Nuclear Information System (INIS)

    Ukai, Shigeharu

    2000-01-01

    In order to attain higher burnup and higher coolant outlet temperature in fast reactor, oxide dispersion strengthened (ODS) ferritic-martensitic steels were developed as a long life fuel cladding. The improvement in formability and ductility, which are indispensable in the cold-rolling method for manufacturing cladding tube, were achieved by controlling the microstructure using techniques such as recrystallization heat-treatment and α to γ phase transformation. The ODS ferritic-martensitic cladding tubes manufactured using these techniques have the highest internal creep rupture strength in the world as ferritic stainless steels. Strength level approaches adequate value at 700degC, which meets the requirement for commercial fast reactors. (author)

  11. Corrosion of ferritic steels by molten lithium: Influence of competing thermal gradient mass transfer and surface product reactions

    International Nuclear Information System (INIS)

    Tortorelli, P.F.

    1987-10-01

    An Fe-12Cr-1MoVW steel was exposed to thermally convective lithium for 6962 h. Results showed that the weight change profile of Fe-12Cr-1MoVW steel changed substantially as the maximum loop temperature was raised from 500 to 600 0 C. Furthermore, for a particular loop experiment, changes in the structure and composition of the exposed surfaces did not reflect typical thermal gradient mass transfer effects for all elements: the surface concentration of chromium was often a maximum at intermediate temperatures, while nickel (present at low concentrations in the starting material) tended to be transported to the coldest part of the loop. Such data were interpreted in terms of a qualitative model in which there are different dominant reactions or the various constituents of the ferritic steels (surface product formation involving nitrogen and/or carbon and solubility-driven elemental transport). This competition among different reactions is important in evaluating overall corrosion behavior and the effects of temperature. The overall corrosion rate of the 12Cr-1MoVW steel was relatively low when compared to that for austenitic stainless steel exposed under similar conditions

  12. Formation of alumina-aluminide coatings on ferritic-martensitic T91 steel

    Directory of Open Access Journals (Sweden)

    Choudhary R.K.

    2014-01-01

    Full Text Available In this work, alumina-aluminide coatings were formed on ferritic-martensitic T91 steel substrate. First, coatings of aluminum were deposited electrochemically on T91 steel in a room temperature AlCl3-1-ethyl-3-methyl imidazolium chloride ionic liquid, then the obtained coating was subjected to a two stage heat treatment procedure consisting of prolonged heat treatment of the sample in vacuum at 300 ○C followed by oxidative heat treatment in air at 650 ○C for 16 hours. X-ray diffraction measurement of the oxidatively heat treated samples indicated formation of Fe-Al and Cr-Al intermetallics and presence of amorphous alumina. Energy dispersive X-ray spectroscopy measurement confirmed 50 wt- % O in the oxidized coating. Microscratch adhesion test conducted on alumina-aluminide coating formed on T91 steel substrate showed no major adhesive detachment up to 20 N loads. However, adhesive failure was observed at a few discrete points on the coating along the scratch track.

  13. Correlation of hot-microhardness with elevated-temperature tensile properties of low activation ferritic steel

    International Nuclear Information System (INIS)

    Hsu Chenyih

    1986-01-01

    Hot microhardness and elevated temperature tensile tests have been performed on 9Cr-2.5W-0.3V-0.15C(GA3X) low activation ferritic steel at temperatures from 20 0 C to 650 0 C. The uniform elongation of the tensile test correlated well with the ductility parameter of the microhardness test. The hot-microhardness test showed a sensitive response to the softening and changes in ductility of the GA3X steel. The ultimate tensile strength and 0.2% yield strength of this steel correlated well with hot microhardness data at test temperatures up to 400 0 C using Cahoon's expressions σ uts = (H/2.9)(n/0.217) n and σ ys = (H/3)(0.1) n , respectively, where H is the diamond pyramid hardness and n is the strain hardening exponent. A 20-30% underestimate of tensile strengths were obtained using Cahoon's expressions at temperatures above 400 0 C, which is probably attributed to creep deformation and may be improved by selecting a proper loading condition during the hardness test. (orig.)

  14. Corrosion behavior of ferritic stainless steel with 15wt% chromium for the automobile exhaust system

    Science.gov (United States)

    Li, Hua-bing; Jiang, Zhou-hua; Feng, Hao; Zhu, Hong-chun; Sun, Bin-han; Li, Zhen

    2013-09-01

    The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semiconducting properties of passive films with different chloride ion concentrations were performed using capacitance measurement and Mott-Schottky analysis methods. The aging precipitation and intergranular corrosion behavior were evaluated at 400-900°C. It is found that the pitting potential decreases when the grain size increases. With the increase in chloride ion concentration, the doping density and the flat-bland potential increase but the thickness of the space charge layer decreases. The pitting corrosion resistance increases rapidly with the decrease in pH value. Precipitants is identified as Nb(C,N) and NbC, rather than Cr-carbide. The intergranular corrosion is attributed to the synergistic effects of Nb(C,N) and NbC precipitates and Cr segregation adjacent to the precipitates.

  15. Studies on oxidation and deuterium permeation behavior of a low temperature α-Al_2O_3-forming Fe−Cr−Al ferritic steel

    International Nuclear Information System (INIS)

    Xu, Yu-Ping; Zhao, Si-Xiang; Liu, Feng; Li, Xiao-Chun; Zhao, Ming-Zhong; Wang, Jing; Lu, Tao; Hong, Suk-Ho; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-01-01

    To evaluate the capability of Fe−Cr−Al ferritic steels as tritium permeation barrier in fusion systems, the oxidation behavior together with the permeation behavior of a Fe−Cr−Al steel was investigated. Gas driven permeation experiments were performed. The permeability of the oxidized Fe−Cr−Al steel was obtained and a reduced activation ferritic/martensitic steel CLF-1 was used as a comparison. In order to characterize the oxide layer, SEM, XPS, TEM, HRTEM were used. Al_2O_3 was detected in the oxide film by XPS, and HRTEM showed that Al_2O_3 in the α phase was found. The formation of α-Al_2O_3 layer at a relatively low temperature may result from the formation of Cr_2O_3 nuclei.

  16. Microstructure and tensile properties of high strength duplex ferrite-martensite (DFM) steels

    International Nuclear Information System (INIS)

    Chakraborti, P.C.; Mitra, M.K.

    2007-01-01

    Duplex ferrite-martensite (DFM) steels containing 38-80% martensite of varying morphologies were developed by batch intercritical annealing of a commercial variety vanadium bearing 0.2% C-Mn steel at different temperatures. Microstructures before intercritical annealing were found to control the morphological distribution of the phase constituents of the developed DFM steels. Tensile test results revealed best strength-ductility combination for finely distributed lamellar ferrite-martensite phase aggregate containing ∼60% martensite developed from a prior martensitic structure. Taking consideration of the modified law of mechanical mixture the experimental tensile strength data of the developed DFM steels has been formulated with some success and very good estimation for tensile strengths of pure ferrite and low carbon martensite has been made from tensile strength data of DFM steels

  17. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    International Nuclear Information System (INIS)

    Dai, Y.

    1996-01-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature (≤380 degrees C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300 degrees C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300 degrees C to 500 degrees C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180 degrees C to 330 degrees C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited

  18. Behaviour of Z phase in 9–12%Cr steels

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John

    2006-01-01

    The literature on the behaviour of modified Z phase Cr(V,Nb)N in creep resistant martensitic 9–12%Cr steels is briefly reviewed. Ten different 9–12%Cr steels were investigated after prolonged exposure at 600–660uC; the modified Z phase was found in all of them. In steels with high Cr content (11......–12%), Z phase precipitates much faster than in 9%Cr steels. Precipitation of Z phase is associated with dissolution of MX carbonitrides, and causes a breakdown in long term creep strength in 9–12%Cr steels. High Cr steels show creep instabilities accompanied with Z phase precipitation, whereas low Cr...... steels show good long term creep stability. A niobium free CrVN variant of the modified Z phase was observed for the first time during the course of this work. The solution temperature of the Cr(V,Nb)N and CrVN modified Z phases was found to be close to 800uC for 11–12%Cr steels, much lower than the 1200...

  19. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  20. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  1. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels

    International Nuclear Information System (INIS)

    Li, D.Z.; Xiao, N.M.; Lan, Y.J.; Zheng, C.W.; Li, Y.Y.

    2007-01-01

    The mesoscale deterministic cellular automaton (CA) method and probabilistic Q-state Potts-based Monte Carlo (MC) model have been adopted to investigate independently the individual growth behavior of ferrite grain during the austenite (γ)-ferrite (α) transformation. In these models, the γ-α phase transformation and ferrite grain coarsening induced by α/α grain boundary migration could be simulated simultaneously. The simulations demonstrated that both the hard impingement (ferrite grain coarsening) and the soft impingement (overlapping carbon concentration field) have a great influence on the individual ferrite growth behavior. Generally, ferrite grains displayed six modes of growth behavior: parabolic growth, delayed nucleation and growth, temporary shrinkage, partial shrinkage, complete shrinkage and accelerated growth in the transformation. Some modes have been observed before by the synchrotron X-ray diffraction experiment. The mesoscopic simulation provides an alternative tool for investigating both the individual grain growth behavior and the overall transformation behavior simultaneously during transformation

  2. Microstructural and optical properties of Ca and Cr doped cobalt ferrite nanoparticles synthesized by auto combustion

    Science.gov (United States)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.8Ca0.2) (Fe0.8 Cr0.2)2O4 were synthesized by auto combustion method. Microstructural studies were carried out by X-ray diffraction (XRD). The crystalline size of synthesized nanoparticles as determined by the XRD was found to be 17.6 nm. These structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 200-800 nm. The energy band gap was calculated with the help of Tauc relationship. Ca and Cr doped cobalt ferrite annealed at 600°C exhibit significant dispersion in complex permeability. The dielectric constant and dielectric loss of cobalt ferrite were studied as a function of frequency and were explained on the basis of Koop's theory based on Maxwell Wagner two layer models and electron hopping.

  3. Deformation twinning in irradiated ferritic/martensitic steels

    Science.gov (United States)

    Wang, K.; Dai, Y.; Spätig, P.

    2018-04-01

    Two different ferritic/martensitic steels were tensile tested to gain insight into the mechanisms of embrittlement induced by the combined effects of displacement damage and helium after proton/neutron irradiation in SINQ, the Swiss spallation neutron source. The irradiation conditions were in the range: 15.8-19.8 dpa (displacement per atom) with 1370-1750 appm He at 245-300 °C. All the samples fractured in brittle mode with intergranular or cleavage fracture surfaces when tested at room temperature (RT) or 300 °C. After tensile test, transmission electron microscopy (TEM) was employed to investigate the deformation microstructures. TEM-lamella samples were extracted directly below the intergranular fracture surfaces or cleavage surfaces by using the focused ion beam technique. Deformation twinning was observed in irradiated specimens at high irradiation dose. Only twins with {112} plane were observed in all of the samples. The average thickness of twins is about 40 nm. Twins initiated at the fracture surface, became gradually thinner with distance away from the fracture surface and finally stopped in the matrix. Novel features such as twin-precipitate interactions, twin-grain boundary and/or twin-lath boundary interactions were observed. Twinning bands were seen to be arrested by grain boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of defect free channels, small defect-clusters, dislocation loops and dense small helium bubbles were observed inside twins.

  4. Modelling of creep damage development in ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.

  5. Modelling of creep damage development in ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, R [Swedish Institute for Metals Research, Stockholm (Sweden)

    1999-12-31

    The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.

  6. Characteristics of Modified 9Cr-1Mo Steel for Reactor Pressure Vessel of Very High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Ryu, W. S.; Han, Chang Hee; Yoon, J. H.; Chang, Jong Hwa

    2004-11-15

    Many researches and developments have been progressed for the construction of VHTR by 2020 in Korea. Modified 9Cr-1Mo steel has been receiving attention for the application to the reactor pressure vessel material of VHTR. We collected and analyzed the research data for modified 9Cr-1Mo steel in order to understand the characteristics of modified 9Cr-1Mo steel. The modified 9Cr-1Mo steel is a modified alloy system similar to conventional 9Cr-1Mo grade ferritic steel. Modifications include additions of vanadium, niobium, and nitrogen, as well as lower carbon content. In this report, we summarized the change of microstructure and mechanical properties after tempering, thermal aging, and irradiation. Modified 9Cr-1Mo steel has high strength and thermal conductivity, low thermal expansion, and good resistance to corrosion. But the irradiation embrittlement behavior of modified 9Cr-1Mo steel should be evaluated and the evaluation methodology also should be developed. At the same time, the characteristics of weldment which is the weak part in pressure vessel should be evaluated.

  7. Comparison of material property specifications of ferritic steels in fast-breeder reactor technology

    International Nuclear Information System (INIS)

    Delporte, E.; Vanderborck, Y.

    1988-01-01

    The component fabrications for the fast breeder reactors request the use of ferritic steels specially appropriated for the construction of the equipments sustaining pressure and high temperature. The Activity Group nr 3 Materials of the FRCC has decided to make a study to compare the different norms related to the properties of somme ferritic steels used in the different European fast breeder projects. In particular, this study should allow in the different countries of the Community, to identify the designation of a specific steel and to compare its properties. Deviations between the different norms of a same material are mentioned to facilitate European standardization of this type of material

  8. Control of substrate oxidation in MOD ceramic coating on low-activation ferritic steel with reduced-pressure atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Teruya, E-mail: teru@nifs.ac.jp; Muroga, Takeo

    2014-12-15

    Highlights: • A Cr{sub 2}O{sub 3} layer was produced on a ferritic steel substrate with a reduced-pressure. • The Cr{sub 2}O{sub 3} layer prevents further substrate oxidation in following coating process. • The Cr{sub 2}O{sub 3} layer has a function as a hydrogen permeation barrier. • A smooth MOD Er{sub 2}O{sub 3} coating was successfully made on the Cr{sub 2}O{sub 3} layer by dip coating. • The Cr{sub 2}O{sub 3} layer would enhance flexibility in MOD coating process and performances. - Abstract: An Er{sub 2}O{sub 3} ceramic coating fabricated using the metal–organic decomposition (MOD) method on a Cr{sub 2}O{sub 3}-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr{sub 2}O{sub 3} layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10{sup −3} Pa and 5 Pa. The Cr{sub 2}O{sub 3} layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe{sub 2}O{sub 3}, which has been considered to degrade coating performance. An MOD Er{sub 2}O{sub 3} coating with a smooth surface was successfully obtained on a Cr{sub 2}O{sub 3}-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr{sub 2}O{sub 3} layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr{sub 2}O{sub 3} layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr{sub 2}O{sub 3} and MOD oxide ceramic.

  9. The Effects of Cr and Al Addition on Transformation and Properties in Low‐Carbon Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Junyu Tian

    2017-01-01

    Full Text Available Three low‐carbon bainitic steels were designed to investigate the effects of Cr and Al addition on bainitic transformation, microstructures, and properties by metallographic method and dilatometry. The results show that compared with the base steel without Cr and Al addition, only Cr addition is effective for improving the strength of low‐carbon bainitic steel by increasing the amount of bainite. However, compared with the base steel, combined addition of Cr and Al has no significant effect on bainitic transformation and properties. In Cr‐bearing steel, Al addition accelerates initial bainitic transformation, but meanwhile reduces the final amount of bainitic transformation due to the formation of a high‐temperature transformation product such as ferrite. Consequently, the composite strengthening effect of Cr and Al addition is not effective compared with individual addition of Cr in low‐carbon bainitic steels. Therefore, in contrast to high‐carbon steels, bainitic transformation in Cr‐bearing low‐carbon bainitic steels can be finished in a short time, and Al should not be added because Al addition would result in lower mechanical properties.

  10. Thermal Stability of Nanocrystalline Structure In X37CrMoV5-l Steel

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of the study was to investigate the thermal stability of the nanostructure produced in X37CrMoV5-1 tool steel by austempering heat treatment consisted of austenitization and isothermal quenching at the range of the bainitic transformation. The nanostructure was composed of bainitic ferrite plates of nanometric thickness separated by thin layers of retained austenite. It was revealed, that the annealing at the temperature higher than temperature of austempering led to formation of cementite precipitations. At the initial stage of annealing cementite precipitations occurred in the interfaces between ferritic bainite and austenite. With increasing temperature of annealing, the volume fraction and size of cementite precipitations also increased. Simultaneously fine spherical Fe7C3 carbides appeared. At the highest annealing temperature the large, spherical Fe7C3 carbides as well as cementite precipitates inside the ferrite grains were observed. Moreover the volume fraction of bainitic ferrite and of freshly formed martensite increased in steel as a result of retained austenite transformation during cooling down to room temperature.

  11. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  12. Effect of Tin, Copper and Boron on the Hot Ductility of 20CrMnTi Steel between 650 °C and 1100 °C

    Science.gov (United States)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% tin, y% copper and z ppm boron (x = 0, 0.02; y = 0, 0.2; z = 0, 60) was investigated. The results show that tin and copper in 20CrMnTi steel are detrimental to its hot ductility while adding boron can eliminate the adverse effect and enhance hot ductility greatly. Tin is found to segregate to the boundaries tested by EPMA in 20CrMnTi steel containing tin and copper and tin-segregation is suppressed by adding boron, moreover, copper was found not to segregate to boundaries, however, fine copper sulfide was found from carbon extraction replicas using TEM. The adverse effect of tin and copper on the hot ductility was due mainly to tin segregation and fine copper sulfide in the steel. The proeutectoid ferrite film precipitating along the austenite grain boundary causes the ductility trough of the three examined steels. Tin and copper in 20CrMnTi steel can retard the occurrence of dynamic recrystallization (DRX) while boron-addition can compensate for that change. The beneficial effect of boron on 20CrMnTi steel containing tin and copper might be ascribed to the fact that boron segregates to grain boundaries, accelerates onset of DRX, retards austenite/ferrite transformation and promotes intragranular nucleation of ferrite.

  13. HRTEM Study of Oxide Nanoparticles in K3-ODS Ferritic Steel Developed for Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Tumey, S; Kuntz, J; El-Dasher, B; Wall, M; Choi, W; Kimura, A; Willaime, F; Serruys, Y

    2009-11-02

    Crystal and interfacial structures of oxide nanoparticles and radiation damage in 16Cr-4.5Al-0.3Ti-2W-0.37 Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and the matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles and multiple crystalline domains formed within a nanoparticle lead us to propose a three-stage mechanism to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels. Effects of nanoparticle size and density on cavity formation induced by (Fe{sup 8+} + He{sup +}) dual-beam irradiation are briefly addressed.

  14. Thermal treatments effect on the austenite-ferrite equilibrium in a duplex stainless steel weld beads

    International Nuclear Information System (INIS)

    Belkessa, Brahim; Badji, Riad; Bettahar, Kheireddine; Maza, Halim

    2006-01-01

    Heat treatments in the temperature range between 800 to 1200 C, with a keeping at high temperature of 60 min, followed by a water quenching at 20 C, have been carried out on austeno-ferritic stainless steel welds (of type SAF 2205-UNS S31803). The heat treatments carried out at temperatures below 1000 C have modified the structure of the duplex stainless steel 2205 in inducing the formation of precipitates, identified by X-ray diffraction as being the intermetallic compound σ and the chromium carbides M 23 C 6 . The treatments applied to temperatures superior to 1000 C shift the δ-γ equilibrium towards the δ phase. Indeed, the increase of the ferrite rate with the treatment temperature is approximately linear. The ferrite rates are higher in the heat-affected zone, which has been submitted to a ferritizing due to the welding thermal effects. (O.M.)

  15. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    Directory of Open Access Journals (Sweden)

    Rômulo Ribeiro Magalhães de Sousa

    2012-04-01

    Full Text Available AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN, with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  16. Ferrite control--Measurement problems and solutions during stainless steel fabrication

    International Nuclear Information System (INIS)

    Pickering, E.W.

    1986-01-01

    Ferrite is one of the magnetic phases found in many grades of otherwise nonmagnetic austenitic stainless steel weldments. Control of ferrite during the fabrication of cryogenic component parts is necessary to produce a reliable product, free of cracking and microfissuring. This is accomplished by balancing compositions in order to produce a small amount of ferrite which is generally accompanied with reduced toughness. Control of ferrite is essential during the fabrication of component parts. The means to accomplish this will vary with the type of material being welded, thickness, welding process, method of measurement and fabrication procedures. An application used during the fabrication of component parts for the Fast Flux Test Facility (FFTF) required specially formulated shielded manual arc welding (SMAW) electrodes and consumable inserts. Control of ferrite measurements and shop welding procedures were essential. The special materials and techniques were used to weld Type 316 stainless steel pipe joints, 28 in. (0.71 m) in diameter. By using three lots of electrodes, each with a different ferrite level, a compatible range of ferrite was achieved throughout the layers of weld metal. By extensive use of the Schaeffler and DeLong modified constitution diagrams for stainless steel weld metal, E-16-8-2 SMAW electrodes were developed with ''0'' ferrite level. The electrodes were used during fabrication of the Liquid Metal Fast Breader Reactor (LMFBR) component parts of Type 316 stainless steel. Metallographic evaluation of laboratory specimens, control of shop welding techniques and individual laboratory training of shop welders combined to produce a quality product

  17. Prediction of δ-ferrite distribution in continuously cast type 304 stainless steel slabs by diffusion transformation analysis

    International Nuclear Information System (INIS)

    Kim, J. Joon; Kim, Sun K.; Kim, Jong W.

    1998-01-01

    Retained δ-ferrite in 304 stainless steel is known to prevent hot cracking during continuous casting. Excess content of retained δ-ferrite lowers the hot workability. So it is necessary to control the amount of retained δ-ferrite in stainless steel. A numerical model based on coupled analysis of macro heat transfer and micro diffusion transformation has been developed in order to predict retained δ-ferrite in continuously cast 304 stainless steel slab. The finite difference technique for moving boundary problem has been formulated utilizing 'murray-landis variable-grid method'. The reliability of numerical model is compared with the other results. The prediction of δ-ferrite content in CC type 304 stainless steel slabs shows good agreement between measured and predicted results. Effect of secondary cooling condition on the δ-ferrite has been also investigated

  18. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    Science.gov (United States)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  19. Effect of microstructure on the fracture toughness of ferrite-martensite-bainite steels

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Kim, In Sup

    1988-01-01

    The effect of microstructure on the fracture toughness of ferrite-martensite -bainite steels was investigated with Fe-0.11C-1.64Mn-0.78Si composition. One inch compact tension specimens (1T-CTSs) were machined from hot rolled plates. The microstructure of ferrite-martensite-bainite was introduced to the specimens by the heat treatment of intercritical annealing at 800deg C and isothermal holding at 350deg C. Holding at 350deg C increased volume fraction of bainite, while decreased that of martensite, and refined martensite particles. Single specimen unloading compliance method was used in fracture test to obtain J-resistance (J-R) curve and to determine the fracture toughness(J IC ). Introduction of bainite to the ferrite-martensite steel improved the fracture toughness due to the deformation of bainite which relaxed the stress concentration on the interface of ferrite and martensite. Observation of fracto-graphs through the scanning electron microscope(SEM) identified the fracture mechanism of ferrite-martensite-bainite steels as dimple nucleation and crack growth by decohesion of ferrite matrix and second phase particles and by microvoid coales cence. (Author)

  20. Formation of oxides particles in ferritic steel by using gas-atomized powder

    International Nuclear Information System (INIS)

    Liu Yong; Fang Jinghua; Liu Donghua; Lu Zhi; Liu Feng; Chen Shiqi; Liu, C.T.

    2010-01-01

    Oxides dispersion strengthened (ODS) ferritic steel was prepared by using gas-atomized pre-alloyed powder, without the conventional mechanical alloying process. By adjusting the volume content of O 2 in the gas atmosphere Ar, the O level in the ferritic powder can be well controlled. The O dissolves uniformly in the ferritic powder, and a very thin layer of oxides forms on the powder surface. After hot deformation, the primary particle boundaries, which retain after sintering, can be disintegrated and near fully dense materials can be obtained. The oxide layer on the powder surface has a significant effect on the microstructural evolution. It may prevent the diffusion in between the primary particles during sintering, and may dissolve and/or induce the nucleation of new oxides in the ferritic matrix during recrystallization. Two kinds of oxide particles are found in the ferritic steel: large (∼100 nm) Ti-rich and fine (10-20 nm) Y-Ti-rich oxides. The hardness of the ferritic steel increases with increasing annealing temperatures, however, decreases at 1400 deg. C, due to the coarsening of precipitates and the recrystallization microstructure.

  1. Microstructure and tensile properties of yttrium nitride dispersion-strengthened 14Cr–3W ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Liqing [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Mechanical and Mining Engineering, University of Queensland, Brisbane 4067, QLD (Australia); Liu, Zuming, E-mail: lzm@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chen, Shiqi; Guo, Yang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2015-12-15

    Highlights: • Innovative nano yttrium nitride dispersion strengthened steels were fabricated. • Higher content of additives accelerate the steel-ceramic powder milling process more. • Steel with high content (3%) of YN dispersoids can obtain good performance at 500 °C. - Abstract: 14Cr–3W ferritic steel powders were mechanically milled with microscale yttrium nitride (YN) particles to fabricate particle dispersion-strengthened ferritic steels. After hot consolidation and annealing, the steel matrix was homogeneously dispersed with nano-scale YN particles. The steel containing 0.3 wt.% YN particles exhibited a yield strength of 1445 MPa at room temperature. Its total elongation was 10.3%, and the fracture surface exhibited mixed ductile and quasi-cleavage fracture morphologies. The steel with a much higher content of YN particles (3 wt.%) in its matrix was much stronger (1652 MPa) at room temperature at the cost of ductility. In particular, it exhibited a high yield strength (1350 MPa) with applicable ductility (total elongation > 10%) at 500 °C. This study has developed a new kind of reinforcement particle to fabricate high-performance ferritic steels.

  2. Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Arash Fattah-alhosseini

    2015-10-01

    Full Text Available The passivation behavior of AISI 430 ferritic stainless steel was investigated in concentrated alkaline solutions in relation to several test parameters, using electrochemical techniques. Increasing solution pH (varying from 11.5 to 14.0 leads to an increase in the corrosion rate of the alloy. Mott–Schottky analysis revealed that passive films formed on AISI 430 ferritic stainless steel behave as n-type semiconductor and the donor densities increased with pH. Electrochemical impedance spectroscopy (EIS results showed that the reciprocal capacitance of the passive film is directly proportional to its thickness, which decreases with pH increase. The results revealed that for this ferritic stainless steel in concentrated alkaline solutions, decreasing the solution pH offers better conditions for forming passive films with higher protection behavior, due to the growth of a much thicker and less defective film.

  3. Effect of heat treatment on the impact properties of a 12Cr-1Mo-V-W steel

    International Nuclear Information System (INIS)

    Chin, B.A.; Wilcox, R.C.

    1983-01-01

    This paper describes the effects of austenitization and tempering treatments on the strength and impact properties of a 12Cr-1Mo-V-W steel. Data are reported for austenitization temperatures covering the range 900 to 1250 0 C and tempering treatments of 600 to 800 0 C. A 50 0 C improvement in the ductile brittle transition temperature is achieved through heat treatment. This is found to result from elimination of delta ferrite and associated carbides at the delta ferrite-matrix interface. 17 figures

  4. Metallurgical characterization of the reduced activation ferritic/martensitic steel Eurofer'97 on as-received condition

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Hernandez-Mayoral, M.

    2001-01-01

    A new European reduced activation ferrous alloy (denominated Eurofer'97) developed as possible first wall and breeder blanket structural material for fusion applications is being characterized. In this paper, activities specially focussed to investigate the microstructural and mechanical properties of this material on the as-received state (normalized at 980 degree sign C/27' plus tempered at 760 degree sign C/90'/air cooled) are presented. Chemical analyses, a detailed microstructural study, hardness, tensile and Charpy tests have been carried out and are compared to the reduced activation material F-82H modified previously studied. The results show that the Eurofer'97 is a fully martensitic steel free of δ-ferrite with similar tensile and better impact properties than the F-82H modified steel. Two types of carbides have been observed in the Eurofer'97, namely, Cr rich precipitates and Ta/V rich precipitates, tentatively identified as M 23 C 6 type and (Ta,V)C type, respectively

  5. Corrosion critique of the 2 1/4 Cr--1 Mo steel for LMFBR steam generation system applications

    International Nuclear Information System (INIS)

    Zima, G.E.

    1977-07-01

    The unstabilized ferritic steel of nominal composition, 2 1 / 4 Cr-1Mo, has been proposed for critical structural assignments in LMFBR powerplants, specifically: the tubing, tubesheet and shell of the evaporator and superheater components. The interest in this steel has been based on a presumably favorable general corrosion property spectrum, acceptable mechanical properties and fabricability, and certain economies associated with the low alloy content. This report is an attempt at a general corrosion assessment for the 2 1 / 4 Cr-1Mo steel and an identification of corrosion problem areas potential to this steel from the sodium and water/steam systems of the proposed working environment. There is a considerable area of uncertainty in the sodium-side response of 2 1 / 4 Cr-1Mo steel, centered in the loss and redisposition of carbon during long-term exposure to sodium of various impurity backgrounds. It is submitted that present evidence relating to the water/steam-side corrosion behavior of the 2 1 / 4 Cr-1Mo steel, under nominal and conceivable perturbed environmental conditions, constitutes the principal concern for the proposed LMFBR powerplant applications of this steel. It is suggested that this unfavorable corrosion aspect represents an inherent limitation of the low alloy content of this steel, probably largely independent of melting and processing recourses, and it is a sufficient basis to question the incentive for a continuation of the collateral studies of this steel for the proposed LMFBR steam generation system assignments

  6. Ferrite morphology and residual phases in continuously cooled low carbon steels

    International Nuclear Information System (INIS)

    Dunne, D.P.

    1999-01-01

    Although much research has been conducted on the isothermal transformation products of medium to high carbon hardenable steels, relatively little has been reported for transformation of low carbon structural steels under continuous cooling conditions. The trend towards reduced carbon levels (less than about 0.1 wt% C) has been driven by demands for formability and weldability, challenging steel designers to maintain strength by microalloying and/or thermomechanical controlled processing. Although control of the ferritic products formed in low carbon steels after hot rolling, normalising and welding is essential in order to ensure adequate strength and toughness, understanding of the microstructures formed on continuous cooling is still limited. In addition, transformation mechanisms remain controversial because of polarisation of researchers into groups championing diffusional and displacive theories for the transformation of austenite over a wide range of cooling rates. The present review compares and draws together the main ferrite classification schemes, and discusses some critical issues on kinetics and mechanisms, in an attempt to rationalise the effects of cooling rate, prior austenite structure and composition on the resulting ferrite structure and its mechanical properties. It is concluded that with increasing cooling rate the ferritic product becomes finer, more plate-like, more dislocated, more carbon supersaturated, more likely to be formed by a displacive mechanism, harder and stronger. Other conclusions are that: (i) 'bainitic ferrite', which is a pervasive form of ferrite in continuously cooled low carbon steels, is different from the conventional upper and lower bainites observed in higher carbon steels, insofar as the co-product 'phase' is typically martensite-austenite islands rather than cementite; and (ii) low carbon bainite rather than martensite is the dominant product at typical fast cooling rates (<500K/s) associated with commercial

  7. Effects of Aging and W Addition on the Microstructure of Fe-Cr-Mn-N Stainless Steels

    International Nuclear Information System (INIS)

    Jeon, Yu Taek; Joo, Uk Hyon; Park, Yong Soo; Kim, Young Sik

    2000-01-01

    The effects of aging treatment on the precipitation behaviors of Fe-Cr-Mn-N stainless steels were studied using a transmission electron microscopy, scanning electron microscopy, optical microscopy and XRD. In the austenitic stainless steel having a single phase. M23C6 carbides were first precipitated in the grain boundary by aging and then grew from grain boundary into grain with aging time. Carbides showed lamellar structures. It was shown from the analysis of spot patterns that carbides had a coherent relation with matrix and their lattice parameter was roughly three times that of austenite. During initial stages of M23C6 carbide precipitation, the iron content was quite high. With increasing aging time, the chromium content was increased. As the tungsten was added to improve the corrosion resistance of the Fe-Cr-Mn-N stainless steels, ferrite phase was formed. This ferrite phase was decomposed to chi(χ) phase and secondary austenite. Chi phase was mainly enriched with tungsten, chromium and tungsten were depleted in the secondary austenite due to the formation of chi phase. M23C6 carbides were also formed in the grain boundary. Nickel stabilized the austenite phase and decreased the ferrite volume fraction. But nickel content was not sufficient to suppress the formation of ferrite, and precipitation behaviors were not changed

  8. Effects of aging treatment and W addition on the microstructure of Fe-Cr-Mn stainless steels

    International Nuclear Information System (INIS)

    Jeoun, Y. T.; Zoo, W. H.; Kim, Y. S.; Park, Y. S.

    1999-01-01

    The effects of aging treatment on the precipitaion behaviors of Fe-Cr-Mn-W stainless steels were studied using a transmission electron microscopy, scanning electron microscopy, optical microscopy and XRD. In the austenitic stainless steel showing a single phase, M 23 C 6 carbides were first precipitated in the grain boundary by aging and then grew from grain boundary into grain with aging time. Carbides showed lamellar structures. It was shown from the analysis of spot patterns that carbides had a coherent relation with matrix and their lattice parameter was roughly three times that of austenite. During initial stages of M 23 C 6 carbide precipitaion, the iron content was quite high. With increasing aging time, the chromium content increased. As the tungsten was added to improve the corrosion resistance of the Fe-Cr-Mn stainless steels, ferrite phase was formed. These ferrite phase was decomposed to chi(χ) phase and secondary austenite. Chi phase was mainly enriched with tungsten, chromium and tungsten were depleted in the secondary austenite due to the formation of chi phase. M 23 C 6 carbides were also formed in the grain boundary. Nickel stabilized the austenite phase and decreased the ferrite volume fraction. But nickel content was not sufficient to suppress the formation of ferrite, and precipitaion behaviors were not changed

  9. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  10. Characterisation of high-temperature damage mechanisms of oxide dispersion strengthened (ODS) ferritic steels

    International Nuclear Information System (INIS)

    Salmon-Legagneur, Hubert

    2017-01-01

    The development of the fourth generation of nuclear power plants relies on the improvement of cladding materials, in order to achieve resistance to high temperature, stress and irradiation dose levels. Strengthening of ferritic steels through nano-oxide dispersion allows obtaining good mechanical strength at high temperature and good resistance to irradiation induced swelling. Nonetheless, studies available from open literature evidenced an unusual creep behavior of these materials: high anisotropy in time to rupture and flow behavior, low ductility and quasi-inexistent tertiary creep stage. These phenomena, and their still unclear origin are addressed in this study. Three 14Cr ODS steels rods have been studied. Their mechanical behavior is similar to those of other ODS steels from open literature. During creep tests, the specimens fractured by through crack nucleation and propagation from the lateral surfaces, followed by ductile tearing once the critical stress intensity factor was reached at the crack tip. Tensile and creep properties did not depend on the chemical environment of specimens. Crack propagation tests performed at 650 C showed a low value of the stress intensity factor necessary to start crack propagation. The cracks followed an intergranular path through the smaller-grained regions, which partly explains the anisotropy of high temperature strength. Notched specimens have been used to study the impact of the main loading parameters (deformation rate, temperature, stress triaxiality) on macroscopic crack initiation and stable propagation, from the central part of the specimens. These tests allowed revealing cavities created during high temperature loading, but unexposed to the external environment. These cavities showed a high chemical reactivity of the free surfaces in this material. The performed tests also evidenced different types of grain boundaries, which presented different damage development behaviors, probably due to differences in local

  11. A study on low temperature transformation ferrite in ultra low carbon IF steels (I) - effects of manganese and annealing conditions

    International Nuclear Information System (INIS)

    Jeong, Woo Chang; Lee, Jae Yeon; Jin, Young Sool

    2001-01-01

    An investigation was made to determine the effects of Mn content and annealing conditions on the formation of the low temperature transformation products in ultra low carbon interstitial free steels. With increasing the Mn content, yield and tensile strengths increased, but yield ratio decreased. The Mn was found to be effective to decrease the yield point elongation, causing continuous yielding in 3% Mn steel. Low temperature transformation ferrites such as quasi-polygonal ferrite, granular bainitic ferrite, and bainitic ferrite more easily formed with higher Mn content, higher annealing temperature, longer annealing time, and faster cooling rate. Polygonal ferrite grain was readily identified in the light microscope and was characterized by the polyhedral and equiaxed shape while quasi-polygonal ferrite showed the irregular changeful grain boundaries. It was found that both granular bainitic and bainitic ferrites revealed some etching evidence of substructures in the light microscope

  12. Interaction of high cycle fatigue and creep in 9%Cr-1%Mo steel at elevated temperature

    International Nuclear Information System (INIS)

    Vasina, R.; Lukas, P.; Kunz, L.; Sklenicka, V.

    1995-01-01

    High-cycle-fatigue/creep experiments were performed on a 9%Cr-1%Mo tempered martensite ferritic steel at 873 K in air. The stress ratio R = σ min /σ max ranged from -1 (''pure'' fatigue) to 1 (''pure'' creep). The maximum stress σ max was kept constant at 240 MPa.The lifetime depends on the stress ratio R in a non-monotonic way. In the stress ratio interval 0.6 mean of the stress cycle. In the stress ratio interval -1 a . The fatigue/creep interaction occurs in between these intervals. The fatigue/creep loading induces transformation of the tempered martensite ferritic structure into an equiaxed subgrain structure. The resulting subgrain size depends strongly on the stress ratio. (author)

  13. Use of ferritic steels in breeder reactors worldwide

    International Nuclear Information System (INIS)

    Patriarca, P.

    1983-01-01

    The performance of LMFBR reactor steam generator materials is reviewed. Tensile properties of stainless steel-304, stainless steel-316, chromium-molybdenum steels, and Incoloy 800H are presented for elevated temperatures

  14. In situ room temperature tensile deformation of a 1% CrMoV bainitic steel using synchrotron and neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Weisser, M.A. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Materials (IMX), CH-1012 Lausanne (Switzerland); Evans, A.D.; Van Petegem, S. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Holdsworth, S.R. [EMPA Materials Science and Technology, CH-8600 Duebendorf (Switzerland); Van Swygenhoven, H., E-mail: helena.vs@psi.ch [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Materials (IMX), CH-1012 Lausanne (Switzerland)

    2011-06-15

    Neutron and synchrotron X-ray diffraction spectra have been acquired during room temperature tensile deformation of a creep-resistant bainitic 1% CrMoV steel, in order to study the evolution of internal microstresses and load-sharing mechanisms between the ferrite matrix and the various carbides. Cementite takes load from the plastifying matrix at the onset of macroscopic plasticity resulting in residual interphase stresses. Single peak fitting indicates an elastic anisotropic behaviour of cementite.

  15. The Phase Transformations in Hypoeutectoid Steels Mn-Cr-Ni

    Directory of Open Access Journals (Sweden)

    RoŻniata E.

    2015-04-01

    Full Text Available The results of a microstructure and hardness investigations of the hypoeutectoid steels Mn-Cr-Ni, imitating by its chemical composition toughening steels, are presented in the paper. The analysis of the kinetics of phase transformations of undercooled austenite of steels containing different amounts of alloying elements in their chemical composition, constitutes the aim of investigations.

  16. Creep strength and rupture ductility of creep strength enhanced ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kushima, Hideaki; Sawada, Kota; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength and rupture ductility of Creep Strength Enhanced Ferritic (CSEF) steels were investigated from a viewpoint of stress dependence in comparison with conventional low alloy ferritic creep resistant steels. Inflection of stress vs. time to rupture curve was observed at 50% of 0.2% offset yield stress for both CSEF and conventional ferritic steels. Creep rupture ductility tends to decrease with increase in creep exposure time, however, those of conventional low alloy steels indicate increase in the long-term. Creep rupture ductility of the ASME Grades 92 and 122 steels indicates drastic decrease with decrease in stress at 50% of 0.2% offset yield stress. Stress dependence of creep rupture ductility of the ASME Grades 92 and 122 steels is well described by stress ratio to 0.2% offset yield stress, regardless of temperature. Drop of creep rupture ductility is caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, and remarkable drop of creep rupture ductility of CSEF steels should be derived from those stabilized microstructure. (orig.)

  17. Influence of the initial metallurgical state and the austenizing conditions on the distribution of austenitc grain size of the martensitic-ferritic steel T91(9%Cr-1%Mo-V-Nb)

    International Nuclear Information System (INIS)

    Zavaleta Gutierrez, N; Luppo, M.I; Danon, C.A; Garcia de Andres, C

    2006-01-01

    It is a known fact that the austenizing conditions (speed of heating to the austenite temperature and austenizing time) as well as the initial metallurgical state of the material strongly influence the distribution of austenitic grain size in steels. This distribution will be one of the parameters that will control the behavior of the material in a later transformation from the austenite -by continuous cooling or in the isothermal case - and this behavior will determine the product's final mechanical properties. Based on the published literature, we have studied the influence of the initial metallurgical state and the speed of heating to austenite on the distribution of austenitic grain size for a certain austenizing temperature and time for a martensitic-iron ASTM A213 grade T91 steel. Two-stage thermal cycles were designed for this, that is, tempering for a variable period of time at the industrial tempering temperature (780 o C) followed by the austenizing (1050 o C, 30 minutes) 'in situ'. We have analyzed the following as a whole: 1) the role of the stabilizing elements (Nb, V) that eventually control the anchoring of the austenitic grain boundary by carbide or carbonitride precipitation. Therefore, we have tried to vary the fraction of these elements present in solid solution by annealing before austenizing. 2) the role of the speed of heating to austenite. In this case, we have considered two different values (1 and 30 o C/s), previously reported as inferior and superior, respectively, to the speed of 'critical' heat needed to produce a distribution of heterogeneous austenitic grain size when the metallurgical state before the austenizing is quenched and tempered. Preliminary results suggest that a annealing stage after tempering in the plant and prior to eventual austenizing significantly reduces the influence of the heating to austenite speed in the development of a heterogeneous structure of austenitic grains (CW)

  18. Effect of hardness of martensite and ferrite on void formation in dual phase steel

    DEFF Research Database (Denmark)

    Azuma, M.; Goutianos, Stergios; Hansen, Niels

    2012-01-01

    The influence of the hardness of martensite and ferrite phases in dual phase steel on void formation has been investigated by in situ tensile loading in a scanning electron microscope. Microstructural observations have shown that most voids form in martensite by evolving four steps: plastic...... deformation of martensite, crack initiation at the martensite/ferrite interface, crack propagation leading to fracture of martensite particles and void formation by separation of particle fragments. It has been identified that the hardness effect is associated with the following aspects: strain partitioning...... between martensite and ferrite, strain localisation and critical strain required for void formation. Reducing the hardness difference between martensite and ferrite phases by tempering has been shown to be an effective approach to retard the void formation in martensite and thereby is expected to improve...

  19. Structural evolution of Fe-18Ni-16Cr-4Al steel during aging at 950 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Man; Jang, Jinsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Zhou, Zhangjian [School of Materials Science and Engineering, USTB, Beijing (China)

    2015-05-15

    Austenitic stainless steels are also among important structural materials for in-core components of nuclear reactors, and the performance, the oxidation resistance as well as the mechanical strength at high temperature are further expected after Fukushima accident. Alumina-forming austenitic (AFA) steel was first developed by Y. Yamamoto et al. , which showed a good combination of oxidation resistance and creep resistance. The strengthening is achieved through nano-sized MX and Laves. Microstructural evolution of Fe-18Ni-16Cr-4Al during aging at 950 .deg. C was studied. This steel consists of two phases of austenite and ferrite. During aging, needle-shaped NiAl precipitates in austenite, while round shaped NiAl form in ferrite, which is supposed to be due to different crystal structural parameters.

  20. Damage development in 9%Cr steels

    International Nuclear Information System (INIS)

    Rauch, M.; Maile, K.

    2003-01-01

    Modern 9-11% martensitic steels are candidate materials to be used in modern fossil fired power plants with high efficiency rates. The focus of the R and D work is put on the further development and optimisation, the determination of material characteristics but also on the identification and quantification of damage mechanisms and the damage evolution. For this purpose extensive experiments such as long creep tests on specimens under internal pressure, metallurgical examinations and theoretical investigations for determination of stress-strain state which have been conducted. The laboratory tests are completed by examination of real components. As a result an empirical description of the creep cavity density as a function of deformation and multiaxiality of stress state has been carried out which can be used in further FE-calculations determining the damage state. The results of all metallographical examinations on specimens with different heat treatments and service loads are summarised in a structure atlas and are published for further usage. Damage development, martensitic 9 % Cr steels, creep cavity density, creep tests under multiaxial load, metallographical investigations, and measurements on pipe bends. (author)

  1. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  2. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  3. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja4@gmail.com [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar, Gujarat (India); Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat (India)

    2012-05-15

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  4. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-05-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  5. Determination of ferrite formation coefficient of tin in an austenitic stainless steel by the diffusion couple method

    International Nuclear Information System (INIS)

    Marchive, Daniel; Treheux, Daniel; Guiraldenq, Pierre

    1976-01-01

    The ferritic action of tin for a 18-10 stainless steel has been measured by two different methods: the first is based on the diffusion couple method and the graphical representation of compositions in a diagram α/α + γ/γ corresponding to ferrite and austenitic elements of the steel. In the second method, ferrite formation is analyzed in small ingots prepared with different chromium and tin concentrations. Ferrite coefficient of tin, compared to chromium is 0.25 with diffusion couples and this value is in good agreement with the classical method [fr

  6. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.

  7. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    Science.gov (United States)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  8. Diffusion of Nickel into Ferritic Steel Interconnects of Solid Oxide Fuel/Electrolysis Stacks

    DEFF Research Database (Denmark)

    Molin, Sebastian; Chen, Ming; Bowen, Jacob R.

    2013-01-01

    diffusion of nickel from the Ni/YSZ electrode or the contact layer into the interconnect plate. Such diffusion can cause austenization of the ferritic structure and could possibly alter corrosion properties of the steel. Whereas this process has already been recognized by SOFC stack developers, only...... a limited number of studies have been devoted to the phenomenon. Here, diffusion of Ni into ferritic Crofer 22 APU steel is studied in a wet hydrogen atmosphere after 250 hours of exposure at 800 °C using Ni-plated (~ 10 micron thick coatings) sheet steel samples as a model system. Even after...... this relatively short time all the metallic nickel in the coating has reacted and formed solid solutions with iron and chromium. Diffusion of Ni into the steel causes formation of the austenite FCC phase. The microstructure and composition of the oxide scale formed on the sample surface after 250 hours is similar...

  9. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997

  10. The creep properties of a low alloy ferritic steel containing an intermetallic precipitate dispersion

    International Nuclear Information System (INIS)

    Batte, A.D.; Murphy, M.C.; Edmonds, D.V.

    1976-01-01

    A good combination of creep rupture ductility and strength together with excellent long term thermal stability, has been obtained from a dispersion of intermetallic Laves phase precipitate in a non-transforming ferritic low alloy steel. The steel is without many of the problems currently associated with the heat affected zone microstructures of low alloy transformable ferritic steels, and can be used as a weld metal. Following suitable development to optimize the composition and heat treatment, such alloys may provide a useful range of weldable creep resistant steels for steam turbine and other high temperature applications. They would offer the unique possibility of easily achievable microstructural uniformity, giving good long term strength and ductility across the entire welded joint

  11. Irradiation damage of ferritic/martensitic steels: Fusion program data applied to a spallation neutron source

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    Ferritic/martensitic steels were chosen as candidates for future fusion power plants because of their superior swelling resistance and better thermal properties than austenitic stainless steels. For the same reasons, these steels are being considered for the target structure of a spallation neutron source, where the structural materials will experience even more extreme irradiation conditions than expected in a fusion power plant first wall (i.e., high-energy neutrons that produce large amounts of displacement damage and transmutation helium). Extensive studies on the effects of neutron irradiation on the mechanical properties of ferritic/martensitic steels indicate that the major problem involves the effect of irradiation on fracture, as determined by a Charpy impact test. There are indications that helium can affect the impact behavior. Even more helium will be produced in a spallation neutron target material than in the first wall of a fusion power plant, making helium effects a prime concern for both applications. 39 refs., 10 figs

  12. Effect of the delta ferrite solidification morphology of austenitic steels weld metal on the joint properties

    International Nuclear Information System (INIS)

    Bilmes, P.; Gonzalez, A.; Llorente, C.; Solari, M.

    1996-01-01

    The properties of austenitic stainless steel weld metals are largely influenced by the appearance in the microstructure of delta ferrite of a given morphology. The susceptibility to hot cracks and low temperature toughness are deeply conditioned by the mixed complex austenitic-ferritic structures which depending on the steel chemical composition and on the cooling rate may be developed. The latest research on this issue points out the importance of the sodification mode as regards to the influence in the appearance of delta ferrite of a certain morphology. In fact, it is very important to understand the solidification sequences, the primary solidification modes which are possible and the subsequent solid state transformations to correlate the structural elements of the weld metal with the parameters of the welding process on the one had, and the weld joint properties on the other. (Author) 19 refs

  13. Evaluation of creep rupture property of high strength ferritic/martensitic steel (PNC-FMS)

    International Nuclear Information System (INIS)

    Uehira, Akihiro; Mizuno, Tomoyasu; Ukai, Shigeharu; Yoshida, Eiichi

    1999-04-01

    High Strength Ferritic/Martensitic Steel (PNC-FMS : 11Cr-0.5Mo-2W,Nb,V), developed by JNC, is one of the candidate materials for the long-life core of large-scale fast breeder reactor. The material design base standard (tentative) of PNC-FMS was established and the creep rupture strength reduction factor in the standard was determined in 1992. This factor was based on only evaluation of decarburization effect on tensile strength after sodium exposure. In this study, creep rupture properties of PNC-FMS under out of pile sodium exposure and in pile were evaluated, using recent test results as well as previous ones. The evaluation results are summarized as follows : a. Decarburization rate constant of pressurized tubes under sodium exposure is identical with stress free specimens. b. In case of the same decarburization content under out of pile sodium exposure, creep strength tends to decrease more significantly than tensile strength. c. Creep strength under out of pile sodium exposure showed significant decrease in high temperature and long exposure time, but in pile (MOTA) creep strength showed little decrease. A new creep rupture strength reduction factor, which is the ratio of creep rupture strength under sodium exposure or in pile to in air, was made by correlating the creep rupture strength. This new method directly using the ratio of creep rupture strength was evaluated and discussed from the viewpoint of design applicability, compared with the conventional method based on decarburization effect on tensile strength. (author)

  14. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-01-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation

  15. Fatigue life assessment based on crack growth behavior in reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Sato, Yuki; Hasegawa, Akira

    2010-01-01

    Crack growth behavior under low cycle fatigue in reduced activation ferritic/martensitic steel, F82H IEA-heat (Fe-8Cr-2W-0.2V-0.02Ta), was investigated to improve the fatigue life assessment method of fusion reactor structural material. Low cycle fatigue test was carried out at room temperature in air at a total strain range of 0.4-1.5% using an hourglass-type miniature fatigue specimen. The relationship between the surface crack length and life fraction was described using one equation independent of the total strain range. Therefore, the fatigue life and residual life could be estimated using the surface crack length. Moreover, the microcrack initiation life could be estimated using the total strain range if there was a one-to-one correspondence between the total strain range and number of cycles to failure. The crack growth rate could be estimated using the total strain range and surface crack length by introducing the concept of the normalized crack growth rate. (author)

  16. Contribution to the metallurgy of welding processes in stainless ferritic-austenitic (duplex) steels

    International Nuclear Information System (INIS)

    Perteneder, E.; Toesch, J.; Rabensteiner, G.

    1989-01-01

    Duplex steels have a ferritic austenitic structure. Therefore, to obtain a successful welding, special metallurgical regulations must be observed. The effect of energy per unit length and plate thickness onto the heat influence zone in case of manual arc welding is examined. Practice-oriented instructions for the welding technique to be applied are deduced from the results. Finally, the effect of the alloy composition onto the welding capacity of duplex steels is examined. (orig.) [de

  17. Interim storage of sodium in ferritic steel tanks at ambient temperature

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1994-01-01

    Sodium tanks originally fabricated for elevated temperature service in the Clinch River Breeder Reactor Plant (CRBRP) will be used to store sodium removed from the Fast Flux Test Facility (FFTF) in the Sodium Storage Facility (SSF) at ambient temperature. This report presents an engineering review to confirm that protection against brittle fracture of the ferritic steel tanks is adequate for the intended service

  18. Outgassing characteristics of F82H ferritic steel as a low activation material for fusion reactor

    International Nuclear Information System (INIS)

    Odaka, Kenji; Satou, Osamu; Ootsuka, Michio; Abe, Tetsuya; Hara, Shigemitsu; Takatsu, Hideyuki; Enoeda, Mikio.

    1997-01-01

    Outgassing characteristics of F82H ferritic steel as a low activation material for the blanket of fusion device were investigated. A test chamber was constructed by welding F82H ferritic steel plates. The inner surface of the chamber was buffed and electropolished. The test chamber was degassed by the prebaking at temperature of 350degC for 20 h in vacuum. Then outgassing rates of the test chamber were measured by the throughput method as a function of pumping time for the cases that the test chamber was baked and not baked. The typical outgassing rate after baking at 250degC for 24 h was 3 x 10 -9 Pa·ms -1 and it seems that this value is sufficiently small to produce pressures at least as low as 10 -9 Pa in the vacuum chamber made of F82H ferritic steel. In the pump-down of the test chamber without baking after exposure to air, the outgassing rate decreases with pumping time and reached 1 x 10 -7 Pa·ms -1 at t = 10 5 s. The activation energy of hydrogen in bulk diffusion in the F82H ferritic steel was measured and found to be 7 kcal/mol. (author)

  19. On the Nature of Internal Interfaces in Tempered Martensite Ferritic Steels

    Czech Academy of Sciences Publication Activity Database

    Dronhofer, A.; Pešička, J.; Dlouhý, Antonín; Eggeler, G.

    2003-01-01

    Roč. 94, č. 5 (2003), s. 511-520 ISSN 0044-3093 R&D Projects: GA ČR GA106/99/1172 Institutional research plan: CEZ:AV0Z2041904 Keywords : Tempered martensite ferritic steels * martensite variants * orientation imaging Subject RIV: JG - Metallurgy Impact factor: 0.637, year: 2003

  20. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  1. Ferrite channel effect on ductility and strain hardenability of ultra high strength dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Kumar B., E-mail: ravik@nmlindia.org [CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Patel, Nand Kumar [O.P Jindal University, Raigarh 496001 (India); Mukherjee, Krishnendu; Walunj, Mahesh; Mandal, Gopi Kishor [CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Venugopalan, T. [Tata Steel Limited, Jamshedpur 831001 (India)

    2017-02-08

    This study describes an effect of controlled austenite decomposition on microstructure evolution in dual phase steel. Steel sheets austenitized at various annealing temperatures were rapidly cooled to the inter-critical annealing temperature of 800 °C for the isothermal decomposition of austenite and then ultra fast cooled to room temperature. The scanning electron microscope analysis of evolving microstructure revealed ferrite nucleation and growth along prior austenite grain boundaries leading to ferrite network/channel formation around martensite. The extent of ferrite channel formation showed a strong dependence on the degree of undercooling in the inter-critical annealing temperature regime. Uniaxial tensile deformation of processed steel sheets showed extensive local inter-lath martensite damage activity. Extension/propagation of these local micro cracks to neighboring martensite grains was found to be arrested by ferrite channels. This assisted in delaying the onset of global damage which could lead to necking and fracture. The results demonstrated an alternate possible way of inducing ductility and strain hardenability in ultra high strength dual phase steels.

  2. Constraint Effects at Brittle Fracture Initiation in a Cast Ferritic Steel

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Kozák, Vladislav

    č. 71 (2004), s. 873-883 ISSN 0013-7944 R&D Projects: GA AV ČR IAA2041003 Institutional research plan: CEZ:AV0Z2041904 Keywords : Cast ferritic steel * transition behaviour * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.299, year: 2004 www.sciencedirect.com

  3. Tem study of thermal ageing of ferrite in cast duplex stainless steel

    International Nuclear Information System (INIS)

    Nenonen, P.; Massoud, J.P.; Timofeev, B.T.

    2002-01-01

    The changes in the microstructure and composition of ferrite in two types of cast duplex stainless steels and in an austenitic-ferritic weld metal after long term thermal ageing has been studied using analytical transmission electron microscope (FEGTEM). A cast test steel containing Mo was investigated first as a reference material in three different conditions: as solution annealed, aged at 300 C and aged at 400 C. This investigation was carried out to gain experience of how EDS (X-ray analyser) analyser and TEM (transmission electron microscope) can be used to study elemental inhomogeneity, which is usually investigated with an atom probe (APFIM). The two other materials, an austenitic-ferritic weld metal and a cast duplex Ti-stabilised stainless steel used for long time at NPP operation temperature were investigated using the experience obtained with the test steel. The results showed that analytical TEM can be used to investigate elemental inhomogeneity of ferrite, but there are several important things to be taken into account when the spectra for this purpose are collected. These things are, such as the thickness of the specimen, probe size, contamination rate, 'elemental background' of the spectrum and possible enrichment of certain alloying elements in the surface oxide layer of the TEM-specimens. If minor elements are also analysed, it may increase the scattering of the results. (authors)

  4. Ultra-sonic testing for brittle-ductile transition temperature of ferritic steels

    International Nuclear Information System (INIS)

    Nomakuchi, Michiyoshi

    1979-01-01

    The ultra-sonic testing for the brittle-ductile transition temperature, the USTB test for short, of ferritic steels is proposed in the present paper. And also the application of the USTB test into the nuclear pressure vessel surveillance is discussed. The USTB test is based upon the experimental results in the present work that the ultrasonic pressure attenuation coefficient of a ferritic steel has the evident transition property with its temperature due to the nature from which the brittle-ductile fracture transition property of the steel come and for four ferritic steels the upper boundary temperatute of the region in which the transition of the attenuation coefficient of a steel takes place is 4 to 5 0 C higher than the sub(D)T sub(E), i.e. the transition temperature of the fracture absorption energy of the steel by the DWTT test. The USTB test estimates the crack arrest temperature which is defined to be the fracture transition elastic temperature by the upper boundary temperature. (author)

  5. Corrigendum to 'On the influence of microstructure on the fracture behaviour of hot extruded ferritic ODS steels' [J. Nucl. Mater. 497 (2017) 60-75

    Science.gov (United States)

    Das, A.; Viehrig, H. W.; Altstadt, E.; Heintze, C.; Hoffmann, J.

    2018-02-01

    ODS steels are known to show inferior fracture properties as compared to ferritic martensitic non-ODS steels. Hot extruded 13Cr ODS steel however, showed excellent fracture toughness at a temperature range from room temperature to 400 °C. In this work, the factors which resulted in superior and anisotropic fracture behaviour were investigated by comparing different orientations of two hot extruded materials using scanning electron, electron backscatter and transmission electron microscopy. Fracture behaviour of the two materials was compared using unloading compliance fracture toughness tests. Anisotropic fracture toughness was predominantly influenced by grain morphology. Superior fracture toughness in 13Cr ODS-KIT was predominantly influenced by factors such as smaller void inducing particle size and higher sub-micron particle-matrix interfacial strength.

  6. Aluminide slurry coatings for protection of ferritic steel in molten nitrate corrosion for concentrated solar power technology

    Science.gov (United States)

    Audigié, Pauline; Bizien, Nicolas; Baráibar, Ignacio; Rodríguez, Sergio; Pastor, Ana; Hernández, Marta; Agüero, Alina

    2017-06-01

    Molten nitrates can be employed as heat storage fluids in solar concentration power plants. However molten nitrates are corrosive and if operating temperatures are raised to increase efficiencies, the corrosion rates will also increase. High temperature corrosion resistant coatings based on Al have demonstrated excellent results in other sectors such as gas turbines. Aluminide slurry coated and uncoated P92 steel specimens were exposed to the so called Solar Salt (industrial grade), a binary eutectic mixture of 60 % NaNO3 - 40 % KNO3, in air for 2000 hours at 550°C and 580°C in order to analyze their behavior as candidates to be used in future solar concentration power plants employing molten nitrates as heat transfer fluids. Coated ferritic steels constitute a lower cost technology than Ni based alloy. Two different coating morphologies resulting from two heat treatment performed at 700 and 1050°C after slurry application were tested. The coated systems exhibited excellent corrosion resistance at both temperatures, whereas uncoated P92 showed significant mass loss from the beginning of the test. The coatings showed very slow reaction with the molten Solar Salt. In contrast, uncoated P92 developed a stratified, unprotected Fe, Cr oxide with low adherence which shows oscillating Cr content as a function of coating depth. NaFeO2 was also found at the oxide surface as well as within the Fe, Cr oxide.

  7. Stress-relieving annealing of Cr-Mo steel for high temperature pressure vessels and the quality change in use

    International Nuclear Information System (INIS)

    Makioka, Minoru; Hirano, Hiromichi

    1976-01-01

    The securing of good mechanical properties is difficult in thick plates for large pressure vessels because cooling rate is insufficient and time is prolonged in heat treatment. Cr-Mo steel plates are usually used in the state of improved notch toughness though somewhat reduced strength by normalizing or accelerated cooling and tempering. If the time for heat treatment is prolonged, the embrittlement occurs. The effects of temperature, holding time, and cooling rate in stress-relieving treatment on the mechanical properties of 1-1/4Cr - 1/2Mo, 2-1/4Cr - 1Mo, 3Cr - 1Mo, and 5Cr - 1/2Mo steels were investigated. The tensile strength lowered almost linearly as the hollomon-Jaffe parameter of heat treatment condition increased in all the steels. The transition temperature shifted continuously to high temperature side in 1-1/4Cr - 1/2Mo steel, but the notch toughness was improved up to certain values and then the tendency turning to brittleness was shown in the other steels, as the H-J parameter increased. When the holding time became longer, the transition temperature shifted to higher temperature side, but the cooling rate showed no effect. The condition for stress relieving treatment must be selected so that the ferrite bands observed in welded metal do not arise. The embrittlement at the operation temperature of 400 - 450 0 C for a long time is evaluated by the comparison with that by stepped cooling method. (Kako, I.)

  8. Hardening and embrittlement mechanisms of reduced activation ferritic/martensitic steels irradiated at 573 K

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States); Hashimoto, N. [Hokkaido Univ., Materials Science and Engineering Div., Graduate School of Engineering, Sapporo (Japan); Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States)

    2007-07-01

    Full text of publication follows: It has been reported that reduced-activation ferritic/martensitic steels (RAFMs), such as F82H, ORNL9Cr-2WVTa, and JLF-1, showed a variety of changes in ductile-brittle transition temperature and yield stress after irradiation at 573 K up to 5 dpa, and those differences could not be interpreted solely by the difference of dislocation microstructure induced by irradiation. To investigate the impact of other microstructural feature, i.e. precipitates, the precipitation behavior of F82H, ORNL 9Cr-2WVTa, and JLF-1 was examined. It was revealed that irradiation-induced precipitation and amorphization of precipitates partly occurred and caused the different precipitation on block, packet and prior austenitic grain boundaries. In addition to these phenomena, irradiation-induced nano-size precipitates were also observed in the matrix. It was also revealed that the chemical compositions of precipitates approached the calculated thermal equilibrium state of M{sub 23}C{sub 6} at an irradiation temperature of 573 K. The calculation also suggests the presence of Laves phase at 573 K, which is usually not observed at this temperature, but the ion irradiation on aged F82H with Laves phase suggests that Laves phase becomes amorphous and could not be stable under irradiation at 573 K. This observation indicates the possibility that the irradiation-induced nano-size precipitation could be the consequence of the conflict between precipitation and amorphization of Laves phase. Over all, these observations suggests that the variety of embrittlement and hardening of RAFMs observed at 573 K irradiation up to 5 dpa might be the consequence of the transition phenomena that occur as the microstructure approaches thermal equilibrium during irradiation at 573 K. (authors)

  9. Fracture Resistances of Y_2O_3 Particle Dispersion Strengthened 9Cr Steel at Room Temperature and High Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji Hyun; Kang, Suk Hoon; Lee, Yongbok; Kim, Sung Soo

    2012-01-01

    The fracture resistance and tensile properties of Y_2O_3 oxide dispersion strengthened steel containing 9 wt% Cr (9Cr-ODS) were measured at various temperatures up to 700°C. The fracture characteristics were compared with those of commercial E911 ferritic/martensitic steel. The strength of 9Cr-ODS was at least 30% higher than that of E911 steel at the test temperatures below 500°C. The strength difference between the two materials was almost diminished at 700°C. 9Cr-ODS showed cleavage fracture behavior at room temperature and unstable crack growth behaviors at 300°C and 500°C. The J-R fracture resistance of 9Cr-ODS was much lower than that of E911 steel at all temperatures. It was deduced that the coarse Cr_2O_3 particles that were formed during the alloying process provided the crack initiation sites of cleavage fracture in 9Cr-ODS.

  10. Postirradiation deformation behavior in ferritic Fe-Cr alloys

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Gelles, D.S.; Gardner, P.L.

    1992-06-01

    It has been demonstrated that fast-neutron irradiation produces significant hardening in simple Fe-(3-18)Cr binary alloys irradiated to about 35 dpa in the temperature range 365 to 420 degrees C, whereas irradiation at 574 degrees C produces hardening only for 15% or more chromium. The irradiation-induced changes in tensile properties are discussed in terms of changes in the power law work-hardening exponent. The work-hardening exponent of the lower chromium alloys decreased significantly after low-temperature irradiation (≤ 420 degrees C) but increased after irradiation at 574 degrees C. The higher chromium alloys failed either in cleavage or in a mixed ductile/brittle fashion. Deformation microstructures are presented to support the tensile behavior

  11. Long-term Stability of 9- to 12 % Cr Steels

    DEFF Research Database (Denmark)

    Hald, John

    2004-01-01

    In the recent 25 years creep rupture strength of 9- to 12 %Cr steels for steam pipes and turbines has been doubled by development of new alloys. This development has formed a basis for improved efficiency of fossil fired steam power plants by introduction of advanced steam temperatures...... and pressures. Newly developed steam pipe steels are based on modifications of well-established steels like the X 20CrMoV12 1. Balanced addition of V, Nb and N to a 9Cr 1 Mo steel led to the Modified 9 Cr steel P 91. Addition of 1% W to a 9Cr 1 MoVNbN base composition led to steel E 911 and partial replacement...... of Mo with 1.8 % W combined with a slight amount of Boron led to steel P 92. The creep rupture strength of these new alloys are now secured with long-term tests up to 100,000 hours, which demonstrate improvements of 50% (P 91), 75 % (E 911) and 100 % (P 92) in strength compared to X 20CrMoV12 1....

  12. Epitaxial growth of zinc on ferritic steel under high current density electroplating conditions

    International Nuclear Information System (INIS)

    Greul, Thomas; Comenda, Christian; Preis, Karl; Gerdenitsch, Johann; Sagl, Raffaela; Hassel, Achim Walter

    2013-01-01

    Highlights: •EBSD of electroplated Zn on Fe or steel was performed. •Zn grows epitaxially on electropolished ferritic steel following Burger's orientation relation. •Surface deformation of steel leads to multiple electroplated zinc grains with random orientation. •Zn grows epitaxially even on industrial surfaces with little surface deformation. •Multiple zinc grains on one steel grain can show identical orientation relations. -- Abstract: The dependence of the crystal orientation of electrodeposited zinc of the grain orientation on ferritic steel substrate at high current density deposition (400 mA cm −2 ) during a pulse-plating process was investigated by means of EBSD (electron backscatter diffraction) measurements. EBSD-mappings of surface and cross-sections were performed on samples with different surface preparations. Furthermore an industrial sample was investigated to compare lab-coated samples with the industrial process. The epitaxial growth of zinc is mainly dependent on the condition of the steel grains. Deformation of steel grains leads to random orientation while zinc grows epitaxially on non-deformed steel grains even on industrial surfaces

  13. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion

    Science.gov (United States)

    Shibata, Hiroki; Ukai, Shigeharu; Oono, Naoko H.; Sakamoto, Kan; Hirai, Mutsumi

    2018-04-01

    FeCrAl-ODS ferritic steels with Ce-oxide dispersion instead of Y-oxide were produced for the accident tolerant fuel cladding of the light water reactor. Excess oxygen (Ex.O) was added to improve the mechanical property. The tensile strength at Ex.O = 0 is around 200 MPa at 700 °C, mainly owing to dispersed Ce2O3 particles in less than 10 nm size. The formation of the fine Ce2O3 particles is dominated by a coherent interface with ferritic matrix. With increasing Ex.O, an increased of number density of coarser Ce-Al type oxide particles over 10 nm size is responsible for the improvement of the tensile strength. Change of the type of oxide particle, CeO2, Ce2O3, CeAlO3, Al2O3, in FeCrAl-ODS steel was thermodynamically analyzed as a parameter of Ex.O.

  14. Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States); Shiba, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States)

    2007-07-01

    Full text of publication follows: Neutron irradiation of 9-12% Cr ferritic/martensitic steels below 425-450 deg. C produces microstructural defects that cause an increase in yield stress and ultimate tensile strength. This irradiation hardening causes embrittlement, which is observed in Charpy impact and toughness tests as an increase in ductile-brittle transition temperature (DBTT). Based on observations that show little change in strength in these steels irradiated above 425-450 deg. C, the general conclusion has been that no embrittlement occurs above this irradiation-hardening temperature regime. In a recent study of F82H steel irradiated at 300, 380, and 500 deg. C, irradiation hardening-an increase in yield stress-was observed in tensile specimens irradiated at the two lower temperatures, but no change was observed for the specimens irradiated at 500 deg. C. As expected, an increase in DBTT occurred for the Charpy specimens irradiated at 300 and 380 deg. C. However, there was an unexpected increase in the DBTT of the specimens irradiated at 500 deg. C. The observed embrittlement was attributed to the irradiation-accelerated precipitation of Laves phase. This conclusion was based on results from a detailed thermal aging study of F82H, in which tensile and Charpy specimens were aged at 500, 550, 600, and 650 deg. C to 30,000 h. These studies indicated that there was a decrease in yield stress at the two highest temperatures and essentially no change at the two lowest temperatures. Despite the strength decrease or no change, the DBTT increased for Charpy specimens irradiated at all four temperatures. Precipitates were extracted from thermally aged specimens, and the amount of precipitate was correlated with the increase in transition temperature. Laves phase was identified in the extracted precipitates by X-ray diffraction. Earlier studies on conventional elevated-temperature steels also showed embrittlement effects above the irradiation-hardening temperature

  15. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  16. Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging

    International Nuclear Information System (INIS)

    Yan Haitao; Bi Hongyun; Li Xin; Xu Zhou

    2009-01-01

    The influence of isothermal aging on precipitation behavior and mechanical properties of Nb-modified ferritic stainless steel was investigated using Thermo-calc software, scanning electron microscopy and transmission electron microscopy. It was observed that TiN, NbC and Fe 2 Nb formed in the investigated steel and the experimental results agreed well with the results calculated by Thermo-calc software. During isothermal aging at 800 deg. C, the coarsening rate of Fe 2 Nb is greater than that of NbC, and the calculated average sizes of NbC and Fe 2 Nb of the aged specimen agreed with the experimental results. In addition, the tensile strength and micro-hardness of the ferritic stainless steel increased with increased aging time from 24 h to 48 h. But aging at 800 deg. C for 96 h caused the coarsening of the precipitation, which led to a decrease of tensile strength and micro-hardness

  17. Stress corrosion cracking studies on ferritic low alloy pressure vessel steel - water chemistry and modelling aspects

    International Nuclear Information System (INIS)

    Tipping, P.; Ineichen, U.; Cripps, R.

    1994-01-01

    The susceptibility of low alloy ferritic pressure vessel steels (A533-B type) to stress corrosion cracking (SCC) degradation has been examined using various BWR type coolant chemistries. Fatigue pre-cracked wedge-loaded double cantilever beams and also constantly loaded 25 mm thick compact tension specimens have shown classical SCC attack. The influence of parameters such as dissolved oxygen content, water impurity level and conductivity, material chemical composition (sulphur content) and stress intensity level are discussed. The relevance of SCC as a life-limiting degradation mechanism for low alloy ferritic nuclear power plant PV steel is examined. Some parameters, thought to be relevant for modelling SCC processes in low alloy steels in simulated BWR-type coolant, are discussed. 8 refs., 1 fig., 4 tabs

  18. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    International Nuclear Information System (INIS)

    Han, Wentuo; Kimura, Akihiko; Tsuda, Naoto; Serizawa, Hisashi; Chen, Dongsheng; Je, Hwanil; Fujii, Hidetoshi; Ha, Yoosung; Morisada, Yoshiaki; Noto, Hiroyuki

    2014-01-01

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  19. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wentuo, E-mail: hanwentuo@hotmail.com [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tsuda, Naoto [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Chen, Dongsheng [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ha, Yoosung [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Noto, Hiroyuki [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-12-15

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  20. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling

    International Nuclear Information System (INIS)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P.; Universidade Federal do Rio Grande do Norte

    2010-01-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  1. On superplasticity of corrosion resistant ferritic-austenitic chromium-nickel steels

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, A P; Sukhanov, V E

    1988-01-01

    The deformability of corrosion resistant chromium-nickel ferritic austenitic steel type O8Kh22N6T under tension, upsetting and torsion in the 600-1200 deg C temperature range is studied. For the deformation rate of the order of 10/sup -3/ s/sup -1/ the effect of superelasticity reveals itself at 850 deg C in the process of ferrite dynamic polymerization, in the 925-950 deg C range, at initial stages of dynamic recrystallization - the dynamic polygonization controlled by chromium carbide dissolving in steel and maximum at 1050 deg C in the process of development of austenite dynamic recrystallization with grain refinement with F/A ratio equalling 1. After upsetting in the elasticity mode at 1050 deg C the impact strength of the above steel is maximum.

  2. New microstructural features occurring during transformation from austenite to ferrite under the kinetic influence of magnetic field in a medium carbon steel

    International Nuclear Information System (INIS)

    Zhang Yudong; He Changshu; Zhao Xiang; Zuo Liang; Esling, Claude; He, Jicheng

    2004-01-01

    The effects of magnetic field on nucleation barrier of the phase transformation from austenite to ferrite at different cooling rates in 42CrMo steel have been investigated. The microstructures of ferrite and pearlite aligned along the magnetic field direction (parallel to the hot-rolling direction) are obtained at a cooling rate of 10 deg. C/min, resulting from the kinetic effects of the applied magnetic field during cooling and the microstructural influences of an inhomogeneous deformation occurring during the previous hot rolling. In this case, the formation of ferrite grains at higher temperatures is attributed mainly to the preferential nucleation at austenite boundaries. However, a fairly uniform microstructure of randomly distributed ferrite and pearlite is formed at a high cooling rate of 46 deg. C/min in the magnetic field of 14 T, as a result of both intergranular and intragranular nucleation at relatively low temperatures. Probing into this issue is helpful to gain a better understanding of kinetic influences of magnetic field on the phase transformation from austenite to ferrite

  3. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    Science.gov (United States)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Singh, Prabhakar

    A novel high-temperature alkaline earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO 4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor-phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor-phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in the failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in the formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  4. Recent progress of R and D activities on reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q., E-mail: qunying.huang@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, P.O. Box 1135, Hefei, Anhui 230031 (China); Baluc, N. [CRPP-EPFL, ODGA C110 5232 Villigen PSI (Switzerland); Dai, Y. [LNM, PSI, 5232 Villigen PSI (Switzerland); Jitsukawa, S. [JAEA, 2-4 Shirakata, Tokai-Mura, Ibaraki-Ken 319-1195 (Japan); Kimura, A. [IAE, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Konys, J. [KIT, P.O. Box 3640, 76021 Karlsruhe (Germany); Kurtz, R.J. [PNNL, Richland, WA 99352 (United States); Lindau, R. [KIT, P.O. Box 3640, 76021 Karlsruhe (Germany); Muroga, T. [NIFS, Oroshi, Toki, Gifu 509-5292 (Japan); Odette, G.R. [UCSB, Santa Barbara, CA (United States); Raj, B. [IGCAR, Kalpakkam 603 102 (India); Stoller, R.E.; Tan, L. [ORNL, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Tanigawa, H. [JAEA, Naka, Ibaraki 311-0193 (Japan); Tavassoli, A.-A.F. [DMN/Dir, DEN, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Yamamoto, T. [UCSB, Santa Barbara, CA (United States); Wan, F. [DMPC, USTB, Beijing 100083 (China); Wu, Y. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, P.O. Box 1135, Hefei, Anhui 230031 (China)

    2013-11-15

    Several types of reduced activation ferritic/martensitic (RAFM) steel have been developed over the past 30 years in China, Europe, India, Japan, Russia and the USA for application in ITER test blanket modules (TBMs) and future fusion DEMO and power reactors. The progress has been particularly important during the past few years with evaluation of mechanical properties of these steels before and after irradiation and in contact with different cooling media. This paper presents recent RAFM steel results obtained in ITER partner countries in relation to different TBM and DEMO options.

  5. characterization and weldability of plasma nitrided P/M martensitic stainless steel X 20 Cr Ni 172

    International Nuclear Information System (INIS)

    Abdel-Karim, R.A.; El-demellawy, M.A; Waheed, A.F.

    2004-01-01

    stainless steels are widely used in nuclear applications, as a construction material. in these applications stainless steels suffer from corrosion degradation due severe environment and operating conditions. improving the engineering properties of such material prolong the service life time.in the present study, powder metallurgy technique namely plasma rotating electrode process (PREP) was used to produce martensitic steel DIN X 20 Cr Ni 172 with 0.5 % N. this step was followed by hot isostatic pressing process (HIP) . the effect of N on the weldability of this steel has been investigated . this included microstructure characterization, hardness evaluation and ferrite content measurements. the results showed that the presence of high nitrogen content in this steel resulted in a pore free structure with improved the hardness across the welding area. A single phase with few precipitates was detected on the grain boundaries in the heat affected zone. the results were supplemented by x-ray diffraction patterns and EDAX analysis

  6. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-01-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were...

  7. Structural changes in complex steels with 12 % Cr during welding thermal cycle

    International Nuclear Information System (INIS)

    Ul'yanova, N.V.; Kurnosova, N.D.

    1981-01-01

    The structural changes in the heat affected zones of welded steam tubes of the 12Kh11V2MF and 18Kh12VMBFR steels, are investigated. A short-time heating of thin samples up to 1300-900 deg C with the aim of imitating the thermal welding cycle permits to determine temperatures of specific region formation in heat affeced zones of 12% Cr steels. The difference in the amounts and structure of σ-ferrite and γ-phase in these regions is established. A ''tongue'' nature of γ-phase grain growth is found in the temperature range of 1150-1100 deg C, while at 1300-1250 deg C σ-ferrite growth with the formation of saw-shape boundaries is observed. It is shown that tensile properties of imitated heat affected zone of 12Kh12VMBFP steel increase with heating temperature with the insignificant plasticity decrease. Impact strength on longitudinal samples decreases but remains higher than that determined by specifications [ru

  8. Proceedings of the second milestone meeting of European laboratories on the development of ferritic/martensitic steels for fusion technology

    International Nuclear Information System (INIS)

    Daum, E.; Ehrlich, K.; Schirra, M.

    1997-05-01

    In the frame of the European Fusion Technology Program a series of ferritic/martensitic developmental alloys, the composition of which had been optimized towards low long-term activation, was investigated and compared with conventional 9-12%CrMoVNb steels. It could be shown that by these chemical modifications neither the physical metallurgy nor the transformation behavior was changed markedly. Tensile-, creep-rupture- and fatigue properties are somewhat reduced, whereas the fracture toughness and impact data are far superior to conventional materials. This is an important advantage, especially if the expected detrimental effect of neutron irradiation on the latter properties is taken into account. First results of low-fluence irradiations indicate that the new alloys are less prone to irradiation-induced DBTT shifts. (orig./HM) [de

  9. Stress effects in cylindrical tubes of austenitic and ferritic/martensitic steels with oxide scales. Materials selection for a HPLWR

    International Nuclear Information System (INIS)

    Steiner, H.

    2002-11-01

    In the frame of the studies for a high performance concept of a light water reactor (LWR) different materials for the cladding are investigated, among them are austenitic and ferritic/martensitic (f/m) steels of different Cr content. Due to the envisaged very extended life times of the fuel elements in the reactor, corrosion problems may arise. Thus, cracking and/or spalling effects in oxide scales on metallic components may play an important role in the corrosion process as they lead, in general, to a drastic enhancement in the oxidation rates. Analytical models for different fundamental stress problems in the compound oxide scale/metallic substrate have been developed and implemented in the computer code OXSPA. These models concern the growth stresses in the cylindrical tubes, the stresses due to temperature changes and radial temperature gradients and the stresses due to inside and outside pressures. (orig.)

  10. Steam oxidation of ferritic steels: kinetics and microestructure

    Directory of Open Access Journals (Sweden)

    Aríztegui, A.

    2000-06-01

    Full Text Available The ferritic 2.25Cr–1Mo steel has been subjected to isothermal and non-isothermal oxidation treatments in water steam at several temperatures ranging from 550 to 700 °C for up to 56 days. Under isothermal conditions this steel follows a parabolic oxidation kinetics, with an activation energy of 324 kJ mol–1. This value corresponds to an apparent activation energy for the global process, which includes both outward diffusion of Fe cations and inward diffusion of oxygen. The oxidation products present in the oxide scales, which were characterised by X-ray diffraction and SEM, are in total agreement with the Fe-O phase diagram. Thus, magnetite is the most stable oxide at low temperatures and wustite starts to form above 570 °C. Further studies of the effect of cooling rate have shown that wustite formed at 700 °C transforms into magnetite during a slow cooling, whereas a rapid cooling inhibits this transformation to a certain extent. For non-isothermal oxidation treatments consisting of a holding period at 550 °C followed by a single or double 4 hours exposure at 700 °C, the oxidation process seems to occur in sequence, thus presenting an additive effect of the oxidation treatments carried out at each temperature. This effect was observed both, for the type of oxide grown, and for the kinetics of the process. Microscopic observations of the oxide scales formed after the various oxidation treatments revealed that the oxide scales are constituted by sublayers of distinct microstructure and chemical composition changing from their surface to the substrate interface.

    Se han realizado tratamientos de oxidación isotermos y no isotermos a un acero ferrítico 2,25Cr–1Mo en vapor de agua, a temperaturas comprendidas entre 550 y 700 °C y tiempos de hasta 56 días. En condiciones isotermas, este acero tiene una cinética de oxidación parabólica, con una energía de activación de 324 kJ mol–1. Este valor corresponde a una energía de

  11. Soft-martensitic stainless Cr-Ni-Mo steel for turbine rotors in geothermic power stations

    International Nuclear Information System (INIS)

    Schonfeld, K.; Potthast, E.

    1986-01-01

    Steel Grade X5 Cr-Ni-Mo 12 6 containing 0.05% carbon, 12% chromium, 6% nickel, and 1.50% molybdenum is an advantageous material for turbine rotors in geothermic power stations because of its excellent strength and toughness properties in combination with good erosion and corrosion resistance. In terms of the phase diagram, this soft-martensitic steel has its place at the martensite/austenite/ferrite interface. Therefore, its chemical composition must be chosen so as to have a completely martensitic structure after hardening. The manufacture of and the mechanical properties of a turbine rotor 1200 mm in diameter by 5600 mm in length with a finished weight of approximately 21.5 tons are described in detail

  12. Processing of a novel nano-structured ferritic steel via spark plasma sintering and investigation of its mechanical and microstructural characteristics

    International Nuclear Information System (INIS)

    Pasebani, Somayeh; Charit, Indrajit; Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P.; Cole, James I.

    2015-01-01

    Nano-structured ferritic steels (NFSs) with 12-14 wt% Cr have attracted widespread interest for potential high temperature structural and fuel cladding applications in advanced nuclear reactors. They have excellent high temperature mechanical properties and high resistance to radiation-induced damage. The properties of the NFSs depend on the composition that mainly consists of Cr, Ti, W or Mo, and Y 2 O 3 as alloying constituents. In this study, a novel nano-structured ferritic steel (Fe-14Cr-1Ti-0.3Mo-0.5La 2 O 3 , wt%) termed as 14LMT was developed via high energy ball milling and spark plasma sintering. Vickers microhardness values were measured. Microstructural studies of the developed NFSs were performed by EBSD and TEM, which revealed a bimodal grain size distribution. A significant number density of nano-precipitates was observed in the microstructure. The diameter of the precipitates varied between 2-70 nm and the morphology from the spherical to faceted shape. The Cr-La-Ti-O-enriched nano-clusters were identified by APT studies. (authors)

  13. Transformation and Precipitation Kinetics in 30Cr10Ni Duplex Stainless Steel

    Science.gov (United States)

    Fazarinc, Matevz; Terčelj, Milan; Bombač, David; Kugler, Goran

    2010-09-01

    To improve the microstructure during casting, hot forming, and heat treatment of 30Cr10Ni duplex stainless steel, accurate data on the precipitation and transformation processes at high temperatures are needed. In this article, the precipitation and transformation processes at various aging times in the temperature range 873 K to 1573 K (600 °C to 1300 °C) were studied. The 30Cr10Ni ferrous alloy contains a relatively large amount of Cr, Ni, and C, which results in a complex microstructure. In addition to the ferrite, austenite, and sigma phase, the M23C6 and MC carbides were also observed in the microstructure. The precipitation of the sigma phase was observed after just 3 minutes of aging, and after 30 minutes of aging at approximately 1053 K (780 °C), its fraction exceeded 40 pct. An intensive austenite-to-ferrite transformation was observed above 1423 K (1150 °C). Optical microscopy, energy-dispersive X-ray spectroscopy (EDS), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD), as well as micro-indentation hardness, hardness, impact toughness, and tensile tests, were carried out to evaluate the obtained microstructures of aged samples.

  14. The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Pinghuai [Fusion Reactor & Materials Division, Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Miao, Yinbin [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Li, Shaofu; Wang, Man [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Liu, Xiang [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Gong, Mengqiang [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2015-11-05

    In this study, a 9Cr oxide-dispersion strengthened (ODS) alloy with additional corrosion resistant element Al was fabricated by mechanical alloying (MA) and hot pressing (HP) to explore the impact of Al on the microstructure and mechanical property of a 9Cr ODS alloy. It is found that the Al completely dissolved into the Fe–Cr matrix after milling for 30 h. The minor phases in the Al-containing 9Cr ODS ferritic alloy were investigated by a high-energy X-ray, and were identified to be orthorhombic-YAlO{sub 3} (YAP), bcc-Y{sub 3}Al{sub 5}O{sub 12} (YAG), monoclinic-Al{sub 2}Y{sub 4}O{sub 9} (YAM), and hexagonal-YAlO{sub 3} (YAH). These phases were further confirmed by selected area diffraction pattern (SADP), energy dispersive spectroscopy (EDS), and high resolution transmission electron microscopy (HRTEM). In addition, their volume fractions were also calculated from the integrated intensities. According to the analysis of the particles and their formation sequences, the larger particles (greater than 100 nm) are identified as mainly YAG and Al{sub 2}O{sub 3} particles, while the particles with small size (less than 30 nm) are likely primarily YAM, YAH, and YAP particles. The yielding strength (YS) and ultimate tensile strength (UTS) at RT are 563 MPa and 744 MPa, respectively, while the YS and UTS at 700 °C are 245 MPa and 276 MPa, respectively. Although the addition Al in ODS alloys decreases the strength at RT, the values at high temperature are similar to those obtained for 9Cr ODS alloys strengthened by fine Y–Ti–O particles. - Graphical abstract: Synchrotron X-ray diffraction line profile of the 9CrAl ODS alloy; (Ferrite matrix phases, along with minor phases, orthorhombic YAlO{sub 3} (yttrium aluminum perovskite, YAP), bcc Y{sub 3}Al{sub 5}O{sub 12} (yttrium aluminum garnet, YAG), monoclinic Al{sub 2}Y{sub 4}O{sub 9} (yttrium aluminum monoclinic, YAM), and hexagonal YAlO{sub 3} (yttium aluminum hexagonal, YAH) were recognized.). - Highlights: • The

  15. Thermal Aging Evaluation of Mod. 9Cr-1Mo Steel using Nonlinear Rayleigh Waves

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Sang; Kim, Hoe-Woong; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Marino, Daniel; Kim, Jin-Yeon; Jacobs, L.J [Georgia Institute of Technology, Atlanta (United States); Ruiz, Alberto [UMSNH, Morelia (Mexico)

    2014-10-15

    Thermal aging can pose a high risk to decreases in the mechanical properties such as strength or creep resistance. This can lead to an unexpected failure during long term operation. Nonlinear NDE techniques are preferred over conventional NDE techniques (linear ultrasonic measurements) because nonlinear ultrasonic techniques have shown their capability to detect a microstructural damage in the structures undergoing fatigue and creep. These nonlinear ultrasonic techniques make use of the fact that the dislocation density increases, which will create a nonlinear distortion of an ultrasonic wave; this damage causes the generation of measurable higher harmonic components in an initially mono-chromatic ultrasonic signal. This study investigates the recently developed non-contact nonlinear ultrasonic technique to detect the microstructural damage of mod. 9Cr-1Mo steel based on nonlinear Rayleigh wave with varying propagation distances. Nonlinear Rayleigh surface wave measurements using a non-contact, air-coupled ultrasonic transducer have been applied for the thermal aging evaluation of modified 9Cr-1Mo ferritic-martensitic steel. Thermal aging for various heat treatment times of mod.. 9Cr-1Mo steel specimens is performed to obtain the nucleation and growth of precipitated particles in specimens. The amplitudes of the first and second harmonics are measured along the propagation distance and the relative nonlinearity parameter is obtained from these amplitudes. The relative nonlinearity parameter shows a similar trend with the Rockwell C hardness.

  16. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    Directory of Open Access Journals (Sweden)

    S. Yonatan Mulushoa

    2018-03-01

    Full Text Available Cu-Cr substituted magnesium ferrite materials (Mg1 − xCuxCrxFe21 − xO4 with x = 0.0–0.7 have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0 to 0.105 × 108 Ω cm (x = 0.7. Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7. Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size. Keywords: Solid state reaction, X-ray diffraction, Crystallite size, Magnetic and electrical properties, Saturation magnetization

  17. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    Science.gov (United States)

    Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.

    2018-03-01

    Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.

  18. Mechanical and microstructural behavior of oxide dispersion strengthened 8Cr-2W and 8Cr-1W steels during creep deformation

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, K.; Tamura, M.; Esaka, H. [National Defense Academy, Dept. MS and E, Kanagawa (Japan); Shiba, K.; Nakamura, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Oxide dispersion strengthened (ODS) steel is a promising candidate for fusion reactor material because of excellent mechanical properties. However, the ODS steel exhibits some defects, such as mechanical anisotropy and little elongation . To reveal details of these defects, we investigated correlations between mechanical and microstructural behavior of ODS ferritic steels during creep deformation at high temperature. The materials used in this study are two kinds of hot rolled ODS steels: Fe-8Cr-2W-0.2V-0.1Ta-0.2Ti-0.4Y{sub 2}O{sub 3} (J1) and Fe-8Cr-1W-0.2Ti-0.4Y{sub 2}O{sub 3} (J2). Creep tests was carried out on specimens sampling along both the rolling direction and the cross direction at 670, 700 and 730 deg. C. Microstructural analyses were made on the normalized and tempered condition by using OM, SEM, TEM and XRD. Creep ruptured and interrupted specimens were also investigated. Both J1 and J2 existed two phases, namely martensite and {delta}-ferrite which was elongated in the rolling direction. Y-Ti complex oxide particles were finely dispersed in martensite and {delta}- ferrite phases. Results of creep tests indicated that the time-to-rupture of specimens of J1 were much longer than J2, and the time-to-rupture of specimens sampling along the rolling direction were longer than cross direction. Accordingly, J1 sampling along hot rolling direction was the strongest, for instance, the time-to-rupture was 11400 h at 700 deg. C and 162 MPa. All specimens indicated that elongation was less than 1.3 % and the rupture occurred at steady state creep region from creep curves. Internal cracks were propagated in martensite phase along elongated {delta}-ferrite phase in the direction of hot rolling. On the other hand, {delta}-ferrite phases seemed to prevent combining cracks. These results suggest that elongated {delta}-ferrite and internal clacks in martensite strongly affect on the anisotropy and little elongation of creep. (authors)

  19. Numerical simulation of transformation-induced microscopic residual stress in ferrite-martensite lamellar steel

    International Nuclear Information System (INIS)

    Mikami, Y; Inao, A; Mochizuki, M; Toyoda, M

    2009-01-01

    The effect of transformation-induced microscopic residual stress on fatigue crack propagation behavior of ferrite-martensite lamellar steel was discussed. Fatigue tests of prestrained and non-prestrained specimens were performed. Inflections and branches at ferrite-martensite boundaries were observed in the non-prestrained specimens. On the other hand, less inflections and branches were found in the prestrained specimens. The experimental results showed that the transformation induced microscopic residual stress has influence on the fatigue crack propagation behavior. To estimate the microscopic residual, a numerical simulation method for the calculation of microscopic residual stress stress induced by martensitic transformation was performed. The simulation showed that compressive residual stress was generated in martensite layer, and the result agree with the experimental result that inflections and branches were observed at ferrite-martensite boundaries.

  20. Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Balasubramanian, V.

    2012-04-01

    This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.

  1. Protecting against failure by brittle fracture in ferritic steel shipping containers

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Langland, R.T.

    1983-01-01

    The possible use of ferritic steels for the containment structure of shipping casks has motivated the development of criteria for assuring the integrity of these casks under both normal and hypothetical accident conditions specified in Part 71 of the Code of Federal Regulations. The US Nuclear Regulatory Commission Regulation Guide 7.6 provides design criteria for preventing ductile failure steel shipping containers. The research described in this paper deals with criteria for preventing brittle fracture of ferritic steel shipping containers. Initially guidelines were developed for ferritic steel up to four inches thick (I). This was followed by an investigation of various criteria that might be used for monolithic thick walled casks greater than four inches thick (2). Three categories of safety are identified in the design of shipping containers. Category I, the highest level of safety, is appropriate for containment systems for spent nuclear fuel and high level waste transport packaging. In Category I, containers are designed to the highest level of safety and brittle fracture is essentially not possible. Categories II and III represent levels of safety commensurate with the consequences of release of lower levels of radioactivity. In these latter categories, consideration of factors contributing to brittle fracture, good engineering practice, and careful selection of material make brittle fracture unlikely under environmental conditions encountered during shipping. This paper will deal primarily with Category I containers. The guidelines for Category II and III containers are fully described elsewhere. 5 references, 10 figures, 3 tables

  2. Chemical compatibility study of lithium titanate with Indian reduced activation ferritic martensitic steel

    International Nuclear Information System (INIS)

    Sonak, Sagar; Jain, Uttam; Haldar, Rumu; Kumar, Sanjay

    2015-01-01

    Highlights: • Chemical compatibility between Li_2TiO_3 and Indian RAFM steel has been studied at ITER operating temperature. • The lithium titanate chemically reacted with ferritic martensitic steel to form a brittle and non-adherent oxide layer. • The layer grew in a parabolic manner as a function of heating time. • Diffusion of oxygen (from Li_2TiO_3) appears to be controlling the oxide layer. - Abstract: Chemical compatibility between lithium titanate and Indian reduced activation ferritic-martensitic steel (In-RAFMS) was studied for the first time under ITER operating temperature. Lithium titanate required for the study was synthesized in-house. Coupons of In-RAFMS were packed inside lithium titanate powder and heated at 550 °C up to 900 h under inert argon atmosphere. The lithium titanate chemically reacted with ferritic martensitic steel to form a brittle and non-adherent oxide layer. The layer grew in a parabolic manner as a function of heating time. Microstructural and phase evolution of this oxide layer was studied using XRD, SEM and EPMA. Iron and chromium enriched zones were found within the oxide layer. Diffusion of oxygen (from Li_2TiO_3) appears to be controlling the oxide layer.

  3. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Martis, Codrick J.; Putatunda, Susil K.; Boileau, James

    2013-01-01

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σ y (X γ C γ ) 1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  4. The effect of microstructural stability on long-term creep behaviour of 11 %Cr steels for steam power plants with operating steam temperatures up to 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Scholz, A.; Berger, C. [Technische Univ. Darmstadt (DE). Inst. fuer Werkstoffkunde (IFW); Kauffmann, F.; Maile, K. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA); Mayer, K.H. [Alstom Power, Nuernberg (Germany)

    2010-07-01

    The investigations of advanced ferritic/martensitic steels for 650 C power plant components focus on the improvement of high-temperature creep properties with respect to chemical composition. This study deals with the development of new heat resistant 11-12%Cr ferritic-martensitic steels with sufficient creep and oxidation resistance up to 650 application by using basic principles and concepts of physical metallurgy. The highest creep strength could be achieved with a 0.04% Nb alloyed 11%CrWCoMoVB melt, which is in addition alloyed with a higher C and B content as well as with lower W and Co portions. The microstructure evolution during creep of this newly developed steel was investigated in comparison to a sister alloy which comprises 0.06% Ta instead of the Nb. (orig.)

  5. Influence of the fabrication process parameters on microstructures and mechanical properties of 10Cr-1Mo ODS steel

    International Nuclear Information System (INIS)

    Jin, Hyun Ju; Kim, Ki Baik; Choi, Byoung Kwon; Kang, Suk Hoon; Noh, Sang Hoon; Kim, Ga Eon; Kim, Tae Kyu

    2016-01-01

    Oxide dispersion strengthened (ODS) FM steels have been developed as the most promising core structural material for high- temperature components operating in severe environments such as nuclear fusion and fission systems owing to its excellent elevated temperature strength and radiation resistance stemming from the addition of extremely thermally stable oxide particles dispersed in a ferritic/martensitic matrix. To realize the structural components such as plates, sheets and tubes in SFR, the development of manufacturing processes is an essential issue for the ODS FM steel. While the ODS steel has superior radiation resistance and high temperature strength, in comparison with the existing commercial steels, it is difficult for the ODS steel to obtain sufficient workability for the fabrication due to high hardness and low ductility at room temperature, meaning that the manufacturing of the ODS plate including cladding tube can be complicated by the low cold workability. In order to prevent the ODS steel from any damage during the manufacturing process, thus, the introduction of intermediate heat treatments between cold rolling processes is necessary. This study investigates effects of the fabrication process parameters such as the cold working ratio, the intermediate and final heat treatments on the microstructure and mechanical properties of 10Cr-1Mo ODS steel. In an effort to optimize the manufacturing route of the ODS FM steel, the microstructural and mechanical evolutions for the ODS plate manufactured by a control of the fabrication process parameters were evaluated in the present study. In the present study, the effect of a cold rolling and intermediate heat treatments on microstructures and mechanical properties of 10Cr-1Mo FM ODS steel were investigated. During the manufacturing route the hardness measurements remained below the critical value of 400 Hv. Intermediate heat treatment with slow cooling led to a softened ferritic structures which can be further

  6. Concurrent phase separation and clustering in the ferrite phase during low temperature stress aging of duplex stainless steel weldments

    International Nuclear Information System (INIS)

    Zhou, J.; Odqvist, J.; Thuvander, M.; Hertzman, S.; Hedström, P.

    2012-01-01

    The concurrent phase separation and clustering of alloying elements in the ferrite phase of duplex stainless steel weldments after stress aging at 325 °C have been investigated by atom probe tomography analysis. Both phase separation, into Fe-rich and Cr-rich ferrite, and solute clustering were observed. Phase separation in the heat-affected zone (HAZ) is most pronounced in the high alloyed SAF 2507, followed by SAF 2205 and SAF 2304. Moreover Cu clustering was observed in the HAZ of SAF 2507. However, decomposition in the weld bead (25.10.4L) was more pronounced than in the HAZs, with both phase separation and clustering of Ni–Mn–Si–Cu. The observed differences in the decomposition behaviors in the HAZ and weld bead can be attributed to the high Ni content and the characteristic microstructure of the weld bead with high internal strains. In addition, an applied tensile stress during aging of weldments has been found to further promote the kinetics of phase separation and clustering.

  7. Effect of specimen size on the upper shelf energy of ferritic steels

    International Nuclear Information System (INIS)

    Kumar, A.S.

    1990-01-01

    A methodology is proposed that can be used to predict the upper shelf energy (USE) of ferritic steels based on subsize specimen data. The proposed methodology utilizes the partitioning of the USE into energies required for crack initiation and crack propagation. Notched-only Charpy specimens are used in conjunction with precracked specimens to separate the two components. An unirradiated ferritic steel, HT-9, was used to demonstrate the validity of the methodology. Unlike previous correlations that were limited in their applicability to either highly ductile or brittle material, the proposed methodology is expected to be applicable over a wide range of ductility and to be particularly useful for materials that harden significantly during irradiation

  8. Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties

    International Nuclear Information System (INIS)

    Alizadeh-Sh, M.; Marashi, S.P.H.; Pouranvari, M.

    2014-01-01

    Highlights: • Phase transformations during RSW of AISI430 are detailed. • Grain growth, martensite formation and carbide precipitation are dominant phase transformations. • Failure mode of AISI430 resistance spot welded joints are analyzed. • Larger FZ size provided improved load bearing capacity and energy absorption capability. - Abstract: The paper aims at investigating the process–microstructure–performance relationship in resistance spot welding of AISI 430 ferritic stainless steel. The phase transformations which occur during weld thermal cycle were analyzed in details, based on the physical metallurgy of welding of the ferritic stainless steels. It was found that the microstructure of the fusion zone and the heat affected zone is influenced by different phenomena including grain growth, martensite formation and carbide precipitation. The effects of welding cycle on the mechanical properties of the spot welds in terms of peak load, energy absorption and failure mode are discussed

  9. Corrosion resistance improvement of ferritic steels through hydrogen additions to the BWR coolant

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jewett, C.W.; Pickett, A.E.; Indig, M.E.

    1984-01-01

    Motivated by the success of oxygen suppression for mitigation of intergranular stress corrosion cracking (IGSCC) in weld sensitized austenitic materials used in Boiling Water Reactors (BWRs), oxygen suppression, through hydrogen additions to the feedwater was investigated to determine its affect on the corrosion resistance of ferritic and martensitic BWR structural materials. The results of these investigations are presented in this paper, where particular emphasis is placed on the corrosion performance of BWR pressure vessel low alloy steels, carbon steel piping materials and martensitic pump materials. It is important to note that the corrosion resistance of these materials in the BWR environment is excellent. Consequently this investigation was also motivated to determine whether there were any detrimental effects of hydrogen additions, as well as to identify any additional margin in ferritic/martensitic materials corrosion performance

  10. Simulation and experimental approach to CVD-FBR aluminide coatings on ferritic steels under steam oxidation

    International Nuclear Information System (INIS)

    Leal, J.; Alcala, G.; Bolivar, F.J.; Sanchez, L.; Hierro, M.P.; Perez, F.J.

    2008-01-01

    The ferritic steels used to produce structural components for steam turbines are susceptible to strong corrosion and creep damage due to the extreme working conditions pushed to increase the process efficiency and to reduce pollutants release. The response of aluminide coatings on the P-92 ferritic steel, deposited by CVD-FBR, during oxidation in a simulated steam environment was studied. The analyses were performed at 650 deg. C in order to simulate the working conditions of a steam turbine, and 800 deg. C in order to produce a critical accelerated oxidation test. The Thermo-Calc software was used to predict the different solid phases that could be generated during the oxidation process, in both, coated and uncoated samples. In order to validate the thermodynamic results, the oxides scales produced during steam tests were characterized by different techniques such as XRD, SEM and EDS. The preliminary results obtained are discussed in the present work

  11. Grain boundary precipitation strengthening mechanism in W containing advanced creep resistant ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    Grain boundary precipitation strengthening is expected to be a decisive factor in developing ferritic creep resistant steels. This study examined the grain boundary precipitation strengthening mechanism extracting the effect of the tempered martensitic microstructure and precipitates on the high angle grain boundary in M{sub 23}C4{sub 6} type carbide and the Fe{sub 2}W type Laves phase effect of the creep deformation fixing the grain boundary according to transmission electron microscope (TEM) observation. A creep test was carried out at high temperature in order to evaluate the high angle boundary strengthening effect simulating the long-term creep deformation microstructure by the lath structure disappearance. The correlation of the creep rupture time and the grain boundary shielding ratio were found to be independent of precipitate type. The creep deformation model represents block boundary shielding by precipitates as the decisive factor for W containing ferritic creep resistant steels. (orig.)

  12. Evaluation of examination techniques for ferritic stainless steel feedwater heater tubing

    International Nuclear Information System (INIS)

    Nugent, M.J.; Catapano, M.C.

    1995-01-01

    Ferritic stainless steel has been finding increased application in utility plant feedwater heaters due to good strength and corrosion resistance and absence of potential copper contamination of feedwater system. Ferritic stainless steel is highly magnetic and is generally not inspectable using conventional eddy current testing techniques. A variety of techniques have been developed for inspection of this tubing material used in typical heat exchanger applications. Through a project funded by the Empire State Electric Energy Research Corporation (ESEERCO), the evaluation of data generated by four present state of the art NDE testing techniques were evaluated on a controlled mock-up of the heater tubing with service related defects. The primary objective was to determine the strengths and limitations of each method. The testing of two in service feedwater heaters at the Consolidated Edison Company of New York, Inc. (Con Edison's) Arthur Kill Generating Station also allowed further evaluations based on actual field conditions

  13. Corrosion studies on Cu-Ni alloys and ferritic steel in salt water for desalination service

    International Nuclear Information System (INIS)

    Shibad, P.R.; Balachandra, J.

    1975-01-01

    Corrosion studies on In 838 and In 848 alloys in 3% NaCl solution, synthetic sea water and in 3% NaCl at pH3 and pH10 indicate that the latter alloy is more corrosion resistant than the former at room (28 0 C), and boiling temperature (101 0 C) and at 125 0 C. Ferritic steel is unaffected in boiling synthetic sea water. In boiling 3% NaCl solution at pH3 and pH10, (the pH values adjusted at room temperature) increase in the rate of corrosion of ferritic steel compared to that at room temperature has been observed. A fair correlation between polarization characteristics and dissolution rates in these solutions is seen for all these materials. (author)

  14. Gap Analysis of Material Properties Data for Ferritic/Martensitic HT-9 Steel

    International Nuclear Information System (INIS)

    Brown, Neil R.; Serrano De Caro, Magdalena; Rodriguez, Edward A.

    2012-01-01

    The US Department of Energy (DOE), Office of Nuclear Energy (NE), is supporting the development of an ASME Code Case for adoption of 12Cr-1Mo-VW ferritic/martensitic (F/M) steel, commonly known as HT-9, primarily for use in elevated temperature design of liquid-metal fast reactors (LMFR) and components. In 2011, Los Alamos National Laboratory (LANL) nuclear engineering staff began assisting in the development of a small modular reactor (SMR) design concept, previously known as the Hyperion Module, now called the Gen4 Module. LANL staff immediately proposed HT-9 for the reactor vessel and components, as well as fuel clad and ducting, due to its superior thermal qualities. Although the ASME material Code Case, for adoption of HT-9 as an approved elevated temperature material for LMFR service, is the ultimate goal of this project, there are several key deliverables that must first be successfully accomplished. The most important key deliverable is the research, accumulation, and documentation of specific material parameters; physical, mechanical, and environmental, which becomes the basis for an ASME Code Case. Time-independent tensile and ductility data and time-dependent creep and creep-rupture behavior are some of the material properties required for a successful ASME Code case. Although this report provides a cursory review of the available data, a much more comprehensive study of open-source data would be necessary. This report serves three purposes: (a) provides a list of already existing material data information that could ultimately be made available to the ASME Code, (b) determines the HT-9 material properties data missing from available sources that would be required and (c) estimates the necessary material testing required to close the gap. Ultimately, the gap analysis demonstrates that certain material properties testing will be required to fulfill the necessary information package for an ASME Code Case.

  15. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Tavassoli, A.-A.F.; Henry, J. [DMN/Dir, DEN, CEA Saclay, 91191, Gif-sur-Yvette Cedex (France); Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe, 76021 (Germany); Sakasegawa, H. [National Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori, 039-3212 (Japan); Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Tanigawa, H. [National Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori, 039-3212 (Japan); Huang, Q. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2016-10-15

    Reduced-activation ferritic-martensitic (RAFM) steels, candidate structural materials for fusion reactors, have achieved technological maturity after about three decades of research and development. The recent status of a few developmental aspects of current RAFM steels, such as aging resistance, plate thickness effects, fracture toughness, and fatigue, is updated in this paper, together with ongoing efforts to develop next-generation RAFM steels for superior high-temperature performance. In addition to thermomechanical treatments, including nonstandard heat treatment, alloy chemistry refinements and modifications have demonstrated some improvements in high-temperature performance. Castable nanostructured alloys (CNAs) were developed by significantly increasing the amount of nanoscale MX (M = V/Ta/Ti, X = C/N) precipitates and reducing coarse M{sub 23}C{sub 6} (M = Cr). Preliminary results showed promising improvement in creep resistance and Charpy impact toughness. Limited low-dose neutron irradiation results for one of the CNAs and China low activation martensitic are presented and compared with data for F82H and Eurofer97 irradiated up to ∼70 displacements per atom at ∼300–325 °C.

  16. Fatigue crack growth in ferritic steels as influence by elevated temperature and environment

    International Nuclear Information System (INIS)

    Nakamura, H.; Minakawa, K.; Murali, K.; Mc Evily, A.J.

    1987-01-01

    Fatigue crack growth studies have been carried out at room temperature and at 538 deg C in air as well as in vacuum in order to assess the influence of both temperature and environment on the growth process. The materials investigated were 2 1/4Cr-1Mo steel, a modified 9Cr-1Mo steel and a 9Cr-2Mo steel, as well as weldments of the 9Cr-2Mo steel. Crack opening levels were determined for all test conditions. The R-dependency of the crack growth rate could be accounted for by crack closure, both at room and elevated temperature. Closure in air at 538 deg C was due to oxidation, whereas at room temperature closure was due to microstructurally related roughness and the influence of oxygen. (Author)

  17. Grain refinement by cold deformation and recrystallization of bainite and acicular ferrite structures of C-Mn steels

    International Nuclear Information System (INIS)

    Hossein Nedjad, S.; Zahedi Moghaddam, Y.; Mamdouh Vazirabadi, A.; Shirazi, H.; Nili Ahmadabadi, M.

    2011-01-01

    Research highlights: → Bainite showed weak property improvement after rolling and annealing. → Additions of titanium and titanium oxide stimulated acicular ferrite. → Acicular ferrite obtained by nanoparticles exhibited very high strength. → Rolling and annealing of acicular ferrite gave substantial property improvement. - Abstract: The propensity of bainite and acicular ferrite structures of experimental C-Mn steels for enhanced grain refinement by combining phase transformation and plastic deformation has been investigated. Formation of acicular ferrite structures were stimulated with a small amount of titanium and titanium oxide nanoparticles added into the molten steels of high Mn concentrations. Isothermal transformations into the bainite and acicular ferrite structures were performed for 1.8 ks at 823 K after preliminary austenitization for 1.8 ks at 1523 K. Cold rolling for 50% thickness reduction was conducted on the isothermally transformed structures. Subsequent annealing of the deformed structures was conducted for 3.6 ks at 773, 873 and 973 K. Optical microscopy, scanning electron microscopy and tensile test were used for characterization of the studied steels. Cold rolling and annealing of the transformed structures at 873 K resulted in strengthening at the expense of ductility where an initial stage of recrystallization is realized. Acicular ferrite obtained by the addition of titanium into the molten steel exhibited the remarkable improvement of tensile properties. Discontinuous recrystallization of the deformed structures at 973 K leads to the formation of fine grains wherein acicular structures represented more enhanced grain refinement than bainite.

  18. Effect of Cr{sup 3+} substitution on electric and magnetic properties of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Panda, R.K., E-mail: physics.panda@gmail.com [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India); Muduli, R. [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India); Jayarao, G. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, 769 008 (India); Sanyal, D. [Variable Energy Cyclotron Centre, Kolkata, 700064 (India); Behera, D. [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India)

    2016-06-05

    This work describes the effect of incorporation of Cr{sup 3+} into CoFe{sub 2}O{sub 4} nanoparticles on its magnetic and electric properties, prepared by auto combustion method. The samples of CoFe{sub 2-x}Cr{sub x}O4 (x = 0, 0.15, 0.3) series were characterized by x-ray diffraction and field emission scanning electron microscopy to find out the average particle size. The substitution of Cr{sup 3+} caused a significant reduction in particle size of the modified systems. Room temperature Moessbauer spectroscopy and magnetic characterization were performed. Analysis of extracted parameters concluded that Cr{sup 3+} replaced the Fe{sup 3+} at B-site (octahedral). The decrease in magnetization at B-site was found responsible for the observed reduced saturation magnetization and coercivity. Impedance spectroscopic analysis has revealed the suppression of electrode-sample surface conduction effect and enhancement of material resistivity. The latter was confirmed by dc resistivity measurement. All these results were explained on the basis of occupancy of Cr{sup 3+} at B-site, surface anisotropy potential and reduced particle size. - Highlights: • Cr substitution reduced the particle size in nano-cobalt ferrite. • Mossbauer study revealed that the Cr{sup 3+} replaced the Fe{sup 3+} at B-site. • Decrease in saturation magnetization and coercivity with the addition of Cr{sup 3+}. • Reduction of surface conduction and rise in resistance observed in modified systems.

  19. Numerical simulation of hydrogen-assisted crack initiation in austenitic-ferritic duplex steels

    International Nuclear Information System (INIS)

    Mente, Tobias

    2015-01-01

    Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern X-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen diffusion strongly depends on the alignment of austenite and δ-ferrite in the duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is

  20. Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops

    Science.gov (United States)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.

    2018-01-01

    The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.

  1. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y2O3

    International Nuclear Information System (INIS)

    Eiselt, Ch.Ch.; Klimenkov, M.; Lindau, R.; Moeslang, A.; Odette, G.R.; Yamamoto, T.; Gragg, D.

    2011-01-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2 O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 2 0 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  2. Some considerations on the toughness properties of ferritic stainless steels - A brief review

    CSIR Research Space (South Africa)

    Van Zwieten, ACTM

    1993-02-01

    Full Text Available . H. Bulloch* Head Office, Electricity Supply Board, Lower Fitzwilliam Street, Dublin 2, Republic of Ireland (Received 14 February 1992; accepted 25 February 1992) A BS TRA C T The present paper has attempted... of molybdenum, niobium or titanium. Recently, very low (C + N) content have been specified; the super-ferritic steels. The higher alloy compositions can also include up to 4% Ni, provided this does not alter their fully...

  3. Corrosion stability of ferritic stainless steels for solid oxide electrolyser cell interconnects

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2010-01-01

    Long-term oxidation behaviour of eight ferritic steels with 20–29 wt.% chromium (F 20 T, TUS 220 M, AL 453, Crofer 22 APU, Crofer 22 H, Sanergy HT, E-Brite and AL 29-4C) has been studied. The samples were cut into square coupons, ground and annealed for 140–1000 h at 1173 K in flowing, wet hydrogen...

  4. Fretting and wear of stainless and ferritic steels in LMFBR steam generators

    International Nuclear Information System (INIS)

    Lewis, M.W.J.; Campbell, C.S.

    1981-01-01

    Steam generators for LMFBR's may be subject to both fretting wear as a result of flow-induced vibrations and to wear from larger amplitude sliding movements from thermal changes. Results of tests simulating the latter are given for stainless and ferritic steels. For the assessment of fretting wear damage, vibration assessments must be combined with data on specific wear rates. Test mechanisms used to study fretting in sodium covering impact, impact-slide and pure rubbing are described and results presented. (author)

  5. Corrosion of Ferritic-Martensitic steels in high temperature water: A literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2001-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steel in high temperature water as reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, environmentally assisted cracking (EAC) including stress corrosion cracking (SCC), corrosion fatigue and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS). Are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. (Author)

  6. Mechanical behaviour of ferritic ODS steels - Temperature dependancy and history

    Czech Academy of Sciences Publication Activity Database

    Fournier, B.; Steckmeyer, A.; Rouffié, A.-L.; Malaplate, J.; Garnier, J.; Ratti, M.; Wident, P.; Ziolek, L.; Tournie, I.; Rabeau, V.; Gentzbittel, J.M.; Kruml, Tomáš; Kuběna, Ivo

    2012-01-01

    Roč. 430, 1-3 (2012), s. 142-149 ISSN 0022-3115 Institutional support: RVO:68081723 Keywords : ODS steels * fatigue * fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.211, year: 2012

  7. Tensile properties of the modified 13Cr martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mabruri, Efendi, E-mail: effe004@lipi.go.id; Anwar, Moch Syaiful, E-mail: moch.syaiful.anwar@lipi.go.id; Prifiharni, Siska, E-mail: siska.prifiharni@lipi.go.id; Romijarso, Toni B.; Adjiantoro, Bintang [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI) Kawasan Puspiptek Gd. 470 Serpong, Tangerang Selatan 15314 (Indonesia)

    2016-04-19

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  8. Tensile properties of the modified 13Cr martensitic stainless steels

    International Nuclear Information System (INIS)

    Mabruri, Efendi; Anwar, Moch Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-01-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  9. Dilution and Ferrite Number Prediction in Pulsed Current Cladding of Super-Duplex Stainless Steel Using RSM

    Science.gov (United States)

    Eghlimi, Abbas; Shamanian, Morteza; Raeissi, Keyvan

    2013-12-01

    Super-duplex stainless steels have an excellent combination of mechanical properties and corrosion resistance at relatively low temperatures and can be used as a coating to improve the corrosion and wear resistance of low carbon and low alloy steels. Such coatings can be produced using weld cladding. In this study, pulsed current gas tungsten arc cladding process was utilized to deposit super-duplex stainless steel on high strength low alloy steel substrates. In such claddings, it is essential to understand how the dilution affects the composition and ferrite number of super-duplex stainless steel layer in order to be able to estimate its corrosion resistance and mechanical properties. In the current study, the effect of pulsed current gas tungsten arc cladding process parameters on the dilution and ferrite number of super-duplex stainless steel clad layer was investigated by applying response surface methodology. The validity of the proposed models was investigated by using quadratic regression models and analysis of variance. The results showed an inverse relationship between dilution and ferrite number. They also showed that increasing the heat input decreases the ferrite number. The proposed mathematical models are useful for predicting and controlling the ferrite number within an acceptable range for super-duplex stainless steel cladding.

  10. Resistance to fracture of carbon weldable structural steel with ferrite-pearlite and widmanstaetten structure

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Guzovskaya, M.A.

    1977-01-01

    Consideration is given to mechanical properties of St3 steel with varying ferritic-peartilic and widmanstaetten structures typical of a weld seam and adjacent zones. It has been found that mechanical properties determined at static tension are sensitive to structure variation in the limits under study. A considerable difference has been detected during impact tests CT 50 , asub(p)). The highest resistance to breakage is observed for the steel with a fine-grain ferritic-pearlitic structure (T 50 =-10 deg C, asub(p)=4.3 kgxm/cm 2 ). The enlargement of such a structure enhances transition temperature (T 50 =+20 deg C) and reduces resistance to crack development (asub(p)2.4 kgxm/cm 2 ). The appearance of widmanstaetten zones in the fine-grain structure leads also to a higher T 50 , up to +10 deg C, and at a completely widmanstaetten structure T 50 =+25 deg C. An especially unfavorable effect on the resistance of steel to breakage is produced by structure nonuniformity, i.e. accumulation of loop-like pearlitic and ferritic zones

  11. Report of IEA workshop on reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    IEA Workshop on Reduced Activation Ferritic/Martensitic Steels under implementing agreement for program of research and development on fusion materials was held at Tokyo Yayoi Kaikan and JAERI headquarter on November 2-3, 2000. The objective of this workshop was a review of the fusion material development programs, the progress of the collaboration and the irradiation effects studies on RAF/M steels in the collaborating parties (Europe, Russia the United States, and Japan). Moreover, the development of plans for future collaboration was discussed. The present report contains viewgraphs presented at the workshop. (author)

  12. Abnormal grain growth in Eurofer-97 steel in the ferrite phase field

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B. [Lorena School of Engineering, University of Sao Paulo, Lorena, SP, 12602-810 (Brazil); Sandim, H.R.Z., E-mail: hsandim@demar.eel.usp.br [Lorena School of Engineering, University of Sao Paulo, Lorena, SP, 12602-810 (Brazil); Raabe, D. [Max-Planck-Institut für Eisenforschung, Düsseldorf, D-40237 (Germany)

    2017-03-15

    Reduced-activation ferritic-martensitic (RAFM) Eurofer-97 steel is a candidate material for structural applications in future fusion reactors. Depending on the amount of prior cold rolling strain and annealing temperature, important solid-state softening reactions such as recovery, recrystallization, and grain growth occur. Eurofer-97 steel was cold rolled up to 70, 80 and 90% reductions in thickness and annealed in the ferrite phase field (below ≈ 800 °C). Changes in microstructure, micro-, and mesotexture were followed by orientation mappings provided by electron backscatter diffraction (EBSD). Eurofer-97 steel undergoes abnormal grain growth above 650 °C and this solid-state reaction seems to be closely related to the high mobility of a few special grain boundaries that overcome pinning effects caused by fine particles. This solid-state reaction promotes important changes in the microstructure and microtexture of this steel. Abnormal grain growth kinetics for each condition was determined by means of quantitative metallography. - Highlights: • Abnormal grain growth (AGG) occurs in Eurofer-97 steel deformed to several strains. • Kinetics of abnormal grain growth has been determined at 750 and 800 °C. • Significant changes in crystallographic texture take place during AGG. • Grain boundaries with misorientations above 45° may explain abnormal grain growth. • Local microstructural instabilities (coarsening of M23C6 carbides) also explain AGG.

  13. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    Energy Technology Data Exchange (ETDEWEB)

    Ateia, Ebtesam E.; Mohamed, Amira T., E-mail: atawfik@sci.cu.edu.eg

    2017-03-15

    The spinel ferrite Mg{sub 0.7}Cr{sub 0.3}Fe{sub 2}O{sub 4}, and Mg{sub 0.7}Al{sub 0.3}Fe{sub 2}O{sub 4} were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al{sup 3+} and Mg{sup 2+} respectively. The substitution of Cr{sup 3+}/Al{sup 3+} in place of Mg{sup 2+} ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg{sup 2+}, which creates strain inside the crystal volume. According to VSM results, by adding Al{sup 3+} or Cr{sup 3+} ions at the expense of Mg{sup 2+}, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5–1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al{sup 3+}, and Cr{sup 3+} ions enhanced the optical, magnetic and structure properties of the samples. Mg{sub 0.7} Cr{sub 0.3}Fe{sub 2}O{sub 4} sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications. - Highlights: • Nanoparticles of (Mg{sub 0.7} Al{sub 0.3} Fe{sub 2}O{sub 4}) ferrite are the potential candidates for various

  14. Investigation of the relationships between mechanical properties and microstructure in a Fe-9%Cr ODS steel

    Directory of Open Access Journals (Sweden)

    Hary Benjamin

    2016-01-01

    Full Text Available Ferritic-martensitic Oxide Dispersion Strengthened (ODS steels are potential materials for fuel pin cladding in Sodium Fast Reactor (SFR and their optimisation is essential for future industrial applications. In this paper, a feasibility study concerning the generation of tensile specimens using a quenching dilatometer is presented. The ODS steel investigated contains 9%Cr and exhibits a phase transformation between ferrite and austenite around 870 °C. The purpose was to generate different microstructures and to evaluate their tensile properties. Specimens were machined from a cladding tube and underwent controlled heat treatments inside the dilatometer. The microstructures were observed using Electron Backscatter Diffraction (EBSD and tensile tests were performed at room temperature and at 650 °C. Results show that a tempered martensitic structure is the optimum state for tensile loading at room temperature. At 650 °C, the strengthening mechanisms that are involved differ and the microstructures exhibit more similar yield strengths. It also appeared that decarburisation during heat treatment in the dilatometer induces a decrease in the mechanical properties and heterogeneities in the dual-phase microstructure. This has been addressed by proposing a treatment with a much shorter time in the austenitic domain. Thereafter, the relaxation of macroscopic residual stresses inside the tube during the heat treatment was evaluated. They appear to decrease linearly with increasing temperature and the phase transformation has a limited effect on the relaxation.

  15. TIG of Reduced Activation Ferrite/Martensitic Steel for the Korean ITER-TBM

    International Nuclear Information System (INIS)

    Ku, Duck Young; Ahn, Mu Young; Yu, In Keun; Cho, Seun Gyon; Oh, Seung Jin

    2010-01-01

    Test Blanket Modules (TBM) will be tested in ITER to verify the capability of tritium breeding and recovery and the extraction of thermal energy suitable for the production of electricity. A Helium Cooled Solid Breeder (HCSB) TBM has been developed in Korea to accomplish these goals. Reduced Activation Ferritic/Martensitic (RAFM) steel has been chosen as the primary candidate structural material for Korean TBM. Due to the complexity of the First wall (FW) and Side wall (SW), it is necessary to develop various joining technologies, such as Hot Isostatic Pressing (HIP), Electron Beam Welding (EBW) and Tungsten Inert Gas (TIG) welding, for the successful fabrication of TBM. In this study, the mechanical properties of TIG welded RAFM steel were investigated. Various mechanical tests of TIG-welded RAFM steel were performed to obtain the optimized TIG welding process for RAFM steel

  16. TIG of Reduced Activation Ferrite/Martensitic Steel for the Korean ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Duck Young; Ahn, Mu Young; Yu, In Keun; Cho, Seun Gyon [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Oh, Seung Jin [KHNP, Daejeon (Korea, Republic of)

    2010-10-15

    Test Blanket Modules (TBM) will be tested in ITER to verify the capability of tritium breeding and recovery and the extraction of thermal energy suitable for the production of electricity. A Helium Cooled Solid Breeder (HCSB) TBM has been developed in Korea to accomplish these goals. Reduced Activation Ferritic/Martensitic (RAFM) steel has been chosen as the primary candidate structural material for Korean TBM. Due to the complexity of the First wall (FW) and Side wall (SW), it is necessary to develop various joining technologies, such as Hot Isostatic Pressing (HIP), Electron Beam Welding (EBW) and Tungsten Inert Gas (TIG) welding, for the successful fabrication of TBM. In this study, the mechanical properties of TIG welded RAFM steel were investigated. Various mechanical tests of TIG-welded RAFM steel were performed to obtain the optimized TIG welding process for RAFM steel

  17. Recent improvements in size effects correlations for DBTT and upper shelf energy of ferritic steels

    International Nuclear Information System (INIS)

    Kumar, A.S.; Louden, B.S.; Garner, F.A.; Hamilton, M.L.

    1992-01-01

    Currently available correlations for the effects of specimen size on the USE were developed for relatively ductile steels and will not serve as well when the steels become embrittled. Size effects correlations were developed recently for the impact properties of less ductile HT9 to be applied to other initially more ductile steels as they lose their ductility during irradiation. These new correlations successfully predict the ductile brittle transition temperature (DBTT) and the upper shelf energy (USE) of full size Charpy specimens based on subsize specimen data. The new DBTT and the USE correlations were tested against published experimental data on other ferritic steels and shown to perform successfully at lower USE particularly when both precracked and notched only specimens were employed

  18. The Effect of Stepped Austempering on Phase Composition and Mechanical Properties of Nanostructured X37CrMoV5-1 Steel

    Directory of Open Access Journals (Sweden)

    Marciniak S.

    2015-04-01

    Full Text Available This paper presents the results of studies of X37CrMoV5-1 steel subjected to quenching processes with a one-step and a two-step isothermal annealing. The TEM observation revealed that steel after one-step treatment led is composed of carbide-free bainite with nanometric thickness of ferrite plates and of high volume fraction of retained austenite in form of thin layers or large blocks. In order to improve the strength parameters an attempt was made to reduce the austenite content by use of quenching with the two-step isothermal annealing. The temperature and time of each step were designed on the basis of dilatometric measurements. It was shown, that the two-step heat treatment led to increase of the bainitic ferrite content and resulted in improvement of steel's strength with no loss of steel ductility.

  19. TEM Studies of Boron-Modified 17Cr-7Ni Precipitation-Hardenable Stainless Steel via Rapid Solidification Route

    Science.gov (United States)

    Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.

    2013-09-01

    Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.

  20. Effect of shot peening on the residual stress and mechanical behaviour of low-temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6

    DEFF Research Database (Denmark)

    Yang, R.; Zhang, X.; Mallipeddi, D.

    2017-01-01

    A martensitic gear steel (18CrNiMo7-6) was annealed at 180 degrees C for 2h and at similar to 750 degrees C for 1h to design two different starting microstructures for shot peening. One maintains the original as-transformed martensite while the other contains irregular-shaped sorbite together...... with ferrite. These two materials were shot peened using two different peening conditions. The softer sorbite + ferrite microstructure was shot peened using 0.6 mm conditioned cut steel shots at an average speed of 25 m/s in a conventional shot peening machine, while the harder tempered martensite steel...

  1. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    International Nuclear Information System (INIS)

    Li Rutao; Zuo Xiurong; Hu Yueyue; Wang Zhenwei; Hu, Dingxu

    2011-01-01

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: →The pipe with ferrite/martensite microstructure shows high deformability. →The base metal of the pipe consists of ferrite and martensite. →Heat affected zone shows excellent low temperature toughness. →Weld metal mainly consists of intragranularly nucleated acicular ferrites. →Weld metal shows excellent low temperature toughness and high strength.

  2. Study of Irradiation Effects on the Fracture Properties of A533-Series Ferritic Steels

    International Nuclear Information System (INIS)

    Lee, Yong Bok; Lee, Gyeong Geun; Kwon, Jun Hyun

    2011-01-01

    Since the Kori nuclear power plant unit 3 (Kori-3) was founded in 1986, the surveillance tests have been conducted five times. One of the primary objectives of the surveillance test is to determine the effects of irradiation on reactor pressure vessel (RPV) steel embrittlement. The RPV is made out of ferritic steels such as SA533 type B class 1, which were used for early nuclear power plants industry including Kori-2, 3, 4 and Yonggwang-1, 2 units in Korea. The Westinghouse supplied Kori-3 with the RPV steels ASTM A533 grade B class 1, which is equivalent to SA533 type B class 1. The irradiation effects on tensile properties in ASTM A533 grade B class 1 steel had been studied by Steichen and Williams. They experimentally determined the effect of strain rate and temperature on the tensile properties of unirradiated and irradiated A533 grade B steel 1. The effects of neutron irradiation on ferritic steels could be determined from tensile properties, as well as the fracture strength and toughness measurements. Hunter and Williams have reported that the strength and ductility for unirradiated material at a low strain rate increase with decreasing test temperature. Also, neutron irradiation increases strength and decreases ductility. Crosley and Ripling revealed that the yield strength of unirradiated material rapidly increases with the strain rate. Therefore, yield strength for unirradiated and irradiated materials should be determined by test parameters along with strain rate and temperature. In this study we compare ASTM A533 grad B class 1 steel obtained from several papers with SA533 type B class 1 steel taken from the surveillance data of Kori-3 unit, whose mechanical property of unirradiated and irradiated materials was correlated with the rate-temperature parameter

  3. Tantalum-containing Z-phase in 12%Cr martensitic steels

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John

    2009-01-01

    Z-phases in tantalum-containing 12%Cr steels have been investigated. In 12%Cr steel without any Nb or V, the formation of CrTaN Z-phases was observed. In 12%Cr steel which also contained V, the Ta entered Z-phase as a minor element, Cr(V,Ta)N. The crystal structure of Cr(V,Ta)N seems to be identi......Z-phases in tantalum-containing 12%Cr steels have been investigated. In 12%Cr steel without any Nb or V, the formation of CrTaN Z-phases was observed. In 12%Cr steel which also contained V, the Ta entered Z-phase as a minor element, Cr(V,Ta)N. The crystal structure of Cr(V,Ta)N seems...

  4. Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum

    International Nuclear Information System (INIS)

    Gao, R.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.

    2014-01-01

    The oxide dispersion strengthened (ODS) ferritic steels with nominal composition of Fe–16Cr–2W–0.5Ti–0.4Y 2 O 3 –4Al–1Zr (16Cr–4Al–Zr–ODS) were fabricated by a sol–gel method combining with mechanical alloying and spark plasma sintering (SPS) technique, and the 16Cr–ODS and 16Cr–4Al–ODS steels were prepared for comparison in the same way. Microstructure characterization reveals that in the 16Cr–4Al–ODS steel coarse Y–Al–O particles were formed while in the 16Cr–4Al–Zr–ODS steel finer Y–Zr–O particles were formed. The mean size and number density of the nano-oxide particles in the 16Cr–4Al–Zr–ODS steel are about 25 nm and 2.6 × 10 21 /m 3 , respectively. The ultimate tensile strength (UTS) of the 16Cr–ODS steel is about 1045 MPa, but UTS of the 16Cr–4Al–ODS steel decreases to 974 MPa. However, UTS of the 16Cr–4Al–Zr–ODS steel increases to 1180 MPa while keeping a large uniform elongation up to 23%, indicating the enhancement of mechanical properties by Zr addition

  5. An examination of the potential for 9%Cr1%Mo steel as thick section tubeplates in fast reactors

    International Nuclear Information System (INIS)

    Orr, J.; Sanderson, S.J.

    1984-01-01

    The steam generator units of future commercial demonstration fast reactors are likely to have a requirement for heavy section tubeplates (up to 500mm thick) with good elevated temperature strength and creep-fatigue resistance. A comparison of the mechanical properties available for ferritic steels has suggested that 9%Cr1%Mo steel would be a strong candidate material for this application. Although this steel is covered in some national specifications for tubes, pipes, plates and forgings and is also well established in the UK nuclear industry, international experience to date is confined to sections less than ca 150mm. The potential of 9%Cr1%Mo steel for use in thick sections has therefore been assessed in the present study by using simulation heat treatments. The work reported here involved the laboratory-scale cooling of bar samples to simulate water-quenching rates in cylindrical sections up to 720mm diameter (ie: equivalent to 500mm thick plate). The tensile properties at ambient and 525 0 C and impact fracture appearance transition temperatures were determined for material tempered after cooling at simulated thick section rates; the transformation characteristics as influenced by the net chromium equivalent were also established. The results of this work show that 9%Cr1%Mo steel may be fully hardened in the equivalent of the section sizes examined,and the mechanical properties of tempered material show only a small reduction from those of thin section normalised and tempered 9%Cr1%Mo steel. These findings support the potential usage of heavy section 9%Cr1%Mo steel envisaged for fast reactor steam generator tubeplates

  6. Surface hardening of 30CrMnSiA steel using continuous electron beam

    Science.gov (United States)

    Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng

    2017-11-01

    30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.

  7. Effects of Aging and W Addition on the Corrosion Resistance and Mechanical Properties of Fe-Cr-Mn-N Stainless Steels

    International Nuclear Information System (INIS)

    Jeon, Yu Taek; Joo, Uk Hyon; Park, Yong Soo; Kim, Young Sik

    2000-01-01

    The characteristics of the mechanical properties and sensitization behaviors in Fe-Cr-Mn stainless steels by W addition and aging treatment were studied. Yield strength, tensile strength, elongation and impact energy decreased, and hardness increased slightly by aging treatment. W-containing alloys showed especially a larger degree of brittle characteristics due to the hard chi(χ) phase formed from the decomposition of ferrite. Carbides precipitated in grain boundary had a bad effect on impact energy rather than on strength and hardness. Ni addition suppressed the formation of ferrite and resulted in some improvement of mechanical properties. Anodic polarization tests showed that the corrosion resistance of aged alloys decreased by the formation of carbides and secondary austenite. It was observed that W addition made no improvement of the pitting potential and passive current density of aged alloys in the HCI solution. But Ni and W decreased critical current density in the sulfuric acid and made easier formation of passive film, contributing to corrosion resistance. From the results of EPR (Electrochemical Potentiokinetic Reactivation). DOS (Degree of Sensitization) increased with aging time and carbides and ferrite were preferentially attacked. It was observed that Ni delayed the sensitization. It can be concluded from the previous results that the selective dissolution of ferrite is due to the ferrite decomposition to chi (χ) phase and secondary austenite. In the secondary austenite. Cr and W which are known to improve the corrosion resistance were depleted. Therefore, it seems that ferrite phase became sensitive to corrosion

  8. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial

    International Nuclear Information System (INIS)

    Marques, Rogerio Albuquerque

    2014-01-01

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  9. Stress and adhesion of chromia-rich scales on ferritic stainless steels in relation with spallation

    Directory of Open Access Journals (Sweden)

    A. Galerie

    2004-03-01

    Full Text Available The relation between chromia scale spallation during oxidation or cooling down of ferritic stainless steels is generally discussed in terms of mechanical stresses induced by volume changes or differential thermal expansion. In the present paper, growth and thermal stress measurements in scales grown on different ferritic steel grades have shown that the main stress accumulation occurs during isothermal scale growth and that thermal stresses are of minor importance. However, when spallation occurs, it is always during cooling down. Steel-oxide interface undulation seems to play a major role at this stage, thus relating spallation to the metal mechanical properties, thickness and surface preparation. A major influence on spallation of the minor stabilizing elements of the steels was observed which could not be related to any difference in stress state. Therefore, an original inverted blister test was developed to derive quantitative values of the metal-oxide adhesion energy. These values clearly confirmed that this parameter was influenced by scale thickness and by minor additions, titanium greatly increasing adhesion whereas niobium decreased it.

  10. Z-phase in 9-12% Cr Steels

    DEFF Research Database (Denmark)

    Danielsen, Hilmar; Hald, John

    2004-01-01

    The complex nitride Z-phase, Cr(V,Nb)N, has recently been identified as a major cause for premature breakdown in creep strength of a number of new 9-12%Cr martensitic steels. A thermodynamic model of the Z-phase has been created based on the Thermo-Calc software. The model predicts the Z-phase to......The complex nitride Z-phase, Cr(V,Nb)N, has recently been identified as a major cause for premature breakdown in creep strength of a number of new 9-12%Cr martensitic steels. A thermodynamic model of the Z-phase has been created based on the Thermo-Calc software. The model predicts the Z......-phase to be stable in all of the new 9-12%Cr martensitic steels. This has generally been confirmed by the performed experiments. Z-phase precipitation seems to be a kinetic problem, and drivning force calculations using Thermo-Calc with the developed model have been used to predict steel compositions, which...

  11. Tensile properties of modified 9Cr-1Mo steel by shear punch testing and correlation with microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, V., E-mail: karthik@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Kasiviswanathan, K.V.; Jayakumar, T.; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India)

    2011-10-15

    Modified 9Cr-1Mo ferritic steel (P91) is subjected to a series of heat treatments consisting of soaking for 5 min at the selected temperatures in the range 973 K-1623 K (below Ac{sub 1} to above Ac{sub 4}) followed by oil quenching and tempering at 1033 K for 1 h to obtain different microstructural conditions. The tensile properties of the different microstructural conditions are evaluated from small volumes of material by shear punch test technique. A new methodology for evaluating yield strength, ultimate tensile strength and strain hardening exponent from shear punch test by using correlation equations without employing empirical constants is presented and validated. The changes in the tensile properties are related to the microstructural changes of the steel investigated by electron microscopic studies. The steel exhibits minimum strength and hardness when soaked between Ac{sub 1} and Ac{sub 3} (intercritical range) temperatures due to the replacement of original lath martensitic structure with subgrains. The finer martensitic microstructure produced in the steel after soaking at temperatures above Ac{sub 3} leads to a monotonic increase in hardness and strength with decreasing strain hardening exponent. For soaking temperatures above Ac{sub 4}, the hardness and strength of the steel increases marginally due to the formation of soft {delta} ferrite. - Highlights: > A methodology presented for computing tensile properties from shear punch test. > UTS and strain hardening estimated using extended analysis of blanking models. > The analysis methodology validated for different heat treated 9Cr-1Mo steel. > Changes in tensile properties of steel correlated with microstructures.

  12. Fireside corrosion and steamside oxidation of 9-12% Cr martensitic steels exposed for long term testing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Rasmussen, F.

    2009-01-01

    MoV121 and HCM12 for the 12% Cr steels. The test tubes were welded in as part of the existing final superheaters in actual plants and exposure has been conducted over a ten year period (1994-2005). Compared to the older steel types, T92 and HCM12 utilise tungsten to improve their creep strength. From......To obtain long term corrosion and steam oxidation data for the 9-12%Cr ferritic steels, test tube sections have been exposed in Amager 3 and Avedore 1 coal fired power plants in Denmark (formerly run by ENERGI E2). Thus direct comparisons can be made for T91 and T92 for the 9% Cr steels and X20Cr...... Avedore I testing, T91 and T92 can be compared for exposure times up to similar to 48 000 h exposure. From Amager 3 testing, X20, HCM12 and T92 were tested; T92 has been exposed for up to 31 000 h and X20 and HCM12 have had 84 500 h exposure. Tube sections were removed for various exposure durations...

  13. Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors

    Science.gov (United States)

    Kim, Han Kyu; Lee, Ji Won; Moon, Joonoh; Lee, Chang Hoon; Hong, Hyun Uk

    2018-03-01

    The effects of Ti and Ta addition on microstructure stability and tensile properties of a reduced activation ferritic/martensitic (RAFM) steel have been investigated. Ti addition of 0.06 wt% to conventional RAFM reference base steel (Fe-9.3Cr-0.93W-0.22V-0.094Ta-0.1C) was intended to promote the precipita