WorldWideScience

Sample records for coxzn1-xfe2o4 nanocrystals synthesized

  1. Method of synthesizing pyrite nanocrystals

    Science.gov (United States)

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  2. Blue-green luminescent CdZnSeS nanocrystals synthesized with activated alkyl thiol

    International Nuclear Information System (INIS)

    Xia Xing; Liu Zuli; Du Guihuan; Li Yuebin; Ma Ming; Yao Kailun

    2012-01-01

    Semiconductor nanocrystals with blue-green luminescence are potentially useful in various applications, but the preparation has not been easy compared to regular semiconductor nanocrystals with emission in the orange-red range. In this research alloyed CdZnSeS nanocrystals with luminescence covering the wavelength range from 430 to 560 nm are obtained by a one-step method with the assistance of alkyl thiol compound 1-dodecanethiol, which serves both as the sulfur source and surface ligand. The luminescence of CdZnSeS nanocrystals can be tuned from blue to green by altering the Cd:Zn molar ratio. Besides, the amount of 1-dodecanethiol in the reaction mixture can influence the emission wavelength by restricting the growth of nanocrystals. The dual control of both particle composition and size has enabled the tuning of luminescence to cover the blue-green spectral window. This research presents a convenient method to synthesize nanocrystals with tunable blue-green emission; these materials can be useful in advanced technologies such as photovoltaics, lighting and display. - Highlights: → Obtained blue-green luminescent nanocrystals by a one-step process. → Alkyl thiol used as a sulfur source and a surface stabilizer to control particle size. → Luminescence color of NCs could be easily tuned by changing their composition and particle size simultaneously.

  3. Investigation of the photoluminescence properties of thermochemically synthesized CdS nanocrystals

    Directory of Open Access Journals (Sweden)

    M. Molaei

    2011-03-01

    Full Text Available In this work we have synthesized CdS nanocrystals with thermochemical method. CdSO4 and Na2S2O3 were used as the precursors and thioglycolic acid (TGA was used as capping agent molecule. The structure and optical property of the nanocrystals were characterized by means of XRD, TEM, UV-visible optical spectroscopy and photoluminescence (PL. X-ray diffraction (XRD and TEM analyses demonstrated hexagonal phase CdS nanocrystals with an average size around 2 nm. Synthesized nanocrystals exhibited band gap of about 3.2 eV and showed a broad band emission from 400-750 nm centered at 504 nm with a (0.27, 0.39 CIE coordinate. This emission can be attributed to recombination of an electron in conduction band with a hole trapped in Cd vacancies near to the valance band of CdS. The best attained photoluminescence quantum yield of the nanocrystals was about 12%, this amount is about 20 times higher than that for thioglycerol (TG capped CdS nanocrystals.

  4. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    International Nuclear Information System (INIS)

    Efafi, B.; Majles Ara, M.H.; Mousavi, S.S.

    2016-01-01

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  5. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    Energy Technology Data Exchange (ETDEWEB)

    Efafi, B. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Departments of Physics, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Majles Ara, M.H., E-mail: majlesara@gmail.com [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Mousavi, S.S. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  6. SAXS and EXAFS studies of ion beam synthesized Au nanocrystals

    International Nuclear Information System (INIS)

    Kluth, P.; Johannessen, B.; Cookson, D.J.; Foran, G.J.; Ridgway, M.C.

    2006-01-01

    We have used small-angle X-ray scattering (SAXS) and extended X-ray absorption fine structure (EXAFS) spectroscopy to investigate Au nanocrystals (NCs) fabricated by high dose ion implantation into thin SiO 2 and subsequent annealing at different temperatures. Size distributions were determined from SAXS and structural parameters were extracted from EXAFS measurements, the latter analyzed as a function of NC size. Increasing implantation dose leads to an increasing average NC size and broadening of the size distribution. A significant size-dependent bond length contraction with respect to bulk material was observed. For samples annealed at 1100 deg. C our analysis suggests that an increased structural disorder is predominantly located at the NC surface. Post-implantation annealing at temperatures of 500 deg. C and 800 deg. C for 1 h in forming gas had no detectable influence on the NC size distribution, however, a significant influence on the structural parameters, in particular increased disorder was observed. This is potentially the result of stress induced disorder due to the different thermal expansion of the NC and matrix materials

  7. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents.

    Science.gov (United States)

    Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu

    2012-08-07

    Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve "unity in diversity" on the preparation of nanocrystal-graphene hybrids.

  8. An Experimental Study on the Shape Changes of TiO2 Nanocrystals Synthesized by Microemulsion-Solvothermal Method

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 nanocrystals of different shape were successfully synthesized in a new microemulsion system through a solvothermal process. The TiO2 nanocrystals were prepared from the reaction of tetrabutyl titanate (TBT, H2O, and oleic acid (OA, which were used as solvent and surfactant at 300∘C and 240∘C in a stainless steel autoclave. The sphere, polygon, and rhombus-shaped nanocrystals have been prepared at 300∘C and the dot- and- rod shaped nanocrystals have been synthesized at 240∘C. The effect of the reaction time on the shape and size of TiO2 nanocrystals in this method was studied in the present paper. The size distribution of TiO2 nanocrystals prepared at 300∘C for different hours is also studied. In addition, an attempt to describe the mechanism of shape change of TiO2 nanocrystals was presented in this paper.

  9. Multicolor upconversion emission of dispersed ultrasmall cubic Sr2LuF7 nanocrystals synthesized by a solvothermal process

    International Nuclear Information System (INIS)

    Gong, Lunjun; Ma, Mo; Xu, Changfu; Li, Xujun; Wang, Suiping; Lin, Jianguo; Yang, Qibin

    2013-01-01

    Lanthanide (Ln 3+ ) doped Sr 2 LuF 7 (Ln 3+ =Er 3+ /Tm 3+ /Yb 3+ ) nanocrystals (NCs) were synthesized via a solvothermal process using oleate as stabilizing agent. The as-synthesized NCs with a mean diameter of sub-20 nm can be well dispersed in cyclohexane and show a pure cubic phase structure with space group Fm3 ¯ m. Following appropriate lanthanide ion doping, the NCs show intense red, green, blue and white-color upconversion emission (UC) under the excitation of a 980 nm laser. Predominant near-infrared UC can also be obtained in the Yb 3+ /Tm 3+ doped Sr 2 LuF 7 NCs. The energy transfer UC mechanisms for the fluorescent intensity were also investigated. The desirable property of the ultrasmall dispersed NCs makes them promising materials for the applications in miniaturized solid-state light sources, multicolor three-dimensional display devices and fluorescent labels for biomedical imaging. - Highlights: ► Cubic-structure (Fm3 ¯ m) Sr 2 LuF 7 nanocrystals were synthesized for the first time. ► Nanocrystals (sub-20 nm) with cubic or spherical shape can be well dispersed. ► By doping properly, the nanocrystals show intense multicolor upconversion. ► Predominant near-infrared upconversion can be obtained in Sr 2 LuF 7 nanocrystals. ► Upconversion mechanism for the fluorescent intensity is mainly energy transfer.

  10. Organo-Functionalization of Silicon Nanocrystals Synthesized by Inductively Coupled Plasma Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Don-Sung; Choe, Dong-Hoe; Jeong, Hyun-Dam [Chonnam National University, Gwangju (Korea, Republic of); Yoo, Seung-Wan; Kim, Jung-Hyung [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-05-15

    Octadecyl-terminated silicon nanocrystals (ODE-Si NCs) are obtained via a surface-initiated thermal hydrosilylation reaction on hydride-terminated Si NCs (H-Si NCs). Pristine Si NCs were synthesized at the gram scale by using inductively coupled plasma chemical vapor deposition (ICP-CVD) . The H-Si NCs were produced through a chemical etching process with hydrofluoric acid (HF), ethanol (EtOH), and distilled water (d-H{sub 2}O). The results obtained from X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) indicate that the synthesized Si NCs obtained via ICP-CVD have diamond cubic-structured silicon with a grain size of 10 nm and a densely packed Si NC array consisting of individual NCs. Organo-functionalized Si NCs, i.e., ODE-Si NCs, are well soluble in organic solvent whereas pristine Si NCs synthesized through ICP-CVD are not. The surface chemistry of the ODE-Si NCs was confirmed via Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ({sup 1}H-NMR), and field emission transmission electron microscopy (FE-TEM). Thereby, these newly synthesized and scalable organo-functionalized Si NCs are applicable as raw materials for practical use in devices by tuning the surface chemistry with various capping molecules.

  11. Model for efficient visible emission from Si nanocrystals ion beam synthesized in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, M. E-mail: mlopez@el.ub.es; Garrido, B.; Bonafos, C.; Perez-Rodriguez, A.; Morante, J.R.; Claverie, A

    2001-05-01

    The photoluminescence (PL) emission of Si nanocrystals ion beam synthesized in SiO{sub 2} is studied in this work as a function of annealing time and initial Si atomic excess (super-saturation). The optical properties of this system have been correlated with the characteristics of the nanocrystal population. The Si nanocrystals show a wide and very intense PL red/infrared emission. This emission peaks at about 1.7 eV for the low super-saturation range between 1% and 10% and shifts to the infrared for higher super-saturation (20% and 30%). Remarkably, there is a linear increase of PL intensity versus super-saturation in the low range. Moreover, the annealing kinetic studies show a typical behavior of PL intensity with annealing time, with a fast transitory increase that bends over to reach asymptotic saturation. The PL intensity saturation is satisfactorily explained by the Ostwald ripening stage of the nanocrystal population while the transient stage is a consequence of both nanocrystal growth and nanocrystal surface passivation mechanisms acting together. Indeed, electron spin resonance measurements demonstrate that the concentration of P{sub b} centers (Si dangling bonds) at the Si-SiO{sub 2} interface correlates inversely with PL intensity during most of the transient stage.

  12. Electronic structure and magnetic properties of FeWO{sub 4} nanocrystals synthesized by the microwave-hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.A.P. [INCTMN-DQ-Universidade Federal de Sao Carlos, Sao Carlos, P.O. Box 676, 13565-905, SP (Brazil); Cavalcante, L.S., E-mail: laeciosc@bol.com.br [INCTMN-Universidade Estadual, Paulista, P.O. Box 355, 14801-907, Araraquara, SP (Brazil); Morilla-Santos, C.; Filho, P.N. Lisboa [MAv-Universidade Estadual, Paulista, P.O. Box 473, 17033-360, Bauru, SP (Brazil); Beltran, A.; Andres, J.; Gracia, L. [Department de Quimica Fisica i Analitica, Universitat Jaume I, E-12071 Castello (Spain); Longo, E. [INCTMN-DQ-Universidade Federal de Sao Carlos, Sao Carlos, P.O. Box 676, 13565-905, SP (Brazil); INCTMN-Universidade Estadual, Paulista, P.O. Box 355, 14801-907, Araraquara, SP (Brazil)

    2012-11-15

    This communication reports that FeWO{sub 4} nanocrystals were successfully synthesized by the microwave-hydrothermal method at 443 K for 1 h. The structure and shape of these nanocrystals were characterized by X-ray diffraction, Rietveld refinement, and transmission electron microscopy. The experimental results and first principles calculations were combined to explain the electronic structure and magnetic properties. Experimental data were obtained by magnetization measurements for different applied magnetic fields. Theoretical calculations revealed that magnetic properties of FeWO{sub 4} nanocrystals can be assigned to two magnetic orderings with parallel or antiparallel spins in adjacent chains. These factors are crucial to understanding of competition between ferro- and antiferromagnetic behavior. Highlights: Black-Right-Pointing-Pointer Monophasic FeWO{sub 4} nanocrystals were synthesized by the microwave-hydrothermal method. Black-Right-Pointing-Pointer Rietveld refinement and clusters model for monoclinic structure Black-Right-Pointing-Pointer Magnetic properties of FeWO{sub 4} nanocrystals at different temperatures.

  13. Nanocrystals-based Macroporous Materials Synthesized by Freeze-drying Combustion

    International Nuclear Information System (INIS)

    Yan, Ruiqiang; Chen, Yu; Lin, Ye; Chen, Fanglin

    2016-01-01

    We present a novel freeze-drying combustion method for synthesis of macroporous powders with nano-network, using Sm 0.2 Ce 0.8 O 1.9 (SDC) as an example. The metal nitrate salt solution mixed with glycine is frozen to form homogeneous nitrate/glycine mixture and then freeze-dried through sublimation of ice crystals. Upon combustion of the freeze-dried mixture, SDC powders with macroporous microstructure consisting of 10–20 nm nanocrystals, high surface area and excellent sinterability are achieved. High resolution transmission electron microscopy (HRTEM) analysis indicates that nanodomains due to aggregation/segregation of dopants in the SDC powders obtained from freeze-drying combustion are much smaller than those in the SDC powders synthesized by the conventional nitrate solution combustion approach, demonstrating better elemental homogeneity and improved conductivity. Using low cost precursors and simple processing conditions, freeze-drying combustion can be a versatile method to synthesize nanocrystalline powders with excellent composition homogeneity for broad applications.

  14. Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

    Science.gov (United States)

    2014-01-01

    Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644

  15. Syntheses of optically efficient (La{sub 1-x-y}Ce{sub x}Tb{sub y})F{sub 3} nanocrystals via a hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiang [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); You Yumin; Ludescher, Richard D. [Department of Food Science, Rutgers University, New Brunswick, NJ 08901 (United States); Ju Yiguang, E-mail: yju@princeton.ed [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2010-06-15

    Optically efficient cerium and terbium doped lanthanide fluoride (La{sub 1-x-y}Ce{sub x}Tb{sub y})F{sub 3} nanocrystals with different doping concentrations have been synthesized by a hydrothermal route in the presence of ethylenediamine tetraacetic acid disodium salt (EDTA). The results showed that the formation of nanocrystals with different morphologies depends on terbium ion Tb{sup 3+} doping concentration, but independent of cerium ion Ce{sup 3+} doping concentration. With increase in Tb{sup 3+} doping concentration, the morphologies of nanocrystals evolved from a spherical shape to a plated-like one. In addition, both the photoluminescence quantum yield (PL QY) and the fluorescence lifetime of nanocrystals increased with the increase in Ce{sup 3+} doping concentration in cerium and terbium co-doped system. The PL QY reached up to 55%, and the lifetime up to 7.3 ms. Transmission electron microscopy (TEM), X-ray diffraction (XRD), selected area electron diffraction (SAED), X-ray fluorescence (XRF), energy dispersive spectroscopy (EDS), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) and infrared (IR) spectroscopies were employed to characterize the properties of nanocrystals. The growth mechanism of nanocrystals with different morphologies and optical properties of nanocrystals with different doping concentrations were investigated.

  16. Photoelectrochemical properties of orthorhombic and metastable phase SnS nanocrystals synthesized by a facile colloidal method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Po-Chia [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China); Wang, Sheng-Chang; Shaikh, Muhammad Omar [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan, ROC (China); Lin, Chia-Yu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2015-12-01

    SnS of orthorhombic (OR) and metastable (SnS) phases were synthesized by using a simple and facile colloidal method. The tin precursor was synthesized using tin oxide (SnO) and oleic acid (OA), while the sulfur precursor was prepared using sulfur powder (S) and oleyamine (OLA). The sulfur precursor was injected into the tin precursor and the prepared SnS nanocrystals were precipitated at a final reaction temperature of 180 °C. The results show that hexamethyldisilazane (HMDS) can be successfully used as a surfactant to synthesize monodisperse 20 nm metastable SnS nanoparticles, while OR phase SnS nanosheets were obtained without HMDS. The direct bandgap observed for the metastable SnS phase is higher (1.66 eV) as compared to the OR phase (1.46 eV). The large blueshift in the direct bandgap of metastable SnS is caused by the difference in crystal structure. The blueshift in the direct band gap value for OR-SnS could be explained by quantum confinement in two dimensions in the very thin nanosheets. SnS thin films used as a photo anode in a photoelectrochemical (PEC) cell were prepared by spin coating on the fluorine-doped tin oxide (FTO) substrates. The photocurrent density of the SnS (metastable SnS)/FTO and SnS (OR)/FTO are 191.8 μA/cm{sup 2} and 57.61 μA/cm{sup 2} at an applied voltage of − 1 V at 150 W, respectively. These narrow band gap and low cost nanocrystals can be used for applications in future optoelectronic devices. - Highlights: • A facile method to synthesize two different phases of SnS having different morphological and optical properties. • The phases and morphologies of SnS nanocrystal can be controlled by adding capping surfactant hexamethyldisilazane (HMDS). • As we know, this is the first metastable SnS photoanode for application in a photoelectrochemical cell.

  17. Evolution of microstructural defects with strain effects in germanium nanocrystals synthesized at different annealing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minghuan; Cai, Rongsheng; Zhang, Yujuan; Wang, Chao [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); College of Chemistry and Chemical Engineering, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); Wang, Yiqian, E-mail: yqwang@qdu.edu.cn [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); College of Physics Science, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); Ross, Guy G.; Barba, David [INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2014-07-01

    Ge nanocrystals (Ge-ncs) were produced by implantation of {sup 74}Ge{sup +} into a SiO{sub 2} film on (100) Si, followed by high-temperature annealing from 700 °C to 1100 °C. Transmission electron microscopy (TEM) studies show that the average size of Ge-ncs increases with the annealing temperature. High-resolution TEM (HRTEM) investigations reveal the presence of planar and linear defects in the formed Ge-ncs, whose relative concentrations are determined at each annealing temperature. The relative concentration of planar defects is almost independent of the annealing temperature up to 1000 °C. However, from 1000 °C to 1100 °C, its concentration decreases dramatically. For the linear defects, their concentration varies considerably with the annealing temperatures. In addition, by measuring the interplanar spacing of Ge-ncs from the HRTEM images, a strong correlation is found between the dislocation percentage and the stress field intensity. Our results provide fundamental insights regarding both the presence of microstructural defects and the origin of the residual stress field within Ge-ncs, which can shed light on the fabrication of Ge-ncs with quantified crystallinity and appropriate size for the advanced Ge-nc devices. - Highlights: • Growth of Ge nanocrystals at different annealing temperatures was investigated. • Strain field has great effects on the formation of dislocations. • Different mechanisms are proposed to explain growth regimes of Ge nanocrystals.

  18. Role of the nanocrystallinity on the chemical ordering of Co(x)Pt(100-x) nanocrystals synthesized by wet chemistry.

    Science.gov (United States)

    Kameche, Farid; Ngo, Anh-Tu; Salzemann, Caroline; Cordeiro, Marco; Sutter, Eli; Petit, Christophe

    2015-11-14

    Co(x)Pt(100-x) nanoalloys have been synthesized by two different chemical processes either at high or at low temperature. Their physical properties and the order/disorder phase transition induced by annealing have been investigated depending on the route of synthesis. It is demonstrated that the chemical synthesis at high temperature allows stabilization of the fcc structure of the native nanoalloys while the soft chemical approach yields mainly poly or non crystalline structure. As a result the approach of the order/disorder phase transition is strongly modified as observed by high-resolution transmission electron microscopy (HR-TEM) studies performed during in situ annealing of the different nanoalloys. The control of the nanocrystallinity leads to significant decrease in the chemical ordering temperature as the ordered structure is observed at temperatures as low as 420 °C. This in turn preserves the individual nanocrystals and prevents their coalescence usually observed during the annealing necessary for the transition to an ordered phase.

  19. Well-dispersed cellulose nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing highly reinforced bio-nanocomposites.

    Science.gov (United States)

    Geng, Shiyu; Wei, Jiayuan; Aitomäki, Yvonne; Noël, Maxime; Oksman, Kristiina

    2018-04-20

    In nanocomposites, dispersing hydrophilic nanomaterials in a hydrophobic matrix using simple and environmentally friendly methods remains challenging. Herein, we report a method based on in situ polymerization to synthesize nanocomposites of well-dispersed cellulose nanocrystals (CNCs) and poly(vinyl acetate) (PVAc). We have also shown that by blending this PVAc/CNC nanocomposite with poly(lactic acid) (PLA), a good dispersion of the CNCs can be reached in PLA. The outstanding dispersion of CNCs in both PVAc and PLA/PVAc matrices was shown by different microscopy techniques and was further supported by the mechanical and rheological properties of the composites. The in situ PVAc/CNC nanocomposites exhibit enhanced mechanical properties compared to the materials produced by mechanical mixing, and a theoretical model based on the interphase effect and dispersion that reflects this behavior was developed. Comparison of the rheological and thermal behaviors of the mixed and in situ PVAc/CNC also confirmed the great improvement in the dispersion of nanocellulose in the latter. Furthermore, a synergistic effect was observed with only 0.1 wt% CNCs when the in situ PVAc/CNC was blended with PLA, as demonstrated by significant increases in elastic modulus, yield strength, elongation to break and glass transition temperature compared to the PLA/PVAc only material.

  20. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lan, E-mail: lwang322@yahoo.com.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Medical University, Harbin 150081 (China); Sun Xiudong, E-mail: xdsun@hit.edu.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu Wenjing [Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001 (China); Liu Bingyi [Laboratory Center for the School of Pharmacy, Harbin Medical University, Harbin 150081 (China)

    2010-03-15

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  1. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    International Nuclear Information System (INIS)

    Wang Lan; Sun Xiudong; Liu Wenjing; Liu Bingyi

    2010-01-01

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  2. Mn-doped ZnO nanocrystals synthesized by sonochemical method: Structural, photoluminescence, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A.A., E-mail: aaelho@yahoo.com [Assiut University, Faculty of Science, Department of Physics, Assiut 71516 (Egypt); Osman, M.A. [Assiut University, Faculty of Science, Department of Physics, Assiut 71516 (Egypt); Ibrahim, E.M.M. [Sohag University, Faculty of Science, Department of Physics, Sohag 82524 (Egypt); Ali, Manar A.; Abd-Elrahim, A.G. [Assiut University, Faculty of Science, Department of Physics, Assiut 71516 (Egypt)

    2017-05-15

    Highlights: • Mn-doped ZnO nanostructures were synthesized by the sonochemical method. • Structural, morphological, optical, photoluminescence and magnetic properties were investigated. • Mn-doped ZnO nanostructures reveal a blue shift of the optical band gap. • Photoluminescence spectra of Mn-doped ZnO nanostructures show quenching in the emission intensity. • Mn-doped ZnO nanostructures exhibit ferromagnetic ordering at room temperature. - Abstract: This work reports the synthesis of Mn-doped ZnO nanostructures using ice-bath assisted sonochemical technique. The impact of Mn-doping on structural, morphological, optical, and magnetic properties of ZnO nanostructures is studied. The morphological study shows that the lower doped samples possess mixtures of nanosheets and nanorods while the increase in Mn content leads to improvement of an anisotropic growth in a preferable orientation to form well-defined edge rods at Mn content of 0.04. UV–vis absorption spectra show that the exciton peak in the UV region is blue shifted due to Mn incorporation into the ZnO lattice. Doping ZnO with Mn ions leads to a reduction in the PL intensity due to a creation of more non-radiative recombination centers. The magnetic measurements show that the Mn-doped ZnO nanostructures exhibit ferromagnetic ordering at room temperature, as well as variation of the Mn content can significantly affect the ferromagnetic behavior of the samples.

  3. Controlling morphology and crystallite size of Cu(In0.7Ga0.3)Se2 nano-crystals synthesized using a heating-up method

    International Nuclear Information System (INIS)

    Hsu, Wei-Hsiang; Hsiang, Hsing-I; Chia, Chih-Ta; Yen, Fu-Su

    2013-01-01

    CuIn 0.7 Ga 0.3 Se 2 (CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn 0.7 Ga 0.3 Se 2 (CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.

  4. TiO{sub 2} nanocrystals synthesized by laser pyrolysis for the up-scaling of efficient solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Melhem, Hussein; Boucharef, Mourad; Di Bin, Catherine; Ratier, Bernard; Boucle, Johann [XLIM UMR 6172 Universite de Limoges/CNRS, Limoges Cedex (France); Simon, Pardis; Leconte, Yann; Herlin-Boime, Nathalie [IRAMIS/SPAM/LFP, CEA-CNRS URA 2453, CEA Saclay, Gif sur Yvette (France); Beouch, Layla; Goubard, Fabrice [Laboratoire de Physico-Chimie des Polymeres et des Interfaces (LPPI), Federation Institut des Materiaux (FD 4122), Universite de Cergy-Pontoise (France)

    2011-10-15

    A crucial issue regarding emerging nanotechnologies remains the up-scaling of new functional nanostructured materials towards their implementation in high performance applications on a large scale. In this context, we demonstrate high efficiency solid-state dye-sensitized solar cells prepared from new porous TiO{sub 2} photoanodes based on laser pyrolysis nanocrystals. This strategy exploits a reduced number of processing steps as well as non-toxic chemical compounds to demonstrate highly porous TiO{sub 2} films. The possibility to easily tune the TiO{sub 2} nanocrystal physical properties allows us to demonstrate all solid-state dye-sensitized devices based on a commercial benchmark materials (organic indoline dye and molecular hole transporter) presenting state-of-the-art performance comparable with reference devices based on a commercial TiO{sub 2} paste. In particular, a drastic improvement in pore infiltration, which is found to balance a relatively lower surface area compared to the reference electrode, is evidenced using laser-synthesized nanocrystals resulting in an improved short-circuit current density under full sunlight. Transient photovoltage decay measurements suggest that charge recombination kinetics still limit device performance. However, the proposed strategy emphasizes the potentialities of the laser pyrolysis technique for up-scaling nanoporous TiO{sub 2} electrodes for various applications, especially for solar energy conversion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Optical Spectroscopy and Visible Upconversion Studies of YVO4:Er3+ Nanocrystals Synthesized by a Hydrothermal Process

    NARCIS (Netherlands)

    Sun, Y.; Liu, H.; Wang, X.; Kong, X.; Zhang, H.

    2006-01-01

    Abstract: Strong visible emissions of Er3+ resulting from two-photon absorption and energy transfer from the host YVO4 were observed in nanocrystalline Er3+-doped YVO4, which was prepared by a hydrothermal method using a citrate-yttrium-vanadate complex as the precursor. The nanocrystals were

  6. Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method

    Science.gov (United States)

    Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.

    2018-01-01

    A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.

  7. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides); Synthese assistee par faisceau d'ions d'agregats dans les verres (argent et chalcogenures de plomb)

    Energy Technology Data Exchange (ETDEWEB)

    Espiau de Lamaestre, R

    2005-04-15

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  8. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.

    Science.gov (United States)

    Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R

    2015-12-09

    Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.

  9. Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, B. E-mail: blas@el.ub.es; Lopez, M.; Perez-Rodriguez, A.; Garcia, C.; Pellegrino, P.; Ferre, R.; Moreno, J.A.; Morante, J.R.; Bonafos, C.; Carrada, M.; Claverie, A.; Torre, J. de la; Souifi, A

    2004-02-01

    We review in this paper our recent results on the correlation between the structural and the optoelectronic properties of Si nano crystals (Si-nc) embedded in SiO{sub 2}. We describe as well the development of both materials and technology approaches that have allowed us to successfully produce efficient and reliable LEDs by using only CMOS processes. Si-nc were synthesised in SiO{sub 2} by ion implantation plus annealing and display average diameters from 2.5 to 6 nm, as measured by electron microscopy. By varying the annealing time in a large scale we have been able to track the nucleation, pure growth and Ostwald ripening stages of the nanocrystal population. The most efficient structures have Si-ncs with average size of 3 nm and densities of about 10{sup 19} cm{sup -3}. We have estimated band-gap energies, lifetimes (20-200 {mu}s) and absorption cross-sections (10{sup -15}-10{sup -16} cm{sup 2}) as a function of size and surface passivation. Based on these results, we propose a mechanism for exciton recombination based on the strong coupling of excitons with the heterointerfaces. From highly luminescent Si-nc, LEDs consisting of MOS capacitors were fabricated. Stable red electroluminescence has been obtained at room temperature and the I-V characteristics prove that the current is related to a pure tunnelling process. Fowler-Nordheim injection is not observed during light emission for electric fields below 5 MV/cm. Thus, hot carrier injection is avoided and efficient and reliable devices are obtained.

  10. Nanostructural and magnetic studies of virtually monodispersed NiFe2O4 nanocrystals synthesized by a liquid–solid-solution assisted hydrothermal route

    International Nuclear Information System (INIS)

    Li Xinghua; Tan Guoguo; Chen Wei; Zhou Baofan; Xue Desheng; Peng Yong; Li, Fashen; Mellors, Nigel J.

    2012-01-01

    This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ∼9.5 nm virtually monodispersed nickel ferrite (NiFe 2 O 4 ) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe 2 O 4 particles at nano scale for the first time. It is found that each NiFe 2 O 4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe 2 O 4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe 2 O 4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe 2 O 4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.

  11. Controlling morphology and crystallite size of Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} nano-crystals synthesized using a heating-up method

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wei-Hsiang [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China); Hsiang, Hsing-I, E-mail: hsingi@mail.ncku.edu.tw [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China); Chia, Chih-Ta [Department of Physics, National Taiwan Normal University, Taipei, 116 Taiwan (China); Yen, Fu-Su [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China)

    2013-12-15

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.

  12. Morphological Control of In x Ga 1–x P Nanocrystals Synthesized in a Nonthermal Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bronstein, Noah D. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Wheeler, Lance M. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Anderson, Nicholas C. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Neale, Nathan R. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States

    2018-04-09

    We explore the growth of InxGa1-xP nanocrystals (x = 1, InP; x = 0, GaP; and 1 > x > 0, alloys) in a nonthermal plasma. By tuning the reactor conditions, we gain control over the morphology of the final product, producing either 10 nm diameter hollow nanocrystals or smaller 3 nm solid nanocrystals. We observe the gas-phase chemistry in the plasma reactor using plasma emission spectroscopy to understand the growth mechanism of the hollow versus solid morphology. We also connect this plasma chemistry to the subsequent native surface chemistry of the nanocrystals, which is dominated by the presence of both dative- and lattice-bound phosphine species. The dative phosphines react readily with oleylamine in an L-type ligand exchange reaction, evolving phosphines and allowing the particles to be dispersed in nonpolar solvents. Subsequent treatment by HF causes the solid InP1.5 and In0.5Ga0.5P1.3 to become photoluminescent, whereas the hollow particles remain nonemissive.

  13. The effects of aging time on the size, morphology, oriented attachment and magnetic behavior of hematite nanocrystals synthesized by forced hydrolysis of FeIII solutions

    International Nuclear Information System (INIS)

    Luna, C.; Barriga-Castro, E.D.; Mendoza-Reséndez, R.

    2014-01-01

    Graphical abstract: -- Abstract: Three-dimensional (3-D) nanoarchitectures composed of self-organized hematite nanocrystals were successfully prepared by thermally induced hydrolysis of iron (III) solutions in the presence of urea and without additional stabilizers. The size, morphology and microstructure of these nanocrystal aggregates were investigated as a function of aging time using X-ray diffraction, transmission electron microscopy and selected area electron diffraction. The evolution of the microstructural parameters, including crystallite size, root mean square strain and lattice parameters, was analyzed by the Rietveld method using the MAUD software program and adopting the size–strain–shape Popa model. In addition, vibrating-sample magnetometry measurements were carried out to examine the magnetic behavior of the nanoarchitectures. These studies suggested that the formation mechanism of the observed nanoarchitectures consisted of several self-organization processes linked in hierarchical levels. The nanocrystals within these nanoarchitectures grew in size by Ostwald ripening and subsequent grain growth when they were aged at 98 °C in tightly capped tubes for an aging time that varied from 2 h up to 45 days. The crystal morphology evolved favoring a rhombohedral shape until intergrowth between the densely packed nanocrystals occurred. Consequently, the morphology of the nanoarchitectures, their effective magnetic anisotropy, the occurrence of the Morin transition and the exchange bias effect were also strongly dependent on the aging time

  14. Luminescence of Eu:Y3Al5O12, Eu:Lu3Al5O12, and Eu:GdAlO3 Nanocrystals Synthesized by Solution Combustion

    Science.gov (United States)

    Vilejshikova, E. V.; Khort, A. A.; Podbolotov, K. B.; Loiko, P. A.; Shimanski, V. I.; Shashkov, S. N.; Yumashev, K. V.

    2017-11-01

    Nanocrystals of rare-earth garnets Y3Al5O12 and Lu3Al5O12 and perovskite GdAlO3 highly doped (10-20 at%) with Eu3+ are synthesized by the solution combustion technique and subsequent annealing in air at 800 and 1300oC. Their structure, morphology, and phase composition are studied. These materials exhibit intense red luminescence under UV excitation. Eu:GdAlO3 luminescence has CIE 1931 color coordinates (0.632, 0.368); dominant wavelength, 599.6 nm; and color purity, >99%. Judd-Ofelt parameters, luminescence branching ratios, and lifetimes of the Eu3+ 5D0 state are determined. The luminescence quantum yield for Eu:GdAlO3 (10 at%) reaches 74% with a lifetime of 1.4 ms for the 5D0 state. The synthesized materials are promising for red ceramic phosphors.

  15. Photoemission studies of semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Hamad, K.S.; Roth, R.; Alivisatos, A.P.

    1997-01-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface

  16. Positron annihilation studies of vacancy-type defects and room temperature ferromagnetism in chemically synthesized Li-doped ZnO nanocrystals

    International Nuclear Information System (INIS)

    Ghosh, S.; Khan, Gobinda Gopal; Mandal, K.; Thapa, Samudrajit; Nambissan, P.M.G.

    2014-01-01

    Highlights: • Evidence of zinc vacancy-induced intrinsic ferromagnetism in Li-doped ZnO. • Modification of defects and properties through alkali metal substitution. • Study of defect-modification using positron annihilation spectroscopy. • New way to prepare ZnO-based magnetic semiconductor for spintronic applications. -- Abstract: In this article, we have investigated the effects of Li incorporation on the lattice defects and room-temperature d 0 ferromagnetic behaviour in ZnO nanocrystals by correlating X-ray photoelectron, photoluminescence and positron annihilation spectroscopic study in details. It is found that at low doping level ( 1+ is an effective substituent of Zn site, but it prefers to occupy the interstitial positions when Li-doping exceeds 7 at.% resulting in lattice expansion and increase of particle sizes. The pristine ZnO nanocrystals exhibit ferromagnetic behaviour which is further enhanced significantly after few percentage of Li-doping in ZnO. The magnitude of both saturation magnetizations (M S ) as well as the Curie temperature (T C ) are found to increase considerably up to Li concentration of 10 at.% and then started to decrease on further Li-doping. The gradual enhancement of Zn vacancy (V Zn ) defects in ZnO nanocrystals due to Li substitution as confirmed from photoluminescence and positron annihilation spectroscopy measurements might be responsible to induce paramagnetic moments within ZnO host. The ferromagnetic exchange interaction between the localised moments of V Zn defects can be mediated though the holes arising due to Li-substitutional (Li Zn ) acceptor defects within ZnO. Hence, Li doping in ZnO favours in stabilizing considerable V Zn defects and thus helps to sustain long-range high-T C ferromagnetism in ZnO which can be a promising material in future spintronics

  17. Positron annihilation studies of vacancy-type defects and room temperature ferromagnetism in chemically synthesized Li-doped ZnO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S., E-mail: sghoshphysics@gmail.com [S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Khan, Gobinda Gopal [Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake City, Kolkata 700098 (India); Mandal, K. [S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Thapa, Samudrajit; Nambissan, P.M.G. [Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake City, Kolkata 700098 (India); Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064 (India)

    2014-03-25

    Highlights: • Evidence of zinc vacancy-induced intrinsic ferromagnetism in Li-doped ZnO. • Modification of defects and properties through alkali metal substitution. • Study of defect-modification using positron annihilation spectroscopy. • New way to prepare ZnO-based magnetic semiconductor for spintronic applications. -- Abstract: In this article, we have investigated the effects of Li incorporation on the lattice defects and room-temperature d{sup 0} ferromagnetic behaviour in ZnO nanocrystals by correlating X-ray photoelectron, photoluminescence and positron annihilation spectroscopic study in details. It is found that at low doping level (<7 at.%), Li{sup 1+} is an effective substituent of Zn site, but it prefers to occupy the interstitial positions when Li-doping exceeds 7 at.% resulting in lattice expansion and increase of particle sizes. The pristine ZnO nanocrystals exhibit ferromagnetic behaviour which is further enhanced significantly after few percentage of Li-doping in ZnO. The magnitude of both saturation magnetizations (M{sub S}) as well as the Curie temperature (T{sub C}) are found to increase considerably up to Li concentration of 10 at.% and then started to decrease on further Li-doping. The gradual enhancement of Zn vacancy (V{sub Zn}) defects in ZnO nanocrystals due to Li substitution as confirmed from photoluminescence and positron annihilation spectroscopy measurements might be responsible to induce paramagnetic moments within ZnO host. The ferromagnetic exchange interaction between the localised moments of V{sub Zn} defects can be mediated though the holes arising due to Li-substitutional (Li{sub Zn}) acceptor defects within ZnO. Hence, Li doping in ZnO favours in stabilizing considerable V{sub Zn} defects and thus helps to sustain long-range high-T{sub C} ferromagnetism in ZnO which can be a promising material in future spintronics.

  18. Large scale preparation of up-converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl

    Czech Academy of Sciences Publication Activity Database

    Bartůněk, V.; Rak, J.; Pelánková, B.; Junková, J.; Mezlíková, M.; Král, V.; Kuchař, M.; Engstová, Hana; Ježek, Petr; Šmucler, R.

    2016-01-01

    Roč. 188, Aug (2016), s. 14-17 ISSN 0022-1139 R&D Projects: GA ČR(CZ) GA15-01897S; GA MŠk(CZ) LF14001; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : Yttrium fluoride * up-conversion * ionic liquids * BmimCl * YF3:YbEr * nanocrystals Subject RIV: BO - Biophysics Impact factor: 2.101, year: 2016

  19. Effect of thermal annealing on the structure and magnetism of Fe-doped ZnO nanocrystals synthesized by solid state reaction

    Science.gov (United States)

    Wang, Dong; Chen, Z. Q.; Wang, D. D.; Gong, J.; Cao, C. Y.; Tang, Z.; Huang, L. R.

    2010-11-01

    High purity Fe 2O 3/ZnO nanocomposites were annealed in air at different temperatures between 100 and 1200 °C to get Fe-doped ZnO nanocrystals. The structure and grain size of the Fe 2O 3/ZnO nanocomposites were investigated by X-ray diffraction 2θ scans. Annealing induces an increase of the grain size from 25 to 195 nm and appearance of franklinite phase of ZnFe 2O 4. Positron annihilation measurements reveal large number of vacancy defects in the interface region of the Fe 2O 3/ZnO nanocomposites, and they are gradually recovered with increasing annealing temperature. After annealing at temperatures higher than 1000 °C, the number of vacancies decreases to the lower detection limit of positrons. Room temperature ferromagnetism can be observed in Fe-doped ZnO nanocrystals using physical properties measurement system. The ferromagnetism remains after annealing up to 1000 °C, suggesting that it is not related with the interfacial defects.

  20. Effect of thermal annealing on the structure and magnetism of Fe-doped ZnO nanocrystals synthesized by solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dong [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Chen, Z.Q., E-mail: chenzq@whu.edu.c [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Wang, D.D.; Gong, J. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Cao, C.Y.; Tang, Z. [Department of Electronic and Engineering, East China Normal University, Shanghai 200241 (China); Huang, L.R. [Wuhan National Laboratory for Optoelectronics, College of Opto-electronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-11-15

    High purity Fe{sub 2}O{sub 3}/ZnO nanocomposites were annealed in air at different temperatures between 100 and 1200 {sup o}C to get Fe-doped ZnO nanocrystals. The structure and grain size of the Fe{sub 2}O{sub 3}/ZnO nanocomposites were investigated by X-ray diffraction 2{theta} scans. Annealing induces an increase of the grain size from 25 to 195 nm and appearance of franklinite phase of ZnFe{sub 2}O{sub 4}. Positron annihilation measurements reveal large number of vacancy defects in the interface region of the Fe{sub 2}O{sub 3}/ZnO nanocomposites, and they are gradually recovered with increasing annealing temperature. After annealing at temperatures higher than 1000 {sup o}C, the number of vacancies decreases to the lower detection limit of positrons. Room temperature ferromagnetism can be observed in Fe-doped ZnO nanocrystals using physical properties measurement system. The ferromagnetism remains after annealing up to 1000 {sup o}C, suggesting that it is not related with the interfacial defects.

  1. Effect of thermal annealing on the structure and magnetism of Fe-doped ZnO nanocrystals synthesized by solid state reaction

    International Nuclear Information System (INIS)

    Wang Dong; Chen, Z.Q.; Wang, D.D.; Gong, J.; Cao, C.Y.; Tang, Z.; Huang, L.R.

    2010-01-01

    High purity Fe 2 O 3 /ZnO nanocomposites were annealed in air at different temperatures between 100 and 1200 o C to get Fe-doped ZnO nanocrystals. The structure and grain size of the Fe 2 O 3 /ZnO nanocomposites were investigated by X-ray diffraction 2θ scans. Annealing induces an increase of the grain size from 25 to 195 nm and appearance of franklinite phase of ZnFe 2 O 4 . Positron annihilation measurements reveal large number of vacancy defects in the interface region of the Fe 2 O 3 /ZnO nanocomposites, and they are gradually recovered with increasing annealing temperature. After annealing at temperatures higher than 1000 o C, the number of vacancies decreases to the lower detection limit of positrons. Room temperature ferromagnetism can be observed in Fe-doped ZnO nanocrystals using physical properties measurement system. The ferromagnetism remains after annealing up to 1000 o C, suggesting that it is not related with the interfacial defects.

  2. Optimization of the luminescence emission of Si nanocrystals synthesized from non-stoichiometric Si oxides using a Central Composite Design of the deposition process

    International Nuclear Information System (INIS)

    Morana, B.; Sande, J.C.G. de; Rodriguez, A.; Sangrador, J.; Rodriguez, T.; Avella, M.; Jimenez, J.

    2008-01-01

    Si oxide films with a controlled excess of Si were deposited on Si wafers by LPCVD using Si 2 H 6 and O 2 , thermally annealed to 1100 deg. C for 1 h to form Si nanocrystals embedded in SiO 2 and subsequently annealed at 450 deg. C in forming gas. The samples were characterized by Fourier transform infrared spectroscopy, spectroscopic ellipsometry and cathodoluminescence spectroscopy. The excess of Si in the as-deposited samples, ranging from 0 to 70% in volume, was obtained from the ellipsometry data analysis. After annealing at 1100 deg. C, the samples show a luminescence band (peaking at 665 nm) at 80 K and at room temperature which is associated to the presence of Si nanocrystals. The growth rate, the excess of Si incorporated to the films and the intensity of the luminescence band were modelled using a Face-Centered Central Composite Design as a function of the main deposition variables (pressure, 185-300 mTorr; temperature, 250-400 deg. C; Si 2 H 6 /O 2 flow ratio, 2-5) aiming to control the growth process and the incorporation of Si in excess as well as to determine the experimental conditions that yield the samples with the maximum intensity of the luminescence emission

  3. Binding nature and conformational alternations of bovine serum albumin upon interaction with synthesized LaF{sub 3}:Ce,Tb luminescent nanocrystals using multi-spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xingjia [College of Chemistry, Liaoning University, Shenyang 110036 (China); Hao, Aijun, E-mail: hao1968@qq.com [College of Pharmacy, Liaoning University, Shenyang 110036 (China); Wu, Qiong; Diao, Xin; Liu, Wenjing; Cong, Chenri; Sun, Ye; Xu, Liping; Yao, Jie [College of Chemistry, Liaoning University, Shenyang 110036 (China)

    2016-10-15

    Water-soluble LaF{sub 3}:Ce,Tb luminescent nanocrystals (RLNCs) were successfully fabricated according to previously reported literatures. The experimental results indicate that the as-prepared nanocrystals consist of well crystallized hexagonal phases, having a nearly spherical shape with an average diameter of 10 nm. The interaction of RLNCs with bovine serum albumin (BSA) was studied mainly via fluorescence quenching in combination with circular dichroism (CD) and ultraviolet–visible (UV–vis) absorption spectroscopy under imitated physiological conditions. The fluorescence titration results reveal that RLNCs could efficiently quench the intrinsic fluorescence of BSA mainly through a dynamic quenching procedure. The binding constant and the number of binding site at 300 K were estimated to be 4.606×10{sup 3} L mol{sup −1} and 0.98, respectively. Meanwhile, the thermodynamic parameters for RLNCs–BSA system were also determined, suggesting that the binding reaction between RLNCs and BSA took place spontaneously and was primarily driven by hydrophobic forces. Furthermore, it was found that the binding of RLNCs to BSA was mainly located in site I and the binding distance was estimated to be 3.0 nm. Finally, the synchronous fluorescence, three dimensional (3D) fluorescence, and CD spectroscopy were used to explore the conformational alterations of protein induced by RLNCs.

  4. Photocatalytic growth of Ag nanocrystals on hydrothermally synthesized multiphasic TiO2/reduced graphene oxide (rGO) nanocomposites and their SERS performance

    Science.gov (United States)

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2017-11-01

    TiO2/reduced graphene oxide (rGO) nanocomposites were prepared via a facile one-step hydrothermal method using TiCl3 as the TiO2 precursor. Cetyltrimethyl ammonium bromide (CTAB) was introduced as a stabilizer for GO in solution. The effects of GO content, Ti3+ concentration and urea additive on phase constituent and morphology of the TiO2 crystallites in the nanocomposites were systematically investigated. UV-vis absorption ability of the as-made composites was further tested and discussed. Ag nanocrystals (NCs) were photocatalytically grown on the surfaces of biphasic (anatase + brookite) and triphasic (anatase + brookite + rutile) TiO2/rGO nanocomposites to evaluate their surface-enhanced Raman scattering (SERS) performances. Morphology evolution of the Ag NCs in response to different photocatalytic ability of the TiO2/rGO nanocomposite was also investigated in detail. The nanocomposite with triphasic TiO2 of proper phase constituents was confirmed to favor the growth of Ag particles of two distinctly different sizes and to produce SERS substrates of substantially better performance.

  5. Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals

    KAUST Repository

    Codoluto, Stephen C.; Baumgardner, William J.; Hanrath, Tobias

    2010-01-01

    Colloidal Ge nanocrystals (NCs) were synthesized via the solution phase reduction of germanium(ii) iodide. We report a systematic investigation of the nanocrystal nucleation and growth as a function of synthesis conditions including the nature

  6. Microwave-Synthesized Tin Oxide Nanocrystals for Low-Temperature Solution-Processed Planar Junction Organo-Halide Perovskite Solar Cells

    KAUST Repository

    Abulikemu, Mutalifu

    2017-03-25

    Tin oxide has been demonstrate to possess outstanding optoelectronic properties such as optical transparency and high electron mobility, therefore, it was successfully utilized as electron transporting layer in various kind of solar cells. In this study, for the first time, highly dispersible SnO2 nanoparticles were synthesized by microwave-assisted non-aqueous sol-gel route in an organic medium. Ethanol dispersion of the as-prepared nanoparticles was used to cast an uniform thin layer of SnO2 without the aid of aggregating agent and at low temperatures. Organohalide perovskite solar cells were fabricated using SnO2 as electron transporting layer. Morphological and spectroscopic investigations, in addition to the good photoconversion efficiency obtained evidenced that nanoparticles synthesized by this route have optimal properties such small size and crystallinity to form a continuous film, furthermore, this method allows high reproducibility and scalability of the film deposition process.

  7. Microwave-Synthesized Tin Oxide Nanocrystals for Low-Temperature Solution-Processed Planar Junction Organo-Halide Perovskite Solar Cells

    KAUST Repository

    Abulikemu, Mutalifu; Neophytou, Marios; Barbe, Jeremy; Tietze, Max Lutz; El Labban, Abdulrahman; Anjum, Dalaver H.; Amassian, Aram; McCulloch, Iain; Del Gobbo, Silvano

    2017-01-01

    Tin oxide has been demonstrate to possess outstanding optoelectronic properties such as optical transparency and high electron mobility, therefore, it was successfully utilized as electron transporting layer in various kind of solar cells. In this study, for the first time, highly dispersible SnO2 nanoparticles were synthesized by microwave-assisted non-aqueous sol-gel route in an organic medium. Ethanol dispersion of the as-prepared nanoparticles was used to cast an uniform thin layer of SnO2 without the aid of aggregating agent and at low temperatures. Organohalide perovskite solar cells were fabricated using SnO2 as electron transporting layer. Morphological and spectroscopic investigations, in addition to the good photoconversion efficiency obtained evidenced that nanoparticles synthesized by this route have optimal properties such small size and crystallinity to form a continuous film, furthermore, this method allows high reproducibility and scalability of the film deposition process.

  8. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    Science.gov (United States)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  9. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    Science.gov (United States)

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-13

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.

  10. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1-xSe x)2 nanocrystals

    KAUST Repository

    Bai, Tianyu; Li, Chunguang; Li, Feifei; Zhao, Lan; Wang, Zhaorui; Huang, He; Chen, Cailing; Han, Yu; Shi, Zhan; Feng, Shouhua

    2014-01-01

    in detail and different reaction conditions all have a great impact on the growth and morphology of the nanocrystals. Alloyed AgIn(S1-xSex)2 nanocrystals with controlled composition across the entire range (0 ≤ x ≤ 1) was also successfully prepared

  11. Optimizing colloidal nanocrystals for applications

    International Nuclear Information System (INIS)

    Sytnyk, M.

    2015-01-01

    details of these developments were worked out by another PhD student. Thus the full story of the Ag-chalcogenide nanocrystals is presented in Appendix A. Chapter 5 of the thesis introduces another possibility to obtain non-toxic nanocrystals. It describes a procedure to transform powders of archetypical organic pigments into colloidal solutions of semiconductor nanocrystals. These nanocrystals are synthesized with controlled sizes and shapes. They are eventually covered with smart ligands, providing rapid charge separation, and exhibit emission in the visible and near-infrared spectral region. Based on them, photodetectors with responsivities up to 0.9 A/W, humidity sensors with a dynamic range of 7 orders of magnitude, and field effect transistors are demonstrated, fabricated by drop-casting or paint-brushing. These results show up an enormous potential of these colloidal pigment nanocrystals for the development of an environmentally-friendly, biocompatible, and low-cost electronics. (author)

  12. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1-xSe x)2 nanocrystals

    KAUST Repository

    Bai, Tianyu

    2014-01-01

    A facile solution-phase route for the preparation of AgInSe2 nanocrystals was developed by using silver nitrate, indium stearate, and oleylamine-selenium (OAm-Se) as precursors. The evolution process of the AgInSe2 nanocrystals is discussed in detail and different reaction conditions all have a great impact on the growth and morphology of the nanocrystals. Alloyed AgIn(S1-xSex)2 nanocrystals with controlled composition across the entire range (0 ≤ x ≤ 1) was also successfully prepared by modulating the S/Se reactant mole ratio. X-ray diffraction (XRD), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were used to confirm that the alloyed AgIn(S1-xSex)2 nanocrystals are homogeneous. The UV-vis absorption spectra revealed that the band gap energies of the alloyed AgIn(S1-xSex)2 nanocrystals could be continuously tuned by increasing the Se content. © The Royal Society of Chemistry 2014.

  13. Synthesis and preservation of graphene-supported uranium dioxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hanyu [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Wang, Haitao [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX 79409 (United States); Burns, Peter C. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); McNamara, Bruce K.; Buck, Edgar C. [Nuclear Chemistry & Engineering Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States); Na, Chongzheng, E-mail: chongzheng.na@gmail.com [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX 79409 (United States)

    2016-07-15

    Graphene-supported uranium dioxide (UO{sub 2}) nanocrystals are potentially important fuel materials. Here, we investigate the possibility of synthesizing graphene-supported UO{sub 2} nanocrystals in polar ethylene glycol compounds by the polyol reduction of uranyl acetylacetone under boiling reflux, thereby enabling the use of an inexpensive graphene precursor graphene oxide into a one-pot process. We show that triethylene glycol is the most suitable solvent with an appropriate reduction potential for producing nanometer-sized UO{sub 2} crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-supported UO{sub 2} nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO{sub 2} nanocrystals synthesized by polyol reduction can be readily stored in alcohols, impeding oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO{sub 2} nanocrystals for further investigation and development under ambient conditions. - Highlights: • UO{sub 2} nanocrystals are synthesized using polyol reduction method. • Triethylene glycol is the best reducing agent for nano-sized UO{sub 2} crystals. • UO{sub 2} nanocrystals grow on graphene through heteroepitaxy. • Graphene-supported UO{sub 2} nanocrystals can be stored in alcohols to prevent oxidation.

  14. Protein Adsorption and Antibacterial Behavior for Hydroxyapatite Nanocrystals Prepared by Hydrothermal Method

    OpenAIRE

    笠原, 英充; 小形, 信男; 荻原, 隆

    2005-01-01

    Homogeneous hydroxyapatite nanocrystals which have aspect ratio with more than four were synthesized by hydrothermal method. X-ray fluorescence analysis revealed that the Ca/P ratio of hydroxyapatite nanocrystals was maintaining start composition. The protein adsorption properties and bacteria-resistant of hydroxyapatite nanocrystals were investigated. The protein adsorption properties of hydroxyapatite nanocrystals were improvement after the hydrothermal treatment. Bacteria-resistant behavio...

  15. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer

    International Nuclear Information System (INIS)

    Yu, William W; Chang, Emmanuel; Sayes, Christie M; Drezek, Rebekah; Colvin, Vicki L

    2006-01-01

    A facile method was developed for completely transferring high quality monodisperse iron oxide nanocrystals from organic solvents to water. The as-prepared aqueous dispersions of iron oxide nanocrystals were extremely stable and could be functionalized for bioconjugation with biomolecules. These iron oxide nanocrystals showed negligible cytotoxicity to human breast cancer cells (SK-BR-3) and human dermal fibroblast cells. This method is general and versatile for many organic solvent-synthesized nanoparticles, including fluorescent semiconductor nanocrystals

  16. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  17. Solvothermal synthesis and characterization of CZTS nanocrystals

    Science.gov (United States)

    Dumasiya, Ajay; Shah, N. M.

    2017-05-01

    Cu2ZnSnS4 (CZTS) is a promising thin film absorber material for low cost solar cell applications. CZTS nanoparticle ink synthesized using solvothermal route is an attractive option to deposit absorber layer using screen printing or spin coating method in CZTS thin film solar cell. In this study we have synthesized CZTS nanocrystals using solvothermal method from aqueous solution of Copper nitrate [Cu(NO3)2], Zinc nitrate [Zn(NO3)2], tin chloride [SnCl4] and thiourea with varying concentration of Cu(NO3)2 (viz 0.82 mmol,1.4 mmol, 1.7 mmol) keeping concentrations of rest of solutions constant. As synthesized CZTS nanocrystals are characterized using Energy Dispersive Analysis of X-rays (EDAX) to verify stoichiometry of elements. Analysis of EDAX data suggests that CZTS nanocrystals having Copper nitrate [Cu (NO3)2] concentration of 1.4 m mole is near stoichiometric. X-ray diffraction analysis study of CZTS nanocrystals having Copper nitrate [Cu (NO3)2] concentration of 1.4 m mole reveals the preferred orientation of the grains in (112), (220) and (312) direction confirming Kesterite structure of CZTS.

  18. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  19. Grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    ), raman spectroscopy and X-ray diffraction (XRD) measurements. UV–Visible absorption spectroscopy was used to study optical properties such as optical energy gap (Eg), Urbach's energy (Eu), refractive index (n), real (ε1) and imaginary (ε2) parts of dielectric constant of PVA as well as PVA......Polyvinyl alcohol (PVA) grafted SiC (PVA-g-SiC)/PVA nanocomposite was synthesized by incorporating PVA grafted silicon carbide (SiC) nanocrystals inside PVA matrix. In-depth structural characterization of resulting nanocomposite was carried out using fourier transform infrared spectroscopy (FTIR...

  20. Fabrication and electronic transport studies of single nanocrystal systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, David Louis [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

  1. Hafnium carbide nanocrystal chains for field emitters

    International Nuclear Information System (INIS)

    Tian, Song; Li, Hejun; Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang

    2014-01-01

    A hafnium carbide (HfC) nanostructure, i.e., HfC nanocrystal chain, was synthesized by a chemical vapor deposition (CVD) method. X-ray diffractometer, field-emission scanning electron microscope, transmission electron microscope, and energy-dispersive X-ray spectrometer were employed to characterize the product. The synthesized one-dimensional (1D) nanostructures with many faceted octahedral nanocrystals possess diameters of tens of nanometers to 500 nm and lengths of a few microns. The chain-like structures possess a single crystalline structure and preferential growth direction along the [1 0 0] crystal orientation. The growth of the chains occurred through the vapor–liquid–solid process along with a negative-feedback mechanism. The field emission (FE) properties of the HfC nanocrystal chains as the cold cathode emitters were examined. The HfC nanocrystal chains display good FE properties with a low turn-on field of about 3.9 V μm −1 and a high field enhancement factor of 2157, implying potential applications in vacuum microelectronics.

  2. Inorganic nanocrystals as contrast agents in MRI:synthesis, coating and introducing multifunctionality

    Science.gov (United States)

    Sanchez-Gaytan, Brenda L.; Mieszawska, Aneta J.; Fayad, Zahi A.

    2013-01-01

    Inorganic nanocrystals have myriad applications in medicine, which includes their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. For MRI, nanocrystals can produce contrast themselves, of which iron oxides have been most extensively explored, or be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used in imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. Due to these exciting applications, synthesizing and rendering these nanocrystals water-soluble and biocompatible is therefore highly desirable. We will discuss aqueous phase and organic phase methods for synthesizing inorganic nanocrystals such as gold, iron oxides and quantum dots. The pros and cons of the various methods will be highlighted. We explore various methods for making nanocrystals biocompatible, i.e. directly synthesizing nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples will be highlighted and their applications explained. These examples signify that synthesizing biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied for a wide range of applications. Therefore we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings. PMID:23303729

  3. Preparation of ZnO nanocrystals via ultrasonic irradiation

    DEFF Research Database (Denmark)

    Qian, D.; Jiang, Jianzhong; Hansen, P. L.

    2003-01-01

    A simple and rapid process has been developed for the preparation of nanometer-sized ZnO crystals via ultrasonic irradiation, by which pure ZnO nanocrystals with an average size of 6 nm and narrow size distribution can be synthesized in a short time and without using any solvents for the precipit......A simple and rapid process has been developed for the preparation of nanometer-sized ZnO crystals via ultrasonic irradiation, by which pure ZnO nanocrystals with an average size of 6 nm and narrow size distribution can be synthesized in a short time and without using any solvents...

  4. Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals

    International Nuclear Information System (INIS)

    Zhou Yi; Li Yunchao; Zhong Haizheng; Hou Jianhui; Ding Yuqin; Yang Chunhe; Li Yongfang

    2006-01-01

    A series of ternary tetrapodal nanocrystals of CdSe x Te 1-x with x = 0 (CdTe), 0.23, 0.53, 0.78, 1 (CdSe) were synthesized and used to fabricate hybrid nanocrystal/polymer solar cells. Herein, the nanocrystals acted as electron acceptors, and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) was used as an electron donor. It was found that the open circuit voltage (V oc ), short-circuit current (J sc ) and power conversion efficiency (η) of the devices all increased with increasing Se content in the CdSe x Te 1-x nanocrystals under identical experimental conditions. The solar cell based on the blend of tetrapodal CdSe nanocrystals and MEH-PPV (9:1 w/w) showed the highest power conversion efficiency of 1.13% under AM 1.5, 80 mW cm -2 , and the maximum incident photon to converted current efficiency (IPCE) of the device reached 47% at 510 nm. The influence of nanocrystal composition on the photovoltaic properties of the hybrid solar cells was explained by the difference of the band level positions between MEH-PPV and the nanocrystals

  5. Magneto-optical transitions in multilayer semiconductor nanocrystals

    CERN Document Server

    Climente, J; Jaskolski, W; Aliaga, J I

    2003-01-01

    Absorption spectra of chemically synthesized uniform and multilayer semiconductor nanocrystals in a magnetic field are investigated theoretically. The nanocrystals are modelled by spherical barrier/well potentials. The electron states are calculated within the effective mass model. A four-band k centre dot p Hamiltonian, accounting for the valence subband mixing, is used to obtain the hole states. The magneto-optical transition spectrum depends strongly on the size and composition of the nanocrystals. In the case of small uniform quantum dots, only the linear Zeeman splitting of the electron and hole energy levels is observed even for very strong magnetic fields. In larger nanocrystals, the quadratic magnetic interaction turns out to be important and the transition spectrum becomes complicated. The most complicated influence of the magnetic field is found in quantum dot-quantum well systems in which the lowest electron and hole states are localized in a thin spherical layer. It is shown that transitions that ...

  6. Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanism

    International Nuclear Information System (INIS)

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-01-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ( 1 H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. - Highlights: • HAP nanobundles and nanoparticles have been prepared by a precipitation method. • Morphologies of HAP nanocrystals were controlled by different coordination ligands. • The formation mechanism of hydroxyapatite nanocrystals was also considered

  7. Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Islamic Republic of Iran (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran (Iran, Islamic Republic of); Fereshteh, Zeinab [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. - Highlights: • HAP nanobundles and nanoparticles have been prepared by a precipitation method. • Morphologies of HAP nanocrystals were controlled by different coordination ligands. • The formation mechanism of hydroxyapatite nanocrystals was also considered.

  8. Biomimetic synthesis of noble metal nanocrystals

    Science.gov (United States)

    Chiu, Chin-Yi

    At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic

  9. Simultaneous control of nanocrystal size and nanocrystal ...

    Indian Academy of Sciences (India)

    applications such as a photo-sensor [11]. Thus, it is desirable to have, not only a control on the size of the nanocrystals, but also an independent tunability of the ... 1-thioglycerol) in 25 ml methanol under inert atmosphere. 10 ml of 0.2 M sodium sulfide solution is then added to the reaction mixture dropwise and the reaction.

  10. Aqueous synthesis and characterization of bovine hemoglobin-conjugated cadmium sulfide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guangrui [Institute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011 (China); Qin, Dezhi, E-mail: dezhiqin@163.com [College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000 (China); Du, Xian; Zhang, Li; Zhao, Ganqing; Zhang, Qiuxia; Wu, Jiulin [College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000 (China)

    2014-08-01

    Highlights: • CdS nanocrystals were synthesized by biomimetic method in bovine hemoglobin (BHb) solution. • The study of the interaction between Cd{sup 2+}/CdS and BHb. • The optical properties of BHb-conjugated CdS nanocrystals. • The synthesis process of BHb-conjugated CdS nanocrystals is facile, effective and environment friendly. • The change of secondary structure of BHb after binding to CdS nanocrystals. - Abstract: Cadmium sulfide (CdS) nanocrystals with average diameter about 5.5 nm were synthesized in aqueous solution of bovine hemoglobin (BHb) via simple biomimetic method. Powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations were used to determine the structure and morphology of CdS nanocrystals. It was revealed that amount of BHb, chelating of Cd{sup 2+} to BHb and reaction temperature were key factors in controlling shape and dispersion of CdS nanocrystals. The binding sites of BHb to CdS nanocrystals and the change of secondary structure of protein have been identified by Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy. It was found that conjugating of BHb with Cd{sup 2+} and CdS could protect nanocrystals from agglomerating. Moreover, the thermostability of BHb enhanced after conjugating with CdS nanocrystals. The interaction mechanism of BHb with Cd{sup 2+}/CdS was also proposed. The quantum-confined effect of CdS nanocrystals was confirmed by ultraviolet–visible (UV–vis) spectrum. The nanocrystals exhibited a well-defined photoluminescence (PL) emission feature at about 510 nm with narrow full width at half maximum (FWHM)

  11. Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals.

    Science.gov (United States)

    Xia, Xiaohu; Zeng, Jie; Zhang, Qiang; Moran, Christine H; Xia, Younan

    2012-01-01

    This feature article introduces our recent work on understanding the roles played by citrate and poly(vinyl pyrrolidone) (PVP) as capping agents in seed-mediated syntheses of Ag nanocrystals with controlled shapes. We have demonstrated that citrate and PVP selectively bind to Ag(111) and Ag(100) surfaces, respectively, and thus favor the formation of Ag nanocrystals enclosed preferentially by {111} or {100} facets. In addition, we have quantified the coverage density of PVP adsorbed on the surface of Ag nanocubes. Based on the mechanistic understanding, a series of Ag nanocrystals with controlled shapes and sizes have been successfully synthesized by using different combinations of seeds and capping agents: single-crystal spherical/cubic seeds with citrate for cuboctahedrons and octahedrons or with PVP for cubes and bars; and plate-like seeds with citrate for enlarged thin plates or with PVP for thickened plates.

  12. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  13. Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells.

    Science.gov (United States)

    Chen, Wei-Ta; Lin, Yin-Kai; Yang, Ting-Ting; Pu, Ying-Chih; Hsu, Yung-Jung

    2013-10-04

    Au/ZnS core/shell nanocrystals with controllable shell thicknesses were synthesized using a cysteine-assisted hydrothermal method. Incorporating Au/ZnS nanocrystals into the traditional Pt-catalyzed half-cell reaction led to a 43.3% increase in methanol oxidation current under light illumination, demonstrating their promising potential for metal/semiconductor hybrid nanocrystals as the anode photocatalyst in direct methanol fuel cells.

  14. Nanocrystals Technology for Pharmaceutical Science.

    Science.gov (United States)

    Cheng, Zhongyao; Lian, Yumei; Kamal, Zul; Ma, Xin; Chen, Jianjun; Zhou, Xinbo; Su, Jing; Qiu, Mingfeng

    2018-05-17

    Nanocrystals technology is a promising method for improving the dissolution rate and enhancing the bioavailability of poorly soluble drugs. In recent years, it has been developing rapidly and applied to drug research and engineering. Nanocrystal drugs can be formulated into various dosage forms. This review mainly focused on the nanocrystals technology and its application in pharmaceutical science. Firstly, different preparation methods of nanocrystal technology and the characterization of nanocrystal drugs are briefly described. Secondly, the application of nanocrystals technology in pharmaceutical science is mainly discussed followed by the introduction of sustained release formulations. Then, the scaling up process, marketed nanocrystal drug products and regulatory aspects about nanodrugs are summarized. Finally, the specific challenges and opportunities of nanocrystals technology for pharmaceutical science are summarized and discussed. This review will provide a comprehensive guide for scientists and engineers in the field of pharmaceutical science and biochemical engineering. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Flame synthesis of zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson, E-mail: wmerchan-merchan@ou.edu [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Farahani, Moien Farmahini [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2013-02-01

    Highlights: Black-Right-Pointing-Pointer We report a single-step flame method for the synthesis of Zn oxide nanocrystals. Black-Right-Pointing-Pointer Diverse flame positions lead to a variation of Zn oxide nanocrystal growth. Black-Right-Pointing-Pointer The synthesized crystals have polyhedral, pipet- and needle-like shape. Black-Right-Pointing-Pointer High length-to-diameter aspect-ratio crystals appear in a higher temperature flame. Black-Right-Pointing-Pointer The crystal growth mechanism corresponds to vapor-to-solid conversion. - Abstract: Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of {approx}99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 {mu}m. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of {approx}0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells

  16. One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Shutesh, E-mail: shutesh.k@onsemi.com [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia); ON Semiconductor Package Innovation and Development Center, 70450 Seremban (Malaysia); Haseeb, A.S.M.A.; Johan, Mohd Rafie [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-15

    Highlights: • One-dimensional CuO nanoflakes were synthesized by novel wire explosion technique. • A physical synthesis method capable of producing high aspect ratio (1:16) nanocrystals. • Most energy efficient and eco-friendly synthesis of low-dimensional transition metal oxide nanocrystals. -- Abstract: One-dimensional (1D) copper oxide (CuO) nanocrystals were synthesized using a novel wire explosion in de-ionized (DI) water without any chemical additives. Highly crystalline 1D CuO nanocrystals with 1:16 aspect ratio were successfully synthesized using this technique. The chemical nature and physical structure of the nanocrystals were controlled by simply modulating the exploding medium temperature. The results showed that nanocrystals produced at explosion temperatures 65 °C and 95 °C are pure CuO with optical band-gap energy of 2.38 eV. High Resolution Transmission Electron Microscope analysis (HRTEM) indicates that the CuO nanocrystals are with growth in [1{sup ¯}11] and [1 1 1] directions. The epitaxial crystal growth kinetics of the 1D nanostructure by aggregation was discussed. The incorporation of microstructural features like edge dislocations and porosity in the growth mechanism was examined. X-ray photoelectron spectroscopy (XPS) characterization indicates the formation of high purity CuO nanocrystals with valence state +2. This study provides an energy efficient and eco-friendly synthesis method of 1D transition metal oxide nanocrystals for electronic applications.

  17. One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties

    International Nuclear Information System (INIS)

    Krishnan, Shutesh; Haseeb, A.S.M.A.; Johan, Mohd Rafie

    2014-01-01

    Highlights: • One-dimensional CuO nanoflakes were synthesized by novel wire explosion technique. • A physical synthesis method capable of producing high aspect ratio (1:16) nanocrystals. • Most energy efficient and eco-friendly synthesis of low-dimensional transition metal oxide nanocrystals. -- Abstract: One-dimensional (1D) copper oxide (CuO) nanocrystals were synthesized using a novel wire explosion in de-ionized (DI) water without any chemical additives. Highly crystalline 1D CuO nanocrystals with 1:16 aspect ratio were successfully synthesized using this technique. The chemical nature and physical structure of the nanocrystals were controlled by simply modulating the exploding medium temperature. The results showed that nanocrystals produced at explosion temperatures 65 °C and 95 °C are pure CuO with optical band-gap energy of 2.38 eV. High Resolution Transmission Electron Microscope analysis (HRTEM) indicates that the CuO nanocrystals are with growth in [1 ¯ 11] and [1 1 1] directions. The epitaxial crystal growth kinetics of the 1D nanostructure by aggregation was discussed. The incorporation of microstructural features like edge dislocations and porosity in the growth mechanism was examined. X-ray photoelectron spectroscopy (XPS) characterization indicates the formation of high purity CuO nanocrystals with valence state +2. This study provides an energy efficient and eco-friendly synthesis method of 1D transition metal oxide nanocrystals for electronic applications

  18. Octacosanol educes physico-chemical attributes, release and bioavailability as modified nanocrystals.

    Science.gov (United States)

    Sen Gupta, Surashree; Ghosh, Mahua

    2017-10-01

    Octacosanol is a lesser known nutraceutical with the potential for treatment of several inflammatory diseases, high cholesterol, Parkinson's symptoms and tumour growth along with the capacity to improve athletic performance. But its lipophilicity and large structure inhibits extended solubility in water resulting in poor absorption and a low bioavailability. In the present work, sodium salt of octacosyl sulfate was synthesized. It displayed improved water solubility. Its nanocrystals, synthesized by means of nanoprecipitation technique, enhanced diffusion velocity, antioxidant capacity, shelf-life, penetrability and bioavailability. Particle size of the nanocrystals ranged between 197 and 220nm. Both modified octacosanol and its nanocrystals displayed maximum lipid peroxidation activities at a concentration 1000ppm, but nanocrystals demonstrated higher prevention. From freeze-thaw cycles it was evident that normal octacosanol crystals were far more prone to temperature variations than the nanocrystals. A pronounced increase in release/diffusion rate and bioavailability was observed for the nanocrystals of the modified octacosanol. In vitro release kinetics, bioavailability and bioequivalence were studied. Relative bioavailability for gastric passage and pancreatic passage of nanocrystals was 2.58 times and 1.81 times that of normal crystals respectively. Furthermore the nanocrystals displayed a superior in vitro release rate, while following a non-Fickian mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Controlled synthesis of novel octapod platinum nanocrystals under microwave irradiation

    International Nuclear Information System (INIS)

    Dai, Lei; Chi, Quan; Zhao, Yanxi; Liu, Hanfan; Zhou, Zhongqiang; Li, Jinlin; Huang, Tao

    2014-01-01

    Graphical abstract: Under microwave irradiation, novel octapod Pt nanocrystals were synthesized by reducing H 2 PtCl 6 in TEG with PVP as a stabilizer. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center. The use of KI was crucial to the formation of novel Pt octapods. Novel Octapod Platinum Nanocrystals. - Highlights: • A novel octapod Pt nanocrystals different from the common octapod were obtained. • The use of KI was crucial to the formation of the novel Pt octapods. • Microwave was readily employed in controlled synthesis of the novel Pt octapods. - Abstract: Microwave was employed in the shape-controlled synthesis of Pt nanoparticles. Novel octapod Pt nanocrystals enclosed with (1 1 1) facets were readily synthesized with H 2 PtCl 6 as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent, polyvinylpyrrolidone (PVP) as a stabilizer in the presence of an appropriate amount of KI under microwave irradiation for 140 s. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center and exhibited higher electrocatalytic activity than commercial Pt black in the electro-oxidations of methanol and formic acid. The results demonstrated that the use of KI was crucial to the formation of Pt octapods. KI determined the formation of the novel octapod Pt nanocrystals by tuning up the reduction kinetics and adsorbing on the surfaces of growing Pt nanoparticles. The optimum molar ratio of H 2 PtCl 6 /KI/PVP was 1/30/45

  20. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  1. Micromagnetic study of single-domain FePt nanocrystals overcoated with silica

    International Nuclear Information System (INIS)

    Hyun, Changbae; Lee, Doh C; Korgel, Brian A; Lozanne, Alex de

    2007-01-01

    Chemically-synthesized FePt nanocrystals must be annealed at a high temperature (>550 deg. C) to induce the hard ferromagnetic L 1 0 phase. Unfortunately, the organic stabilizer covering these nanocrystals degrades at these temperatures and the nanocrystals sinter, resulting in the loss of control over nanocrystal size and separation in the film. We have developed a silica overcoating strategy to prevent nanocrystal sintering. In this study, 6 nm diameter FePt nanocrystals were coated with 17 nm thick shells of silica using an inverse micelle process. Magnetization measurements of the annealed FePt-SiO 2 nanocrystals indicate ferromagnetism with a high coercivity at room temperature. Magnetic force microscopy (MFM) results show that the film composed of nanocrystals behaves as a dipole after magnetization by an 8 T external field. The individual nanocrystals are modelled as single-domain particles with random crystallographic orientations. We propose that the interparticle magnetic dipole interaction is weaker than the magnetocrystalline energy in the remanent state, leading to an unusual material with no magnetic anisotropy and no domains. Films of these nanoparticles are promising candidates for magnetic media with a data storage density of ∼Tb/in 2

  2. Universal chitosan-assisted synthesis of Ag-including heterostructured nanocrystals for label-free in situ SERS monitoring.

    Science.gov (United States)

    Cai, Kai; Xiao, Xiaoyan; Zhang, Huan; Lu, Zhicheng; Liu, Jiawei; Li, Qin; Liu, Chen; Foda, Mohamed F; Han, Heyou

    2015-12-07

    A universal chitosan-assisted method was developed to synthesize various Ag-including heterostructured nanocrystals, in which chelation probably plays a vital role. The as-prepared Ag/Pd heterostructured nanocrystals show outstanding properties when used as bifunctional nanocomposites in label-free in situ SERS monitoring of Pd-catalyzed reaction.

  3. Fundamental absorption edge of NiO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, V.I., E-mail: visokolov@imp.uran.ru [Institute of Metal Physics, Ural Branch of RAS, S. Kovalevskaya Street 18, 620990 Yekaterinburg (Russian Federation); Druzhinin, A.V. [Institute of Metal Physics, Ural Branch of RAS, S. Kovalevskaya Street 18, 620990 Yekaterinburg (Russian Federation); Kim, G.A. [Institute of Organic Synthesis Ural Branch of RAS, S. Kovalevskaya Street 20, 620990 Yekaterinburg (Russian Federation); Gruzdev, N.B.; Yermakov, A.Ye.; Uimin, M.A.; Byzov, I.V.; Shchegoleva, N.N.; Vykhodets, V.B.; Kurennykh, T.E. [Institute of Metal Physics, Ural Branch of RAS, S. Kovalevskaya Street 18, 620990 Yekaterinburg (Russian Federation)

    2013-12-01

    NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5–4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p—d charge transfer transitions form the fundamental absorption edge.

  4. Fundamental absorption edge of NiO nanocrystals

    International Nuclear Information System (INIS)

    Sokolov, V.I.; Druzhinin, A.V.; Kim, G.A.; Gruzdev, N.B.; Yermakov, A.Ye.; Uimin, M.A.; Byzov, I.V.; Shchegoleva, N.N.; Vykhodets, V.B.; Kurennykh, T.E.

    2013-01-01

    NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5–4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p—d charge transfer transitions form the fundamental absorption edge

  5. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  6. Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions

    International Nuclear Information System (INIS)

    Lee, Eduardo J.H.; Ribeiro, Caue; Longo, Elson; Leite, Edson R.

    2006-01-01

    Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 deg. C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO 2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data

  7. Controllable synthesis of nickel bicarbonate nanocrystals with high homogeneity for a high-performance supercapacitor

    Science.gov (United States)

    Gu, Jianmin; Liu, Xin; Wang, Zhuang; Bian, Zhenpan; Jin, Cuihong; Sun, Xiao; Yin, Baipeng; Wu, Tianhui; Wang, Lin; Tang, Shoufeng; Wang, Hongchao; Gao, Faming

    2017-08-01

    The electrochemical performance of supercapacitors might be associated with the homogeneous structure of the electrode materials. However, the relationship between the degree of uniformity for the electrode materials and the electrochemical performance of the supercapacitor is not clear. Herein, we synthesize two types of nickel bicarbonate nanocrystals with different degrees of uniformity to investigate this relationship. As the electroactive material, the nickel bicarbonate nanocrystals with a homogeneous structure could provide a larger space and offer more exposed atoms for the electrochemical reaction than the nanocrystals with a heterogeneous structure. The homogeneous nickel bicarbonate nanocrystals exhibit better electrochemical performance and show excellent specific capacitance (1596 F g-1 at 2 A g-1 and 1260 F g-1 at 30 A g-1), which is approximately twice that of the heterogeneous nickel bicarbonate nanocrystals. The cycling stability for the homogeneity (˜80%) is higher than the inhomogeneity (˜61%) at a high current density of 5 A g-1.

  8. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  9. Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix

    International Nuclear Information System (INIS)

    Chew, H G; Zheng, F; Choi, W K; Chim, W K; Foo, Y L; Fitzgerald, E A

    2007-01-01

    Germanium (Ge) nanocrystals have been synthesized by annealing co-sputtered SiO 2 -Ge samples in N 2 or forming gas (90% N 2 +10% H 2 ) at temperatures ranging from 700 to 1000 deg. C. We concluded that the annealing ambient, temperature and Ge concentration have a significant influence on the formation and evolution of the nanocrystals. We showed that a careful selective etching of the annealed samples in hydrofluoric acid solution enabled the embedded Ge nanocrystals to be liberated from the SiO 2 matrix. From the Raman results of the as-grown and the liberated nanocrystals, we established that the nanocrystals generally experienced compressive stress in the oxide matrix and the evolution of these stress states was intimately linked to the distribution, density, size and quality of the Ge nanocrystals

  10. Colloidal Sb2S3 Nanocrystals: Synthesis, Characterization and Fabrication of Solid-State Semiconductor Sensitized Solar Cell

    KAUST Repository

    Abulikemu, Mutalifu

    2015-12-26

    Inorganic nanocrystals composed of earth-abundant and non-toxic elements are crucial to fabricated sustainable photovoltaic devices in large scale. In this study, various-shaped and different phases of antimony sulfide nanocrystals, which is composed of non-scarce and non-toxic elements, are synthesized using hot-injection colloidal method. The effect of various synthetic parameters on the final morphology is explored. Also, foreign ion (Chlorine) effects on the morphology of Sb2S3 nanocrystals have been observed. Structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using as-prepared nanocrystals. We achieved promising power conversion efficiencies of 1.48%.

  11. Colloidal Sb2S3 Nanocrystals: Synthesis, Characterization and Fabrication of Solid-State Semiconductor Sensitized Solar Cell

    KAUST Repository

    Abulikemu, Mutalifu; Del Gobbo, Silvano; Anjum, Dalaver H.; Malik, Mohammad A; Bakr, Osman

    2015-01-01

    Inorganic nanocrystals composed of earth-abundant and non-toxic elements are crucial to fabricated sustainable photovoltaic devices in large scale. In this study, various-shaped and different phases of antimony sulfide nanocrystals, which is composed of non-scarce and non-toxic elements, are synthesized using hot-injection colloidal method. The effect of various synthetic parameters on the final morphology is explored. Also, foreign ion (Chlorine) effects on the morphology of Sb2S3 nanocrystals have been observed. Structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using as-prepared nanocrystals. We achieved promising power conversion efficiencies of 1.48%.

  12. Cellulose nanocrystals with tunable surface charge for nanomedicine

    Science.gov (United States)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For

  13. Encapsulated Silicon Nanocrystals Formed in Silica by Ion Beam Synthesis

    International Nuclear Information System (INIS)

    Choi, Han Woo; Woo, Hyung Joo; Kim, Joon Kon; Kim, Gi Dong; Hong, Wan; Ji, Young Yong

    2004-01-01

    The photoluminescence (PL) emission of Si nanocrystals synthesized by 400 keV Si ion implanted in SiO 2 is studied as a function of ion dose and annealing time. The formation of nanocrystals at around 600 nm from the surface was confirmed by RBS and HRTEM, and the Si nanocrystals showed a wide and very intense PL emission at 700-900 nm. The intensity of this emission showed a typical behaviour with a fast transitory increase to reach a saturation with the annealing time, however, the red shift increased continuously because of the Ostwald ripening. The oversaturation of dose derived a decrease of PL intensity because of the diminishment of quantum confinement. A strong enhancement of PL intensity by H passivation was confirmed also, and the possible mechanism is discussed

  14. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    Directory of Open Access Journals (Sweden)

    Aminul Islam

    Full Text Available A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3 are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  15. Properties of magnetically diluted nanocrystals prepared by mechanochemical route

    International Nuclear Information System (INIS)

    Balaz, P.; Skorvanek, I.; Fabian, M.; Kovac, J.; Steinbach, F.; Feldhoff, A.; Sepelak, V.; Jiang, J.; Satka, A.; Kovac, J.

    2010-01-01

    The bulk and surface properties of magnetically diluted Cd 0.6 Mn 0.4 S nanocrystals synthesized by solid state route in a planetary mill were studied. XRD, SEM, TEM (HRTEM), low-temperature N 2 sorption, nanoparticle size distribution as well as SQUID magnetometry methods have been applied. The measurements identified the aggregates of small nanocrystals, 5-10 nm in size. The homogeneity of produced particles with well developed specific surface area (15-66 m 2 g -1 ) was documented. The transition from the paramagnetic to the spin-glass-like phase has been observed below ∼40 K. The changes in the magnetic behaviour at low temperatures seem to be correlated with the formation of the new surface area as a consequence of milling. The magnetically diluted Cd 0.6 Mn 0.4 S nanocrystals are obtained in the simple synthesis step, making the process attractive for industrial applications.

  16. Engineering Gold Nanorod-Based Plasmonic Nanocrystals for Optical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-09-01

    Plasmonic nanocrystals have a unique ability to support localized surface plasmon resonances and exhibit rich and intriguing optical properties. Engineering plasmonic nanocrystals can maximize their potentials for specific applications. In this dissertation, we developed three unprecedented Au nanorod-based plasmonic nanocrystals through rational design of the crystal shape and/or composition, and successfully demonstrated their applications in light condensation, photothermal conversion, and surface-enhanced Raman spectroscopy (SERS). The “Au nanorod-Au nanosphere dimer” nanocrystal was synthesized via the ligand-induced asymmetric growth of a Au nanosphere on a Au nanorod. This dimeric nanostructure features an extraordinary broadband optical absorption in the range of 400‒1400nm, and it proved to be an ideal black-body material for light condensation and an efficient solar-light harvester for photothermal conversion. The “Au nanorod (core) @ AuAg alloy (shell)” nanocrystal was built through the epitaxial growth of homogeneously alloyed AuAg shells on Au nanorods by precisely controlled synthesis. The resulting core-shell structured, bimetallic nanorods integrate the merits of the AuAg alloy with the advantages of anisotropic nanorods, exhibiting strong, stable and tunable surface plasmon resonances that are essential for SERS applications in a corrosive environment. The “high-index faceted Au nanorod (core) @ AuPd alloy (shell)” nanocrystal was produced via site-specific epitaxial growth of AuPd alloyed horns at the ends of Au nanorods. The AuPd alloyed horns are bound with high-index side facets, while the Au nanorod concentrates an intensive electric field at each end. This unique configuration unites highly active catalytic sites with strong SERS sites into a single entity and was demonstrated to be ideal for in situ monitoring of Pd-catalyzed reactions by SERS. The synthetic strategies developed here are promising towards the fabrication of

  17. Sorting fluorescent nanocrystals with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  18. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides)

    International Nuclear Information System (INIS)

    Espiau de Lamaestre, R.

    2005-04-01

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  19. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    Science.gov (United States)

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  20. Eco-friendly approach towards green synthesis of zinc oxide nanocrystals and its potential applications.

    Science.gov (United States)

    Velmurugan, Palanivel; Park, Jung-Hee; Lee, Sang-Myeong; Yi, Young-Joo; Cho, Min; Jang, Jum-Suk; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-09-01

    In the present study, we investigated a novel green route for synthesis of zinc oxide (ZnO) nanocrystals using Prunus × yedoensis Matsumura leaf extract as a reducing agent without using any surfactant or external energy. Standard characterization studies were carried out to confirm the obtained product using UV-Vis spectra, SEM-EDS, FTIR, TEM, and XRD. In addition, the synthesized ZnO nanocrystals were coated onto fabric and leather samples to study their bacteriostatic effect against odor-causing bacteria Brevibacterium linens and Staphylococcus epidermidis. Zinc oxide nanocrystal-coated fabric and leather showed good activity against both bacteria.

  1. Hydrothermal synthesis, characterization and up/down-conversion luminescence of barium rare earth fluoride nanocrystals

    International Nuclear Information System (INIS)

    Jia, Li-Ping; Zhang, Qiang; Yan, Bing

    2014-01-01

    Graphical abstract: Lanthanide ions doped bare earth rare earth fluoride nanocrystals are synthesized by hydrothermal technology and characterized. The down/up-conversion luminescence of them are discussed. - Highlights: • Mixed hydrothermal system H 2 O–OA (EDA)–O-A(LO-A) is used for synthesis. • Barium rare earth fluoride nanocrystals are synthesized comprehensively. • Luminescence for down-conversion and up-conversion are obtained for these systems. - Abstract: Mixed hydrothermal system H 2 O–OA (EDA)–O-A(LO-A) is developed to synthesize barium rare earth fluorides nanocrystals (OA = oleylamine, EDA = ethylenediamine, O-A = oleic acid and LO-A = linoleic acid). They are presented as BaREF 5 (RE = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Y, Tm, Lu) and Ba 2 REF 7 (RE = La, Sm, Ho, Er, Yb). The influence of reaction parameters (rare earth species, hydrothermal system and temperature) is checked on the phase and shape evolution of the fluoride nanocrystals. It is found that reaction time and temperature of these nanocrystals using EDA (180 °C, 6 h) is lower than those of them using OA (220 °C, 10 h). The photoluminescence properties of these fluorides activated by some rare earth ions (Nd 3+ , Eu 3+ , Tb 3+ ) are studied, and especially up-conversion luminescence of the four fluoride nanocrystal systems (Ba 2 LaF 7 :Yb, Tm(Er), Ba 2 REF 7 :Yb, Tm(Er) (RE = Gd, Y, Lu)) is observed

  2. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    Science.gov (United States)

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  3. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  4. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  5. Novel silica stabilization method for the analysis of fine nanocrystals using coherent X-ray diffraction imaging

    Energy Technology Data Exchange (ETDEWEB)

    Monteforte, Marianne; Estandarte, Ana K.; Chen, Bo; Harder, Ross; Huang, Michael H.; Robinson, Ian K.

    2016-06-23

    High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100?nm size regimes ? a size routinely achievable by chemical synthesis ? despite the spatial resolution of the BCDI technique being 20?30?nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20?nm and AuPd nanocrystals in the size range 60?65?nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.

  6. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.

    Science.gov (United States)

    Wang, Qinchao; Wang, Yiqian; Guo, Peizhi; Li, Qun; Ding, Ruixue; Wang, Baoyan; Li, Hongliang; Liu, Jingquan; Zhao, X S

    2014-01-14

    Palladium (Pd) nanocrystals have been synthesized by using formic acid as the reducing agent at room temperature. When the concentration of formic acid was increased continuously, the size of Pd nanocrystals first decreased to a minimum and then increased slightly again. The products have been investigated by a series of techniques, including X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), UV-vis absorption, and electrochemical measurements. The formation of Pd nanocrystals is proposed to be closely related to the dynamical imbalance of the growth and dissolution rate of Pd nanocrystals associated with the adsorption of formate ions onto the surface of the intermediates. It is found that small Pd nanocrystals showed blue-shifted adsorption peaks compared with large ones. Pd nanocrystals with the smallest size display the highest electrocatalytic activity for the electrooxidation of formic acid and ethanol on the basis of cyclic voltammetry and chronoamperometric data. It is suggested that both the electrochemical active surface area and the small size effect are the key roles in determining the electrocatalytic performances of Pd nanocrystals. A "dissolution-deposition-aggregation" process is proposed to explain the variation of the electrocatalytic activity during the electrocatalysis according to the HRTEM characterization.

  7. Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica.

    Science.gov (United States)

    Malgras, Victor; Tominaka, Satoshi; Ryan, James W; Henzie, Joel; Takei, Toshiaki; Ohara, Koji; Yamauchi, Yusuke

    2016-10-13

    Hybrid organic-inorganic metal halide perovskites have fascinating electronic properties and have already been implemented in various devices. Although the behavior of bulk metal halide perovskites has been widely studied, the properties of perovskite nanocrystals are less well-understood because synthesizing them is still very challenging, in part because of stability. Here we demonstrate a simple and versatile method to grow monodisperse CH 3 NH 3 PbBr x I x-3 perovskite nanocrystals inside mesoporous silica templates. The size of the nanocrystal is governed by the pore size of the templates (3.3, 3.7, 4.2, 6.2, and 7.1 nm). In-depth structural analysis shows that the nanocrystals maintain the perovskite crystal structure, but it is slightly distorted. Quantum confinement was observed by tuning the size of the particles via the template. This approach provides an additional route to tune the optical bandgap of the nanocrystal. The level of quantum confinement was modeled taking into account the dimensions of the rod-shaped nanocrystals and their close packing inside the channels of the template. Photoluminescence measurements on CH 3 NH 3 PbBr clearly show a shift from green to blue as the pore size is decreased. Synthesizing perovskite nanostructures in templates improves their stability and enables tunable electronic properties via quantum confinement. These structures may be useful as reference materials for comparison with other perovskites, or as functional materials in all solid-state light-emitting diodes.

  8. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  9. Density-controllable nonvolatile memory devices having metal nanocrystals through chemical synthesis and assembled by spin-coating technique

    International Nuclear Information System (INIS)

    Wang Guangli; Chen Yubin; Shi Yi; Pu Lin; Pan Lijia; Zhang Rong; Zheng Youdou

    2010-01-01

    A novel two-step method is employed, for the first time, to fabricate nonvolatile memory devices that have metal nanocrystals. First, size-averaged Au nanocrystals are synthesized chemically; second, they are assembled into memory devices by a spin-coating technique at room temperature. This attractive approach makes it possible to tailor the diameter and control the density of nanocrystals individually. In addition, processes at room temperature prevent Au diffusion, which is a main concern for the application of metal nanocrystal-based memory. The experimental results, both the morphology characterization and the electrical measurements, reveal that there is an optimum density of nanocrystal monolayer to balance between long data retention and a large hysteresis memory window. At the same time, density-controllable devices could also feed the preferential emphasis on either memory window or retention time. All these facts confirm the advantages and novelty of our two-step method. (semiconductor devices)

  10. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan [Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130023 (China); Shen Qihui; Shi Weiguang; Li Jixue; Liu Xiaoyang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yu Dongdong [1st Hopstail affiliated to Jilin University, Jilin University, Changchun 130023 (China); Zhou Jianguang [Research Center for Analytical Instrumentation, Zhejiang University, Hangzhou 310058 (China)], E-mail: liuxy@jlu.edu.cn, E-mail: jgzhou70@126.com

    2008-06-18

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  11. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    International Nuclear Information System (INIS)

    Liu Yan; Shen Qihui; Shi Weiguang; Li Jixue; Liu Xiaoyang; Yu Dongdong; Zhou Jianguang

    2008-01-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals

  12. Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells

    KAUST Repository

    Franzman, Matthew A.

    2010-03-31

    Nanocrystals of phase-pure tin(II) selenide (SnSe) were synthesized via a solution-phase route employing stoichiometric amounts of di-tert-butyl dlselenlde as a novel and facile selenium source. The direct band gap of the resulting nanocrystals (E8 = 1.71 eV) is significantly blue-shifted relative to the bulk value (E8 = 1.30 eV), a likely consequence of quantum confinement resulting from the relatively small average diameter of the nanocrystals (μD < 20 nm). Preliminary solar cell devices incorporating SnSe nanocrystals into a poly[2-methoxy5-(3\\',7\\'-d1methyloctyloxy)-1,4- phenylenev1nylene] matrix demonstrate a significant enhancement In quantum efficiency and short-circuit current density, suggesting that this earth-abundant material could be a valuable component In future photovoltaic devices. Copyright © 2010 American Chemical Society.

  13. Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography

    KAUST Repository

    Li, Feifei; Li, Chunguang; Liu, Jianhua; Liu, Xiaomin; Zhao, Lan; Bai, Tianyu; Yuan, Qinghai; Kong, Xianggui; Han, Yu; Shi, Zhan; Feng, Shouhua

    2013-01-01

    Lanthanide-doped core-shell upconversion nanocrystals (UCNCs) have tremendous potential for applications in many fields, especially in bio-imaging and medical therapy. As core-shell UCNCs are mostly synthesized in organic solvents, tedious organic

  14. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    Science.gov (United States)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  15. Synthesis, characterization and spectral temperature-dependence of thioglycerol-CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Brahim, Nassim, E-mail: nassim.benbrahim.fsm@gmail.com [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia); Poggi, Mélanie [Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Haj Mohamed, Naim Bel; Ben Chaâbane, Rafik; Haouari, Mohamed [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia); Negrerie, Michel, E-mail: michel.negrerie@polytechnique.fr [Laboratoire d' Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Ben Ouada, Hafedh [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia)

    2016-09-15

    Water-soluble CdSe quantum dots (QDs) have been synthesized with thioglycerol as a stabilizer through a novel hydrothermal route. The obtained thioglycerol capped CdSe (TG-CdSe) nanocrystals were characterized regarding their morphology and structural, thermal and optical properties. The resulting nanocrystals were synthesized in the cubic structure with a near spherical shape, as confirmed by X-ray diffraction and transmission electron microscopy. Combining transmission electron microscopy imaging and calculations using UV–visible absorption spectrum and X-ray diffraction pattern, the diameter of the synthesized nanocrystals was estimated to 2.26 nm. As confirmed by its Fourier transform IR spectrum, thioglycerol was successfully liganded on the surface of the resulting nanocrystals. Band structure parameters of the TG-CdSe nanoparticles were determined and quantum confinement effect was evidenced by optical absorption, fluorescence and Raman measurements. The thermal properties of the TG-CdSe were explored by thermal gravimetric analysis and differential scanning calorimetry. The temperature dependence of both the absorption and fluorescence spectra in the physiological range makes the TG-CdSe nanocrystals sensitive temperature markers, a property that must be taken into account when developing any probing applications, especially for cellular imaging.

  16. Hydrothermal Synthesis of PbTiO3 Nanocrystals with a pH-Adjusting Agent of Ammonia Solution

    Science.gov (United States)

    Li, Xinyi; Huang, Zhixiong; Zhang, Lianmeng; Guo, Dongyun

    2018-05-01

    The PbTiO3 nanocrystals were synthesized by a hydrothermal method, and ammonia solution was firstly used as a pH-adjusting agent. The effect of ammonia concentration on formation and morphologies of PbTiO3 nanocrystals was investigated. At low ammonia concentration (0-2.2 mol/L), no perovskite PbTiO3 phase was formed. When the ammonia concentration was 4.4 mol/L, the rod-like PbTiO3 nanocrystals with highly crystalline were successfully synthesized. As the ammonia concentration further increased to 13.2 mol/L, the flake-like PbTiO3 nanocrystals were formed.

  17. Simple eco-friendly synthesis of the surfactant free SnS nanocrystal toward the photoelectrochemical cell application.

    Science.gov (United States)

    Huang, Xiaoguang; Woo, Heechul; Wu, Peinian; Hong, Hyo Jin; Jung, Wan Gil; Kim, Bong-Joong; Vanel, Jean-Charles; Choi, Jin Woo

    2017-11-28

    A simple, low cost, non-toxic and eco-friendly pathway for synthesizing efficient sunlight-driven tin sulfide photocatalyst was studied. SnS nanocrystals were prepared by using mechanical method. The bulk SnS was obtained by evaporation of SnS nanocrystal solution. The synthesized samples were characterized by using XRD, SEM, TEM, UV-vis, and Raman analyses. Well crystallized SnS nanocrystals were verified and the electrochemical characterization was also performed under visible light irradiation. The SnS nanocrystals have shown remarkable photocurrent density of 7.6 mA cm -2 under 100 mW cm -2 which is about 10 times larger than that of the bulk SnS under notably stable operation conditions. Furthermore, the SnS nanocrystals presented higher stability than the bulk form. The IPCE(Incident photon to current conversion efficiency) of 9.3% at 420 nm was obtained for SnS nanocrystal photoanode which is strikingly higher than that of bulk SnS, 0.78%. This work suggests that the enhancement of reacting area by using SnS nanocrystal absorbers could give rise to the improvement of photoelectrochemical cell efficiency.

  18. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    International Nuclear Information System (INIS)

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  19. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

    Directory of Open Access Journals (Sweden)

    Chengxi Zhang

    2017-11-01

    Full Text Available Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX3, X = Cl, Br, I or a mixture thereof have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene (PTFE capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19–35 nm, high fluorescence quantum yield of 47.8–90.55%, and photoluminescence emission in the range of 450–700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices.

  20. Cellulose nanocrystal submonolayers by spin coating

    NARCIS (Netherlands)

    Kontturi, E.J.; Johansson, L.S.; Kontturi, K.S.; Ahonen, P.; Thune, P.C.; Laine, J.

    2007-01-01

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images,

  1. Nanocrystal thin film fabrication methods and apparatus

    Science.gov (United States)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  2. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization

    International Nuclear Information System (INIS)

    Qing-Song, Huang; Dong-Qing, Dong; Jian-Ping, Xu; Xiao-Song, Zhang; Hong-Min, Zhang; Lan, Li

    2010-01-01

    Spherical organic-bonded ZnS nanocrystals with 4.0±0.2 nm in diameter are synthesized by a liquid-solid-solution method. The photoluminescence spectrum of sample ([S 2− ]/[Zn 2+ ] = 1.0) shows a strong white emission with a peak at 490 nm and ∼ 170 nm full widths at half maximum. By Gauss fitting, the white emission is attributed to the overlap of a blue emission and a green-yellow emission, originating from electronic transitions from internal S 2− vacancies level to valence band and to the internal Zn 2+ vacancy level, respectively. After sealingZnS nanocrystals onto InGaN chips, the device shows CIE coordinates of (0.29,0.30), which indicates their potential applications for white light emitting diodes

  3. Pyridine-induced Dimensionality Change in Hybrid Perovskite Nanocrystals

    KAUST Repository

    Ahmed, Ghada H.

    2017-05-02

    Engineering the surface energy through careful manipulation of the surface chemistry is a convenient approach to control quantum confinement and structure dimensionality during nanocrystal growth. Here, we demonstrate that the introduction of pyridine during the synthesis of methylammonium lead bromide (MAPbBr) perovskite nanocrystals can transform three-dimensional (3D) cubes into two-dimensional (2D) nanostructures. Density functional theory (DFT) calculations show that pyridine preferentially binds to Pb atoms terminating the surface, driving the selective 2D growth of the nanostructures. These 2D nanostructures exhibit strong quantum confinement effects, high photoluminescence quantum yields in the visible spectral range, and efficient charge transfer to molecular acceptors. These qualities indicate the suitability of the synthesized 2D nanostructures for a wide range of optoelectronic applications.

  4. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.

    Science.gov (United States)

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce F [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-05-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions ofa nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size and shape to examine the spatial organization of materials within the resulting nanocrystal heterostructures. The selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. The exchange of copper (I) (Cu+) cations in CdS nanorods occurs preferentially at the ends of the nanorods. Theoretical modeling of epitaxial attachments between different facets of CdS and Cu2S indicate that the selectivity for cation exchange at the ends of the nanorods is a result of the low formation energy of the interfaces produced. During silver (I) (Ag+) cation exchange in CdS nanorods, non-selective nucleation of silver sulfide (Ag2S), followed by partial phase segregation leads to significant changes in the spatial arrangement of CdS and Ag2S regions at the exchange reaction proceeds through the nanocrystal. A well-ordered striped pattern of alternating CdS and Ag2S segments is found at intermediate fractions of exchange. The forces mediating this spontaneous process are a combination of Ostwald ripening to reduce the interfacial area along with a strain-induced repulsive interaction between Ag2S segments. To elucidate why Cu+ and Ag+ cation exchange with CdS nanorods produce different morphologies, models for epitaxial attachments between various facets of CdS with Cu2S or

  6. Microstructural and photoluminescence properties of sol–gel derived Tb3+ doped ZnO nanocrystals

    CSIR Research Space (South Africa)

    Kabongo, GL

    2014-04-01

    Full Text Available Un-doped and Tb(Sup3+) doped ZnO nanocrystals with different concentrations of Tb(Sup3+) were synthesized by a sol–gel method and their photoluminescence (PL) properties were investigated. The successful incorporation of Tb(sup3+) ions...

  7. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system

    KAUST Repository

    Pan, Yichang; Liu, Yunyang; Zeng, Gaofeng; Zhao, Lan; Lai, Zhiping

    2011-01-01

    We report here the first example of ZIF materials synthesized in aqueous solution. The synthesis was performed at room temperature and typically took several minutes compared to hours and days in non-aqueous conditions. The obtained product were ZIF-8 nanocrystals having size of ∼85 nm and showed excellent thermal, hydrothermal and solvothermal stabilities. © 2011 The Royal Society of Chemistry.

  8. Rigid Biopolymer Nanocrystal Systems for Controlling Multicomponent Nanoparticle Assembly and Orientation in Thin Film Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer [Univ. of Colorado, Boulder, CO (United States)

    2016-10-31

    We have discovered techniques to synthesize well-defined DN conjugated nanostructures that are stable in a wide variety of conditions needed for DNA mediated assembly. Starting from this, we have shown that DNA can be used to control the assembly and integration of semiconductor nanocrystals into thin film devices that show photovoltaic effects.

  9. Improved size distribution control of silicon nanocrystals in a spatially confined remote plasma

    NARCIS (Netherlands)

    Dogan, I.; Westerman, R. H. J.; M. C. M. van de Sanden,

    2015-01-01

    This work demonstrates how to improve the size distribution of silicon nanocrystals (Si-NCs) synthesized in a remote plasma, in which the flow dynamics and the particular chemistry initially resulted in the formation of small (2-10 nm) and large (50-120 nm) Si-NCs. Plasma consists of two regions: an

  10. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Emory Ming-Yue [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro

  11. Size-tunable phosphorescence in colloidal metastable gamma-Ga2O3 nanocrystals.

    Science.gov (United States)

    Wang, Ting; Farvid, Shokouh S; Abulikemu, Mutalifu; Radovanovic, Pavle V

    2010-07-14

    We report a colloidal synthesis of gallium oxide (Ga(2)O(3)) nanocrystals having metastable cubic crystal structure (gamma phase) and uniform size distribution. Using the synthesized nanocrystal size series we demonstrate for the first time a size-tunable photoluminescence in Ga(2)O(3) from ultraviolet to blue, with the emission shifting to lower energies with increasing nanocrystal size. The observed photoluminescence is dominated by defect-based donor-acceptor pair recombination and has a lifetime of several milliseconds. Importantly, the decay of this phosphorescence is also size dependent. The phosphorescence energy and the decay rate increase with decreasing nanocrystal size, owing to a reduced donor-acceptor separation. These results allow for a rational and predictable tuning of the optical properties of this technologically important material and demonstrate the possibility of manipulating the localized defect interactions via nanocrystal size. Furthermore, the same defect states, particularly donors, are also implicated in electrical conductivity rendering monodispersed Ga(2)O(3) nanocrystals a promising material for multifunctional optoelectronic structures and devices.

  12. Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Science.gov (United States)

    Wang, Wei; Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping

    2015-05-01

    Three kinds of spinel ferrite nanocrystals, MFe2O4 (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH4) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (Ms). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  13. A dual-colored bio-marker made of doped ZnO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y L; Zeng, X T [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Fu, S; Kwek, L C [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616 (Singapore); Tok, A I Y; Boey, F C Y [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Lim, C S [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2008-08-27

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  14. Controlled synthesis of concave tetrahedral palladium nanocrystals by reducing Pd(acac)2 with carbon monoxide

    International Nuclear Information System (INIS)

    Zhu, Hai; Chi, Quan; Zhao, Yanxi; Li, Chunya; Tang, Heqing; Li, Jinlin; Huang, Tao; Liu, Hanfan

    2012-01-01

    Graphical abstract: By using CO as a reducing agent, uniform and well-defined concave tetrahedral Pd nanocrystals were successfully synthesized. CO flow rate was the most essential for the formation of the concave tetrahedral nanostructures. The morphologies and sizes of the final products can be well controlled by adjusting the flow rate of CO. Highlights: ► By using CO as a reducing agent, concave tetrahedral Pd nanocrystals were obtained. ► CO flow rate is critical to the formation of concave tetrahedral Pd nanocrystals. ► The selective adsorption of CO on (1 1 0) facets is essential to concave Pd tetrahedra. -- Abstract: CO reducing strategy to control the morphologies of palladium nanocrystals was investigated. By using CO as a reducing agent, uniform and well-defined concave tetrahedral Pd nanocrystals with a mean size of about 55 ± 2 nm were readily synthesized with Pd(acac) 2 as a precursor and PVP as a stabilizer. The structures of the as-prepared Pd nanocrystals were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), ultraviolet–visible (UV–vis) absorption spectroscopy and electrochemical measurements. The results demonstrated that CO was the most essential for the formation of the concave tetrahedral Pd nanostructures. The morphologies and sizes of the final products can be well controlled by adjusting the flow rate of CO. The most appropriate CO flow rate, temperature and time for the formation of the ideal concave tetrahedral Pd nanocrystals was 0.033 mL s −1 , 100 °C and 3 h, respectively.

  15. Characterization of CdSe-nanocrystals used in semiconductors for aerospace applications: Production and optical properties

    Directory of Open Access Journals (Sweden)

    Maroof A. Hegazy

    2014-06-01

    Full Text Available Semiconductor nanocrystals (NC’s are the materials with dimensions less than 10 nm. When the dimensions of nanocrystals are reduced the bulk bohr diameter, the photo generated electron-hole pair becomes confined and nanocrystal exhibits size dependent upon optical properties. This work is focused on the studying of CdSe semiconductor nanocrystals. These nanocrystals are considered as one of the most widely studies semiconductors because of their size – tunable optical properties from the visible spectrum. CdSe-nanocrystals are produced and obtained throughout the experimental setup initiated at Nano-NRIAG Unit (NNU, which has been constructed and assembled at NRIAG institute. This unit has a specific characterization for preparing chemical compositions, which may be used for solar cell fabrications and space science technology. The materials prepared included cadmium oxide and selinid have sizes ranging between 2.27 nm and 3.75 nm. CdSe-nanocrystals are synthesized in “TOP/TOPO (tri–octyl phosphine/tri–octyl phosphine oxide. Diagnostic tools, include UV analysis, TEM microscope, and X-ray diffraction, which are considered for the analytical studies of the obtained materials. The results show that, in this size regime, the generated particles have unique optical properties, which is achieved from the UV analysis. Also, the TEM image analysis shows the size and shape of the produced particles. These studies are carried out to optimize the photoluminescent efficiency of these nanoparticles. Moreover, the data revealed that, the grain size of nanocrystals is dependent upon the growth time in turn, it leads to a change in the energy gap. Some applications of this class of materials are outlined.

  16. A facile arrested precipitation method for synthesis of pure wurtzite Cu2ZnSnS4 nanocrystals using thiourea as a sulfur source

    International Nuclear Information System (INIS)

    Li, Chunya; Ha, Enna; Wong, Wing-Leung; Li, Cuiling; Ho, Kam-Piu; Wong, Kwok-Yin

    2012-01-01

    Graphical abstract: High-resolution TEM image of wurtzite Cu 2 ZnSnS 4 nanocrystals. Highlights: ► Wurtzite Cu 2 ZnSnS 4 nanocrystals were synthesized by arrested precipitation method. ► XRD, EDX, TEM demonstrate that the CZTS nanocrystals are purely wurtzite structure. ► The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. ► The estimated direct bandgap energy is 1.56 eV for wurtzite CZTS nanocrystals. ► The electrical resistivity of the wurtzite CZTS nanocrystals is low. -- Abstract: A facile route for the synthesis of wurtzite Cu 2 ZnSnS 4 (CZTS) nanocrystals was developed by an arrested precipitation method at 240 °C under simple reaction conditions with diethanolamine as the solvent and thiourea as sulfur source. The structure and morphology of the CZTS nanocrystals were characterized by X-ray diffraction and transmission electron microscopy. Control experiments demonstrated that CZTS nanocrystals which are purely wurtzite structure are readily obtained. The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. The estimated direct bandgap energy is 1.56 eV, which indicates that the CZTS nanocrystals produced by this method possess promising applications in photovoltaic devices.

  17. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.

    Science.gov (United States)

    Xia, Younan; Xia, Xiaohu; Peng, Hsin-Chieh

    2015-07-01

    This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.

  18. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing.

    Science.gov (United States)

    Epps, Robert W; Felton, Kobi C; Coley, Connor W; Abolhasani, Milad

    2017-11-21

    Colloidal organic/inorganic metal-halide perovskite nanocrystals have recently emerged as a potential low-cost replacement for the semiconductor materials in commercial photovoltaics and light emitting diodes. However, unlike III-V and IV-VI semiconductor nanocrystals, studies of colloidal perovskite nanocrystals have yet to develop a fundamental and comprehensive understanding of nucleation and growth kinetics. Here, we introduce a modular and automated microfluidic platform for the systematic studies of room-temperature synthesized cesium-lead halide perovskite nanocrystals. With abundant data collection across the entirety of four orders of magnitude reaction time span, we comprehensively characterize nanocrystal growth within a modular microfluidic reactor. The developed high-throughput screening platform features a custom-designed three-port flow cell with translational capability for in situ spectral characterization of the in-flow synthesized perovskite nanocrystals along a tubular microreactor with an adjustable length, ranging from 3 cm to 196 cm. The translational flow cell allows for sampling of twenty unique residence times at a single equilibrated flow rate. The developed technique requires an average total liquid consumption of 20 μL per spectra and as little as 2 μL at the time of sampling. It may continuously sample up to 30 000 unique spectra per day in both single and multi-phase flow formats. Using the developed plug-and-play microfluidic platform, we study the growth of cesium lead trihalide perovskite nanocrystals through in situ monitoring of their absorption and emission band-gaps at residence times ranging from 100 ms to 17 min. The automated microfluidic platform enables a systematic study of the effect of mixing enhancement on the quality of the synthesized nanocrystals through a direct comparison between single- and multi-phase flow systems at similar reaction time scales. The improved mixing characteristics of the multi-phase flow

  19. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  20. Anodic Titania Nanotube Arrays Sensitized with Mn- or Co-Doped CdS Nanocrystals

    International Nuclear Information System (INIS)

    Smith, York R.; Gakhar, Ruchi; Merwin, Augustus; Mohanty, Swomitra K.; Chidambaram, Dev; Misra, Mano

    2014-01-01

    Highlights: • Mn or Co doped CdS where synthesized and deposited onto TiO 2 nanotubular arrays. • Synthesis and deposition were achieved simultaneously using SILAR method. • Various characterization techniques demonstrate lattice incorporation of dopant. • Photoelectrochemical performance was analyzed using AM 1.5 irradiation. • Dopants increases depletion width of CdS and increase photoelectrochemical responses. - Abstract: The use of doped luminescent nanocrystals or quantum dots have mainly been explored for imaging applications; however, recently they have gained interest in solar energy conversion applications due to long electron lifetimes, tunable band gaps and emission by compositional control. In this study, we have examined the application of Mn or Co doped CdS nanocrystals as a sensitizing layer over titania nanotubular arrays synthesized via electrochemical anodization in photoelectrochemical applications. The doped and undoped CdS nanocrystals were simultaneously synthesized and deposited onto the titania surface by adoption of a successive ion layer adsorption-reaction (SILAR) method. Various characterization methods indicate lattice incorporation of the dopant within CdS. The addition of dopants to CdS was found to improve the photoelectrochemical performance by increasing the depletion width of the CdS nanocrystals and reducing recombination losses of charge carriers

  1. Mineral contents and their solubility on calcium carbonat calcite nanocrystals from cockle shell powder (Anadara granosa Linn)

    Science.gov (United States)

    Widyastuti, S.; Pramushinta, I. A.

    2018-03-01

    Prepared and characterized calcium carbonat calcite nanocrystals improves solubility. Calcium carbonat calcite nanocrystals were synthesized using precipitation method from the waste of blood clam cockle shells (Anadara granosa Linn). This study was conducted to analyze mineral composition of nanocrystals calcium carbonat calcite cockle (Anadara granosa) shell for calcium fortification of food applications and to evaluate the solubilities of Calsium and Phospor. The sample of nanocrystals from cockle shells was evaluated to determine the content of 11 macro-and micro-elements. These elements are Calcium (Ca), Magnesium (Mg), Sodium (Na), Phosphorus (P), Potassium (K), Ferrum (Fe), Copper (Cu), Nickel (Ni), Zink (Zn), Boron (B) and Silica (Si)). Cockleshell powders were found to contain toxic elements below detectable levels. The solubilities of Calcium and Phospor were p<0.05.

  2. Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals.

    Science.gov (United States)

    Merchan-Merchan, Wilson; Saveliev, Alexei V; Desai, Milind

    2009-11-25

    Well-defined faceted inorganic Mo oxide nanocrystals are synthesized in the gas phase using a solid-fed-precursor flame synthesis method. The solid crystals have rectangular cross-section with characteristic size of 10-20 nm and with lengths ranging from 50 nm to a few hundred nanometres. A 1 mm diameter high purity Mo probe introduced in the oxygen-rich part of the flame serves as the material source. A combination of the strong temperature gradient and varying chemical species concentrations within the flame volume provides the ideal conditions for the rapid and direct formation of these unique nanocrystals. Oxidation and evaporation of MoO3 in the oxygen-rich zone are followed by reduction to MoO2 in the lower temperature, more fuel-rich zone. The MoO3 vapours formed are pushed in the direction of the gas flow and transformed into mature well-defined convex polyhedron nanocrystals bounded with six faces resembling rectangular parallelepipeds.

  3. Dry gel conversion synthesis of SAPO-34 nanocrystals

    International Nuclear Information System (INIS)

    Hirota, Yuichiro; Murata, Kenji; Tanaka, Shunsuke; Nishiyama, Norikazu; Egashira, Yasuyuki; Ueyama, Korekazu

    2010-01-01

    SAPO-34 nanocrystals were synthesized by a dry gel conversion method using tetraethylammonium hydroxide as a structure-directing agent. The crystal growth of SAPO-34 was studied by X-ray diffraction and field-emission scanning electron microscopy. After 3 h, 45-nm SAPO-34 crystals with an amorphous phase were observed. The crystal size increased to 70 nm after 6 h, but did not increase greatly thereafter. The average crystal size of the final product was 75 nm. The nucleation density for SAPO-34 crystals in dry gel conversion appeared to be much higher than that under hydrothermal conditions, resulting in the formation of small crystals.

  4. Doping effect in Si nanocrystals

    Science.gov (United States)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  5. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  6. Nanocrystal synthesis and thin film formation for earth abundant photovoltaics

    Science.gov (United States)

    Carter, Nathaniel J.

    Providing access to on-demand energy at the global scale is a grand challenge of our time. The fabrication of solar cells from nanocrystal inks comprising earth abundant elements represents a scalable and sustainable photovoltaic technology with the potential to meet the global demand for electricity. Solar cells with Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers are of particular interest due to the high absorption coefficient of CZTSSe, its band gap in the ideal range for efficient photovoltaic power conversion, and the relative abundance of its constituent elements in the earth's crust. Despite the promise of this material system, CZTSSe solar cell efficiencies reported throughout literature have failed to exceed 12.6%, principally due to the low open-circuit voltage (VOC) achieved in these devices compared to the absorber band gap. The work presented herein primarily aims to address the low VOC problem. First, the fundamental cause for such low VOC's is investigated. Interparticle compositional inhomogeneities identified in the synthesized CZTS nanocrystals and their effect on the absorber layer formation and device performance are characterized. Real-time energy-dispersive x-ray diffraction (EDXRD) elucidates the role of these inhomogeneities in the mechanism by which a film of CZTS nanocrystals converts into a dense absorber layer comprising micron-sized CZTSSe grains upon annealing in a selenium atmosphere (selenization). Additionally, a direct correlation between the nanocrystal inhomogeneities and the VOC in completed devices is observed. Detailed characterization of CZTSSe solar cells identifies electrical potential fluctuations in the CZTSSe absorber - due to spatial composition variations not unlike those observed in the nanocrystals - as a primary V OC inhibitor. Additional causes for low VOC's in CZTSSe solar cells proposed in the literature involve recombination at the interface between the CZTSSe absorber and: (1) the n-type, CdS buffer layer, or (2) the

  7. Paramagnetic behavior of Co doped TiO{sub 2} nanocrystals controlled by self-purification mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Anitha, B. [Centre for Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram 695 581 (India); Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com [Centre for Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram 695 581 (India); Banerjee, Alok [UGC-DAE Consortium for Scientific Research (CSR), Khandwa Road, Indore 452 001 (India)

    2016-07-15

    Doping in nanocrystals is a challenging process because of the self- purification mechanism which tends to segregate out the dopants resulting in a greater dopant concentration near the surface than at the interior of nanocrystals. In the present work nanocrystals of TiO{sub 2} doped with different atom % of Co were synthesized by peroxide gel method. XRD analysis confirmed the tetragonal anatase structure and HRTEM images showed the rod-like morphology of the samples. Raman modes of anatase phase of TiO{sub 2} along with weak intensity peaks of Co{sub 3}O{sub 4} for higher Co dopant concentrations were observed for the samples. EPR measurements revealed the presence of cobalt in +2 oxidation state in the TiO{sub 2} matrix. SQUID measurements indicated paramagnetic behavior of the Co doped TiO{sub 2} nanocrystals. The paramagnetic behavior is attributed to an increased concentration of Co{sup 2+} ions and an increased presence of Co{sub 3}O{sub 4} phase near the surface of the TiO{sub 2} nanocrystals due to self-purification mechanism. - Graphical abstract: Variation of the intensity ratios of XRD peaks as a function of atomic ratio of Co. Inset: variation of structure factor for (101) reflection as a function of atomic ratio of Co. Display Omitted - Highlights: • Co doped TiO{sub 2} nanocrystals were synthesized by peroxide gel method. • HRTEM images showed Co doped TiO{sub 2} nanocrystals to be rod-like. • EPR spectra showed +2 oxidation states for Co in the samples. • Co doped TiO{sub 2} nanocrystals showed paramagnetic behavior.

  8. Synthesis of nanocrystals and nanocrystal self-assembly

    Science.gov (United States)

    Chen, Zhuoying

    Chapter 1. A general introduction is presented on nanomaterials and nanoscience. Nanoparticles are discussed with respect to their structure and properties. Ferroelectric materials and nanoparticles in particular are highlighted, especially in the case of the barium titanate, and their potential applications are discussed. Different nanocrystal synthetic techniques are discussed. Nanoparticle superlattices, the novel "meta-materials" built from self-assembly at the nanoscale, are introduced. The formation of nanoparticle superlattices and the importance and interest of synthesizing these nanostructures is discussed. Chapter 2. Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. The first part of this chapter presents the synthesis, processing, and electrical characterization of nanostructured thin films (thickness ˜100 nm) of barium titanate BaTiO3 built from uniform nanoparticles (alcohols were used to study the effect of size and morphological control over the nanocrystals. Techniques including X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and high-resolution electron microscopy are used to examine crystallinity and morphology. Chapter 3. By investigating the self-assembly of cadmium selenide-gold (CdSe-Au) nanoparticle mixtures by transmission electron microscopy after solvent evaporation, the effect of solvents in the formation process of CdSe-Au binary nanoparticle superlattices (BNSLs) was studied. 1-dodecanethiol was found to be critical in generating conditions necessary for superlattice formation, prior to the other factors that likely determine structure, highlighting the dual role of this organic polar molecule as both ligand and high boiling point/crystallization solvent. The influence of thiol was investigated under various concentrations (and also

  9. Dilute Magnetic Semiconductor Cu2FeSnS4 Nanocrystals with a Novel Zincblende Structure

    Directory of Open Access Journals (Sweden)

    Xiaolu Liang

    2012-01-01

    Full Text Available Diluted magnetic semiconductor Cu2FeSnS4 nanocrystals with a novel zincblende structure have been successfully synthesized by a hot-injection approach. Cu+, Fe2+, and Sn4+ ions occupy the same position in the zincblende unit cell, and their occupancy possibilities are 1/2, 1/4, and 1/4, respectively. The nanocrystals were characterized by means of X-ray diffraction (XRD, transmission electron microscopy (TEM, selected area electron diffraction (SAED, energy-dispersive spectroscopy (EDS, and UV-vis-NIR absorption spectroscopy. The nanocrystals have an average size of 7.5 nm and a band gap of 1.1 eV and show a weak ferromagnetic behavior at low temperature.

  10. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    Science.gov (United States)

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals

    International Nuclear Information System (INIS)

    Zhang, Xiaoyu; Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu; Zhang, Wei; Zheng, Weitao; Yu, William W.; Rogach, Andrey L.

    2018-01-01

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr 3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr 3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr 3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m -2 and external quantum yield of 1.7 %. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment.

    Science.gov (United States)

    Koscher, Brent A; Swabeck, Joseph K; Bronstein, Noah D; Alivisatos, A Paul

    2017-05-17

    We demonstrate postsynthetic modification of CsPbBr 3 nanocrystals by a thiocyanate salt treatment. This treatment improves the quantum yield of both freshly synthesized (PLQY ≈ 90%) and aged nanocrystals (PLQY ≈ 70%) to within measurement error (2-3%) of unity, while simultaneously maintaining the shape, size, and colloidal stability. Additionally, the luminescence decay kinetics transform from multiexponential decays typical of nanocrystalline semiconductors with a distribution of trap sites, to a monoexponential decay, typical of single energy level emitters. Thiocyanate only needs to access a limited number of CsPbBr 3 nanocrystal surface sites, likely representing under-coordinated lead atoms on the surface, in order to have this effect.

  13. Electronic structure and photocatalytic activity of wurtzite Cu–Ga–S nanocrystals and their Zn substitution

    KAUST Repository

    Kandiel, Tarek

    2015-03-23

    Stoichiometric and gallium-rich wurtzite Cu-Ga-S ternary nanocrystals were synthesized via a facile solution-based hot injection method using 1-dodecanethiol as a sulfur source. The use of 1-dodecanethiol was found to be essential not only as a sulfur source but also as a structure-directing reagent to form a metastable wurtzite structure. In addition, the substitution of zinc in the wurtzite gallium-rich Cu-Ga-S nanocrystals was also investigated. The obtained nanocrystals were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and inductively coupled plasma atomic emission spectroscopy (ICP-OES). Electronic structures of pristine and the Zn-substituted Cu-Ga-S system were investigated using density functional theory (DFT) with HSE06 exchange-correlation functional. The calculated bandgaps accurately reflect the measured ones. The allowed electronic transitions occur upon the photon absorption from the (Cu + S) band towards the (Ga + S) one. The Zn substitution was found not to contribute to the band edge structure and hence altered the bandgaps only slightly, the direct transition nature remaining unchanged with the Zn substitution. The photocatalytic activities of H2 evolution from an aqueous Na2S/Na2SO3 solution under visible-light illumination on the synthesized nanocrystals were investigated. While the stoichiometric CuGaS2 exhibited negligible activity, the gallium-rich Cu-Ga-S ternary nanocrystals displayed reasonable activity. The optimum Zn substitution in the gallium-rich Cu-Ga-S ternary nanocrystals enhanced the H2 evolution rate, achieving an apparent quantum efficiency of >6% at 400 nm. © 2015 The Royal Society of Chemistry.

  14. Phase transitions and doping in semiconductor nanocrystals

    Science.gov (United States)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  15. Highly stable colloidal TiO2 nanocrystals with strong violet-blue emission

    International Nuclear Information System (INIS)

    Ghamsari, Morteza Sasani; Gaeeni, Mohammad Reza; Han, Wooje; Park, Hyung-Ho

    2016-01-01

    Improved sol–gel method has been applied to prepare highly stable colloidal TiO 2 nanocrystals. The synthesized titania nanocrystals exhibit strong emission in the violet-blue wavelength region. Very long evolution time was obtained by preventing the sol to gel conversion with reflux process. FTIR, XRD, UV–vis absorption, photoluminescence and high resolution transmission electron microscope (HRTEM) were used to study the optical properties, crystalline phase, morphology, shape and size of prepared TiO 2 colloidal nanocrystals. HRTEM showed that the diameter of TiO 2 colloidal nanocrystals is about 5 nm. Although the PL spectra show similar spectral features upon excitation wavelengths at 280, 300 and 350 nm, but their emission intensities are significantly different from each other. Photoluminescence quantum yield for TiO 2 colloidal nanocrystals is estimated to be 49% with 280 nm excitation wavelength which is in agreement and better than reported before. Obtained results confirm that the prepared colloidal TiO 2 sample has enough potential for optoelectronics applications.

  16. Synthesis and characterization of KTiOPO4 nanocrystals and their PMMA nanocomposites

    International Nuclear Information System (INIS)

    Galceran, M; Pujol, M C; Carvajal, J J; Diaz, F; Aguilo, M; Tkaczyk, S; Kityk, I V

    2009-01-01

    KTiOPO 4 (KTP) nanocrystals have been synthesized by the modified Pechini method using ethylenediaminetetraacetic acid (EDTA) and ethylene glycol (EG) as chelating and sterification agents, respectively. Orthorhombic KTP has been obtained by calcination at 1073 K for several hours. Differential thermal and thermogravimetric (DTA-TG) analyses have been used to study the optimized heat treatment used on the precursor powder to obtain KTP nanocrystals. X-ray powder diffraction (XRD) studies on the thermally treated precursor powders indicated that nanocrystals began to crystallize at 923 K. Nanocrystals with a size dispersion distribution that fit to a lognormal function centered at 25 nm were observed by electronic microscopy. KTP nanocomposites were prepared by embedding nanocrystals in poly(methyl methacrylate) (PMMA). The photoinduced second-order susceptibility parameter and the piezo-optical coefficient were measured for the KTP nanocomposites. The optimal conditions for the generation of the frequency-doubled second harmonic generation were recorded at 391 K, and at a fundamental laser wavelength of 1064 nm and under additional treatment by polarized UV light, provided the maximum value obtained of 3.23 pm V -1 . The piezo-optical coefficients were recorded at room temperature under photoinduced treatment by a UV laser beam; the maximum value achieved was 0.673 x 10 -14 m 2 N -1 at a pump-probe delaying time of 160 s.

  17. Highly stable colloidal TiO{sub 2} nanocrystals with strong violet-blue emission

    Energy Technology Data Exchange (ETDEWEB)

    Ghamsari, Morteza Sasani, E-mail: msghamsari@yahoo.com [Laser & Optics Research School, NSTRI, 11155-3486 Tehran (Iran, Islamic Republic of); Gaeeni, Mohammad Reza [Laser & Optics Research School, NSTRI, 11155-3486 Tehran (Iran, Islamic Republic of); Han, Wooje; Park, Hyung-Ho [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2016-10-15

    Improved sol–gel method has been applied to prepare highly stable colloidal TiO{sub 2} nanocrystals. The synthesized titania nanocrystals exhibit strong emission in the violet-blue wavelength region. Very long evolution time was obtained by preventing the sol to gel conversion with reflux process. FTIR, XRD, UV–vis absorption, photoluminescence and high resolution transmission electron microscope (HRTEM) were used to study the optical properties, crystalline phase, morphology, shape and size of prepared TiO{sub 2} colloidal nanocrystals. HRTEM showed that the diameter of TiO{sub 2} colloidal nanocrystals is about 5 nm. Although the PL spectra show similar spectral features upon excitation wavelengths at 280, 300 and 350 nm, but their emission intensities are significantly different from each other. Photoluminescence quantum yield for TiO{sub 2} colloidal nanocrystals is estimated to be 49% with 280 nm excitation wavelength which is in agreement and better than reported before. Obtained results confirm that the prepared colloidal TiO{sub 2} sample has enough potential for optoelectronics applications.

  18. Controlled Growth of ZnSe Nanocrystals by Tuning Reactivity and Amount of Zinc Precursor

    Directory of Open Access Journals (Sweden)

    Lai-Jun Zhang

    2013-01-01

    Full Text Available Zinc selenide (ZnSe nanocrystals were synthesized via a phosphine-free route using the highly reactive alkylamine-H2Se complex as selenium precursor and zinc precursors with different reactivity. The reactivity of zinc precursor was tuned by using three kinds of zinc carboxylates with different alkyl chain lengths, including zinc acetate, zinc nonanoate, and zinc stearate. The effect of the reactivity and the amount of zinc precursor on nucleation and growth of ZnSe nanocrystals were investigated by ultraviolet-visible absorption and photoluminescence spectra. Result indicates that the growth and optical property of the resulting ZnSe nanocrystals are strongly dependent on the alkyl chain length and the amount of the zinc carboxylates and both shorter alkyl chain length, and more amount of zinc carboxylate will lead to faster growth of ZnSe nanocrystals. This allows that the controlled growth and excellent optical property of high-quality ZnSe nanocrystals can be achieved by combining the different reactivity and the used amount of zinc precursor, such as by using stoichiometric and reactive Zn precursor and Se precursor or by using larger amount of more unreactive Zn precursor relative to the highly reactive alkylamine-H2Se complex precursor.

  19. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media

    International Nuclear Information System (INIS)

    Fang Zheng; Wu Ping; Zhong Xinhua; Yang Yongji

    2010-01-01

    High-quality water-dispersible Mn 2+ -doped ZnSe core/ZnS shell (Mn:ZnSe/ZnS) nanocrystals have been synthesized directly in aqueous media. Overcoating a high bandgap ZnS shell around the Mn:ZnSe cores can bring forward an efficient energy transfer from the ZnSe host nanocrystals to the dopant Mn. The quantum yields of the dopant Mn photoluminescence in the as-prepared water-soluble Mn:ZnSe/ZnS core/shell nanocrystals can be up to 35 ± 5%. The optical features and structure of the obtained Mn:ZnSe/ZnS core/shell nanocrystals have been characterized by UV-vis, PL spectroscopy, TEM, XRD and ICP elementary analysis. The influences of various experimental variables, including the Mn concentration, the Se/Zn molar ratio as well as the kind and amount of capping ligand used in the core production and shell deposition process, on the luminescent properties of the obtained Mn:ZnSe/ZnS nanocrystals have been systematically investigated.

  20. Magnesium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability

    Science.gov (United States)

    Wang, Guangshuo; Ma, Yingying; Li, Meixia; Cui, Guohua; Che, Hongwei; Mu, Jingbo; Zhang, Xiaoliang; Tong, Yu; Dong, Xufeng

    2017-01-01

    In this study, magnesium ferrite (MgFe2O4) nanocrystal clusters were synthesized using an ascorbic acid-assistant solvothermal method and evaluated as a candidate for magnetorheological (MR) fluid. The morphology, microstructure and magnetic properties of the MgFe2O4 nanocrystal clusters were investigated in detail by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), X-ray diffraction (XRD) and superconducting quantum interference device (SQUID). The MgFe2O4 nanocrystal clusters were suspended in silicone oil to prepare MR fluid and the MR properties were tested using a Physica MCR301 rheometer fitted with a magneto-rheological module. The prepared MR fluid showed typical Bingham plastic behavior, changing from a liquid-like to a solid-like structure under an external magnetic field. Compared with the conventional carbonyl iron particles, MgFe2O4 nanocrystal clusters-based MR fluid demonstrated enhanced sedimentation stability due to the reduced mismatch in density between the particles and the carrier medium. In summary, the as-prepared MgFe2O4 nanocrystal clusters are regarded as a promising candidate for MR fluid with enhanced sedimentation stability.

  1. Synthesis and characterization of MgO nanocrystals for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongji [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Qiu, Guojun [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Cuiping; Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2015-05-25

    Highlights: • MgO nanocrystals were prepared using DC arc plasma jet CVD method. • The growth time does not exceed 10 min in process of the synthesis. • The samples were found to consist of cubic MgO nanobelts and nanosheets. • Nanocrystals contain contacts, rough edges, vacancies, and doping defects. • The samples exhibited excellent electrochemical biosensing properties. - Abstract: MgO nanocrystals were prepared using a simple direct current arc plasma jet chemical vapor deposition method. Magnesium nitrate was used as source material and Mo film was used as a substrate and catalyst. The high-temperature plasma produced ensured rapid synthesis of the MgO nanocrystals. The as-prepared nanocrystals were characterized by field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, energy-dispersive spectroscopy, Fourier transform infrared spectrometry, ultraviolet–visible spectrophotometry, and photoluminescence measurements. The as-synthesized samples were found to consist of cubic MgO nanobelts and nanosheets with large surface areas and low coordination oxide ions, and contained numerous contacts, rough edges, vacancies, and doping defects. The nanostructures exhibited excellent electrochemical sensing properties with high-sensing sensitivity toward ascorbic acid. Their high electrocatalytic activity was attributed to the effect of defects and the surface electron transfer ability of the one-dimensional MgO nanobelts.

  2. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency.

    Science.gov (United States)

    Kong, Ming; Li, Yuanzhi; Chen, Xiong; Tian, Tingting; Fang, Pengfei; Zheng, Feng; Zhao, Xiujian

    2011-10-19

    TiO(2) nanocrystals with tunable bulk/surface defects were synthesized and characterized with TEM, XRD, BET, positron annihilation, and photocurrent measurements. The effect of defects on photocatalytic activity was studied. It was found for the first time that decreasing the relative concentration ratio of bulk defects to surface defects in TiO(2) nanocrystals could significantly improve the separation efficiency of photogenerated electrons and holes, thus significantly enhancing the photocatalytic efficiency.

  3. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core-shell nanocrystals show an enhanced electrocatalytic activity for formic acid oxidation compared with commercial Pd black. This journal is © 2014 The Royal Society of Chemistry.

  4. New self-assembled nanocrystal micelles for biolabels and biosensors.

    Energy Technology Data Exchange (ETDEWEB)

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate

  5. Inhomogeneous magnetic phase in Co–Al–O spinel nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K., E-mail: sato.koichi@nims.go.jp [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Naka, T., E-mail: naka.takashi@nims.go.jp [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Nakane, T. [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Rangappa, D. [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur PO, Hyderabad 500-005 (India); Takami, S. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Ohara, S. [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Adschiri, T. [WPI, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-01-15

    We report on the crystallographic structure and magnetism of 5-nm Co–Al–O spinel nanocrystals synthesized under supercritical hydrothermal conditions. Structural examination using powder X-ray diffraction and chemical analysis showed the composition of the sample to be Co{sub 0.47}Al{sub 2.36}O{sub 4} rather than the stoichiometric composition of CoAl{sub 2}O{sub 4}. The site occupancy of Co on the A-site forming the diamond lattice was 0.47, which is slightly larger than the site percolation limit. Magnetization measurements showed that magnetic clusters emerged below 40 K. At temperatures below 40 K, a Griffiths-phase-like inhomogeneous state appeared in the sample in which magnetic clusters and paramagnetic spins coexisted. The dc-paramagnetic and ac-susceptibilities exhibited an anomaly below 7 K. - Highlights: • The synthesized sample had an Al-rich structure described by Co{sub 0.47}Al{sub 2.36}O{sub 4}. • The site occupancy of Co at the A-site is larger than the site percolation limit of the A-site. • The non-linearity of the magnetization appeared at T<40 K. • The paramagnetic component showed a peak at 7 K. • An inhomogeneous state is established in our Co–Al oxide nanocrystals.

  6. Highly concentrated zinc oxide nanocrystals sol with strong blue emission

    International Nuclear Information System (INIS)

    Vafaee, M.; Sasani Ghamsari, M.; Radiman, S.

    2011-01-01

    Highly concentrated ZnO sol was synthesized by an improved sol-gel method. Water was used as a modifier to control the sol-gel reaction and provide a way to increase the sol concentration. Concentration of ZnO in the prepared sol is higher than from other methods. Optical absorption and photoluminescence were used to investigate optical properties of the prepared sol. FTIR test was performed to study the influence of water on the compounds of as-prepared sol. The size and morphology of ZnO nanoparticles have been studied by HRTEM. The prepared colloidal ZnO nanocrystals have narrow size distribution (5-8 nm) and showed strong blue emission. The prepared sol has enough potential for optoelectronic applications. - Research highlights: → Novel sol-gel route has been employed to prepare highly concentrated ZnO colloidal nanocrystals. → Water has been used to control the sources of emission in synthesized material. → A strong blue luminescent material has been obtained.

  7. Aqueous-phase synthesis and color-tuning of core/shell/shell inorganic nanocrystals consisting of ZnSe, (Cu, Mn)-doped ZnS, and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongwan; Yoon, Sujin [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Felix Sunjoo, E-mail: fskim@cau.ac.kr [School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Kim, Nakjoong, E-mail: kimnj@hanyang.ac.kr [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-06-25

    We report synthesis of colloidal nanocrystals based on ZnSe core, (Cu,Mn)-doped ZnS inner-shell, and ZnS outer-shell by using an eco-friendly method and their optical properties. Synthesis of core/shell/shell nanocrystals was performed by using a one-pot/three-step colloidal method with 3-mercaptopropionic acid as a stabilizer in aqueous phase at low temperature. A double-shell structure was employed with inner-shell as a host for doping and outer-shell as a passivation layer for covering surface defects. Copper and manganese were introduced as single- or co-dopants during inner-shell formation, providing an effective means to control the emission color of the nanocrystals. The synthesized nanocrystals showed fluorescent emission ranging from blue to green, to white, and to orange, adjusted by doping components, amounts, and ratios. The photoluminescence quantum yields of the core/doped-shell/shell nanocrystals approached 36%. - Highlights: • ZnSe/ZnS:(Cu,Ms)/ZnS core/(doped)shell/shell nanocrystals were synthesized in an aqueous phase. • Emission color of nanocrystals was controlled from blue to white to orange by adjusting the atomic ratio of Cu and Mn co-dopants. • Photoluminescence quantum yields of the colloidal nanocrystals approached 36%.

  8. Structure Map for Embedded Binary Alloy Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Stone, P.R.; Watanabe, M.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-09-20

    The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.

  9. Hollow nanocrystals and method of making

    Science.gov (United States)

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  10. Synthesis, spectroscopy and simulation of doped nanocrystals

    NARCIS (Netherlands)

    Suyver, Jan Frederik

    2003-01-01

    This thesis deals with the properties of semiconductor nanocrystals (ZnS or ZnSe) in the size range (diameter) of 2 nm to 10 nm. The nanocrystals under investigation are doped with the transition metal ions manganese or copper. The goal is to study photoluminescence and electroluminescence from

  11. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  12. Symmetry breaking during seeded growth of nanocrystals.

    Science.gov (United States)

    Xia, Xiaohu; Xia, Younan

    2012-11-14

    Currently, most of the reported noble-metal nanocrystals are limited to a high level of symmetry, as constrained by the inherent, face-centered cubic (fcc) lattice of these metals. In this paper, we report, for the first time, a facile and versatile approach (backed up by a clear mechanistic understanding) for breaking the symmetry of an fcc lattice and thus obtaining nanocrystals with highly unsymmetrical shapes. The key strategy is to induce and direct the growth of nanocrystal seeds into unsymmetrical modes by manipulating the reduction kinetics. With silver as an example, we demonstrated that the diversity of possible shapes taken by noble-metal nanocrystals could be greatly expanded by incorporating a series of new shapes drastically deviated from the fcc lattice. This work provides a new method to investigate shape-controlled synthesis of metal nanocrystal.

  13. Measuring the Valence of Nanocrystal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan Scharle [Columbia Univ., New York, NY (United States)

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystal with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.

  14. Ferromagnetism in Fe-doped ZnO Nanocrystals: Experimental and Theoretical investigations

    OpenAIRE

    Karmakar, Debjani; Mandal, S. K.; Kadam, R. M.; Paulose, P. L.; Rajarajan, A. K.; Nath, T. K.; Das, A. K.; Dasgupta, I.; Das, G. P.

    2007-01-01

    Fe-doped ZnO nanocrystals are successfully synthesized and structurally characterized by using x-ray diffraction and transmission electron microscopy. Magnetization measurements on the same system reveal a ferromagnetic to paramagnetic transition temperature > 450 K with a low-temperature transition from ferromagnetic to spin-glass state due to canting of the disordered surface spins in the nanoparticle system. Local magnetic probes like EPR and Mossbauer indicate the presence of Fe in both v...

  15. Synthesis of coesite nanocrystals from ethane bridged periodic mesoporous organosilica at low temperature and extreme pressure.

    Science.gov (United States)

    Liang, Zhili; Mohanty, Paritosh; Fei, Yingwei; Landskron, Kai

    2010-12-14

    Coesite nanocrystals have been synthesized from periodic mesoporous organosilica (PMO) with (CH(2))(2) bridges heated at 300 °C for 150 min and 12 GPa. The crystals are not sintered, single crystalline, and have diameters of ca. 100-300 nm. Below 300 °C, an amorphous non-porous organosilica glass was obtained. Heating above 300 °C at 12 GPa results in the rapid crystal growth and micron size coesite crystals were formed.

  16. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  17. Theory of the thermodynamic influence of solution-phase additives in shape-controlled nanocrystal synthesis.

    Science.gov (United States)

    Qi, Xin; Fichthorn, Kristen A

    2017-10-19

    Though many experimental studies have documented that certain solution-phase additives can play a key role in the shape-selective synthesis of metal nanocrystals, the origins and mechanisms of this shape selectivity are still unclear. One possible role of such molecules is to thermodynamically induce the equilibrium shape of a nanocrystal by altering the interfacial free energies of the facets. Using a multi-scheme thermodynamic integration method that we recently developed [J. Chem. Phys., 2016, 145, 194108], we calculate the solid-liquid interfacial free energies γ sl and investigate the propensity to achieve equilibrium shapes in such syntheses. We first apply this method to Ag(100) and Ag(111) facets in ethylene glycol solution containing polyvinylpyrrolidone (PVP), to mimic the environment in polyol synthesis of Ag nanocrystals. We find that although PVP has a preferred binding to Ag(100), its selectivity is not sufficient to induce a thermodynamic preference for {100}-faceted nanocubes, as has been observed experimentally. This indicates that PVP promotes Ag nanocube formation kinetically rather than thermodynamically. We further quantify the thermodynamic influence of adsorbed solution-phase additives for generic molecules, by building a γ sl ratio/nanocrystal shape map as a function of zero-temperature binding energies. This map can be used to gauge the efficacy of candidate additive molecules for producing targeted thermodynamic nanocrystal shapes. The results indicate that only additives with a strong facet selectivity can impart significant thermodynamic-shape change. Therefore, many of the nanocrystals observed in experiments are likely kinetic products.

  18. UV Photocatalytic Activity for Water Decomposition of SrxBa1−xNb2O6 Nanocrystals with Different Components and Morphologies

    Directory of Open Access Journals (Sweden)

    Guoqiang Han

    2017-01-01

    Full Text Available Strontium barium niobate SrxBa1-xNb2O6 (SBN nanocrystals with different components (x=0.2, 0.4, 0.6, and 0.8 were synthesized by Molten Salt Synthesis (MSS method at various reaction temperatures (T = 950°C, 1000°C, 1050°C, and 1100°C. The SBN nanocrystals yielded through flux reactions possess different morphologies and sizes with a length of about ~100 nm~7 μm and a diameter of about ~200~500 nm. The Scanning Electron Microscopy (SEM and X-ray Diffraction (XRD techniques were used to study the compositions, structures, and morphologies of the nanocrystals. The absorption edges of the SBN nanocrystals are at a wavelength region of approximate 390 nm, which corresponds to band-gap energy of ~3.18 eV. The SBN nanocrystals with different sizes display different photocatalytic activity under ultraviolet light in decomposition of water. The SBN60 nanocrystals exhibit stable photocatalytic rates (~100~130 μmol of H2·g−1·h−1 for hydrogen production. The SBN nanocrystals can be a potential material in the application of photocatalysis and micro/nanooptical devices.

  19. Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals

    International Nuclear Information System (INIS)

    Grzyb, Tomasz; Runowski, Marcin; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2013-01-01

    Terbium fluoride nanocrystals, covered by a shell, composed of cerium fluoride were synthesized by a co-precipitation method. Their complex structure was formed spontaneously during the synthesis. The surface of these core/shell nanocrystals was additionally modified by silica. The properties of TbF 3 @CeF 3 and TbF 3 @CeF 3 @SiO 2 nanocrystals, formed in this way, were investigated. Spectroscopic studies showed that the differences between these two groups of products resulted from the presence of the SiO 2 shell. X-ray diffraction patterns confirmed the trigonal crystal structure of TbF 3 @CeF 3 nanocrystals. High resolution transmission electron microscopy in connection with energy-dispersive X-ray spectroscopy showed a complex structure of the formed nanocrystals. Crystallized as small discs, ‘the products’, with an average diameter around 10 nm, showed an increase in the concentration of Tb 3+ ions from surface to the core of nanocrystals. In addition to photo-physical analyses, cytotoxicity studies were performed on HSkMEC (Human Skin Microvascular Endothelial Cells) and B16F0 mouse melanoma cancer cells. The cytotoxicity of the nanomaterials was neutral for the investigated cells with no toxic or antiproliferative effect in the cell cultures, either for normal or for cancer cells. This fact makes the obtained nanocrystals good candidates for biological applications and further modifications of the SiO 2 shell.Graphical Abstract

  20. Development Considerations for Nanocrystal Drug Products.

    Science.gov (United States)

    Chen, Mei-Ling; John, Mathew; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Nanocrystal technology has emerged as a valuable tool for facilitating the delivery of poorly water-soluble active pharmaceutical ingredients (APIs) and enhancing API bioavailability. To date, the US Food and Drug Administration (FDA) has received over 80 applications for drug products containing nanocrystals. These products can be delivered by different routes of administration and are used in a variety of therapeutic areas. To aid in identifying key developmental considerations for these products, a retrospective analysis was performed on the submissions received by the FDA to date. Over 60% of the submissions were for the oral route of administration. Based on the Biopharmaceutics Classification System (BCS), most nanocrystal drugs submitted to the FDA are class II compounds that possess low aqueous solubility and high intestinal permeability. Impact of food on drug bioavailability was reduced for most nanocrystal formulations as compared with their micronized counterparts. For all routes of administration, dose proportionality was observed for some, but not all, nanocrystal products. Particular emphasis in the development of nanocrystal products was placed on the in-process tests and controls at critical manufacturing steps (such as milling process), mitigation and control of process-related impurities, and the stability of APIs or polymorphic form (s) during manufacturing and upon storage. This emphasis resulted in identifying challenges to the development of these products including accurate determination of particle size (distribution) of drug substance and/or nanocrystal colloidal dispersion, identification of polymorphic form (s), and establishment of drug substance/product specifications.

  1. Nanocrystals of a new complex perovskite dielectric Ba{sub 2}TmSbO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Nair, V.M. [Department of Physics, University College, Trivandrum 695034, Kerala (India); Jose, R., E-mail: rjose@ump.edu.my [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan (Malaysia); Anil Kumar, G.M. [Noritake Co Ltd, 300 Higashiyama, Miyoshi, Aichi 470-0293 (Japan); Yusoff, Mashitah M. [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan (Malaysia); Wariar, P.R.S. [Department of Physics, University College, Trivandrum 695034, Kerala (India)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer A new material, Ba{sub 2}TmSbO{sub 6}, has been synthesized as nanocrystals for the first time. Black-Right-Pointing-Pointer A combustion process, characterized by a one-pot procedure, was adopted to synthesize Ba{sub 2}TmSbO{sub 6} as nanocrystals. Black-Right-Pointing-Pointer Crystal structure and dielectric properties of the Ba{sub 2}TmSbO{sub 6} have been studied and compared with similar materials. - Abstract: Nanocrystals of a new complex perovskites ceramic oxide, barium thulium antimony oxide - Ba{sub 2}TmSbO{sub 6}, were synthesized using a single step auto-ignition combustion process. The combustion product was single phase and composed of aggregates of nanocrystals of sizes in the range 20-50 nm. Ba{sub 2}TmSbO{sub 6} crystallized in cubic perovskite structure with lattice parameter, a = 8.4101 Angstrom-Sign . The polycrystalline fluffy combustion product was sintered to high density ({approx}97%) at {approx}1450 Degree-Sign C for 4 h. Resistivity of the sintered specimen was {approx}5 M{Omega}/cm. The Ba{sub 2}TmSbO{sub 6} has dielectric constant ({epsilon} Prime ) and dielectric loss (tan {delta}) of 17 and {approx}10{sup -4} at 5 MHz; the new material would probably be developed as a low-loss dielectric material.

  2. Effects of La0.2Ce0.6Eu0.2F3 nanocrystals capped with polyethylene glycol on human pancreatic cancer cells in vitro

    Science.gov (United States)

    Withers, Nathan J.; Glazener, Natasha N.; Rivera, Antonio C.; Akins, Brian A.; Armijo, Leisha M.; Plumley, John B.; Cook, Nathaniel C.; Sugar, Jacqueline M.; Chan, Rana; Brandt, Yekaterina I.; Smolyakov, Gennady A.; Heintz, Philip H.; Osiński, Marek

    2013-02-01

    Lanthanide fluoride colloidal nanocrystals offer a way to improve the diagnosis and treatment of cancer through the enhanced absorption of ionizing radiation, in addition to providing visible luminescence. In order to explore this possibility, tests with a kilovoltage therapy unit manufactured by the Universal X-Ray Company were performed to estimate the energy sensitivity of this technique. La0.2Ce0.6Eu0.2F3 nanocrystals capped with polyethylene glycol of molecular weight 6000 were synthesized, suspended in deionized water, and made tolerant to biological ionic pressures by incubation with fetal bovine serum. These nanocrystals were characterized by dynamic light scattering, muffle furnace ashing, and photoluminescence spectroscopy. Clonogenic assays were performed on the cells to assay the cytotoxicity and radiotoxicity of the nanocrystals on the human pancreatic cancer cell line PANC-1, purchased from ATCC.

  3. Optical Amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ Nanocrystals Doped SU-8 Polymer Waveguide

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhao

    2014-01-01

    Full Text Available We demonstrated optical amplification in BaYF5: 20% Yb3+, 2% Er3+ (BYF nanocrystals doped polymer waveguide. BYF nanocrystals with an average size of ∼13 nm were synthesized by a high-boiling solvent process. Intense 1.53 μm fluorescence was obtained in the nanocrystals under excitation at 980 nm. An optical polymer waveguide was fabricated by using BYF nanocrystals doped SU-8 polymer as the core material. A relative optical gain of ∼10.4 dB at 1525 nm was achieved in a 1.1 cm long waveguide for an input signal power of ∼0.09 mW and a pump power of ∼212 mW.

  4. Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity

    International Nuclear Information System (INIS)

    Guo Hai; Li Zhengquan; Qian Haisheng; Hu Yong; Muhammad, Idris Niagara

    2010-01-01

    Rational combination of different functional lanthanide materials within a single nanocrystal presents a feasible way to develop a multifunctional nanoplatform for various biomedical applications. The conventional methods of synthesizing and integrating two kinds of material together generally involve laborious procedures, whilst codoping different functional ions inside a single lanthanide nanocrystal usually results in a decrease in both its fluorescence and its magnetic resonance relaxivity. Here, we present a seed-mediated synthetic route to prepare core-shell structured NaY F 4 :Y b, Er/NaGdF 4 nanocrystals. Epitaxial growth of a gadolinium layer on an upconversion lanthanide seed not only improves its upconversion fluorescence, but also creates a paramagnetic shell with high magnetic resonance relaxivity. The prepared nanocrystals are uniform in size, stable in water and easy for conjugation after modification, which may have the potential to serve as a versatile imaging tool for smart detection or diagnosis in future biomedical engineering.

  5. Targeted Delivery of Hyaluronan-Immobilized Magnetic Ceramic Nanocrystals.

    Science.gov (United States)

    Wu, Hsi-Chin; Wang, Tzu-Wei; Hsieh, Shun-Yu; Sun, Jui-Sheng; Kang, Pei-Leun

    2016-01-01

    Effective cancer therapy relies on delivering the therapeutic agent precisely to the target site to improve the treatment outcome and to minimize side effects. Although surgery, chemotherapy, and radiotherapy are the standard methods commonly used in clinics, hyperthermia has been developed as a new and promising strategy for cancer therapy. In this study, magnetic bioceramic hydroxyapatite (mHAP) nanocrystals have been developed as heat mediator for intracellular hyperthermia. Hyaluronic acid (HA) modified mHAP nanocrystals are synthesized by a wet chemical precipitation process to achieve active targeting. The results demonstrate that the HA targeting moiety conjugated by a poly(ethylene glycol) (PEG) spacer arm is successfully immobilized on the surface of mHAP. The HA-modified mHAP possesses relatively good biocompatibility, an adequate biodegradation rate and superparamagnetic properties. The HA-modified mHAP could be localized and internalized into HA receptor-overexpressed malignant cells (e.g., MDA-MB-231 cell) and used as the heat generating agent for intracellular hyperthermia. The results from this study indicate that biocompatible HA-modified mHAP shows promise as a novel heat mediator and a specific targeting nanoagent for intracellular hyperthermia cancer therapy.

  6. Synthesis and characterization of ZnSe:Fe/ZnSe core/shell nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Zhu, Jianguo, E-mail: yanglin_1028@163.com; Xiao, Dingquan

    2014-04-15

    High-quality ZnSe:Fe/ZnSe core/shell nanocrystals were prepared via a hydrothermal microemulsion technique. Effective surface passivation of monodisperse ZnSe:Fe nanocrystals is achieved by overcoating them with a ZnSe shell. The samples were characterized by means of XRD, EDX, TEM, PSD, XPS, photoluminescence, and Raman spectrum. The results show that the as-synthesized nanocrystals are cubic zinc blende ZnSe structure with high purity and the average particle size of ZnSe:Fe/ZnSe core/shell nanocrystal is larger than that of ZnSe:Fe core. The growth of ZnSe shell causes a small red shift in PL spectra, and then the PL quantum yield (QY) increases from 16% before shell growth to the maximum of 37% after increasing shell thickness up to 1.2 monolayers (ML). Moreover, both transverse optic (TO) and longitudinal optic (LO) phonon modes of ZnSe are shifted toward lower frequency as compared with the reported ones. -- Highlights: • ZnSe:Fe/ZnSe core/shell QDs were prepared by a hydrothermal microemulsion method. • ZnSe shell efficiently passivates surface defects by serving as a physical barrier. • The particle size and PL properties can be turned with the growth of ZnSe shell. • The luminescence efficiency and stability of QDs could be improved in this manner.

  7. New crystal structures in hexagonal CuInS2 nanocrystals

    Science.gov (United States)

    Shen, Xiao; Hernández-Pagan, Emil A.; Zhou, Wu; Puzyrev, Yevgeniy S.; Idrobo, Juan C.; MacDonald, Janet E.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2013-03-01

    CuInS2 is one of the best candidate materials for solar energy harvesting. Its nanocrystals with a hexagonal lattice structure that is different from the bulk chalcopyrite phase have been synthesized by many groups. The structure of these CuInS2 nanocrystals has been previously identified as the wurtzite structure in which the copper and indium atoms randomly occupy the cation sites. Using first-principles total energy and electronic structure calculations based on density functional theory, UV-vis absorption spectroscopy, X-ray diffraction, and atomic resolution Z-contrast images obtained in an aberration-corrected scanning transmission electron microscope, we show that CuInS2 nanocrystals do not form random wurtzite structure. Instead, the CuInS2 nanocrystals consist of several wurtzite- related crystal structures with ordered cation sublattices, some of which are reported for the first time here. This work is supported by the NSF TN-SCORE (JEM), by NSF (WZ), by ORNL's Shared Research Equipment User Program (JCI) sponsored by DOE BES, by DOE BES Materials Sciences and Engineering Division (SJP, STP), and used resources of the National Energy Research Scientific Computing Center, supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231.

  8. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Annamaria Panniello

    2014-01-01

    Full Text Available Polymeric ionic liquids (PILs are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites.

  9. Shape and phase control of CdS nanocrystals using cationic surfactant in noninjection synthesis

    Directory of Open Access Journals (Sweden)

    Zou Yu

    2011-01-01

    Full Text Available Abstract Monodispersed CdS nanocrystals with controllable shape and phase have been successfully synthesized in this study by adding cationic surfactant in noninjection synthesis system. With the increase of the amount of cetyltrimethylammonium chloride (CTAC added, the shape of the CdS nanocrystals changed from spherical to multi-armed, and the phase changed from zinc-blende to wurtzite. It was found that halide ion Cl- plays a key role in the transformation, and other halide ions such as Br- can also induce similar transformation. We proposed that the strong binding between Cd2+ and halide ions reduced the reactivity of the precursors, decreased the nuclei formed in the nucleation stage, and led to the high concentration of precursor in the growth stage, resulting in the increase of size and phase transformation of CdS nanocrystals. In addition, it was found that the multi-armed CdS nanocrystals lost quantum confinement effect because of the increase of the size with the increase of the concentration of CTAC.

  10. Evolvement of soft templates in surfactant/cosurfactant system for shape control of ZnSe nanocrystals

    International Nuclear Information System (INIS)

    Hou Bo; Liu Yongjun; Li Yanjuan; Yuan Bo; Jia Mingfen; Jiang Fengzhi

    2012-01-01

    Highlights: ► Soft templates were found in the shape control synthesis of ZnSe nanocrystals. ► Micelle formation model in the soft templates system was proposed and proved. ► Different shapes of ZnSe nanocrystals were prepared and explained by proposed model. - Abstract: The evolution of soft templates in the synthesis of ZnSe nanocrystals realized through a surfactant/cosurfactant system was investigated and a micelle formation process model was proposed. Through freeze-fracture electron microscopy, it was proven that template micelles were formed in the zinc precursors. Furthermore, it was found that a long stirring period was essential for achieving the lowest energy state of the soft templates which were used for synthesizing monodisperse ZnSe quantum dots.

  11. Evolvement of soft templates in surfactant/cosurfactant system for shape control of ZnSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hou Bo [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Liu Yongjun [Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China); Li Yanjuan [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Yuan Bo [Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China); Jia Mingfen [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Jiang Fengzhi, E-mail: fengzhij@ynu.edu.cn [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Soft templates were found in the shape control synthesis of ZnSe nanocrystals. Black-Right-Pointing-Pointer Micelle formation model in the soft templates system was proposed and proved. Black-Right-Pointing-Pointer Different shapes of ZnSe nanocrystals were prepared and explained by proposed model. - Abstract: The evolution of soft templates in the synthesis of ZnSe nanocrystals realized through a surfactant/cosurfactant system was investigated and a micelle formation process model was proposed. Through freeze-fracture electron microscopy, it was proven that template micelles were formed in the zinc precursors. Furthermore, it was found that a long stirring period was essential for achieving the lowest energy state of the soft templates which were used for synthesizing monodisperse ZnSe quantum dots.

  12. Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Huang, Kai; Demadrille, Renaud; Silly, Mathieu G; Sirotti, Fausto; Reiss, Peter; Renault, Olivier

    2010-08-24

    High-energy resolution photoelectron spectroscopy (DeltaE InP/ZnS core/shell nanocrystals synthesized using a single-step procedure (core and shell precursors added at the same time), a homogeneously alloyed InPZnS core structure is evidenced by quantitative analysis of their In3d(5/2) spectra recorded at variable excitation energy. When using a two-step method (core InP nanocrystal synthesis followed by subsequent ZnS shell growth), XPS analysis reveals a graded core/shell interface. We demonstrate the existence of In-S and S(x)-In-P(1-x) bonding states in both types of InP/ZnS nanocrystals, which allows a refined view on the underlying reaction mechanisms.

  13. A novel one-pot room-temperature synthesis route to produce very small photoluminescent silicon nanocrystals

    Science.gov (United States)

    Douglas-Gallardo, Oscar A.; Burgos-Paci, Maxi A.; Mendoza-Cruz, Rubén; Putnam, Karl G.; Josefina Arellano-Jiménez, M.; José-Yacamán, Miguel; Mariscal, Marcelo M.; Macagno, Vicente A.; Sánchez, Cristián G.; Pérez, Manuel A.

    2018-03-01

    A novel strategy to synthesize photoluminescent silicon nanocrystals (SiNCs) from a reaction between tetraethylorthosilicate (TEOS) and trimethyl-hexadecyl-ammonium borohydride (CTABH4) in organic solvent is presented. The formation reaction occurs spontaneously at room temperature in homogeneous phase. The produced silicon nanocrystals are characterized by using their photoluminescent properties and via HRTEM. In addition, theoretical calculations of the optical absorption spectrum of silicon quantum dots in vacuum with different sizes and surface moieties were performed in order to compare with the experimental findings. The new chemical reaction is simple and can be implemented to produce silicon nanocrystal with regular laboratory materials by performing easy and safe procedures. [Figure not available: see fulltext.

  14. Synthesis of optimized indium phosphide/zinc sulfide core/shell nanocrystals and titanium dioxide nanotubes for quantum dot sensitized solar cells

    Science.gov (United States)

    Lee, Seungyong

    Synthesis of InP/ZnS core/shell nanocrystals and TiO 2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air stability, a ZnS shell was grown. The ZnS shell improves the chemical stability in terms of oxidation prevention. Transmission electron microscopy (TEM) image shows that the nanocrystals are highly crystalline and monodisperse. Free-standing TiO2 nanotubes were produced by an anodization method using ammonium fluoride. The free-standing nanotubes were formed under the condition that the chemical dissolution speed associated with fluoride concentration was faster than the speed of Ti oxidation. Highly ordered free-standing anatase form TiO2 nanotubes, which are transformed by annealing at the optimized temperature, are expected to be ideal for coupling with the prepared InP/ZnS nanocrystals. Electrophoretic deposition was carried out to couple the InP/ZnS nanocrystals with the TiO2 nanotubes. Under the adjusted applied voltage condition, the current during the electrophoretic deposition decreased continuously with time. The amount of the deposited nanocrystals was estimated by calculation and the evenly deposited nanocrystals on the TiO2 nanotubes were observed by TEM.

  15. Charge transport in a CoPt3 nanocrystal microwire

    International Nuclear Information System (INIS)

    Beecher, P.; De Marzi, G.; Quinn, A.J.; Redmond, G.; Shevchenko, E.V.; Weller, H.

    2004-01-01

    The electrical characteristics of single CoPt 3 nanocrystal microwires formed by magnetic field-directed growth from colloidal solutions are presented. The wires comprise disordered assemblies of discrete nanocrystals, separated from each other by protective organic ligand shells. Electrical data indicate that the activated charge transport properties of the wires are determined by the nanocrystal charging energy, governed by the size and capacitance of the individual nanocrystals. Focused ion beam-assisted deposition of Pt metal at the wire-electrode junctions is employed to optimize the wire-electrode contacts, whilst maintaining the nanocrystal-dominated transport characteristics of these one-dimensional nanocrystal structures

  16. Composite material including nanocrystals and methods of making

    Science.gov (United States)

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  17. High Temperature AL-Nanocrystal Alloy Synthesis

    National Research Council Canada - National Science Library

    Perepezko, J

    2001-01-01

    Aluminum-rich metallic glasses containing transition metals and rare earth elements have been found to yield finely mixed microstructures of Al nanocrystals embedded in an amorphous matrix and exhibit...

  18. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  19. Hybridization of Single Nanocrystals of Cs4PbBr6 and CsPbBr3.

    Science.gov (United States)

    Weerd, Chris de; Lin, Junhao; Gomez, Leyre; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2017-09-07

    Nanocrystals of all-inorganic cesium lead halide perovskites (CsPbX 3 , X = Cl, Br, I) feature high absorption and efficient narrow-band emission which renders them promising for future generation of photovoltaic and optoelectronic devices. Colloidal ensembles of these nanocrystals can be conveniently prepared by chemical synthesis. However, in the case of CsPbBr 3 , its synthesis can also yield nanocrystals of Cs 4 PbBr 6 and the properties of the two are easily confused. Here, we investigate in detail the optical characteristics of simultaneously synthesized green-emitting CsPbBr 3 and insulating Cs 4 PbBr 6 nanocrystals. We demonstrate that, in this case, the two materials inevitably hybridize, forming nanoparticles with a spherical shape. The actual amount of these Cs 4 PbBr 6 nanocrystals and nanohybrids increases for synthesis at lower temperatures, i.e., the condition typically used for the development of perovskite CsPbBr 3 nanocrystals with smaller sizes. We use state-of-the-art electron energy loss spectroscopy to characterize nanoparticles at the single object level. This method allows distinguishing between optical characteristics of a pure Cs 4 PbBr 6 and CsPbBr 3 nanocrystal and their nanohybrid. In this way, we resolve some of the recent misconceptions concerning possible visible absorption and emission of Cs 4 PbBr 6 . Our method provides detailed structural characterization, and combined with modeling, we conclusively identify the nanospheres as CsPbBr 3 /Cs 4 PbBr 6 hybrids. We show that the two phases are independent of each other's presence and merge symbiotically. Herein, the optical characteristics of the parent materials are preserved, allowing for an increased absorption in the UV due to Cs 4 PbBr 6 , accompanied by the distinctive efficient green emission resulting from CsPbBr 3 .

  20. Photoluminescence of nanocrystals embedded in oxide matrices

    International Nuclear Information System (INIS)

    Estrada, C.; Gonzalez, J.A.; Kunold, A.; Reyes-Esqueda, J.A.; Pereyra, P.

    2006-12-01

    We used the theory of finite periodic systems to explain the photoluminescence spectra dependence on the average diameter of nanocrystals embedded in oxide matrices. Because of the broad matrix band gap, the photoluminescence response is basically determined by isolated nanocrystals and sequences of a few of them. With this model we were able to reproduce the shape and displacement of the experimentally observed photoluminescence spectra. (author)

  1. Highly efficient one-step synthesis of carbon encapsulated nanocrystals by the oxidation of metal π-complexes

    Science.gov (United States)

    Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge

    2017-08-01

    Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.

  2. Pd@Au core-shell nanocrystals with concave cubic shapes: kinetically controlled synthesis and electrocatalytic properties.

    Science.gov (United States)

    Zhang, Ling; Niu, Wenxin; Zhao, Jianming; Zhu, Shuyun; Yuan, Yali; Hua, Lianzhe; Xu, Guobao

    2013-01-01

    A new type of concave cubic Pd@Au core-shell nanocrystals is synthesized through a kinetically controlled growth process. Pd nanocubes of 56 nm are used as the inner core, and CTAC and Br(-) are used as the capping agent and selective adsorbent, respectively. A suitable ratio of HAuCl4 and cubic Pd seeds and the presence of Br(-) anions are critical to the growth of the concave cubic Pd@Au core-shell nanocrystals. The fast deposition rate on the corners of the cubic Pd seeds promotes the overgrowth of the Au outer shell along the direction, leading to the formation of concave cubic nanostructures. The reduction process is monitored by the surface plasmon resonance spectra of the nanocrystals, and the extinction band became broader and red shifted as the nanocrystals became larger. The electrocatalytic properties of the concave cubic Pd@Au core-shell nanocrystals were investigated with the cathodic electrochemiluminescence reaction of luminol and H2O2. A possible electrocatalytic mechanism was proposed and analyzed.

  3. Sub-2 nm SnO2 nanocrystals: A reduction/oxidation chemical reaction synthesis and optical properties

    International Nuclear Information System (INIS)

    Zhang Hui; Du Ning; Chen Bindi; Cui Tianfeng; Yang Deren

    2008-01-01

    A simple reduction/oxidation chemical solution approach at room temperature has been developed to synthesize ultrafine SnO 2 nanocrystals, in which NaBH 4 is used as a reducing agent instead of mineralizers such as sodium hydroxide, ammonia, and alcohol. The morphology, structure, and optical property of the ultrafine SnO 2 nanocrystals have been characterized by high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD), differential scanning calorimetry and thermogravimetric analysis (DSC-TGA), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy. It is indicated that the uniform tetragonal ultrafine SnO 2 nanocrystals with the size below 2 nm have been fabricated at room temperature. The band gap of the ultrafine SnO 2 nanocrystals is about 4.1 eV, exhibiting 0.5 eV blue shift from that of the bulk SnO 2 (3.6 eV). Furthermore, the mechanism for the reduction/oxidation chemical reaction synthesis of the ultrafine SnO 2 nanocrystals has been preliminary presented

  4. Applying analytical ultracentrifugation to nanocrystal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Jennifer A; Krueger, Karl M; Mayo, J T; Yavuz, Cafer T; Redden, Jacina J; Colvin, Vicki L, E-mail: colvin@rice.ed [Department of Chemistry, Rice University, 6100 Main Street, MS-60, Houston, TX 77005 (United States)

    2009-09-02

    While applied frequently in physical biochemistry to the study of protein complexes, the quantitative use of analytical ultracentrifugation (AUC) for nanocrystal analysis is relatively rare. Its application in nanoscience is potentially very powerful as it provides a measure of nanocrystal density, size and structure directly in the solution phase. Towards that end, this paper examines the best practices for applying data collection and analysis methods for AUC, geared towards the study of biomolecules, to the unique problems of nanoparticle analysis. Using uniform nanocrystals of cadmium selenide, we compared several schemes for analyzing raw sedimentation data. Comparable values of the mean sedimentation coefficients (s-value) were found using several popular analytical approaches; however, the distribution in sample s-values is best captured using the van Holde-Weischt algorithm. Measured s-values could be reproducibly collected if sample temperature and concentration were controlled; under these circumstances, the variability for average sedimentation values was typically 5%. The full shape of the distribution in s-values, however, is not easily subjected to quantitative interpretation. Moreover, the selection of the appropriate sedimentation speed is crucial for AUC of nanocrystals as the density of inorganic nanocrystals is much larger than that of solvents. Quantitative analysis of sedimentation properties will allow for better agreement between experimental and theoretical models of nanocrystal solution behavior, as well as providing deeper insight into the hydrodynamic size and solution properties of nanomaterials.

  5. Bright trions in direct-bandgap silicon nanocrystals revealed bylow-temperature single-nanocrystal spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina; Pelant, Ivan; Valenta, J.

    2015-01-01

    Roč. 4, Oct (2015), e336 ISSN 2047-7538 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon nanocrystals * single-nanocrystal spectroscopy * luminescing trions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.600, year: 2015

  6. Solution synthesis of germanium nanocrystals

    Science.gov (United States)

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  7. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  8. 2009 Clusters, Nanocrystals & Nanostructures GRC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai-Sheng [Washington State Univ., Pullman, WA (United States)

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral

  9. Domain morphology controlled crystal habits in PbTiO{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dudhe, C.M., E-mail: chandraguptadudhe@gmail.com; Khambadkar, S.J.

    2015-11-05

    Various crystal habits and associated domain structures in PbTiO{sub 3} nanocrystals synthesized by a modified sol–gel method have been studied. Structural and morphological characterizations of synthesized nanoparticles have been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found from the -z coordinates of O{sub 1} and O{sub 2} that the Ti–O{sub 6} octahedra were distorted slightly, favorable for the ferroelectric nature. TEM images show butterfly like, plate like, irregular sphere like and oval-shaped habits of the nanocrystals. 90° and 180° domain structures in these crystal habits were explored from their morphologies and appearance in the field of views. The mutual association between the crystal habit and the direction spontaneous polarization P{sub s} due to domain structures was explored. Domain wall energies of 90° and 180° domains were also estimated from the kinetic process of domain nucleation. - Highlights: • Various crystal habits of PbTiO{sub 3} nanoparticles were examined by TEM. • 90° and 180° domains were explored in the nanocrystal. • Crystal habits and domain structures were correlated. • Domain wall energies were estimated.

  10. Morphologically different WO3 nanocrystals in photoelectrochemical water oxidation

    International Nuclear Information System (INIS)

    Biswas, Soumya Kanti; Baeg, Jin-Ook; Moon, Sang-Jin; Kong, Ki-jeong; So, Won-Wook

    2012-01-01

    Different morphologies of WO 3 nanocrystals such as nanorods and nanoplates have been obtained under hydrothermal conditions using ammonium metatungstate as the precursor in presence of different organic acids such as citric, oxalic, and tartaric acid in the reaction medium. Detailed characterization of the crystal structure, particle morphology, and optical band gap of the synthesized powders have been done by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and solid-state UV–visible spectroscopy study. The as-synthesized materials are WO 3 hydrates with orthorhombic phase which transform to the hexagonal WO 3 through dehydration upon heating at 350 °C. The resultant products are crystalline with nanoscale dimensions. Finally, the photoactivity of the synthesized materials annealed at 500 °C has been compared employing in photoelectrochemical water oxidation under the illumination of AM 1.5G simulated solar light (100 mWcm −2 ). The photocurrent measurements upon irradiation of light exhibit obvious photocatalytic activity with a photocurrent of about 0.77, 0.61, and 0.65 mAcm −2 for the WO 3 film derived with the oxalic acid, tartaric, and citric acid assisting agents, respectively, at 1.8 V versus Ag/AgCl electrode.

  11. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds

    International Nuclear Information System (INIS)

    Tang Aiwei; Wang Yu; Ye Haihang; Zhou Chao; Yang Chunhe; Li Xu; Peng Hongshang; Zhang Fujun; Hou Yanbing; Teng Feng

    2013-01-01

    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag 2 S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S–C bonds or Ag–S bonds. Pure Ag 2 S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag 2 S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S–C and Ag–S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag–S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals. (paper)

  12. Dopant concentration dependent magnetism of Cu-doped TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Anitha, B.; Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com [University of Kerala, Centre for Nanoscience and Nanotechnology (India)

    2016-06-15

    Undoped and Cu-doped nanocrystals of TiO{sub 2} having the size range of 8–11 nm were synthesized by peroxide gel method. XRD analysis using Rietveld refinement confirmed anatase phase with a small percentage of rutile content for undoped TiO{sub 2} nanocrystals while a pure anatase phase with preferential growth along [004] direction was observed for nanocrystals of Cu-doped TiO{sub 2}. Variation in the intensity ratios of the XRD peaks of the doped samples compared to that of the undoped sample offered an evidence for the substitutional incorporation of Cu ions in the TiO{sub 2} lattice. The preferential growth of the nanocrystals along the [004] direction was verified using HRTEM analysis. Cu doping extended the optical absorption edge of TiO{sub 2} nanocrystals to the visible spectral region and caused a blue shift and broadening of the E{sub g} (1) Raman active mode of anatase TiO{sub 2}. Undoped TiO{sub 2} sample showed a weak ferromagnetism superimposed on a diamagnetic background while Cu-doped TiO{sub 2} samples exhibited a weak ferromagnetism in the low-field region with a paramagnetic component in the high-field region. The magnetic moment exhibited by the doped samples is interpreted as the resultant of a weak ferromagnetic moment in the low-field region arising from the presence of defects near the surface of TiO{sub 2} nanoparticles or from the interaction of the substituted Cu ions with the oxygen vacancies, and the paramagnetic contribution from the increased Cu dopant concentration near the surface of the particles arising from self-purification mechanism.

  13. Assembling a Lasing Hybrid Material With Supramolecular Polymers and Nanocrystals

    National Research Council Canada - National Science Library

    Li, Leiming

    2003-01-01

    .... In the system containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid material forming an ultraviolet lasing medium with a lower threshold relative to pure ZnO nanocrystals.

  14. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  15. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-01-01

    -performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a

  16. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  17. Light Scattering Spectroscopies of Semiconductor Nanocrystals (Quantum Dots)

    International Nuclear Information System (INIS)

    Yu, Peter Y; Gardner, Grat; Nozaki, Shinji; Berbezier, Isabelle

    2006-01-01

    We review the study of nanocrystals or quantum dots using inelastic light scattering spectroscopies. In particular recent calculations of the phonon density of states and low frequency Raman spectra in Ge nanocrystals are presented for comparison with experimental results

  18. Structural Characterization of Bimetallic Nanocrystal Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, David A [ORNL

    2016-01-01

    catalytic activity. A volcano relationship was observed for the core-shell nanoicosahedra having different Pd-shell thicknesses as Pd content is increased (Figure 2g). Durability tests are ongoing for the AuPd system; however, promising ORR materials and morphologies have also been synthesized for a more cost-effective Cu-based system of Cu-CuM (M = Pd, Rh, Pt) core-alloy-shell nanocrystals. The synthesis, characterization, and catalytic behavior of different high-index faceted morphologies of Cu-based materials towards ORR and methanol oxidation catalysis will be discussed, where we show how they exceed the performance of commercial Pd- and Pt- based catalysts. The development of new materials and their characterization is critical to understanding the effects of structure and composition on catalysis. Future efforts are directed at resolving these structures and more industrially relevant fuel cell catalysts in 3D through electron tomography.[4] References: [1] X. Huang, et al., Science 348 (2015) p. 1230. [2] P. Strasser, et al., Nat. Chem. 2 (2010) p. 454. [3] C. Chen, et al., Science 343 (2014) p. 1339. [4] Microscopy performed as part of a user project through ORNL s Center for Nanophase Materials Sciences, which is a U.S. DOE Office of Science User Facility, and instrumentation provided by the U.S. DOE Office of Nuclear Energy, Fuel Cycle R&D Program, and the Nuclear Science User Facilities.

  19. Selective synthesis and characterization of sea urchin-like metallic nickel nanocrystals

    International Nuclear Information System (INIS)

    Liu Xiaohe; Liang Xudong; Zhang Ning; Qiu Guanzhou; Yi Ran

    2006-01-01

    Sea urchin-like nanobelt-based and nanorod-based metallic nickel nanocrystals have been selective synthesized via a hydrothermal reduction route in which sodium hydroxide was used as alkaline reagent and aqueous hydrazine (N 2 H 4 .H 2 O) was used as reducing agent. The morphology and structure of final products could be easily controlled by adjust process parameters such as hydrothermal time, reaction temperature and alkaline concentration. Surfactant cetyltrimethylammonium bromide (CTAB) was also important parameter influencing the morphology of the products. The morphology and phase structure of the final products have been investigated by X-ray diffraction, transmission electron microscopy and selected area electron diffraction. The probable formation mechanism of the sea urchin-like metallic nickel nanocrystals was discussed on the basis of the experimental results

  20. Hydrothermal synthesis and characterization of sea urchin-like nickel and cobalt selenides nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China) and School of Metallurgical Science and Engineering, Central South University, Changsha, Hunan 410083 (China)]. E-mail: liuxh@mail.csu.edu.cn; Zhang Ning [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yi Ran [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Qiu Guanzhou [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yan Aiguo [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Wu Hongyi [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Meng Dapeng [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Tang, Motang [School of Metallurgical Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2007-05-25

    Sea urchin-like nanorod-based nickel and cobalt selenides nanocrystals have been selective synthesized via a hydrothermal reduction route in which hydrated nickel chloride and hydrated cobalt chloride were employed to supply Ni and Co source and aqueous hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) was used as reducing agent. The composition, morphology, and structure of final products could be easily controlled by adjusting the molar ratios of reactants and process parameters such as hydrothermal time. The morphology and phase structure of the final products have been investigated by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The probable formation mechanism of the sea urchin-like nanorod-based nickel and cobalt selenides nanocrystals was discussed on the basis of the experimental results.

  1. Selective synthesis and characterization of sea urchin-like metallic nickel nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China)]. E-mail: liuxh@mail.csu.edu.cn; Liang Xudong [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Zhang Ning [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Qiu Guanzhou [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yi Ran [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China)

    2006-08-15

    Sea urchin-like nanobelt-based and nanorod-based metallic nickel nanocrystals have been selective synthesized via a hydrothermal reduction route in which sodium hydroxide was used as alkaline reagent and aqueous hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) was used as reducing agent. The morphology and structure of final products could be easily controlled by adjust process parameters such as hydrothermal time, reaction temperature and alkaline concentration. Surfactant cetyltrimethylammonium bromide (CTAB) was also important parameter influencing the morphology of the products. The morphology and phase structure of the final products have been investigated by X-ray diffraction, transmission electron microscopy and selected area electron diffraction. The probable formation mechanism of the sea urchin-like metallic nickel nanocrystals was discussed on the basis of the experimental results.

  2. Statistical analysis of sonochemical synthesis of SAPO-34 nanocrystals using Taguchi experimental design

    International Nuclear Information System (INIS)

    Askari, Sima; Halladj, Rouein; Nazari, Mahdi

    2013-01-01

    Highlights: ► Sonochemical synthesis of SAPO-34 nanocrystals. ► Using Taguchi experimental design (L9) for optimizing the experimental procedure. ► The significant effects of all the ultrasonic parameters on the response. - Abstract: SAPO-34 nanocrystals with high crystallinity were synthesized by means of sonochemical method. An L9 orthogonal array of the Taguchi method was implemented to investigate the effects of sonication conditions on the preparation of SAPO-34 with respect to crystallinity of the final product phase. The experimental data establish the favorable phase crystallinity which is improved by increasing the ultrasonic power and the sonication temperature. In the case of ultrasonic irradiation time, however, an initial increases in crystallinity from 5 min to 15 min is followed by a decrease in crystallinity for longer sonication time

  3. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Claridge, Shelley A. [Univ. of California, Berkeley, CA (United States)

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  4. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang; Huang, Dabing; Wang, Honghui; Zhou, Zhiyou; Wang, Qingxiao

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core

  5. Facile synthesis and electrochemiluminescence application of concave trisoctahedral Pd@Au core-shell nanocrystals bound by {331} high-index facets.

    Science.gov (United States)

    Zhang, Ling; Niu, Wenxin; Li, Zhiyuan; Xu, Guobao

    2011-10-07

    Concave trisoctahedral (TOH) Pd@Au core-shell nanocrystals bound by {331} facets have been synthesized for the first time. Pd nanocubes and cetyltrimethylammonium chloride were used as the structure-directing cores and capping agents, respectively. Their optical and electrocatalytic properties were investigated. This journal is © The Royal Society of Chemistry 2011

  6. Solvent-Induced Deposition of Cu-Ga-In-S Nanocrystals onto a Titanium Dioxide Surface for Visible-Light-Driven Photocatalytic Hydrogen Production

    KAUST Repository

    Kandiel, Tarek; Takanabe, Kazuhiro

    2015-01-01

    In this paper, copper-gallium-indium-sulfide (CGIS) nanocrystals with different Ga/In ratios, i.e., CuGaxIn5-xS8, where x = 0, 1, 2, 3, 4 and 5, were synthesized and investigated for visible-light-driven hydrogen (H2) evolution from aqueous

  7. Cellulose nanocrystal: electronically conducting polymer nanocomposites for supercapacitors

    OpenAIRE

    Liew, Soon Yee

    2012-01-01

    This thesis describes the use of cellulose nanocrystals for the fabrication of porous nanocomposites with electronic conducting polymers for electrochemical supercapacitor applications. The exceptional strength and negatively charged surface functionalities on cellulose nanocrystals are utilised in these nanocomposites. The negatively charged surface functionalities on cellulose nanocrystals allow their simultaneous incorporation into electropolymerised, positively charged conducting polymer ...

  8. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol

    Science.gov (United States)

    Jana, Rajkumar; Subbarao, Udumula; Peter, Sebastian C.

    2016-01-01

    Ordered intermetallic nanocrystals with high surface area are highly promising as efficient catalysts for fuel cell applications because of their unique electrocatalytic properties. The present work discusses about the controlled synthesis of ordered intermetallic Pd3Pb nanocrystals in different morphologies at relatively low temperature for the first time by polyol and hydrothermal methods both in presence and absence of surfactant. Here for the first time we report surfactant free synthesis of ordered flower-like intermetallic Pd3Pb nanocrystals in 10 s. The structural characteristics of the nanocrystals are confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The as synthesized ordered Pd3Pb nanocrystals exhibit far superior electrocatalytic activity and durability towards formic acid and ethanol oxidation over commercially available Pd black (Pd/C). The morphological variation of nanocrystals plays a crucial role in the electrocatalytic oxidation of formic acid and ethanol. Among the catalysts, the flower-like Pd3Pb shows enhanced activity and stability in electrocatalytic formic acid and ethanol oxidation. The current density and mass activity of flower-like Pd3Pb catalyst are higher by 2.5 and 2.4 times than that of Pd/C for the formic acid oxidation and 1.5 times each for ethanol oxidation.

  9. Synthesis, characterization and magnetic properties of monodisperse Ni, Zn-ferrite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev, E-mail: sanjeevkumar.dubey2@gmail.com [University of Petroleum and Energy Studies, Dehradun, Uttarakhand (India); Kumar, Pankaj [University of Petroleum and Energy Studies, Dehradun, Uttarakhand (India); Singh, Vaishali [University School of Basic and Applied Science (India); Kumar Mandal, Uttam [University of Chemical Technology, GGS Indraprastha University, Sector 16, Dwarka, Delhi 110403 (India); Kumar Kotnala, Ravinder [National Physical laboratory, New Delhi 110012 (India)

    2015-04-01

    Synthesization of monodisperse Ni, Zn-ferrite (Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4}, x=1, 0.8, 0.6, 0.5, 0.4, 0.2, 0.0) nanocrystals has been achieved by the inverse microemulsion method using CTAB as surfactant and kerosene as an oil phase. The detailed characterization of the synthesized nanocrystals and measurement of the magnetic properties has been done by techniques like X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), Fourier transform infrared spectroscopy (FITR) and Vibrating Sample Magnetometer (VSM) respectively. The relationship between the structure and composition of the nanocrystals with magnetic properties has been investigated. The nanocrystals size is found to be in the range 1–5 nm. The effect of Zn substitution on size and magnetic properties has been studied. It has been observed that magnetism changed from ferromagnetic at X= 0 to super paramagnetic to paramagnetic at X=1 as Zn concentration increased. The Curie temperature is found to decrease with an increase in Zn concentration. - Highlights: • Reverse microemulsion route is very facile route for synthesis of Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} ferrite. • Presence of Zn changes the structural and magnetic properties of the Zn substituted NiFe{sub 2}O{sub 4.} • The lattice constant increases with the increase in Zn substitution. • The curie temperature decreases with Zn concentration appreciably. • Magnetic behavior varies from ferromagnetic at x=0 to superparamagnetic to paramagnetic at x=1.

  10. Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-02-01

    Full Text Available The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF4:Yb3+/Ln3+@CaF2 (Ln = Er, Ho, Tm upconversion nanocrystals (UCNCs based on the newly established host lattice of sodium lutetium fluoride (NaLuF4. We exploited the liquid-solid-solution method to synthesize the NaLuF4 core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF2 shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm. We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals.

  11. Solvent-Induced Deposition of Cu-Ga-In-S Nanocrystals onto a Titanium Dioxide Surface for Visible-Light-Driven Photocatalytic Hydrogen Production

    KAUST Repository

    Kandiel, Tarek

    2015-11-25

    In this paper, copper-gallium-indium-sulfide (CGIS) nanocrystals with different Ga/In ratios, i.e., CuGaxIn5-xS8, where x = 0, 1, 2, 3, 4 and 5, were synthesized and investigated for visible-light-driven hydrogen (H2) evolution from aqueous solutions that contain sulfide/sulfite ions. The synthesized CGIS nanocrystals were characterized by diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). With 1.0 wt.% Ru as a co-catalyst, the H2 evolution rate on CuGa2In3S8 (CGIS hereafter) showed the highest activity. The CGIS nanocrystals were deposited onto a TiO2 surface via a unique solvent-induced deposition method. The CGIS/TiO2 photocatalyst showed comparable activity to that obtained using bare CGIS nanocrystals when the photocatalyst amount was sufficient in the photoreactor system, suggesting that TiO2 remains intact in terms of photocatalytic activity. The quantity of CGIS nanocrystals, however, required to achieve the rate-plateau condition at saturation was much lower in the presence of TiO2. The enhanced activities at low CGIS loadings observed in the presence of TiO2 were explained by the improved dispersion of the powder suspension and optical path in the photoreactor. This TiO2 supported photocatalyst lowers the required amount of photocatalyst, which is beneficial from an economic point of view.

  12. Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation

    International Nuclear Information System (INIS)

    Park, Hanbit; Reddy, D. Amaranatha; Kim, Yujin; Lee, Seunghee; Ma, Rory; Lim, Manho; Kim, Tae Kyu

    2017-01-01

    Highlights: • PdCu bimetallic nanospheres fabricated by laser ablation. • Physical characterizations of synthesized PdCu nanospheres. • Assessments of catalytic performance of PdCu nanospheres for the reduction of nitrophenol. • Significant improvement of the catalytic activity in PdCu bimetallic nanocrystals. - Abstract: Ultra-dispersed bimetallic nanomaterials have attracted much attention in the hydrogenation of highly toxic aromatic nitro compounds to aromatic amines owing to their high stability, superior activity, reusability, and unique optical and electronic properties, as compared to monometalic nanocrystals. However, the lack of facile and economically controllable strategies of producing highly pure ultra-dispersed bimetallic nanocatalysts limits their practical industrial applications. Considering the above obstacles, we present a simple and effective strategy for the formation of bimetallic (PdCu) nanocrystals by liquid phase pulsed laser ablation using a bulk Pd metal plate submerged in CuCl 2 solutions with different concentrations, in contrast to the complex and costly experimental methods used previously. The microstructural and optical properties of the synthesized nanocrystals indicate that the obtained bimetallic nanostructures are highly pure and monodispersed. Moreover, bimetallic PdCu nanostructures show a higher catalytic activity than monometallic Pd nanocrystals for the hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature, also exhibiting high stability for up to four recycles. The mechanism of the enhanced catalytic activity and stability of bimetallic nanocrystals is discussed in detail. Finally, we believe that the presented design strategy and utilization of bimetallic nanocrystals for catalytic applications enables the development of novel bimetallic nanostructures by liquid phase pulsed laser ablation and their catalytic application for environmental remediation.

  13. Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hanbit; Reddy, D. Amaranatha; Kim, Yujin; Lee, Seunghee; Ma, Rory; Lim, Manho, E-mail: mhlim@pusan.ac.kr; Kim, Tae Kyu, E-mail: tkkim@pusan.ac.kr

    2017-04-15

    Highlights: • PdCu bimetallic nanospheres fabricated by laser ablation. • Physical characterizations of synthesized PdCu nanospheres. • Assessments of catalytic performance of PdCu nanospheres for the reduction of nitrophenol. • Significant improvement of the catalytic activity in PdCu bimetallic nanocrystals. - Abstract: Ultra-dispersed bimetallic nanomaterials have attracted much attention in the hydrogenation of highly toxic aromatic nitro compounds to aromatic amines owing to their high stability, superior activity, reusability, and unique optical and electronic properties, as compared to monometalic nanocrystals. However, the lack of facile and economically controllable strategies of producing highly pure ultra-dispersed bimetallic nanocatalysts limits their practical industrial applications. Considering the above obstacles, we present a simple and effective strategy for the formation of bimetallic (PdCu) nanocrystals by liquid phase pulsed laser ablation using a bulk Pd metal plate submerged in CuCl{sub 2} solutions with different concentrations, in contrast to the complex and costly experimental methods used previously. The microstructural and optical properties of the synthesized nanocrystals indicate that the obtained bimetallic nanostructures are highly pure and monodispersed. Moreover, bimetallic PdCu nanostructures show a higher catalytic activity than monometallic Pd nanocrystals for the hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature, also exhibiting high stability for up to four recycles. The mechanism of the enhanced catalytic activity and stability of bimetallic nanocrystals is discussed in detail. Finally, we believe that the presented design strategy and utilization of bimetallic nanocrystals for catalytic applications enables the development of novel bimetallic nanostructures by liquid phase pulsed laser ablation and their catalytic application for environmental remediation.

  14. Hydrothermal synthesis and white light emission of cubic ZrO2:Eu3+ nanocrystals

    International Nuclear Information System (INIS)

    Meetei, Sanoujam Dhiren; Singh, Shougaijam Dorendrajit

    2014-01-01

    Highlights: • White light emitting cubic ZrO 2 :Eu 3+ nanocrystal is synthesized by hydrothermal technique. • Eu 3+ is used to stabilize crystalline phase and to get red counterpart of the white light. • Defect emission and Eu 3+ emission combined to give white light. • The white light emitted from this nanocrystal resembles vertical daylight of the Sun. • Lifetime corresponding to red counterpart of the sample is far longer than conventional white light emitters. -- Abstract: Production of white light has been a promising area of luminescence studies. In this work, white light emitting nanocrystals of cubic zirconia doped with Eu 3+ are synthesized by hydrothermal technique. The dopant Eu 3+ is used to stabilize crystalline phase to cubic and at the same time to get red counterpart of the white light. The synthesis procedure is simple and precursor required no further annealing for crystallization. X-ray diffraction patterns show the crystalline phase of ZrO 2 :Eu 3+ to be cubic and it is confirmed by Fourier Transform Infrared spectroscopy. From transmission electron microscopy images, size of the crystals is found to be ∼5 nm. Photoluminescence emission spectrum of the sample, on monitoring excitation at O 2− –Eu 3+ charge transfer state shows broad peak due to O 2− of the zirconia and that of Eu 3+ emission. Commission Internationale de l’éclairage co-ordinate of this nanocrystal (0.32, 0.34) is closed to that of the ideal white light (0.33, 0.33). Correlated color temperature of the white light (5894 K) is within the range of vertical daylight. Lifetime (1.32 ms) corresponding to 5 D 0 energy level of the Eu 3+ is found to be far longer than conventional red counterparts of white light emitters. It suggests that the ZrO 2 :Eu 3+ nanocrystals synthesized by hydrothermal technique may find applications in simulating the vertical daylight of the Sun

  15. Crystallization and Growth of Colloidal Nanocrystals

    CERN Document Server

    Leite, Edson Roberto

    2012-01-01

    Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to  nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials.  Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale  materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientati...

  16. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  17. The structure and morphology of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kadavanich, Andreas V. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-11-01

    Colloidal semiconductor nanocrystals were studied using High Resolution Transmission Electron Microscopy (HRTEM). Organically capped nanocrystals were found to have faceted shapes consistent with Wulff polyhedra after the effects of capping ligands on surface energies were taken into account. The basic shape thus derived for wurtzite (WZ) structure CdSe nanocrystals capped by tri-octyl phosphine oxide (TOPO) was a truncated hexagonal prism, elongated alone the <001> axis with (100) and (002) facets. This structure has C{sub 3v} point group symmetry. The main defect in this structure is a stacking fault (a single layer of zinc blende type stacking), which does not significantly affect the shape (does not alter the point group).

  18. Strained interface defects in silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benjamin G.; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO (United States); Hiller, Daniel; Zacharias, Margit [IMTEK - Faculty of Engineering, Albert-Ludwigs-University Freiburg (Germany); Luo, Jun-Wei; Beard, Matthew C. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Semonin, Octavi E. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Department of Physics, University of Colorado, Boulder, CO (United States)

    2012-08-07

    The surface of silicon nanocrystals embedded in an oxide matrix can contain numerous interface defects. These defects strongly affect the nanocrystals' photoluminescence efficiency and optical absorption. Dangling-bond defects are nearly eliminated by H{sub 2} passivation, thus decreasing absorption below the quantum-confined bandgap and enhancing PL efficiency by an order of magnitude. However, there remain numerous other defects seen in absorption by photothermal deflection spectroscopy; these defects cause non-radiative recombination that limits the PL efficiency to <15%. Using atomistic pseudopotential simulations, we attribute these defects to two specific types of distorted bonds: Si-Si and bridging Si-O-Si bonds between two Si atoms at the nanocrystal surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Developing New Nanoprobes from Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    In recent years, semiconductor nanocrystal quantum dots havegarnered the spotlight as an important new class of biological labelingtool. Withoptical properties superior to conventional organicfluorophores from many aspects, such as high photostability andmultiplexing capability, quantum dots have been applied in a variety ofadvanced imaging applications. This dissertation research goes along withlarge amount of research efforts in this field, while focusing on thedesign and development of new nanoprobes from semiconductor nanocrystalsthat are aimed for useful imaging or sensing applications not possiblewith quantum dots alone. Specifically speaking, two strategies have beenapplied. In one, we have taken advantage of the increasing capability ofmanipulating the shape of semiconductor nanocrystals by developingsemiconductor quantum rods as fluorescent biological labels. In theother, we have assembled quantum dots and gold nanocrystals into discretenanostructures using DNA. The background information and synthesis,surface manipulation, property characterization and applications of thesenew nanoprobes in a few biological experiments are detailed in thedissertation.

  20. Large-scale and green synthesis of octahedral flower-like cupric oxide nanocrystals with enhanced photochemical properties

    International Nuclear Information System (INIS)

    Li, Shi-Kuo; Pan, Yu-Yi; Wu, Mi; Huang, Fang-Zhi; Li, Chuan-Hao; Shen, Yu-Hua

    2014-01-01

    Graphical abstract: - Highlights: • A green method is reported for large-scale synthesis of CuO nanocrystals via a coordination-deposition technique. • Flower-like nanostructure can be rationally tailored by adjusting reaction parameters. • Flower-like nanostructure can be obtained in a wide reaction solution volume range. • Uniform flower-like nanocrystal film assembled by oil–water interfacial self-assembly method exhibits excellent PEC performance. - Abstract: In this work, a large-scale and green method is reported for the facile synthesis of octahedral flower-like CuO nanocrystals via a coordination-deposition route by using Fehling regents. Not any harmful organic chemicals were used during the reaction period. The obtained hierarchical nanostructure can be rationally tailored by varying the concentration of tartrate ions and reaction time. The typical flower-like CuO nanocrystals in the range of 200–250 nm are consisted of numerous small crystalline whiskers, which present a porous surface with a specific surface area of 32.12 m 2 /g and a narrow band gap of 1.5 eV. Importantly, the flower-like CuO nanocrystals show an enhanced photocatalytic activity toward decomposing Rhodamine B (RhB) molecules. The degradation rate is about 87.9% in 40 min under visible light irradiation, which is about 2.5 times for the commercial CuO powers (35.2%). Moreover, the uniform flower-like monolayered CuO film exhibits an excellent photoelectrochemical (PEC) performance with a maximum photocurrent density of 58.8 μA/cm 2 , which is nearly five times higher than the commercial CuO film. This novel synthesis approach provides a large-scale and green protocol for synthesizing hierarchical metal oxide nanocrystals that are useful for photocatalysis, PEC water splitting and photovoltaic device

  1. Large-scale and green synthesis of octahedral flower-like cupric oxide nanocrystals with enhanced photochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shi-Kuo; Pan, Yu-Yi; Wu, Mi; Huang, Fang-Zhi; Li, Chuan-Hao, E-mail: lichuanhao1983@163.com; Shen, Yu-Hua, E-mail: s_yuhua@163.com

    2014-10-01

    Graphical abstract: - Highlights: • A green method is reported for large-scale synthesis of CuO nanocrystals via a coordination-deposition technique. • Flower-like nanostructure can be rationally tailored by adjusting reaction parameters. • Flower-like nanostructure can be obtained in a wide reaction solution volume range. • Uniform flower-like nanocrystal film assembled by oil–water interfacial self-assembly method exhibits excellent PEC performance. - Abstract: In this work, a large-scale and green method is reported for the facile synthesis of octahedral flower-like CuO nanocrystals via a coordination-deposition route by using Fehling regents. Not any harmful organic chemicals were used during the reaction period. The obtained hierarchical nanostructure can be rationally tailored by varying the concentration of tartrate ions and reaction time. The typical flower-like CuO nanocrystals in the range of 200–250 nm are consisted of numerous small crystalline whiskers, which present a porous surface with a specific surface area of 32.12 m{sup 2}/g and a narrow band gap of 1.5 eV. Importantly, the flower-like CuO nanocrystals show an enhanced photocatalytic activity toward decomposing Rhodamine B (RhB) molecules. The degradation rate is about 87.9% in 40 min under visible light irradiation, which is about 2.5 times for the commercial CuO powers (35.2%). Moreover, the uniform flower-like monolayered CuO film exhibits an excellent photoelectrochemical (PEC) performance with a maximum photocurrent density of 58.8 μA/cm{sup 2}, which is nearly five times higher than the commercial CuO film. This novel synthesis approach provides a large-scale and green protocol for synthesizing hierarchical metal oxide nanocrystals that are useful for photocatalysis, PEC water splitting and photovoltaic device.

  2. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    Science.gov (United States)

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  3. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Beaulac, Remi; Archer, Paul I.; Gamelin, Daniel R.

    2008-01-01

    Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn 2+ -doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn 2+ -doped II-VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided. - Graphical abstract: Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation

  4. Synthesis of CdS Nanocrystals with Different Shapes via a Colloidal Method

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jie; Liu, Changsong; Niu, Jinzhong; Wang, Hongzhe; Xu, Shasha; Shen, Huaibin; Li, Lin Song [Henan Univ., Henan (China)

    2014-02-15

    Size- and shape-controlled monodisperse wurtzite structured CdS nanorods have been successfully synthesized using a facile solution-based colloidal method. Depending on the control of injection/growth temperatures and the variation of Cd-to-S molar ratios, the morphology of the CdS nanocrystals (NCs) can be adjusted into bullet-like, rod-like, and dot-like shapes. X-ray diffraction (XRD), transition electron microscopy (TEM), and absorption spectroscopy were used to characterize the structure, morphology, and optical properties of as-synthesized CdS NCs. It was found that uniform CdS nanorods could be successfully synthesized when the injection and growth temperatures were very high (> 360 .deg. C). The aspect ratios of different shaped (bullet-like or rod-like) CdS NCs could be controlled by simply adjusting the molar ratios between Cd and S.

  5. Synthesis of CdS Nanocrystals with Different Shapes via a Colloidal Method

    International Nuclear Information System (INIS)

    Bai, Jie; Liu, Changsong; Niu, Jinzhong; Wang, Hongzhe; Xu, Shasha; Shen, Huaibin; Li, Lin Song

    2014-01-01

    Size- and shape-controlled monodisperse wurtzite structured CdS nanorods have been successfully synthesized using a facile solution-based colloidal method. Depending on the control of injection/growth temperatures and the variation of Cd-to-S molar ratios, the morphology of the CdS nanocrystals (NCs) can be adjusted into bullet-like, rod-like, and dot-like shapes. X-ray diffraction (XRD), transition electron microscopy (TEM), and absorption spectroscopy were used to characterize the structure, morphology, and optical properties of as-synthesized CdS NCs. It was found that uniform CdS nanorods could be successfully synthesized when the injection and growth temperatures were very high (> 360 .deg. C). The aspect ratios of different shaped (bullet-like or rod-like) CdS NCs could be controlled by simply adjusting the molar ratios between Cd and S

  6. Cloning nanocrystal morphology with soft templates

    Science.gov (United States)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  7. Growth of hexagonal NaGdF{sub 4} nanocrystals based on cubic Ln{sup 3+}: CaF{sub 2} precursors and the multi-color upconversion emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Lei; Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn; Yu, Yunlong; Zhang, Rui; Ling, Hang; Xu, Ju; Huang, Feng; Wang, Yuansheng, E-mail: yswang@fjirsm.ac.cn

    2014-04-05

    Graphical abstract: We reported a novel hetero-valence cation exchange route to synthesize Ln: NaGdF4 upconversion nanocrystals for the first time. -- Highlights: • The Ln3+: NaGdF4 nanocrystals were synthesized based on the Ln3+: CaF2 precursors. • The microstructures of nanocrystals were characterized. • The multi-color upconversion emissions were easily realized. -- Abstract: Lanthanide-doped upconversion nanomaterials have attracted great attention recently for their potential applications in the fields of bio-label, three-dimensional display, solar cell and so on. In this article, we report a new strategy to prepare hexagonal Ln{sup 3+}:NaGdF{sub 4} upconversion nanocrystals. Unlike the routine way of synthesizing NaGdF{sub 4} nanocrystals through nucleation and growth, the formation of hexagonal NaGdF{sub 4} nanocrystals herein is realized based on the Ln{sup 3+}-doped cubic CaF{sub 2} precursors, following a hetero-valence cation exchange process between Gd{sup 3+}/Na{sup +} and Ca{sup 2+}. Evidently, Ln{sup 3+} dopants in the CaF{sub 2} precursors are retained in the finally formed hexagonal NaGdF{sub 4} nanocrystals and, subsequently, multi-color upconversion emissions are easily realized by simply adjusting the Ln{sup 3+} dopant species and contents in the CaF{sub 2} precursors. This novel hetero-valence cation exchange route may open up a new pathway to synthesize nanomaterials that cannot be fabricated directly.

  8. NaGd(MoO4)2 nanocrystals with diverse morphologies: controlled synthesis, growth mechanism, photoluminescence and thermometric properties.

    Science.gov (United States)

    Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli

    2016-08-10

    Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu(3+) nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu(3+) are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb(3+)/Er(3+), Yb(3+)/Tm(3+) nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb(3+)/Er(3+) nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K(-1) at 285 K.

  9. PULSE SYNTHESIZING GENERATOR

    Science.gov (United States)

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  10. Experimental evidence for self-assembly of CeO2 particles in solution: Formation of single-crystalline porous CeO2 nanocrystals

    DEFF Research Database (Denmark)

    Tan, Hui Ru; Tan, Joyce Pei Ying; Boothroyd, Chris

    2012-01-01

    Single-crystalline porous CeO2 nanocrystals, with sizes of ∼20 nm and pore diameters of 1-2 nm, were synthesized successfully using a hydrothermal method. Using electron tomography, we imaged the three-dimensional structure of the pores in the nanocrystals and found that the oriented aggregation ...... energy-loss spectroscopy. The oxygen vacancies might play an important role in oxygen diffusion in the crystals and the catalytic activities of single-crystalline porous CeO 2 structures. © 2011 American Chemical Society....

  11. Acetic acid-confined synthesis of uniform three-dimensional (3D) bismuth telluride nanocrystals consisting of few-quintuple-layer nanoplatelets

    KAUST Repository

    Yuan, Qiang; Radar, Kelly; Hussain, Muhammad Mustafa

    2011-01-01

    High-selectivity, uniform three-dimensional (3D) flower-like bismuth telluride (Bi2Te3) nanocrystals consisting of few-quintuple-layer nanoplatelets with a thickness down to 4.5 nm were synthesized for the first time by a facile, one-pot polyol method with acetic acid as the structure-director. Micrometre-sized 2D films and honeycomb-like spheres can be obtained using the uniform 3D Bi2Te3 nanocrystals as building blocks. © The Royal Society of Chemistry 2011.

  12. Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film

    Science.gov (United States)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae

    2008-11-01

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  13. Nanocrystals of the quaternary thermoelectric materials: AgPb{sub m}SbTe{sub m+2}(m=1-18): Phase-segregated or solid solutions?

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Indika U [Department of Chemistry, Northwestern University Evanston, IL (United States); Wu, Jinsong; Dravid, Vinayak P [Department of Materials Science and Engineering, Northwestern University Evanston, IL (United States); Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University Evanston, IL (United States); Material Science Division, Argonne National Laboratory Argonne, IL (United States)

    2008-10-02

    Facile synthesis of a series of thermoelectrically relevant AgPb{sub m}SbTe{sub m+2}(m=1-18) nanoparticles is carried out by using a colloidal synthetic route. As-synthesized nanocrystals are spherical in geometry and adopt a cubic NaCl-type structure. These quaternary nanocrystals behave as solid solutions at room temperature and tend to phase separate into AgSbTe{sub 2} and PbTe upon annealing at moderately high temperature. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  14. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton

    Energy Technology Data Exchange (ETDEWEB)

    Thambiraj, S.; Ravi Shankaran, D., E-mail: dravishankaran@hotmail.com

    2017-08-01

    Graphical abstract: Schematic representation of the preparation of cellulose nanocrystals from industrial waste cotton. - Highlights: • Cellulose microcrystals (CMCs) were synthesized from industrial waste cotton by controlled acid and basic hydrolysis. • Cellulose nanocrystals (CNCs) were synthesized from CMCs by controlled acid hydrolysis. • The synthesis process is simple and the CNCs possess liquid crystalline character, biocompatibility and sustainability. • The morphology of the CNCs were studied by AFM and TEM analysis. The average width is 10 ± 1 nm and length is 180 ± 60 nm. - Abstract: We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV–vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well

  15. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton

    International Nuclear Information System (INIS)

    Thambiraj, S.; Ravi Shankaran, D.

    2017-01-01

    Graphical abstract: Schematic representation of the preparation of cellulose nanocrystals from industrial waste cotton. - Highlights: • Cellulose microcrystals (CMCs) were synthesized from industrial waste cotton by controlled acid and basic hydrolysis. • Cellulose nanocrystals (CNCs) were synthesized from CMCs by controlled acid hydrolysis. • The synthesis process is simple and the CNCs possess liquid crystalline character, biocompatibility and sustainability. • The morphology of the CNCs were studied by AFM and TEM analysis. The average width is 10 ± 1 nm and length is 180 ± 60 nm. - Abstract: We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV–vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well

  16. Microstructure and magnetic properties of MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wangwei@mail.buct.edu.cn; Ding, Zui; Zhao, Xiruo [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Wu, Sizhu [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Feng [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Yue, Ming [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022 (China); Liu, J. Ping [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2015-05-07

    Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  17. Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Zhang, Xiaoyu; Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu; Zhang, Wei; Zheng, Weitao; Yu, William W; Rogach, Andrey L

    2018-03-19

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr 3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr 3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr 3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m -2 and external quantum yield of 1.7 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Independent control of the shape and composition of ionic nanocrystals through sequential cation exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph Matthew; Zheng, Haimei; Sadtler, Bryce; Alivisatos, A. Paul

    2009-07-06

    Size- and shape-controlled nanocrystal growth is intensely researched for applications including electro-optic, catalytic, and medical devices. Chemical transformations such as cation exchange overcome the limitation of traditional colloidal synthesis, where the nanocrystal shape often reflects the inherent symmetry of the underlying lattice. Here we show that nanocrystals, with established synthetic protocols for high monodispersity, can be templates for independent composition control. Specifically, controlled interconversion between wurtzite CdS, chalcocite Cu2S, and rock salt PbS occurs while preserving the anisotropic dimensions unique to the as-synthesized materials. Sequential exchange reactions between the three sulfide compositions are driven by the disparate solubilites of the metal ion exchange pair in specific coordinating molecules. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong 2-dimensional quantum confinement, as well as for optoelectronic applications. Furthermore, interesting nanoheterostructures of CdS|PbS are obtained by precise control over ion insertion and removal.

  19. Using a precursor in lamellar structure for the synthesis of uniform ZnS nanocrystals

    KAUST Repository

    Xu, Xinjiang

    2011-11-12

    Uniform ZnS nanocrystals of about 15 nm were prepared through a low temperature hydrothermal approach by treating Zn-PhPO nanosheets with Na 2S aqueous solution. Both the precursor and the final product were studied by the means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The photo-luminescent spectrum of the synthesized ZnS nanocrystals showed their good crystalline nature. Based on this study, the precursor structure-controlling effect was discussed, and in addition, the relevant factors possibly affecting the particle formation and the growth possessed were applied in the discussion to interpret the transformation mechanism. Further research showed that both the structure characters of the precursors and the mass transportation which occurred during the synthesis greatly affected the morphology and organization state of the final products. This research may provide some facts on the structure-controlling approaches along with a general method for the preparation of uniform sulfide nanocrystals. © Springer Science+Business Media B.V. 2011.

  20. Water-assisted size and shape control of CsPbBr{sub 3} perovskite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyu [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun (China); Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Zhang, Wei; Zheng, Weitao [Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun (China); Yu, William W. [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Department of Chemistry and Physics, Louisiana State University, Shreveport, LA (United States); Rogach, Andrey L. [Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon (China)

    2018-03-19

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr{sub 3} nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr{sub 3} nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr{sub 3} nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m{sup -2} and external quantum yield of 1.7 %. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis

    Science.gov (United States)

    Kyobe, Joseph W. M.; Mubofu, Egid B.; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish

    2016-08-01

    A green solution-based thermolysis method for the synthesis of lead chalcogenide (PbE, E = S, Se, Te) nanocrystals in castor oil (CSTO) and its isolate ricinoleic acid (RA) is described. The blue shift observed from the optical spectra of CSTO and RA-capped PbE nanocrystals (NCs) confirmed the evidence of quantum confinement. The dimensions of PbE NCs obtained from NIR absorption spectra, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were in good agreement. The particle sizes estimated were in the range of 20, 25, and 130 nm for castor oil-capped PbS, PbSe, and PbTe, respectively. Well-defined close to cubic-shaped particles were observed in the scanning electron microscopy (SEM) images of PbSe and PbTe nanocrystals. The high-resolution TEM and selective area electron diffraction (SAED) micrographs of the as-synthesized crystalline PbE NCs showed distinct lattice fringes with d-spacing distances corroborating with the standard values reported in literature.

  2. Influence of dopant concentration on spectroscopic properties of Sr2CeO4:Yb nanocrystals

    Science.gov (United States)

    Stefanski, M.; Kędziorski, A.; Hreniak, D.; Strek, W.

    2017-12-01

    Optical properties of Sr2CeO4:Yb nanocrystals synthesized via Pechini's method are reported. The samples were characterized by X-ray diffraction data measurements. The unit cell parameters were determined using Rietveld refinement. It was found that they decreased with increasing amount of Yb ions. The absorption, excitation, emission spectra and luminescence decay profiles of the Sr2CeO4:Yb nanocrystals were investigated. It was observed that optical properties were strongly dependent on Yb concentration. It was found that Yb3+-O2- charge transfer transitions have great influence on the absorption spectra. It can be seen in the emission spectra that in addition to standard bands/lines corresponding to Ce-O metal-to-ligand charge transfer of Sr2CeO4 and f-f transitions of Yb3+, there is emission band centered at 744 nm. Its intensity depends on the concentration of the dopant. Recorded decay times become shorter with increasing dopant concentration due to the Yb3+ concentration quenching. Excitation spectra indicate the energy transfer from Ce-O charge transfer states to Yb3+2F5/2 state. The issue of appearance of down-conversion process in Sr2CeO4:Yb nanocrystals is considered.

  3. Diazonium salts as grafting agents and efficient radical-hydrosilylation initiators for freestanding photoluminescent silicon nanocrystals.

    Science.gov (United States)

    Höhlein, Ignaz M D; Kehrle, Julian; Helbich, Tobias; Yang, Zhenyu; Veinot, Jonathan G C; Rieger, Bernhard

    2014-04-07

    The reactivity of diazonium salts towards freestanding, photoluminescent silicon nanocrystals (SiNCs) is reported. It was found that SiNCs can be functionalized with aryl groups by direct reductive grafting of the diazonium salts. Furthermore, diazonium salts are efficient radical initiators for SiNC hydrosilylation. For this purpose, novel electron-deficient diazonium salts, highly soluble in nonpolar solvents were synthesized. The SiNCs were functionalized with a variety of alkenes and alkynes at room temperature with short reaction times. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Prospects of Colloidal Copper Chalcogenide Nanocrystals

    NARCIS (Netherlands)

    van der Stam, W.; Berends, A.C.; de Mello-Donega, Celso

    2016-01-01

    Over the past few years, colloidal copper chalcogenide nanocrystals (NCs) have emerged as promising alternatives to conventional Cd and Pb chalcogenide NCs. Owing to their wide size, shape, and composition tunability, Cu chalcogenide NCs hold great promise for several applications, such as

  5. Atomic force microscopy characterization of cellulose nanocrystals

    Science.gov (United States)

    Roya R. Lahiji; Xin Xu; Ronald Reifenberger; Arvind Raman; Alan Rudie; Robert J. Moon

    2010-01-01

    Cellulose nanocrystals (CNCs) are gaining interest as a “green” nanomaterial with superior mechanical and chemical properties for high-performance nanocomposite materials; however, there is a lack of accurate material property characterization of individual CNCs. Here, a detailed study of the topography, elastic and adhesive properties of individual wood-derived CNCs...

  6. Biocompatibility of bio based calcium carbonate nanocrystals ...

    African Journals Online (AJOL)

    Background: Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance ...

  7. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  8. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahdi Rohani

    2014-11-01

    Full Text Available In this research, biodegradation behaviors of cellulose nanocrystals-poly vinyl alcohol nanocomposites were investigated. Nanocomposite films with different filler loading levels (3, 6, 9 and 12% by wt were developed by solvent casting method. The effect of cellulose nanocrystals on the biodegradation behaviors of nanocomposite films was studied. Water absorption and water solubility tests were performed by immersing specimens into distilled water. The characteristic parameter of diffusion coefficient and maximum moisture content were determined from the obtained water absorption curves. The water absorption behavior of the nanocomposites was found to follow a Fickian behavior. The maximum water absorption and diffusion coefficients were decreased by increasing the cellulose nanocrystals contents, however the water solubility decrease. The biodegradability of the films was investigated by immersing specimens into cellulase enzymatic solution as well as by burial in soil. The results showed that adding cellulose nanocrystals increase the weight loss of specimens in enzymatic solution but decrease it in soil media. The limited biodegradability of specimens in soil media attributed to development of strong interactions with solid substrates that inhibit the accessibility of functional groups. Specimens with the low degree of hydrolysis underwent extensive biodegradation in both enzymatic and soil media, whilst specimens with the high degree of hydrolysis showed recalcitrance to biodegradation under those conditions.

  9. Mechanistic Study of Monodisperse Iron Oxide Nanocrystals ...

    African Journals Online (AJOL)

    To gain better insight into the formation of iron oxide nanocrystals from the solution phase thermal decomposition of iron (III) oleate complex, different reaction conditions including time, heating ramp, as well as concentrations of iron oleate precursor and oleic acid ligand were systematically varied and the resulting ...

  10. Silicon nanocrystal films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Robert W.

    2009-02-06

    Whether nanoparticles of silicon are really suited for such applications, whether layers fabricated from this exhibit semiconducting properties, whether they can be doped, and whether for instance via the doping the conductivity can be tuned, was studied in the present thesis. Starting material for this were on the one hand spherical silicon nanocrystals with a sharp size distribution and mean diameters in the range from 4-50 nm. Furthermore silicon particle were available, which are with 50-500 nm distinctly larger and exhibit a broad distribution of the mean size and a polycrystalline fine structure with strongly bifurcated external morphology. The small conductivities and tje low mobility values of the charge carriers in the layers of silicon nanocrystals suggest to apply suited thermal after-treatment procedures. So was found that the aluminium-induced layer exchange (ALILE) also can be transferred to the porous layers of nanocrystals. With the deuteron passivation a method was available to change the charge-carrier concentration in the polycrystalline layers. Additionally to ALILE laser crystallization as alternative after-treatment procedure of the nanocrystal layers was studied.

  11. Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air.

    Science.gov (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2013-12-17

    Silver nanocrystals with uniform sizes were synthesized in droplet microreactors through seed-mediated growth. The key to the success of this synthesis is the use of air as a carrier phase to generate the droplets. The air not only separates the reaction solution into droplets but also provides O2 for the generation of reducing agent (glycolaldehyde). It also serves as a buffer space for the diffusion of NO, which is formed in situ due to the oxidative etching of Ag nanocrystals with twin defects. For the first time, we were able to generate Ag nanocrystals with controlled sizes and shapes in continuous production by using droplet microreactors. For Ag nanocubes, their edge lengths could be readily controlled in the range of 30-100 nm by varying the reaction time, the amount of seeds, and the concentration of AgNO3 in the droplets. Furthermore, we demonstrated the synthesis of Ag octahedra in the droplet microreactors. We believe that the air-driven droplet generation device can be extended to other noble metals for the production of nanocrystals with controlled sizes and shapes.

  12. Growth of ZnO nanocrystals in silica by rf co-sputter deposition and post-annealing

    International Nuclear Information System (INIS)

    Siva Kumar, V.V.; Singh, F.; Kumar, Amit; Avasthi, D.K.

    2006-01-01

    Thin films with ZnO nanocrystals in silica were synthesized by rf reactive magnetron co-sputter deposition and post-annealing. The films were deposited from a ZnO/Si composite target in an rf oxygen plasma. The deposited films were annealed in air/vacuum at high temperatures to grow ZnO nanocrystals. The deposited and annealed films were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), uv-vis spectroscopy (UV-VIS) and photoluminescence (PL) measurements. FT-IR results of the films show the vibrational features of Si-O-Si and Zn-O bonds. UV-VIS spectra of the deposited film shows the band edge of ZnO. The XRD results of the films annealed at 750 deg. C and 1000 deg. C indicate the growth of ZnO nanocrystals with average crystallite sizes between 7 nm and 26 nm. PL measurements of the deposited film show a broad visible luminescence peak which can be due to ZnO. These results suggest the growth of ZnO nanocrystals in silica matrix

  13. Large-scale and green synthesis of octahedral flower-like cupric oxide nanocrystals with enhanced photochemical properties

    Science.gov (United States)

    Li, Shi-Kuo; Pan, Yu-Yi; Wu, Mi; Huang, Fang-Zhi; Li, Chuan-Hao; Shen, Yu-Hua

    2014-10-01

    In this work, a large-scale and green method is reported for the facile synthesis of octahedral flower-like CuO nanocrystals via a coordination-deposition route by using Fehling regents. Not any harmful organic chemicals were used during the reaction period. The obtained hierarchical nanostructure can be rationally tailored by varying the concentration of tartrate ions and reaction time. The typical flower-like CuO nanocrystals in the range of 200-250 nm are consisted of numerous small crystalline whiskers, which present a porous surface with a specific surface area of 32.12 m2/g and a narrow band gap of 1.5 eV. Importantly, the flower-like CuO nanocrystals show an enhanced photocatalytic activity toward decomposing Rhodamine B (RhB) molecules. The degradation rate is about 87.9% in 40 min under visible light irradiation, which is about 2.5 times for the commercial CuO powers (35.2%). Moreover, the uniform flower-like monolayered CuO film exhibits an excellent photoelectrochemical (PEC) performance with a maximum photocurrent density of 58.8 μA/cm2, which is nearly five times higher than the commercial CuO film. This novel synthesis approach provides a large-scale and green protocol for synthesizing hierarchical metal oxide nanocrystals that are useful for photocatalysis, PEC water splitting and photovoltaic device.

  14. Synthesis of CdS nanocrystals in polymeric films studied by in-situ GID and GISAXS

    KAUST Repository

    Di Luccio, Tiziana; Carbone, Dina; Masala, Silvia; Ramachandran, Karthik; Kornfield, Julie

    2015-01-01

    In this work, we describe the synthesis of CdS nanocrystals in thin polymeric films by in-situ Grazing Incidence Diffraction (GID) and Grazing Incidence Small Angle Scattering (GISAXS). The 2D GISAXS patterns indicate how the precursor structure is altered as the temperature is varied from 25°C to 300°C. At 150°C, the CdS nanocrystals start to arrange themselves in a hexagonal lattice with a lattice parameter of 27 A. The diffraction intensity from the hexagonal lattice reaches a maximum at 170"C and decreases steadily upon further heating above 220°C indicating loss of symmetry. Correspondingly, the GID scans at 170°C show strong crystalline peaks from cubic CdS nanocrystals that are about 2 nm size. The results indicate that a temperature of 170°C is sufficient to synthesize CdS nanocrystals without degradation of the polymer matrix (Topas) in thin films (about 30nm). © 2015 Materials Research Society.

  15. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange To Access New Materials.

    Science.gov (United States)

    Creutz, Sidney E; Crites, Evan N; De Siena, Michael C; Gamelin, Daniel R

    2018-02-14

    Concerns about the toxicity and instability of lead-halide perovskites have driven a recent surge in research toward alternative lead-free perovskite materials, including lead-free double perovskites with the elpasolite structure and visible bandgaps. Synthetic approaches to this class of materials remain limited, however, and no examples of heterometallic elpasolites as nanomaterials have been reported. Here, we report the synthesis and characterization of colloidal nanocrystals of Cs 2 AgBiX 6 (X = Cl, Br) elpasolites using a hot-injection approach. We further show that postsynthetic modification through anion exchange and cation extraction can be used to convert these nanocrystals to new materials including Cs 2 AgBiI 6 , which was previously unknown experimentally. Nanocrystals of Cs 2 AgBiI 6 , synthesized via a novel anion-exchange protocol using trimethylsilyl iodide, have strong absorption throughout the visible region, confirming theoretical predictions that this material could be a promising photovoltaic absorber. The synthetic methodologies presented here are expected to be broadly generalizable. This work demonstrates that nanocrystal ion-exchange reactivity can be used to discover and develop new lead-free halide perovskite materials that may be difficult or impossible to access through direct synthesis.

  16. Synthesis of CdS nanocrystals in polymeric films studied by in-situ GID and GISAXS

    KAUST Repository

    Di Luccio, Tiziana

    2015-07-07

    In this work, we describe the synthesis of CdS nanocrystals in thin polymeric films by in-situ Grazing Incidence Diffraction (GID) and Grazing Incidence Small Angle Scattering (GISAXS). The 2D GISAXS patterns indicate how the precursor structure is altered as the temperature is varied from 25°C to 300°C. At 150°C, the CdS nanocrystals start to arrange themselves in a hexagonal lattice with a lattice parameter of 27 A. The diffraction intensity from the hexagonal lattice reaches a maximum at 170"C and decreases steadily upon further heating above 220°C indicating loss of symmetry. Correspondingly, the GID scans at 170°C show strong crystalline peaks from cubic CdS nanocrystals that are about 2 nm size. The results indicate that a temperature of 170°C is sufficient to synthesize CdS nanocrystals without degradation of the polymer matrix (Topas) in thin films (about 30nm). © 2015 Materials Research Society.

  17. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  18. One dimensional well-aligned CdO nanocrystal by solvothermal method

    International Nuclear Information System (INIS)

    Kaviyarasu, K.; Manikandan, E.; Paulraj, P.; Mohamed, S.B.; Kennedy, J.

    2014-01-01

    Graphical abstract: - Highlights: • Cadmium oxide (CdO) emerged as one of the important semiconducting materials. • Iodine concentration increases intensity of the peak around 300 cm −1 becomes stronger. • Surface morphology of these crystals has been modified by varying complexing agent. • Nanofibers structure like CdO crystals first time achieved. • The diameters of these nanofibers range mostly between 40 nm and 70 nm. - Abstract: Cadmium oxide (CdO) is a category of the practical semiconductor metal oxides, which is widely applied in various scientific and industrial fields because of its catalytic, optical, and electrical properties. CdO nanocrystal was successfully synthesized by a virtue of a single source precursor method at mild reaction conditions between cadmium oxide, and element iodine by a solvothermal route. X-ray powder diffraction (XRD), ultraviolet spectroscopy studies (UV–vis), Fourier Transform Infrared analysis (FTIR), scanning electron microscopy (SEM), μ-Raman spectroscopy and cyclic voltammogram (CV) were used to characterize the CdO nanocrystals. The ultra-violet visible absorption peaks of CdO exhibited a large blue shift and the luminescent spectra had a strong and broad emission band centered at 228 nm. The various functional groups present in the CdO nanocrystals were identified by FTIR analysis. Intense PL was also observed with some spectral tuning possibly giving a range of emission photon energies approximately spanning from 2.5 to 3.4 eV. Scanning electron microscopy and μ-Raman microscopy images indicated that the morphology of the product is spherical nanoparticles with an average particle size of 46 nm with standard deviation. The electrochemical response of CdO which is proved the nano-cadmium has high functionality due to the small size and it has higher electrochemical activity without any modifications. The above studies demonstrate the potential for the utilization of cadmium nitrite nanocrystal in visible

  19. Silica enhanced formation of hydroxyapatite nanocrystals in simulated body fluid (SBF) at 37 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Sadjadi, M.S., E-mail: m.s.sadjad@gmail.com [Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ebrahimi, H.R. [Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Meskinfam, M. [Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, University of Shahid Beheshti, Eveen Tehran (Iran, Islamic Republic of)

    2011-10-17

    Highlights: {yields} We report on fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in silica-containing simulated body fluid solution at 37 deg. C. {yields} Bioactivity and biodegradability of TCP precursor have been confirmed by the dissolution of TCP and formation of a bone like layer of new HA nanoparticles outside of the precursor after 24 h soaking in SBF solution. {yields} Successive nucleation and formation of tiny hexagonal HA nanoplates and nanorods have been confirmed by TEM results after 24 h soaking of TCP in silica-containing BSF solution. - Abstract: The chemical modification of implant (prosthesis) surfaces is being investigated worldwide for improving the fixation of orthopaedic and dental implants. The main goal in this surface modification approach is to achieve a faster bone growth and chemical bonding of the implant to the newly generated and/or remodeled bone. In this work, we report fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in simulated body fluid (SBF, inorganic components of human blood plasma) solutions at 37 deg. C, using calcium phosphate (TCP) and sodium silicate as precursors. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated enhanced nucleation and formation of bone like layer of HA nanocrystals at the surface of TCP nanoparticles and occurrence of HA nanocrystals during 24 h soaking of TCP in SBF solution containing silica ions. The average size of a nanoparticle, using Scherrer formula, was found to be 18.2 nm.

  20. Silica enhanced formation of hydroxyapatite nanocrystals in simulated body fluid (SBF) at 37 deg. C

    International Nuclear Information System (INIS)

    Sadjadi, M.S.; Ebrahimi, H.R.; Meskinfam, M.; Zare, K.

    2011-01-01

    Highlights: → We report on fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in silica-containing simulated body fluid solution at 37 deg. C. → Bioactivity and biodegradability of TCP precursor have been confirmed by the dissolution of TCP and formation of a bone like layer of new HA nanoparticles outside of the precursor after 24 h soaking in SBF solution. → Successive nucleation and formation of tiny hexagonal HA nanoplates and nanorods have been confirmed by TEM results after 24 h soaking of TCP in silica-containing BSF solution. - Abstract: The chemical modification of implant (prosthesis) surfaces is being investigated worldwide for improving the fixation of orthopaedic and dental implants. The main goal in this surface modification approach is to achieve a faster bone growth and chemical bonding of the implant to the newly generated and/or remodeled bone. In this work, we report fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in simulated body fluid (SBF, inorganic components of human blood plasma) solutions at 37 deg. C, using calcium phosphate (TCP) and sodium silicate as precursors. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated enhanced nucleation and formation of bone like layer of HA nanocrystals at the surface of TCP nanoparticles and occurrence of HA nanocrystals during 24 h soaking of TCP in SBF solution containing silica ions. The average size of a nanoparticle, using Scherrer formula, was found to be 18.2 nm.

  1. The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Todd D. [University of Rochester

    2014-11-25

    The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.

  2. Tunable fluorescence emission of ternary nonstoichiometric Ag-In-S alloyed nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jian, E-mail: dhjfeng@ciac.jl.cn; Yang Xiurong, E-mail: xryang@ciac.jl.cn [Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry (China)

    2012-08-15

    Low toxic, nonstoichiometric colloidal Ag-In-S ternary quantum dots with different Ag content were synthesized by a one-pot hot-injection method based on the reaction of metal acetylacetonates with sulfur dissolved in octadecene. X-ray diffraction (XRD), transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to characterize the size, structure, and morphology of these samples. ICP-MS was employed to analyze the compositions of Ag-In-S nanocrystals. The optical properties were characterized by UV-Vis absorption, photoluminescence (PL) spectroscopy, and time-resolved photoluminescence. Varying the fraction of cationic and capping agents, the compositions of Ag-In-S nanocrystals were precisely controlled. XRD and HRTEM results indicate the compositional homogeneity of Ag-In-S. The emission spectra across the different compositions exhibiting a single bandgap feature further confirm the formation of Ag-In-S alloy NCs, rather than phase separated Ag{sub 2}S and In{sub 2}S{sub 3}. Composition-dependent tunable PL emissions have been observed. The relative PL quantum yield is up to 16 %, which exhibited substantially enhanced comparing with the stoichiometric AgInS{sub 2} semiconductor core QDs reported in previous literature. The PL decay curve of Ag-In-S has a biexponential characteristic, which indicates that the recombination of an electron and a hole is dominated by the surface defect and the recombination process associated with internal traps is reduced significantly. The large Stokes shift between the absorption peaks and their emissions should inhibit the reabsorption and Foerster energy transfer between Ag-In-S nanocrystals, which provides the alternative in the further applications where high-concentrations of nanocrystals are needed.

  3. Souper: A Synthesizing Superoptimizer

    OpenAIRE

    Sasnauskas, Raimondas; Chen, Yang; Collingbourne, Peter; Ketema, Jeroen; Lup, Gratian; Taneja, Jubi; Regehr, John

    2017-01-01

    If we can automatically derive compiler optimizations, we might be able to sidestep some of the substantial engineering challenges involved in creating and maintaining a high-quality compiler. We developed Souper, a synthesizing superoptimizer, to see how far these ideas might be pushed in the context of LLVM. Along the way, we discovered that Souper's intermediate representation was sufficiently similar to the one in Microsoft Visual C++ that we applied Souper to that compiler as well. Shipp...

  4. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  5. Ge nanocrystals formed by furnace annealing of Ge(x)[SiO2](1-x) films: structure and optical properties

    Science.gov (United States)

    Volodin, V. A.; Cherkov, A. G.; Antonenko, A. Kh; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2017-07-01

    Ge(x)[SiO2](1-x) (0.1  ⩽  x  ⩽  0.4) films were deposited onto Si(0 0 1) or fused quartz substrates using co-evaporation of both Ge and SiO2 in high vacuum. Germanium nanocrystals were synthesized in the SiO2 matrix by furnace annealing of Ge x [SiO2](1-x) films with x  ⩾  0.2. According to electron microscopy and Raman spectroscopy data, the average size of the nanocrystals depends weakly on the annealing temperature (700, 800, or 900 °C) and on the Ge concentration in the films. Neither amorphous Ge clusters nor Ge nanocrystals were observed in as-deposited and annealed Ge0.1[SiO2]0.9 films. Infrared absorption spectroscopy measurements show that the studied films do not contain a noticeable amount of GeO x clusters. After annealing at 900 °C intermixing of germanium and silicon atoms was still negligible thus preventing the formation of GeSi nanocrystals. For annealed samples, we report the observation of infrared photoluminescence at low temperatures, which can be explained by exciton recombination in Ge nanocrystals. Moreover, we report strong photoluminescence in the visible range at room temperature, which is certainly due to Ge-related defect-induced radiative transitions.

  6. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.

    Science.gov (United States)

    Tang, Aiwei; Hu, Zunlan; Yin, Zhe; Ye, Haihang; Yang, Chunhe; Teng, Feng

    2015-05-21

    A simple one-pot colloidal method has been described to engineer ternary CuInS2 nanocrystals with different crystal phases and morphologies, in which dodecanethiol is chosen as the sulfur source and the capping ligands. By a careful choice of the anions in the metal precursors and manipulation of the reaction conditions including the reactant molar ratios and the reaction temperature, CuInS2 nanocrystals with chalcopyrite, zincblende and wurtzite phases have been successfully synthesized. The type of anion in the metal precursors has been found to be essential for determining the crystal phase and morphology of the as-obtained CuInS2 nanocrystals. In particular, the presence of Cl(-) ions plays an important role in the formation of CuInS2 nanoplates with a wurtzite-zincblende polytypism structure. In addition, the molar ratios of Cu to In precursors have a significant effect on the crystal phase and morphology, and the intermediate Cu2S-CuInS2 heteronanostructures are formed which are critical for the anisotropic growth of CuInS2 nanocrystals. Furthermore, the optical absorption results of the as-obtained CuInS2 nanocrystals exhibit a strong dependence on the crystal phase and size.

  7. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Lizhen [Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry (China); Chen, Qirong [Beijing Center for Physical and Chemical Analysis (BCPCA) (China); Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu, E-mail: xfmeng@cnu.edu.cn [Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry (China)

    2015-05-15

    High-temperature phase-stable rice-like anatase TiO{sub 2} nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N{sub 2} adsorption–desorption isotherms. The results showed that TiO{sub 2} nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m{sup 2}/g. Unexpectedly, the rice-like TiO{sub 2} nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO{sub 2} nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO{sub 2} nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  8. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO2 nanocrystals

    Science.gov (United States)

    Lv, Lizhen; Chen, Qirong; Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu

    2015-05-01

    High-temperature phase-stable rice-like anatase TiO2 nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N2 adsorption-desorption isotherms. The results showed that TiO2 nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m2/g. Unexpectedly, the rice-like TiO2 nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO2 nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO2 nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  9. Organization of silicon nanocrystals by localized electrochemical etching

    International Nuclear Information System (INIS)

    Ayari-Kanoun, Asma; Drouin, Dominique; Beauvais, Jacques; Lysenko, Vladimir; Nychyporuk, Tetyana; Souifi, Abdelkader

    2009-01-01

    An approach to form a monolayer of organized silicon nanocrystals on a monocrystalline Si wafer is reported. Ordered arrays of nanoholes in a silicon nitride layer were obtained by combining electron beam lithography and plasma etching. Then, a short electrochemical etching current pulse led to formation of a single Si nanocrystal per each nanohole. As a result, high quality silicon nanocrystal arrays were formed with well controlled and reproducible morphologies. In future, this approach can be used to fabricate single electron devices.

  10. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  11. Gas-phase synthesis of semiconductor nanocrystals and its applications

    Science.gov (United States)

    Mandal, Rajib

    Luminescent nanomaterials is a newly emerging field that provides challenges not only to fundamental research but also to innovative technology in several areas such as electronics, photonics, nanotechnology, display, lighting, biomedical engineering and environmental control. These nanomaterials come in various forms, shapes and comprises of semiconductors, metals, oxides, and inorganic and organic polymers. Most importantly, these luminescent nanomaterials can have different properties owing to their size as compared to their bulk counterparts. Here we describe the use of plasmas in synthesis, modification, and deposition of semiconductor nanomaterials for luminescence applications. Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications in several areas. To date, however, luminescent silicon nanocrystals (NCs) have been used exclusively in traditional rigid devices. For the field to advance towards new and versatile applications for nanocrystal-based devices, there is a need to investigate whether these NCs can be used in flexible and stretchable devices. We show how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (Si NCs) change when they are deposited on stretchable substrates made of polydimethylsiloxane (PDMS). Synthesis of these NCs was performed in a nonthermal, low-pressure gas phase plasma reactor. To our knowledge, this is the first demonstration of direct deposition of NCs onto stretchable substrates. Additionally, in order to prevent oxidation and enhance the luminescence properties, a silicon nitride shell was grown around Si NCs. We have demonstrated surface nitridation of Si NCs in a single step process using non?thermal plasma in several schemes including a novel dual-plasma synthesis/shell growth process. These coated NCs exhibit SiNx shells with composition depending on process parameters. While measurements including

  12. Widely tunable THz synthesizer

    Science.gov (United States)

    Hindle, F.; Mouret, G.; Eliet, S.; Guinet, M.; Cuisset, A.; Bocquet, R.; Yasui, T.; Rovera, D.

    2011-09-01

    The generation of cw-THz radiation by photomixing is particularly suited to the high resolution spectroscopy of gases; nevertheless, until recently, it has suffered from a lack of frequency metrology. Frequency combs are a powerful tool that can transfer microwave frequency standards to optical frequencies and a single comb has permitted accurate (10-8) THz frequency synthesis with a limited tuning range. A THz synthesizer composed of three extended cavity laser diodes phase locked to a frequency comb has been constructed and its utility for high resolution gas phase spectroscopy demonstrated. The third laser diode allows a larger tuning range of up to 300 MHz to be achieved without the need for large frequency excursions, while the frequency comb provides a versatile link to be established from any traceable microwave frequency standard. The use of a single frequency comb as a reference for all of the cw-lasers eliminates the dependency of synthesized frequency on the carrier envelope offset frequency. This greatly simplifies the frequency comb stabilization requirements and leads to a reduced instrument complexity.

  13. SYNTH: A spectrum synthesizer

    International Nuclear Information System (INIS)

    Hensley, W.K.; McKinnon, A.D.; Miley, H.S.; Panisko, M.E.; Savard, R.M.

    1994-07-01

    A computer code has been written at the Pacific Northwest Laboratory (PNL) to synthesize the results of typical gamma-ray spectroscopy experiments. The code, dubbed SYNTH, allows a use r to specify physical characteristics of a gamma-ray source, the quantity of the nuclides producing the radiation, the source-to-detector distance and the type and thickness of absorbers, the size and composition of the detector (Ge or NaI), and the electronic set up used to gather the data. In the process of specifying the parameters needed to synthesize a spectrum, several interesting intermediate results are produced, including a photopeak transmission function vs energy, a detector efficiency curve, and a weighted list of gamma and x rays produced from a set of nuclides. All of these intermediate results are available for graphical inspection and for printing. SYNTH runs on personal computers. It is menu driven and can be customized to user specifications. SYNTH contains robust support for coaxial germanium detectors and some support for sodium iodide detectors. SYNTH is not a finished product. A number of additional developments are planned. However, the existing code has been compared carefully to spectra obtained from National Institute for Standards and Technology (NIST) certified standards with very favorable results. Examples of the use of SYNTH and several spectral results will be presented

  14. SYNTH: A spectrum synthesizer

    International Nuclear Information System (INIS)

    Hensley, W.K.; McKinnon, A.D.; Miley, H.S.; Panisko, M.E.; Savard, R.M.

    1993-10-01

    A computer code has been written at the Pacific Northwest Laboratory (PNL) to synthesize the results of typical gamma ray spectroscopy experiments. The code, dubbed SYNTH, allows a user to specify physical characteristics of a gamma ray source, the quantity of the nuclides producing the radiation, the source-to-detector distance and the presence of absorbers, the type and size of the detector, and the electronic set up used to gather the data. In the process of specifying the parameters needed to synthesize a spectrum, several interesting intermediate results are produced, including a photopeak transmission function versus energy, a detector efficiency curve, and a weighted list of gamma and x rays produced from a set of nuclides. All of these intermediate results are available for graphical inspection and for printing. SYNTH runs on personal computers. It is menu driven and can be customized to user specifications. SYNTH contains robust support for coaxial germanium detectors and some support for sodium iodide detectors. SYNTH is not a finished product. A number of additional developments are planned. However, the existing code has been compared carefully to spectra obtained from National Institute for Standards and Technology (NIST) certified standards with very favorable results. Examples of the use of SYNTH and several spectral results are presented

  15. Cellulose nanocrystal properties and their applications

    Directory of Open Access Journals (Sweden)

    mahdi jonoobi

    2015-05-01

    Full Text Available The main purpose of this work is to provide an overview of recent research in the area of cellulose nonmaterials production from different sources. Due to their abundance, their renewability, high strength and stiffness, being eco-friendly, and low weight; numerous studies have been reported on the isolation of cellulose nanomaterials from different cellulosic sources and their use in high performance applications. This work covers an introduction into the nano cellulose definition as well as used methods for isolation of nanomaterials (nanocrystals from various sources. The rod-like cellulose nanocrystals (CNC can be isolated from sources like wood, plant fibers, agriculture and industrial bio residues, tunicates, and bacterial cellulose using acid hydrolysis process. Following this, the paper focused on characterization methods, materials properties and structure. The current review is a comprehensive literature regarding the nano cellulose isolation and demonstrates the potential of cellulose nanomaterials to be used in a wide range of high-tech applications.

  16. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  17. Photoelectrochemical properties of ZnO nanocrystals/MEH-PPV composite: The effects of nanocrystals synthetic route, film deposition and electrolyte composition

    Energy Technology Data Exchange (ETDEWEB)

    Petrella, A. [Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e Chimica, Politecnico di Bari, Via Orabona 4, 70125 Bari (Italy); Curri, M.L.; Striccoli, M. [CNR IPCF Sez. Bari c/o Dip. Chimica, Università di Bari, Via Orabona 4, 70126 Bari (Italy); Agostiano, A. [Dipartimento di Chimica, Università di Bari, via Orabona 4, 70126 Bari (Italy); CNR IPCF Sez. Bari c/o Dip. Chimica, Università di Bari, Via Orabona 4, 70126 Bari (Italy); Cosma, P., E-mail: pinalysa.cosma@uniba.it [Dipartimento di Chimica, Università di Bari, via Orabona 4, 70126 Bari (Italy); CNR IPCF Sez. Bari c/o Dip. Chimica, Università di Bari, Via Orabona 4, 70126 Bari (Italy)

    2015-11-30

    This paper reports a study on the photoelectrochemical processes occurring at the interface of ZnO nanocrystals/MEH-PPV composites. Colloidal chemical routes were used to obtain size controlled non-hydrolytic ZnO nanocrystals (NCs) dispersible in organic solvents, while a low molecular weight poly[2-methoxy-5-(2′-ethyl-hexyloxy)phenylene vinylene] (MEH-PPV), characterized by high degree of structural order, was synthesized via an organometallic method. The optical properties of the nanocomposite material were comprehensively investigated on solution and on films deposited by spin coating. Remarkably, a significant fluorescence quenching of the polymer at the MEH-PPV/ZnO junction was observed. Photoelectrochemical measurements demonstrated that the photoactivity of the composite material was significantly improved in the case of non-hydrolytic NCs with respect to hydrolytic route prepared ZnO. Moreover, the effective role of the organic/inorganic blend to improve the charge transfer with respect to the double layer hetero-junction was confirmed, thanks to the extended interfaces which enable an effective electron transfer between the hetero-junction components. The system was also studied at different film thicknesses and electrolyte compositions. The results indicated that film photoactivity increased with film thickness up to 300 nm due to the presence of a large number of interfaces, while the change of cation size influenced the ionic conductivity through the nanocomposite film. It was shown that efficient photoconductivity requires not only efficient charge separation, but also efficient transport of the carriers to the electrodes without recombination. - Highlights: • The photoelectrochemical processes at ZnO nanocrystals/MEH-PPV hetero-junction were studied. • Fluorescence quenching of the polymer at the MEH-PPV/ZnO interface was observed. • Non-hydrolytic ZnO junction showed higher photocurrents than hydrolytic equivalent. • The blends showed

  18. Photoelectrochemical properties of ZnO nanocrystals/MEH-PPV composite: The effects of nanocrystals synthetic route, film deposition and electrolyte composition

    International Nuclear Information System (INIS)

    Petrella, A.; Curri, M.L.; Striccoli, M.; Agostiano, A.; Cosma, P.

    2015-01-01

    This paper reports a study on the photoelectrochemical processes occurring at the interface of ZnO nanocrystals/MEH-PPV composites. Colloidal chemical routes were used to obtain size controlled non-hydrolytic ZnO nanocrystals (NCs) dispersible in organic solvents, while a low molecular weight poly[2-methoxy-5-(2′-ethyl-hexyloxy)phenylene vinylene] (MEH-PPV), characterized by high degree of structural order, was synthesized via an organometallic method. The optical properties of the nanocomposite material were comprehensively investigated on solution and on films deposited by spin coating. Remarkably, a significant fluorescence quenching of the polymer at the MEH-PPV/ZnO junction was observed. Photoelectrochemical measurements demonstrated that the photoactivity of the composite material was significantly improved in the case of non-hydrolytic NCs with respect to hydrolytic route prepared ZnO. Moreover, the effective role of the organic/inorganic blend to improve the charge transfer with respect to the double layer hetero-junction was confirmed, thanks to the extended interfaces which enable an effective electron transfer between the hetero-junction components. The system was also studied at different film thicknesses and electrolyte compositions. The results indicated that film photoactivity increased with film thickness up to 300 nm due to the presence of a large number of interfaces, while the change of cation size influenced the ionic conductivity through the nanocomposite film. It was shown that efficient photoconductivity requires not only efficient charge separation, but also efficient transport of the carriers to the electrodes without recombination. - Highlights: • The photoelectrochemical processes at ZnO nanocrystals/MEH-PPV hetero-junction were studied. • Fluorescence quenching of the polymer at the MEH-PPV/ZnO interface was observed. • Non-hydrolytic ZnO junction showed higher photocurrents than hydrolytic equivalent. • The blends showed

  19. Homogeneous Synthesis and Electroluminescence Device of Highly Luminescent CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Wei, Song; Yang, Yanchun; Kang, Xiaojiao; Wang, Lan; Huang, Lijian; Pan, Daocheng

    2017-03-06

    Highly luminescent CsPbBr 3 perovskite nanocrystals (PNCs) are homogeneously synthesized by mixing toluene solutions of PbBr 2 and cesium oleate at room temperature in open air. We found that PbBr 2 can be easily dissolved in nonpolar toluene in the presence of tetraoctylammonium bromide, which allows us to homogeneously prepare CsPbBr 3 perovskite quantum dots and prevents the use of harmful polar organic solvents, such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone. Additionally, this method can be extended to synthesize highly luminescent CH 3 NH 3 PbBr 3 perovskite quantum dots. An electroluminescence device with a maximal luminance of 110 cd/m 2 has been fabricated by using high-quality CsPbBr 3 PNCs as the emitting layer.

  20. The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keum Hwan; Park, O Ok [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Im, Sang Hyuk, E-mail: imromy@krict.re.kr, E-mail: ookpark@kaist.ac.kr [Korea Research Institute of Chemical Technology (KRICT), 19 Singsungno, Yuseong-gu, Daejeon 305-600 (Korea, Republic of)

    2011-01-28

    The size of silver nanocrystals in polyol synthesis can be simply controlled by tuning the viscosity of the reaction medium such as ethylene glycol, 1,2-propanediol, 1,4-butanediol and 1,5-pentanediol. We found that a higher viscose medium (1,5-pentanediol) led to monodispersed smaller particles thanks to the slow addition of silver atoms into the nuclei. Size-controlled silver nanocrystals of 30 nm were obtained in a viscosity controlled medium of 1,5-pentanediol to synthesize a low refractive index filler by coating with silica and subsequent etching of the silver core. The coated low-reflection layer from the hollow silica nanoparticles on polyethylene terephthalate (PET) film can greatly reduce the reflection of the PET film from 10% to 2% over the entire visible region.

  1. Superparamagnetic magnetite nanocrystals-graphene oxide nanocomposites: facile synthesis and their enhanced electric double-layer capacitor performance.

    Science.gov (United States)

    Wang, Qihua; Wang, Dewei; Li, Yuqi; Wang, Tingmei

    2012-06-01

    Superparamagnetic magnetite nanocrystals-graphene oxide (FGO) nanocomposites were successfully synthesized through a simple yet versatile one-step solution-processed approach at ambient conditions. Magnetite (Fe3O4) nanocrystals (NCs) with a size of 10-50 nm were uniformly deposited on the surfaces of graphene oxide (GO) sheets, which were confirmed by transmission electron microscopy (TEM) and high-angle annular dark field scanning transmission election microscopy (HAADF-STEM) studies. FGO with different Fe3O4 loadings could be controlled by simply manipulating the initial weight ratio of the precursors. The M-H measurements suggested that the as-prepared FGO nanocomposites have a large saturation magnetizations that made them can move regularly under an external magnetic field. Significantly, FGO nanocomposites also exhibit enhanced electric double-layer capacitor (EDLC) activity compared with pure Fe3O4 NCs and GO in terms of specific capacitance and high-rate charge-discharge.

  2. Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)?

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Dekura, Shun; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Matsumura, Syo; Kitagawa, Hiroshi

    2014-07-23

    Pd octahedrons and cubes enclosed by {111} and {100} facets, respectively, have been synthesized for investigation of the shape effect on hydrogen-absorption properties. Hydrogen-storage properties were investigated using in situ powder X-ray diffraction, in situ solid-state (2)H NMR and hydrogen pressure-composition isotherm measurements. With these measurements, it was found that the exposed facets do not affect hydrogen-storage capacity; however, they significantly affect the absorption speed, with octahedral nanocrystals showing the faster response. The heat of adsorption of hydrogen and the hydrogen diffusion pathway were suggested to be dominant factors for hydrogen-absorption speed. Furthermore, in situ solid-state (2)H NMR detected for the first time the state of (2)H in a solid-solution (Pd + H) phase of Pd nanocrystals at rt.

  3. Ion-beam synthesis and photoluminescence of SiC nanocrystals assisted by MeV-heavy-ion-beam annealing

    International Nuclear Information System (INIS)

    Khamsuwan, J.; Intarasiri, S.; Kirkby, K.; Chu, P.K.; Singkarat, S.; Yu, L.D.

    2012-01-01

    This work explored a novel way to synthesize silicon carbide (SiC) nanocrystals for photoluminescence. Carbon ions at 90 keV were implanted in single crystalline silicon wafers at elevated temperature, followed by irradiation using xenon ion beams at an energy of 4 MeV with two low fluences of 5 × 10 13 and 1 × 10 14 ions/cm 2 at elevated temperatures for annealing. X-ray diffraction, Raman scattering, infrared spectroscopy and transmission electron microscopy were used to characterize the formation of nanocrystalline SiC. Photoluminescence was measured from the samples. The results demonstrated that MeV-heavy-ion-beam annealing could indeed induce crystallization of SiC nanocrystals and enhance emission of photoluminescence with violet bands dominance due to the quantum confinement effect.

  4. Comparison of discrete-storage nonvolatile memories: advantage of hybrid method for fabrication of Au nanocrystal nonvolatile memory

    International Nuclear Information System (INIS)

    Wang Qin; Jia Rui; Guan Weihua; Li Weilong; Liu Qi; Hu Yuan; Long Shibing; Chen Baoqin; Liu Ming; Ye Tianchun; Lu Wensheng; Jiang Long

    2008-01-01

    In this paper, the memory characteristics of two kinds of metal-oxide-semiconductor (MOS) capacitors embedded with Au nanocrytals are investigated: hybrid MOS with nanocrystals (NCs) fabricated by chemical syntheses and rapid thermal annealing (RTA) MOS with NCs fabricated by RTA. For both kinds of devices, the capacitance versus voltage (C-V) curves clearly indicate the charge storage in the NCs. The hybrid MOS, however, shows a larger memory window, as compared with RTA MOS. The retention characteristics of the two MOS devices are also investigated. The capacitance versus time (C-t) measurement shows that the hybrid MOS capacitor embedded with Au nanocrystals has a longer retention time. The mechanism of longer retention time for hybrid MOS capacitor is qualitatively discussed

  5. Tunable band gap emission and surface passivation of germanium nanocrystals synthesized in the gas phase

    NARCIS (Netherlands)

    Wheeler, LM; Levij, L.M.; Kortshagen, U.R.

    2013-01-01

    The narrow bulk band gap and large exciton Bohr radius of germanium (Ge) make it an attractive material for optoelectronics utilizing band-gap-tunable photoluminescence (PL). However, realization of PL due to quantum confinement remains scarcely reported. Instead, PL is often observed from surface

  6. Properties of Aluminosilicate Refractories with Synthesized Boron-Modified TiO2 Nanocrystals

    Directory of Open Access Journals (Sweden)

    Claudia Carlucci

    2015-03-01

    ture was analysed by Scanning Electron Microscopy (SEM and energy dispersion spectroscopy (EDS. The bricks obtained with nanoadditives presented improved mechanical characteristics with respect to the typical aluminosilicates, presumably because of a better compac‐ tion during the raw materials’ mixing stage.

  7. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera

    Science.gov (United States)

    Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.

    2016-10-01

    The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.

  8. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Nathan R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carroll, Gerard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Limpens, Rens [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-16

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups - alkyls, amides, and alkoxides - on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands - not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals - are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  9. Stress evolution of Ge nanocrystals in dielectric matrices

    Science.gov (United States)

    Bahariqushchi, Rahim; Raciti, Rosario; Emre Kasapoğlu, Ahmet; Gür, Emre; Sezen, Meltem; Kalay, Eren; Mirabella, Salvatore; Aydinli, A.

    2018-05-01

    Germanium nanocrystals (Ge NCs) embedded in single and multilayer silicon oxide and silicon nitride matrices have been synthesized using plasma enhanced chemical vapor deposition followed by conventional furnace annealing or rapid thermal processing in N2 ambient. Compositions of the films were determined by Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy. The formation of NCs under suitable process conditions was observed with high resolution transmission electron microscope micrographs and Raman spectroscopy. Stress measurements were done using Raman shifts of the Ge optical phonon line at 300.7 cm-1. The effect of the embedding matrix and annealing methods on Ge NC formation were investigated. In addition to Ge NCs in single layer samples, the stress on Ge NCs in multilayer samples was also analyzed. Multilayers of Ge NCs in a silicon nitride matrix separated by dielectric buffer layers to control the size and density of NCs were fabricated. Multilayers consisted of SiN y :Ge ultrathin films sandwiched between either SiO2 or Si3N4 by the proper choice of buffer material. We demonstrated that it is possible to tune the stress state of Ge NCs from compressive to tensile, a desirable property for optoelectronic applications. We also observed that there is a correlation between the stress and the crystallization threshold in which the compressive stress enhances the crystallization, while the tensile stress suppresses the process.

  10. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands.

    Science.gov (United States)

    Carroll, Gerard M; Limpens, Rens; Neale, Nathan R

    2018-05-09

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups-alkyls, amides, and alkoxides-on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands-not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals-are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  11. The hemocompatibility of oxidized diamond nanocrystals for biomedical applications.

    Science.gov (United States)

    Li, Hung-Cheng; Hsieh, Feng-Jen; Chen, Ching-Pin; Chang, Ming-Yao; Hsieh, Patrick C H; Chen, Chia-Chun; Hung, Shain-Un; Wu, Che-Chih; Chang, Huan-Cheng

    2013-10-25

    Low-dimensional carbon-based nanomaterials have recently received enormous attention for biomedical applications. However, increasing evidence indicates that they are cytotoxic and can cause inflammatory responses in the body. Here, we show that monocrystalline nanodiamonds (NDs) synthesized by high-pressure-high-temperature (HPHT) methods and purified by air oxidation and strong oxidative acid treatments have excellent hemocompatibility with negligible hemolytic and thrombogenic activities. Cell viability assays with human primary endothelial cells suggested that the oxidized HPHT-NDs (dimensions of 35-500 nm) are non-cytotoxic. No significant elevation of the inflammatory cytokine levels of IL-1β and IL-6 was detected in mice after intravenous injection of the nanocrystals in vivo. Using a hindlimb-ischemia mouse model, we demonstrated that 35-nm NDs after covalent conjugation with polyarginine are useful as a drug delivery vehicle of heparin for prolonged anticoagulation treatment. The present study lays a solid foundation for further therapeutic applications of NDs in biomedicine.

  12. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  13. Spontaneous emission enhancement of colloidal perovskite nanocrystals

    Science.gov (United States)

    Yang, Zhili; Waks, Edo

    Halide perovskite semiconductors have emerged as prominent photovoltaic materials since their high conversion efficiency and promising light emitting materials in optoelectronics. In particular, easy-to-fabricated colloidal perovskite nanocrystals based on CsPbX3 quantum dots has been intensively investigated recently. Their luminescent wavelength could be tuned precisely by their chemical composition and size of growth. This opens new applications including light-emitting diodes, optical amplifiers and lasing since their promising performance as emitters. However, this potentially high-efficient emitter and gain material has not been fully investigated and realized in integrated photonic structures. Here we demonstrate Purcell enhancement effect of CsPbBr3 perovskite nanocrystals by coupling to an optimized photonic crystal nanobeam cavity as a first crucial step towards realization of integrated on-chip coherent light source with low energy consumption. We show clearly highly-enhanced photoluminescent spectrum and an averaged Purcell enhancement factor of 2.9 is achieved when they are coupled to nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our lifetime measurement. Our success in enhancement of emission from CsPbX3 perovskite nanocrystals paves the way towards the realization of efficient light sources for integrated optoelectronic devices with low energy consumption.

  14. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant.

    Science.gov (United States)

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen

    2013-10-18

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  15. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  16. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors

    Science.gov (United States)

    Jiang, Zhen; Li, Zhengping; Qin, Zhenhua; Sun, Haiyan; Jiao, Xiuling; Chen, Dairong

    2013-11-01

    Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures.Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures. Electronic supplementary information (ESI) available: Experimental details, XRD, TEM, SEM, and XPS images. See DOI: 10.1039/c3nr03829g

  17. Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals

    NARCIS (Netherlands)

    Gomez, Leyre; Lin, Junhao; De Weerd, Chris; Poirier, Lucas; Boehme, Simon C.; Von Hauff, Elizabeth; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2018-01-01

    All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the

  18. Characterization of Ge-nanocrystal films with photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bostedt, C.; Buuren, T. van; Willey, T.M.; Nelson, A.J.; Franco, N.; Moeller, T.; Terminello, L.J.

    2003-01-01

    The Ge 3d core-levels of germanium nanocrystal films have been investigated by means of photoelectron spectroscopy. The experiments indicate bulk-like coordinated atoms in the nanocrystals and suggest structured disorder on the nanoparticle surface. The results underline the importance of the surface on the overall electronic structure of this class of nanostructured materials

  19. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Science.gov (United States)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  20. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    Science.gov (United States)

    Augustine, M. Sajimol; Mathew, Lizzy; Alex, Roselin; Deepa, G. D.; Jayalekshmi, S.

    2014-01-01

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  1. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    International Nuclear Information System (INIS)

    Augustine, M. Sajimol; Mathew, Lizzy; Alex, Roselin; Deepa, G. D.; Jayalekshmi, S.

    2014-01-01

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation

  2. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, M. Sajimol, E-mail: sajimollazar@gmail.com [Department of Physics, St.Teresa' s College , Kochi-11, Kerala (India); Mathew, Lizzy [Department of Botany, St.Teresa' s College , Kochi-11, Kerala (India); Alex, Roselin [Department of Biotechnology, Cochin University of Science and Technology, Kochi-22 (India); Deepa, G. D. [NCAAH, Cochin University of Science and Technology,Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Kochi-22 (India)

    2014-01-28

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  3. Green synthesis of water soluble semiconductor nanocrystals and their applications

    Science.gov (United States)

    Wang, Ying

    II-VI semiconductor nanomaterials, e.g. CdSe and CdTe, have attracted great attention over the past decades due to their fascinating optical and electrical properties. The research presented here focuses on aqueous semiconductor nanomaterials. The work can be generally divided into three parts: synthesis, property study and application. The synthetic work is devoted to develop new methods to prepare shape- and structure-controlled II-VI semiconductor nanocrystals including nanoparticles and nanowires. CdSe and CdSe CdS semiconductor nanocrystals have been synthesized using sodium citrate as a stabilizer. Upon prolonged illumination with visible light, photoluminescence quantum yield of those quantum dots can be enhanced up to 5000%. The primary reason for luminescence enhancement is considered to be the removing of specific surface states (photocorrosion) and the smoothing of the CdSe core surface (photoannealing). CdTe nanowires are prepared through self-organization of stabilizer-depleted CdTe nanoparticles. The dipolar-dipolar attraction is believed to be the driving force of nanowire formation. The rich surface chemistry of CdTe nanowire is reflected by the formation of silica shell with different morphologies when nanowires with different capping ligands are used. Te and Se nanowires are prepared by chemical decomposition of CdTe and CdSe nanoparticles in presence of an external chemical stimulus, EDTA. These results not only provide a new example of NP→NW transformation, but also lead to a better understanding of the molecular process occurring in the stabilizer-depleted nanoparticles. The applications of those semiconductor materials are primarily based on the construction of nano-structured ultrathin films with desirable functions by using layer-by-layer technique (LBL). We demonstrate that light-induced micro-scale multicolor luminescent patterns can be obtained on photoactivable CdSe/CdS nanoparticles thin films by combining the advantages of LBL as

  4. Influence of heavy nanocrystals on spermatozoa and fertility of mammals

    Energy Technology Data Exchange (ETDEWEB)

    Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Hashemi, Ehsan [National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran (Iran, Islamic Republic of); Zare, Hakimeh [Physics Department, Yazd University, Yazd, P.O. Box 89195-741 (Iran, Islamic Republic of); Shamsara, Mehdi [National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran (Iran, Islamic Republic of); Taghavinia, Nima [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Heidari, Farid [National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran (Iran, Islamic Republic of)

    2016-12-01

    In recent years, quantum dots (QDs) have been widely used in upcoming nanotechnology-based solar cells, light-emitting diodes and even bioimaging, due to their tunable optical properties and excellent quantum yields. But, such nanostructures are currently constituted by heavy elements which can threat the human health and living environment. Hence, in this work, the in vivo effects of CdTe nanocrystals (NCs) (as one of the promising QDs) on spermatozoa of male mice and subsequently on fertility of female mice were investigated, for the first time. To do this, CdTe NCs were synthesized through an environment-friendly (aqueous-based solution) method. The sperm cells presented a high potential for uptake of the heavy QDs. Meantime, the NCs exhibited concentration-dependent adverse effects on morphology, viability, kinetic characteristics and DNA of the spermatozoa. At low concentration of 0.1 μg/mL, the NCs showed a moderate toxicity (~ 25% reduction in viability and motility of the spermatozoa), while remarkable toxicities were observed at higher concentrations of 1.0–100 μg/mL (~ 67% reduction in viability and motility for 100 μg/mL). Furthermore, significant in vitro DNA fragmentation of the spermatozoa was observed at CdTe concentrations ≥ 10 μg/mL. In vivo toxicity of the NCs was found lower than the in vitro toxicity. Nevertheless, the in vivo destructive effects of the NCs still caused ~ 34% reduction in viability as well as motility and ~ 5% damages in DNA of male mice spermatozoa. These resulted in ~ 26% decrease in fertility and gestation of female mice, along with an overall hormone secretion during the pregnancy, and ~ 39% reduction in viability of pups/pregnant females. - Highlights: • The cytotoxic effects of CdTe nanocrystals on spermatozoa of male mice • High uptake of CdTe by spermatozoa, resulting in inactivation of spermatozoa or pollution of the others • The adverse effects of polluted spermatozoa on fertility/gestation of female mice

  5. Photoluminescence from Si nanocrystals in silica: The effect of hydrogen

    International Nuclear Information System (INIS)

    Cheylan, S.; Elliman, R.G.

    2001-01-01

    The effect of H passivation on the PL emission of Si nanocrystals produced in silica by ion-implantion and annealing is shown to depend on the implant fluence. At low fluences, where the nanocrystals are small, passivation causes an enhancement of the emission intensity that is uniform over the full spectral range and therefore appears to be independent of nanocrystal size. For higher fluences, where the average size and size distribution of the nanocrystals are larger, the enhancement occurs preferentially at longer wavelengths, giving rise to a red-shift in the emission spectra. Both the enhancement and the red-shift increase monotonically with increasing fluence. These data are shown to be consistent with a model in which the probability to contain a non-radiative defect increases with nanocrystal size

  6. Isolating and moving single atoms using silicon nanocrystals

    Science.gov (United States)

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  7. Plasmonic light-sensitive skins of nanocrystal monolayers

    Science.gov (United States)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  8. Z-Contrast STEM Imaging and EELS of CdSe Nanocrystals: Towards the Analysis of Individual Nanocrystal Surfaces

    International Nuclear Information System (INIS)

    Erwin, M.; Kadavanich, A.V.; Kippeny, T.; Pennycook, S.J.; Rosenthal, S.J.

    1999-01-01

    We have applied Atomic Number Contract Scanning Transmission Electron Microscopy (Z-Contrast STEM) and STEM/EELS (Electron Energy Loss Spectroscopy) towards the study of colloidal CdSe semiconductor nanocrystals embedded in MEH-PPV polymer films. Unlike the case of conventional phase-contrast High Resolution TEM, Z-Contrast images are direct projections of the atomic structure. Hence they can be interpreted without the need for sophisticated image simulation and the image intensity is a direct measure of the thickness of a nanocrystal. Our thickness measurements are in agreement with the predicted faceted shape of these nanocrystals. Our unique 1.3A resolution STEM has successfully resolve3d the sublattice structure of these CdSe nanocrystals. In [010] projection (the polar axis in the image plane) we can distinguish Se atom columns from Cd columns. Consequently we can study the effects of lattice polarity on the nanocrystal morphology. Furthermore, since the STEM technique does not rely on diffraction, it is superbly suited to the study of non-periodic detail, such as the surface structure of the nanocrystals. EELS measurements on individual nanocrystals indicate a significant amount (equivalet to 0.5-1 surface monolayers) of oxygen on the nanocrystals, despite processing in an inert atmosphere. Spatially resolved measurements at 7A resolution suggest a surface oxide layer. However, the uncertainty in the measurement precludes definitive assignment at this time. The source of the oxygen is under investigation as well

  9. Preparation and structural, optical, magnetic, and electrical characterization of Mn{sup 2+}/Co{sup 2+}/Cu{sup 2+} doped hematite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Srikrishna Ramya, S.I., E-mail: ramyaskr@gmail.com; Mahadevan, C.K.

    2014-03-15

    Pure and Mn{sup 2+} / Co{sup 2+} / Cu{sup 2+} doped (1 and 2 at.%) spherical hematite (α-Fe{sub 2}O{sub 3})nanocrystals have been synthesized by a simple solvothermal method using a domestic microwave oven. XRD measurements confirm that all the seven nanocrystals prepared consist of nanocrystalline hematite phase without any other phases. The energy dispersive X-ray and Fourier transform infrared spectral analyses confirm the phase purity of the nanocrystals prepared. TEM analysis shows the average particle sizes within the range 33–51 nm. Optical absorption measurements indicate that all the three dopants enhance the optical transmittance and reflectance. A red shift is observed in the bandgap energy values estimated from optical absorption and reflectance spectra. Results of magnetic measurements made at room temperature using a vibrating sample magnetometer indicate significant changes in the magnetic properties (coercivity, retentivity and saturationmagnetization) due to doping. Results of magnetic measurements indicate significant changes in the magnetic properties. Results of AC electrical measurements made at various temperatures in the range 40–130 °C and frequencies in the range 100 Hz –1 MHz indicate low dielectric constants and AC electrical conductivities and consequently show the occurrence of nanoconfined states. -- Graphical abstract: The indexed X-ray diffraction (XRD) patterns of all the seven nanocrystals indicate the rhombohedral structure of hematite (JCPDS card No.13-0534). No impurity phase like oxides of Mn or Co or Cu was detected above equipment limit. The average crystallite (grain) sizes estimated using the Scherrer's formula. Highlights: • Pure and Mn/Co/Cu-doped hematite nanocrystals have been prepared. • The method adopted for the preparation is simple, economical and scalable. • Prepared nanocrystals are spherical in shape with good crystallinity and phase purity. • Mn/Co/Cu-doping enhances the optical

  10. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-11-05

    Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the

  11. Formation of noble metal nanocrystals in the presence of biomolecules

    Science.gov (United States)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  12. Enhanced coercivity in Co-doped α-Fe2O3 cubic nanocrystal assemblies prepared via a magnetic field-assisted hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Kinjal Gandha

    2017-05-01

    Full Text Available Ferromagnetic Co-doped α-Fe2O3 cubic shaped nanocrystal assemblies (NAs with a high coercivity of 5.5 kOe have been synthesized via a magnetic field (2 kOe assisted hydrothermal process. The X-ray diffraction pattern and Raman spectra of α-Fe2O3 and Co-doped α-Fe2O3 NAs confirms the formation of single-phase α-Fe2O3 with a rhombohedral crystal structure. Electron microscopy analysis depict that the Co-doped α-Fe2O3 NAs synthesized under the influence of the magnetic field are consist of aggregated nanocrystals (∼30 nm and of average assembly size 2 μm. In contrast to the NAs synthesized with no magnetic field, the average NAs size and coercivity of the Co-doped α-Fe2O3 NAs prepared with magnetic field is increased by 1 μm and 1.4 kOe, respectively. The enhanced coercivity could be related to the well-known spin–orbit coupling strength of Co2+ cations and the redistribution of the cations. The size increment indicates that the small ferromagnetic nanocrystals assemble into cubic NAs with increased size in the magnetic field that also lead to the enhanced coercivity.

  13. Semiconductor nanocrystals for novel optical applications

    Science.gov (United States)

    Moon, Jong-Sik

    Inspired by the promise of enhanced spectral response, photorefractive polymeric composites photosensitized with semiconductor nanocrystals have emerged as an important class of materials. Here, we report on the photosensitization of photorefractive polymeric composites at visible wavelengths through the inclusion of narrow band-gap semiconductor nanocrystals composed of PbS. Through this approach, internal diffraction efficiencies in excess of 82%, two-beam-coupling gain coefficients in excess of 211 cm-1, and response times 34 ms have been observed, representing some of the best figures-of-merit reported on this class of materials. In addition to providing efficient photosensitization, however, extensive studies of these hybrid composites have indicated that the inclusion of nanocrystals also provides an enhancement in the charge-carrier mobility and subsequent reduction in the photorefractive response time. Through this approach with PbS as charge-carrier, unprecedented response times of 399 micros were observed, opening the door for video and other high-speed applications. It is further demonstrated that this improvement in response time occurs with little sacrifice in photorefractive efficiency and with internal diffraction efficiencies of 72% and two- beam-coupling gain coefficients of 500 cm-1 being measured. A thorough analysis of the experimental data is presented, supporting the hypothesized mechanism of the enhanced charge mobility without the accompaniment of superfluous traps. Finally, water soluble InP/ZnS and CdSe/ZnS quantum dots interacted with CPP and Herceptin to apply them as a bio-maker. Both of quantum dots showed the excellent potential for use in biomedical imaging and drug delivery applications. It is anticipated that these approaches can play a significant role in the eventual commercialization of these classes of materials.

  14. Silicon Nanocrystal Synthesis in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with grains smaller than 5 nm are widely recognized as a key material in optoelectronic devices, lithium battery electrodes, and bio-medical labels. Another important characteristic is that silicon is an environmentally safe material that is used in numerous silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. In this study, we explore the possibility of microplasma technologies for efficient production of mono-dispersed nanocrystalline silicon particles on a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using a very-high-frequency (144 MHz) power source in a capillary glass tube with volume of less than 1 μl. Fundamental plasma parameters of the microplasma were characterized using optical emission spectroscopy, which respectively indicated electron density of 1015 cm-3, argon excitation temperature of 5000 K, and rotational temperature of 1500 K. Such high-density non-thermal reactive plasma can decompose silicon tetrachloride into atomic silicon to produce supersaturated silicon vapor, followed by gas-phase nucleation via three-body collision: particle synthesis in high-density plasma media is beneficial for promoting nucleation processes. In addition, further growth of silicon nuclei can be terminated in a short-residence-time reactor. Micro-Raman scattering spectra showed that as-deposited particles are mostly amorphous silicon with a small fraction of silicon nanocrystals. Transmission electron micrography confirmed individual 3-15 nm silicon nanocrystals. Although particles were not mono-dispersed, they were well separated and not coagulated.

  15. Synthesis of Silicon Nanocrystals in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with a grain size of at least less than 10 nm are widely recognized as one of the key materials in optoelectronic devices, electrodes of lithium battery, bio-medical labels. There is also important character that silicon is safe material to the environment and easily gets involved in existing silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. We explore the possibility of microplasma technologies for the efficient production of mono-dispersed nanocrystalline silicon particles in a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using very high frequency (VHF = 144 MHz) power source in a capillary glass tube with a volume of less than 1 μ-liter. Fundamental plasma parameters of VHF capacitively coupled microplasma were characterized by optical emission spectroscopy, showing electron density of approximately 1015 cm-3 and rotational temperature of 1500 K, respectively. Such high-density non-thermal reactive plasma has a capability of decomposing silicon tetrachloride into atomic silicon to produce supersaturated atomic silicon vapor, followed by gas phase nucleation via three-body collision. The particle synthesis in high-density plasma media is beneficial for promoting nucleation process. In addition, further growth of silicon nuclei was able to be favorably terminated in a short-residence time reactor. Micro Raman scattering spectrum showed that as-deposited particles were mostly amorphous silicon with small fraction of silicon nanocrystals. Transmission electron micrograph confirmed individual silicon nanocrystals of 3-15 nm size. Although those particles were not mono-dispersed, they were

  16. Solvothermal crystallization of nanocrystals of metal oxides

    International Nuclear Information System (INIS)

    Furukawa, S; Amino, H; Iwamoto, S; Inoue, M

    2008-01-01

    Solvothermal crystallization of the hydroxide gels obtained by hydrolysis of alkoxides (Zr, Ta, Nb, ln, Sn, Ti and Al) was examined. Nanocrystals having high surface areas (S BET > 170 m 2 g -1 ) were obtained except for the product derived from indium isopropoxide. The effect of water in organic solvent upon the crystallinity of the product was investigated. The increase in the activity of water by using high concentration of alkoxide or intentional addition of water to the solvothermal medium led to crystal growth of the products. In contrast, decrease in activity of water by adding ethylene glycol before solvothermal treatment caused a decrease in crystallinity of the product

  17. Structure and Magnetic Properties of Lanthanide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, James Henry [Vanderbilt Univ., Nashville, TN (United States)

    2014-06-01

    We have had considerable success on this project, particularly in the understanding of the relationship between nanostructure and magnetic properties in lanthanide nanocrystals. We also have successfully facilitated the doctoral degrees of Dr. Suseela Somarajan, in the Department of Physics and Astronomy, and Dr. Melissa Harrison, in the Materials Science Program. The following passages summarize the various accomplishments that were featured in 9 publications that were generated based on support from this grant. We thank the Department of Energy for their generous support of our research efforts in this area of materials science, magnetism, and electron microscopy.

  18. Solvothermal crystallization of nanocrystals of metal oxides

    Science.gov (United States)

    Furukawa, S.; Amino, H.; Iwamoto, S.; Inoue, M.

    2008-07-01

    Solvothermal crystallization of the hydroxide gels obtained by hydrolysis of alkoxides (Zr, Ta, Nb, ln, Sn, Ti and Al) was examined. Nanocrystals having high surface areas (SBET > 170 m2 g-1) were obtained except for the product derived from indium isopropoxide. The effect of water in organic solvent upon the crystallinity of the product was investigated. The increase in the activity of water by using high concentration of alkoxide or intentional addition of water to the solvothermal medium led to crystal growth of the products. In contrast, decrease in activity of water by adding ethylene glycol before solvothermal treatment caused a decrease in crystallinity of the product.

  19. Crystal Structure of Faradaurate-279: Au279(SPh-tBu)84 Plasmonic Nanocrystal Molecules.

    Science.gov (United States)

    Sakthivel, Naga Arjun; Theivendran, Shevanuja; Ganeshraj, Vigneshraja; Oliver, Allen G; Dass, Amala

    2017-11-01

    We report the discovery of an unprecedentedly large, 2.2 nm diameter, thiolate protected gold nanocrystal characterized by single crystal X-ray crystallography (sc-XRD), Au 279 (SPh-tBu) 84 named Faradaurate-279 (F-279) in honor of Michael Faraday's (1857) pioneering work on nanoparticles. F-279 nanocrystal has a core-shell structure containing a truncated octahedral core with bulk face-centered cubic-like arrangement, yet a nanomolecule with a precise number of metal atoms and thiolate ligands. The Au 279 S 84 geometry was established from a low-temperature 120 K sc-XRD study at 0.90 Å resolution. The atom counts in core-shell structure of Au 279 follows the mathematical formula for magic number shells: Au@Au 12 @Au 42 @Au 92 @Au 54 , which is further protected by a final shell of Au 48 . Au 249 core is protected by three types of staple motifs, namely: 30 bridging, 18 monomeric, and 6 dimeric staple motifs. Despite the presence of such diverse staple motifs, Au 279 S 84 structure has a chiral pseudo-D 3 symmetry. The core-shell structure can be viewed as nested, concentric polyhedra, containing a total of five forms of Archimedean solids. A comparison between the Au 279 and Au 309 cuboctahedral superatom model in shell-wise growth is illustrated. F-279 can be synthesized and isolated in high purity in milligram quantities using size exclusion chromatography, as evidenced by mass spectrometry. Electrospray ionization-mass spectrometry independently verifies the X-ray diffraction study based heavy atoms formula, Au 279 S 84 , and establishes the molecular formula with the complete ligands, namely, Au 279 (SPh-tBu) 84 . It is also the smallest gold nanocrystal to exhibit metallic behavior, with a surface plasmon resonance band around 510 nm.

  20. Acetone sensors based on TiO{sub 2} nanocrystals modified with tungsten oxide species

    Energy Technology Data Exchange (ETDEWEB)

    Epifani, Mauro, E-mail: mauro.epifani@le.imm.cnr.it [Consiglio Nazionale delle Ricerche – Istituto per la Microelettronica e Microsistemi (CNR-IMM), via Monteroni c/o Campus Universitario, I-73100, Lecce (Italy); Comini, Elisabetta [SENSOR Lab, Department of Information Engineering, Brescia University and CNR-INO, via Valotti, 9, 25133 Brescia (Italy); Díaz, Raül [Electrochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3 28935 Móstoles (Spain); Genç, Aziz [Metallurgy and Materials Engineering Department, Faculty of Engineering, Bartin University, 74100, Bartin (Turkey); Andreu, Teresa [Catalonia Institute for Energy Research- (IREC), Jardíns de les Dones de Negre, 1, E-08930 Sant Adrià del Besos, Barcelona, CAT (Spain); Siciliano, Pietro [Consiglio Nazionale delle Ricerche – Istituto per la Microelettronica e Microsistemi (CNR-IMM), via Monteroni c/o Campus Universitario, I-73100, Lecce (Italy); Morante, Joan R. [Catalonia Institute for Energy Research- (IREC), Jardíns de les Dones de Negre, 1, E-08930 Sant Adrià del Besos, Barcelona, CAT (Spain); Departament d' Electrònica, Universitat de Barcelona, C./ Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-04-25

    TiO{sub 2} nanocrystals were prepared by sol–gel/solvothermal processing and modified by the addition of W precursor before the solvothermal step. The W: Ti nominal atomic ratio (R{sub W}) was fixed to 0.16 and 0.64. Surface modification of TiO{sub 2} occurred for R{sub W} = 0.16 while for R{sub W} = 0.64 nanocomposites with WO{sub 3} nanocrystals were obtained after heat-treatment at 500 °C. Pure TiO{sub 2} proved to be very poorly performing in acetone sensing in all the operating conditions. Instead, the addition of both W concentrations largely enhanced the sensor response. It ranged over two orders of magnitude of conductance variation for all the tested concentrations at as low as 200 °C operating temperature. The results showed that it is possible to enhance the performance of an otherwise almost inactive oxide like TiO{sub 2} by proper combination with another more active oxide like WO{sub 3}. - Highlights: • Sensing architecture are synthesized, combining WO{sub 3} and of TiO{sub 2} nanocrystals. • Surface layers of W oxides or heterojunctions of TiO{sub 2} and WO{sub 3} are obtained. • Simple TiO{sub 2} surface modification by W oxides boosts the TiO{sub 2} acetone response. • High responses even at 200 °C show catalytic effect of WO{sub 3} addition.

  1. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  2. Synthesis, Characterization and Properties of CeO2-doped TiO2 Composite Nanocrystals

    Directory of Open Access Journals (Sweden)

    Oman ZUAS

    2013-12-01

    Full Text Available Pure TiO2 and CeO2-doped TiO2 (3 % CeO2-97 %TiO2 composite nanocrystals were synthesized via co-precipitation method and characterized using TGA, XRD, FTIR, DR-UV-vis and TEM. The XRD data revealed that the phase structure of the synthesized samples was mainly in pure anatase having crystallite size in the range of 7 nm – 11 nm. Spherical shapes with moderate aggregation of the crystal particles were observed under the TEM observation. The presence of the CeO2 at TiO2 site has not only affected morphologically but also induced the electronic property of the TiO2 by lowering the band gap energy from 3.29 eV (Eg-Ti to 3.15 eV (Eg-CeTi. Performance evaluation of the synthesized samples showed that both samples have a strong adsorption capacity toward Congo red (CR dye in aqueous solution at room temperature experiment, where  the capacity of the CeTi was higher than the Ti sample. Based on DR-UV data, the synthesized samples obtained in this study may also become promising catalysts for photo-assisted removal of synthetic dye in aqueous solution. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2732

  3. Self-assembly of Fe3O4 nanocrystal-clusters into cauliflower-like architectures: Synthesis and characterization

    International Nuclear Information System (INIS)

    Zhu Luping; Liao Guihong; Bing Naici; Wang Linlin; Xie Hongyong

    2011-01-01

    Large-scale cauliflower-like Fe 3 O 4 architectures consist of well-assembled magnetite nanocrystal clusters have been synthesized by a simple solvothermal process. The as-synthesized Fe 3 O 4 samples were characterized by XRD, XPS, FT-IR, SEM, TEM, etc. The results show that the samples exhibit cauliflower-like hierarchical microstructures. The influences of synthesis parameters on the morphology of the samples were experimentally investigated. Magnetic properties of the Fe 3 O 4 cauliflower-like hierarchical microstructures have been detected by VSM at room temperature, showing a relatively low saturation magnetization of 65 emu/g and an enhanced coercive force of 247 Oe. - Graphical Abstract: Cauliflower-like Fe 3 O 4 architectures consist of well-assembled magnetite nanocrystal clusters have been synthesized by a simple solvothermal process, using FeCl 3 .6H 2 O and EDA as the starting materials. Highlights: → Cauliflower-like Fe 3 O 4 architectures were successfully prepared by a simple solvothermal route. → The cauliflower-like Fe 3 O 4 architectures have a size in the range of 200-300 nm. → They show a low saturation magnetization of 65 emu/g and an enhanced coercive force of 247 Oe. → These Fe 3 O 4 architectures may have potential applications in catalysis and biological fields.

  4. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.

    Science.gov (United States)

    Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu

    2009-06-02

    Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.

  5. FeNi{sub 3} alloy nanocrystals grown on graphene: Controllable synthesis, in-depth characterization and enhanced electromagnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng; Yuan, Mengwei [Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875 (China); Islam, Saiful M. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Li, Huifeng [Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875 (China); Ma, Shulan, E-mail: mashulan@bnu.edu.cn [Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875 (China); Sun, Genban, E-mail: gbsun@bnu.edu.cn [Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875 (China); Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Xiaojing [Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2016-09-05

    FeNi{sub 3} nanocrystals as an ideal candidate for EM-wave-absorption material have a great advantage due to their excellent magnetic properties. However, its large permittivity and poor chemical stability confine its application. A strategy to improve electromagnetic performance of FeNi{sub 3}via phase-controlled synthesis of FeNi{sub 3} nanostructures grown on graphene networks has been employed in this work. The phases, structures, sizes and morphologies of FeNi{sub 3} nanocomposites were in-depth characterized by using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), and Raman spectroscopy. The results of electromagnetic performance tests for the as-synthesized FeNi{sub 3} nanocomposites showed excellent microwave absorbability in comparison with the corresponding FeNi{sub 3} nanocrystals, especially in the low (2–6 GHz) and middle (6–12 GHz) frequencies. The one-pot method we utilized is simple and effective, and because of its versatility, it may be extended to prepare some magnetic metal or alloy materials via this route. - Highlights: • Monodispersed FeNi{sub 3} alloy nanocrystals have been successfully assembled on 2D graphene via a one-pot strategy. • The process ensures different crystal phase and controlled morphology and size in the monodispersed particles. • The nanocomposites exhibit excellent microwave absorbability, which is stronger than the corresponding alloy monomer.

  6. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine

    Science.gov (United States)

    2012-01-01

    Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots. PMID:22289352

  7. Multidentate-Protected Colloidal Gold Nanocrystals: pH Control of Cooperative Precipitation and Surface Layer Shedding

    Science.gov (United States)

    Kairdolf, Brad A.; Nie, Shuming

    2011-01-01

    Colloidal gold nanocrystals with broad size tunability and unusual pH-sensitive properties have been synthesized by using multidentate polymer ligands. Containing both carboxylic functional groups and sterically hindered aliphatic chains, the multidentate ligands are able to both reduce gold precursors and to stabilize gold nanoclusters during nucleation and growth. The “as-synthesized” nanocrystals are protected by an inner coordinating layer and an outer polymer layer, and are soluble in water and polar solvents. When the solution pH is lowered by just 0.6 units (from pH 4.85 to 4.25), the particles undergo a dramatic cooperative transition from being soluble to insoluble, allowing rapid isolation, purification, and redispersion of the multidentate-protected nanocrystals. A surprise finding is that when a portion of the surface carboxylate groups is neutralized by protonation, the particles irreversibly shed their outer polymer layer and become soluble in nonpolar organic solvents. Further, the multidentate polymer coatings are permeable to small organic molecules, in contrast to tightly packed self-assembled monolayers of alkanethiols on gold. These insights are important towards the design of “smart” imaging and therapeutic nanoparticles that are activated by small pH changes in the tumor interstitial space or endocytic organelles. PMID:21510704

  8. Synthesis of Colloidal Nanocrystal Heterostructures for High-Efficiency Light Emission

    Science.gov (United States)

    Lu, Yifei

    Group II-VI semiconductor nanocrystals, particularly those based on ZnCdS(Se), can be synthesized using well established chemical colloidal processes, and have been a subject of extensive research over the past decade. Their optical properties can be easily tuned through size and composition variations, making them very attractive for many optoelectronic applications including light-emitting diodes (LEDs) and solar cells. Incorporation of diverse internal heterostructures provides an additional means for tuning the optical and electronic properties of conventional ZnCdS(Se) nanocrystals. Extensive bandgap and strain engineering may be applied to the resultant nanocrystal heterostructures to achieve desirable properties and enhanced performance. Despite the high scientific and practical interests of this unique class of nanomaterials, limited efforts have been made to explore their synthesis and potential device applications. This thesis focuses on the synthesis, engineering, characterization, and device demonstration of two types of CdSe-based nanocrystal heterostructures: core/multishell quantum dots (QDs) and QD quantum wells (QDQWs). Their optical properties have been tuned by bandgap and strain engineering to achieve efficient photoluminescence (PL) and electroluminescence (EL).Firstly, yellow light-emitting CdSe QDs with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized using the successive ion layer adsorption and reaction technique and the effects of the shell on the luminescent properties were investigated. The core/shell/shell QDs enjoyed the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell, and exhibited 40% stronger PL and a smaller peak redshift upon shell growth compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD-LEDs had a luminance of 558 cd/m2 at 20 mA/cm 2, 28% higher than that of CdSe/ZnCdS/ZnS QD

  9. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    OpenAIRE

    Hue Ryan; Gladfelter Wayne; Gresback Ryan; Kortshagen Uwe

    2011-01-01

    Abstract Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown ...

  10. Synthesis and shape control of copper tin sulphide nanocrystals and formation of gold-copper tin sulphide hybrid nanostructures

    International Nuclear Information System (INIS)

    Kruszynska, Marta; Parisi, Juergen; Kolny-Olesiak, Joanna

    2014-01-01

    Hexagonal prismatic Cu 3 SnS 4 nanoparticles and nanorods were synthesized by a hot-injection procedure. Changing the reaction conditions leads to the formation of different shapes. When oleylamine is used as a solvent, hexagonal prismatic particles are obtained, while a reaction in octadecene results in the formation of nanorods. The growth process of copper tin sulphide starts with the formation of djurleite copper sulphide seeds. Their reaction with Sn 4+ ions leads to the formation of Cu 3 SnS 4 . These Cu 3 SnS 4 nanocrystals form Au-Cu 3 SnS 4 hybrid nanostructures by reaction with gold seeds.

  11. Self organized formation of Ge nanocrystals in multilayers

    OpenAIRE

    Zschintzsch-Dias, Manuel

    2012-01-01

    The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation. In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated...

  12. PPLA-cellulose nanocrystals nanocomposite prepared by in situ polymerization

    International Nuclear Information System (INIS)

    Paula, Everton L. de; Pereirea, Fabiano V.; Mano, Valdir

    2011-01-01

    This work reports the preparation and and characterization of a PLLA-cellulose nanocrystals nanocomposite obtained by in situ polymerization. The nanocomposite was prepared by ring opening polymerization of the lactide dimer in the presence of cellulose nanocrystals (CNCs) and the as-obtained materials was characterized using FTIR, DSC, XRD and TGA measurements. The incorporation of cellulose nanocrystals in PLLA using this method improved the thermal stability and increased the crystallinity of PLLA. These results indicate that the incorporation of CNCs by in situ polymerization improve thermal properties and has potential to improve also mechanical properties of this biodegradable polymer. (author)

  13. Photoluminescence and electrical impedance measurements on alloyed Zn{sub (1-x)}Cd{sub x}S nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, R. Sakthi Sudar, E-mail: rsakthiss@yahoo.com [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India); Mahadevan, C.K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer High yield synthesis of Zn-Cd-S QDs. is achieved by solvothermal-microwave heating. Black-Right-Pointing-Pointer The samples are highly crystalline and the average particle size is {approx}3.5 nm. Black-Right-Pointing-Pointer High luminescent quantum yield and narrow emission spectral widths are obtained. Black-Right-Pointing-Pointer High conduction activation energy is observed in the case of Zn-Cd coexisting QDs. - Abstract: A series of wurtzite Zn{sub (1-x)}Cd{sub x}S (x = 0, 0.25, 0.5, 0.75 and 1) nanocrystals with average crystallite size of 1.98, 1.82, 1.80, 2.04 and 2.51 nm, respectively, have been synthesized by simple solvothermal microwave heating method. The photoluminescence yield is found to be higher in the case of alloyed nanocrystals (x = 0.25, 0.5, 0.75) as compared to ZnS (x = 0) and CdS (x = 1). The optical emission is tuned from blue (440 nm) to orange (575 nm) with the increase of Cd composition in Zn{sub (1-x)}Cd{sub x}S nanocrystal. The impedance analysis for Zn{sub (1-x)}Cd{sub x}S nanocrystals has been measured as a function of frequency and temperature. The real and imaginary part of complex impedance plots exhibit semicircle behavior in the complex plane. The AC activation energies of ZnS, Zn{sub 0.75}Cd{sub 0.25}S, Zn{sub 0.5}Cd{sub 0.5}S, Zn{sub 0.25}Cd{sub 0.75}S and CdS nanocrystals were calculated from electrical conductivity analysis and are found to be 0.188, 0.378, 0.456, 0.284 and 0.255 eV, respectively. The conductivity of the alloyed nanocrystals was higher than that of ZnS and CdS.

  14. Reusable hydroxyapatite nanocrystal sensors for protein adsorption

    International Nuclear Information System (INIS)

    Tagaya, Motohiro; Ikoma, Toshiyuki; Hanagata, Nobutaka; Chakarov, Dinko; Kasemo, Bengt; Tanaka, Junzo

    2010-01-01

    The repeatability of the adsorption and removal of fibrinogen and fetal bovine serum on hydroxyapatite (HAp) nanocrystal sensors was investigated by Fourier transform infrared (FTIR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) monitoring technique. The HAp nanocrystals were coated on a gold-coated quartz sensor by electrophoretic deposition. Proteins adsorbed on the HAp sensors were removed by (i) ammonia/hydrogen peroxide mixture (APM), (ii) ultraviolet light (UV), (iii) UV/APM, (iv) APM/UV and (v) sodium dodecyl sulfate (SDS) treatments. FTIR spectra of the reused surfaces revealed that the APM and SDS treatments left peptide fragments or the proteins adsorbed on the surfaces, whereas the other methods successfully removed the proteins. The QCM-D measurements indicated that in the removal treatments, fibrinogen was slowly adsorbed in the first cycle because of the change in surface wettability revealed by contact angle measurements. The SDS treatment was not effective in removing proteins. The APM or UV treatment decreased the frequency shifts for the reused HAp sensors. The UV/APM treatment did not induce the frequency shifts but decreased the dissipation shifts. Therefore, we conclude that the APM/UV treatment is the most useful method for reproducing protein adsorption behavior on HAp sensors.

  15. Reusable hydroxyapatite nanocrystal sensors for protein adsorption

    Directory of Open Access Journals (Sweden)

    Motohiro Tagaya, Toshiyuki Ikoma, Nobutaka Hanagata, Dinko Chakarov, Bengt Kasemo and Junzo Tanaka

    2010-01-01

    Full Text Available The repeatability of the adsorption and removal of fibrinogen and fetal bovine serum on hydroxyapatite (HAp nanocrystal sensors was investigated by Fourier transform infrared (FTIR spectroscopy and quartz crystal microbalance with dissipation (QCM-D monitoring technique. The HAp nanocrystals were coated on a gold-coated quartz sensor by electrophoretic deposition. Proteins adsorbed on the HAp sensors were removed by (i ammonia/hydrogen peroxide mixture (APM, (ii ultraviolet light (UV, (iii UV/APM, (iv APM/UV and (v sodium dodecyl sulfate (SDS treatments. FTIR spectra of the reused surfaces revealed that the APM and SDS treatments left peptide fragments or the proteins adsorbed on the surfaces, whereas the other methods successfully removed the proteins. The QCM-D measurements indicated that in the removal treatments, fibrinogen was slowly adsorbed in the first cycle because of the change in surface wettability revealed by contact angle measurements. The SDS treatment was not effective in removing proteins. The APM or UV treatment decreased the frequency shifts for the reused HAp sensors. The UV/APM treatment did not induce the frequency shifts but decreased the dissipation shifts. Therefore, we conclude that the APM/UV treatment is the most useful method for reproducing protein adsorption behavior on HAp sensors.

  16. The hydrodynamic size of polymer stabilized nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Karl M; Al-Somali, Ali M; Mejia, Michelle; Colvin, Vicki L [Department of Chemistry, Rice University, MS-60 6100 Main Street, Houston, TX 77005 (United States)

    2007-11-28

    For many emerging applications, nanocrystals are surface functionalized with polymers to control self-assembly, prevent aggregation, and promote incorporation into polymer matrices and biological systems. The hydrodynamic diameter of these nanoparticle-polymer complexes is a critical factor for many applications, and predicting this size is complicated by the fact that the structure of the grafted polymer at a nanocrystalline interface is not generally established. In this work we evaluate using size-exclusion chromatography the overall hydrodynamic diameter of nanocrystals (Au, CdSe, d<5 nm) surface coated with polystyrene of varying molecular weight. The polymer is tethered to the nanoparticles via a terminal thiol to provide strong attachment. Our data show that at full coverage the polymer assumes a brush conformation and is 44% longer than the unbound polymer in solution. The brush conformation is confirmed by comparison with models used to describe polymer brushes at flat interfaces. From this work, we suggest an empirical formula which predicts the hydrodynamic diameter of polymer coated nanoparticles based on the size of the nanoparticle core and the size of the randomly coiled unbound polymer in solution.

  17. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene

    International Nuclear Information System (INIS)

    Hassan, Mohammad L.; Moorefield, Charles M.; Elbatal, Hany S.; Newkome, George R.; Modarelli, David A.; Romano, Natalie C.

    2012-01-01

    Highlights: ► Surfaces of cellulose nanocrystals were modified with terpyridine ligands. ► Fluorescent nanocrystals could be obtained via self-assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals. ► Further self-assembly of azide-functionalized terpyridine onto the fluorescent cellulose nanocrystals was possible to obtain nanocellulosic material with expected use in bioimaging. - Abstract: Due to their natural origin, biocompatibility, and non-toxicity, cellulose nanocrystals are promising candidates for applications in nanomedicine. Highly fluorescent nanocellulosic material was prepared via surface modification of cellulose nanocrystals with 2,2′:6′,2″-terpyridine side chains followed by supramolecular assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals (CTP) via Ru III /Ru II reduction. The prepared terpyridine-modified cellulose-Ru II -terpyridine-modified perylene (CTP-Ru II -PeryTP) fluorescent nanocrystals were characterized using cross-polarized/magic angle spin 13 C nuclear magnetic resonance (CP/MAS 13 C NMR), Fourier transform infrared (FTIR), UV–visible, and fluorescence spectroscopy. In addition, further self-assembly of terpyridine units with azide functional groups onto CTP-Ru II -PeryTP was possible via repeating the Ru III /Ru II reduction protocol to prepare supramolecular fluorescent nanocrystals with azide functionality (CTP-Ru II -PeryTP-Ru II -AZTP). The prepared derivative may have potential application in bio-imaging since the terminal azide groups can be easily reacted with antigens via “Click” chemistry reaction.

  18. Optimization of plasma parameters for the production of silicon nano-crystals

    CERN Document Server

    Chaabane, N; Vach, H; Cabarrocas, P R I

    2003-01-01

    We use silane-hydrogen plasmas to synthesize silicon nano-crystals in the gas phase and thermophoresis to collect them onto a cooled substrate. To distinguish between nano-crystals formed in the plasma and those grown on the substrate, as a result of surface and subsurface reactions, we have simultaneously deposited films on a conventional substrate heated at 250 deg. C and on a second substrate cooled down to 90 deg. C. A series of samples deposited at various discharge pressures, in the range of 400 mTorr to 1.2 Torr, have been characterized by Raman spectroscopy and ellipsometry. At low pressure (400-500 mTorr), the films are amorphous on the cold substrate and micro-crystalline on the hot one. As pressure increases, gas phase reactions lead to the formation of nano-crystalline particles which are attracted by the cold substrate due to thermophoresis. Consequently, we obtain nano-crystalline silicon thin films on the cold substrate and amorphous thin films on the heated one in the pressure range of 600-900...

  19. Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals

    KAUST Repository

    Codoluto, Stephen C.

    2010-01-01

    Colloidal Ge nanocrystals (NCs) were synthesized via the solution phase reduction of germanium(ii) iodide. We report a systematic investigation of the nanocrystal nucleation and growth as a function of synthesis conditions including the nature of coordinating solvents, surface bound ligands, synthesis duration and temperature. NC synthesis in reaction environments with weakly bound phosphine surface ligand led to the coalescence of nascent particles leading to ensembles with broad lognormal particle diameter distributions. Synthesis in the presence of amine or alkene ligands mitigated particle coalescence. High-resolution transmission electron micrographs revealed that NCs grown in the presence of weak ligands had a high crystal defect density whereas NCs grown in amine solutions were predominantly defect-free. We applied infrared spectroscopy to study the NC surface chemistry and showed that alkene ligands project the NCs from surface oxidation. Photoluminescence spectroscopy measurements showed that alkene ligands passivate surface traps, as indicated by infrared fluorescence, conversely oxidized phosphine and amine passivated NCs did not fluoresce. © 2010 The Royal Society of Chemistry.

  20. Safety assessments of subcutaneous doses of aragonite calcium carbonate nanocrystals in rats

    Science.gov (United States)

    Jaji, Alhaji Zubair; Zakaria, Zuki Abu Bakar; Mahmud, Rozi; Loqman, Mohamad Yusof; Hezmee, Mohamad Noor Mohamad; Abba, Yusuf; Isa, Tijani; Mahmood, Saffanah Khuder

    2017-05-01

    Calcium carbonate nanoparticles have shown promising potentials in the delivery of drugs and metabolites. There is however, a paucity of information on the safety of their intentional or accidental over exposures to biological systems and general health safety. To this end, this study aims at documenting information on the safety of subcutaneous doses of biogenic nanocrystals of aragonite polymorph of calcium carbonate derived from cockle shells (ANC) in Sprague-Dawley (SD) rats. ANC was synthesized using the top-down method, characterized using the transmission electron microscopy and field emission scanning electron microscope and its acute and repeated dose 28-day trial toxicities were evaluated in SD rats. The results showed that the homogenous 30 ± 5 nm-sized spherical pure aragonite nanocrystals were not associated with mortality in the rats. Severe clinical signs and gross and histopathological lesions, indicating organ toxicities, were recorded in the acute toxicity (29,500 mg/m2) group and the high dose (5900 mg/m2) group of the repeated dose 28-day trial. However, the medium- (590 mg/m2 body weight) and low (59 mg/m2)-dose groups showed moderate to mild lesions. The relatively mild lesions observed in the low toxicity dosage group marked the safety margin of ANC in SD rats. It was concluded from this study that the toxicity of CaCO3 was dependent on the particulate size (30 ± 5 nm) and concentration and the route of administration used.

  1. In-Situ Growth and Characterization of Indium Tin Oxide Nanocrystal Rods

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-11-01

    Full Text Available Indium tin oxide (ITO nanocrystal rods were synthesized in-situ by a vapor-liquid-solid (VLS method and electron beam evaporation technique. When the electron-beam gun bombarded indium oxide (In2O3 and tin oxide (SnO2 mixed sources, indium and tin droplets appeared and acted as catalysts. The nanocrystal rods were in-situ grown on the basis of the metal catalyst point. The nanorods have a single crystal structure. Its structure was confirmed by X-ray diffraction (XRD and transmission electron microscopy (TEM. The surface morphology was analyzed by scanning electron microscopy (SEM. During the evaporation, a chemical process was happened and an In2O3 and SnO2 solid solution was formed. The percentage of doped tin oxide was calculated by Vegard’s law to be 3.18%, which was in agreement with the mixture ratio of the experimental data. The single crystal rod had good semiconductor switch property and its threshold voltage of single rod was approximately 2.5 V which can be used as a micro switch device. The transmission rate of crystalline nanorods ITO film was over 90% in visible band and it was up to 95% in the blue green band as a result of the oxygen vacancy recombination luminescence.

  2. Single and couple doping ZnO nanocrystals characterized by positron techniques

    International Nuclear Information System (INIS)

    Pasang, Tenzin; Namratha, Keerthiraj; Byrappa, Kullaiah; Guagliardo, Paul; Ranganathaiah, Chikkakuntappa; Samarin, S; Williams, J F

    2015-01-01

    Zinc oxide (ZnO) nanocrystals have been synthesized using a mild hydrothermal process using low temperatures and pressures with the advantages of free growth catalyst, low cost and alternative technology. Positron annihilation lifetime spectroscopy and coincidence Doppler broadening (CDB) spectroscopic methods have been used to investigate the roles of single- and co-dopants and native defects of the ZnO nanocrystals controlled by the synthesis process. It is shown that single Ag 1+ and Pd 2+ dopants occupy interstitial sites of the ZnO lattice and single Ru 3+ doping replaces Zn vacancies substitutionally with a significant effect on the CDB momentum ratio curves when compared using ZnO as the reference spectrum. The co-doping of the ZnO lattice with (Sn 4+ + Co 2+ ) shows similar CDB ratios as Ru 3+ single-doping. Also co-doping with (Ag 1+ + Pd 2+ ) or (Ag 1+ + W 6+ ) shows significant decreases in the band gap energy up to about 12.6% compared to single doping. The momentum ratio curves, referenced to undoped ZnO, indicate dopants in interstitial and substitutional sites. The presence of transition metal ions interstitially will trap electrons which resist the recombination of electrons and in turn affect the conductivity of the material. (paper)

  3. One-step synthesis of hybrid nanocrystals with rational tuning of the morphology.

    Science.gov (United States)

    Sang, Wei; Zheng, Tingting; Wang, Youcheng; Li, Xu; Zhao, Xu; Zeng, Jie; Hou, J G

    2014-11-12

    Metal-sulfide hybrid nanocrystals (HNCs) have been of great interest for their distinguished interfacial effect, which gives rise to unique catalytic properties. However, most of the reported metal-sulfide HNCs were synthesized via two-step approaches and few were fabricated based on the one-step strategies. Herein, we report a facile one-pot synthesis of CuPt-Cu2S, Pt-Cu2S HNCs, and CuPt nanocubes by simply changing the Pt precursor types. 1-Hexadecanethiol (HDT) was employed in this system to mediate the reduction of metal precursors and also as capping agent and sulfur source. Moreover, CuPd-Cu2S and Au-Cu2S HNCs were successfully prepared by using this one-step method. The catalytic properties of the obtained three nanocrystals were investigated in hydrogenation of cinnamaldehyde. Results show that CuPt-Cu2S HNCs exhibited the highest conversion rate and the highest selectivity toward hydrocinnamaldehyde while 3-phenyl-1-propanol was the only product over Pt-Cu2S HNCs.

  4. Amperometric Formaldehyde Sensor Based on a Pd Nanocrystal Modified C/Co2P Electrode

    Directory of Open Access Journals (Sweden)

    Huan Wang

    2017-01-01

    Full Text Available Ultrafine Pd nanocrystals were grown on the cobalt phosphide (Co2P decorated Vulcan XC-72 carbon (C/Co2P, which is realized by first implementing the corresponding metal precursor and then the further chemical reduction process. The as-synthesized C/Co2P/Pd composite was further constructed to form a gas permeable electrode. This electrode can be applied for formaldehyde (HCHO detection. The results demonstrate that the Co2P nanocrystal can significantly improve the sensing performance of the C/Co2P/Pd electrode for catalytic oxidation of HCHO, which is considered to be attributed to the effective electron transfer from Co2P to Pd in the C/Co2P/Pd composites. Furthermore, the assembled C/Co2P/Pd sensor exhibits high sensitivity of 617 nA/ppm and good selectivity toward various interfering gases such as NO2, NO, SO2, CO2, and CO. It also shows the excellent linear response that the correlation coefficient is 0.994 in the concentration range of 1–10 ppm. Therefore, the proposed cost-effective C/Co2P/Pd nanocomposite, which owns advantages such as high activity and good stability, has the potential to be applied as an effective electrocatalyst for amperometric HCHO detection.

  5. Hydrothermal synthesis of highly water-dispersible anatase nanocrystals from transparent aqueous sols of titanate colloids

    International Nuclear Information System (INIS)

    Ban, Takayuki; Tanaka, Yusuke; Ohya, Yutaka

    2011-01-01

    Transparent colloidal aqueous solutions of anatase nanocrystals were hydrothermally synthesized from aqueous transparent sols with tetramethylammonium titanate colloids, the surfaces of which were modified with citric acid, by structural conversion of the titanate to anatase. This modification hindered coalescence of the titanate colloids during the hydrothermal synthesis. Although the amount of citric acid adsorbed on the colloids was reduced during hydrothermal treatment, a small amount of citric acid was adsorbed on the resulting anatase nanocrystals. Moreover, the use of the titanate colloids as a precursor was compared with the use of a citrato Ti complex, tetramethylammonium citratotitanate. The hydrothermal treatment of the transparent aqueous solutions of the Ti complex yielded opaque solutions with large anatase colloids, suggesting that the titanate colloids were useful for preparing transparent anatase colloidal solutions. Because the shape and size of resulting colloids may be dependent on the size and shape of starting colloids, the use of titanate colloids as a precursor may make it easy to control size and shape of anatase colloids.

  6. Single and couple doping ZnO nanocrystals characterized by positron techniques

    Science.gov (United States)

    Pasang, Tenzin; Namratha, Keerthiraj; Guagliardo, Paul; Byrappa, Kullaiah; Ranganathaiah, Chikkakuntappa; Samarin, S.; Williams, J. F.

    2015-04-01

    Zinc oxide (ZnO) nanocrystals have been synthesized using a mild hydrothermal process using low temperatures and pressures with the advantages of free growth catalyst, low cost and alternative technology. Positron annihilation lifetime spectroscopy and coincidence Doppler broadening (CDB) spectroscopic methods have been used to investigate the roles of single- and co-dopants and native defects of the ZnO nanocrystals controlled by the synthesis process. It is shown that single Ag1+ and Pd2+ dopants occupy interstitial sites of the ZnO lattice and single Ru3+ doping replaces Zn vacancies substitutionally with a significant effect on the CDB momentum ratio curves when compared using ZnO as the reference spectrum. The co-doping of the ZnO lattice with (Sn4+ + Co2+) shows similar CDB ratios as Ru3+ single-doping. Also co-doping with (Ag1+ + Pd2+) or (Ag1+ + W6+) shows significant decreases in the band gap energy up to about 12.6% compared to single doping. The momentum ratio curves, referenced to undoped ZnO, indicate dopants in interstitial and substitutional sites. The presence of transition metal ions interstitially will trap electrons which resist the recombination of electrons and in turn affect the conductivity of the material.

  7. Optical properties of uniformly sized silicon nanocrystals within a single silicon oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    En Naciri, A., E-mail: aotmane.en-naciri@univ-lorraine.fr [Universite de Lorraine, LCP-A2MC, Institut Jean Barriol (France); Miska, P. [Universite de Lorraine, Institut Jean Lamour CNRS UMR 7198 (France); Keita, A.-S. [Max Planck Institute for Intelligent Systems (Germany); Battie, Y. [Universite de Lorraine, LCP-A2MC, Institut Jean Barriol (France); Rinnert, H.; Vergnat, M. [Universite de Lorraine, Institut Jean Lamour CNRS UMR 7198 (France)

    2013-04-15

    Silicon nanocrystals (Si-NC) with different sizes (2-6 nm) are synthesized by evaporation. The system is composed of a single Si-NC layer that is well controlled in size. The numerical modeling of such system, without a large size distribution, is suitable to perform easily the optical calculations. The nanocrystal size and confinement effects on the optical properties are determined by photoluminescence (PL) measurements, absorption in the UV visible range, and spectroscopic ellipsometry (SE). The optical constants and the bandgap energies are then extracted and analyzed. The dependence of the optical responses with the decrease of the size of the Si-NC occurs not only with a drastic reduction of the amplitudes of dielectric function but also by a significant expansion of the optical gap. This study supports the idea of a presence of a critical size of Si-NC for which the confinement effect becomes weak. The evolution of those bandgap energies are discussed in comparison with values reported in literature.

  8. Conjugation of hydroxyapatite nanocrystals with human immunoglobulin G for nanomedical applications.

    Science.gov (United States)

    Iafisco, Michele; Varoni, Elena; Di Foggia, Michele; Pietronave, Stefano; Fini, Milena; Roveri, Norberto; Rimondini, Lia; Prat, Maria

    2012-02-01

    Inorganic nanosized drug carriers are a promising field in nanomedicine applied to cancer. Their conjugation with antibodies combines the properties of the nanoparticles themselves with the specific and selective recognition ability of the antibodies to antigens. Biomimetic carbonate-hydroxyapatite (HA) nanoparticles were synthesized and fully characterized; human IgGs, used as model antibodies, were coupled to these nanocrystals. The maximum loading amount, the interaction modelling, the preferential orientation and the secondary structure modifications were evaluated using theoretical models (Langmuir, Freundlich and Langmuir-Freundlich) spectroscopic (UV-Vis, Raman), calorimetric (TGA), and immunochemical techniques (ELISA, Western Blot). HA nanoparticles of about 30 nm adsorbed human IgGs, in a dose-dependent, saturable and stable manner with micromolar affinity and adsorption capability around 2.3 mg/m(2). Adsorption isotherm could be described by Langmuir-Freundlich model, and was due to both energetically homogeneous and heterogeneous binding sites on HA surface, mainly of electrostatic nature. Binding did not induce secondary structure modification of IgGs. A preferential IgG end-on orientation with the involvement of IgG Fc moiety in the adsorption seems most probable due to the steric hindrance of their Fab domains. Biomimetic HA nanocrystals are suitable substrates to produce nanoparticles which can be functionalized with antibodies for efficient targeted drug delivery to tumours. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    Science.gov (United States)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  10. Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids

    International Nuclear Information System (INIS)

    Gao Chao; Li Wenwen; Jin Yizheng; Kong Hao

    2006-01-01

    A facile and efficient aqueous phase-based strategy to synthesize carbon nanotube (CNT)/silver nanocrystal nanohybrids at room temperature is reported. In the presence of carboxyl group functionalized or poly(acrylic acid)- (PAA-) grafted CNTs, silver nanoparticles were in situ generated from AgNO 3 aqueous solution, without any additional reducing agent or irradiation treatment, and readily attached to the CNT convex surfaces, leading to the CNT/Ag nanohybrids. The produced silver nanoparticles were determined to be face-centred cubic silver nanocrystals by scanning transmission electron microscopy (STEM), electron diffraction (ED) and x-ray powder diffraction (XRD) analyses. Detailed experiments showed that this strategy can also be applied to different CNTs, including single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), multiwalled carbon nanotubes (MWNTs), and polymer-functionalized CNTs. The nanoparticle sizes can be controlled from 2 nm to 10-20 nm and the amount of metal deposited on CNT surfaces can be as high as 82 wt%. Furthermore, large-scale (10 g or more) CNT/Ag nanohybrids can be prepared via this approach without the decrease of efficiency and quality. This approach can also be extended to prepare Au single crystals by CNTs. The facile, efficient and large-scale availability of the nanohybrids makes their tremendous potential realizable and developable

  11. Synthesis of compositionally controllable Cu{sub 2}(Sn{sub 1−x}Ge{sub x})S{sub 3} nanocrystals with tunable band gaps

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qingshuang, E-mail: lqs671@163.com [Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry (China)

    2016-06-15

    In this work, we show that compositionally controlled Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals can be successfully synthesized by the hot-injection method through careful tuning the Ge/(Sn+Ge) precursor ratio. The band gaps of the resultant nanocrystals are demonstrated to be linearly tuned from 1.45 to 2.33 eV by adjusting the composition parameter x of the Ge/(Sn+Ge) ratio from 0.0 to 1.0. The crystalline structures of the resultant NCs have been studied by the X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), select area electron diffraction (SAED), and Raman spectroscopy. A ligand exchange procedure is further performed to replace the native ligands on the surface of the NCs with sulfur ions. The photoresponsive behavior indicates the potential use of as-prepared Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals in solar energy conversion systems. The synthesis of compositionally controlled Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals reported herein provides a way for probing the effect of Ge inclusion in the Cu-Sn-S system thin films.

  12. Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction.

    Science.gov (United States)

    Li, Fu-Min; Kang, Yong-Qiang; Liu, Hui-Min; Zhai, Ya-Nan; Hu, Man-Cheng; Chen, Yu

    2018-03-15

    Bimetallic noble metal nanocrystals have been widely applied in many fields, which generally are synthesized by the wet-chemistry reduction method. This work presents a purposely designed atoms diffusion induced phase engineering of PtAu alloy nanocrystals on platy Au substrate (PtAu-on-Au nanostructures) through simple hydrothermal treatment. Benefitting from the synergistic effects of component and structure, PtAu-on-Au nanostructures remarkably enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR), and thus exhibit much higher FAOR activity and durability compared with Pt nanocrystals on platy Au substrate (Pt-on-Au nanostructures) and commercial Pd black due to an excellent stability of platy Au substrate and a high oxidation resistance of PtAu alloy nanocrystals. The atoms diffusion-induced phase engineering demonstrated in this work builds a bridge between the traditional metallurgy and modern nanotechnologies, which also provides some useful insights in developing noble metals based alloyed nanostructures for the energy and environmental applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Unveiling the chemical and morphological features of Sb:SnO2 nanocrystals by the combined use of HRTEM and Ab Initio surface energy calculations

    International Nuclear Information System (INIS)

    Stroppa, Daniel G.; Montoro, Luciano A.; Ramirez, Antonio J.; Beltran, Armando; Andres, Juan; Conti, Tiago G.; Silva, Rafael O. da; Longo, Elson; Leite, Edson R.

    2009-01-01

    Modeling of nanocrystals supported by advanced morphological and chemical characterization is a unique tool for the development of reliable nanostructured devices, which depends on the ability to synthesize and characterize material on the atomic scale. Among the most significant challenges in nanostructural characterization is the evaluation of crystal growth mechanisms and their dependence on the shape of nanoparticles and the distribution of doping elements. This work presents a new strategy to characterize nanocrystals, applied here to antimony-doped tin oxide (Sb-SnO 2 ) (ATO) by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface energy ab initio calculations. The results show that the Wulff construction can not only describe the shape of nanocrystals as a function of surface energy distribution but also retrieve quantitative information on dopant distribution by the dimensional analysis of nanoparticle shapes. In addition, a novel three-dimensional evaluation of an oriented attachment growth mechanism is provided in the proposed methodology. This procedure is a useful approach for faceted nanocrystal shape modeling and indirect quantitative evaluation of dopant spatial distribution, which are difficult to evaluate by other techniques. (author)

  14. Cellulose nanocrystal zero-valent iron nanocomposites for groundwater remediation†

    Science.gov (United States)

    Bossa, Nathan; Carpenter, Alexis Wells; Kumar, Naresh; de Lannoy, Charles-François

    2018-01-01

    Zero-valent iron nanoparticles (nano-ZVIs) have been widely studied for in situ remediation of groundwater and other environmental matrices. Nano-ZVI particle mobility and reactivity are still the main impediments in achieving efficient in situ groundwater remediation. Compared to the nano-ZVI “coating” strategy, nano-ZVI stabilization on supporting material allows direct contact with the contaminant, reduces the electron path from the nano-ZVI to the target contaminant and increases nano-ZVI reactivity. Herein, we report the synthesis of nano-ZVI stabilized by cellulose nanocrystal (CNC) rigid nanomaterials (CNC-nano-ZVI; Fe/CNC = 1 w/w) with two different CNC functional surfaces (–OH and –COOH) using a classic sodium borohydride synthesis pathway. The final nanocomposites were thoroughly characterized and the reactivity of CNC-nano-ZVIs was assessed by their methyl orange (MO) dye degradation potential. The mobility of nanocomposites was determined in (sand/glass bead) porous media by utilizing a series of flowthrough transport column experiments. The synthesized CNC-nano-ZVI provided a stable colloidal suspension and demonstrated high mobility in porous media with an attachment efficiency (α) value of less than 0.23. In addition, reactivity toward MO increased up to 25% compared to bare ZVI. The use of CNC as a delivery vehicle shows promising potential to further improve the capability and applicability of nano-ZVI for in situ groundwater remediation and can spur advancements in CNC-based nanocomposites for their application in environmental remediation. PMID:29725541

  15. Impact of nanocrystal spray deposition on inorganic solar cells.

    Science.gov (United States)

    Townsend, Troy K; Yoon, Woojun; Foos, Edward E; Tischler, Joseph G

    2014-05-28

    Solution-synthesized inorganic cadmium telluride nanocrystals (∼4 nm; 1.45 eV band gap) are attractive elements for the fabrication of thin-film-based low-cost photovoltaic (PV) devices. Their encapsulating organic ligand shell enables them to be easily dissolved in organic solvents, and the resulting solutions can be spray-cast onto indium-tin oxide (ITO)-coated glass under ambient conditions to produce photoactive thin films of CdTe. Following annealing at 380 °C in the presence of CdCl2(s) and evaporation of metal electrode contacts (glass/ITO/CdTe/Ca/Al), Schottky-junction PV devices were tested under simulated 1 sun conditions. An improved PV performance was found to be directly tied to control over the film morphology obtained by the adjustment of spray parameters such as the solution concentration, delivery pressure, substrate distance, and surface temperature. Higher spray pressures produced thinner layers (spray-cast Schottky devices rivaled those prepared by conventional spin-coating, showing Jsc = 14.6 ± 2.7 mA cm(-2), Voc = 428 ± 11 mV, FF = 42.8 ± 1.4%, and Eff. = 2.7 ± 0.5% under 1 sun illumination. This optimized condition of CdTe spray deposition was then applied to heterojunction devices (ITO/CdTe/ZnO/Al) to reach 3.0% efficiency after light soaking under forward bias. The film thickness, surface morphology, and light absorption were examined with scanning electron microscopy, optical profilometry, and UV/vis spectroscopy.

  16. Synthesis of ZnSe nanocrystals (NCs) using a rapid microwave irradiation method and investigation of the effect of copper (Cu) doping on the optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, M., E-mail: m.molaei@vru.ac.ir; Khezripour, A.R.; Karimipour, M.

    2014-10-30

    Highlights: • ZnSe nanocrystals were synthesized using a rapid microwave method. • Synthesized ZnSe NCs indicated an emission with two peaks. • For ZnSe:Cu NCs band edge emission of the ZnSe was completely disappeared. • Synthesized NCs can be dispersed in water therefore they are proper for biological applications. - Abstract: ZnSe nanocrystals (NCs) were synthesized using a microwave activated method. Synthesized NCs were characterized by means of X-ray diffraction (XRD), UV–visible (UV–vis) optical spectroscopy and photoluminescence (PL). XRD analysis demonstrated cubic zinc blende NCs. TEM image indicated round shape NCs and most of the particles had diameters of about 3 nm. Band gap of the NCs was obtained about 3.15 eV and PL spectra indicates a broad emission with two peaks located about 415 and 500 nm related to band edge and trap state respectively. For ZnSe:Cu NCs, PL intensity of band gap emission of ZnSe NCs at 415 nm decreased gradually with the increase in the concentration of Cu dopant ions and for precursor ratio of Cu:Zn 1% band gap emission at 415 nm disappeared completely. At the same conditions, PL QY was obtained about 2% and 8% for ZnSe and ZnSe:Cu (1%) NCs, respectively.

  17. Synthesis and characterization of transition-metal-doped zinc oxide nanocrystals for spintronics

    Science.gov (United States)

    Wang, Xuefeng

    Spintronics (spin transport electr onics), in which both spin and charge of carriers are utilized for information processing, is believed to challenge the current microelectronics and to become the next-generation electronics. Nanostructured spintronic materials and their synthetic methodologies are of paramount importance for manufacturing future nanoscale spintronic devices. This thesis aims at studying synthesis, characterization, and magnetism of transition-metal-doped zinc oxide (ZnO) nanocrystals---a diluted magnetic semiconductor (DMS)---for potential applications in future nano-spintronics. A simple bottom-up-based synthetic strategy named a solvothermal technique is introduced as the primary synthetic approach and its crystal growth mechanism is scrutinized. N-type cobalt-doped ZnO-based DMS nanocrystals are employed as a model system, and characterized by a broad spectrum of advanced microscopic and spectroscopic techniques. It is found that the self-orientation growth mechanism, imperfect oriented attachment, is intimately correlated with the high-temperature ferromagnetism via defects. The influence of processing on the magnetic properties, such as compositional variations, reaction conditions, and post-growth treatment, is also studied. In this way, an in-depth understanding of processing-structure-property interrelationships and origins of magnetism in DMS nanocrystals are obtained in light of the theoretical framework of a spin-split impurity band model. In addition, a nanoscale spinodal decomposition phase model is also briefly discussed. Following the similar synthetic route, copper- and manganese-doped ZnO nanocrystals have been synthesized and characterized. They both show high-temperature ferromagnetism in line with the aforementioned theoretical model(s). Moreover, they display interesting exchange biasing phenomena at low temperatures, revealing the complexity of magnetic phases therein. The crystal growth strategy demonstrated in this work

  18. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals

    International Nuclear Information System (INIS)

    Ni Henan; Wu Liangcai; Song Zhitang; Hui Chun

    2009-01-01

    An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO 2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time. (semiconductor devices)

  19. Processing of ZnO nanocrystals by solochemical technique

    International Nuclear Information System (INIS)

    Gusatti, M.; Speckhahn, R.; Silva, L.A.; Rosario, J.A.; Lima, R.B.; Kuhnen, N.C.; Riella, H.G.; Campos, C.E.M.

    2009-01-01

    In the present work, we report the synthesis of high quality ZnO nanocrystals by solochemical technique. This synthetic strategy has been shown to have advantages over other methods of producing nanostructures in terms of low cost, efficiency, simplicity and uniformity of crystal structure. Zinc chloride solution at room temperature was mixed with sodium hydroxide solution at 50°C to produce ZnO nanocrystals. Transmission electronic microscopy (TEM) and X-ray powder diffraction (XRD) were used to characterize the ZnO nanocrystals obtained. The structure of ZnO was refined by the Rietveld Method from X-ray diffraction data. These methods showed that the product consisted of pure ZnO nanocrystals and has, predominantly, a rod-like morphology. (author)

  20. Chemically Addressable Perovskite Nanocrystals for Light-Emitting Applications

    KAUST Repository

    Sun, Haizhu; Yang, Zhenyu; Wei, Mingyang; Sun, Wei; Li, Xiyan; Ye, Shuyang; Zhao, Yongbiao; Tan, Hairen; Kynaston, Emily L.; Schon, Tyler B.; Yan, Han; Lu, Zheng-Hong; Ozin, Geoffrey A.; Sargent, Edward H.; Seferos, Dwight S.

    2017-01-01

    Whereas organic–inorganic hybrid perovskite nanocrystals (PNCs) have remarkable potential in the development of optoelectronic materials, their relatively poor chemical and colloidal stability undermines their performance in optoelectronic devices

  1. Pyridine-induced Dimensionality Change in Hybrid Perovskite Nanocrystals

    KAUST Repository

    Ahmed, Ghada H.; Yin, Jun; Bose, Riya; Sinatra, Lutfan; Alarousu, Erkki; Yengel, Emre; AlYami, Noktan; Saidaminov, Makhsud I.; Zhang, Yuhai; Hedhili, Mohamed N.; Bakr, Osman; Bredas, Jean-Luc; Mohammed, Omar F.

    2017-01-01

    of pyridine during the synthesis of methylammonium lead bromide (MAPbBr) perovskite nanocrystals can transform three-dimensional (3D) cubes into two-dimensional (2D) nanostructures. Density functional theory (DFT) calculations show that pyridine preferentially

  2. Rapid thermal synthesis of GaN nanocrystals and nanodisks

    Czech Academy of Sciences Publication Activity Database

    Sofer, Z.; Sedmidubský, D.; Huber, Š.; Šimek, P.; Šaněk, F.; Jankovský, O.; Gregorová, E.; Fiala, R.; Matějková, Stanislava; Mikulics, M.

    2013-01-01

    Roč. 15, č. 1 (2013), 1411/1-1411/7 ISSN 1388-0764 Institutional support: RVO:61388963 Keywords : gallium nitride * thermal ammonolysis * nanodisks * nanocrystals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.278, year: 2013

  3. A single molecule switch based on two Pd nanocrystals linked

    Indian Academy of Sciences (India)

    Conducting molecule; nanocrystals; scanning tunneling microscopy; negative differential resistance. Abstract. Tunneling spectroscopy measurements have been carried out on a single molecule device formed by two Pd ... Current Issue : Vol.

  4. Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments

    International Nuclear Information System (INIS)

    Chen, Shih-Cheng; Chang, Ting-Chang; Chen, Wei-Ren; Lo, Yuan-Chun; Wu, Kai-Ting; Sze, S.M.; Chen, Jason; Liao, I.H.; Yeh, Fon-Shan

    2010-01-01

    In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.

  5. Self-aggregation of magnetic semiconductor EuS nanocrystals

    International Nuclear Information System (INIS)

    Tanaka, Atsushi; Hasegawa, Yasuchika; Kamikubo, Hironari; Kataoka, Mikio; Kawai, Tsuyoshi

    2009-01-01

    Controlled formation of aggregates having organized structure of cube-shaped EuS nanocrystals is reported. The EuS aggregates in liquid media (methanol) were obtained by means of van der Waals interaction between EuS nanocrystals. The packing structure of the EuS aggregates is characterized with transmission electron microscopy (TEM) and small angle X-ray scattering measurements (SAXS). TEM image indicates the EuS nanocrystals form self-aggregated 2D orthogonal lattice structure. The diffraction peak of (111) of SAXS profile shows that the cube-shaped EuS form 3D cubic superlattice. We successfully demonstrated that the aggregates of cube-shaped EuS nanocrystals formed cubic stacking structure.

  6. Structural, spectroscopic and cytotoxicity studies of TbF{sub 3}@CeF{sub 3} and TbF{sub 3}@CeF{sub 3}@SiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Grzyb, Tomasz; Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Dabrowska, Krystyna [Polish Academy of Sciences, Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy (Poland); Giersig, Michael; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2013-10-15

    Terbium fluoride nanocrystals, covered by a shell, composed of cerium fluoride were synthesized by a co-precipitation method. Their complex structure was formed spontaneously during the synthesis. The surface of these core/shell nanocrystals was additionally modified by silica. The properties of TbF{sub 3}@CeF{sub 3} and TbF{sub 3}@CeF{sub 3}@SiO{sub 2} nanocrystals, formed in this way, were investigated. Spectroscopic studies showed that the differences between these two groups of products resulted from the presence of the SiO{sub 2} shell. X-ray diffraction patterns confirmed the trigonal crystal structure of TbF{sub 3}@CeF{sub 3} nanocrystals. High resolution transmission electron microscopy in connection with energy-dispersive X-ray spectroscopy showed a complex structure of the formed nanocrystals. Crystallized as small discs, 'the products', with an average diameter around 10 nm, showed an increase in the concentration of Tb{sup 3+} ions from surface to the core of nanocrystals. In addition to photo-physical analyses, cytotoxicity studies were performed on HSkMEC (Human Skin Microvascular Endothelial Cells) and B16F0 mouse melanoma cancer cells. The cytotoxicity of the nanomaterials was neutral for the investigated cells with no toxic or antiproliferative effect in the cell cultures, either for normal or for cancer cells. This fact makes the obtained nanocrystals good candidates for biological applications and further modifications of the SiO{sub 2} shell.Graphical Abstract.

  7. Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets

    Science.gov (United States)

    Yang, Liu; Li, Dongmei; Wang, Cong; Yao, Wei; Wang, Hao; Huang, Kaixiang

    2017-07-01

    Currently, all-inorganic cesium lead-halide perovskite nanocrystals have attracted enormous attentions owing to their excellent optical performances. While great efforts have been devoted to CsPbBr3 nanocrystals, the perovskite-related Cs4PbBr6 nanocrystals, which were newly reported, still remained poorly understood. Here, we reported a novel room-temperature reaction strategy to synthesize pure perovskite-related Cs4PbBr6 nanocrystals. Size of the products could be adjusted through altering the amount of ligands, simply. A mixture of two good solvents with different polarity was innovatively used as precursor solvent, being one key to the high-yield Cs4PbBr6 nanocrystals synthesis. Other two keys were Cs+ precursor concentration and surface ligands. Ingenious experiments were designed to reveal the underlying reaction mechanism. No excitonic emission was observed from the prepared Cs4PbBr6 nanocrystals in our work. We considered the green emission which was observed in other reports originated from the avoidless transformation of Cs4PbBr6 into CsPbBr3 nanocrystals. Indeed, the new-prepared Cs4PbBr6 nanocrystals could transform into CsPbBr3 nanosheets with surface ligands mediated. The new-transformed two-dimensional CsPbBr3 nanosheets could evolve into large-size nanosheets. The influences of surface ligand density on the fluorescent intensity and stability of transformed CsPbBr3 nanosheets were also explained. Notably, the photoluminescence quantum yield of the as-transformed CsPbBr3 nanosheets could reach as high as 61.6% in the form of thin film. The fast large-scale synthesis of Cs4PbBr6 nanocrystals and their ligand-mediated transformation into high-fluorescent CsPbBr3 nanosheets will be beneficial to the future optoelectronic applications. Our work provides new approaches to understand the structural evolution and light-emitting principle of perovskite nanocrystals. [Figure not available: see fulltext.

  8. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S.

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  9. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  10. Continuous and rapid synthesis of nanoclusters and nanocrystals using scalable microstructured reactors

    Science.gov (United States)

    Jin, Hyung Dae

    Recent advances in nanocrystalline materials production are expected to impact the development of next generation low-cost and/or high efficiency solar cells. For example, semiconductor nanocrystal inks are used to lower the fabrication cost of the absorber layers of the solar cells. In addition, some quantum confined nanocrystals display electron-hole pair generation phenomena with greater than 100% quantum yield, called multiple exciton generation (MEG). These quantum dots could potentially be used to fabricate solar cells that exceed the Schockley-Queisser limit. At present, continuous syntheses of nanoparticles using microreactors have been reported by several groups. Microreactors have several advantages over conventional batch synthesis. One advantage is their efficient heat transfer and mass transport. Another advantage is the drastic reduction in the reaction time, in many cases, down to minutes from hours. Shorter reaction time not only provides higher throughput but also provide better particle size control by avoiding aggregation and by reducing probability of oxidizing precursors. In this work, room temperature synthesis of Au11 nanoclusters and high temperature synthesis of chalcogenide nanocrystals were demonstrated using continuous flow microreactors with high throughputs. A high rate production of phosphine-stabilized Au11 nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 mum thick was used to step up the production of phosphine-stabilized Au11 nanoclusters. Continuous production of highly monodispersed phosphine-stabilized Au 11 nanoclusters at a rate of about 11.8 [mg/s] was achieved using a microreactor with a size of 1.687cm3. This result is about 30,000 times over conventional batch synthesis according to production rate/per reactor volume. We have elucidated the

  11. Nanocrystal cellulose as drug excipient in transdermal patch for wound healing: an overview

    Science.gov (United States)

    Zuki, S. A. Mohd; Rahman, N. Abd; Abu Bakar, N. F.

    2018-03-01

    Wound must be carefully treated to avoid serious infection that needs costly treatment. Method to enhance the recovery of the wound is crucial to have effective wound treatment. One of the technologies in wound treatment is transdermal patch that has the benefits of being non-invasive, easy to handle and permits constant drug dosage. In order to obtain a good controlled drug release, drug excipient needs to be investigated. Recently, natural Nanocrystal Cellulose (NCC) which can be synthesized from animal, algae, microorganism or plant has been actively used in drug delivery system as excipient. The application of NCC is advantageous due to its large surface area, biodegradable, non-toxic and abundance source.

  12. Efficient solution route to transparent ZnO semiconductor films using colloidal nanocrystals

    Directory of Open Access Journals (Sweden)

    Satoshi Suehiro

    2016-09-01

    Full Text Available ZnO nanocrystals (NCs were synthesized by heating Zn (II acetylacetonate in oleic acid/oleylamine in the presence of 1,2-hexadecanediol at 220 °C. Transmission electron microscopy (TEM and dynamic light scattering (DLS measurements revealed the formation of monodispersed ZnO NCs of ca. 7 nm. ZnO NC assembled films were fabricated on a glass substrate by deposition with the colloidal ZnO NCs dispersed in toluene. The film composed of the NCs showed good optical transparency in the visible to near-infrared region. A device coupling the ZnO NC film with a p-type Cu2ZnSnS4 (CZTS NC film exhibited an obvious diode-like current–voltage behavior. The results suggest that the transparent ZnO film has a potentiality to be used for an n-type window layer in some optoelectronic applications.

  13. UV and air stability of high-efficiency photoluminescent silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jihua, E-mail: yangj@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Liptak, Richard [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Ave, Terre Haute, IN 47803 (United States); Rowe, David; Wu, Jeslin [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Casey, James; Witker, David [Dow Corning Corporation, 2200 W. Salzburg Road, Midland, MI 48686 (United States); Campbell, Stephen A. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Kortshagen, Uwe, E-mail: kortshagen@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-12-30

    The effects of UV light and air exposure on the photoluminescent properties of nonthermal plasma-synthesized silicon nanocrystals (Si NCs) were investigated. Si NCs with high-efficiency photoluminescence (PL) have been achieved via a post-synthesis hydrosilylation process. Photobleaching is observed within the first few hours of ultra-violet (UV) irradiation. Equilibrium is reached after ∼4 h of UV exposure wherein the Si NCs are able to retain 52% of the initially measured PL quantum yield (PLQY). UV-treated Si NCs showed recovery of PL with time. Gas-phase passivation of Si NCs by hydrogen afterglow injection improves PLQY and PL stability against UV and air exposure. Additionally, phosphorous doping can also improve UV stability of photoluminescent Si NCs.

  14. Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals

    Science.gov (United States)

    Suneeta, P.; Rajesh, Ch.; Ramana, M. V.

    2018-02-01

    In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.

  15. Physical and optical properties of size-selective CdTe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Fok, Alice [Department of Chemistry, The City College of New York, CUNY New York, NY 10031 (United States); Morales, Jorge [Department of Biology, City College of New York, CUNY New York, NY 10031 (United States); Sohel, Mohammad [Natural Sciences Department, Hostos College, CUNY Bronx, NY 10451 (United States)

    2010-06-15

    Physical and optical properties of colloidal cadmium telluride nanocrystals (CdTe NCs) were investigated. The CdTe NCs were synthesized by reacting elemental tellurium dissolved in tributylphosphine with a mixture of cadmium oxide, octadecene, and oleic acid. These NCs, which were characterized by transmission electron microscopy (TEM) are spherical and ranged from 5 to 7 nm in diameter. The identity of the compound post-synthesis was confirmed by X-Ray diffraction (XRD) patterns. UV-Vis and photoluminescence (PL) properties as grown and pure CdTe samples were investigated. Bright excitonic photoluminescence emission was observed (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals

    International Nuclear Information System (INIS)

    Ray, Sugata; Kolen'ko, Yury V; Watanabe, Tomoaki; Yoshimura, Masahiro; Itoh, Mitsuru; Kovnir, Kirill A; Lebedev, Oleg I; Turner, Stuart; Erni, Rolf; Tendeloo, Gustaaf Van; Chakraborty, Tanushree

    2012-01-01

    Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO 3 . The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site and oxygen vacancies and their relative concentrations at the surface and the core of the nanocrystal, which could be controlled by post-synthesis drying and thermal treatments.

  17. 3D structure of individual nanocrystals in solution by electron microscopy

    Science.gov (United States)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  18. Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy.

    Science.gov (United States)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A; Zettl, A; Alivisatos, A Paul

    2015-07-17

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale. Copyright © 2015, American Association for the Advancement of Science.

  19. Shape-controlled synthesis of organolead halide perovskite nanocrystals and their tunable optical absorption

    International Nuclear Information System (INIS)

    Chen, Zhenhua; Tang, Yongbing; Huang, Xing; Lee, Chun-Sing; Li, Hui; Ho, Derek

    2014-01-01

    Hybrid organolead halide perovskites (CH 3 NH 3 PbI 3 ) with polymorphic structures have been successfully synthesized by controlling their solubility in solvents with different polarities. Crystal formation stages of the perovskites have been demonstrated for the first time. Shape changes of such perovskites are accompanied by transition in their crystal structures and variation of optical properties. Herein, a new trigonal phase for CH 3 NH 3 PbI 3 has been observed with a rod-like morphology. Photoemission study indicates a significant red shift in the perovskite nanoparticles, compared to that of the rod-like nanocrystals. This solvent-controlled formation of polymorphic phases provide an additional approach for controlling the optical properties of CH 3 NH 3 PbI 3 for various optoelectronic applications. (papers)

  20. Phase controlled solvothermal synthesis of Cu_2ZnSnS_4, Cu_2ZnSn(S,Se)_4 and Cu_2ZnSnSe_4 Nanocrystals: The effect of Se and S sources on phase purity

    International Nuclear Information System (INIS)

    Pal, Mou; Mathews, N.R.; Paraguay-Delgado, F.; Mathew, X.

    2015-01-01

    In this study, we have reported the synthesis of Cu_2ZnSnSe_4 (CZTSe), Cu_2ZnSnS_4 (CZTS) and Cu_2ZnSn(S,Se)_4 (CZTSSe) nanocrystals with tunable band gap and composition obtained by solvothermal method. The crystalline structure, composition, morphology and optical properties of the nanoparticles were characterized by X-ray diffraction (XRD), Raman scattering, energy dispersive X-ray spectroscopy, transmission electron microscopy and diffuse reflectance (DR) spectroscopy. While the XRD patterns of CZTS and CZTSe nanoparticles prepared with elemental S/Se powder revealed the presence of phase pure nanoparticles, the CZTSSe nanoparticles obtained using a mixture of S and Se, were found to contain many secondary phases under the same synthesis protocol. Formation of impurity phases in CZTSSe sample, can be avoided by using a mixture of 1-dodecanethiol (DT; CH_3(CH_2)_1_1SH)/oleylamine (OLA) instead of S powder and following the same experimental procedure. The incorporation of S in CZTSe nanocrystals prepared in presence of DDT/OLA mixture was confirmed through structural and optical characterizations. The optical properties of the quaternary chalcogenide nanocrystals were found to vary with the chemical composition of the material. - Highlights: • Solvothermal synthesis of CZTS, CZTSSe and CZTSe nanocrystals and discussion on possible formation mechanism. • Use of dodecanethiol/oleylamine mixture to synthesize phase-pure CZTSSe nanocrystals. • Formation of impurity phases can be controlled with proper S and Se sources.

  1. Inhibition of palm oil oxidation by zeolite nanocrystals.

    Science.gov (United States)

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  2. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    International Nuclear Information System (INIS)

    Liu, Haitao

    2007-01-01

    In the last two decades, the field of nanoscience and nanotechnology has witnessed tremendous advancement in the synthesis and application of group II-VI colloidal nanocrystals. The synthesis based on high temperature decomposition of organometallic precursors has become one of the most successful methods of making group II-VI colloidal nanocrystals. This method is first demonstrated by Bawendi and coworkers in 1993 to prepare cadmium chalcogenide colloidal quantum dots and later extended by others to prepare other group II-VI quantum dots as well as anisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod. This dissertation focuses on the chemistry of this type of nanocrystal synthesis. The synthesis of group II-VI nanocrystals was studied by characterizing the molecular structures of the precursors and products and following their time evolution in the synthesis. Based on these results, a mechanism was proposed to account for the 2 reaction between the precursors that presumably produces monomer for the growth of nanocrystals. Theoretical study based on density functional theory calculations revealed the detailed free energy landscape of the precursor decomposition and monomer formation pathway. Based on the proposed reaction mechanism, a new synthetic method was designed that uses water as a novel reagent to control the diameter and the aspect ratio of CdSe and CdS nanorods

  3. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    Science.gov (United States)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  4. Cellulose nanocrystals from acacia bark-Influence of solvent extraction.

    Science.gov (United States)

    Taflick, Ticiane; Schwendler, Luana A; Rosa, Simone M L; Bica, Clara I D; Nachtigall, Sônia M B

    2017-08-01

    The isolation of cellulose nanocrystals from different lignocellulosic materials has shown increased interest in academic and technological research. These materials have excellent mechanical properties and can be used as nanofillers for polymer composites as well as transparent films for various applications. In this work, cellulose isolation was performed following an environmental friendly procedure without chlorine. Cellulose nanocrystals were isolated from the exhausted acacia bark (after the industrial process of extracting tannin) with the objective of evaluating the effect of the solvent extraction steps on the characteristics of cellulose and cellulose nanocrystals. It was also assessed the effect of acid hydrolysis time on the thermal stability, morphology and size of the nanocrystals, through TGA, TEM and light scattering analyses. It was concluded that the extraction step with solvents was important in the isolation of cellulose, but irrelevant in the isolation of cellulose nanocrystals. Light scattering experiments indicated that 30min of hydrolysis was long enough for the isolation of cellulose nanocrystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals

    International Nuclear Information System (INIS)

    Chen, Bo; Yang, Lishan; Heng, Hua; Chen, Jingzhong; Zhang, Linfei; Xu, Liqiang; Qian, Yitai; Yang, Jian

    2012-01-01

    General and simple methods for the syntheses of borides, carbides and nitrides are highly desirable, since those materials have unique physical properties and promising applications. Here, a series of boride (TiB 2 , ZrB 2 , NbB 2 , CeB 6 , PrB 6 , SmB 6 , EuB 6 , LaB 6 ), carbide (SiC, TiC, NbC, WC) and nitride (TiN, BN, AlN, MgSiN 2 , VN) micro/nanocrystals were prepared from related oxides and amorphous boron/active carbon/NaN 3 with the assistance of metallic Na and elemental S. In-situ temperature monitoring showed that the reaction temperature could increase quickly to ∼850 °C, once the autoclave was heated to 100 °C. Such a rapid temperature increase was attributed to the intense exothermic reaction between Na and S, which assisted the formation of borides, carbides and nitrides. The as-obtained products were characterized by XRD, SEM, TEM, and HRTEM techniques. Results in this report will greatly benefit the future extension of this approach to other compounds. - Graphical abstract: An additive-assisted approach is successfully developed for the syntheses of borides, carbides and nitrides micro/nanocrystals with the assistance of the exothermic reaction between Na and S. Highlights: ► An additive-assisted synthesis strategy is developed for a number of borides, carbides and nitrides. ► The reaction mechanism is demonstrated by the case of SiC nanowires. ► The formation of SiC nanowires is initiated by the exothermic reaction of Na and S.

  6. Fully automated parallel oligonucleotide synthesizer

    Czech Academy of Sciences Publication Activity Database

    Lebl, M.; Burger, Ch.; Ellman, B.; Heiner, D.; Ibrahim, G.; Jones, A.; Nibbe, M.; Thompson, J.; Mudra, Petr; Pokorný, Vít; Poncar, Pavel; Ženíšek, Karel

    2001-01-01

    Roč. 66, č. 8 (2001), s. 1299-1314 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z4055905 Keywords : automated oligonucleotide synthesizer Subject RIV: CC - Organic Chemistry Impact factor: 0.778, year: 2001

  7. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Making sense of nanocrystal lattice fringes

    International Nuclear Information System (INIS)

    Fraundorf, P.; Qin Wentao; Moeck, Peter; Mandell, Eric

    2005-01-01

    The orientation dependence of thin-crystal lattice fringes can be gracefully quantified using fringe-visibility maps, a direct-space analog of Kikuchi maps [Nishikawa and Kikuchi, Nature (London) 121, 1019 (1928)]. As in navigation of reciprocal space with the aid of Kikuchi lines, fringe-visibility maps facilitate acquisition of crystallographic information from lattice images. In particular, these maps can help researchers to determine the three-dimensional lattice of individual nanocrystals, to 'fringe-fingerprint' collections of randomly oriented particles, and to measure local specimen thickness with only a modest tilt. Since the number of fringes in an image increases with maximum spatial-frequency squared, these strategies (with help from more precise goniometers) will be more useful as aberration correction moves resolutions into the subangstrom range

  9. Flexible and fragmentable tandem photosensitive nanocrystal skins

    Science.gov (United States)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  10. The effect of TiO2 nanocrystal shape on the electrical properties of poly(styrene-b-methyl methacrylate) block copolymer based nanocomposites for solar cell application

    International Nuclear Information System (INIS)

    Cano, Laida; Gutierrez, Junkal; Di Mauro, A. Evelyn; Curri, M. Lucia; Tercjak, Agnieszka

    2015-01-01

    Titanium dioxide (TiO 2 ) nanocrystals were synthesized into two shapes, namely spherical and rod-like and used for the fabrication of polystyrene-block-poly(methyl methacrylate) (PSMMA) block copolymer based nanocomposites, which were employed as the active top layer of electro-devices for solar cell application. Electro-devices were designed using nanocomposites with high TiO 2 nanocrystal contents (50-70 wt%) and for comparison as-synthesized TiO 2 nanospheres (TiO 2 NSs) and TiO 2 nanorods (TiO 2 NRs) were also used. The morphology of the electro-devices was studied by atomic force microscopy showing good nanocrystal dispersion. The electrical properties of the devices were investigated by PeakForce tunneling atomic force microscopy and Keithley semiconductor analyzer, which showed higher electrical current values for devices containing TiO 2 NRs in comparison to TiO 2 NSs. Remarkably, the influence of the PSMMA block copolymer on the improvement of the conductivity of the electro-devices was also assessed, demonstrating that the self-assembling ability of block copolymer can be beneficial to improve charge transfer in the fabricated electro-devices, thus representing relevant systems to be potentially developed for photovoltaic applications. Moreover, the absorbance of the prepared electro-devices in solar irradiation range was confirmed by UV–vis spectroscopy characterization.

  11. Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography

    KAUST Repository

    Li, Feifei

    2013-05-21

    Lanthanide-doped core-shell upconversion nanocrystals (UCNCs) have tremendous potential for applications in many fields, especially in bio-imaging and medical therapy. As core-shell UCNCs are mostly synthesized in organic solvents, tedious organic-aqueous phase transfer processes are usually needed for their use in bio-applications. Herein, we demonstrate the first example of one-step synthesis of highly luminescent core-shell UCNCs in the "aqueous" phase under mild conditions using innocuous reagents. A microwave-assisted approach allowed for layer-by-layer epitaxial growth of a hydrophilic NaGdF4 shell on NaYF4:Yb, Er cores. During this process, surface defects of the nanocrystals could be gradually passivated by the homogeneous shell deposition, resulting in obvious enhancement in the overall upconversion emission efficiency. In addition, the up-down conversion dual-mode luminescent NaYF4:Yb, Er@NaGdF4:Ce, Ln (Eu, Tb, Sm, Dy) nanocrystals were also synthesized to further validate the successful formation of the core-shell structure. More significantly, based on their superior solubility and stability in water solution, high upconversion efficiency and Gd-doped predominant X-ray absorption, the as-prepared NaYF4:Yb, Er@NaGdF4 core-shell UCNCs exhibited high contrast in in vitro cell imaging and in vivo X-ray computed tomography (CT) imaging, demonstrating great potential as multiplexed luminescent biolabels and CT contrast agents.

  12. Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton.

    Science.gov (United States)

    Abu-Danso, Emmanuel; Srivastava, Varsha; Sillanpää, Mika; Bhatnagar, Amit

    2017-09-01

    In this work, cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) were synthesized from absorbent cotton. Two pretreatments viz. dewaxing and bleaching with mild alkali were applied to the precursor (cotton). Acid hydrolysis was conducted with H 2 SO 4 and dissolution of cotton was achieved with a mixture of NaOH-thiourea-urea-H 2 O at -3°C. Synthesized cellulose samples were characterized using FTIR, XRD, SEM, BET, and zeta potential. It seems that synthesis conditions contributed to negative surface charge on cellulose samples and CNCs had the higher negative surface charge compared to CNFs. Furthermore, BET surface area, pore volume and pore diameter of CNCs were found to be higher as compared to CNFs. The dewaxed cellulose nanofibers (CNF D) had a slightly higher BET surface area (0.47m 2 /g) and bigger pore diameter (59.87Å) from attenuated contraction compared to waxed cellulose nanofibers (CNFW) (0.38m 2 /g and 44.89Å). The XRD of CNCs revealed a semi-crystalline structure and the dissolution agents influenced the crystallinity of CNFs. SEM images showed the porous nature of CNFs, the flaky nature and the nano-sized width of CNCs. Synthesized CNF D showed a better potential as an adsorbent with an average lead removal efficiency of 91.49% from aqueous solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Photoluminescence behaviors of single CdSe/ZnS/TOPO nanocrystals: Adsorption effects of water molecules onto nanocrystal surfaces

    International Nuclear Information System (INIS)

    Oda, Masaru; Hasegawa, Atsushi; Iwami, Noriya; Nishiura, Ken; Ando, Naohisa; Nishiyama, Akira; Horiuchi, Hiromi; Tani, Toshiro

    2007-01-01

    We report here the distinctive modifications of photoluminescence (PL) behaviors in single CdSe/ZnS/TOPO nanocrystals depending on their environments. Long-time traces of PL intensity from single nanocrystals have been obtained in both vacuum and a wet nitrogen atmosphere. While all of the nanocrystals in both environments exhibit PL blinking behaviors, i.e. on-off intermittency of PL intensity, as usual, some of the nanocrystals in the wet nitrogen atmosphere show significant increase in duration time of on-events. As for the duration time of blinking off-events, it is for the moment associated with the occasional events of carrier capturing at trap sites on or near the nanocrystal surfaces. We propose a model in which adsorbed water molecules at the trap sites on the nanocrystal surfaces transform them under light irradiation, which eventually decreases the occurrence of the trapping events due to their inactivation. It in turn increases the PL on-times. In addition to the drastic modification of the blinking profile, we also found that in the PL time traces some kinds of undulated behaviors, i.e. continuous and rather low frequency fluctuation of PL intensity, appear during each on-event in vacuum while they disappear totally in the wet nitrogen atmosphere. These results are also described on the basis of the inactivation model of the trap sites introduced above

  14. Synthesis of diluted magnetic semiconductor Bi{sub 2−x}Mn{sub x}Te{sub 3} nanocrystals in a host glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.S. [Instituto de Ciências Exatas, Naturais e Educação (ICENE), Departamento de Física, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais (Brazil); Mikhail, H.D., E-mail: ricardosilva@fisica.uftm.edu.br [Instituto de Ciências Tecnológicas e Exatas (ICTE), Departamento de Engenharia Mecânica, Universidade Federal do Triângulo Mineiro, 38064-200 Uberaba, Minas Gerais (Brazil); Pavani, R. [Instituto de Ciências Exatas, Naturais e Educação (ICENE), Departamento de Física, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais (Brazil); Cano, N.F. [Departamento de Ciências do Mar, Universidade Federal de São Paulo, 11030-400 Santos, São Paulo (Brazil); Silva, A.C.A.; Dantas, N.O. [Instituto de Física, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Universidade Federal de Uberlândia, 38400-902 Uberlândia, Minas Gerais (Brazil)

    2015-11-05

    Diluted magnetic semiconductors of manganese doped in bismuth-telluride nanocrystals (Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs) were grown in a glass matrix and investigated by Transmission Electron Microscopy, X-Ray Diffraction, Atomic Force Microscopy/Magnetic Force Microscopy, and Electron Paramagnetic Resonance. TEM images showed that the nanocrystals formed within the glass matrix were nearly spherical, with average sizes between 4 and 5 nm, and d{sub 015}-spacing of approximately 0.322 nm, which corresponds to the (015) interplanar distance in Bi{sub 2}Te{sub 3} bulk. The diffraction patterns showed that the diffraction peak associated with the (015) plane of the Bi{sub 2−x}Mn{sub x}Te{sub 3} nanocrystals shifts to larger diffraction angles as manganese (Mn) concentration increases, suggesting that the Mn{sup 2+} ions are substitutional defects occupying Bi sites (Mn{sub Bi}). AFM and MFM measurements showed magnetic phase contrast patterns, providing further evidence of Mn{sup 2+} ion incorporation in the nanocrystal structure. EPR signal of manganese ion incorporation and valence states in the crystalline structure of the Bi{sub 2}Te{sub 3} nanocrystals confirmed the presence of the Mn{sup 2+} state. - Highlights: • Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs were synthesized in a glass matrix by fusion method. • Transmission Electronic Microscopy shows the formation of Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs. • The sp-d exchange interaction in DMS NCs can be evidenced by X Ray-Diffraction and Magnetic Force Microscopy. • Electron Paramagnetic Resonance spectra confirmed that Mn{sup 2+} ions are located in two distinct Bi{sub 2}Te{sub 3} NCs sites.

  15. The Role of Shape on Electronic Structure and Charge Transport in Faceted PbSe Nanocrystals

    KAUST Repository

    Kaushik, Ananth P.; Lukose, Binit; Clancy, Paulette

    2014-01-01

    We have determined the effect of shape on the charge transport characteristics of nanocrystals. Our study looked at the explicit determination of the electronic properties of faceted nanocrystals that essentially probe the limit of current

  16. State of the art of nanocrystals technology for delivery of poorly soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuqi; Du, Juan; Wang, Lulu; Wang, Yancai, E-mail: wangyancai1999@163.com [Qilu University of Technology, School of Chemistry and Pharmaceutical Engineering (China)

    2016-09-15

    Formulation of nanocrystals is a distinctive approach which can effectively improve the delivery of poorly water-soluble drugs, thus enticing the development of the nanocrystals technology. The characteristics of nanocrystals resulted in an exceptional drug delivery conductance, including saturation solubility, dissolution velocity, adhesiveness, and affinity. Nanocrystals were treated as versatile pharmaceuticals that could be delivered through almost all routes of administration. In the current review, oral, pulmonary, and intravenous routes of administration were presented. Also, the targeting of drug nanocrystals, as well as issues of efficacy and safety, were also discussed. Several methods were applied for nanocrystals production including top-down production strategy (media milling, high-pressure homogenization), bottom-up production strategy (antisolvent precipitation, supercritical fluid process, and precipitation by removal of solvent), and the combination approaches. Moreover, this review also described the evaluation and characterization of the drug nanocrystals and summarized the current commercial pharmaceutical products utilizing nanocrystals technology.

  17. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Influence of Ti addition on the room temperature ferromagnetism of tin oxide (SnO{sub 2}) nanocrystal

    Energy Technology Data Exchange (ETDEWEB)

    Sakthiraj, K.; Balachandrakumar, K., E-mail: dkbaldr@gmail.com

    2015-12-01

    Nano-crystalline Sn{sub 1−x}Ti{sub x}O{sub 2} (x=0.00, 0.02, 0.05 and 0.07) particles were synthesized by the sol–gel method without any surfactant and dispersant material. The X-ray diffraction (XRD) pattern shows the formation of the tetragonal rutile phase structure for the undoped SnO{sub 2} nanoparticle and Ti doping does not alter the structure of undoped tin oxide. Due to quantum confinement effect, a larger optical band gap for as-synthesized materials was found. Vibrating sample magnetometer (VSM) result demonstrates the undoped and 2% Ti doped SnO{sub 2} samples exhibit perfect room temperature ferromagnetism (RTFM) but 5% and 7% of Ti doped samples show a weak ferromagnetism with diamagnetic contribution. The ferromagnetic property of the material was initiated with the help of oxygen vacancy. The amount of oxygen vacancy present in the samples were identified from the photoluminescence spectra and the value of oxygen vacancy decreased with increasing Ti concentration. - Highlights: • Pure Ti doped and undoped SnO{sub 2} nanocrystal were prepared using sol–gel method. • Oxygen vacancy induced RTFM was observed in SnO{sub 2} nanostructures. • Higher amount of ferromagnetism was detected in pristine SnO{sub 2} nanocrystal. • Ferromagnetic property was decreased with increasing Ti concentration. • Redshift of energy band gap was noted with increasing Ti content.

  19. Synthesis and Spectral Studies of Ni(II Dithiocarbamate Complexes and Their Use as Precursors for Nickel Sulphides Nanocrystals

    Directory of Open Access Journals (Sweden)

    Azile Nqombolo

    2016-01-01

    Full Text Available Ni(II dithiocarbamate complexes have been synthesized and characterized by UV-Vis, FTIR, and NMR spectroscopic techniques. Electronic spectra measurements indicate that the complexes are four-coordinate square planar geometry while the FTIR confirmed that the dithiocarbamates act as bidentate chelating ligands. The compounds were used as single source precursors and thermolysed at 220°C to prepare HDA-capped NiS nanocrystals which were characterized by absorption and photoluminescence (PL spectra measurements, powder X-ray diffraction (PXRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and energy dispersive spectroscopy (EDS. Absorption spectra studies showed that the synthesized NiS nanoparticles are blue-shifted relative to the bulk material and PL studies showed emission maxima that are red-shifted compared to the absorption band edges. The XRD patterns of the as-prepared NiS nanoparticles revealed cubic crystalline phases. TEM images showed spherical and close-to-spherical nanocrystals with the size in the range 12–38 nm for NiS1, 8–11 nm for NiS2, and 9–16 nm for NiS3. SEM images showed homogeneous surface morphology and EDS confirmed the presence of Ni and S and the formation of NiS nanoparticles.

  20. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    Science.gov (United States)

    Gresback, Ryan; Hue, Ryan; Gladfelter, Wayne L.; Kortshagen, Uwe R.

    2011-12-01

    Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs.

  1. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico) and Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - IPN, Legaria 694, Col. Irrigacion, Del. Miguel Hidalgo (Mexico); Reyes-Carmona, F. [Facultad de Quimica - UNAM, Circuito de la Investigacion Cientifica s/n, C.U. Del. Coyoacan (Mexico); Jaramillo-Vigueras, D. [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico)

    2011-10-15

    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  2. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    International Nuclear Information System (INIS)

    Rojas-Chavez, H.; Reyes-Carmona, F.; Jaramillo-Vigueras, D.

    2011-01-01

    Highlights: → PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. → During high-energy milling oxygen has to be chemically reduced from the lead oxide. → Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  3. The aggregation and characteristics of radiation-induced defects in lithium fluoride nanocrystals

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Korzhik, M. V.; Martynovich, E. F.; Runets, L. P.; Stupak, A. P.

    2013-02-01

    It has been established that diffusion activation energies for anion vacancies and centres ? in lithium fluoride nanocrystals are higher than those in bulk crystals. In nanocrystals, ? centres migrating in the range of the temperature close to room temperature is not observed and these centres remain stable. The ratio of centres ? and F 2 concentrations in nanocrystals is higher than in bulk crystals. A new type of colour centres, which is absent in bulk crystals, is discovered in nanocrystals.

  4. Preparation of NiFe binary alloy nanocrystals for nonvolatile memory applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,an idea which applies binary alloy nanocrystal floating gate to nonvolatile memory application was introduced.The relationship between binary alloy’s work function and its composition was discussed theoretically.A nanocrystal floating gate structure with NiFe nanocrystals embedded in SiO2 dielectric layers was fabricated by magnetron sputtering.The micro-structure and composition deviation of the prepared NiFe nanocrystals were also investigated by TEM and EDS.

  5. Analysis of Polymorphic Nanocrystals of TiO2 by X-Ray Rietveld Refinement and High-Resolution Transmission Electron Microscopy: Acetaldehyde Decomposition

    Directory of Open Access Journals (Sweden)

    R. Carrera

    2008-01-01

    Full Text Available In this work, TiO2 nanocrystals were synthesized by the sol-gel method. These materials were annealed at 200 and 500∘C; and characterized by the XRD-Rietveld refinement; and by BET and TEM. As for the low-temperature-treated sample (200∘C, nanocrystals with small crystallite sizes (7 nm and high abundance of anatase, coexisting with the brookite phase, were obtained. Meanwhile, the sample annealed at 500∘C showed an increased crystallite size (22 nm and an important polymorphic increment. The sample annealed at 200∘C showed a high activity in the photocatalytic decomposition of acetaldehyde.

  6. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    International Nuclear Information System (INIS)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei

    2017-01-01

    Highlights: • CsPbBr_3 perovskite nanocrystals have been synthesized in the presence of organic amines with different hydrocarbon length. • The photoluminescence of the CsPbBr_3 nanocrystals is affected by the varying the carbon length of the organic amines. • The lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr_3 nanocrystals. - Abstract: All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr_3 nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr_3 NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr_3 NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55–80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr_3 NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr_3 NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the product synthesized in the presence of

  7. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei, E-mail: awtang@bjtu.edu.cn

    2017-05-31

    Highlights: • CsPbBr{sub 3} perovskite nanocrystals have been synthesized in the presence of organic amines with different hydrocarbon length. • The photoluminescence of the CsPbBr{sub 3} nanocrystals is affected by the varying the carbon length of the organic amines. • The lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr{sub 3} nanocrystals. - Abstract: All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr{sub 3} nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr{sub 3} NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr{sub 3} NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55–80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr{sub 3} NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr{sub 3} NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the

  8. Depleted Nanocrystal-Oxide Heterojunctions for High-Sensitivity Infrared Detection

    Science.gov (United States)

    2015-08-28

    Approved for Public Release; Distribution Unlimited Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal- Oxide Heterojunctions for High...reviewed journals: Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal- Oxide Heterojunctions for High-Sensitivity Infrared Detection Report Title...PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: 1 1 Final Progress Report Project title: Depleted Nanocrystal- Oxide Heterojunctions for High

  9. Infrared Emitting and Photoconducting Colloidal Silver Chalcogenide Nanocrystal Quantum Dots from a Silylamide-Promoted Synthesis

    NARCIS (Netherlands)

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T.; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Guenter; Heiss, Wolfgang; Hesser, Günter

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region,

  10. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non-radiative e......This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non...... of the hybrid diode fabrication including process techniques for GaN LED and incorporation of the nanocrystals are presented with the emphasis on the differences with standard LED processing. Results and analysis of optical and electrical characterization including photoluminescence (PL), micro-PL, time......-resolved PL and electroluminescence (EL) together with current-voltage characteristics are presented to evaluate the device performance. A clear evidence of non-radiative energy transfer was seen in the carrier dynamics of both the LED and the nanocrystals when the quantum well – nanocrystals separation...

  11. Preparation, characterization and catalytic effects of copper oxalate nanocrystals

    International Nuclear Information System (INIS)

    Singh, Gurdip; Kapoor, Inder Pal Singh; Dubey, Reena; Srivastava, Pratibha

    2012-01-01

    Graphical abstract: Prepared copper oxalate nanocrystals were characterized by FE-SEM and bright field TEM micrographs. Its catalytic activity was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG-DSC techniques. Highlights: ► Preparation of nanocrystals (∼9.0 nm) of copper oxalate using Cu(NO 3 ) 2 ·2H 2 O, oxalic acid and acetone under thermal conditions. ► Method is simple and novel. ► Characterization using XRD, SEM, TEM, HRTEM and ED pattern. ► Catalytic activity of copper oxalate nanocrystals on AP thermal decomposition using thermal techniques (TG, TG-DSC and ignition delay). ► Kinetics of thermal decomposition of AP + CONs using isoconversional and model fitting kinetic approaches. - Abstract: Recent work has described the preparation and characterization of copper oxalate nanocrystals (CONs). It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and electron diffraction pattern (ED). The catalytic activity of CONs on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) has been done by thermogravimetry (TG), differential scanning calorimetry (DSC) and ignition delay measurements. Burning rate of CSPs was also found to be enhanced in presence of copper oxalate nanocrystals. Kinetics of thermal decomposition of AP with and without CONs has also been investigated. The model free (isoconversional) and model-fitting kinetic approaches have been applied to data for isothermal TG decomposition.

  12. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability

    Directory of Open Access Journals (Sweden)

    Annika Tuomela

    2016-05-01

    Full Text Available Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure—a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer’s role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro–in vivo correlation with nanocrystalline products, and stabilizers’ effect on higher bioavailability are discussed.

  13. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Joseph Robert [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10-8 s-1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring 14N-1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T1 and T2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  14. Controlled synthesis of thorium and uranium oxide nano-crystals

    International Nuclear Information System (INIS)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Gouder, Thomas; Courtois, Eglantine; Kubel, Christian; Meyer, Daniel

    2013-01-01

    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nano-crystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nano-crystals. The final characteristics of thorium and uranium oxide nano-crystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nano-crystals with different sizes (4.5 and 10.7 nm) as well as branched nano-crystals (overall size ca. 5 nm), nano-dots (ca. 4 nm) and nano-rods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised. (authors)

  15. Performance Parameters and Characterizations of Nanocrystals: A Brief Review

    Directory of Open Access Journals (Sweden)

    Manasi M. Chogale

    2016-08-01

    Full Text Available Poor bioavailability of drugs associated with their poor solubility limits the clinical effectiveness of almost 40% of the newly discovered drug moieties. Low solubility, coupled with a high log p value, high melting point and high dose necessitates exploration of alternative formulation strategies for such drugs. One such novel approach is formulation of the drugs as “Nanocrystals”. Nanocrystals are primarily comprised of drug and surfactants/stabilizers and are manufactured by “top-down” or “bottom-up” methods. Nanocrystals aid the clinical efficacy of drugs by various means such as enhancement of bioavailability, lowering of dose requirement, and facilitating sustained release of the drug. This effect is dependent on the various characteristics of nanocrystals (particle size, saturation solubility, dissolution velocity, which have an impact on the improved performance of the nanocrystals. Various sophisticated techniques have been developed to evaluate these characteristics. This article describes in detail the various characterization techniques along with a brief review of the significance of the various parameters on the performance of nanocrystals.

  16. Optical characterization of luminescent silicon nanocrystals embedded in glass matrices

    Energy Technology Data Exchange (ETDEWEB)

    Debieu, Olivier

    2008-12-16

    Interstellar dust in nebulae and in the Diffuse Interstellar Medium (DISM) of galaxies contains a component which exhibits efficient visible-near infrared luminescence ranging from 500 to 1000 nm, known as Extended Red Emission (ERE). Silicon nanocrystals (nc-Si) are discussed as possible carriers of the ERE. We employed the accelerator facilities of the Institute of Solid State Physics of the University of Jena to implant Si ions into fused silica windows. An excess concentration of silicon atoms is thus produced in the host SiO{sub 2} matrix which, by applying an annealing at 1100 C, condensates to silicon nanoparticles and crystallizes. Although the condensation and crystallization occur after an annealing of one minute,10, 15 the samples were annealed during one hour in order to well-passivate the nc-Si, that means, to reduce effectively the number of Si-dangling bonds at the nc-Si surface that are efficient non-radiative recombination centers. 10, 16 Upon excitation with UV light, most of our nc-Si/SiO{sub 2} samples revealed strong PL. We implanted into our luminescent nc-Si/SiO{sub 2} systems other atomic elements, as for instance magnesium and calcium, which form silicates if their oxide is combined with SiO{sub 2}. The purpose is to simulate the conditions for silicates containing nc-Si. In order to understand the effect of the incorporation of foreign atoms on the PL properties of our nc-Si/SiO{sub 2} systems, we proceeded to similar experiments with Er and Ge. As has been demonstrated by several authors, 17, 18 the presence of nc-Si in a glass matrix enhances considerably the emission of Er{sup 3+} ions at 1.536{mu}m. At the same time, the PL of nc-Si is considerably quenched. Since the solubility of Er in crystalline silicon is about 2 orders of magnitude lower than in SiO{sub 2}, the optically active Er{sup 3+} ions are believed to be localized outside the nc-Si core, demonstrating that ions present in the host SiO{sub 2} matrix influence the PL

  17. Information Retrieval for Ecological Syntheses

    Science.gov (United States)

    Bayliss, Helen R.; Beyer, Fiona R.

    2015-01-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with…

  18. Increased electronic coupling in silicon nanocrystal networks doped with F4-TCNQ.

    Science.gov (United States)

    Carvalho, Alexandra; Oberg, Sven; Rayson, Mark J; Briddon, Patrick R

    2013-02-01

    The modification of the electronic structure of silicon nanocrystals using an organic dopant, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), is investigated using first-principles calculations. It is shown that physisorbed F4-TCNQ molecules have the effect of oxidizing the nanocrystal, attracting the charge density towards the F4-TCNQ-nanocrystal interface, and decreasing the excitation energy of the system. In periodic F4-TCNQ/nanocrystal superlattices, F4-TCNQ is suggested to enhance exciton separation, and in the presence of free holes, to serve as a bridge for electron/hole transfer between adjacent nanocrystals.

  19. Properties of Nanocrystals-formulated Aluminosilicate Bricks

    Directory of Open Access Journals (Sweden)

    Francesca Conciauro

    2015-10-01

    insulating and/or mechanical properties. The nanocrystals- modified refractories showed variations in properties, with respect to the untreated aluminosilicate reference in heat- insulating performances (thermal diffusivities were measured by the “hot disk” technique. In general, they also showed improvements in mechanical compression resist‐ ance for all of the samples at 2 wt. %. The best heat insula‐ tion was obtained with the addition of nano-aluminium hydroxide at 2 wt. %, while the highest mechanical compres‐ sion breaking resistance was found with nano-CaCO3 at 2 wt. %. These outcomes were investigated with complemen‐ tary techniques, like mercury porosimetry for porosity, and Archimedes methods to measure physical properties like the bulk and apparent densities, apparent porosities and water absorption. The results show that the nano-alumini‐ um hydroxide modified bricks were the most porous, which could explain the best heat-insulating performances. There is a less straightforward explanation for the mechanical resistance results, as they may have relations with the characteristics of the pores. Furthermore, the nanoparti‐ cles may have possible reactions with the matrix during the heat treatments.

  20. Modified cellulose nanocrystal for vitamin C delivery.

    Science.gov (United States)

    Akhlaghi, Seyedeh Parinaz; Berry, Richard M; Tam, Kam Chiu

    2015-04-01

    Cellulose nanocrystal grafted with chitosan oligosaccharide (CNC-CSOS) was used to encapsulate vitamin C and prepare CNCS/VC complexes using tripolyphosphte via ionic complexation. The stability of vitamin C and the antioxidant activity of the CNCS/VC complexes were elucidated. The formation of the complex was confirmed using DSC and UV-vis spectrophotometry, and TEM was used to study the morphology of the complexes. The encapsulation efficiency of vitamin C at pH 3 and 5 was 71.6% ± 6.8 and 91.0 ± 1.0, respectively. Strong exothermic peaks observed in isothermal titration calorimetric (ITC) studies at pH 5 could be attributed to additional electrostatic interactions between CNC-CSOS and vitamin C at pH 5. The in vitro release of vitamin C from CNCS/VC complexes showed a sustained release of up to 20 days. The vitamin C released from CNCS/VC complex displayed higher stability compared with the control vitamin C solution, and this was also confirmed from the ITC thermograms. CNC-CSOS possessed a higher scavenging activity and faster antioxidant activity compared with its precursors, i.e., oxidized CNC and CSOS and their physical mixtures. Complexing vitamin C into CNC-CSOS particles yielded a dynamic antioxidant agent, where the vitamin C is released over time and displayed sustained antioxidant properties. Therefore, CNCS/VC can potentially be used in cosmeceutical applications as topical formulations.

  1. PbSe Nanocrystal Excitonic Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2009-11-11

    We report the design, fabrication, and characterization of colloidal PbSe nanocrystal (NC)-based photovoltaic test structures that exhibit an excitonic solar cell mechanism. Charge extraction from the NC active layer is driven by a photoinduced chemical potential energy gradient at the nanostructured heterojunction. By minimizing perturbation to PbSe NC energy levels and thereby gaining insight into the "intrinsic" photovoltaic properties and charge transfer mechanism of PbSe NC, we show a direct correlation between interfacial energy level offsets and photovoltaic device performance. Size dependent PbSe NC energy levels were determined by cyclic voltammetry and optical spectroscopy and correlated to photovoltaic measurements. Photovoltaic test structures were fabricated from PbSe NC films sandwiched between layers of ZnO nanoparticles and PEDOT:PSS as electron and hole transporting elements, respectively. The device current-voltage characteristics suggest a charge separation mechanism that Is distinct from previously reported Schottky devices and consistent with signatures of excitonic solar cells. Remarkably, despite the limitation of planar junction structure, and without film thickness optimization, the best performing device shows a 1-sun power conversion efficiency of 3.4%, ranking among the highest performing NC-based solar cells reported to date. © 2009 American Chemical Society.

  2. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  3. Adsorption of vitamin E on mesoporous titania nanocrystals

    International Nuclear Information System (INIS)

    Shih, C.J.; Lin, C.T.; Wu, S.M.

    2010-01-01

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 o C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 o C to 500 o C. The N 2 adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  4. Light emission from silicon with tin-containing nanocrystals

    Directory of Open Access Journals (Sweden)

    Søren Roesgaard

    2015-07-01

    Full Text Available Tin-containing nanocrystals, embedded in silicon, have been fabricated by growing an epitaxial layer of Si1−x−ySnxCy, where x = 1.6 % and y = 0.04 % on a silicon substrate, followed by annealing at various temperatures ranging from 650 ∘C to 900 ∘C. The nanocrystal density and average diameters are determined by scanning transmission-electron microscopy to ≈1017 cm−3 and ≈5 nm, respectively. Photoluminescence spectroscopy demonstrates that the light emission is very pronounced for samples annealed at 725 ∘C, and Rutherford back-scattering spectrometry shows that the nanocrystals are predominantly in the diamond-structured phase at this particular annealing temperature. The origin of the light emission is discussed.

  5. Adsorption of vitamin E on mesoporous titania nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, C.T.; Wu, S.M. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C to 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  6. Broadband enhancement of infrared absorption in microbolometers using Ag nanocrystals

    International Nuclear Information System (INIS)

    Hyun, Jerome K.; Ahn, Chi Won; Kim, Woo Choong; Kim, Tae Hyun; Hyun, Moon Seop; Kim, Hee Yeoun; Park, Jae Hong; Lee, Won-Oh

    2015-01-01

    High performance microbolometers are widely sought for thermal imaging applications. In order to increase the performance limits of microbolometers, the responsivity of the device to broadband infrared (IR) radiation needs to be improved. In this work, we report a simple, quick, and cost-effective approach to modestly enhance the broadband IR response of the device by evaporating Ag nanocrystals onto the light entrance surface of the device. When irradiated with IR light, strong fields are built up within the gaps between adjacent Ag nanocrystals. These fields resistively generate heat in the nanocrystals and underlying substrate, which is transduced into an electrical signal via a resistive sensing element in the device. Through this method, we are able to enhance the IR absorption over a broadband spectrum and improve the responsivity of the device by ∼11%

  7. Size-Controlled TiO{sub 2} nanocrystals with exposed {001} and {101} facets strongly linking to graphene oxide via p-Phenylenediamine for efficient photocatalytic degradation of fulvic acids

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wen-Yuan; Zhou, Qi [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, Xing, E-mail: xingchen@iim.ac.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Nanomaterials and Environmental Detection, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yang, Yong [State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Huang, Xing-Jiu [Laboratory of Nanomaterials and Environmental Detection, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Yu-Cheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China)

    2016-08-15

    Highlights: • N-RGO/TiO{sub 2} nanocomposites were prepared via one-step hydrothermal method. • Facets of TiO{sub 2} nanocrystals were modulated with addition of HF. • Sizes of TiO{sub 2} nanocrystals were controlled by the contents of RGO-NH{sub 2.} • Obtained N-RGO/TiO{sub 2} nanocomposites exhibited excellent photocatalytic activity and stability. - Abstract: Photocatalytic degradation is one of the most promising methods for removal of fulvic acids (FA), which is a typical category of natural organic contamination in groundwater. In this paper, TiO{sub 2}/graphene nanocomposites (N-RGO/TiO{sub 2}) were prepared via simple chemical functionalization and one-step hydrothermal method for efficient photodegradation of FA under illumination of a xenon lamp as light source. Here, p-phenylenediamine was used as not only the linkage chemical agent between TiO{sub 2} nanocrystals and graphene, but also the nitrogen dopant for TiO{sub 2} nanocrystals and graphene. During the hydrothermal process, facets of TiO{sub 2} nanocrystals were modulated with addition of HF, and sizes of TiO{sub 2} nanocrystals were controlled by the contents of graphene oxide functionalized with p-phenylenediamine (RGO-NH{sub 2}). The obtained N-RGO/TiO{sub 2} nanocomposites exhibited a much higher photocatalytic activity and stability for degradation of methyl blue (MB) and FA compared with other TiO{sub 2} samples under xenon lamp irradiation. For the third cycle, the 10wt%N-RGO/TiO{sub 2} catalyst maintains high photoactivity (87%) for the degradation of FA, which is much better than the TiO{sub 2}-N/F (61%) in 3 h. This approach supplies a new strategy to design and synthesize metal oxide and graphene oxide nanocomposites with highly efficient photocatalytic performance.

  8. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  9. Microfluidic Fabrication of Hydrocortisone Nanocrystals Coated with Polymeric Stabilisers

    Directory of Open Access Journals (Sweden)

    David F. Odetade

    2016-12-01

    Full Text Available Hydrocortisone (HC nanocrystals intended for parenteral administration of HC were produced by anti-solvent crystallisation within coaxial assemblies of pulled borosilicate glass capillaries using either co-current flow of aqueous and organic phases or counter-current flow focusing. The organic phase was composed of 7 mg/mL of HC in a 60:40 (v/v mixture of ethanol and water and the anti-solvent was milli-Q water. The microfluidic mixers were fabricated with an orifice diameter of the inner capillary ranging from 50 µm to 400 µm and operated at the aqueous to organic phase flow rate ratio ranging from 5 to 25. The size of the nanocrystals decreased with increasing aqueous to organic flow rate ratio. The counter-current flow microfluidic mixers provided smaller nanocrystals than the co-current flow devices under the same conditions and for the same geometry, due to smaller diameter of the organic phase stream in the mixing zone. The Z-average particle size of the drug nanocrystals increased from 210–280 nm to 320–400 nm after coating the nanocrystals with 0.2 wt % aqueous solution of hydroxypropyl methylcellulose (HPMC in a stirred vial. The differential scanning calorimetry (DSC and X-ray powder diffraction (XRPD analyses carried out on the dried nanocrystals stabilized with HPMC, polyvinyl pyrrolidone (PVP, and sodium lauryl sulfate (SLS were investigated and reported. The degree of crystallinity for the processed sample was lowest for the sample stabilised with HPMC and the highest for the raw HC powder.

  10. MEGACELL: A nanocrystal model construction software for HRTEM multislice simulation

    International Nuclear Information System (INIS)

    Stroppa, Daniel G.; Righetto, Ricardo D.; Montoro, Luciano A.; Ramirez, Antonio J.

    2011-01-01

    Image simulation has an invaluable importance for the accurate analysis of High Resolution Transmission Electron Microscope (HRTEM) results, especially due to its non-linear image formation mechanism. Because the as-obtained images cannot be interpreted in a straightforward fashion, the retrieval of both qualitative and quantitative information from HRTEM micrographs requires an iterative process including the simulation of a nanocrystal model and its comparison with experimental images. However most of the available image simulation software requires atom-by-atom coordinates as input for the calculations, which can be prohibitive for large finite crystals and/or low-symmetry systems and zone axis orientations. This paper presents an open source citation-ware tool named MEGACELL, which was developed to assist on the construction of nanocrystals models. It allows the user to build nanocrystals with virtually any convex polyhedral geometry and to retrieve its atomic positions either as a plain text file or as an output compatible with EMS (Electron Microscopy Software) input protocol. In addition to the description of this tool features, some construction examples and its application for scientific studies are presented. These studies show MEGACELL as a handy tool, which allows an easier construction of complex nanocrystal models and improves the quantitative information extraction from HRTEM images. -- Highlights: → A software to support the HRTEM image simulation of nanocrystals in actual size. → MEGACELL allows the construction of complex nanocrystals models for multislice image simulation. → Some examples of improved nanocrystalline system characterization are presented, including the analysis of 3D morphology and growth behavior.

  11. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts

    Science.gov (United States)

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-09-01

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se

  12. Passivation effects in B doped self-assembled Si nanocrystals

    International Nuclear Information System (INIS)

    Puthen Veettil, B.; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-01-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes

  13. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    Science.gov (United States)

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.

  14. Acceptors in ZnO nanocrystals: A reinterpretation

    Science.gov (United States)

    Gehlhoff, W.; Hoffmann, A.

    2012-12-01

    In a recent article, Teklemichael et al. reported on the identification of an uncompensated acceptor in ZnO nanocrystals using infrared spectroscopy and electron paramagnetic resonance (EPR) in the dark and under illumination. Most of their conclusions, interpretations, and suggestions turned out to be erroneous. The observed EPR signals were interpreted to originate from axial and nonaxial VZn-H defects. We show that the given interpretation of the EPR results is based on misinterpretations of EPR spectra arising from defects in nanocrystals. The explanation of the infrared absorption lines is in conflict with recent results of valence band ordering and valence band splitting.

  15. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2010-06-01

    Full Text Available Aqueous suspensions of polysaccharide (cellulose, chitin or starch nanocrystals can be prepared by acid hydrolysis of biomass. The main problem with their practical use is related to the homogeneous dispersion of these nanoparticles within a polymeric matrix. Water is the preferred processing medium. A new and interesting way for the processing of polysaccharide nanocrystals-based nanocomposites is their transformation into a co-continuous material through long chain surface chemical modification. It involves the surface chemical modification of the nanoparticles based on the use of grafting agents bearing a reactive end group and a long compatibilizing tail.

  16. Coulomb gap triptych in a periodic array of metal nanocrystals.

    Science.gov (United States)

    Chen, Tianran; Skinner, Brian; Shklovskii, B I

    2012-09-21

    The Coulomb gap in the single-particle density of states (DOS) is a universal consequence of electron-electron interaction in disordered systems with localized electron states. Here we show that in arrays of monodisperse metallic nanocrystals, there is not one but three identical adjacent Coulomb gaps, which together form a structure that we call a "Coulomb gap triptych." We calculate the DOS and the conductivity in two- and three-dimensional arrays using a computer simulation. Unlike in the conventional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width in the limit of large disorder. The Coulomb gap triptych can be studied via tunneling experiments.

  17. Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies

    KAUST Repository

    Choi, Joshua J.; Luria, Justin; Hyun, Byung-Ryool; Bartnik, Adam C.; Sun, Liangfeng; Lim, Yee-Fun; Marohn, John A.; Wise, Frank W.; Hanrath, Tobias

    2010-01-01

    Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices. © 2010 American Chemical Society.

  18. Photoluminescence of hydrophilic silicon nanocrystals in aqueous solutions

    International Nuclear Information System (INIS)

    Prtljaga, Nikola; D'Amato, Elvira; Pitanti, Alessandro; Guider, Romain; Froner, Elena; Larcheri, Silvia; Scarpa, Marina; Pavesi, Lorenzo

    2011-01-01

    Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable. Agglomeration can be reduced by using suitable surfactants. On a long timescale (days), oxidation of Si-nc occurs even in the presence of surfactants. These two observations render Si-nc very useful as a labeling agent for biosensing.

  19. Photoluminescence of hydrophilic silicon nanocrystals in aqueous solutions

    Science.gov (United States)

    Prtljaga, Nikola; D'Amato, Elvira; Pitanti, Alessandro; Guider, Romain; Froner, Elena; Larcheri, Silvia; Scarpa, Marina; Pavesi, Lorenzo

    2011-05-01

    Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable. Agglomeration can be reduced by using suitable surfactants. On a long timescale (days), oxidation of Si-nc occurs even in the presence of surfactants. These two observations render Si-nc very useful as a labeling agent for biosensing.

  20. Photoluminescence of hydrophilic silicon nanocrystals in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prtljaga, Nikola; D' Amato, Elvira; Pitanti, Alessandro; Guider, Romain; Froner, Elena; Larcheri, Silvia; Scarpa, Marina; Pavesi, Lorenzo, E-mail: nikolap@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento (Italy)

    2011-05-27

    Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable. Agglomeration can be reduced by using suitable surfactants. On a long timescale (days), oxidation of Si-nc occurs even in the presence of surfactants. These two observations render Si-nc very useful as a labeling agent for biosensing.

  1. Elucidating the Potential Biological Impact of Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Sandra Camarero-Espinosa

    2016-07-01

    Full Text Available Cellulose nanocrystals exhibit an interesting combination of mechanical properties and physical characteristics, which make them potentially useful for a wide range of consumer applications. However, as the usage of these bio-based nanofibers increases, a greater understanding of human exposure addressing their potential health issues should be gained. The aim of this perspective is to highlight how knowledge obtained from studying the biological impact of other nanomaterials can provide a basis for future research strategies to deduce the possible human health risks posed by cellulose nanocrystals.

  2. Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies

    KAUST Repository

    Choi, Joshua J.

    2010-05-12

    Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices. © 2010 American Chemical Society.

  3. Comparative catalytic reduction of 4-nitrophenol by polyacrylamide-gold nanocomposite synthesized by hydrothermal autoclaving and conventional heating routes

    Science.gov (United States)

    Salaheldin, Hosam I.

    2017-12-01

    Gold nanoparticles (AuNPs) in polymeric polyacrylamide (PAAm) matrix were synthesized using conventional heating and autoclaving thermal techniques. The synthesized Au/PAAm nanocomposite was characterized using UV-vis spectroscopy and high-resolution transmission electron microscopy. The size of the synthesized particles was approximately 6.37 nm and 8.19 nm with the conventional heating and autoclaving thermal techniques, respectively. Electron diffraction x-ray spectroscopy and the Fourier transformation infrared spectroscopy were used for the composition and elemental studies, which confirmed that the Au metallic atoms were synthesized and embedded within a PAAm matrix via a coordination bond between the carbonyl (-CONH2) group and the metallic NPs. X-ray diffraction confirmed the crystalline nature of the fabricated AuNPs with face centered cubic of nanocrystals. The catalytic activity of the as-prepared Au/PAAm nanocomposite for the reduction of 4-nitrophenol to 4-aminophenol was studied in the presence of sodium borohydrate. The synthesized AuNPs had an effective catalytic activity; the smaller NPs synthesized NPs with the conventional heating technique had a higher reaction kinetic rate in comparation with those synthesized with the autoclaving technique. Therefore, the Au/PAAm nanocomposite can be widely used as an eco-friendly, non-toxic, a fast and cost-effective product to remove versatile organic pollutants such as aromatic nitro compounds.

  4. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin; Hong, Feng; Mao, Xin; Li, Yajuan [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science (China); University of the Chinese Academy of Sciences, Beijing (China); Chen, Junsheng [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science (China); Department of Chemical Physics and NanoLund, Chemical Center, Lund University (Sweden); Zheng, Kaibo; Pullerits, Tonu [Department of Chemical Physics and NanoLund, Chemical Center, Lund University (Sweden); Yang, Songqiu; Deng, Weiqiao; Han, Keli [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science (China)

    2017-10-02

    Lead-based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead-based and the other is the poor stability. Lead-free all-inorganic perovskite Cs{sub 3}Bi{sub 2}X{sub 9} (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand-free Cs{sub 3}Bi{sub 2}Br{sub 9} NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2-20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Large low-field magnetoresistance of Fe3O4 nanocrystal at room temperature

    International Nuclear Information System (INIS)

    Mi, Shu; Liu, Rui; Li, Yuanyuan; Xie, Yong; Chen, Ziyu

    2017-01-01

    Superparamagnetic magnetite (Fe 3 O 4 ) nanoparticles with an average size of 6.5 nm and good monodispersion were synthesized and investigated by X-ray diffraction, Raman spectrometer, transmission electron microscopy and vibrating sample magnetometer. Corresponding low-field magnetoresistance (LFMR) was tested by physical property measurement system. A quite high LFMR has been observed at room temperature. For examples, at a field of 3000 Oe, the LFMR is −3.5%, and when the field increases to 6000 Oe, the LFMR is up to −5.1%. The electron spin polarization was estimated at 25%. This result is superior to the previous reports showing the LFMR of no more than 2% at room temperature. The conduction mechanism is proposed to be the tunneling of conduction electrons between adjacent grains considering that the monodisperse nanocrystals may supply more grain boundaries increasing the tunneling probability, and consequently enhancing the overall magnetoresistance. - Highlights: • Superparamagnetic Fe3O4 nanoparticles with small size were synthesized. • A quite high LFMR has been observed at room temperature. • The more grain boundaries increase the tunneling probability and enlarge the MR. • The fast response of the sample increase the MR at a low field.

  6. Hot injection synthesis of Cu(In, Ga)Se2 nanocrystals with tunable bandgap

    Science.gov (United States)

    Latha, M.; Aruna Devi, R.; Velumani, S.

    2018-05-01

    CuIn1-xGaxSe2 nanocrystals (CIGSe NCs) were synthesized with different gallium (Ga) content by the hot injection process at low reaction temperature for the first time. The Ga content [x = Ga(In + Ga)] was varied such as 0, 0.25, 0.50 and 0.75 to study their influences on the structural, morphological, compositional and optical properties of CIGSe NCs. X-ray diffraction (XRD) analysis showed the peak shift towards higher 2θ angle. The lattice parameters a and c were decreased linearly as x value increases which propitiated Vegard's law. Transmission electron microscopy (TEM) analysis revealed a decrease in the particle size from 55 to 22 nm. Ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectra indicated a blue shift towards the lower wavelength and bandgap was tuned from 1.04 to 1.41eV. Apart from this, CIGSe thin films were prepared by doctor blade coating method followed by annealing under Se/Ar atmosphere. The mobility of CIGSe thin film increased whereas resistivity decreased. Moreover, the photoconductivity of CIGSe annealed thin film exhibited almost 2-fold increase under an illumination of light. We realize from these results that the synthesized CIGSe NCs with x = 0.25 is expected to have the important perspective to be efficiently exploited as an absorber layer in cost-effective thin film solar cells.

  7. Bi-continuous Multi-component Nanocrystal Superlattices for Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie [University of Pennsylvania; Murray, Christopher [University of Pennsylvania; Kikkawa, James [University of Pennsylvania; Engheta, Nader [University of Pennsylvania

    2017-06-14

    Our SISGR program studied an emerging class of nanomaterials wherein different combinations of semiconductor or semiconductor and plasmonic nanocrystals (NCs) are self-assembled into three-dimensional multi-component superlattices. The NC assemblies were designed to form bicontinuous semiconductor NC sublattices with type-II energy offsets to drive charge separation onto electron and hole transporting sublattices for collection and introduce plasmonic NCs to increase solar absorption and charge separation. Our group is expert in synthesizing and assembling an extraordinary variety of artificial systems by tailoring the NC building blocks and the superlattice unit cell geometry. Under this DOE BES Materials Chemistry program, we introduced chemical methods to control inter-particle distance and to dope NC assemblies, which enabled our demonstration of strong electronic communication between NCs and the use of NC thin films as electronic materials. We synthesized, assembled and structurally, spectroscopically, and electrically probed NC superlattices to understand and manipulate the flow of energy and charge toward discovering the design rules and optimizing these complex architectures to create materials that efficiently convert solar radiation into electricity.

  8. Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths

    Science.gov (United States)

    Humer, M.; Guider, R.; Jantsch, W.; Fromherz, T.

    2013-05-01

    In the last decade, Si based photonics has made major advances in terms of design, fabrication, and device implementation. But due to Silicon's indirect bandgap, it still remains a challenge to create efficient Si-based light emitting devices. In order to overcome this problem, an approach is to develop hybrid systems integrating light-emitting materials into Si. A promising class of materials for this purpose is the class of semiconducting nanocrystal quantum dots (NCs) that are synthesized by colloidal chemistry. As their absorption and emission wavelength depends on the dot size, which can easily be controlled during synthesis, they are extremely attractive as building blocks for nanophotonic applications. For applications in telecom wavelength, Lead chalcogenide colloidal NCs are optimum materials due to their unique optical, electronic and nonlinear properties. In this work, we experimentally demonstrate the integration of PbS nanocrystals into Si-based photonic structures like slot waveguides and ring resonators as optically pumped emitters for room temperature applications. In order to create such hybrid structures, the NCs were dissolved into polymer resists and drop cast on top of the device. Upon optical pumping, intense photoluminescence emission from the resonating modes is recorded at the output of the waveguide with transmission quality factors up to 14000. The polymer host material was investigated with respect to its ability to stabilize the NC's photoluminescence emission against degradation under ambient conditions. The waveguide-ring coupling efficiency was also investigated as function of the NCs concentrations blended into the polymer matrix. The integration of colloidal quantum dots into Silicon photonic structures as demonstrated in this work is a very versatile technique and thus opens a large range of applications utilizing the linear and nonlinear optical properties of PbS NCs at telecom wavelengths.

  9. Solid phase syntheses of oligoureas

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)

    1997-02-19

    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  10. Goat red blood cells as precursor for iron oxide nanocrystal synthesis to develop nuclear targeted lung cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sreevani, Vellingiri; Shanthi, Krishnamurthy; Kannan, Soundarapandian, E-mail: sk_protein@buc.edu.in

    2013-09-01

    Graphical abstract: - Highlights: • Molecular approach of synthesis of Fe{sub 2}O{sub 3}-NC using goat blood as a bio-precursor. • The method is simple, efficient and environment friendly. • Synthesized nanocrystals were characterized by UV–vis spectroscopy, XRD, SEM, TEM, DLS and EDS. • Nanocrystals exhibited potent cytotoxicity against A549 cancer cell. • Nuclear targeting with expression of caspase-3, caspase-7 and Bcl-2 in A549 cancer cells. - Abstract: In this study, we synthesised iron oxide nanocrystals (Fe{sub 2}O{sub 3}-NC) from goat blood (bio-precursor) using red blood cells (RBC) lysis method (a molecular level approach) for the first time. The formation of Fe{sub 2}O{sub 3}-NC was achieved through a single-phase chemical reduction method. The size distribution of Fe{sub 2}O{sub 3}-NC falls between 20–30 nm for pellet and 100–200 nm for lysate and were found to be crystalline. Fe{sub 2}O{sub 3}-NC demonstrated significant cytotoxicity on A549. We report the direct visualization of interactions between Fe{sub 2}O{sub 3}-NC and the cancer cell nucleus. The active transport of Fe{sub 2}O{sub 3}-NC to the nucleus induces major changes to nuclear phenotype via nuclear envelope invaginations. We further examined the root cause for the involvement of Fe{sub 2}O{sub 3}-NC on the expression of caspase-3, caspase-7 and Bcl-2 in A549 cancer cells. This functional proteomic analysis clearly implies that the lung cancer cell proliferation is perfectly targeted by the biosynthesised Fe{sub 2}O{sub 3}-NC which could provide new insight for nuclear-targeted cancer therapy.

  11. Role of Eu"2"+ on the blue‐green photoluminescence of In_2O_3:Eu"2"+ nanocrystals

    International Nuclear Information System (INIS)

    Devi, Konsam Reenabati; Meetei, Sanoujam Dhiren; Singh, Shougaijam Dorendrajit

    2016-01-01

    Blue‐green light emitting undoped and europium doped indium oxide nanocrystal were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern confirmed the cubic phase of undoped and europium doped samples. Further, transmission electron microscopy (TEM), scanning electron microscopy (SEM) , energy dispersive analysis of X-rays (EDAX), Fourier transform infra-red (FT-IR), photoluminescence (PL), electron paramagnetic resonance (EPR) studies were performed to characterise the samples. PL analysis of the samples is the core of the present research. It includes excitation, emission and CIE (Commission Internationale de l’e´ clairage) studies of the samples. On doping europium to In_2O_3 lattice, ln"3"+ site is substituted by Eu"2"+ thereby increasing the concentration of singly ionized oxygen vacancy and hence blue–green emission from the host is found to increase. Further, this increase in blue–green emission after doping may also be attributed to 4f → 5d transitions of Eu"2"+. However, the blue–green PL emission is found to decrease after an optimum dopant concentration (Eu"2"+ = 4%) due to luminescence and size quenching. CIE co-ordinates of the samples are calculated to know colour of light emitted from the samples. It suggests that this blue–green light emitting In_2O_3: Eu"2"+ nanocrystals may find application in lighting such as in generation of white light. - Highlight: • XRD and TEM study confirms the synthesis of cubic doped and europium doped nanocrystals. • EPR study reveals the doped europium is in + 2 oxidation state. • Enhance PL emission intensity of host material due to increase in singly ionized oxygen vacancy and 4f–5d transitions of Eu"2"+ • CIE co-ordinates suggest the blue–green colour of the samples.

  12. Atomic-scale modeling of cellulose nanocrystals

    Science.gov (United States)

    Wu, Xiawa

    Cellulose nanocrystals (CNCs), the most abundant nanomaterials in nature, are recognized as one of the most promising candidates to meet the growing demand of green, bio-degradable and sustainable nanomaterials for future applications. CNCs draw significant interest due to their high axial elasticity and low density-elasticity ratio, both of which are extensively researched over the years. In spite of the great potential of CNCs as functional nanoparticles for nanocomposite materials, a fundamental understanding of CNC properties and their role in composite property enhancement is not available. In this work, CNCs are studied using molecular dynamics simulation method to predict their material' behaviors in the nanoscale. (a) Mechanical properties include tensile deformation in the elastic and plastic regions using molecular mechanics, molecular dynamics and nanoindentation methods. This allows comparisons between the methods and closer connectivity to experimental measurement techniques. The elastic moduli in the axial and transverse directions are obtained and the results are found to be in good agreement with previous research. The ultimate properties in plastic deformation are reported for the first time and failure mechanism are analyzed in details. (b) The thermal expansion of CNC crystals and films are studied. It is proposed that CNC film thermal expansion is due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intra-crystal responses to heating are explored. (c) Friction at cellulose-CNCs and diamond-CNCs interfaces is studied. The effects of sliding velocity, normal load, and relative angle between sliding surfaces are predicted. The Cellulose-CNC model is analyzed in terms of hydrogen bonding effect, and the diamond-CNC model compliments some of the discussion of the previous model. In summary, CNC's material properties and molecular models are both studied in this research, contributing to

  13. Molybdenum carbide-carbon nanocomposites synthesized from a reactive template for electrochemical hydrogen evolution

    KAUST Repository

    Alhajri, Nawal Saad

    2014-01-01

    Molybdenum carbide nanocrystals (Mo2C) with sizes ranging from 3 to 20 nm were synthesized within a carbon matrix starting from a mesoporous graphitic carbon nitride (mpg-C3N4) template with confined pores. A molybdenum carbide phase (Mo2C) with a hexagonal structure was formed using a novel synthetic method involving the reaction of a molybdenum precursor with the carbon residue originating from C3N4 under nitrogen at various temperatures. The synthesized nanocomposites were characterized using powder X-ray diffraction (XRD), temperature-programmed reaction with mass spectroscopy (MS), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results indicated that the synthesized samples have different surface structures and compositions, which are accordingly expected to exhibit different electrocatalytic activities toward the hydrogen evolution reaction (HER). Electrochemical measurements demonstrated that the sample synthesized at 1323 K exhibited the highest and most stable HER current in acidic media, with an onset potential of -100 mV vs. RHE, among the samples prepared in this study. This result is attributed to the sufficiently small particle size (∼8 nm on average) and accordingly high surface area (308 m2 g-1), with less oxidized surface entrapped within the graphitized carbon matrix. © 2014 the Partner Organisations.

  14. One pot synthesis, growth mechanism and optical properties of Zn{sub 1-x}Cd{sub x}Se graded core/shell and alloy nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, Kiran G. [Department of Physics, University of Pune, Pune 411 007 (India); Patil, K.R. [Centre for Materials Characterization, National Chemical Laboratory, Pune 411 008 (India); Mahamuni, Shailaja, E-mail: shailajamahamuni@yahoo.co.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2013-03-15

    Comparatively higher photoluminescence yield along with robustness of core/shell semiconductor nanocrystals make them attractive candidates for studying intricate quantum size effects. Here, we report, one pot synthesis of Zn{sub 1-x}Cd{sub x}Se graded core/shell structures by exploiting change in the reactivity of precursors. Optical and structural measurements indicate formation of graded structure. Growth mechanism probed by inductively coupled plasma atomic emission spectroscopy shows formation of graded core/shell structure, with CdSe rich core and ZnSe rich shell. Annealing these nanocrystals, in chemical bath, leads to diffusion of Cd from core to shell region. Formation of Zn{sub 1-x}Cd{sub x}Se alloy is also observed in X-ray photoelectron spectroscopic measurements, confirming the diffusion of Cd from core to shell region. Substantially high photoluminescence quantum efficiency of 60% with narrow line width of about 27 nm, was observed and is attributable to the reduced strain due to graded core/shell structure. - Highlights: Black-Right-Pointing-Pointer Graded CdSe/ZnSe core-shell nanocrystals are synthesized exploiting reactivity of precursors. Black-Right-Pointing-Pointer Growth mechanism is probed using ICP-AES spectroscopy. Black-Right-Pointing-Pointer Reduced strain leads to luminescence efficiency as high as 60%. Black-Right-Pointing-Pointer Alloy formation by annealing in chemical bath is probed using XPS.

  15. Influence of La doping and synthesis method on the properties of CoFe{sub 2}O{sub 4} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, S.F. [Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt); Hemeda, O.M. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); El-Dek, S.I., E-mail: didi5550000@gmail.com [Materials Science and Nanotechnology Department, Faculty of Post Graduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef (Egypt); Salem, B.I. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt)

    2016-12-15

    Nanocrystals of La doped CoFe{sub 2}O{sub 4} were synthesized using three different techniques: flash autocombustion, citrate–nitrate and the standard ceramic technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the obtained nanocrystals. All samples were crystallized in a spinel structure with cubic symmetry. The decrease in the lattice constant was endorsed to the large difference in ionic radii of both La{sup +3} (1.216 Å) and Fe (0.65 Å) in 6-f coordination. The citrate method displayed superior M{sub s} values amongst all techniques. The coercivity was found to exhibit largest values for the citrate method and then the flash while smallest values are associated with ceramic technique. - Highlights: • CoLa{sub x}Fe{sub 2−x}O{sub 4} nanocrystals crystallized in spinel cubic structure using 3 techniques. • The decrease in the lattice constant is due to the difference in ionic radius of La{sup +3} and Fe{sup 3+}. • The citrate method exhibit largest values of M{sub s} amongst all techniques. • Coercivity exhibits largest values for citrate and then flash, smallest for ceramic technique.

  16. Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Ren, Manman; Yang, Mingzhi; Liu, Weiliang; Li, Mei; Su, Liwei; Qiao, Congde; Wu, Xianbin; Ma, Houyi

    2016-01-01

    Graphical abstract: Ultra-small Fe 3 O 4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries Manman Ren, Mingzhi Yang, Weiliang Liu, Mei Li, Liwei Su, Congde Qiao, Xianbin Wu, Houyi Ma Ultra-small Fe 3 O 4 nanocrystals/graphene nanosheets composites demonstrate excellent long-term cycling stability at high-rate. - Abstract: Ultra-small Fe 3 O 4 nanocrystals (NCs)/garphene nanosheets (GNSs) composites have been synthesized through a facile gel-like film (GF) assisted method in this work. Fe 3 O 4 NCs with particle size ∼10 nm homogeneously dispersed on 2D GNSs. Profiting from the ultra-small Fe 3 O 4 NCs and GNSs, the composites demonstrate superior long-term and high-rate performance as anode materials for lithium ion batteries. Even at the current density of 5 A g −1 , the reversible capacity still maintains 323.4 mAh g −1 after 700 cycles. This work might enlighten us on exploring preferable strategies to develop advanced metal oxides NCs/GNSs composites anode materials for lithium ion batteries or other energy storage devices.

  17. Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalyst: Effects of molecular structure and chemical properties of hole scavengers

    International Nuclear Information System (INIS)

    Puangpetch, Tarawipa; Chavadej, Sumaeth; Sreethawong, Thammanoon

    2011-01-01

    Graphical abstract: Formic acid, which is the smallest and completely-dissociated water-soluble carboxylic acid, exhibited the highest hydrogen production enhancement ability over the 1 wt.% Au-loaded mesoporous-assembled SrTiO 3 nanocrystal photocatalyst. Display Omitted Research highlights: → The 1 wt.% Au-loaded mesoporous-assembled SrTiO 3 nanocrystal photocatalyst was synthesized. → The molecular structure and chemical properties of hole scavengers affected H 2 production rate. → Formic acid exhibited the highest photocatalytic H 2 production enhancement ability. -- Abstract: The hydrogen production via the photocatalytic water splitting under UV irradiation using different compounds as hole scavengers (including methanol, formic acid, acetic acid, propanoic acid, hydrochloric acid, and sulfuric acid) under a low concentration range ( 3 nanocrystal photocatalyst. The results indicated that the hydrogen production efficiency greatly depended on the molecular structure, chemical properties, and concentration of the hole scavengers. Formic acid, which is the smallest and completely-dissociated water-soluble carboxylic acid, exhibited the highest hydrogen production enhancement ability. The 2.5 vol.% aqueous formic acid solution system provided the highest photocatalytic hydrogen production rate.

  18. Charge transport in silicon nanocrystal superlattices in the terahertz regime

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Zajac, Vít; Kužel, Petr; Malý, P.; Gutsch, S.; Hiller, D.; Zacharias, M.

    2015-01-01

    Roč. 91, č. 19 (2015), "195443-1"-"195443-10" ISSN 1098-0121 R&D Projects: GA ČR GA13-12386S Institutional support: RVO:68378271 Keywords : silicon nanocrystals * charge transport * terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  19. A fractal model for intergranular fractures in nanocrystals

    International Nuclear Information System (INIS)

    Lung, C.W.; Xiong, L.Y.; Zhou, X.Z.

    1993-09-01

    A fractal model for intergranular fractures in nanocrystals is proposed to explain the dependence of fracture toughness with grain size in this range of scale. Based on positron annihilation and internal friction experimental results, we point out that the assumption of a constant grain boundary thickness in previous models is too simplified to be true. (author). 7 refs, 6 figs

  20. Exciton Recombination in Formamidinium Lead Triiodide : Nanocrystals versus Thin Films

    NARCIS (Netherlands)

    Fang, Hong-Hua; Protesescu, Loredana; Balazs, Daniel M.; Adjokatse, Sampson; Kovalenko, Maksym V.; Loi, Maria Antonietta

    2017-01-01

    The optical properties of the newly developed near-infrared emitting formamidinium lead triiodide (FAPbI(3)) nanocrystals (NCs) and their polycrystalline thin film counterpart are comparatively investigated by means of steady-state and time-resolved photoluminescence. The excitonic emission is

  1. Fabrication and evaluation of smart nanocrystals of artemisinin for ...

    African Journals Online (AJOL)

    Background: Nanocrystals have the potential to substantially increase dissolution rate, solubility with subsequent enhanced bioavailability via the oral route of a range of poor water soluble drugs. Regardless of other issues, scale up of the batch size is the main issue associated with bottom up approach. Material and ...

  2. Luminescence in Mn-doped CdS nanocrystals

    Indian Academy of Sciences (India)

    Wintec

    and the Mn d levels occur at two different energies, allowed us to study the PL lifetime decay behaviour of both kinds of .... seen from the XRD analysis, the size of the nanocrystals .... levels couple to the CdS electronic states and the excited.

  3. Environmental friendly InP/ZnS nanocrystals

    OpenAIRE

    Coşkun, Yasemin

    2012-01-01

    Ankara : The Department of Materials Science and Nanotechnology, Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 80-89. Semiconductor nanocrystals are nanometer scale fluorescent crystallites with tunable optical properties, which can be controlled by the material composition and particle size. They can be prepared using various synthesis techniques and find applications in many different areas ranging from...

  4. The relationship between cellulose nanocrystal dispersion and strength

    Science.gov (United States)

    Yizheng Cao; Pablo Zavattieri; Jeffrey Youngblood; Robert Moon; Jason Weiss

    2016-01-01

    This paper studies the agglomeration of cellulose nanocrystals (CNCs) and uses ultrasonication to disperse CNCs in cement pastes in an attempt to improve strength. Rheological measurements show that when the concentration of CNCs exceeds 1.35% by volume in deionized water, agglomerates start to develop. This experimental finding is comparable to the value obtained from...

  5. A simple synthesis and characterization of CuS nanocrystals

    Indian Academy of Sciences (India)

    Unknown

    Water-soluble CuS nanocrystals and nanorods were prepared by reacting copper acetate with thioacetamide in ... potential applications in solar cells, IR detectors and lubri- cation (Mane ... ted a solventless synthesis of Cu2S nanorods, by heating copper thiolate .... 2004 Nanoparticles: Building blocks for nano- technology ...

  6. Photoluminescence studies of Li-doped Si nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Eva; Vacík, Jiří; Holý, V.; Pelant, Ivan

    2013-01-01

    Roč. 3, č. 14 (2013), s. 1-7 ISSN 1847-9804 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : Si nanocrystals * photoluminescence * doping * Li-ion batteries Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.949, year: 2013

  7. Extraction and characterisation of cellulose nanocrystals from pineapple peel

    Directory of Open Access Journals (Sweden)

    Ana Raquel Madureira

    2018-04-01

    Full Text Available The potential of pineapple peel as a source of cellulose nanocrystals was evaluated. Peels skin from fresh-cut fruit was used as raw material. These residues were purified to remove pigments, lipids and hemicellulose, and a bleaching process for delignification was carried out for 4-6 h. All resulting products were characterised for their lignin, hemicellulose, cellulose and ash contents using standard techniques. Dry matter at the end was low (ca. 50% compared with the raw material (ca. 90%. The process applied resulted in ca. 20% (m/m of purified cellulose (ca. 80% purity, with ineligible levels of lignin and hemicellulose present, especially when using 6h of bleaching. The purified cellulose was subject to acid hydrolysis for nanocrystal extraction with two testing times, 30 and 60 minutes. These cellulose nanocrystals had small sizes (< 1000 nm, with high variability and negative zeta potential values. The time of extraction did not affect the nanocrystals’ chemical and physical properties. The use of 6 h of bleaching treatment during purification was shown to be more effective than 4 h. Pineapple peel was demonstrated to be a good source of cellulose for the production of cellulose nanocrystals.

  8. Introducing cellulose nanocrystals in sheet molding compounds (SMC)

    Science.gov (United States)

    Amir Asadi; Mark Miller; Sanzida Sultana; Robert J. Moon; Kyriaki Kalaitzidou

    2016-01-01

    The mechanical properties of short glass fiber/epoxy composites containing cellulose nanocrystals (CNC) made using sheet molding compound (SMC) manufacturing method as well as the rheological and thermomechanical properties of the CNC-epoxy composites were investigated as a function of the CNC content. CNC up to 1.4 wt% were dispersed in the epoxy to produce the resin...

  9. Morphology-controlled Pd nanocrystals as catalysts in tandem ...

    Indian Academy of Sciences (India)

    MIRIAM NAVLANI-GARCÍA

    2017-09-22

    Sep 22, 2017 ... aDivision of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, .... 5. 0.390. 0.680. 5.0. –. Note: S, M and L are referred to small, medium and large average nanocrystals size. [a] Considering the molecular weight (MW ) of one ... In this case, 10 mg of catalyst and 5 mL.

  10. Silicon nanocrystals in silica – Novel active waveguides for nanophotonics

    Czech Academy of Sciences Publication Activity Database

    Janda, P.; Valenta, J.; Ostatnický, T.; Skopalová, Eva; Pelant, Ivan; Elliman, R. G.; Tomasiunas, R.

    2006-01-01

    Roč. 121, - (2006), s. 267-273 ISSN 0022-2313 R&D Projects: GA AV ČR IAA1010316; GA ČR GP202/01/D030 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystal * waveguide * silicon * photonics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.441, year: 2006

  11. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.; Baumgardner, William J.; Choi, Joshua J.; Hanrath, Tobias; Hennig, Richard G.

    2012-01-01

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind

  12. Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners

    Science.gov (United States)

    Shane X. Peng; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Cellulose nanocrystals (CNCs) are renewable, sustainable, and abundant nanomaterial widely used as reinforcing fillers in the field of polymer nanocomposites. In this study, two-part epoxy systems with CNC-enhanced hardeners were fabricated. Three types of hardeners, Jeffamine D400 (JD400), diethylenetriamine (DETA), and (±)-trans-1,2- diaminocyclohexane (DACH), were...

  13. Atomistic Simulation of Frictional Sliding Between Cellulose Iß Nanocrystals

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    Sliding friction between cellulose Iß nanocrystals is studied using molecular dynamics simulation. The effects of sliding velocity, normal load, and relative angle between sliding surface are predicted, and the results analyzed in terms of the number of hydrogen bonds within and between the cellulose chains. We find that although the observed friction trends can be...

  14. Comparison of Cellulose Supramolecular Structures Between Nanocrystals of Different Origins

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Christopher G. Hunt; Jeffery Catchmark; E. Johan Foster; Akira Isogai

    2015-01-01

    In this study, morphologies and supramolecular structures of CNCs from wood-pulp, cotton, bacteria, tunicate, and cladophora were investigated. TEM was used to study the morphological aspects of the nanocrystals whereas Raman spectroscopy provided information on the cellulose molecular structure and its organization within a CNC. Dimensional differences between the...

  15. Strong Carrier-Phonon Coupling in Lead Halide Perovskite Nanocrystals

    NARCIS (Netherlands)

    Iaru, Claudiu M; Geuchies, Jaco J|info:eu-repo/dai/nl/370526090; Koenraad, Paul M; Vanmaekelbergh, Daniël|info:eu-repo/dai/nl/304829137; Silov, Andrei Yu

    2017-01-01

    We highlight the importance of carrier-phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL

  16. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Wadia, Cyrus; Ma, Wanli; Sadtler, Bryce; Alivisatos, A.Paul

    2008-06-24

    We present the rational synthesis of colloidal copper(I) sulfide nanocrystals and demonstrate their application as an active light absorbing component in combination with CdS nanorods to make a solution-processed solar cell with 1.6percent power conversion efficiency on both conventional glass substrates and flexible plastic substrates with stability over a 4 month testing period.

  17. Synthesis of silicon nanocrystals in silane plasmas for nanoelectronics and large area electronic devices

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, P; Nguyen-Tran, Th; Djeridane, Y; Abramov, A; Johnson, E; Patriarche, G

    2007-01-01

    The synthesis of silicon nanocrystals in standard radio-frequency glow discharge systems is studied with respect to two main objectives: (i) the production of devices based on quantum size effects associated with the small dimensions of silicon nanocrystals and (ii) the synthesis of polymorphous and polycrystalline silicon films in which silicon nanocrystals are the elementary building blocks. In particular we discuss results on the mechanisms of nanocrystal formation and their transport towards the substrate. We found that silicon nanocrystals can contribute to a significant fraction of deposition (50-70%) and that they can be positively charged. This has a strong influence on their deposition because positively charged nanocrystals will be accelerated towards the substrate with energy of the order of the plasma potential. However, the important parameter with respect to the deposition of charged nanocrystals is not the accelerating voltage but the energy per atom and thus a doubling of the diameter will result in a decrease in the energy per atom by a factor of 8. To leverage this geometrical advantage we propose the use of more electronegative gases, which may have a strong effect on the size and charge distribution of the nanocrystals. This is illustrated in the case of deposition from silicon tetrafluoride plasmas in which we observe low-frequency plasma fluctuations, associated with successive generations of nanocrystals. The contribution of larger nanocrystals to deposition results in a lower energy per deposited atom and thus polycrystalline films

  18. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.

    Science.gov (United States)

    Jin, Chunyu; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-07

    Cu2ZnSnSe4 is a prospective material as an absorber in thin film solar cells due to its many advantages including direct band gap, high absorption coefficient, low toxicity, and relative abundance (indium-free) of its elements. In this report, CZTSe nanoparticles have been synthesized by the hot-injection method using bis-(triethylsilyl)selenide [(Et3Si)2Se] as the selenium source for the first time. Energy dispersive X-ray spectroscopy (EDS) confirmed the stoichiometry of CZTSe nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nanocrystals were single phase polycrystalline with their size within the range of 25-30 nm. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy measurements ruled out the existence of secondary phases such as Cu2SnSe3 and ZnSe. The effect of reaction time and precursor injection order on the formation of stoichiometric CZTSe nanoparticles has been studied by Raman spectroscopy. UV-vis-NIR data indicate that the CZTSe nanocrystals have an optical band gap of 1.59 eV, which is optimal for photovoltaic applications.

  19. Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong

    2009-03-02

    Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H2 chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra.

  20. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

    Directory of Open Access Journals (Sweden)

    Claudio Davet Gutiérrez-Lazos

    2014-06-01

    Full Text Available This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis indicates that the CdTe-NC have a nearly spherical shape (3.5 nm as mean size. Electron diffraction and XRD diffraction analyses indicated the bulk-CdTe face-centered cubic structure for CdTe-NC. An additional diffraction line corresponding to the octahedral Cd3P2 was also detected as a secondary phase, which probably originates by reacting free cadmium ions with trioctylphosphine (the tellurium reducing agent. The Raman spectrum exhibits two broad bands centered at 141.6 and 162.3 cm−1, which could be associated to the TO and LO modes of cubic CdTe nanocrystals, respectively. Additional peaks located in the 222 to 324 cm−1 range, agree fairly well with the wavenumbers reported for TO modes of octahedral Cd3P2.