WorldWideScience

Sample records for coverage dependent adsorption

  1. Adsorption of fumaramide [2]rotaxane and its components on a solid substrate : A coverage-dependent study

    NARCIS (Netherlands)

    Whelan, Caroline M.; Gatti, Francesco; Leigh, David A.; Rapino, Stefania; Zerbetto, Francesco; Rudolf, Petra

    2006-01-01

    The coverage-dependent adsorption on Au(111) of a fumaramide [2] rotaxane and its components, a benzylic amide macrocycle and a fumaramide thread, is studied using high-resolution electron energy loss spectroscopy (HREELS). Up to monolayer coverage, the relative intensity of out-of-plane to in-plane

  2. Memory Effects and Coverage Dependence of Surface Diffusion in a Model Adsorption System

    DEFF Research Database (Denmark)

    Vattulainen, Ilpo Tapio; Ying, S. C.; Ala-Nissila, T.

    1999-01-01

    in tracer and collective diffusion. We show that memory effects can be very pronounced deep inside the ordered phases and in regions close to first and second order phase transition boundaries. Particular attention is paid to the details of the time dependence of memory effects. The memory effect in tracer...... effects can be as large as 50% to the total barrier. For collective diffusion, the role of memory effects is in general less pronounced.......We study the coverage dependence of surface diffusion coefficients for a strongly interacting adsorption system O/W(110) via Monte Carlo simulations of a lattice-gas model. In particular, we consider the nature and emergence of memory effects as contained in the corresponding correlation factors...

  3. The coverage dependence of the adsorption structures of Cs on Ag(111)

    Science.gov (United States)

    Caragiu, M.; Leatherman, G. S.; Diehl, R. D.; Kaukasoina, P.; Lindroos, M.

    1999-10-01

    The structures of five different submonolayer commensurate phases of Cs on Ag(111) have been determined by low energy electron diffraction (LEED). This paper presents the results of two of these studies: for the primitive (2 3×2 3)R30° and ( 7× 7)R19° structures which form at coverages of 1/12 and 1/7 respectively. The adsorption site was found to be the fcc hollow in both cases. These structures are accompanied by a substrate rumple which has the effect of allowing the Cs atoms to push deeper into the substrate. The structures determined here, along with the earlier structure determinations of three other submonolayer phases, indicate that the CsAg bond length does not change over the coverage range from 1/12 to the monolayer saturation coverage of 1/3.

  4. A three-site Langmuir adsorption model to elucidate the temperature, pressure, and support dependence of the hydrogen coverage on supported Pt particles

    NARCIS (Netherlands)

    Ji, Y.; Koot, V.; van der Eerden, A.M.J.; Weckhuysen, B.M.; Koningsberger, D.C.; Ramaker, D.E.

    2007-01-01

    The three-site adsorption model, previously developed to describe H adsorption on small Pt particles, was used to gain insight into dependence of hydrogen coverage on temperature, pressure, and support ionicity. The three sites, in order of decreasing PtH bond strength, involve H in an atop, a

  5. Adsorption of fumaramide [2]rotaxane and its components on a solid substrate: a coverage-dependent study.

    Science.gov (United States)

    Whelan, Caroline M; Gatti, Francesco; Leigh, David A; Rapino, Stefania; Zerbetto, Francesco; Rudolf, Petra

    2006-08-31

    The coverage-dependent adsorption on Au(111) of a fumaramide [2]rotaxane and its components, a benzylic amide macrocycle and a fumaramide thread, is studied using high-resolution electron energy loss spectroscopy (HREELS). Up to monolayer coverage, the relative intensity of out-of-plane to in-plane phenyl ring vibrational modes indicates that the macrocycle adopts an orientation with the phenyl rings largely parallel to the surface. The formation of a chemisorption bond is evidenced by the presence of a Au-O stretching vibration. In contrast, the thread shows no evidence of chemisorption or a preferential orientation. The introduction of the thread into the macrocycle partly disrupts the film order so that the resulting chemisorbed rotaxane shows intermediate behavior with a preferential orientation up to 0.5 ML coverage. A decrease in film order and the absence of a preferred molecular orientation is observed for all three molecules at multilayer coverages. The spectral differences are addressed by molecular dynamics simulations in terms of the mobility of the phenyls of the three molecules on Au(111).

  6. Adsorption of atomic and molecular oxygen on Si(100)2x1: coverage dependence of the Auger O KVV lineshape.

    NARCIS (Netherlands)

    Wormeester, Herbert; Borg, H.J.; Terpstra, D.; Terpstra, D.; Keim, Enrico G.; van Silfhout, Arend

    1991-01-01

    By means of Auger electron spectroscopy (AES) we have monitored the room temperature adsorption of O2 and N2O on the clean Si(0 0 1)2 × 1 surface. We have found, for the first time, a significant variation in the intensity ratio of the K L1 L1 and K L23 L23 O Auger lines in the submonolayer range.

  7. Oil adsorption ability of three-dimensional epicuticular wax coverages in plants

    Science.gov (United States)

    Gorb, Elena V.; Hofmann, Philipp; Filippov, Alexander E.; Gorb, Stanislav N.

    2017-04-01

    Primary aerial surfaces of terrestrial plants are very often covered with three-dimensional epicuticular waxes. Such wax coverages play an important role in insect-plant interactions. Wax blooms have been experimentally shown in numerous previous studies to be impeding locomotion and reducing attachment of insects. Among the mechanisms responsible for these effects, a possible adsorption of insect adhesive fluid by highly porous wax coverage has been proposed (adsorption hypothesis). Recently, a great decrease in insect attachment force on artificial adsorbing materials was revealed in a few studies. However, adsorption ability of plant wax blooms was still not tested. Using a cryo scanning electron microscopy approach and high-speed video recordings of fluid drops behavior, followed by numerical analysis of experimental data, we show here that the three-dimensional epicuticular wax coverage in the waxy zone of Nepenthes alata pitcher adsorbs oil: we detected changes in the base, height, and volume of the oil drops. The wax layer thickness, differing in samples with untreated two-layered wax coverage and treated one-layered wax, did not significantly affect the drop behavior. These results provide strong evidence that three-dimensional plant wax coverages due to their adsorption capability are in general anti-adhesive for insects, which rely on wet adhesion.

  8. Engineering magnetism and electronic properties of silicene by changing adsorption coverage

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Weiwei; Li, Tongwei, E-mail: litjww@126.com; Su, Xiangying; Cui, Hongling; Li, Haisheng

    2016-10-30

    Highlights: • Electronic and magnetic properties of silicene adsorbed by H, C, and F atoms are investigated. • The H adsorption could induce the magnetism in silicene regardless of the concentration of H atoms. • Only low C adsorption concentration can trigger the spin splitting, and F adsorption mainly changes the site of Fermi level. • The abundant electronic and magnetic properties are available in silicene with H, C, and F adsorption. - Abstract: Electronic and magnetic properties of silicene functionalized by H, C, and F atoms at different coverages are studied based on density functional theory. For H and F adatoms, the most stable adsorption sites are top sites. The situation is different for C adatom, and its most preferable adsorption site is valley site. Among the three kinds of adatoms, the magnetism can always be induced by H adsorption, while spin polarization is triggered only in silicene with low C concentration. The F adsorption mainly changes sites of Fermi level. The various band structures of metal, spin gapless semiconductor, and semiconductor can be obtained.

  9. High coverage water adsorption on the CuO(111) surface

    Science.gov (United States)

    Yu, Xiaohu; Zhang, Xuemei; Wang, Hongtao; Feng, Gang

    2017-12-01

    Water adsorption on the CuO(111) surface at different coverage has been systematically studied by spin-polarized density functional theory calculations (GGA+U) and atomic thermodynamics. Both molecular and dissociative adsorptions are studied. It is found that H2O molecule can chirally adsorb on CuO(111) surface which maybe play an important role in catalysis field. Molecular H2O adsorption is preferred for one H2O molecule, while mixed molecular and dissociative coadsorption is preferred on CuO(111) surface for two, three and four H2O molecules. Molecular and dissociative H2O adsorption can coexist at high temperature by using Boltzmann statistics. The phase diagram shows that only three surface configurations are stable thermodynamically: clean CuO(111) surface, two H2O and four H2O adsorption. The surface uncoordinated copper and oxygen atoms, and hydrogen bonding contribute to the adsorption energies. H2O adsorption mechanism has been analyzed by projected density of states (PDOS).

  10. Density functional theory study of formic acid adsorption on anatase TiO2(001): geometries, energetics, and effects of coverage, hydration, and reconstruction.

    Science.gov (United States)

    Gong, Xue-Qing; Selloni, Annabella; Vittadini, Andrea

    2006-02-16

    We present density functional theory calculations and first-principles molecular dynamics simulations of formic acid adsorption on anatase TiO(2)(001), the minority surface exposed by anatase TiO(2) nanoparticles. A wide range of factors that may affect formic acid adsorption, such as coverage, surface hydration, and reconstruction, are considered. It is found that (i) formic acid dissociates spontaneously on unreconstructed clean TiO(2)(001)-1 x 1, as well as on the highly reactive ridge of the reconstructed TiO(2)(001)-1 x 4 surface; (ii) on both the 1 x 1 and 1 x 4 surfaces, various configurations of dissociated formic acid exist with adsorption energies of about 1.5 eV, which very weakly depend on the coverage; (iii) bidentate adsorption configurations, in which the formate moiety binds to the surface through two Ti-O bonds, are energetically more favored than monodentate ones; (iv) partial hydration of TiO(2)(001)-1 x 1 tends to favor the bidentate chelating configuration with respect to the bridging one but has otherwise little effect on the adsorption energetics; and (v) physical adsorption of formic acid on fully hydrated TiO(2)(001)-1 x 1 is also fairly strong. Comparison of the present results for formic acid adsorption with those for water and methanol under similar conditions provides valuable insights to the understanding of recent experimental results concerning the coadsorption of these molecules.

  11. Coverage dependence of the structure of tetracene on Ag(110)

    Energy Technology Data Exchange (ETDEWEB)

    Huang Han; Song Fei; Lu Bin; Zhang Hanjie; Dou Weidong; Li Haiyang; He Pimo; Bao Shining [Physics Department, Zhejiang University, Hangzhou 310027 (China); Chen Qiao [Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ (United Kingdom); Zhou Wuzong [School of Chemistry, University of St Andrews, St Andrews KY16 9ST (United Kingdom)], E-mail: phybao@zju.edu.cn, E-mail: qiao.chen@sussex.ac.uk

    2008-08-06

    The ordered adsorption structures of tetracene on Ag(110) have been studied by low energy electron diffraction (LEED), scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. At a low coverage, as calibrated with LEED, both p(4 x 4) and c(8 x 4) ordered structures are simultaneously formed on an Ag(110) surface at room temperature. STM images suggest the molecular plane is parallel to the Ag surface with its long molecular axis aligned along the [001] azimuth. DFT optimization reveals a separation of 0.3 nm between the molecular plane and substrate surface while the center of the tetracene molecule is on the long bridge site. Increasing coverage slightly, a ({sub 2}{sup 6} {sub 5}{sup 2}) structure is formed while the adsorbed molecules maintain the flat-lying geometry with adjacent molecules alternating their height relative to the surface.

  12. High coverage hydrogen adsorption on the Fe{sub 3}O{sub 4}(1 1 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaohu, E-mail: yuxiaohu950203@126.com [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Zhang, Xuemei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); Wang, Shengguang [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Synfuels China Co., Ltd., Huairou, Beijing 101407 (China)

    2015-10-30

    Graphical abstract: - Highlights: • Hydrogen adsorption on the A and B termination layers of the Fe{sub 3}O{sub 4}(1 1 0) surface at different coverage has been studied by DFT + U method. • The adsorption of hydrogen prefers surface oxygen atoms on both Fe{sub 3}O{sub 4}(1 1 0) surface layers. • The more stable A layer has stronger adsorption energy than the less stable B layer. • The saturation coverage has two dissociatively adsorbed H{sub 2} on the A layer, and one dissociatively adsorbed H{sub 2} on the B layer. - Abstract: Hydrogen adsorption on the A and B termination layers of the Fe{sub 3}O{sub 4}(1 1 0) surface at different coverage has been systematically studied by density functional theory calculations including an on-site Hubbard term (GGA + U). The adsorption of hydrogen prefers surface oxygen atoms on both layers. The more stable A layer has stronger adsorption energy than the less stable B layer. The saturation coverage has two dissociatively adsorbed H{sub 2} on the A layer, and one dissociatively adsorbed H{sub 2} on the B layer. The adsorption mechanism has been analyzed on the basis of projected density of states (PDOS).

  13. The Affordable Care Act's Dependent Care Coverage and Mortality.

    Science.gov (United States)

    McClellan, Chandler

    2017-05-01

    In September 2010, the Affordable Care Act (ACA) enabled young adults to gain insurance coverage under their parents' policies. Assess the impact of the ACA's dependent care coverage expansion on young adult mortality rates. Using the Multiple Cause Mortality public use database for 2008-2013, the impact of the ACA is examined with a difference-in-differences analysis of monthly mortality rates using individuals aged 26-30 as a natural control group for young adults aged 19-25. The average monthly disease-related mortality rate of the 19-25 years old group fell by between 3.1% and 6.1% in the wake of the dependent care coverage expansion. Reduction in mortality was primarily in disease-related causes which are amenable to general medical care such as cardiovascular disease, while mortality due to trauma-related causes, which must be treated regardless of insurance status under preexisting laws, was unaffected. The reduction in mortality from this single provision of the ACA indicates that larger gains in preventable mortality could be made as health insurance coverage continues to expand under the ACA.

  14. Path Dependence and Universal Health Coverage: The Case of Egypt

    Directory of Open Access Journals (Sweden)

    Ayman Fouda

    2017-12-01

    Full Text Available Universal health coverage (UHC is the big objective in health policy which several countries are seeking to achieve. Egypt is no different and its endeavors to attain UHC have been going on since the 1960s. This article discusses the status of UHC in Egypt using theories of political science and economics by analyzing the historical transformations in the Egyptian health system and its institutional settings. This article then specifically examines the path dependence theory against the sociopolitical background of Egypt and assesses any pattern between the theory and the current UHC status in Egypt. The important finding of this analysis is that the health policies and reforms in Egypt have been significantly influenced and limited by its historical institutional structure and development. Both the health policies and the institutional settings adopted a dependent path that limited Egypt’s endeavors to achieve the universal coverage. This dependent path also yielded many of the present-day challenges as in the weaknesses of the healthcare financing system and the inability to extend health coverage to the poor and the informal sector. These challenges subsequently had a negative impact on the accessibility of the healthcare services.

  15. Path Dependence and Universal Health Coverage: The Case of Egypt.

    Science.gov (United States)

    Fouda, Ayman; Paolucci, Francesco

    2017-01-01

    Universal health coverage (UHC) is the big objective in health policy which several countries are seeking to achieve. Egypt is no different and its endeavors to attain UHC have been going on since the 1960s. This article discusses the status of UHC in Egypt using theories of political science and economics by analyzing the historical transformations in the Egyptian health system and its institutional settings. This article then specifically examines the path dependence theory against the sociopolitical background of Egypt and assesses any pattern between the theory and the current UHC status in Egypt. The important finding of this analysis is that the health policies and reforms in Egypt have been significantly influenced and limited by its historical institutional structure and development. Both the health policies and the institutional settings adopted a dependent path that limited Egypt's endeavors to achieve the universal coverage. This dependent path also yielded many of the present-day challenges as in the weaknesses of the healthcare financing system and the inability to extend health coverage to the poor and the informal sector. These challenges subsequently had a negative impact on the accessibility of the healthcare services.

  16. Insurance Coverage and Health Outcomes in Young Adults With Mental Illness Following the Affordable Care Act Dependent Coverage Expansion.

    Science.gov (United States)

    Kozloff, Nicole; Sommers, Benjamin D

    2017-07-01

    As a provision of the Affordable Care Act, young adults were able to remain on their parents' health insurance plans until age 26. We examined the impact of the 2010 dependent coverage expansion on insurance coverage and health outcomes among young adults with mental illness. Data are from the 2008-2013 National Survey on Drug Use and Health, an annual population-based survey of noninstitutionalized US individuals aged 12 and older. We used a difference-in-differences approach to compare young adults with mental illness subject to the provision (aged 19-25 years, n = 19,051) with an older comparison group (aged 26-34 years, n = 7,958) before (2008-2009) and after (2011-2013) the dependent coverage expansion in their insurance coverage, use of health services, and self-reported health. In adjusted analyses, following the dependent coverage expansion, private insurance coverage increased by 11.7 percentage points (95% CI, 8.4-15.1, P mental illness, relative to 26- to 34-year-olds. The provision was associated with a modest increase in young adults with mental illness who received outpatient mental health treatment at least monthly on average (+2.0% [95% CI, 0.1% to 4.0%, P = .04]) and a modest decrease in those reporting their overall health as fair or poor (-2.3% [95% CI, -4.6% to -0.0%, P = .05]). Unmet mental health needs due to cost decreased significantly among those with moderate-to-serious mental illness (-12.3% [95% CI, -22.7% to -2.0%, P = .02]), but did not change among those with mild illness. The 2010 dependent coverage expansion was associated with an increase in insurance coverage, several indicators of mental health treatment, and improved self-reported health among young adults with mental illness.

  17. Tunability of the CO adsorption energy on a Ni/Cu surface: Site change and coverage effects

    Science.gov (United States)

    Vesselli, Erik; Rizzi, Michele; Furlan, Sara; Duan, Xiangmei; Monachino, Enrico; Dri, Carlo; Peronio, Angelo; Africh, Cristina; Lacovig, Paolo; Baldereschi, Alfonso; Comelli, Giovanni; Peressi, Maria

    2017-06-01

    The adsorption energy of carbon monoxide on Ni ad-islands and ultra-thin films grown on the Cu(110) surface can be finely tuned via a complex interplay among diffusion, site change mechanisms, and coverage effects. The observed features of CO desorption can be explained in terms of migration of CO molecules from Cu to Ni islands, competition between bridge and on-top adsorption sites, and repulsive lateral adsorbate-adsorbate interactions. While the CO adsorption energy on clean Cu(110) is of the order of 0.5 eV, Ni-alloying allows for its controlled, continuous tunability in the 0.98-1.15 eV range with Ni coverage. Since CO is a fundamental reactant and intermediate in many heterogeneous catalytic (electro)-conversion reactions, insight into these aspects with atomic level detail provides useful information to potentially drive applicative developments. The tunability range of the CO adsorption energy that we measure is compatible with the already observed tuning of conversion rates by Ni doping of Cu single crystal catalysts for methanol synthesis from a CO2, CO, and H2 stream under ambient pressure conditions.

  18. Oxygen adsorption on Pt(110)-(1x2): new high-coverage structures

    DEFF Research Database (Denmark)

    Helveg, Stig; Lorensen, Henrik Qvist; Horch, Sebastian

    1999-01-01

    From an interplay between scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, a comprehensive picture is obtained for oxygen adsorption on the Pt(110)-(1 x 2) surface, from single isolated oxygen atoms chemisorbed in FCC sites along the platinum ridges...... adsorption and platinum lattice distortions. (C) 1999 Elsevier Science B.V. All rights reserved....

  19. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  20. Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.

    Science.gov (United States)

    Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi

    2016-02-16

    In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.

  1. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    Science.gov (United States)

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210).

  2. Effects of surface structural disorder and surface coverage on isotopic fractionation during Zn(II) adsorption onto quartz and amorphous silica surfaces

    Science.gov (United States)

    Nelson, Joey; Wasylenki, Laura; Bargar, John R.; Brown, Gordon E.; Maher, Kate

    2017-10-01

    Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. However, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder. We present pH-dependent adsorption edges, X-ray absorption spectra, and isotopic measurements to illustrate the effects of surface structural disorder and surface coverage on zinc(II) (Zn(II)) surface complexation and isotope fractionation. Our results demonstrate that Zn(II) surface complexes on quartz and amorphous silica (SiO2(am)) transition from octahedral to tetrahedral coordination by oxygen as surface coverage increases. In low ionic strength solutions (I = 0.004 M) and at low surface loadings (Γ isotopic fractionation (Δ66/64Znaqueous-sorbed = -0.01 ± 0.06‰) from aqueous Zn(II). In contrast, under similar chemical conditions and surface loading, outer-sphere Zn(II) adsorption complexes are not observed on SiO2(am) surfaces. At high ionic strength (I = 0.1 M) and low surface loading (Γ isotope fractionation factors for inner-sphere octahedral and tetrahedral complexes versus dissolved Zn, under the same conditions and on the same silica substrate, are not distinguishable beyond uncertainties. However, there is a larger measured equilibrium isotope fractionation with preferential sorption of heavy Zn as inner-sphere complexes on SiO2(am) (Δ66/64Znaqueous-sorbed = -0.94 ± 0.11‰) than on quartz (Δ66/64Znaqueous-sorbed = -0.60 ± 0.11‰).The propensity for Zn(II) to occur in tetrahedral and octahedral coordination with oxygen may help explain these observations. We posit that the low energetic difference between octahedral and tetrahedral Zn(II) may be why changes in inner-sphere Zn(II) coordination numbers with increasing coverage do not manifest as distinguishable isotope fractionations or as an observable alteration to the macroscopic

  3. Temperature-dependent infrared and calorimetric studies on arsenicals adsorption from solution to hematite nanoparticles

    Science.gov (United States)

    To address the lack of systematic and surface sensitive studies on the adsorption energetics of arsenic compounds on metal (oxyhydr)oxides, we conducted temperature-dependent ATR-FTIR studies for the adsorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid on hematite nanoparticles a...

  4. Investigation of the temperature dependence of water adsorption on silica-based stationary phases in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Bartó, Endre; Felinger, Attila; Jandera, Pavel

    2017-03-17

    In the present work, the adsorption of water was investigated in aqueous normal-phase liquid chromatography on Cogent Silica C and Cogent Phenyl hydride stationary phases at different temperatures by frontal analysis - using coulometric Karl Fischer titration - to compare the temperature dependence of adsorption of water from aqueous acetonitrile. The Cogent Silica-C and Cogent Phenyl Hydride columns have a silicon hydride surface (silica hydride) with less than 2% free silanol group; therefore, they do not have a strong association with water. The adsorption behavior of water on the mentioned stationary phases was modeled by Langmuir isotherm. The preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water slightly depends on the temperature. The adsorbed water may fill four to eight percent of the pore volume over the studied temperature range, which approximately corresponds to the equivalent of 0.24-0.68 water layer coverage of the adsorbent surface. The phenyl hydride stationary phase shows decreased water uptake in comparison to the Silica C stationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Adsorption

    Directory of Open Access Journals (Sweden)

    P. Muthukrishnan

    2017-05-01

    Full Text Available Lannea coromandelica leaf extract (LCLE as a corrosion inhibitor in 1 M H2SO4 was investigated by weight loss and electrochemical techniques. Inhibition efficiency of LCLE was found to increase with increasing concentration but decreased with increasing temperature. Polarization measurements revealed that the LCLE acted as a mixed type inhibitor. Nyquist plots showed that on increasing the LCLE concentration, the charge transfer resistance increased and the double layer capacitance decreased. The adsorption of LCLE on mild steel obeyed the Langmuir adsorption isotherm. FT-IR, XRD, SEM and AFM techniques confirmed the adsorption of LCLE on mild steel surface.

  6. Trends in employer-sponsored health insurance coverage for tobacco-dependence treatments.

    Science.gov (United States)

    McMenamin, Sara B; Halpin, Helen A; Shade, Starley B

    2008-10-01

    Nearly 1.8 million smokers in California receive their health insurance benefits through their employer. The extent to which these workers have coverage for tobacco-dependence treatments (TDTs) through their employer-sponsored health care is unknown. This research used the 2000 and 2005 data from the California Employer Health Benefits Surveys to determine coverage for TDTs by private firms. The overall response rates of firms to the survey were 41% and 36%, respectively. The samples used in this analysis are limited to private firms in California that offered employee health benefits in 2000 (n=729) or in 2005 (n=745). This research found that among private firms offering health insurance coverage, there was a significant increase from 2000 to 2005 in the percentage of workers covered for any TDTs (44% to 57%). Rates of coverage for all three forms of TDTs (nicotine replacement therapy, Zyban, counseling) doubled from 11% to 22% over the 5-year time period. Although coverage levels have improved, they still fall short of the recommendations made in the U.S. Public Health Service guidelines as well as in the Healthy People 2010 objectives. Given the effectiveness, cost effectiveness, public demand for coverage, and relatively low cost of covering TDTs--estimated to be $3-$6 per member per year--it is difficult to understand why such coverage is not more widely available in California.

  7. Impact of coverage-dependent marginal costs on optimal HPV vaccination strategies

    Directory of Open Access Journals (Sweden)

    Marc D. Ryser

    2015-06-01

    Full Text Available The effectiveness of vaccinating males against the human papillomavirus (HPV remains a controversial subject. Many existing studies conclude that increasing female coverage is more effective than diverting resources into male vaccination. Recently, several empirical studies on HPV immunization have been published, providing evidence of the fact that marginal vaccination costs increase with coverage. In this study, we use a stochastic agent-based modeling framework to revisit the male vaccination debate in light of these new findings. Within this framework, we assess the impact of coverage-dependent marginal costs of vaccine distribution on optimal immunization strategies against HPV. Focusing on the two scenarios of ongoing and new vaccination programs, we analyze different resource allocation policies and their effects on overall disease burden. Our results suggest that if the costs associated with vaccinating males are relatively close to those associated with vaccinating females, then coverage-dependent, increasing marginal costs may favor vaccination strategies that entail immunization of both genders. In particular, this study emphasizes the necessity for further empirical research on the nature of coverage-dependent vaccination costs.

  8. Surface plasmon peak intensity dependence on the oxygen coverage at metal surfaces

    NARCIS (Netherlands)

    Voskoboinikov, A.; Voskoboinikov, A.; Nakhodkin, N.; Kryn'ko, Y.; Kulik, S.; Melnik, P.; Sheka, D.

    1994-01-01

    The dependence of the surface plasmon peak intensity on a submonolayer coverage of oxygen in the reflection electron energy loss spectra has been investigated for non-monocrystalline aluminium, magnesium, and indium surfaces. It will be shown that the decrease of the surface plasmon peaks can be

  9. Modeling the state dependent impulse control for computer virus propagation under media coverage

    Science.gov (United States)

    Liang, Xiyin; Pei, Yongzhen; Lv, Yunfei

    2018-02-01

    A state dependent impulsive control model is proposed to model the spread of computer virus incorporating media coverage. By the successor function, the sufficient conditions for the existence and uniqueness of order-1 periodic solution are presented first. Secondly, for two classes of periodic solutions, the geometric property of successor function and the analogue of the Poincaré criterion are employed to obtain the stability results. These results show that the number of the infective computers is under the threshold all the time. Finally, the theoretic and numerical analysis show that media coverage can delay the spread of computer virus.

  10. SCHIP's impact on dependent coverage in the small-group health insurance market.

    Science.gov (United States)

    Seiber, Eric E; Florence, Curtis S

    2010-02-01

    To estimate the impact of State Children's Health Insurance Program (SCHIP) expansions on public and private coverage of dependents at small firms compared with large firms. 1996-2007 Annual Demographic Survey of the Current Population Survey (CPS). This study estimates a two-stage least squares (2SLS) model for four insurance outcomes that instruments for SCHIP and Medicaid eligibility. Separate models are estimated for small group markets (firms with fewer than 25 employees), small businesses (firms under 500 employees), and large firms (firms 500 employees and above). We extracted data from the 1996-2007 CPS for children in households with at least one worker. The SCHIP expansions decreased the percentage of uninsured dependents in the small group market by 7.6 percentage points with negligible crowd-out in the small group and no significant effect on private coverage across the 11-year-period. The SCHIP expansions have increased coverage for households in the small group market with no significant crowd-out of private coverage. In contrast, the estimates for large firms are consistent with the substantial crowd-out observed in the literature.

  11. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling.

    Science.gov (United States)

    Weng, Liping; Vega, Flora Alonso; Van Riemsdijk, Willem H

    2011-10-01

    The pH dependency of soluble phosphate in soil was measured for six agricultural soils over a pH range of 3-10. A mechanistic model, the LCD (ligand charge distribution) model, was used to simulate this change, which considers phosphate adsorption to metal (hydr)oxides in soils under the influence of natural organic matter (NOM) and polyvalent cations (Ca(2+), Al(3+), and Fe(3+)). For all soils except one, the description in the normal pH range 5-8 is good. For some soils at more extreme pH values (for low P-loading soils at low pH and for high P-loading soils at high pH), the model over predicts soluble P. The calculation shows that adsorption is the major mechanism controlling phosphate solubility in soils, except at high pH in high P-loading soils where precipitation of calcium phosphate may take place. NOM and polyvalent cations have a very strong effect on the concentration level of P. The pattern of pH dependency of soluble P in soils differs greatly from the pH effects on phosphate adsorption to synthetic metal (hydr)oxides in a monocomponent system. According to the LCD model, the pH dependency in soil is mainly caused by the synergistic effects of Ca(2+) adsorption to oxides. Adsorption of Al(3+) to NOM adsorbed plays an important role only at a pH < 4.5. Presence of NOM coating strongly competes with phosphate for the adsorption and is an important factor to consider in modeling phosphate adsorption in natural samples.

  12. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  13. "Aging Out" of Dependent Coverage and the Effects on US Labor Market and Health Insurance Choices.

    Science.gov (United States)

    Dahlen, Heather M

    2015-11-01

    I examined how labor market and health insurance outcomes were affected by the loss of dependent coverage eligibility under the Patient Protection and Affordable Care Act (ACA). I used National Health Interview Survey (NHIS) data and regression discontinuity models to measure the percentage-point change in labor market and health insurance outcomes at age 26 years. My sample was restricted to unmarried individuals aged 24 to 28 years and to a period of time before the ACA's individual mandate (2011-2013). I ran models separately for men and women to determine if there were differences based on gender. Aging out of this provision increased employment among men, employer-sponsored health insurance offers for women, and reports that health insurance coverage was worse than it was 1 year previously (overall and for young women). Uninsured rates did not increase at age 26 years, but there was an increase in the purchase of non-group health coverage, indicating interest in remaining insured after age 26 years. Many young adults will turn to state and federal health insurance marketplaces for information about health coverage. Because young adults (aged 18-29 years) regularly use social media sites, these sites could be used to advertise insurance to individuals reaching their 26th birthdays.

  14. Solvent-dependent critical properties of polymer adsorption

    Science.gov (United States)

    Plascak, João A.; Martins, Paulo H. L.; Bachmann, Michael

    2017-05-01

    Advanced chain-growth computer simulation methodologies have been employed for a systematic statistical analysis of the critical behavior of a polymer adsorbing at a substrate. We use finite-size scaling techniques to investigate the solvent-quality dependence of critical exponents, critical temperature, and the structure of the phase diagram. Our study covers all solvent effects from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer structures. The results significantly benefit from taking into account corrections to scaling.

  15. Do more health insurance options lead to higher wages? Evidence from states extending dependent coverage.

    Science.gov (United States)

    Dillender, Marcus

    2014-07-01

    Little is known about how health insurance affects labor market decisions for young adults. This is despite the fact that expanding coverage for people in their early 20s is an important component of the Affordable Care Act. This paper studies how having an outside source of health insurance affects wages by using variation in health insurance access that comes from states extending dependent coverage to young adults. Using American Community Survey and Census data, I find evidence that extending health insurance to young adults raises their wages. The increases in wages can be explained by increases in human capital and the increased flexibility in the labor market that comes from people no longer having to rely on their own employers for health insurance. The estimates from this paper suggest the Affordable Care Act will lead to wage increases for young adults. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Adsorption of vitamin K-dependent proteins to live cell membranes measured under flow conditions.

    Science.gov (United States)

    McGee, M P; Teuschler, H

    1999-07-01

    Mechanisms mediating initial adsorption of coagulation proteins to live cells were investigated. Adsorption kinetics were examined under varying flow conditions using tracer-dilution techniques in perfused spherical monolayers of cells expressing tissue factor. At biologically relevant time and concentration ranges, rates exceeded by 2-12 fold the theoretical maximum calculated for steady-state diffusion. Rates were correlated with aqueous-phase flux of reactants and were found to be largely independent of the density of reactive sites on the membrane. Average adsorption rate of factor VIIa at 4 etaM and flow velocity of 0.8 etam s(-1) was 5 x 10(7) s(-1) cm(-2). Adsorption rates of homologous coagulation factors IX and X under similar conditions were 5 and 9 x 10(7) s(-1)cm(-2). Results indicate that flow can effectively increase the rate of coagulation factor adsorption to the membrane of live cells. They also imply that factors affecting blood flow velocity and vessel permeability influence the rate of membrane-dependent coagulation reactions.

  17. Dependence of Plasmonic Properties of Silver Island Films on Nanoparticle Size and Substrate Coverage

    Directory of Open Access Journals (Sweden)

    M. G. Sreenivasan

    2013-01-01

    Full Text Available Localized surface plasmon resonance displayed by metal nanoparticles has been studied in silver island films prepared by the simple technique of vacuum evaporation, which is one of the options that is easily adaptable for large area and low cost applications. Silver island films with varying island sizes and areal coverages are prepared by depositing silver films with varying thicknesses followed by annealing. The optical properties of the samples have been explained in terms of dependence of scattering and absorption on the metal island size, interparticle interaction and matrix effects, and the wavelength range over which the plasmonic effects are present.

  18. Competitive adsorption equilibrium model with continuous temperature dependent parameters for naringenin enantiomers on Chiralpak AD column.

    Science.gov (United States)

    Xu, Jin; Jiang, Xiaoxiao; Guo, Jinghua; Chen, Yongtao; Yu, Weifang

    2015-11-27

    Determination of competitive adsorption equilibrium model with continuous temperature dependent parameters is important for the design and optimization of a chromatographic separation process operated under non-isothermal conditions. In this study, linear pulse experiments were first carried to determine the parameters of transport-dispersive model and their temperature dependences in the range of 283–313 K. Overloaded band profiles of naringenin enantiomers on a Chiralpak AD column were acquired under various temperatures. Three of them were first separately fitted using Langmuir, linear-Langmuir and bi-Langmuir isotherm models substituted into the transport-dispersive column model. The comparison showed that bi-Langmuir model captures more details of the experimental results. This model was then extended with three extra parameters accounting for adsorption heat effects and used to simultaneously fit the band profiles at three temperatures.

  19. TiO(2) crystal facet-dependent antimony adsorption and photocatalytic oxidation.

    Science.gov (United States)

    Song, Jiaying; Yan, Li; Duan, Jinming; Jing, Chuanyong

    2017-06-15

    Anatase TiO 2 crystal facets are garnering increasing attention due to their unique surface property. However, no specific linear relationship had been derived between the facet exposed on TiO 2 and the surface adsorption capacity as well as photocatalytic performance. This study systematically explored the facet effects on antimony (Sb) adsorption and photocatalytic oxidation using high-index {201} and low-index {101}, {001}, and {100} TiO 2 . The results suggest that high-index {201} TiO 2 exhibits the best Sb(III) adsorption and photocatalytic activity compared to the low-index TiO 2 . Both the Sb(III) adsorption density and the amount of OH and O 2 - generated in solution were correlated to the magnitude of surface energy on TiO 2 facets. Photocatalytically generated OH and O 2 - were responsible for Sb(III) photooxidation as evidenced by radical-trapping experiments. The great contribution of OH was observed only on {201}, not on low-index TiO 2 . This phenomenon was found to be attributable to the high surface energy on {201}, which enables the generation of a large amount of photogeneration OH to compensate for the fast rate of OH dissipation. Therefore, the predominant participation of OH in Sb(III) photooxidation was only possible on high-index {201} TiO 2 , which resulted in an enhanced photocatalytic rate. On the other hand, O 2 - dominated the Sb(III) photocatalytic oxidation on low-index TiO 2 . The intrinsic facet-dependent adsorption and photocatalytic mechanism obtained from this study would be useful for developing TiO 2 -based environmental technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Theoretical investigation of lithium adsorption, diffusion and coverage on MX2 (M = Mo, W; X = O, S, Se, Te) monolayers

    Science.gov (United States)

    Ersan, F.; Ozaydin, H. D.; Gökoğlu, G.; Aktürk, E.

    2017-12-01

    It is important to improve the high-efficient anode materials for Li batteries, which require the large capacity, high stability and mobility. In this work, we present the adsorption and diffusion properties of lithium atom on MX2 (M = Mo, W; X = O, S, Se, Te) transition metal dichalcogenide structures using first principles calculations within density functional theory. All the MX2 systems considered are semiconductor in bare state with band gaps between 0.93 eV (MoO2) and 1.79 eV (WS2). They turn into metal upon single Li adsorption. Li atom is adsorbed on MoO2 and WO2 rather stronger than other systems. The energy barrier for diffusion of single Li on MX2 varies between 0.15 eV and 0.28 eV which are lower or comparable to that of graphene or silicene. Two Li atoms are preferably adsorbed on MX2 monolayer symmetrically at opposite sides with high adsorption energy. The increasing number of Li atoms does not remarkably affect the adsorption energy per Li atom. This can be attributed to that Li atoms do not accumulate on certain regions of the surface. The systems under investigation provide insights into exploring electronic properties which are rather adequate for possible applications in Li-ion batteries.

  1. Adsorption of Ten Microcystin Congeners to Common Laboratory-Ware Is Solvent and Surface Dependent

    Directory of Open Access Journals (Sweden)

    Stefan Altaner

    2017-04-01

    Full Text Available Cyanobacteria can produce heptapetides called microcystins (MC which are harmful to humans due to their ability to inhibit cellular protein phosphatases. Quantitation of these toxins can be hampered by their adsorption to common laboratory-ware during sample processing and analysis. Because of their structural diversity (>100 congeners and different physico-chemical properties, they vary in their adsorption to surfaces. In this study, the adsorption of ten different MC congeners (encompassing non-arginated to doubly-arginated congeners to common laboratory-ware was assessed using different solvent combinations. Sample handling steps were mimicked with glass and polypropylene pipettes and vials with increasing methanol concentrations at two pH levels, before analysis by liquid chromatography-tandem mass spectrometry. We demonstrated that MC adsorb to polypropylene surfaces irrespective of pH. After eight successive pipet actions using polypropylene tips ca. 20% of the MC were lost to the surface material, which increased to 25%–40% when solutions were acidified. The observed loss was alleviated by changing the methanol (MeOH concentration in the final solvent. The required MeOH concentration varied depending on which congener was present. Microcystins only adsorbed to glass pipettes (loss up to 30% after eight pipet actions when in acidified aqueous solutions. The latter appeared largely dependent on the presence of ionizable groups, such as arginine residues.

  2. Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell.

    Science.gov (United States)

    Roth, Christina; Benker, Nathalie; Buhrmester, Thorsten; Mazurek, Marian; Loster, Matthias; Fuess, Hartmut; Koningsberger, Diederik C; Ramaker, David E

    2005-10-26

    A special in situ PEM fuel cell has been developed to allow X-ray absorption measurements during real fuel cell operation. Variations in both the coverage of O[H] (O[H] indicates O and/or OH) and CO (applying a novel Deltamu(L3) = mu(L3)(V) - mu(L3)(ref) difference technique), as well as in the geometric (EXAFS) and electronic (atomic XAFS) structure of the anode catalyst, are monitored as a function of the current. In hydrogen, the N(Pt)(-)(Ru) coordination number increases much slower than the N(Pt)(-)(Pt) with increasing current, indicating a more reluctant reduction of the surface Pt atoms near the hydrous Ru oxide islands. In methanol, both O[H] and CO adsorption are separately visible with the Deltamu technique and reveal a drop in CO and an increase in OH coverage in the range of 65-90 mA/cm(2). With increasing OH coverage, the Pt-O coordination number and the AXAFS intensity increase. The data allow the direct observation of the preignition and ignition regions for OH formation and CO oxidation, during the methanol fuel cell operation. It can be concluded that both a bifunctional mechanism and an electronic ligand effect are active in CO oxidation from a PtRu surface in a PEM fuel cell.

  3. Competitive protein adsorption on polysaccharide and hyaluronate modified surfaces.

    Science.gov (United States)

    Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J; Eckmann, David M

    2011-05-01

    Adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) was measured on six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and Streptococcus zooepidemicus. Film thickness and surface morphology depended on the HA molecular weight and concentration. BSA coverage was enhanced on surfaces in competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of HA utilized. With changing bulk protein concentration from 20 to 40 μg ml(-1) for each species, Fg coverage on silicon increased by 4x, whereas both BSA and Fg adsorption on dextran and HA were far less dependent on protein bulk concentration.

  4. Methanol Adsorption on Graphene

    Directory of Open Access Journals (Sweden)

    Elsebeth Schröder

    2013-01-01

    bonds like the covalent and hydrogen bonds. The adsorption of a single methanol molecule and small methanol clusters on graphene is studied at various coverages. Adsorption in clusters or at high coverages (less than a monolayer is found to be preferable, with the methanol C-O axis approximately parallel to the plane of graphene. The adsorption energies calculated with vdW-DF are compared with previous DFT-D and MP2-based calculations for single methanol adsorption on flakes of graphene (polycyclic aromatic hydrocarbons. For the high coverage adsorption energies, we also find reasonably good agreement with previous desorption measurements.

  5. Coverage-dependent disorder-to-order phase transformation of a uracil derivative on Ag(111)

    NARCIS (Netherlands)

    Enache, Mihaela; Maggini, Laura; Llanes-Pallas, Anna; Jung, Thomas A.; Bonifazi, Davide; Stöhr, Meike

    2014-01-01

    The self-organization of an angular bis(uracil-ethynyl) benzene derivative is investigated on Ag(111) by means of scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. It is found - starting at low submonolayer coverage - that upon increasing the molecular coverage a

  6. Quantum state-resolved CH4 dissociation on Pt(111): coverage dependent barrier heights from experiment and density functional theory.

    Science.gov (United States)

    Ueta, Hirokazu; Chen, Li; Beck, Rainer D; Colón-Dìaz, Inara; Jackson, Bret

    2013-12-21

    The dissociative chemisorption of CH4 on Pt(111) was studied using quantum state-resolved methods at a surface temperature (T(s)) of 150 K where the nascent reaction products CH3(ads) and H(ads) are stable and accumulate on the surface. Most previous experimental studies of methane chemisorption on transition metal surfaces report only the initial sticking coefficients S0 on a clean surface. Reflection absorption infrared spectroscopy (RAIRS), used here for state resolved reactivity measurements, enables us to monitor the CH3(ads) uptake during molecular beam deposition as a function of incident translational energy (E(t)) and vibrational state (ν3 anti-symmetric C-H stretch of CH4) to obtain the initial sticking probability S0, the coverage dependence of the sticking probability S(θ) and the CH3(ads) saturation coverage θ(sat). We observe that both S0 and θ(sat) increase with increasing E(t) as well as upon ν3 excitation of the incident CH4 which indicates a coverage dependent dissociation barrier height for the dissociation of CH4 on Pt(111) at low surface temperature. This interpretation is supported by density functional calculations of barrier heights for dissociation, using large supercells containing one or more H and/or methyl adsorbates. We find a significant increase in the activation energies with coverage. These energies are used to construct simple models that reasonably reproduce the uptake data and the observed saturation coverages.

  7. Moderate Effects of Same-Sex Legislation on Dependent Employer-Based Insurance Coverage Among Sexual Minorities.

    Science.gov (United States)

    Tran, Linda Diem

    2016-12-01

    A difference-in-difference approach was used to compare the effects of same-sex domestic partnership, civil union, and marriage policies on same- and different-sex partners who could have benefitted from their partners' employer-based insurance (EBI) coverage. Same-sex partners had 78% lower odds (Marginal Effect = -21%) of having EBI compared with different-sex partners, adjusting for socioeconomic and health-related factors. Same-sex partners living in states that recognized same-sex marriage or domestic partnership had 89% greater odds of having EBI compared with those in states that did not recognize same-sex unions (ME = 5%). The impact of same-sex legislation on increasing take-up of dependent EBI coverage among lesbians, gay men, and bisexual individuals was modest, and domestic partnership legislation was equally as effective as same-sex marriage in increasing same-sex partner EBI coverage. Extending dependent EBI coverage to same-sex partners can mitigate gaps in coverage for a segment of the lesbians, gay men, and bisexual population but will not eliminate them. © The Author(s) 2016.

  8. Curvature-dependent adsorption of water inside and outside armchair carbon nanotubes

    CERN Document Server

    Lei, Shulai; Schmidt, Burkhard; Paulus, Beate

    2016-01-01

    The curvature dependence of the physisorption properties of a water molecule inside and outside an armchair carbon nanotube (CNTs) is investigated by an incremental density-fitting local coupled cluster treatment with single and double excitations and perturbative triples (DF-LCCSD(T)) study. Our results show that a water molecule outside and inside (n, n) CNTs (n=4, 5, 6, 7, 8, 10) is stabilized by electron correlation. The adsorption energy of water inside CNTs decreases quickly with the decrease of curvature (increase of radius) and the configuration with the oxygen pointing towards the CNT wall is the most stable one. However, when the water molecule is adsorbed outside the CNT, the adsorption energy varies only slightly with the curvature and the configuration with hydrogens pointing towards the CNT wall is the most stable one. We also use the DF-LCCSD(T) results to parametrize Lennard-Jones (LJ) force fields for the interaction of water both with the inner and outer sides of CNTs and with graphene repre...

  9. Concentration-dependent protein adsorption at the nano-bio interfaces of polymeric nanoparticles and serum proteins.

    Science.gov (United States)

    Zhang, Tian-Xu; Zhu, Guan-Yin; Lu, Bo-Yao; Zhang, Chao-Liang; Peng, Qiang

    2017-11-01

    A comprehensive understanding of nanoparticle (NP)-protein interaction (protein corona formation) is required. So far, many factors influencing this interaction have been investigated, like size and ζ potential. However, NPs exposure concentration has always been ignored. Herein, we aim to disclose the correlation of NPs exposure concentration with protein adsorption. Four polymeric NPs systems possessing similar sizes (230 ± 20 nm) but varied ζ potentials (-30 ∼ +40 mv) were prepared. Physicochemical properties and protein adsorption upon NP-protein interaction were characterized. Protein adsorption capacity and adsorbed protein types were NPs concentration-dependent. Considering the critical impacts of protein adsorption on NPs delivery, our work could be an urgent warning about the possible risks of dosage adjustment of nanoformulations.

  10. Medicare prescription drug plan coverage of pharmacotherapies for opioid and alcohol dependence in WA.

    Science.gov (United States)

    Kennedy, Jae; Dipzinski, Aaron; Roll, John; Coyne, Joseph; Blodgett, Elizabeth

    2011-04-01

    Pharmacotherapeutic treatments for drug addiction offer new options, but only if they are affordable for patients. The objective of this study is to assess the current availability and cost of five common antiaddiction medications in the largest federal medication insurance program in the US, Medicare Part D. In early 2010, we collected coverage and cost data from 41 Medicare Part D prescription drug plans (PDPs) and 45 Medicare Advantage Plans (MAPs) in Washington State. The great majority of Medicare plans (82-100%) covered common pharmacotherapeutic treatments for drug addiction. These Medicare plans typically placed patent protected medications on their highest formulary tiers, leading to relatively high patient co-payments during the initial Part D coverage period. For example, median monthly co-payments for buprenorphine (Suboxone®) were about $46 for PDPs, and about $56 for MAPs. While Medicare prescription plans usually cover pharmacotherapeutic treatments for drug addiction, high co-payments can limit access. For example, beneficiaries without supplemental coverage who use Vivitrol® would exceed their initial coverage cap in 7-8 months, reaching the "doughnut hole" in their Part D coverage and becoming responsible for the full cost of the medication (over $900 per month). The 2010 Patient Protection and Affordable Care Act will gradually eliminate this coverage gap, and loss of patent protection for other antiaddiction medications (Suboxone® and Campral®) should also drive down patient costs, improving access and compliance. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Origin of Coverage Dependence in Photoreactivity of Carboxylate on TiO2(110): Hindering by Charged Coadsorbed Hydroxyls

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhitao; Henderson, Michael A.; Lyubinetsky, Igor

    2015-09-30

    The influence of reactant coverage on photochemical activity was explored using scanning tunneling microscopy (STM) and ultraviolet photoelectron spectroscopy (UPS). We observed diminished reactivity of carboxylate species (trimethyl acetate, TMA) on TiO2(110) as a function of increasing coverage. This effect was not linked to intermolecular interactions of TMA but to the accumulation of the coadsorbed bridging hydroxyls (HOb) deposited during (thermal) dissociative adsorption of the parent, trimethylacetic acid (TMAA). Confirmation of the hindering influence of HOb groups was obtained by the observation that HOb species originated from H2O dissociation at O-vacancy sites have a similar hindering effect on TMA photochemistry. Though HOb’s are photoinactive on TiO2(110) under ultrahigh vacuum conditions, UPS results show that these sites trap photoexcited electrons, which in turn likely (electrostatically) attract and neutralize photoexcited holes, thus suppressing the hole-mediated photoreactivity of TMA. This negative influence of surface hydroxyls on hole-mediated photochemistry is likely a major factor in other anaerobic photochemical processes on reducible oxide surfaces.

  12. EFFECT OF LONGITUDE-DEPENDENT CLOUD COVERAGE ON EXOPLANET VISIBLE WAVELENGTH REFLECTED-LIGHT PHASE CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Matthew W.; Lewis, Nikole K.; Cahoy, Kerri [Department of Earth, Atmospheric, and Planetary Sciences. Massachusetts Institute of Technology (MIT) Cambridge, MA (United States); Marley, Mark [NASA Ames Research Center, Moffett Field, CA (United States); Morley, Caroline; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-05-10

    We use a planetary albedo model to investigate variations in visible wavelength phase curves of exoplanets. Thermal and cloud properties for these exoplanets are derived using one-dimensional radiative-convective and cloud simulations. The presence of clouds on these exoplanets significantly alters their planetary albedo spectra. We confirm that non-uniform cloud coverage on the dayside of tidally locked exoplanets will manifest as changes to the magnitude and shift of the phase curve. In this work, we first investigate a test case of our model using a Jupiter-like planet, at temperatures consistent to 2.0 AU insolation from a solar type star, to consider the effect of H{sub 2}O clouds. We then extend our application of the model to the exoplanet Kepler-7b and consider the effect of varying cloud species, sedimentation efficiency, particle size, and cloud altitude. We show that, depending on the observational filter, the largest possible shift of the phase curve maximum will be ∼2°–10° for a Jupiter-like planet, and up to ∼30° (∼0.08 in fractional orbital phase) for hot-Jupiter exoplanets at visible wavelengths as a function of dayside cloud distribution with a uniformly averaged thermal profile. The models presented in this work can be adapted for a variety of planetary cases at visible wavelengths to include variations in planet–star separation, gravity, metallicity, and source-observer geometry. Finally, we tailor our model for comparison with, and confirmation of, the recent optical phase-curve observations of Kepler-7b with the Kepler space telescope. The average planetary albedo can vary between 0.1 and 0.6 for the 1300 cloud scenarios that were compared to the observations. Many of these cases cannot produce a high enough albedo to match the observations. We observe that smaller particle size and increasing cloud altitude have a strong effect on increasing albedo. In particular, we show that a set of models where Kepler-7b has roughly half of

  13. Methanol Adsorption on Graphene

    OpenAIRE

    Elsebeth Schröder

    2013-01-01

    The adsorption energies and orientation of methanol on graphene are determined from first-principles density functional calculations. We employ the well-tested vdW-DF method that seamlessly includes dispersion interactions with all of the more close-ranged interactions that result in bonds like the covalent and hydrogen bonds. The adsorption of a single methanol molecule and small methanol clusters on graphene is studied at various coverages. Adsorption in clusters or at high coverages (le...

  14. “Aging Out” of Dependent Coverage and the Effects on US Labor Market and Health Insurance Choices

    Science.gov (United States)

    2015-01-01

    Objectives. I examined how labor market and health insurance outcomes were affected by the loss of dependent coverage eligibility under the Patient Protection and Affordable Care Act (ACA). Methods. I used National Health Interview Survey (NHIS) data and regression discontinuity models to measure the percentage-point change in labor market and health insurance outcomes at age 26 years. My sample was restricted to unmarried individuals aged 24 to 28 years and to a period of time before the ACA’s individual mandate (2011–2013). I ran models separately for men and women to determine if there were differences based on gender. Results. Aging out of this provision increased employment among men, employer-sponsored health insurance offers for women, and reports that health insurance coverage was worse than it was 1 year previously (overall and for young women). Uninsured rates did not increase at age 26 years, but there was an increase in the purchase of non–group health coverage, indicating interest in remaining insured after age 26 years. Conclusions. Many young adults will turn to state and federal health insurance marketplaces for information about health coverage. Because young adults (aged 18–29 years) regularly use social media sites, these sites could be used to advertise insurance to individuals reaching their 26th birthdays. PMID:26447916

  15. Thermodynamics of the adsorption of organic cations on kaolinite : temperature dependence and calorimetry

    NARCIS (Netherlands)

    Mehrian Isfahany, T.

    1992-01-01

    The present work is aimed at understanding the interactions involved in the adsorption of cationic surfactants on heterogeneous surfaces. The relevance of the study derives from the environmental aspects of the adsorption of small organic molecules onto soil constituents. This thesis

  16. Coverage dependent interaction of N2O and O2 with Si(001)2x1 as monitored by the O KLL Auger intensity ratio

    NARCIS (Netherlands)

    Keim, Enrico G.; Wormeester, Herbert

    1992-01-01

    The adsorption behavior of O2 on Si(001)2×1 at 100 K sample temperature has been studied by measuring the intensity ratio of the KL 1 L 1 and KL 2,3 L 2,3 O Auger transitions α as a function of the fractional oxygen coverage in an attempt to solve a longstanding discussion whether this reaction also

  17. Functional coverages

    OpenAIRE

    Donchyts, G.; Baart, F.; Jagers, H.R.A.; Van Dam, A

    2011-01-01

    A new Application Programming Interface (API) is presented which simplifies working with geospatial coverages as well as many other data structures of a multi-dimensional nature. The main idea extends the Common Data Model (CDM) developed at the University Corporation for Atmospheric Research (UCAR). The proposed function object model uses the mathematical definition of a vector-valued function. A geospatial coverage will be expressed as a vector-valued function whose dependent variables (the...

  18. Medicaid coverage for tobacco dependence treatments in Massachusetts and associated decreases in smoking prevalence.

    Directory of Open Access Journals (Sweden)

    Thomas Land

    Full Text Available BACKGROUND: Approximately 50% of smokers die prematurely from tobacco-related diseases. In July 2006, the Massachusetts health care reform law mandated tobacco cessation coverage for the Massachusetts Medicaid population. The new benefit included behavioral counseling and all medications approved for tobacco cessation treatment by the U.S. Food and Drug Administration (FDA. Between July 1, 2006 and December 31, 2008, a total of 70,140 unique Massachusetts Medicaid subscribers used the newly available benefit, which is approximately 37% of all Massachusetts Medicaid smokers. Given the high utilization rate, the objective of this study is to determine if smoking prevalence decreased significantly after the initiation of tobacco cessation coverage. METHODS AND FINDINGS: Smoking prevalence was evaluated pre- to post-benefit using 1999 through 2008 data from the Massachusetts Behavioral Risk Factor Survey (BRFSS. The crude smoking rate decreased from 38.3% (95% C.I. 33.6%-42.9% in the pre-benefit period compared to 28.3% (95% C.I.: 24.0%-32.7% in the post-benefit period, representing a decline of 26 percent. A demographically adjusted smoking rate showed a similar decrease in the post-benefit period. Trend analyses reflected prevalence decreases that accrued over time. Specifically, a joinpoint analysis of smoking prevalence among Massachusetts Medicaid benefit-eligible members (age 18-64 from 1999 through 2008 found a decreasing trend that was coincident with the implementation of the benefit. Finally, a logistic regression that controlled for demographic factors also showed that the trend in smoking decreased significantly from July 1, 2006 to December 31, 2008. CONCLUSION: These findings suggest that a tobacco cessation benefit that includes coverage for medications and behavioral treatments, has few barriers to access, and involves broad promotion can significantly reduce smoking prevalence.

  19. Temperature Dependence of Uranium and Vanadium Adsorption on Amidoxime-Based Adsorbents in Natural Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Li-Jung [Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim WA 98382 USA; Gill, Gary A. [Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim WA 98382 USA; Tsouris, Costas [Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Rao, Linfeng [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Pan, Horng-Bin [Department of Chemistry, University of Idaho, Moscow ID 83844 USA; Wai, Chien M. [Department of Chemistry, University of Idaho, Moscow ID 83844 USA; Janke, Christopher J. [Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Strivens, Jonathan E. [Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim WA 98382 USA; Wood, Jordana R. [Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim WA 98382 USA; Schlafer, Nicholas [Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim WA 98382 USA; D' Alessandro, Evan K. [Rosensteil School of Marine and Atmospheric Chemistry, University of Miami, Miami FL 33149 USA

    2018-01-16

    The apparent enthalpy and entropy of the complexation of uranium (VI) and vanadium (V) with amidoxime ligands grafted onto polyethylene fiber was determined using time series measurements of adsorption capacities in natural seawater at three different temperatures. The complexation of uranium was highly endothermic, while the complexation of vanadium showed minimal temperature sensitivity. Amidoxime-based polymeric adsorbents exhibit significantly increased uranium adsorption capacities and selectivity in warmer waters.

  20. Expanding Lipidome Coverage Using LC-MS/MS Data-Dependent Acquisition with Automated Exclusion List Generation

    Science.gov (United States)

    Koelmel, Jeremy P.; Kroeger, Nicholas M.; Gill, Emily L.; Ulmer, Candice Z.; Bowden, John A.; Patterson, Rainey E.; Yost, Richard A.; Garrett, Timothy J.

    2017-05-01

    Untargeted omics analyses aim to comprehensively characterize biomolecules within a biological system. Changes in the presence or quantity of these biomolecules can indicate important biological perturbations, such as those caused by disease. With current technological advancements, the entire genome can now be sequenced; however, in the burgeoning fields of lipidomics, only a subset of lipids can be identified. The recent emergence of high resolution tandem mass spectrometry (HR-MS/MS), in combination with ultra-high performance liquid chromatography, has resulted in an increased coverage of the lipidome. Nevertheless, identifications from MS/MS are generally limited by the number of precursors that can be selected for fragmentation during chromatographic elution. Therefore, we developed the software IE-Omics to automate iterative exclusion (IE), where selected precursors using data-dependent topN analyses are excluded in sequential injections. In each sequential injection, unique precursors are fragmented until HR-MS/MS spectra of all ions above a user-defined intensity threshold are acquired. IE-Omics was applied to lipidomic analyses in Red Cross plasma and substantia nigra tissue. Coverage of the lipidome was drastically improved using IE. When applying IE-Omics to Red Cross plasma and substantia nigra lipid extracts in positive ion mode, 69% and 40% more molecular identifications were obtained, respectively. In addition, applying IE-Omics to a lipidomics workflow increased the coverage of trace species, including odd-chained and short-chained diacylglycerides and oxidized lipid species. By increasing the coverage of the lipidome, applying IE to a lipidomics workflow increases the probability of finding biomarkers and provides additional information for determining etiology of disease.

  1. Investigating the coverage dependent behaviour of CO on Gd/Pt(111)

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Hansen, Martin Hangaard; Rossmeisl, Jan

    2016-01-01

    Gd modified Pt(111) single crystals have been prepared in an ultra high vacuum (UHV). By vacuum deposition of ∼200 Å Gd on a sample heated to 800 °C, a Pt5Gd alloy terminated by a single atomic layer of Pt was formed. Subsequently the surfaces were characterized using low energy electron diffract......Gd modified Pt(111) single crystals have been prepared in an ultra high vacuum (UHV). By vacuum deposition of ∼200 Å Gd on a sample heated to 800 °C, a Pt5Gd alloy terminated by a single atomic layer of Pt was formed. Subsequently the surfaces were characterized using low energy electron...... adsorbate interactions, caused by subtle reconstructions occurring at coverages above 1/3 ML CO, whereas the overall temperature shift relative to pure Pt(111) comes from weaker CO binding due to the contraction of the Gd/Pt(111) surface....

  2. Oxygen adsorption on beta-cristobalite polymorph: ab initio modeling and semiclassical time-dependent dynamics.

    Science.gov (United States)

    Rutigliano, M; Zazza, C; Sanna, N; Pieretti, A; Mancini, G; Barone, V; Cacciatore, M

    2009-12-31

    The adsorption dynamics of atomic oxygen on a model beta-cristobalite silica surface has been studied by combining ab initio electronic structure calculations with a molecular dynamics semiclassical approach. We have evaluated the interaction potential of atomic and molecular oxygen interacting with an active Si site of a model beta-cristobalite surface by performing DFT electronic structure calculations. As expected, O is strongly chemisorbed, E(b) = 5.57 eV, whereas molecular oxygen can be weakly adsorbed with a high-energy barrier to the adsorption state of approximately 2 eV. The binding energies calculated for silica clusters of different sizes have revealed the local nature of the O,O(2)-silica interaction. Semiclassical collision dynamic calculations show that O is mainly adsorbed in single-bounce collisions, with a smaller probability for adsorption via a multicollision mechanism. The probability for adsorption/desorption (reflected) collisions at the three impact energies is small but not negligible at the higher energy considered in the trajectory calculations, about P(r) = 0.2 at E(kin) = 0.8 eV. The calculations give evidence of a complex multiphonon excitation-deexcitation mechanism underlying the dynamics of stable adsorption and inelastic reflection collisions.

  3. CONTENT OF NITROGEN (NO3-N IN LEACHATE WATER DEPENDING ON PLANT COVERAGE OF THE SOIL

    Directory of Open Access Journals (Sweden)

    Mateusz Kaczmarski

    2014-10-01

    Full Text Available The aim of the study was to evaluate the impact of plant coverage of the soil on the amount of water moving through the soil profile and the concentration of N-NO3, as well as the volume of load components taken out from the soil. The lysimeters were cover by the following plants: cocksfoot (Dactylis glomerata L. – non-fertilized, cocksfoot (Dactylis glomerata L. and perennial ryegrass (Lolium perenne L. – fertilized with doses 20 kg P, 50 kg K i 120 kg N·ha-1, and red clover (Trifolium pratense L. - fertilized by 20 kg P and 50 kg K·ha-1. The study was conducted in 2009–2011 in Nowosielce, Podkarpackie province. Two sub-periods were distinguished in the vegetation season. The first period included growth of plants in the first regrowth, and the second in the second one. During the experimental period the biggest amount of water moved through the soil profile in the control object, and the least in the object with the red clover. The greatest concentration of NO3-N was found in water seepage in the object with red clover. The largest load of NO3-N was stated in this object as well. It was two times bigger than the load in the control object, by 20% bigger than in the object with perennial ryegrass and by 8% bigger than in the object with fertilized cocksfoot.

  4. Inclusion complex of butachlor with beta-cyclodextrin: characterization, solubility, and speciation-dependent adsorption.

    Science.gov (United States)

    Bian, Haitao; Chen, Jingwen; Cai, Xiyun; Liu, Ping; Liu, Huihui; Qiao, Xianliang; Huang, Liping

    2009-08-26

    Due to soil adsorption, higher amounts of the herbicide butachlor are necessary to achieve its herbicidal activity, hence increasing its environmental risks. In this study, the effects of beta-cyclodextrin (beta-CD) on solubility and soil adsorption of butachlor were investigated. Formation of a 1:1 stoichiometric inclusion complex between them with an apparent stability constant of 443 L mol(-1) was confirmed in the solution. Fourier transform infrared spectroscopy showed that the (N-CO) amide bond and alkyl ether moiety of butachlor molecule could enter into the cavity of beta-CD, but the double-substituted aromatic ring was excluded because it was larger size than the cavity. Significant enhancing dissolution of butachlor in the inclusion complex occurred in comparison to the free herbicide. The adsorption of butachlor on soil was reduced with an increase of beta-CD concentration because of the formation of the inclusion complex with low adsorption potency. Although the sorption distribution coefficient of complexed butachlor (i.e., butachlor/beta-cyclodextrin inclusion complex) (K(d,c) = 6.14) was about 14% of that of the free herbicide (K(d,f) = 44.54), the proportion of the adsorbed amount of complexed butachlor to the total adsorbed amount rose with the increase of beta-CD concentration. Thus, the adsorption of inclusion complex cannot be neglected in the presence of high concentrations cyclodextrins, although its water solubility was much higher than that of the free herbicide. These results indicate that beta-CD may be used as a formation additive to improve the solubility of butachlor, reduce its adsorption on soil, and increase the availability of butachlor for weeds.

  5. Conductance of Sidewall-Functionalized Carbon Nanotubes: Universal Dependence on Adsorption Sites

    DEFF Research Database (Denmark)

    García-Lastra, J.M.; Thygesen, Kristian Sommer; Strange, Mikkel

    2008-01-01

    We use density functional theory to study the effect of molecular adsorbates on the conductance of metallic carbon nanotubes (CNT). The five molecules considered (NO2, NH2, H, COOH, OH) lead to very similar scattering of the electrons. The adsorption of a single molecule suppresses one of the two...

  6. Adsorption of human serum albumin: Dependence on molecular architecture of the oppositely charged surface

    Science.gov (United States)

    Sukhishvili, Svetlana A.; Granick, Steve

    1999-05-01

    We contrast the adsorption of human serum albumin (HSA) onto two solid substrates previously primed with the same polyelectrolyte of net opposite charge to form one of two alternative structures: randomly adsorbed polymer and the "brush" configuration. These structures were formed either by the adsorption of quaternized poly-4-vinylpyridine (QPVP) or by end-grafting QPVP chains of the same chemical makeup and the same molecular weight to surfaces onto which QPVP segments did not adsorb. The adsorption of HSA was quantified by using Fourier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR). The two substrates showed striking differences with regard to HSA adsorption. First, the brush substrate induced lesser perturbations in the secondary structure of the adsorbed HSA, reflecting easier conformational adjustment for longer free segments of polyelectrolyte upon binding with the protein. Second, the penetration of HSA into the brush substrate was kinetically retarded relative to the randomly adsorbed polymer, probably due to both pore size restriction and electrostatic sticking between charged groups of HSA and QPVP molecules. Third, release of HSA from the adsorbed layer, as the ionic strength was increased from a low level up to the high level of 1 M NaCl, was largely inhibited for the brush substrate, but occurred easily and rapidly for the substrate with statistically adsorbed QPVP chains. Finally, even after addition of a strong polymeric adsorption competitor (sodium polystyrene sulfonate), HSA remained trapped within a brush substrate though it desorbed slowly from the preadsorbed QPVP layer. This method to produce irreversible trapping of the protein within a brush substrate without major conformational change may find application in biosensor design.

  7. The Patient Protection and Affordable Care Act dependent coverage expansion: Disparities in impact among young adult oncology patients.

    Science.gov (United States)

    Alvarez, Elysia M; Keegan, Theresa H; Johnston, Emily E; Haile, Robert; Sanders, Lee; Wise, Paul H; Saynina, Olga; Chamberlain, Lisa J

    2018-01-01

    Private health insurance is associated with improved outcomes in patients with cancer. However, to the authors' knowledge, little is known regarding the impact of the Patient Protection and Affordable Care Act Dependent Coverage Expansion (ACA-DCE), which extended private insurance to young adults (to age 26 years) beginning in 2010, on the insurance status of young adults with cancer. The current study was a retrospective, population-based analysis of hospitalized young adult oncology patients (aged 22-30 years) in California during 2006 through 2014 (11,062 patients). Multivariable regression analyses examined factors associated with having private insurance. Results were presented as adjusted odds ratios and 95% confidence intervals. A difference-in-difference analysis examined the influence of the ACA-DCE on insurance coverage by race/ethnicity and federal poverty level. Multivariable regression demonstrated that patients of black and Hispanic race/ethnicity were less likely to have private insurance before and after the ACA-DCE, compared with white patients. Younger age (22-25 years) was associated with having private insurance after implementation of the ACA-DCE (odds ratio, 1.20; 95% confidence interval, 1.06-1.35). In the difference-in-difference analysis, private insurance increased among white patients aged 22 to 25 years who were living in medium-income (2006-2009: 64.6% vs 2011-2014: 69.1%; P = .003) and high-income (80.4% vs 82%; P = .043) zip codes and among Asians aged 22 to 25 years living in high-income zip codes (73.2 vs 85.7%; P = .022). Private insurance decreased for all Hispanic patients aged 22 to 25 years between the 2 time periods. The ACA-DCE provision increased insurance coverage, but not among all patients. Private insurance increased for white and Asian patients in higher income neighborhoods, potentially widening social disparities in private insurance coverage among young adults with cancer. Cancer 2018;124:110-7. © 2017 American

  8. Measurement of the adsorption at solid-liquid interfaces from the pressure dependence of contact angles.

    Science.gov (United States)

    Ward, C A; Wu, Jiyu; Keshavarz, A

    2008-01-10

    Earlier studies have indicated that in an isothermal three-phase system, the liquid-phase pressure at the three-phase line, xL3, may be viewed as the independent variable of the contact angle, theta, and that adsorption at the solid-liquid interface is the mechanism relating them. When the liquid-vapor interface is axi-symmetric, we show that theta can be predicted as a function of xL3 and that by measuring theta(xL3), the amount adsorbed at the solid-liquid interface can be determined. We consider water in differently sized borosilicate glass cylinders. For progressively larger cylinders, xL3 increases with cylinder radius, but when a particularly sized cylinder is rotated about it longitudinal axis, xL3 is decreased. The observed value of theta in each case is found to be in close agreement with that predicted. A Gibbs model of the interphase is used, and the Gibbs adsorption at the solid-liquid interface is found to be negative. As xL3 increases above its value at wetting, the amount adsorbed at the solid-liquid interface becomes progressively more negative. Negative adsorption is shown to mean that the concentration of the fluid component is greater in the bulk liquid than in the interphase and that the difference in concentration increases as xL3 is increased. The data is used to investigate the hypothesis that the curvature of the three-phase line affects theta through line tension, but we find no relation between line tension and theta. There is an apparent relation between the curvature of the liquid-vapor interface, CLV and theta, but this is shown to be because CLV affects xL3.

  9. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo, E-mail: mchiesa@masdar.ac.ae [Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates)

    2014-08-28

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene)

  10. Quantitative analysis of target coverage and germinal center response by a CXCL13 neutralizing antibody in a T-dependent mouse immunization model.

    Science.gov (United States)

    Brodfuehrer, Joanne; Rankin, Andrew; Edmonds, Jason; Keegan, Sean; Andreyeva, Tatyana; Lawrence-Henderson, Rosemary; Ozer, Josef; Gao, Huilan; Bloom, Laird; Boisvert, Angela; Lam, Khetemenee; Lee, Julie; LaBranche, Timothy; Syed, Jameel; Miao, Wenyan; Singh, Pratap

    2014-03-01

    Study the impact of CXCL13 neutralization on germinal center (GC) response in vivo, and build quantitative relationship between target coverage and pharmacological effects at the target tissue. An anti-CXCL13 neutralizing monoclonal antibody was dosed in vivo in a T-dependent mouse immunization (TDI) model. A quantitative site-of-action (SoA) model was developed to integrate antibody PK and total CXCL13 levels in serum and spleen towards estimating target coverage as a function of dose. To aid in the SoA model development, a radio-labeled study using [I(125)] CXCL13 was conducted in mice. Model estimated target coverage was linked to germinal center response using a sigmoidal inhibitory effect model. In vivo studies demonstrated that CXCL13 inhibition led to an architectural change in B-cell follicles, dislocation of GCs and a significant reduction in the GC absolute numbers per square area (GC/mm(2)). The SoA modeling analysis indicated that ~79% coverage in spleen was required to achieve 50% suppression of GC/mm(2). The 3 mg/kg dose with 52% spleen coverage resulted in no PD suppression, whereas 30 mg/kg with 93% coverage achieved close to maximum PD suppression, highlighting the steepness of PD response. This study showcases an application of SoA modeling towards a quantitative understanding of CXCL13 pharmacology.

  11. Doping as a means to probe the potential dependence of dopamine adsorption on carbon-based surfaces: A first-principles study

    Science.gov (United States)

    Aarva, Anja; Laurila, Tomi; Caro, Miguel A.

    2017-06-01

    In this work, we study the adsorption characteristics of dopamine (DA), ascorbic acid (AA), and dopaminequinone (DAox) on carbonaceous electrodes. Our goal is to obtain a better understanding of the adsorption behavior of these analytes in order to promote the development of new carbon-based electrode materials for sensitive and selective detection of dopamine in vivo. Here we employ density functional theory-based simulations to reach a level of detail that cannot be achieved experimentally. To get a broader understanding of carbonaceous surfaces with different morphological characteristics, we compare three materials: graphene, diamond, and amorphous carbon (a-C). Effects of solvation on adsorption characteristics are taken into account via a continuum solvent model. Potential changes that take place during electrochemical measurements, such as cyclic voltammetry, can also alter the adsorption behavior. In this study, we have utilized doping as an indirect method to simulate these changes by shifting the work function of the electrode material. We demonstrate that sp2- and sp3-rich materials, as well as a-C, respond markedly different to doping. Also the adsorption behavior of the molecules studied here differs depending on the surface material and the change in the surface potential. In all cases, adsorption is spontaneous, but covalent bonding is not detected in vacuum. The aqueous medium has a large effect on the adsorption behavior of DAox, which reaches its highest adsorption energy on diamond when the potential is shifted to more negative values. In all cases, inclusion of the solvent enhances the charge transfer between the slab and DAox. Largest differences in adsorption energy between DA and AA are obtained on graphene. Gaining better understanding of the behavior of the different forms of carbon when used as electrode materials provides a means to rationalize the observed complex phenomena taking place at the electrodes during electrochemical oxidation

  12. On the effect of coverage-dependent adsorbate-adsorbate interactions for CO methanation on transition metal surfaces

    DEFF Research Database (Denmark)

    Lausche, Adam C.; Medford, Andrew J.; Khan, Tuhin Suvra

    2013-01-01

    Heterogeneously catalyzed reactions involving the dissociation of strongly bonded molecules typically need quite reactive catalysts with high coverages of intermediate molecules. Methanation of carbon monoxide is one example, where CO dissociation has been reported to take place on step sites...

  13. Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes.

    Science.gov (United States)

    Delcroix, M F; Demoustier-Champagne, S; Dupont-Gillain, C C

    2014-01-14

    The conformation of polymer chains grafted on a substrate influences protein adsorption. In a previous study, adsorption/desorption of albumin was demonstrated on mixed poly(ethylene oxide) (PEO)/poly(acrylic acid) (PAA) brushes, triggered by solutions of adequate pH and ionic strength (I). In the present work, homolayers of PEO or PAA are submitted to saline solutions with pH from 3 to 9 and I from 10(-5) to 10(-1) M, and their conformation is evaluated in real time using quartz crystal microbalance with dissipation monitoring (QCM-D). Shrinkage/swelling of PAA chains and hydration and salt condensation in the brush are evidenced. The adsorption of human serum albumin (HSA) onto such brushes is also monitored in these different saline solutions, leading to a deep understanding of the influence of polymer chain conformation, modulated by pH and I, on protein adsorption. A detailed model of the conformation of PEO/PAA mixed brushes depending on pH and I is then proposed, providing a rationale for the identification of conditions for the successive adsorption and desorption of proteins on such mixed brushes. The adsorption/desorption of albumin on PEO/PAA is demonstrated using QCM-D.

  14. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    Science.gov (United States)

    Zhao, Jian; He, Man-Chao

    2014-10-01

    Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail.

  15. Dependence of the electron work function change of the rhodium (100) face on the order of oxygen and hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, T.V.; Belyaeva, M.E.

    1988-03-01

    It has been shown that the order of hydrogen and oxygen adsorption on rhodium determines the course of the adsorbates interaction. Changes in electron work function of the rhodium (100) face which occur as a function of time during hydrogen adsorption on a surface with preadsorbed oxygen was studied along with changes in the electron work function during adsorption of hydrogen and oxygen. The electron work function was determined by photoelectric emission. Gas adsorption occurred at room temperature, the gas phase composition was determined with an omegatron, and Auger spectroscopy was used to check the cleanliness of the original surface.

  16. Charge dependent asphaltene adsorption onto metal substrate : electrochemistry and AFM, STM, SAM, SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Batina, N.; Morales-Martinez, J. [Univ. Autonoma Metropolitana-Iztapalapa (Mexico). Lab. de Nanotecnologia e Ingenieria Molecular; Ivar-Andersen, S. [Technical Univ. of Denmark (Denmark). Dept. Hem. Eng; Lira-Galeana, C. [Inst. Mexicano del Petroleo, Lazaro (Mexico). Molecular Simulation Research Program; De la Cruz-Hernandez, W.; Cota-Araiza, L.; Avalos-Borja, M. [Univ. Nacional Autonoma de Mexico (Mexico)

    2008-07-01

    Asphaltenes have been identified as the main component of pipeline molecular deposits that cause plugging of oil wells. In this study, Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), Scanning Auger Microprobe Spectroscopy (SAM) and Scanning Electron Microscopy (SEM) were used to characterized molecular deposits of Mexican crude oil and asphaltenes formed at a charged metal surface. The qualitative and quantitative characterization involved determining the size and shape of adsorbed molecules and aggregates, and the elemental analysis of all components in molecular films. Samples were prepared by electrolytic deposition under galvanostatic or potentiostatic conditions directly from the crude oil or asphaltene in toluene solutions. The study showed that the formation of asphaltene deposit depends on the metal substrate charge. Asphaltenes as well as crude oil readily adsorbed at the negatively charged metal surface. Two elements were present, notably carbon and sulfur. Their content ratio varied depending on the metal substrate charge.

  17. Frequency dependence of the electrical impedance of electrolytic cells: The role of the ionic adsorption/desorption phenomena and the Stern layer

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, G. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil)]. E-mail: giovanni.barbero@polito.it; Figueiredo Neto, A.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil); Freire, F.C.M. [Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Departamento de Fisica, Universidade Estadual de Maringa, Av. Colombo 5790, 87020-900 Maringa, Parana (Brazil); Scalerandi, M. [Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2006-12-18

    The frequency dependence of the electrical impedance of two cells filled with a water solution of KCl, identical in all the aspects, differing only in the thickness, is investigated. The experimental data for the real and imaginary parts of the electrical impedance of the investigated samples at low frequency can be interpreted by taking into account the adsorption-desorption phenomenon at the limiting surfaces and the presence of a Stern layer. This result allows to use the impedance spectroscopy technique to determine the adsorption and desorption coefficients entering in the kinetic equation at the interface.

  18. Two-step adsorption on jungle-gym-type porous coordination polymers: dependence on hydrogen-bonding capability of adsorbates, ligand-substituent effect, and temperature.

    Science.gov (United States)

    Uemura, Kazuhiro; Yamasaki, Yukari; Onishi, Fumiaki; Kita, Hidetoshi; Ebihara, Masahiro

    2010-11-01

    a two-step MeOH adsorption on 2 depends on the temperature, attributed to the small free-energy difference (ΔF(host)) between the two guest-free forms, wide and narrow pores.

  19. 75 FR 27141 - Group Health Plans and Health Insurance Issuers Providing Dependent Coverage of Children to Age...

    Science.gov (United States)

    2010-05-13

    ... Revenue Service 26 CFR Part 54 RIN 1545-BJ45 Group Health Plans and Health Insurance Issuers Providing... Labor and the Office of Consumer Information and Insurance Oversight of the U.S. Department of Health... health plans and health insurance coverage offered in connection with a group health plan under the...

  20. Initial stages of CO2 adsorption on CaO: a combined experimental and computational study.

    Science.gov (United States)

    Solis, Brian H; Cui, Yi; Weng, Xuefei; Seifert, Jan; Schauermann, Swetlana; Sauer, Joachim; Shaikhutdinov, Shamil; Freund, Hans-Joachim

    2017-02-08

    Room temperature adsorption of carbon dioxide (CO2) on monocrystalline CaO(001) thin films grown on a Mo(001) substrate was studied by infrared reflection-absorption spectroscopy (IRAS) and quantum chemical calculations. For comparison, CO2 adsorption was examined on poorly ordered, nanoparticulate CaO films prepared on Ru(0001). For both systems, CO2 readily adsorbs on the clean CaO surface. However, additional bands were observable on the CaO/Ru(0001) films compared with CaO/Mo(001), because the stricter IRAS surface selection rules do not apply to adsorption on the disordered thin films grown on Ru(0001). Spectral evolution with increasing exposure of the IRA bands suggested the presence of several adsorption sites which are consecutively populated by CO2. Density functional calculations showed that CO2 adsorption occurs as monodentate surface carbonate (CO3(2-)) species at monatomic step sites and other low-coordinated sites, followed by formation of carbonates on terraces, which dominate at increasing CO2 exposure. To explain the coverage-dependent IRAS results, we propose CO2 surface islanding from the onset, most likely in the form of pairs and other chain-like species, which were calculated as thermodynamically favorable. The calculated adsorption energy for isolated CO2 on the terrace sites (184 ± 10 kJ mol(-1)) is larger than the adsorption energy obtained by temperature programmed desorption (∼120-140 kJ mol(-1)) and heat of adsorption taken from microcalorimetry measurements at low coverage (∼125 kJ mol(-1)). However, the calculated adsorption energies become less favorable when carbonate chains intersect on CaO terraces, forming kinks. Furthermore, our assignments of the initial stages of CO2 adsorption are consistent with the observed coverage effect on the CO2 adsorption energy measured by microcalorimetry and the IRAS results.

  1. Gravimetric analysis of CO2 adsorption on activated carbon at various pressures and temperatures using piezoelectric microcantilevers.

    Science.gov (United States)

    Jin, Yusung; Lee, Dongkyu; Lee, Sangkyu; Moon, Wonkyu; Jeon, Sangmin

    2011-09-15

    We investigated the adsorption and desorption of CO(2) on activated carbon using piezoelectric microcantilevers. After coating the free end of a cantilever with activated carbon, variations in the resonance frequency of the cantilever were measured as a function of CO(2) pressure, which is related to mass changes due to the adsorption or desorption of CO(2). The pressure-dependent viscous damping effects were compensated in the calculation of the CO(2) adsorption capacity of the activated carbon by comparing the frequency differences between the coated and uncoated cantilevers. The mass sensitivity of the piezoelectric cantilever was found to be better than 1 pg. The fractional coverage of CO(2) agreed with a Langmuir adsorption isotherm, indicating that a submonolayer of adsorbed CO(2) occurred on the surface of the activated carbon under the experimental conditions. The heat of adsorption was determined using the Clausius-Clapeyron relation and the fractional coverage of CO(2) at various temperatures and pressures.

  2. Dynamics of surface structure evolution in colloidal adsorption: charge patterning and polydispersity.

    Science.gov (United States)

    Brewer, Damien D; Tsapatsis, Michael; Kumar, Satish

    2010-07-21

    Kinetics, surface structures, and extent of surface coverage in adsorption of spherical colloids onto uniform and charge-patterned surfaces are studied using dynamic simulations. A Brownian dynamics simulation methodology is developed to account for double-layer and van der Waals interactions between particles and the adsorption surface, in addition to Brownian motion of the individual particles. Pairwise particle-particle interactions and particle-wall interactions are based on asymptotic solutions of the nonlinear Poisson-Boltzmann equation. The limiting cases of colloidal adsorption under conditions of negligible surface mobility (random sequential adsorption) and finite surface mobility are compared, and the relative extent of surface coverage is found to be dependent on the strength of double-layer interactions. Adsorption onto charge-patterned stripe, square, and circle patterns is also examined, and it is found that stripe and square patterns induce a greater degree of order than do the circular patterns. The importance of polydispersity in colloidal adsorption is illustrated via simulation of adsorption from a bidisperse mixture of colloidal particles. These dynamic simulations indicate in all cases the importance of kinetics to the surface structures formed by the inherently nonequilibrium colloidal adsorption process.

  3. Bimolecular two-dimensional organization of porphyrins on Au(111): site selective, metal ion-dependent adsorption of tetraphenylporphyrin.

    Science.gov (United States)

    Suto, Koji; Yoshimoto, Soichiro; Itaya, Kingo

    2009-01-01

    Adlayers consisting of two components selected from the group of cobalt(II) tetraphenylporphyrin (CoTPP), copper(II) tetraphenylporphyrin (CuTPP), and zinc(II) tetraphenylporphyrin (ZnTPP) were prepared by immersing Au(111) substrate in a benzene solution containing those molecules. The bimolecular adlayers thus prepared were investigated in 0.1 M HClO4 by electrochemical scanning tunneling microscopy (EC-STM). The mixed adlayers consisting of CoTPP and CuTPP formed structurally ordered but compositionally disordered arrays on Au(111). The ratio of CoTPP to CuTPP molecules in the mixed adlayer was proportional to the ratio of CoTPP to CuTPP molecules in the solution phase. Accordingly, the composition of CoTPP and CuTPP in the adlayer on the Au(111) surface was independent of absolute concentrations of these species in the solution and immersion time. In contrast, the structural feature of the mixed adlayer consisting of CoTPP and ZnTPP was similar to that of the mixed adlayer of CoTPP and CuTPP when these adlayers were prepared in solutions containing those mixtures at a total concentration of 100 microM, whereas when the total concentration was lower, adsorption was site-selective depending on the coordinated metal ion. This finding indicates that the herringbone structure of reconstructed Au(111) served as a template for the bimolecular assembly of CoTPP and ZnTPP. The characteristic phase separation of CoTPP and ZnTPP molecules assisted by reconstructed Au(111) surface can be controlled by the subtle balance between kinetics and thermodynamics.

  4. Adsorption of amylase enzyme on ultrafiltration membranes

    DEFF Research Database (Denmark)

    Beier, Søren; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios

    2007-01-01

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of an amylase-F has been measured on two different ultrafiltration membranes, both with a cut-off value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface......-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage. The static adsorption is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms the maximum static permeability drops...... and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75 % and the maximum static adsorption resistance is 0.014 m2hbar/L. The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23...

  5. Adsorption isotherms and heats of adsorption of neon and hydrogen on zeolite and charcoal between 20 and 90 K

    Science.gov (United States)

    Yamk, R.; Yamk, U.; Heiden, C.; Daunt, J. G.

    1981-12-01

    Measurements have been made of the adsorption isotherms of neon and hydrogen on Linde synthetic zeolite type 13X and on Fisher activated coconut charcoal in the temperature ranges 20 37 and 77 90 K. In the lower temperature range, below the critical points of each adsorbate, it was found that the adsorption isotherms, when plotted giving the volume V, of gas adsorbed in cm3 (STP) per gram of adsorbent as a function of the parameter ( p/p 0)T/100, yielded a unique isotherm curve independent of temperature for each adsorbate-adsorbent system ( p 0 is the saturated vapor pressure at each temperature of measurement). This result is what would be expected from potential theory, as emphasized by Chester et al. in 1974. It was found, moreover, for neon on both charcoal and zeolite 13X that the unique temperature-independent curve for each system was the same for adsorption data taken below the triple point Ttr of bulk neon as for data taken above Ttr. From the data, the isosteric heats of adsorption Qst were calculated at various temperatures and coverages and these showed a marked dependence on coverage, Qst decreasing rapidly with increasing coverage.

  6. Dose-dependent adsorptive capacity of activated charcoal for gastrointestinal decontamination of a simulated paracetamol overdose in human volunteers

    DEFF Research Database (Denmark)

    Gude, Anne-Bolette Jill; Hoegberg, Lotte Christine Groth; Riis Angelo, Helle

    2010-01-01

    The amount of activated charcoal needed to treat drug overdoses has arbitrarily been set at a charcoal-drug ratio of 10:1. Recent in vitro studies have shown a larger adsorptive capacity for activated charcoal when used in a model of paracetamol overdose. In the present study, we investigated whe...

  7. Immunization Coverage

    Science.gov (United States)

    ... country, and global coverage was estimated at 25%. Rubella is a viral disease which is usually mild in children, but infection during early pregnancy may cause fetal death or congenital rubella syndrome, ...

  8. Water Adsorption on a-Fe2O3(0001) at Near Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumu

    2011-08-19

    We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {le} 34%) using ambient-pressure X-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7} % and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx} 4 x 10{sup -2} % RH depending on sample temperature and water vapor pressure. The coverage of water reaches 1 ML at {approx}15% RH and increases to 1.5 ML at 34% RH.

  9. Water adsorption on alpha-Fe2O3(0001) at near ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumu; Kendelewicz, Tom; Newberg, John T.; Ketteler, Guido; Starr, David E.; Mysak, Erin R.; Andersson, Klas J.; Ogasawara, Hirohito; Bluhm, Henrik; Salmeron, Miquel; Brown Jr., Gordon E.; Nilsson, Anders

    2009-11-23

    We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {<=} 34%) using ambient-pressure x-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7}% and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx}4 x 10{sup -2}% RH depending on sample temperature and water vapor pressure. The coverage of water reaches I ML at {approx} 15% RH and increases to 1.5 ML at 34% RH.

  10. Surface coverage effects on the desorption kinetics of selenite from a hydroxyaluminum-montmorillonite complex.

    Science.gov (United States)

    Saha, U K; Huang, P M

    2010-10-01

    Information on the desorption of metals and metalloids from soils and clays are essential for a better understanding of their mobility, transport, and fate in natural environments. We investigated nitrate-, phosphate-, and citrate-induced desorption kinetics of preadsorbed selenite (presented as Se henceforth) from a hydroxyaluminum-montmorillonite (HyA-Mt) complex at three different surface coverages of 8%, 25%, and 69% of its Langmuir predicted adsorption maximum (262.61 mmole kg(-1)). Generally the mole fraction of preadsorbed Se released after the attainment of desorption equilibrium was significantly higher with increasing surface coverage. Desorption kinetics of Se from the clay was best described by the Elovich model. The Elovich model parameter beta representing the rate of Se desorption increased as the surface coverage increased. Both kinetic data and mole fraction of Se released at desorption equilibrium supported the contention that adsorption bond strength progressively decreases with increasing surface coverage. Both citrate and phosphate remobilized Se at significantly faster rates than nitrate at any surface coverage level. Citrate showed a significantly faster rate of Se release than phosphate only at 8% surface coverage but not at 25% and 69% surface coverages, suggesting that differential ability of these two ligands to influence the kinetics of Se release was also surface coverage dependent. The findings of the present study would help better understand the consequences of different surface coverages on soil colloids by preadsorbed Se as well as the impacts of phosphate fertilization and rhizospheric processes in influencing Se mobility in soil and related environments. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Functional coverages

    NARCIS (Netherlands)

    Donchyts, G.; Baart, F.; Jagers, H.R.A.; Van Dam, A.

    2011-01-01

    A new Application Programming Interface (API) is presented which simplifies working with geospatial coverages as well as many other data structures of a multi-dimensional nature. The main idea extends the Common Data Model (CDM) developed at the University Corporation for Atmospheric Research

  12. Controlling the adsorption enthalpy of CO(2) in zeolites by framework topology and composition.

    Science.gov (United States)

    Grajciar, Lukáš; Čejka, Jiří; Zukal, Arnošt; Otero Areán, Carlos; Turnes Palomino, Gemma; Nachtigall, Petr

    2012-10-01

    Zeolites are often investigated as potential adsorbents for CO(2) adsorption and separation. Depending on the zeolite topology and composition (Si/Al ratio and extra-framework cations), the CO(2) adsorption heats at low coverages vary from -20 to -60 kJ mol(-1), and with increasing surface coverage adsorption heats either stay approximately constant or they quickly drop down. Experimental adsorption heats obtained for purely siliceous porous solids and for ion-exchanged zeolites of the structural type MFI, FER, FAU, LTA, TUN, IMF, and -SVR are discussed in light of results of periodic density functional theory calculations corrected for the description of dispersion interactions. Key factors influencing the stability of CO(2) adsorption complexes are identified and discussed at the molecular level. A general model for CO(2) adsorption in zeolites and related materials is proposed and data reported in literature are evaluated with regard to the proposed model. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-Temperature Adsorption of n-Octane, Benzene, and Chloroform onto Silica Gel Surface.

    Science.gov (United States)

    Biliński

    2000-05-01

    The adsorption properties of silica gel surface for compounds differing in types of intermolecular interactions were studied under conditions in which the same silica was investigated by means of a "gas phase titration" method, i.e., at high temperature and low surface coverage. Adsorption isotherms of n-octane, benzene, and chloroform were determined at 373, 363, and 353 K. Based on these isotherms the isosteric heat of adsorption was calculated. Moreover, the adsorption energy distribution function and the derivative of film pressure with respect to the adsorbed amount were computed from the isotherms determined at 373 K. The obtained results were compared to those determined by gas phase titration. It was stated that on the dependencies of film pressure derivative some linear sections appeared that corresponded to the inflection points on gas phase titration curves. The results are discussed in terms of both the type and the strength of surface-molecule interactions. Copyright 2000 Academic Press.

  14. Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization.

    Science.gov (United States)

    Serro, A P; Bastos, M; Pessoa, J Costa; Saramago, B

    2004-09-01

    The biocompatibility of implant materials used for substitution of bone tissue depends on its ability to induce the deposition of a hydroxyapatite layer when in contact with body fluids. In previous work, some of the authors found that bovine serum albumin (BSA) promotes calcium phosphate deposition if preadsorbed on hydroxyapatite and retards precipitation if preadsorbed on titania. In the present study, we investigated the adsorption of BSA upon particles of titania and hydroxyapatite in order to understand the different role played by the protein on the mineralization of both biomaterials. The adsorption isotherms were determined and the structural changes induced by adsorption at different surface coverages were investigated by circular dichroism spectroscopy and differential scanning microcalorimetry. At low surface coverages, the adsorbed BSA molecules lost part of their alpha-helix content. However, at high surface coverages, corresponding to the plateau values of the adsorption isotherms, the BSA molecules did not undergo structural rearrangements upon adsorption. In the latter circumstances, the availability of BSA calcium binding sites, which should be responsible for inducing mineralization, depends on the electrostatic interactions between BSA and the sorbent surface. A possible explanation for the different mineralization behavior of hydroxyapatite and titania is advanced. Copyright 2004 Wiley Periodicals, Inc.

  15. Racial and Ethnic Disparities Among the Remaining Uninsured Young Adults with Behavioral Health Disorders After the ACA Expansion of Dependent Coverage.

    Science.gov (United States)

    Novak, Priscilla; Williams-Parry, Kester F; Chen, Jie

    2017-08-01

    In 2010, the Affordable Care Act (ACA) extended eligibility for dependent coverage under private health insurance. Emerging evidence shows that young adults, including those with behavioral health disorders (BHDs), have benefited from this expansion. The objective of this study is to explore the population characteristics of the remaining uninsured individuals with and without BHDs and to examine whether the factors that contribute to racial and ethnic disparities in the likelihood of being uninsured were different after the implementation of the ACA provision that extended insurance eligibility for young adults in 2010. We use cross-sectional data analysis. We use a nationally representative dataset of the non-institutionalized civilian population in the Medical Expenditure Panel Survey from 2007 to 2012. We compare population characteristics of the remaining uninsured individuals ages 19-25, before and after the implementation of the ACA expansion in 2010. We use multivariate logistic regression to estimate the predictors (such as family income and English proficiency) that are associated with the likelihood of having no health insurance. We utilize the Fairlie decomposition method to examine the factors that contribute to racial (non-Latino White (White) vs. non-Latino African-American (African-American)) and ethnic (non-Latino White (White) vs. Latino) differences in the probability of being uninsured. Finally, we apply our analysis among populations with and without BHDs respectively, to examine the differences in the predictors of being uninsured between these two groups. Among individuals with BHDs, after adjusting for covariates, the estimated probabilities of being uninsured for Whites were 0.21 and 0.16 pre- and post- the ACA expansion, respectively. The predicted probabilities of being uninsured for Latinos were 0.29 and 0.26 and for African-American were 0.19 and 0.17 pre- and post- the ACA expansion, respectively. The ethnic disparity between Whites

  16. Fibrinogen adsorption on blocked surface of albumin

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2011-01-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption...... of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle...... energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer...

  17. Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Sivapragasam, Nilushni; Nayakasinghe, Mindika T.; Burghaus, Uwe, E-mail: uwe.burghaus@ndsu.edu [Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 (United States)

    2016-07-15

    Adsorption kinetics/dynamics of n-butane on graphene, physical vapor deposited on Ru(0001) (hereafter G/Ru), and bare Ru(0001) (hereafter Ru) are discussed. The chemical activity of the supported-graphene as well as the support was probed by thermal desorption spectroscopy (adsorption kinetics). In addition and to the best of our knowledge, for the first time, molecular beam scattering data of larger molecules were collected for graphene (probing the adsorption dynamics). Furthermore, samples were inspected by x-ray photoelectron spectroscopy and Auger electron spectroscopy. At the measuring conditions used here, n-butane adsorption kinetics/dynamics are molecular and nonactivated. Binding energies of butane on Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “kinetically transparent.” Initial adsorption probabilities, S{sub 0}, of n-butane decrease with increasing impact energy (0.76–1.72 eV) and are adsorption temperature independent for both Ru and G/Ru, again consistent with molecular adsorption. Also, S{sub 0} of Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “dynamically transparent.” Coverage dependent adsorption probabilities indicate precursor effects for graphene/Ru.

  18. Carbon adsorption on tungsten and electronic field emission

    Science.gov (United States)

    Márquez-Mijares, Maykel; Lepetit, Bruno; Lemoine, Didier

    2016-03-01

    Electronic emission taking place at the electrodes of high voltage systems and responsible for detrimental breakdown processes is known to be strongly dependent on the cathode surface state and in particular on the presence of carbon contamination. To understand better the effect of carbon adsorption on cathode electronic emission, density functional theory calculations are reported for bulk bcc tungsten as well as for clean and carbon-covered W(100) surfaces for several coverages up to 2 ML. Adsorption geometries and energies, work functions and electronic densities of states are analyzed to assess the effect of the presence of adlayers on surface electronic field emission properties. It is shown that flat carbon adlayer deposition on clean W(100) surfaces induces an increase of the surface work function and a decrease of electronic density near the Fermi level. Both factors contribute to reducing electronic field emission levels.

  19. Adsorption studies of iron (III) on chitin

    Indian Academy of Sciences (India)

    The effect of anions like chloride, nitrate and sulphate and also of cations like zinc, chromium and copper on the adsorption of iron(III) was determined. The time dependence of fraction of adsorption, , at varying particle sizes and doses of chitin and the intraparticle diffusion rate constants, , of the adsorption process ...

  20. Water adsorption on goethite: Application of multilayer adsorption models

    Science.gov (United States)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  1. Adsorption and recovery of nonylphenol ethoxylate on a crosslinked beta-cyclodextrin-carboxymethylcellulose polymer.

    Science.gov (United States)

    Bonenfant, Danielle; Niquette, Patrick; Mimeault, Murielle; Hausler, Robert

    2010-01-01

    A study of adsorption/recovery of nonylphenol 9 mole ethoxylate (NP9EO) on a crosslinked beta-cyclodextrin-carboxymethylcellulose (beta-CD-CMC) polymer was carried out by ultraviolet-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopies. The adsorption was performed in mixtures containing 500 mg of the beta-CD-CMC polymer and aqueous NP9EO solutions at concentrations 12-82 mg/L, whereas the recovery of NP9EO was effectuated by shaking the beta-CD-CMC polymer loaded with methanol. The assays were made at 25 degrees C and atmospheric pressure under agitation. The results have shown that the adsorption is a rapid process and the beta-CD-CMC polymer exhibits a high NP9EO adsorption capacity of 83-92 w% (1.1-6.8 mg NP9EO/g beta-CD-CMC polymer) dependent of the initial NP9EO concentration in liquid phase. This adsorption may involve the formation of an inclusion complex beta-CD-NP9EO and a physical adsorption in the polymer network. The adsorption equilibrium measurements, which were analyzed using the Langmuir isotherm, have indicated a monolayer coverage and the homogeneous distribution of active sites at the surface of the beta-CD-CMC polymer. Moreover, the negative value obtained for the free energy change (-13.2 kJ/mol) has indicated that the adsorption process is spontaneous. In parallel, the beta-CD-CMC polymer exhibited a high NP9EO recovery efficiency of 97 w% that may occur through a decrease of binding strength between beta-CD-CMC polymer and NP9EO. Together, these results suggest that the beta-CD-CMC polymer could constitute a good adsorbent for removing nonylphenol ethoxylates from wastewater due to its high adsorption capacity and non-toxic character of beta-CD and CMC to environment.

  2. The importance of attractive three-point interaction in enantioselective surface chemistry: stereospecific adsorption of serine on the intrinsically chiral Cu{531} surface.

    Science.gov (United States)

    Eralp, Tugce; Ievins, Alex; Shavorskiy, Andrey; Jenkins, Stephen J; Held, Georg

    2012-06-13

    Both enantiomers of serine adsorb on the intrinsically chiral Cu{531} surface in two different adsorption geometries, depending on the coverage. At saturation, substrate bonds are formed through the two oxygen atoms of the carboxylate group and the amino group (μ3 coordination), whereas at lower coverage, an additional bond is formed through the deprotonated β-OH group (μ4 coordination). The latter adsorption geometry involves substrate bonds through three side groups of the chiral center, respectively, which leads to significantly larger enantiomeric differences in adsorption geometries and energies compared to the μ3 coordination, which involves only two side groups. This relatively simple model system demonstrates, in direct comparison, that attractive interactions of three side groups with the substrate are much more effective in inducing strong enantiomeric differences in heterogeneous chiral catalyst systems than hydrogen bonds or repulsive interactions.

  3. Medicare Coverage Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Medicare Coverage Database (MCD) contains all National Coverage Determinations (NCDs) and Local Coverage Determinations (LCDs), local articles, and proposed NCD...

  4. Adsorption of precious and coinage metals on Rh (111), Ru (0001) and W (110) surfaces

    Science.gov (United States)

    Zhu, Quanxi; Wang, Shao-qing

    2017-07-01

    Bimetallic surface alloys have been considered as an effective strategy to achieve better catalytic performance and to modify the work function of the substrate toward metal-gate electrode application. We perform a systematical investigation of Group 10 and Group 11 transition metals adsorption on Rh (111), Ru (0001) and W (110) surfaces with various coverages using first-principles method. Through comparing the Bader charge results and the plots of work function shift, it is found that the polarization effect plays an important role in modification of the bimetallic surface work functions rather than the charge transfer effect especially at low coverages. The coverage-dependent work function behavior gives a general feature: as it has a large negative shift at 0.25ML coverage, then increases almost linearly with the coverage and followed by a saturation value which is controlled by the lattice strain. It is also found that the metal over-layer growth modes are correlated with the specific features of the coverage-dependent metal-substrate adhesion energy. All these findings may give some guidelines for the bimetallic catalysts design in terms of growth, stability and activity.

  5. Adsorption of gases on heterogeneous surfaces

    CERN Document Server

    Rudzinski, W

    1991-01-01

    All real solid surfaces are heterogeneous to a greater or lesser extent and this book provides a broad yet detailed survey of the present state of gas adsorption. Coverage is comprehensive and extends from basic principles to computer simulation of adsorption. Underlying concepts are clarified and the strengths and weaknesses of the various methods described are discussed.Key Features* Adsorption isotherm equations for various types of heterogeneous solid surfaces* Methods of determining the nature of surface heterogeneity and porosity from experimental data* Studies of pha

  6. 4He adsorption on α-graphyne

    Science.gov (United States)

    Kwon, Yongkyung; Lee, Hoonkyung; Ceperley, David M.

    2013-03-01

    Path-integral Monte Carlo calculations have been performed to study 4He adsorption on a single α-graphyne sheet that is a hexagonal network of sp - and sp2 -bonded carbon atoms. Using the 4He-substrate interaction described by a pairwise sum of the helium-carbon inter-atomic potentials, we have found that each hexagon of a graphyne can accomodate one 4He atom at its in-plane center. The first layer of 4He atoms adsorbed on this 4He-attached graphyne sheet with a composite of C8He1, exhibits various quantum phases depending on the helium coverage. It is found to be in a Mott insulating state at a coverage of 0.0706 Å-2 with three 4He atoms occupying each unit cell while the helium atoms form a commensurate triangular solid at 0.0941 Å-2. With the introduction of Ising pseudospins for two degenerate configurations of three 4He atoms in a hexagonal cell, the transition from the Mott insulator to the triangular solid can be interpreted as a ferromagnetic transition. In addition we find stable formation of zero-point vacancies in the commensurate triangular solid and their roles in possible realization of supersolidity are under investigation supported by the Basic Science Research Program (2012006887) and the WCU Program (R31-2008-000-10057-0) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.

  7. pH dependence of the kinetics of interfacial tension changes during protein adsorption from sessile droplets on FEP-Teflon

    NARCIS (Netherlands)

    VanderVegt, W; Norde, W; VanderMei, HC; Busscher, HJ

    Interfacial tension changes during protein adsorption at both the solid-liquid and the liquid-vapor interface were measured simultaneously by ADSA-P from sessile droplets of protein solutions on fluoroethylenepropylene-Teflon. Four globular proteins of similar size, viz. lysozyme, ribonuclease,

  8. The impact of particle size on the adsorption of citrate to hematite.

    Science.gov (United States)

    Noerpel, Matthew R; Lenhart, John J

    2015-12-15

    We investigated the adsorption of citric acid on the surface of two different sized hematite nanoparticles using batch adsorption experiments, Fourier-transform infrared spectroscopy, surface complexation modeling and computational molecular modeling. Citrate adsorption reached a maximum between pH approximately 2.5 and 5.5 and declined as the pH was increased or decreased from that range. At high surface loading conditions, the dominant adsorbed citrate structure was outer-sphere in nature with a protonation state that varied with pH. At low pH, there was also evidence of an inner-sphere complex consistent with a binuclear, bidentate structure where the hydroxyl group was deprotonated and played an active role in the adsorption. An inner-sphere complex was also detected at low citrate surface loading conditions. Surface-area normalized surface coverages were similar for both sizes of hematite, however, the inner sphere complex appeared to be slightly more prevalent on the smaller hematite. Based on these structures, a triple layer surface complexation model comprised of two outer-sphere complexes and one inner-sphere complex was used to describe the adsorption data for both hematite sizes across a range of solution conditions with a single set of surface area dependent equilibrium constants. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  10. Exploring the critical dependence of adsorption of various dyes on the degradation rate using Ln{sup 3+}-TiO{sub 2} surface under UV/solar light

    Energy Technology Data Exchange (ETDEWEB)

    Devi, L. Gomathi, E-mail: gomatidevi_naik@yahoo.co.in [Department of Post Graduate Studies in Chemistry, Central College City Campus, Dr. Ambedkar Street, Bangalore University, Bangalore 560001 (India); Kumar, S. Girish [Department of Post Graduate Studies in Chemistry, Central College City Campus, Dr. Ambedkar Street, Bangalore University, Bangalore 560001 (India)

    2012-11-15

    Graphical abstract: The surface reactive acidic sites enhances on doping with rare earth ions which facilitates efficient adsorption of the dye molecules on the catalyst surface. In addition, the nature of the dopant, its concentration and electronic configuration additionally contributes to the overall efficiency. Highlights: Black-Right-Pointing-Pointer The degradation of structurally different anionic dyes under different pH conditions is reported. Black-Right-Pointing-Pointer Pre adsorption of pollutant on catalyst surface is vital for efficient photocatalysis. Black-Right-Pointing-Pointer Adsorption of dye on the catalyst surface depends on the substituent's attached to it. Black-Right-Pointing-Pointer The dopant with half filled electronic configuration served as shallow traps for charge carriers. - Abstract: The degradation of structurally different anionic dyes like Alizarin Red S (ARS) Amaranth (AR), Brilliant Yellow (BY), Congo Red (CR), Fast Red (FR), Methyl Orange (MO), and Methyl Red (MR) were carried out using Ln{sup 3+} (Ln{sup 3+} = La{sup 3+}, Ce{sup 3+} and Gd{sup 3+}) doped TiO{sub 2} at different pH conditions under UV/solar light. All the anionic dyes underwent rapid degradation at acidic pH, while resisted at alkaline conditions due to the adsorptive tendency of these dyes on the catalyst surface at different pH conditions. Gd{sup 3+} (0.15 mol%)-TiO{sub 2} exhibited better activity compared to other photocatalyst ascribed to half filled electronic configuration of Gd{sup 3+} ions. It is proposed that Ln{sup 3+} serves only as charge carrier traps under UV light, while it also act as visible light sensitizers under solar light. Irrespective of the catalyst and excitation source, the dye degradation followed the order: AR > FR > MO > MR > ARS > BY > CR. The results suggest that pre-adsorption of the pollutant is vital for efficient photocatalysis which is dependent on the nature of the substituent's group attached to the dye molecule.

  11. Women's Health Insurance Coverage

    Science.gov (United States)

    ... Women's Health Policy Women’s Health Insurance Coverage Women’s Health Insurance Coverage Published: Oct 31, 2017 Facebook Twitter LinkedIn ... that many women continue to face. Sources of Health Insurance Coverage Employer-Sponsored Insurance: Approximately 57.9 million ...

  12. Adsorption-induced step formation

    DEFF Research Database (Denmark)

    Thostrup, P.; Christoffersen, Ebbe; Lorensen, Henrik Qvist

    2001-01-01

    Through an interplay between density functional calculations, Monte Carlo simulations and scanning tunneling microscopy experiments, we show that an intermediate coverage of CO on the Pt(110) surface gives rise to a new rough equilibrium structure with more than 50% step atoms. CO is shown to bin...... so strongly to low-coordinated Pt atoms that it can break Pt-Pt bonds and spontaneously form steps on the surface. It is argued that adsorption-induced step formation may be a general effect, in particular at high gas pressures and temperatures....

  13. Ice growth in supercooled solutions of a biological "antifreeze", AFGP 1-5: an explanation in terms of adsorption rate for the concentration dependence of the freezing point.

    Science.gov (United States)

    Knight, C A; DeVries, A L

    2009-07-21

    It is widely accepted, and we agree, that the lowering of the temperature at which ice can grow in a water solution of one of the biological antifreezes is a result of adsorption of the antifreeze molecules at the ice surface. However, how this can produce a well-defined "freezing point" that varies with the solution concentration has remained problematical. The results of a series of measurements of ice growing in supercooled solutions of an effective antifreeze are reported and interpreted in terms of this fundamental problem. It seemed that the solution of the problem would have to rely upon adsorption rate, because that appeared to be the only way for the concentration in solution to be so important. The crystal growth results are most unusual, and appear to confirm this. The growth rates over a wide range of antifreeze concentration in solution (about 0.05 to 9 mg ml(-1)) are zero from the thermodynamic freezing point down to the "non-equilibrium" freezing point, where there is a very sudden increase to a plateau value that then remains about constant as the supercooling is increased by about 2 degrees C. The plateau values of growth rate are faster than those from pure water at the lower-supercooling ends of the plateaus, but slower at higher supercooling, until the growth rate starts rising toward that from pure water. These plateau values of growth rate increase markedly with increasing concentration of the antifreeze in solution. Along with these changes there are complex changes in the growth orientations, from c-axis spicules in the plateaus to those more characteristic of growth from pure water at greater supercooling. We conclude that the non-equilibrium freezing point is determined by the adsorption rate. It is the warmest temperature at which the ice growth rate on the basal plane (where the antifreeze does not adsorb) is fast enough to prevent the area of basal face on a growing ice crystal from becoming too small to grow, which is determined in

  14. Bovine Serum Albumin Adsorption on TiO2 Colloids: The Effect of Particle Agglomeration and Surface Composition.

    Science.gov (United States)

    Márquez, Augusto; Berger, Thomas; Feinle, Andrea; Hüsing, Nicola; Himly, Martin; Duschl, Albert; Diwald, Oliver

    2017-03-14

    Protein adsorption at nanostructured oxides strongly depends on the synthesis conditions and sample history of the material investigated. We measured the adsorption of bovine serum albumin (BSA) to commercial Aeroxide TiO2 P25 nanoparticles in aqueous dispersions. Significant changes in the adsorption capacity were induced by mild sample washing procedures and attributed to the structural modification of adsorbed water and surface hydroxyls. Motivated by the lack of information about the sample history of commercial TiO2 nanoparticle samples, we used vapor-phase-grown TiO2 nanoparticles, a well-established model system for adsorption and photocatalysis studies, and performed on this material for the first time a systematic and quantitative BSA adsorption study. After alternating vacuum and oxygen treatment of the nanoparticle powders at elevated temperatures for surface purification, we determined size distributions covering both the size of the individualized nanoparticles and nanoparticle agglomerates using transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) in an aqueous dispersion. Quantitative BSA adsorption measurements at different pH values and thus variable combinations of surface-charged proteins and TiO2 nanoparticles revealed a consistent picture: BSA adsorbs only at the outer agglomerate surfaces without penetrating the interior of the agglomerates. This process levels at coverages of single monolayers, which resist consecutive simple washing procedures. A detailed analysis of the protein-specific IR amide bands reveals that the adsorption-induced protein conformational change is associated with a decrease in the helical content. This study underlines that robust qualitative and quantitative statements about protein adsorption and corona formation require well-documented and controllable surface properties of the nanomaterials involved.

  15. Temperature-dependent competition between adsorption and aggregation of a cellulose ether--simultaneous use of optical and acoustical techniques for investigating surface properties.

    Science.gov (United States)

    Bodvik, Rasmus; Macakova, Lubica; Karlson, Leif; Thormann, Esben; Claesson, Per

    2012-06-26

    Adsorption of the temperature-responsive polymer hydroxypropylmethylcellulose (HPMC) from an aqueous solution onto hydrophobized silica was followed well above the bulk instability temperature (T(2)) in temperature cycle experiments. Two complementary techniques, QCM-D and ellipsometry, were utilized simultaneously to probe the same substrate immersed in polymer solution. The interfacial processes were correlated with changes in polymer aggregation and viscosity of polymer solutions, as monitored by light scattering and rheological measurements. The simultaneous use of ellipsometry and QCM-D, and the possibility to follow layer properties up to 80 °C, well above the T(2) temperature, are both novel developments. A moderate increase in adsorbed amount with temperature was found below T(2), whereas a significant increase in the adsorbed mass and changes in layer properties were observed around the T(2) temperature where the bulk viscosity increases significantly. Thus, there is a clear correlation between transition temperatures in the adsorbed layer and in bulk solution, and we discuss this in relation to a newly proposed model that considers competition between aggregation and adsorption/deposition. A much larger temperature response above the T(2) temperature was found for adsorbed layers of HPMC than for layers of methyl cellulose. Possible reasons for this are discussed.

  16. Surface Adsorption in Ternary Surfactant Mixtures above the Critical Micelle Concentration: Effects of Asymmetry on the Composition Dependence of the Excess Free Energy.

    Science.gov (United States)

    Liley, Jessica R; Thomas, Robert K; Penfold, Jeffrey; Tucker, Ian M; Petkov, Jordan T; Stevenson, Paul; Webster, John R P

    2017-04-06

    The composition of the adsorbed layer of a ternary surfactant mixture at the air-water interface has been studied by neutron reflectivity. The adsorption of the ternary mixture of octaethylene monododecyl ether (C12E8) sodium dodecyl 6-benzene sulfonate (LAS), and sodium dioxyethylene glycol monododecyl sulfate (SLES), as well as each of the binary mixtures, at solution concentrations greater than the mixed critical micelle concentration is highly nonideal. In the ternary mixture, the surface adsorption is dominated by C12E8 and LAS, and there is little SLES at the interface. The departure from ideality in the binary mixtures can be quantitatively described by applying the pseudophase approximation with quadratic and cubic terms in the excess free energy of mixing (GE) both at the surface and in the micelles. The same parameters that describe the binary interactions give a quantitative fit to the adsorbed fractions in the ternary mixture over a wide range of composition. A similar analysis is effective for the mixture containing sodium dodecyl sulfate instead of SLES. Of the set of six GE required to fit the ternary data, one is ideal (SLES-LAS) and three, LAS-C12E8 (micelle) and C12E8-SLES (micelle and surface), have minima occurring at a composition (mole fraction) of the anionic species of 1/3.

  17. Factors affecting the spontaneous adsorption of Bi(III) onto Pt and PtRu nanoparticles

    Science.gov (United States)

    Sawy, Ehab N. El; Khan, M. Akhtar; Pickup, Peter G.

    2016-02-01

    The influence of Bi(III) concentration and pH on the spontaneous adsorption of Bi species onto Pt nanoparticles has been systematically investigated in order to identify the adsorbing species, determine whether the nature of the adsorbing species changes, and investigate whether the activities of the resulting Bi decorated particles for formic acid oxidation can be influenced. The adsorption of Bi follows a Temkin-type isotherm, with a pH dependence indicating that the adsorbing species is [Bi6O4(OH)4]6+. Activities of Bi decorated Pt nanoparticles for formic acid oxidation are strongly influenced by the Bi coverage, with a maximum enhancement of a factor of ca. 60 at a coverage of 70%, but not by the Bi(III) concentration or pH used to adsorb the Bi species, other than through their influence on Bi coverage. These results support the conclusion that the adsorbing species is [Bi6O4(OH)4]6+ under all conditions investigated. Adsorbed Bi also activates PtRu nanoparticles for formic acid oxidation, although the effect is not as strong as for Pt. The maximum enhancement observed was only a factor of ca. 7. This has been attributed to attenuation of the effects of Bi adatoms that are adsorbed at Ru sites.

  18. When Langmuir is too simple: H-2 dissociation on Pd(111) at high coverage

    DEFF Research Database (Denmark)

    Lopez, Nuria; Lodziana, Zbigniew; Illas, F.

    2004-01-01

    Recent experiments of H-2 adsorption on Pd(111) [T. Mitsui et al., Nature (London) 422, 705 (2003)] have questioned the classical Langmuir picture of second order adsorption kinetics at high surface coverage requiring pairs of empty sites for the dissociative chemisorption. Experiments find...

  19. "Bubble-on-demand" generator with precise adsorption time control.

    Science.gov (United States)

    Zawala, J; Niecikowska, A

    2017-09-01

    The paper presents the principles of our new single bubble generator, which allows a precise control of bubble formation in pure liquids and surfactant solutions, i.e., their detachment frequency and the adsorption time at their motionless surface. We show that the bubbles with equilibrium size can be produced at the capillaries of various orifice diameters (0.022-0.128 mm) on demand and with outstanding reproducibility. Moreover, it is shown that a fully automatized and programmable bubble trap, synchronized with bubble detachment frequency, can be used to (i) control the radius of the released bubble and (ii) precisely adjust the initial adsorption coverage over the surface of detaching bubble, and hence to study the influence of adsorption coverage degree on kinetics of dynamic adsorption layer formation at the rising bubble surface.

  20. "Bubble-on-demand" generator with precise adsorption time control

    Science.gov (United States)

    Zawala, J.; Niecikowska, A.

    2017-09-01

    The paper presents the principles of our new single bubble generator, which allows a precise control of bubble formation in pure liquids and surfactant solutions, i.e., their detachment frequency and the adsorption time at their motionless surface. We show that the bubbles with equilibrium size can be produced at the capillaries of various orifice diameters (0.022-0.128 mm) on demand and with outstanding reproducibility. Moreover, it is shown that a fully automatized and programmable bubble trap, synchronized with bubble detachment frequency, can be used to (i) control the radius of the released bubble and (ii) precisely adjust the initial adsorption coverage over the surface of detaching bubble, and hence to study the influence of adsorption coverage degree on kinetics of dynamic adsorption layer formation at the rising bubble surface.

  1. Coverage threshold for laser-induced lithography

    Science.gov (United States)

    Martins, Weliton S.; Oriá, Marcos; Passerat de Silans, Thierry; Chevrollier, Martine

    2017-05-01

    Recent experimental observations of laser-induced adsorption at the interface between an alkali vapor and a dielectric surface have demonstrated the possibility of growing metallic films of nanometric thickness on dielectric surfaces, with arbitrary shapes determined by the intensity profile of the light. The mechanisms directly responsible for the accumulation of atoms at the irradiated surface have been shown to involve photo-ionization of atoms very close to the surface. However, the existence of a vapor-pressure threshold for initiating the film growth still raises questions on the processes occurring at the surface. In this letter, we report on the observation that the vapor-pressure threshold corresponds to a minimum adatom coverage necessary for the surface to effectively neutralize the incoming ions and make possible the growth of a multilayer film. We discuss the hypothesis that the coverage threshold is a surface conductivity threshold.

  2. Adsorption of phenolic compounds on fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Akgerman, A.; Zardkoohi, M. [Texas A and M Univ., College Station, TX (United States). Chemical Engineering Dept.

    1996-03-01

    Adsorption isotherms for adsorption of phenol, 3-chlorophenol, and 2,4-dichlorophenol from water onto fly ash were determined. These isotherms were modeled by the Freundlich isotherm. The fly ash adsorbed 67, 20, and 22 mg/g for phenol, chlorophenol, and 2,4-dichlorophenol, respectively, for the highest water phase concentrations used. The affinity of phenolic compounds for fly ash is above the expected amount corresponding to a monolayer coverage considering that the surface area of fly ash is only 1.87 m{sup 2}/g. The isotherms for contaminants studied were unfavorable, indicating that adsorption becomes progressively easier as more solutes are taken up. Phenol displayed a much higher affinity for fly ash than 3-chlorophenol and 2,4-dichlorophenol.

  3. Adsorption of dextrin on hydrophobic minerals.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2009-09-01

    The adsorption of dextrin on talc, molybdenite, and graphite (three naturally hydrophobic minerals) has been compared. Adsorption isotherms and in situ tapping mode atomic force microscope (TMAFM) imaging have enabled polymer adsorbed amount and morphology of the adsorbed layer (area coverage and polymer domain size) to be determined and also the amount of hydration water in the structure of the adsorbed layer. The effect of the polymer on the mineral contact angles, measured by the captive bubble method on cleaved mineral surfaces, indicates clear correlations between the hydrophobicity reduction of the minerals, the adsorbed amount, and the surface coverage of the adsorbed polymer. Predictions of the flotation recovery of the treated mineral phases have been confirmed by performing batch flotation experiments. The influence of the polymer surface coverage on flotation recovery has highlighted the importance of this key parameter in the predictions of depressant efficiency. The roles of the initial hydrophobicity and the surface structure of the mineral basal plane in determining adsorption parameters and flotation response of the polymer-treated minerals are also discussed.

  4. Adsorption mechanisms and the effect of oxytetracycline on activated sludge.

    Science.gov (United States)

    Song, Xiancai; Liu, Dongfang; Zhang, Guowei; Frigon, Matthew; Meng, Xianrong; Li, Kexun

    2014-01-01

    The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model had the best fit which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na(+), K(+), Ca(2+), Mg(2+) and Cd(2+) ions more or less inhibited the adsorption of OTC on activated sludge while Cu(2+) enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Adsorption of levofloxacin onto goethite: Effects of pH, calcium and phosphate

    NARCIS (Netherlands)

    Qin, X.P.; Liu, F.; Wang, G.C.; Weng, L.; Li, L.

    2014-01-01

    Adsorption of levofloxacin (LEV), one of the extensively used antibiotics, onto goethite was investigated using batch experiments. The adsorption of LEV on goethite was pH-dependent. A maximum adsorption was reached at pH 6. Above or below pH 6, the adsorption decreased. In the presence of calcium

  6. Mechanism of immunoglobulin G adsorption on polystyrene microspheres.

    Science.gov (United States)

    Sofińska, Kamila; Adamczyk, Zbigniew; Barbasz, Jakub

    2016-01-01

    The adsorption of polyclonal immunoglobulin G (IgG) on negatively charged polystyrene microparticle suspension (latex) was studied by using the Laser Doppler Velocimetry (LDV) measurements. Using this technique, the dependence of the electrophoretic mobility of particles on the IgG concentration in the suspension was measured for various ionic strengths and pH 3.5. The increase in the electrophoretic mobility was quantitatively interpreted in terms of the 3D electrokinetic model. On the other hand, the maximum coverage of IgG on latex was determined using the depletion method based on AFM imaging. It was shown that IgG adsorption was irreversible and that its maximum coverage on the microspheres increased from 1.4mgm(-2) for 0.001M NaCl to 2.0mgm(-2) for 0.15M NaCl. This was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. The stability of IgG monolayers on the particles was confirmed in separate experiments where changes in its electrophoretic mobility were monitored over prolonged time periods. Additionally, the acid-base properties of the IgG monolayers on latex were determined in pH cycling experiments. The isoelectric point of the IgG monolayers on the microspheres was 4.8. The results obtained in this work indicate that basic physicochemical characteristics of IgG can be acquired via electrophoretic mobility measurements using microgram quantities of the protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. T-2 toxin adsorption by hectorite

    Directory of Open Access Journals (Sweden)

    ALEKSANDRA DAKOVIĆ

    2009-11-01

    Full Text Available The adsorption of T-2 toxin by the natural smectite mineral – hectorite at pH 3.0, 7.0 and 9.0 was investigated. The results of T-2 toxin adsorption on hectorite showed that the T-2 adsorption capacity decreased with increasing concentration of adsorbent in the suspension for all the investigated pH values. From the adsorption isotherms, an increase in T-2 toxin adsorption with increasing initial T-2 toxin concentration was observed for all the investigated pH values. The T-2 toxin adsorption by hectorite followed a non-linear (Langmuir type of isotherm at pH 3.0, 7.0 and 9.0, with correlation coefficients (r2 of 0.943 at pH 3.0, 0.919 at pH 7.0 and 0.939 at pH 9.0. The estimated maximum T-2 toxin adsorption by hectorite based on the Langmuir fit to the data (9.178 mg/g at pH 3.0, 9.930 mg/g at pH 7.0, and 19.341 mg/g at pH 9.0, indicated that the adsorption of T-2 toxin by hectorite is pH dependent. The obtained data suggest the existence of specific active sites in hectorite onto which the T-2 toxin is adsorbed.

  8. DNA adsorption characteristics of hollow spherical allophane nano-particles

    Science.gov (United States)

    Matsuura, Yoko; Iyoda, Fumitoshi; Hayashi, Shuhei; Arakawa, Shuichi; Okamoto, Masami; Hayashi, Hidetomo

    2014-05-01

    To understand the propensity of the natural allophane to adsorb the DNA molecules, the adsorption characteristics were assessed against a natural allophane, using single-stranded DNA (ss-DNA) and adenosine 5'-monophosphate (5'-AMP) as a reference molecule. The adsorption capacity of ss-DNA on AK70 exhibited one order of magnitude lower value as compared with that of 5'-AMP. The adsorption capacity of ss-DNA decreased with increasing pH due to the interaction generated between phosphate groups of ss-DNA and functional Al-OH groups on the wall perforations through deprotonation, associated with higher energy barrier for the adsorption of ss-DNA. The adsorption morphologies consisting of the individual ss-DNA with mono-layer coverage of the allophane clustered particle was successfully observed through TEM analysis.

  9. DNA adsorption characteristics of hollow spherule allophane nano-particles.

    Science.gov (United States)

    Matsuura, Yoko; Iyoda, Fumitoshi; Arakawa, Shuichi; John, Baiju; Okamoto, Masami; Hayashi, Hidetomo

    2013-12-01

    To understand the propensity of natural allophane to adsorb the DNA molecules, the adsorption characteristics were assessed against natural allophane (AK70), using single-stranded DNA (ss-DNA) and adenosine 5'-monophosphate (5'-AMP) as a reference molecule. The adsorption capacity of ss-DNA on AK70 exhibited one order of magnitude lower value as compared with that of 5'-AMP. The adsorption capacity of ss-DNA decreased with increasing pH due to the interaction generated between phosphate groups of ss-DNA and functional Al-OH groups on the wall perforations through deprotonating, associated with higher energy barrier for the adsorption of ss-DNA. The adsorption morphologies consisting of the individual ss-DNA with mono-layer coverage of the clustered allophane particle were observed successfully through transmission electron microscopy analysis. © 2013.

  10. A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION.

    Science.gov (United States)

    Finch, Craig; Clarke, Thomas; Hickman, James J

    2013-07-01

    Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices.

  11. Adsorption behavior of acidic and basic proteins onto citrate-coated Au surfaces correlated to their native fold, stability, and pI.

    Science.gov (United States)

    Glomm, Wilhelm R; Halskau, Øyvind; Hanneseth, Ann-Mari D; Volden, Sondre

    2007-12-27

    The adsorption of eight different proteins (alpha-lactalbumin (types I and III), bovine serum albumin, hemoglobin, myoglobin, cytochrome c, alpha-casein, and lysozyme) onto a model anionic surface was performed at equivalent bulk (solvent, ionic strength, pH) and surface conditions. Adsorption was monitored on a quartz crystal microbalance with dissipation monitoring (QCM-D) with citrate-coated gold surfaces as adsorbents and has been correlated to native fold stability determined from near- and far-UV circular dichroism (CD) measurements. The proteins studied here were chosen based on their pI and documented knowledge about their structural stability and flexibility. Protein adsorption was found to be independent of global protein charge. Rather, binding occurs through oppositely charged patches on protein and surface. Moreover, data indicate that there is a correlation between secondary and tertiary structure stability and the adsorption characteristics at interfaces. Also, protein surface coverage, layer thickness, and flexibility can be tuned as a function of deposition method. This is discussed in terms of adsorption/spreading kinetics and intermolecular (protein-surface and protein-protein) interactions. Adsorption to surfaces can induce formation of supramolecular structures such as micelles (in the case of alpha-Cas) and multilayers (as for Hb). In the case of alpha-casein, this phenomenon depends on the deposition method and protein concentration. When ranking the surface coverage for proteins added in excess, the order is Lyz < Cyt c < Mb < BSA < alpha-La I < alpha-Cas < alpha-La III < Hb, which can be correlated to the proteins ability to form supramolecular structures (alpha-Cas, Hb), overall conformational flexibilities, and ability to form stable intermediates.

  12. Immunisation coverage, 2012.

    Science.gov (United States)

    Hull, Brynley P; Dey, Aditi; Menzies, Rob I; Brotherton, Julia M; McIntyre, Peter B

    2014-09-30

    This, the 6th annual immunisation coverage report, documents trends during 2012 for a range of standard measures derived from Australian Childhood Immunisation Register (ACIR) data, and National Human Papillomavirus (HPV) Vaccination Program Register data. These include coverage at standard age milestones and for individual vaccines included on the National Immunisation Program (NIP) and coverage in adolescents and adults. The proportion of Australian children 'fully vaccinated' at 12, 24 and 60 months of age was 91.7%, 92.5% and 91.2%, respectively. For vaccines available on the NIP but not assessed during 2012 for 'fully vaccinated' status or for eligibility for incentive payments (rotavirus and pneumococcal at 12 months and meningococcal C and varicella at 24 months) coverage varied. Although pneumococcal vaccine had similar coverage at 12 months to other vaccines, coverage was lower for rotavirus at 12 months (83.6%) and varicella at 24 months (84.4%). Although 'fully vaccinated' coverage at 12 months of age was lower among Indigenous children than non-Indigenous children in all jurisdictions, the extent of the difference varied, reaching a 15 percentage point differential in South Australia but only a 0.4 percentage point differential in the Northern Territory. Overall, Indigenous coverage at 24 months of age exceeded that at 12 months of age nationally and for all jurisdictions, but as receipt of varicella vaccine at 18 months is excluded from calculations, this represents delayed immunisation, with some contribution from immunisation incentives. The 'fully vaccinated' coverage estimates for vaccinations due by 60 months of age for Indigenous children exceeded 90% at 91% in 2012. Unlike in 2011, at 60 months of age, there was no dramatic variation in coverage between Indigenous and non-Indigenous children for individual jurisdictions. As previously documented, vaccines recommended for Indigenous children only, hepatitis A and pneumococcal vaccine, had

  13. [Adsorption characteristics and mechanism of uranium on attapulgite].

    Science.gov (United States)

    Liu, Juan; Chen, Di-yun; Zhang, Jing; Song, Gang; Luo, Ding-gui

    2012-08-01

    The adsorption characteristics of uranium on attapulgite were investigated by conducting a series of batch adsorption experiments in this study. The influence of solution pH, initial uranium concentration and contact time was investigated. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to characterize the surface structure of the attapulgite, Fourier transform infrared spectrometer (FTIR) were used to characterize the surface properties of the attapulgite before and after uranium adsorption, and to analyze the adsorption mechanism and adsorption kinetics of uranium on attapulgite. The experimental results showed that sorption of uranium on attapulgite was strongly dependent on pH, and the highest adsorption reached at pH = 5. The adsorption quantity increased with time, adsorption could achieve balance in 2 h. The adsorption isotherm equation conformed to the Langmuir isothermal adsorption model and adsorption process could be described by the two-order kinetics model. According to FTIR spectral, the absorbance of attapulgite decreased, which may result from R--OUO2+ or (R--O)2UO2 formed by the bond between uranium and R-OH of attapulgite in the high frequency area 3700-3000 cm(-1), and which uranium ion and magnesium ions may produce ion exchanges in the intermediate frequency area 1700-800 cm(-1). Adsorption mechanism of uranium on attapulgite was mainly ion exchange and complexation.

  14. Electrochemical Investigations of 4-Methoxypyridine Adsorption on Au(111) Predict Its Suitability for Stabilizing Au Nanoparticles.

    Science.gov (United States)

    Unni, Bipinlal; Simon, Sajna; Burgess, Ian J

    2015-09-15

    A thermodynamic analysis of the adsorption of 4-methoxypyridine (MOP) on Au(111) surfaces is presented in an effort to determine its propensity to stabilize metal nanoparticles. The adsorption of MOP is compared and contrasted to the adsorption of 4-dimethylaminopyridine (DMAP), the latter of which is well-known to form stable Au nanoparticles. Electrochemical studies show that MOP, like most pyridine derivatives, can exhibit two different adsorption states. The electrical state of the metal, the pH of the solution, and the surface crystallography determine whether MOP adopts a low-coverage, π-bonded orientation or a high-coverage, σ-type orientation. A modified Langmuir adsorption isotherm is used to extract free energies of adsorption which are roughly 10% stronger for DMAP compared to MOP at equivalent conditions when expressed on a rational basis. The higher adsorption strength is attributed to DMAP's greater Lewis basicity. Qualitatively, MOP and DMAP adsorption are found to be completely analogous, implying that MOP-protected gold particles should be stable under conditions that favor the high-coverage adsorption state. Using a previously reported, single-phase synthesis, this is shown to be the case.

  15. Water adsorption on O(2x2)/Ru(0001) from STM experiments andfirst-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Sanfelix, P.; Sanchez-Portal, D.; Mugarza, A.; Shimizu,T.K.; Salmeron, M.; Arnau, A.

    2007-10-15

    We present a combined theoretical and experimental study of water adsorption on Ru(0001) pre-covered with 0.25 monolayers (ML) of oxygen forming a (2 x 2) structure. Several structures were analyzed by means of Density Functional Theory calculations for which STM simulations were performed and compared with experimental data. Up to 0.25 monolayers the molecules bind to the exposed Ru atoms of the 2 x 2 unit cell via the lone pair orbitals. The molecular plane is almost parallel to the surface with its H atoms pointing towards the chemisorbed O atoms of the 2 x 2 unit cell forming hydrogen bonds. The existence of these additional hydrogen bonds increases the adsorption energy of the water molecule to approximately 616 meV, which is {approx}220 meV more stable than on the clean Ru(0001) surface with a similar configuration. The binding energy shows only a weak dependence on water coverage, with a shallow minimum for a row structure at 0.125 ML. This is consistent with the STM experiments that show a tendency of the molecules to form linear rows at intermediate coverage. Our calculations also suggest the possible formation of water dimers near 0.25 ML.

  16. Adsorption of aqueous copper on peanut hulls

    Science.gov (United States)

    Davis, Kanika Octavia

    A method was established for measuring the adsorption of Cu(II) from aqueous solution to unmodified and modified peanut hulls at constant temperature and pH. Modification of the hulls was performed by oxidation with alkaline hydrogen peroxide. During the modification process, the hydrogen peroxide solubilizes the lignin component, making the surface more porous which increases the availability of binding sites, while simultaneously oxidizing the cellulose. The oxidation of alcohol groups creates more binding sites by creating functional groups such as COO-, which increases chelation to metal ions. Fourier transform infrared spectroscopy confirms delignification of the peanut hulls by the disappearance of carboxyl peaks of the modified hulls, which were originally produced from the lignin content. Although, oxidation is not fully confirmed, it is not ruled out because the expected carboxylate peak (1680 cm-1) maybe overshadowed by a broad peak due to OH bending of water adsorbed to the hulls. Hulls adsorbed copper from solutions in the concentration range of 50-1000 ppm of CuCl2. Concentrations of pre- and post-adsorption solutions were determined using inductively coupled plasma optical emission spectroscopy. The adsorption isotherms were fit to known two and three-parameter models, evaluated and the binding mechanism was inferred. Maximum surface coverage was 3.5 +/- 0.6 mg Cu2+ /g hull for unmodified hulls and 11 +/- 1 mg Cu2+/g hull for modified hulls. The adsorption for the hulls is best described by the Langmuir model, suggesting monolayer, homogeneous adsorption. With a free energy of adsorption of 10.5 +/- 0.9 kJ/mol for unmodified hulls and 14.5 +/-0.4 kJ/mol for modified hulls, the process is categorized as chemisorption for both types of hulls. The adsorption for both hulls is also described by the Redlich-Peterson model, giving beta nearer to 1 than 0, which further suggests homogeneous adsorption described by the Langmuir model. After rinsing the hulls

  17. Adsorption, desorption, and diffusion of k-mers on a one-dimensional lattice.

    Science.gov (United States)

    Loncarević, I; Budinski-Petković, Lj; Vrhovac, S B; Belić, A

    2009-08-01

    Kinetics of the deposition process of k -mers in the presence of desorption or/and diffusional relaxation of particles is studied by Monte Carlo method on a one-dimensional lattice. For reversible deposition of k-mers, we find that after the initial "jamming," a stretched exponential growth of the coverage theta(t) toward the steady-state value theta(eq) occurs, i.e., theta(eq)-theta(t) is proportional to exp[-(t/tau)(beta)]. The characteristic time scale tau is found to decrease with desorption probability P(des) according to a power law, tau is proportional to P(des)(-gamma), with the same exponent gamma=1.22+/-0.04 for all k-mers. For irreversible deposition with diffusional relaxation, the growth of the coverage theta(t) above the jamming limit to the closest packing limit (CPL) theta(CPL) is described by the pattern theta(CPL)-theta(t) is proportional to E(beta)[-(t/tau)(beta)], where E(beta) denotes the Mittag-Leffler function of order beta(0,1) . Similarly to the reversible case, we found that the dependence of the relaxation time tau on the diffusion probability P(dif) is consistent again with a simple power-law, i.e., tau is proportional to P(dif)(-delta). When adsorption, desorption, and diffusion occur simultaneously, coverage always reaches an equilibrium value theta(eq), which depends only on the desorption/adsorption probability ratio. The presence of diffusion only hastens the approach to the equilibrium state, so that the stretched exponential function gives a very accurate description of the deposition kinetics of these processes in the whole range above the jamming limit.

  18. Interfacial adsorption of insulin. Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, S.H.; Bukrinsky, J.T.; Elofsson, U.; Norde, W.; Frokjaer, S.

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  19. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  20. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Eduardo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Ruiz-Chavarria, Gregorio [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico Ciudad Universitaria, Codigo Postal 04510, Mexico D.F. (Mexico); Magana, L.F., E-mail: fernando@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Arellano, J.S. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Unidad Azcapotzalco. Avenida San Pablo No. 180, Col. Reynosa Tamaulipas Codigo Postal 02200, Mexico D.F. (Mexico)

    2009-07-06

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H{sub 2}). Nitrogen coverage was C{sub 8}N.

  1. Modeling adsorption of liquid mixtures on porous materials

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2009-01-01

    The multicomponent potential theory of adsorption (MPTA), which was previously applied to adsorption from gases, is extended onto adsorption of liquid mixtures on porous materials. In the MPTA, the adsorbed fluid is considered as an inhomogeneous liquid with thermodynamic properties that depend...... of the MPTA onto liquids has been tested on experimental binary and ternary adsorption data. We show that, for the set of experimental data considered in this work, the MPTA model is capable of correlating binary adsorption equilibria. Based on binary adsorption data, the theory can then predict ternary...... adsorption equilibria. Good agreement with the theoretical predictions is achieved in most of the cases. Some limitations of the model are also discussed....

  2. Adsorption of hydrocarbons in chalk reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, L.

    1996-12-31

    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  3. Competitive adsorption study of CO2 and SO2 on CoII3[CoIII(CN)6]2 using DRIFTS.

    Science.gov (United States)

    Windisch, Charles F; Thallapally, Praveen K; McGrail, B P

    2010-09-15

    Diffuse reflectance infrared Fourier transform spectroscopy was used to study the competitive adsorption of CO(2) and SO(2) on the cobalt Prussian blue analogue Co(II)(3)[Co(III)(CN)(6)](2) at 298 K. Characteristic peaks for adsorbed CO(2) and SO(2) species were identified and their relative areas, measured simultaneously as a function of pressure at 298 K, varied in accordance with a Langmuir-Freundlich isotherm fitted to both gases in the low-coverage Henry's Law limit. Evidence for co-adsorption of trace water was also obtained, as well as the apparent formation of an analogous cobalt nitroprusside compound as a reaction product under certain conditions. The several aspects of the adsorption of CO(2) and SO(2) determined in this work point to an important role for real-time diffuse reflectance infrared measurements in adsorption studies, particularly in the case of competitive adsorption where the occurrence and fate of molecular-level markers arising from more than one adsorbed species can be monitored simultaneously. Depending on the application, this may more than offset certain quantitative limitations of the technique that confine measurements to a relatively narrow set of experimental conditions and demand careful consideration of the effects of sample preparation and treatment. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Nitrogen adsorption on Fe(111), (100), and (110) surfaces

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Ganduglia-Pirovano, Veronica; Hansen, Lars Bruno

    1999-01-01

    Adsorption energies and structures for N atoms on three low-index surfaces of Fe have been calculated using density functional theory (DFT) and the generalized gradient approximation (GGA). At low N coverage the adsorption energy on Fe(100) is found to be similar to 0.7 eV higher than on the (111......) and (110) surfaces - particularly the c(2 x 2)-N/Fe(100) structure with the N atoms in four-fold sites is very stable. We attribute the differences in adsorption energy to the lack of four-fold sites on the (111) and (110) surfaces, We suggest that at higher N coverages, islands with a structure similar...

  5. Adsorption thermodynamics of two-domain antifreeze proteins: theory and Monte Carlo simulations.

    Science.gov (United States)

    Narambuena, Claudio F; Sanchez Varretti, Fabricio O; Ramirez-Pastor, Antonio J

    2016-09-21

    In this paper we develop the statistical thermodynamics of two-domain antifreeze proteins adsorbed on ice. We use a coarse-grained model and a lattice network in order to represent the protein and ice, respectively. The theory is obtained by combining the exact analytical expression for the partition function of non-interacting linear k-mers adsorbed in one dimension, and its extension to higher dimensions. The total and partial adsorption isotherms, and the coverage and temperature dependence of the Helmholtz free energy and configurational entropy are given. The formalism reproduces the classical Langmuir equation, leads to the exact statistical thermodynamics of molecules adsorbed in one dimension, and provides a close approximation for two-dimensional systems. Comparisons with analytical data obtained using the modified Langmuir model (MLM) and Monte Carlo simulations in the grand canonical ensemble were performed in order to test the validity of the theoretical predictions. In the MC calculations, the different mechanisms proposed in the literature to describe the adsorption of two-domain antifreeze proteins on ice were analyzed. Indistinguishable results were obtained in all cases, which verifies the thermodynamic equivalence of these mechanisms and allows the choice of the most suitable mechanism for theoretical studies of equilibrium properties. Even though a good qualitative agreement is obtained between MLM and MC data, it is found that the new theoretical framework offers a more accurate description of the phenomenon of adsorption of two-domain antifreeze proteins.

  6. DNA adsorption characteristics of hollow spherule allophane nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yoko; Iyoda, Fumitoshi; Arakawa, Shuichi; John, Baiju [Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Okamoto, Masami, E-mail: okamoto@toyota-ti.ac.jp [Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Hayashi, Hidetomo [New Product Development Center, Tsuchiya Co., Ltd., 22-4 Higashinamikita, Yamamachi, Chiryu 472-0006 (Japan)

    2013-12-01

    To understand the propensity of natural allophane to adsorb the DNA molecules, the adsorption characteristics were assessed against natural allophane (AK70), using single-stranded DNA (ss-DNA) and adenosine 5′-monophosphate (5′-AMP) as a reference molecule. The adsorption capacity of ss-DNA on AK70 exhibited one order of magnitude lower value as compared with that of 5′-AMP. The adsorption capacity of ss-DNA decreased with increasing pH due to the interaction generated between phosphate groups of ss-DNA and functional Al–OH groups on the wall perforations through deprotonating, associated with higher energy barrier for the adsorption of ss-DNA. The adsorption morphologies consisting of the individual ss-DNA with mono-layer coverage of the clustered allophane particle were observed successfully through transmission electron microscopy analysis. - Highlights: • The interaction between phosphate groups of ss-DNA and Al–OH groups • Higher energy barrier for the adsorption of ss-DNA • The individual ss-DNA with mono-layer coverage of the allophane clustered particle.

  7. Thermodynamic study of seven micropollutants adsorption onto an activated carbon cloth: Van't Hoff method, calorimetry, and COSMO-RS simulations.

    Science.gov (United States)

    Masson, Sylvain; Vaulot, Cyril; Reinert, Laurence; Guittonneau, Sylvie; Gadiou, Roger; Duclaux, Laurent

    2017-04-01

    The thermodynamic of the adsorption of seven organic pollutants, namely benzotriazol, bisphenol A, caffeine, carbamazepine, diclofenac, ofloxacin, and pentachlorophenol, was studied on a microporous-activated carbon fabric. The isosteric adsorption quantities (Gibbs energy, enthalpy, and entropy variations) at high coverage ratio (around 1 mmol/g) have been determined from the adsorption isotherms at three temperatures (13, 25, and 40 °C). The adsorption heats at very low coverage (about 10 -5  mmol/g) have been measured by flow micro calorimetry. The experimental adsorption energies were correlated to the adsorbate-adsorbent and the adsorbate-solvent interaction energies calculated by simulations using the COSMO-RS model. The main role of the van der Waals forces in the adsorption of the studied molecules was established. The bulkier the adsorbate is, the lower the adsorption Gibbs energy variation at high coverage deduced from the isotherms. The heterogeneity of the adsorption sites was brought out by calorimetric measurements. At high coverage, a physisorption phenomenon was observed. At very low coverage, high values of the adsorption heats were found (ranging from -58 to -110 kJ/mol), except for pentachlorophenol characterized by an athermal adsorption controlled by Pi-anions interactions.

  8. First-principles study of H, O, and N adsorption on metal embedded carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Detian [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000 (China); Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Luo, Haijun, E-mail: luohaijun@wzu.edu.cn [Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Cai, Jianqiu [Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000 (China); Shao, Xiji [Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Dong, Changkun, E-mail: dck@wzu.edu.cn [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000 (China); Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Wenzhou, Zhejiang 325035 (China)

    2017-05-01

    Highlights: • Ni or Fe embedment and high atomic adsorption coverage benefit applications like hydrogen storage and field emission. • Ni or Fe embedment could help tune the catalytic properties. • Ni or Fe embedment enhances the adatom-SWNT interaction significantly. - Abstract: The density functional theory calculation has been conducted to investigate the structural and electronic properties, including the adsorption energies, bond structures, work functions, charge transfer behaviors, and density of states for pristine, Ni-, and Fe-embedded capped (5, 5) single-walled carbon nanotubes (SWNTs) with different coverage of atomic hydrogen, oxygen, and nitrogen adsorptions. Ni or Fe embedment enhances the adatom-SWNT interactions significantly for three kinds of gas atoms with the increases of the adsorption energies. The SWNT work function drops with H adsorption, while Ni or Fe embedment assists further the reduction. When increasing the coverage, the adsorption energy decreases and the work function climbs for O adsorption, but the nitrogen adsorption energy increases. The Bader charge transfer analysis implies that the cap possesses higher oxygen reduction activities than the tube, and the density of states analysis shows that Ni or Fe embedment deepens the C-adatom hybridizations.

  9. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...

  10. A Simple Adsorption Experiment

    Science.gov (United States)

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  11. Ampicillin adsorption by some antacids

    OpenAIRE

    Okor, Roland; Fajuyigbe, Olanike; Eichie, Florence

    2004-01-01

    these are bismuth carbonate, magnesium trisilicate and aluminium hydroxide. The adsorption of ampicillin by bismuth carbonate followed the Langmuir adsorption isotherm, which suggests chemisorptions. It was characterized by a strong adsorption at a low adsorbate (ampicillin) concentration but the % adsorption decreased with increase in adsorbate concentration, which is a feature of a saturated monolayer adsorption. On the other hand, the adsorption by magnesium trisilicate and aluminium hydro...

  12. Characterization of humic acid reactivity modifications due to adsorption onto α-Al 2O 3

    KAUST Repository

    Janot, Noémie

    2012-03-01

    Adsorption of purified Aldrich humic acid (PAHA) onto α-Al 2O 3 is studied by batch experiments at different pH, ionic strength and coverage ratios R (mg of PAHA by m 2 of mineral surface). After equilibration, samples are centrifuged and the concentration of PAHA in the supernatants is measured. The amount of adsorbed PAHA per m 2 of mineral surface is decreasing with increasing pH. At constant pH value, the amount of adsorbed PAHA increases with initial PAHA concentration until a pH-dependent constant value is reached. UV/Visible specific parameters such as specific absorbance SUVA 254, ratio of absorbance values E 2/E 3 and width of the electron-transfer absorbance band Δ ET are calculated for supernatant PAHA fractions of adsorption experiments at pH 6.8, to have an insight on the evolution of PAHA characteristics with varying coverage ratio. No modification is observed compared to original compound for R≥20mgPAHA/gα-Al2O3. Below this ratio, aromaticity decreases with initial PAHA concentration. Size-exclusion chromatography - organic carbon detection measurements on these supernatants also show a preferential adsorption of more aromatic and higher-sized fractions. Spectrophotometric titrations were done to estimate changes of reactivity of supernatants from adsorption experiments made at pH ≈6.8 and different PAHA concentrations. Evolutions of UV/Visible spectra with varying pH were treated to obtain titration curves that are interpreted within the NICA-Donnan framework. Protonation parameters of non-sorbed PAHA fractions are compared to those obtained for the PAHA before contact with the oxide. The amount of low proton-affinity type of sites and the value of their median affinity constant decrease after adsorption. From PAHA concentration in the supernatant and mass balance calculations, "titration curves" are experimentally proposed for the adsorbed fractions for the first time. These changes in reactivity to our opinion could explain the difficulty

  13. Characterization of humic acid reactivity modifications due to adsorption onto α-Al2O3.

    Science.gov (United States)

    Janot, Noémie; Reiller, Pascal E; Zheng, Xing; Croué, Jean-Philippe; Benedetti, Marc F

    2012-03-01

    Adsorption of purified Aldrich humic acid (PAHA) onto α-Al(2)O(3) is studied by batch experiments at different pH, ionic strength and coverage ratios R (mg of PAHA by m(2) of mineral surface). After equilibration, samples are centrifuged and the concentration of PAHA in the supernatants is measured. The amount of adsorbed PAHA per m(2) of mineral surface is decreasing with increasing pH. At constant pH value, the amount of adsorbed PAHA increases with initial PAHA concentration until a pH-dependent constant value is reached. UV/Visible specific parameters such as specific absorbance SUVA(254), ratio of absorbance values E(2)/E(3) and width of the electron-transfer absorbance band Δ(ET) are calculated for supernatant PAHA fractions of adsorption experiments at pH 6.8, to have an insight on the evolution of PAHA characteristics with varying coverage ratio. No modification is observed compared to original compound for R ≥ 20 mg(PAHA)/g(α)(-)(A)1₂(O)₃. Below this ratio, aromaticity decreases with initial PAHA concentration. Size-exclusion chromatography - organic carbon detection measurements on these supernatants also show a preferential adsorption of more aromatic and higher-sized fractions. Spectrophotometric titrations were done to estimate changes of reactivity of supernatants from adsorption experiments made at pH ≈6.8 and different PAHA concentrations. Evolutions of UV/Visible spectra with varying pH were treated to obtain titration curves that are interpreted within the NICA-Donnan framework. Protonation parameters of non-sorbed PAHA fractions are compared to those obtained for the PAHA before contact with the oxide. The amount of low proton-affinity type of sites and the value of their median affinity constant decrease after adsorption. From PAHA concentration in the supernatant and mass balance calculations, "titration curves" are experimentally proposed for the adsorbed fractions for the first time. These changes in reactivity to our opinion could

  14. Adsorption and activity of Thermomyces lanuginosus lipase on hydrophobic and hydrophilic surfaces measured with dual polarization interferometry (DPI) and confocal microscopy.

    Science.gov (United States)

    Sonesson, Andreas W; Callisen, Thomas H; Brismar, Hjalmar; Elofsson, Ulla M

    2008-02-15

    The adsorption and activity of Thermomyces lanuginosus lipase (TLL) was measured with dual polarization interferometry (DPI) and confocal microscopy at a hydrophilic and hydrophobic surface. In the adsorption isotherms, it was evident that TLL both had higher affinity for the hydrophobic surface and adsorbed to a higher adsorbed amount (1.90 mg/m(2)) compared to the hydrophilic surface (1.40-1.50mg/m(2)). The thickness of the adsorbed layer was constant (approximately 3.5 nm) on both surfaces at an adsorbed amount >1.0mg/m(2), but decreased on the hydrophilic surface at lower surface coverage, which might be explained by partially unfolding of the TLL structure. However, a linear dependence of the refractive index of the adsorbed layer on adsorbed amount of TLL on C18 surfaces indicated that the structure of TLL was similar at low and high surface coverage. The activity of adsorbed TLL was measured towards carboxyfluorescein diacetate (CFDA) in solution, which upon lipase activity formed a fluorescent product. The surface fluorescence intensity increase was measured in a confocal microscope as a function of time after lipase adsorption. It was evident that TLL was more active on the hydrophilic surface, which suggested that a larger fraction of adsorbed TLL molecules were oriented with the active site facing the solution compared to the hydrophobic surface. Moreover, most of the activity remained when the TLL surface coverage decreased. Earlier reports on TLL surface mobility on the same surfaces have found that the lateral diffusion was highest on hydrophilic surfaces and at low surface coverage of TLL. Hence, a high lateral mobility might lead to a longer exposure time of the active site towards solution, thereby increasing the activity against a water-soluble substrate.

  15. A first-principles study of NO adsorption and oxidation on Au(111) surface.

    Science.gov (United States)

    Zhang, Wenhua; Li, Zhenyu; Luo, Yi; Yang, Jinlong

    2008-10-07

    Density functional theory and slab models are employed to study NO molecule adsorption and reaction on clean and atomic oxygen precovered Au(111) surfaces. While clean Au(111) surface is catalytically inert and can only weakly adsorb NO, an atomic oxygen precovered Au(111) surface is found to be very active to NO. On the clean surface, NO prefers to bond at the onefold on-top surface site with a tilted geometry. On 0.33 ML (monolayer) oxygen precovered surface NO reacts with chemisorbed oxygen to form chemisorbed NO(2) by conquering a small energy barrier about 0.18 eV, and the desorption energy of NO(2) is 0.64 eV. On 1.0 ML oxygen coverage surface, no barrier is found while NO reacts with precovered oxygen. The desorption energy of NO(2) is 0.03 eV. The desorption of NO(2) is the rate determining step on both surfaces and the overall reaction barriers are 0.64 and 0.03 eV, respectively. The activation energies depend on the initial coverage of oxygen, which compare favorably with experiments on Au surface with different oxygen coverages.

  16. Coverage Metrics for Model Checking

    Science.gov (United States)

    Penix, John; Visser, Willem; Norvig, Peter (Technical Monitor)

    2001-01-01

    When using model checking to verify programs in practice, it is not usually possible to achieve complete coverage of the system. In this position paper we describe ongoing research within the Automated Software Engineering group at NASA Ames on the use of test coverage metrics to measure partial coverage and provide heuristic guidance for program model checking. We are specifically interested in applying and developing coverage metrics for concurrent programs that might be used to support certification of next generation avionics software.

  17. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  18. Defluoridation of drinking water using adsorption processes.

    Science.gov (United States)

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya; Naidu, Ravi

    2013-03-15

    Excessive intake of fluoride (F), mainly through drinking water, is a serious health hazard affecting humans worldwide. There are several methods used for the defluoridation of drinking water, of which adsorption processes are generally considered attractive because of their effectiveness, convenience, ease of operation, simplicity of design, and for economic and environmental reasons. In this paper, we present a comprehensive and a critical literature review on various adsorbents used for defluoridation, their relative effectiveness, mechanisms and thermodynamics of adsorption, and suggestions are made on choice of adsorbents for various circumstances. Effects of pH, temperature, kinetics and co-existing anions on F adsorption are also reviewed. Because the adsorption is very weak in extremely low or high pHs, depending on the adsorbent, acids or alkalis are used to desorb F and regenerate the adsorbents. However, adsorption capacity generally decreases with repeated use of the regenerated adsorbent. Future research needs to explore highly efficient, low cost adsorbents that can be easily regenerated for reuse over several cycles of operations without significant loss of adsorptive capacity and which have good hydraulic conductivity to prevent filter clogging during the fixed-bed treatment process. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Selective adsorption of bacterial cells onto zeolites.

    Science.gov (United States)

    Kubota, Munehiro; Nakabayashi, Tadashi; Matsumoto, Yuki; Shiomi, Tohru; Yamada, Yusuke; Ino, Keita; Yamanokuchi, Hiroyuki; Matsui, Masayoshi; Tsunoda, Tatsuo; Mizukami, Fujio; Sakaguchi, Kengo

    2008-06-15

    Zeolites adsorb microbial cells on their surfaces and selective adsorption for specific microorganisms was seen with certain zeolites. Tests for the adsorption ability of zeolites were conducted using various established microbial cell lines. Specific cell lines were shown to selectively absorb to certain zeolites, species to species. In order to understand the selectivity of adsorption, we tested adsorption under various pH conditions and determined the zeta-potentials of zeolites and cells. The adsorption of some cell lines depended on the pH, and some microorganisms were preferentially adsorbed at acidic pH. The values of zeta-potentials were used for calculating the electric double layer interaction energy between zeolites and microbial cells. There was a correlation between the experimental adsorption results and the interaction energy. Moreover, we evaluated the surface hydrophobicity of bacterial cells by using the microbial adherence to hydrocarbon (MATH) assay. In addition, we also applied this method for zeolites to quantify relative surface hydrophobicity. As a result, we found a correlation between the adsorption results and the hydrophobicity of bacterial cells and zeolites. These results suggested that adsorption could be explained mainly by electric double layer interactions and hydrophobic interactions. Finally, by using the zeolites Na-BEA and H-Y, we succeeded in clearly separating three representative microbes from a mixture of Escherichia coli, Bacillus subtilis and Staphylococcus aureus. Zeolites could adsorb each of the bacterial cell species with high selectivity even from a mixed suspension. Zeolites can therefore be used as effective carrier materials to provide an easy, rapid and accurate method for cell separation.

  20. Defluoridation of drinking water using adsorption processes

    Energy Technology Data Exchange (ETDEWEB)

    Loganathan, Paripurnanda [Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007 (Australia); Vigneswaran, Saravanamuthu, E-mail: s.vigneswaran@uts.edu.au [Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007 (Australia); Kandasamy, Jaya [Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007 (Australia); Naidu, Ravi [Centre for Cooperative Research for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, Adelaide, SA 5095 (Australia)

    2013-03-15

    Highlights: ► Comprehensive and critical literature review on various adsorbents used for defluoridation. ► pH, temperature, kinetics and co-existing anions effects on F adsorption. ► Choice of adsorbents for various circumstances. ► Adsorption thermodynamics and mechanisms. ► Future research on efficient, low cost adsorbents which are easily regenerated. -- Abstract: Excessive intake of fluoride (F), mainly through drinking water, is a serious health hazard affecting humans worldwide. There are several methods used for the defluoridation of drinking water, of which adsorption processes are generally considered attractive because of their effectiveness, convenience, ease of operation, simplicity of design, and for economic and environmental reasons. In this paper, we present a comprehensive and a critical literature review on various adsorbents used for defluoridation, their relative effectiveness, mechanisms and thermodynamics of adsorption, and suggestions are made on choice of adsorbents for various circumstances. Effects of pH, temperature, kinetics and co-existing anions on F adsorption are also reviewed. Because the adsorption is very weak in extremely low or high pHs, depending on the adsorbent, acids or alkalis are used to desorb F and regenerate the adsorbents. However, adsorption capacity generally decreases with repeated use of the regenerated adsorbent. Future research needs to explore highly efficient, low cost adsorbents that can be easily regenerated for reuse over several cycles of operations without significant loss of adsorptive capacity and which have good hydraulic conductivity to prevent filter clogging during the fixed-bed treatment process.

  1. A GPS coverage model

    Science.gov (United States)

    Skidmore, Trent A.

    1994-01-01

    The results of several case studies using the Global Positioning System coverage model developed at Ohio University are summarized. Presented are results pertaining to outage area, outage dynamics, and availability. Input parameters to the model include the satellite orbit data, service area of interest, geometry requirements, and horizon and antenna mask angles. It is shown for precision-landing Category 1 requirements that the planned GPS 21 Primary Satellite Constellation produces significant outage area and unavailability. It is also shown that a decrease in the user equivalent range error dramatically decreases outage area and improves the service availability.

  2. adsorption, eosin, humic, peat

    OpenAIRE

    Anshar, Andi Muhammad

    2015-01-01

    Eosin is one of the dyes commonly used in the industry and has the potential to cause pollution of the water environment. The Eosin pollution treatment methods used in this study was the adsorption method using humin fraction obtained from the peat land comes from Kalimantan. From the research data showed that the adsorption of eosin in humin result of washing with HCl / HF optimum at pH 4 and a contact time of 60 minutes with the adsorption-order rate was 8,4 x 10-3 min-1

  3. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  4. Hybrid adsorptive membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  5. Symmetry effects in reversible random sequential adsorption on a triangular lattice.

    Science.gov (United States)

    Budinski-Petković, Lj; Petković, M; Jaksić, Z M; Vrhovac, S B

    2005-10-01

    Reversible random sequential adsorption of objects of various shapes on a two-dimensional triangular lattice is studied numerically by means of Monte Carlo simulations. The growth of the coverage rho(t) above the jamming limit to its steady-state value rho(infinity) is described by a pattern rho(t) = rho(infinity - deltarhoE(beta)[-(t/tau)beta], where E(beta) denotes the Mittag-Leffler function of order beta element of (0, 1). The parameter tau is found to decay with the desorption probability P_ according to a power law tau = AP_(-gamma). The exponent gamma is the same for all shapes, gamma = 1.29 +/- 0.01, but the parameter A depends only on the order of symmetry axis of the shape. Finally, we present the possible relevance of the model to the compaction of granular objects of various shapes.

  6. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently

  7. Coverage statistics for sequence census methods

    Directory of Open Access Journals (Sweden)

    Evans Steven N

    2010-08-01

    Full Text Available Abstract Background We study the statistical properties of fragment coverage in genome sequencing experiments. In an extension of the classic Lander-Waterman model, we consider the effect of the length distribution of fragments. We also introduce a coding of the shape of the coverage depth function as a tree and explain how this can be used to detect regions with anomalous coverage. This modeling perspective is especially germane to current high-throughput sequencing experiments, where both sample preparation protocols and sequencing technology particulars can affect fragment length distributions. Results Under the mild assumptions that fragment start sites are Poisson distributed and successive fragment lengths are independent and identically distributed, we observe that, regardless of fragment length distribution, the fragments produced in a sequencing experiment can be viewed as resulting from a two-dimensional spatial Poisson process. We then study the successive jumps of the coverage function, and show that they can be encoded as a random tree that is approximately a Galton-Watson tree with generation-dependent geometric offspring distributions whose parameters can be computed. Conclusions We extend standard analyses of shotgun sequencing that focus on coverage statistics at individual sites, and provide a null model for detecting deviations from random coverage in high-throughput sequence census based experiments. Our approach leads to explicit determinations of the null distributions of certain test statistics, while for others it greatly simplifies the approximation of their null distributions by simulation. Our focus on fragments also leads to a new approach to visualizing sequencing data that is of independent interest.

  8. Hydrogen isotope adsorption on nano-carbons

    Energy Technology Data Exchange (ETDEWEB)

    Hideki, Tanaka; Daisuke, Noguchi [Chiba Univ., Diversity and Fractal Science, Graduate School of Science and Technology, (Japan); Hirofumi, Kanoh; Katsumi, Kaneko [Chiba Univ., Dept. of Chemistry, Faculty of Science (Japan)

    2005-07-01

    at 77 K together with a configurational snapshot of adsorbed H{sub 2} collected from the simulation. The quantum effective solid-fluid interaction potentials of the hydrogen isotopes in the interstitial charnel of the (10,10) nano-tube bundle show a smearing of the classical potential depending on the mass of the hydrogen isotopes, that is, an absolute magnitude of the effective potential minimum for the SWNH-H{sub 2} interaction is always smaller than that for SWNH-D{sub 2} interaction at low temperatures. Therefore, simulated adsorption isotherms of H{sub 2} on the SWNT bundle model exhibited smaller adsorption than D{sub 2} as the results of quantum effects at 77 K. Comparison between the experiments and simulations on the nano-carbons will be shown in detail. Selectivities of D{sub 2} over H{sub 2} at 77 K were also estimated by ideal adsorption solution theory (IAST) with single component adsorption isotherms from the experiment and simulations. The average selectivity of D{sub 2} from the experiments for the respective samples is about 1.2 in a limit of low pressure. However, the selectivity for the (10,10) nano-tube from the simulations was ca. 2.8 at 77 K. This value is relatively high compared with zeolites like 3A and 13X. [1]Q. Wang, J. K. Johnson, J. Q. Broughton, J. Chem. Phys., 107, 5108, 1997. [2]Q. Wang, J. K. Johnson, J. Chem. Phys., 110, 577, 1999. [3]H. Tanaka, H. Kanoh, M. Yudasaka, S. Iijima, and K Kaneko, J. Am. Chem. Soc., in press. (authors)

  9. Hydrogen isotope adsorption on nano-carbons

    Energy Technology Data Exchange (ETDEWEB)

    Hideki Tanaka; Daisuke Noguchi [Diversity and Fractal Science, Graduate School of Science and Technology, Chiba University 1-33 Yayoi, Inage, Chiba 263-8522, (Japan); Hirofumi Kanoh; Katsumi Kaneko [Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, (Japan)

    2005-07-01

    together with a configurational snapshot of adsorbed H{sub 2} collected from the simulation. The quantum effective solid-fluid interaction potentials of the hydrogen isotopes in the interstitial channel of the (10,10) nano-tube bundle show a smearing of the classical potential depending on the mass of the hydrogen isotopes, that is, an absolute magnitude of the effective potential minimum for the SWNH-H{sub 2} interaction is always smaller than that for SWNH-D{sub 2} interaction at low temperatures. Therefore, simulated adsorption isotherms of H{sub 2} on the SWNT bundle model exhibited smaller adsorption than D{sub 2} as the results of quantum effects at 77 K. Comparison between the experiments and simulations on the nano-carbons will be shown in detail. Selectivities of D{sub 2} over H{sub 2} at 77 K were also estimated by ideal adsorption solution theory (IAST) with single component adsorption isotherms from the experiment and simulations. The average selectivity of D{sub 2} from the experiments for the respective samples is about 1.2 in a limit of low pressure. However, the selectivity for the (10,10) nano-tube from the simulations was ca. 2.8 at 77 K. This value is relatively high compared with zeolites like 3A and 13X. (authors)

  10. Neptunium(V) adsorption to calcite.

    Science.gov (United States)

    Heberling, Frank; Brendebach, Boris; Bosbach, Dirk

    2008-12-12

    The migration behavior of the actinyl ions U(VI)O2(2+), Np(V)O2+ and Pu(V,VI)O2(+,2+) in the geosphere is to a large extend controlled by sorption reactions (inner- or outer-sphere adsorption, ion-exchange, coprecipitation/structural incorporation) with minerals. Here NpO2+ adsorption onto calcite is studied in batch type experiments over a wide range of pH (6.0-9.4) and concentration (0.4 microM-40 microM) conditions. pH is adjusted by variation of CO2 partial pressure. Adsorption is found to be pH dependent with maximal adsorption at pH 8.3 decreasing with increasing and decreasing pH. pH dependence of adsorption decreases with increasing Np(V) concentration. EXAFS data of neptunyl adsorbed to calcite and neptunyl in the supernatant shows differences in the Np(V)-O-yl distance, 1.85+/-0.01 angstroms for the adsorbed and 1.82+/-0.01 angstroms for the solution species. The equatorial environment of the neptunyl in solution shows about 5 oxygen neighbours at 2.45+/-0.02 angstroms. For adsorbed neptunyl there are also about 5 oxygen neighbours at 2.46+/-0.01 angstroms. An additional feature in the adsorbed species' R-space spectrum can be related to carbonate neighbours, 3 to 6 carbon backscatterers (C-eq) at 3.05+/-0.03 angstroms and 3 to 6 oxygen backscatterers (O-eq2) at 3.31+/-0.02 angstroms. The differences in the Np(V)-O-yl distance and the C-eq and O-eq2 backscatterers which are only present for the adsorbed species indicate inner-sphere bonding of the adsorbed neptunyl species to the calcite surface. Experiments on adsorption kinetics indicate that after a fast surface adsorption process a continuous slow uptake occurs which may be explained by incorporation via surface dissolution and reprecipitation processes. This is also indicated by the part irreversibility of the adsorption as shown by increased KD values after desorption compared to adsorption.

  11. NO adsorption studies on silicene nanosheet: DFT investigation

    Energy Technology Data Exchange (ETDEWEB)

    Chandiramouli, R., E-mail: rcmoulii@gmail.com [School of Electrical & Electronics Engineering, SASTRA University, Tirumalaisamudram, Thanjavur 613 401 (India); Srivastava, Anurag [Advanced Materials Research Group, Computational Nanoscience & Technology Laboratory, ABV-Indian Institute of Information Technology & Management Gwalior (M.P.), Gwalior 474 015 (India); Nagarajan, V. [School of Electrical & Electronics Engineering, SASTRA University, Tirumalaisamudram, Thanjavur 613 401 (India)

    2015-10-01

    Graphical abstract: - Highlights: • The adsorption characteristics of NO on silicene nanosheets are studied using density functional theory. • The NO adsorption characteristics are studied in pristine, Al and P substituted silicene nanosheet. • NO adsorption properties depend on adsorbed energy, HOMO-LUMO gap and Mulliken charge transfer. • The substitution of P atoms in silicene nanosheet enhances the NO adsorption properties. - Abstract: The electronic properties, structural stability and nitric oxide (NO) adsorption characteristics on pristine, Al and P substituted silicene nanosheet are studied using density functional theory with B3LYP/LanL2DZ basis set. The structural stability of silicene nanostructure is discussed in terms of formation energy. The formation energy, dipole moment, point symmetry, ionization potential and electron affinity of silicene nanosheet are reported. The adsorption characteristics of NO on silicene nanosheet are explored in terms of adsorption energy, energy gap and Mulliken charge transfer. The favorable adsorption site of NO on silicene nanosheet is identified and reported. From the observations, it is inferred that the adsorption characteristics of NO are prominent on pristine and P substituted silicene nanosheet.

  12. Adsorption of thermomonospora fusca E(5) cellulase on silanized silica.

    Science.gov (United States)

    Suvajittanont, W; McGuire, J; Bothwell, M K

    2000-01-05

    The adsorption kinetics and dodeceyltrimethylammonium-bromide-mediated elution of Thermomonospora fusca E(5) cellulase were recorded in situ, at hydrophobic, silanized silica. Experiments were performed at different solution concentrations, ranging from 0.001 to 0.70 mg/mL. Plateau values of adsorbed mass generally increased with increasing solution concentration, with the adsorbed layer being only partially eluted by buffer. Treatment with surfactant removed more of the adsorbed enzyme in each case, with the remaining adsorbed mass varying little among experiments. Adsorption of E(5) into this nonremovable state was suggested to occur early in the adsorption process and continue until some critical surface concentration was reached. Beyond this critical value of adsorbed mass, adsorption progressed with the protein adopting more loosely bound states. Adsorption kinetic data were interpreted with reference to an adsorption mechanism allowing for irreversible adsorption into two dissimilar states. These states were distinguished by differences in occupied interfacial area, and binding strength, presumably a result of differences in structure. Comparison of the data to the kinetic model based on this mechanism showed that the fraction of adsorbed molecules present in the more tightly bound state decreased as adsorption occurred from solutions of increasing concentration. However, the absolute values of more tightly bound molecules were less dependent on adsorption conditions. Copyright 2000 John Wiley & Sons, Inc.

  13. Conformational changes of fibrinogen after adsorption.

    Science.gov (United States)

    Clarke, Matthew L; Wang, Jie; Chen, Zhan

    2005-11-24

    The adsorption behavior of fibrinogen to two biomedical polyurethanes and a perfluorinated polymer has been investigated. Changes in the secondary structure of adsorbed fibrinogen were monitored using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and sum frequency generation vibrational spectroscopy (SFG). SFG measurements were performed in the amide I range as well as in the C-H/N-H stretching range. Amide I signals from SFG demonstrate that fibrinogen has post-adsorption conformational changes that are dependent upon the polymer surface properties. For example, strong attenuation of the amide I and N-H stretching signals with increasing residence time was observed for fibrinogen adsorbed to poly(ether urethane) but not for the other two polymers. This change is not readily observed by ATR-FTIR. Differences in the observed spectral changes for fibrinogen adsorbed to each polymer are explained by different initial binding mechanisms and post-adsorption conformational changes.

  14. Adsorption-induced Pore Expansion and Contraction in Activated Carbon

    Science.gov (United States)

    Connolly, Matthew; Wexler, Carlos

    2012-02-01

    Adsorbent materials such as activated carbon and Metal-Organic Frameworks (MOFs) have received significant attention as a potential storage material for hydrogen and natural gas.1 Typically the adsorbent material is assumed to consist of rigid slit- or cylindrical-shaped pores. Recent work has revealed the importance of the mechanical response of the adsorbent in the presence of an adsorbate. Here, we first demonstrate the flexibility of pore walls in activated carbon and the effect this has on the pore structure of the bulk samples. The interaction is modeled as a competition between Van der Waals interactions between neighboring walls and a resistance to bending due to the rigidity of graphene. Minimal energy configurations were calculated analytically for a simplified potential and numerically for a more realistic potential. The pore structures are discussed in the context of pore measurements on activated carbon samples. Following recent work by Cole and Neimark, large pressures due to an adsorbed film are predicted in the narrow pores of activated carbon. The coverage-dependent nature of adsorbed-film pressure, indicating a pressure-variant pore structure, is discussed in terms of adsorption isotherms.

  15. Surface organization and cooperativity during nonspecific protein adsorption events.

    Science.gov (United States)

    Rabe, Michael; Verdes, Dorinel; Zimmermann, Jan; Seeger, Stefan

    2008-11-06

    Despite many experimental studies on cooperative effects during protein adsorption events, this phenomenon is still poorly characterized and subject of much controversy. In this study, we address the topic of cooperativity using two distinct experimental approaches, namely, kinetic analysis and surface imaging, both based on supercritical angle fluorescence (SAF) microscopy. Several model systems comprising the two proteins BSA and fibrinogen, two different ionic strength conditions and varying pH environments were investigated. The combination of the experimental information obtained from kinetic analysis and from real-time in situ scan images unravel a clear correlation between cooperative adsorption and a heterogeneous protein layer build-up. We propose a mechanistic model of protein adsorption based on an overlap of classical Langmuir-type adsorption on unoccupied surface areas and an additional cooperative adsorption pathway near preadsorbed proteins which is consistent with the experimental observations. Moreover, the growth of two-dimensional surface clusters as an often assumed element of cooperativity could be excluded for the studied systems. The model includes the often observed phenomenon that the adsorption rate decelerates abruptly above a certain coverage limit. Furthermore, the observed evolution of the heterogeneous protein distribution on the surface is in good agreement with the proposed model.

  16. Factors affecting drug adsorption on beta zeolites.

    Science.gov (United States)

    Pasti, Luisa; Sarti, Elena; Cavazzini, Alberto; Marchetti, Nicola; Dondi, Francesco; Martucci, Annalisa

    2013-05-01

    The adsorption behaviour of three commonly used drugs, namely ketoprofen, hydrochlorothiazide and atenolol, from diluted aqueous solutions on beta zeolites with different SiO2/Al2O3 ratio (i.e. 25, 38 and 360) was investigated by changing the ionic strength and the pH, before and after thermal treatment of the adsorbents. The selective adsorption of drugs was confirmed by thermogravimetry and X-ray diffraction. The adsorption capacity of beta zeolites was strongly dependent on both the solution pH and the alumina content of the adsorbent. Such a remarkable difference was interpreted as a function of the interactions between drug molecules and zeolite surface functional groups. Atenolol was readily adsorbed on the less hydrophobic zeolite, under pH conditions in which electrostatic interactions were predominant. On the other hand, ketoprofen adsorption was mainly driven by hydrophobic interactions. For undissociated molecules the adsorption capability increased with the increase of hydrophobicity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Adsorption of Cadmium By Silica Chitosan

    Directory of Open Access Journals (Sweden)

    Moftah Ali

    2013-03-01

    Full Text Available The adsorption process depends on initial concentration of Cd2+ and ratio of  chitosan in adsorbent. The present study deals with the competitive adsorption of Cd2+ ion onto silica graft with chitosan. Batch adsorption experiments were performed at five different initial Cd2+ concentrations (5, 10, 15, 20 and 25 ppm, on five different proportion from silica to chitosan (100%, 95%, 85%, 75% and 65% as adsorbent at pH 5. In the recovery process, the high recovery at 0.5 mg and observed the recovery decrease with increasing the initial concentration of Cd2+, and the low recovery at 0.25 mg from Cd2+. In this study, the adsorption capacity of Cd2+ in regard to the ratio of silica and chitosan hybrid adsorbents are examined in detail. The aim of this study to explore effects of initial concentrations of Cd2+, and the ratio of silica to chitosan on the adsorption and recovery of Cd2+.

  18. Potassium adsorption on β-FeSi 2 thin films

    Science.gov (United States)

    Kennou, S.; Tan, T. A. Nguyen

    1991-05-01

    Potassium adsorption on thin β-FeSi 2 epitaxially grown on Si(111) was studied with ultra-violet photoemission spectroscopy (UPS), Auger electron spectroscopy (AES) and work function (WF) measurements. A value of (4.65 ± 0.03) eV was measured for the absolute WF of the suicide surface. A combination of the experimental results upon K deposition indicates a plausible mode of K adsorption on β-FeSi 2. Initially K adsorbs on Si triangular sites with a Fe atom underneath up to a coverage of ~ 2 × 10 14 atoms cm -2 and then on Si triangular sites with no Fe underneath up to a saturation coverage of ~ 2 × 10 14 atoms cm -2.

  19. Adsorption of Geosmin and MIB on Activated Carbon Fibers-Single and Binary Solute System

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Rangesh; Sorial, George A., E-mail: george.sorial@uc.ed [University of Cincinnati, Department of Civil and Environmental Engineering (United States)

    2009-08-15

    The adsorption of two taste- and odor-causing compounds, namely MIB (2-methyl isoborneol-C{sub 11}H{sub 20}O) and geosmin (C{sub 12}H{sub 22}O) on activated carbon was investigated in this study. The impact of adsorbent pore size distribution on adsorption of MIB and geosmin was evaluated through single solute and multicomponent adsorption of these compounds on three types of activated carbon fibers (ACFs) and one granular activated carbon (GAC). The ACFs (ACC-15, ACC-20, and ACC-25) with different degrees of activation had narrow pore size distributions and specific critical pore diameters whereas the GAC (F-400) had a wider pore size distribution and lesser microporosity. The effect of the presence of natural organic matter (NOM) on MIB and geosmin adsorption was also studied for both the single solute and binary systems. The Myers equation was used to evaluate the single solute isotherms as it converges to Henry's law at low coverage and also serves as an input for predicting multicomponent adsorption. The single solute adsorption isotherms fit the Myers equation well and pore size distribution significantly influenced adsorption on the ACFs and GAC. The ideal adsorbed solute theory (IAST), which is a well-established thermodynamic model for multicomponent adsorption, was used to predict the binary adsorption of MIB and geosmin. The IAST predicted well the binary adsorption on the ACFs and GAC. Binary adsorption isotherms were also conducted in the presence of oxygen (oxic) and absence of oxygen (anoxic). There were no significant differences in the binary isotherm between the oxic and anoxic conditions, indicating that adsorption was purely through physical adsorption and no oligomerization was taking place. Binary adsorptions for the four adsorbents were also conducted in the presence of humic acid to determine the effect of NOM and to compare with IAST predictions. The presence of NOM interestingly resulted in deviation from IAST behavior in case of two

  20. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  1. Local Coverage Optimization Strategy Based on Voronoi for Directional Sensor Networks

    Directory of Open Access Journals (Sweden)

    Guanglin Zhang

    2016-12-01

    Full Text Available In this paper, we study the area coverage of directional sensor networks (DSNs with random node distribution. The coverage of DSNs depends on the sensor’s locations, the sensing radiuses, and the working directions, as well as the angle of view (AoV, which is challenging to analyze. We transform the network area coverage problem into cell coverage problems by exploiting the Voronoi diagram, which only needs to optimize local coverage for each cell in a decentralized way. To address the cell coverage problem, we propose three local coverage optimization algorithms to improve the cell coverage, namely Move Inside Cell Algorithm (MIC, Rotate Working Direction Algorithm (RWD and Rotation based on boundary (RB, respectively. Extensive simulations are performed to prove the effectiveness of our proposed algorithms in terms of the coverage ratio.

  2. Immunisation coverage annual report, 2009.

    Science.gov (United States)

    Hull, Brynley; Dey, Aditi; Mahajan, Deepika; Menzies, Rob; McIntyre, Peter B

    2011-06-01

    This, the third annual immunisation coverage report, documents trends during 2009 for a range of standard measures derived from Australian Childhood Immunisation Register data, including overall coverage at standard age milestones and for individual vaccines included on the National Immunisation Program (NIP). Coverage by Indigenous status and mapping by smaller geographic areas as well as trends in timeliness is also summarised according to standard templates. With respect to overall coverage, the Immunise Australia Program targets have been reached for children at 12 and 24 months of age but not for children at 5 years of age. Coverage at 24 months of age exceeds that at 12 months of age, but as receipt of varicella vaccine at 18 months is excluded from calculations of 'fully immunised' this probably represents delayed immunisation, with some contribution from immunisation incentives. Similarly, the decrease in coverage estimates for immunisations due at 4 years of age from March 2008 is primarily due to changing the assessment age from 6 years to 5 years of age from December 2007. With respect to individual vaccines, a number of those available on the NIP are not currently assessed for 'fully immunised' status or for eligibility for incentive payments. These include pneumococcal conjugate and meningococcal C conjugate vaccines, for which coverage is comparable with vaccines that are assessed for 'fully immunised' status, and rotavirus and varicella vaccines for which coverage is lower. Coverage is also suboptimal for vaccines recommended for Indigenous children only (i.e. hepatitis A and pneumococcal polysaccharide vaccine) as previously reported for other vaccines for both children and adults. Delayed receipt of vaccines is an important issue for vaccines recommended for Indigenous children and has not improved among non-Indigenous children despite improvements in coverage at the 24-month milestone. Although Indigenous children in Australia have coverage levels

  3. High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system

    Science.gov (United States)

    Palodkar, Avinash V.; Anupam, Kumar; Roy, Zunipa; Saha, B. B.; Halder, G. N.

    2017-10-01

    Adsorption characteristics of nitrogen onto granular activated carbon for the wide range of temperature (303-323 K) and pressure (0.2027-2.0265 MPa) have been reported for a single bed pressure swing adsorption refrigeration system. The experimental data were fitted to Langmuir, Dubinin-Astakhov and Dubinin-Radushkevich (D-R) isotherms. The Langmuir and D-R isotherm models were found appropriate in correlating experimental adsorption data with an average relative error of ±2.0541% and ±0.6659% respectively. The isosteric heat of adsorption data were estimated as a function of surface coverage of nitrogen and temperature using D-R isotherm. The heat of adsorption was observed to decrease from 12.65 to 6.98 kJ.mol-1 with an increase in surface concentration at 303 K and it followed the same pattern for other temperatures. It was found that an increase in temperature enhances the magnitude of the heat of adsorption.

  4. Universal Health Coverage: A Political Struggle and Governance Challenge

    Science.gov (United States)

    Méndez, Claudio A.

    2015-01-01

    Universal health coverage has become a rallying cry in health policy, but it is often presented as a consensual, technical project. It is not. A review of the broader international literature on the origins of universal coverage shows that it is intrinsically political and cannot be achieved without recognition of its dependence on, and consequences for, both governance and politics. On one hand, a variety of comparative research has shown that health coverage is associated with democratic political accountability. Democratization, and in particular left-wing parties, gives governments particular cause to expand health coverage. On the other hand, governance, the ways states make and implement decisions, shapes any decision to strive for universal health coverage and the shape of its implementation. PMID:26180991

  5. Mediating Trust in Terrorism Coverage

    DEFF Research Database (Denmark)

    Mogensen, Kirsten

    crisis. While the framework is presented in the context of television coverage of a terror-related crisis situation, it can equally be used in connection with all other forms of mediated trust. Key words: National crisis, risk communication, crisis management, television coverage, mediated trust....

  6. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.

    Science.gov (United States)

    Guo, Xuejun; Wu, Zhijun; He, Mengchang; Meng, Xiaoguang; Jin, Xin; Qiu, Nan; Zhang, Jing

    2014-07-15

    Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl3, was oxidized into Sb(V) probably due to the involvement of O2 in the long duration of sample preservation. Only one Sb-Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0-1.9 attributed to bidentate mononuclear edge-sharing ((2)E) between Sb and HFO. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Modelling focused electron beam induced deposition beyond Langmuir adsorption

    Directory of Open Access Journals (Sweden)

    Dédalo Sanz-Hernández

    2017-10-01

    Full Text Available In this work, the continuum model for focused electron beam induced deposition (FEBID is generalized to account for multilayer adsorption processes. Two types of adsorption energies, describing both physisorption and spontaneous chemisorption, are included. Steady state solutions under no diffusion are investigated and compared under a wide range of conditions. The different growth regimes observed are fully explained by relative changes in FEBID characteristic frequencies. Additionally, we present a set of FEBID frequency maps where growth rate and surface coverage are plotted as a function of characteristic timescales. From the analysis of Langmuir, as well as homogeneous and heterogeneous multilayer maps, we infer that three types of growth regimes are possible for FEBID under no diffusion, resulting into four types of adsorption isotherms. We propose the use of these maps as a powerful tool for the analysis of FEBID processes.

  8. Adsorption of ammonia at GaN(0001 surface in the mixed ammonia/hydrogen ambient - a summary of ab initio data

    Directory of Open Access Journals (Sweden)

    Paweł Kempisty

    2014-11-01

    Full Text Available Adsorption of ammonia at NH3/NH2/H-covered GaN(0001 surface was analyzed using results of ab initio calculations. The whole configuration space of partially NH3/NH2/H-covered GaN(0001 surface was divided into zones of differently pinned Fermi level: at the Ga broken bond state for dominantly bare surface (region I, at the valence band maximum (VBM for NH2 and H-covered surface (region II, and at the conduction band minimum (CBM for NH3-covered surface (region III. The electron counting rule (ECR extension was formulated for the case of adsorbed molecules. The extensive ab intio calculations show the validity of the ECR in case of all mixed H-NH2-NH3 coverages for the determination of the borders between the three regions. The adsorption was analyzed using the recently identified dependence of the adsorption energy on the charge transfer at the surface. For region I ammonia adsorbs dissociatively, disintegrating into a H adatom and a HN2 radical for a large fraction of vacant sites, while for region II adsorption of ammonia is molecular. The dissociative adsorption energy strongly depends on the Fermi level at the surface (pinned and in the bulk (unpinned while the molecular adsorption energy is determined by bonding to surface only, in accordance to the recently published theory. Adsorption of Ammonia in region III (Fermi level pinned at CBM leads to an unstable configuration both molecular and dissociative, which is explained by the fact that broken Ga-bonds are doubly occupied by electrons. The adsorbing ammonia brings 8 electrons to the surface, necessitating the transfer of these two electrons from the Ga broken bond state to the Fermi level. This is an energetically costly process. Adsorption of ammonia at H-covered site leads to the creation of a NH2 radical at the surface and escape of H2 molecule. The process energy is close to 0.12 eV, thus not large, but the direct inverse process is not possible due to the escape of the hydrogen

  9. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  10. From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111)

    Science.gov (United States)

    Mette, Gerson; Sutter, Denys; Gurdal, Yeliz; Schnidrig, Stephan; Probst, Benjamin; Iannuzzi, Marcella; Hutter, Jürg; Alberto, Roger; Osterwalder, Jürg

    2016-04-01

    The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting

  11. Effective coverage: a metric for monitoring Universal Health Coverage.

    Directory of Open Access Journals (Sweden)

    Marie Ng

    2014-09-01

    Full Text Available A major challenge in monitoring universal health coverage (UHC is identifying an indicator that can adequately capture the multiple components underlying the UHC initiative. Effective coverage, which unites individual and intervention characteristics into a single metric, offers a direct and flexible means to measure health system performance at different levels. We view effective coverage as a relevant and actionable metric for tracking progress towards achieving UHC. In this paper, we review the concept of effective coverage and delineate the three components of the metric - need, use, and quality - using several examples. Further, we explain how the metric can be used for monitoring interventions at both local and global levels. We also discuss the ways that current health information systems can support generating estimates of effective coverage. We conclude by recognizing some of the challenges associated with producing estimates of effective coverage. Despite these challenges, effective coverage is a powerful metric that can provide a more nuanced understanding of whether, and how well, a health system is delivering services to its populations.

  12. Spontaneous adsorption and electrochemical behaviour of safranine O at electrochemically activated glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Abdessamad, NourElHouda [Laboratoire de Chimie Analytique et d' Electrochimie, Institut National des Sciences Appliquees et de Technologie, Centre Urbain Nord B.P. No. 676, 1080 Tunis Cedex (Tunisia); Adhoum, Nafaa, E-mail: Nafaa.adhoum@insat.rnu.tn [Laboratoire de Chimie Analytique et d' Electrochimie, Institut National des Sciences Appliquees et de Technologie, Centre Urbain Nord B.P. No. 676, 1080 Tunis Cedex (Tunisia)

    2009-08-15

    The adsorption behaviour of safranine O (SO) at electrochemically pretreated glassy carbon electrodes has been studied. It was found that SO adsorption depended on the properties of the electrode surface, as determined by the nature and duration of the activation step. It was noticed that SO was adsorbed spontaneously and strongly on the surface of anodically pretreated electrode. The electrochemical behaviour of the modified electrode was investigated in H{sub 2}SO{sub 4} (0.25 M) using cyclic voltammetry (CV). A reversible two electron, two proton wave was observed at -180 mV vs. SCE and the formal potential was found to be decreasing upon increasing the solution pH (-56.8 mV pH{sup -1}). The modified electrode exhibited good stability on repeated scanning between -500 and 200 mV vs. SCE, causing only 5% decrease in the peak height after 100 cycles at a scan rate of 20 mV s{sup -1}. The surface coverage was calculated to be 0.812 nmol cm{sup -2} and the electron transfer rate constant (k{sub s}{sup 0}=1.45s{sup -1}) and transfer coefficient ({alpha} = 0.43) for the adsorbed SO were evaluated using the Laviron method. The modified electrode clearly showed good electrocatalytic ability for oxygen reduction to H{sub 2}O{sub 2}.

  13. Sum-frequency generation of acetate adsorption on Au and Pt surfaces: Molecular structure effects

    Science.gov (United States)

    Braunschweig, Björn; Mukherjee, Prabuddha; Kutz, Robert B.; Wieckowski, Andrzej; Dlott, Dana D.

    2010-12-01

    The reversible adsorption of acetate on polycrystalline Au and Pt surfaces was investigated with broadband sum-frequency generation (SFG) and cyclic voltammetry. Specifically adsorbed acetate as well as coadsorbed sulfuric acid anions are observed for the first time with SFG and give rise to dramatically different SFG intensities on Au and Pt surfaces. While similar coverages of acetate adlayers on Au and Pt surfaces are well established by previous studies, an identification of the interfacial molecular structure has been elusive. However, we have applied the high sensitivity of SFG for interfacial polar ordering to identify different acetate structures at Au and Pt surfaces in contact with HClO4 and H2SO4 electrolytes. Acetate competes with the formation of surface oxides and shifts the oxidation threshold of both Au and Pt electrodes anodically. Effects of the supporting electrolyte on the formation of acetate adlayers are revealed by comparing SFG spectra in HClO4 and H2SO4 solutions: Sulfuric acid anions modify the potential-dependent acetate adsorption, compete with adsorbed acetate on Au and coadsorb with acetate on Pt surfaces.

  14. Adsorption of biomedical coating molecules, amino acids, and short peptides on magnetite (110)

    Science.gov (United States)

    Aschauer, Ulrich; Selloni, Annabella

    2015-07-01

    Superparamagnetic iron oxide nanoparticles for biomedical applications are usually coated with organic molecules to form a steric barrier against agglomeration. The stability of these coatings is well established in the synthesis medium but is more difficult to assess in physiological environment. To obtain a first theoretical estimate of their stability in such an environment, we perform density functional theory calculations of the adsorption of water, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) coating molecules, as well as the monomer and dimer of glycine as a prototype short peptide, on the (110) surface of magnetite (Fe3O4) in vacuo. Our results show that PVA binds significantly stronger to the surface than both PEG and glycine, while the difference between the latter two is quite small. Depending on the coverage, the water adsorption strength is intermediate between PVA and glycine. Due to its strongly interacting OH side groups, PVA is likely to remain bound to the surface in the presence of short peptides. This stability will have to be further assessed by molecular dynamics in the solvated state for which the present work forms the basis.

  15. Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti-6.5Al-1Mo-1V-2Zr

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianhua; Zhan Zhongwei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yu Mei, E-mail: yumei@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li Songmei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of glycidoxypropyl-trimethoxy-silane (GTMS) on a titanium alloy was found fitting Temkin isotherm by XPS. Black-Right-Pointing-Pointer From an electrochemical point of view, the in situ adsorption process of GTMS molecules agreed with XPS results. Black-Right-Pointing-Pointer At 30 Degree-Sign C, the adsorption of GTMS molecules is spontaneous, and follows a chemisorption-based mechanism. - Abstract: The adsorption behavior of glycidoxypropyl-trimethoxy-silane (GTMS) on titanium alloy Ti-6.5Al-1Mo-1V-2Zr was investigated by using X-ray photoelectron spectroscopy (XPS), Tafel polarization test, and electrochemical impedance spectroscopy (EIS). From the XPS results, it was found that the silane coverage on the titanium surface generally increased with GTMS concentration, with a slight decrease at concentration of 0.1%. Based on the relationship between isoelectronic point (IEP) of titanium surface and the pH values of silane solutions, adsorption mechanisms at different concentrations were proposed. The surface coverage data of GTMS on titanium surface was also derived from electrochemical measurements. By linear fitting the coverage data, it revealed that the adsorption of GTMS on the titanium alloy surface at 30 Degree-Sign C was of a physisorption-based mechanism, and obeyed Langmuir adsorption isotherm. The adsorption equilibrium constant (K{sub ads}) and free energy of adsorption process ({Delta}G{sub ads}) were calculated to elaborate the mechanism of GTMS adsorption.

  16. Studies on removal of metribuzin, bromacil, 2,4-D and atrazine from water by adsorption on high area carbon cloth.

    Science.gov (United States)

    Ayranci, Erol; Hoda, Numan

    2004-08-09

    The removal of pesticides such as metribuzin, bromacil, 2,4-d and atrazine from aqueous solutions was studied by adsorption on high area carbon cloth. The adsorption process was followed by in situ UV-spectrophotometric technique in a specially designed adsorption cell. Spectroscopic data of the pesticides were determined in separate experiments. The extent of adsorption was quantified by calculating the amount of adsorbate adsorbed per unit area of the carbon cloth and the percentage coverage at the carbon-cloth surface. The order of extent of adsorption of the pesticides studied was found as metribuzin metribuzin.

  17. First-principles calculation of adsorption of shale gas on CaCO3 (100) surfaces.

    Science.gov (United States)

    Luo, Qiang; Pan, Yikun; Guo, Ping; Wang, Zhouhua; Wei, Na; Sun, Pengfei; Liu, Yuxiao

    2017-06-16

    To demonstrate the adsorption strength of shale gas to calcium carbonate in shale matrix, the adsorption of shale gas on CaCO3 (100) surfaces was studied using the first-principles method, which is based on the density functional theory (DFT). The structures and electronic properties of CH4, C2H6, CO2 and N2 molecules were calculated by the generalized gradient approximation (GGA), for a coverage of 1 monolayer (ML). Under the same conditions, the density of states (DOS) of CaCO3 (100) surfaces before and after the adsorption of shale gas molecules at high-symmetry adsorption sites were compared. The results showed that the adsorption energies of CH4, C2H6, CO2 and N2 on CaCO3 (100) surfaces were between 0.2683 eV and -0.7388 eV. When a CH4 molecule was adsorbed at a hollow site and its 2 hydrogen atoms were parallel to the long diagonal (H3) on the CaCO3 (100) surface, it had the most stable adsorption, and the adsorption energy was only -0.4160 eV. The change of adsorption energy of CH4 was no more than 0.0535 eV. Compared with the DOS distribution of CH4 before adsorption, it shifted to the left overall after adsorption. At the same time, the partial density of states (PDOS) curves of CaCO3 (100) surfaces before and after adsorption basically overlapped. This work showed that the adsorption effect of shale gas on calcium carbonate is very weak, and the adsorption is physisorption at the molecular level.

  18. Equation for differential heat of adsorption (DHA) on a surface with discrete nonuniformity

    Energy Technology Data Exchange (ETDEWEB)

    Klyachko, A.L.

    1978-09-01

    An equation for differential heat of adsorption (DHA) on a surface with discrete nonuniformity, as a function of the amount of adsorbed compound, was derived from an analysis of adsorption equilibria on surfaces having any number of different types of active sites. The equation can be used in calculating the DHA as a function of surface coverage from the known energy spectrum of the active sites and vice versa. Good agreement between calculated and published experimental data was achieved when applying this equation to adsorption of ammonia on NaA, NaX, and NaY zeolites.

  19. Phenol removal from wastewater by adsorption on zeolitic composite.

    Science.gov (United States)

    Bizerea Spiridon, Otilia; Preda, Elena; Botez, Alexandru; Pitulice, Laura

    2013-09-01

    It is well known that adsorption is an efficient method of removal of various pollutants from wastewater. The present study examines the phenol removal from water by adsorption on a new material, based on zeolitic volcanic tuff. This compound contains zeolitic tuff and cellulose, another known adsorbent, in a mass ratio of 4 to 1. The performances of the new adsorbent composite were compared with those of a widely used adsorbent material, zeolitic volcanic tuff. The adsorbent properties were tested on batch synthetic solutions containing 1-10 mg L(-1) (1-10 ppm) phenol, at room temperature without pH adjustment. The influence of the adsorbent dose, pH and contact time on the removal degree of phenol from water was investigated. The experimental data were modeled using the Langmuir, Freundlich, and Temkin adsorption isotherms. The Langmuir model was found to best represent our data revealing a monolayer adsorption with a maximum adsorption capacity between 0.12 and 0.53 mg g(-1) at 25 °C, for 2.00 g of adsorbent, depending on the initial phenol concentration. The adsorption kinetic study was performed using a pseudo-first- and pseudo-second-order kinetic models illustrating that phenol adsorption on zeolite composite is well described by pseudo-first kinetic equations. Our results indicated that phenol adsorption on the new adsorbent composite is superior to that on the classic zeolite.

  20. The dynamics and kinetics of precursor-mediated adsorption on platinum

    Science.gov (United States)

    Carlsson, Anders Frederic

    Heterogeneous catalysis, the process by which a chemical reaction's facilitated by a solid surface, accounts for 90% of all chemicals produced; engineering catalytic reactions requires a fundamental understanding of chemical interactions on surfaces. During heterogeneous catalysis, reactants from the gas phase adsorb onto a surface, react, and subsequently desorb as products. Under reaction conditions, the catalytic surface may be partially or fully covered with adsorbates or contaminants which influence the adsorption of reactants onto the surface. Molecules which are transiently trapped on top of an adsorbed layer and migrate to a binding site are said to be in an extrinsic precursor state. In this dissertation, the dynamics and kinetics of adsorption of gas phase molecules through the extrinsic precursor on catalytic surfaces are described in detail. The adsorption of alkanes and rare gases on alkane, alkylidyne, and rare-gas overlayers on Pt(111) was studied using molecular beam techniques, Auger electron spectroscopy, low energy electron diffraction, and temperature-programmed desorption in an ultra-high vacuum environment. Trapping of incident molecules on top of an adsorbed layer is facilitated by corrugation in the gas- surface potential, which serves to redirect perpendicular momentum parallel to the surface. In general, the corrugation of the gas-surface potential increases with adsorbate coverage. Trapping is facilitated to greater degrees on adsorbates which are less rigidly bound to the surface and can accommodate energy from the incident molecule. Once trapped into the extrinsic precursor state, molecules may either desorb or migrate to a binding site; a temperature dependence in the net adsorption probability arises from the competition between desorption and migration to a binding site. The activation energy for desorption from the extrinsic precursor is dependent on the precursor molecule and not on the adsorbates. In contrast, the activation

  1. Annual immunisation coverage report, 2010.

    Science.gov (United States)

    Hull, Brynley; Dey, Aditi; Menzies, Rob; McIntyre, Peter

    2013-03-31

    This, the fourth annual immunisation coverage report, documents trends during 2010 for a range of standard measures derived from Australian Childhood Immunisation Register (ACIR) data. These include coverage at standard age milestones and for individual vaccines included on the National Immunisation Program (NIP). For the first time, coverage from other sources for adolescents and the elderly are included. The proportion of children 'fully vaccinated' at 12, 24 and 60 months of age was 91.6%, 92.1% and 89.1% respectively. For vaccines available on the NIP but not currently assessed for 'fully immunised' status or for eligibility for incentive payments (rotavirus and pneumococcal at 12 months and meningococcal C and varicella at 24 months) coverage varied. Although pneumococcal vaccine had similar coverage at 12 months to other vaccines, coverage was lower for rotavirus at 12 months (84.7%) and varicella at 24 months (83.0%). Overall coverage at 24 months of age exceeded that at 12 months of age nationally and for most jurisdictions, but as receipt of varicella vaccine at 18 months is excluded from calculations, this represents delayed immunisation, with some contribution from immunisation incentives. The 'fully immunised' coverage estimates for immunisations due by 60 months increased substantially in 2009, reaching almost 90% in 2010, probably related to completed immunisation by 60 months of age being introduced in 2009 as a requirement for GP incentive payments. As previously documented, vaccines recommended for Indigenous children only (hepatitis A and pneumococcal polysaccharide vaccine) had suboptimal coverage at around 57%. Delayed receipt of vaccines by Indigenous children at the 60-month milestone age improved from 56% to 62% but the disparity in on-time vaccination between Indigenous and non-Indigenous children at earlier age milestones did not improve. Coverage data for human papillomavirus (HPV)from the national HPV register are consistent with high

  2. Monte Carlo simulation of water adsorption in hydrophobic MFI zeolites with hydrophilic sites.

    Science.gov (United States)

    Ahunbay, M Göktuğ

    2011-04-19

    The effect of strong and weak hydrophilic sites, Al atoms with associated extraframework Na cations and silanol nests, respectively, in high-silica MFI zeolites on water adsorption was investigated using Monte Carlo simulations. For this purpose, a new empirical model to represent potential energy interactions between water molecules and the MFI framework was developed, which reproduced the hydrophobic characteristics of a siliceous MFI-type zeolite, silicalite-1, with both the vapor-phase adsorption isotherm and heats of adsorption at 298 K being in good agreement with experimental data. The proposed model is also compatible with previous hydrocarbon potential models and can be used in the adsorption simulations of VOC-water mixtures. Adsorption simulations revealed that strongly hydrophilic Al sites in Na-ZSM-5 zeolites coordinate two water molecules per site at low coverage, which promotes water clustering in the vicinity of these sites. However, weakly hydrophilic silanol nests in silicalite-1 are in coordination with a single water molecule per site, which does not affect the adsorption capacity significantly as expected. However, even in the presence of 0.125 silanol nest per unit cell, the increase in the heat of adsorption at low coverage is drastic. © 2011 American Chemical Society

  3. Human fibrinogen adsorption on positively charged latex particles.

    Science.gov (United States)

    Zeliszewska, Paulina; Bratek-Skicki, Anna; Adamczyk, Zbigniew; Cieśla, Michał

    2014-09-23

    Fibrinogen (Fb) adsorption on positively charged latex particles (average diameter of 800 nm) was studied using the microelectrophoretic and the concentration depletion methods based on AFM imaging. Monolayers on latex were adsorbed from diluted bulk solutions at pH 7.4 and an ionic strength in the range of 10(-3) to 0.15 M where fibrinogen molecules exhibited an average negative charge. The electrophoretic mobility of the latex after controlled fibrinogen adsorption was systematically measured. A monotonic decrease in the electrophoretic mobility of fibrinogen-covered latex was observed for all ionic strengths. The results of these experiments were interpreted according to the three-dimensional electrokinetic model. It was also determined using the concentration depletion method that fibrinogen adsorption was irreversible and the maximum coverage was equal to 0.6 mg m(-2) for ionic strength 10(-3) M and 1.3 mg m(-2) for ionic strength 0.15 M. The increase of the maximum coverage was confirmed by theoretical modeling based on the random sequential adsorption approach. Paradoxically, the maximum coverage of fibrinogen on positively charged latex particles was more than two times lower than the maximum coverage obtained for negative latex particles (3.2 mg m(-2)) at pH 7.4 and ionic strength of 0.15 M. This was interpreted as a result of the side-on adsorption of fibrinogen molecules with their negatively charged core attached to the positively charged latex surface. The stability and acid base properties of fibrinogen monolayers on latex were also determined in pH cycling experiments where it was observed that there were no irreversible conformational changes in the fibrinogen monolayers. Additionally, the zeta potential of monolayers was more positive than the zeta potential of fibrinogen in the bulk, which proves a heterogeneous charge distribution. These experimental data reveal a new, side-on adsorption mechanism of fibrinogen on positively charged surfaces and

  4. ADSORPTION CHARACTERISTIC OF Mg2+ FORM OF THE ZEOLITE 4A

    Directory of Open Access Journals (Sweden)

    Blagica Cekova

    2016-01-01

    Full Text Available The first experimental works for adsorption of gases on zeolites and the influence of molecular - sieve properties was made on natural materials by F. Gradian who studied adsorption of gases on dehydratited zeolites. The ability of adsorption properties of the zeolites is determined by two factors, character of the porous structure and the heteropolar character of the polar centers. In our research adsorption is determined with water vapor by a static - gravimetric method. The results are presented in tables and graphic dependence is represented by adsorption isotherms in Langmuir ‘s coordinates.

  5. Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC

    Directory of Open Access Journals (Sweden)

    Shehdeh Jodeh

    2016-06-01

    Freundlich model describes efficiently adsorption isotherm of DCF onto CTAC with n equal to 1.398 whose value indicates a favorable adsorption. This finding validates the assumption of multilayer physical adsorption process of DCF. The results showed that DCF was physically adsorbed onto CTAC, as confirmed by the values of ΔH° minor than 40 kJ/mol. As ΔG° had negative charge, the adsorption process is exothermic, and the adsorption process of the DCF onto CTAC is spontaneous, depending on temperature.

  6. Adsorption isotherms for hydrogen chloride (HCl) on ice surfaces between 190 and 220 K.

    Science.gov (United States)

    Zimmermann, S; Kippenberger, M; Schuster, G; Crowley, J N

    2016-05-18

    The interaction of hydrogen chloride (HCl) with ice surfaces at temperatures between 190 and 220 K was investigated using a coated-wall flow-tube connected to a chemical ionization mass spectrometer. Equilibrium surface coverages of HCl were determined at gas phase concentrations as low as 2 × 10(9) molecules cm(-3) (∼4 × 10(-8) Torr at 200 K) to derive Langmuir adsorption isotherms. The data are described by a temperature independent partition coefficient: KLang = (3.7 ± 0.2) × 10(-11) cm(3) molecule(-1) with a saturation surface coverage Nmax = (2.0 ± 0.2) × 10(14) molecules cm(-2). The lack of a systematic dependence of KLang on temperature contrasts the behaviour of numerous trace gases which adsorb onto ice via hydrogen bonding and is most likely related to the ionization of HCl at the surface. The results are compared to previous laboratory studies, and the equilibrium partitioning of HCl to ice surfaces under conditions relevant to the atmosphere is evaluated.

  7. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...... studied by adsorption experiments. The results clearly demonstrate the differences in the adsorption behaviour between probes with different functional groups of varying polarity and acidity. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. The order...

  8. Adsorption of Remazol Black B dye on Activated Carbon Felt

    Directory of Open Access Journals (Sweden)

    Donnaperna Lucio

    2008-11-01

    Full Text Available The adsorption of Remazol Black B (anionic dye on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explained by "intra-particle diffusion model". For Remazol Black B, the Khan model is best suited to simulate the adsorption isotherms.

  9. Assuring Access to Affordable Coverage

    Data.gov (United States)

    U.S. Department of Health & Human Services — Under the Affordable Care Act, millions of uninsured Americans will gain access to affordable coverage through Affordable Insurance Exchanges and improvements in...

  10. Immunisation coverage annual report, 2008.

    Science.gov (United States)

    Hull, Brynley P; Mahajan, Deepika; Dey, Aditi; Menzies, Rob I; McIntyre, Peter B

    2010-09-01

    This, the 2nd annual immunisation coverage report, documents trends during 2008 for a range of standard measures derived from Australian Childhood Immunisation Register data, including overall coverage at standard age milestones and for individual vaccines included on the National Immunisation Program (NIP). Coverage by indigenous status and mapping by smaller geographic areas as well as trends in timeliness are also summarised according to standard templates. With respect to overall coverage, Immunise Australia Program targets have been reached for children at 12 and 24 months of age but not for children at 5 years of age. Coverage at 24 months of age exceeds that at 12 months of age, but as receipt of varicella vaccine at 18 months is excluded from calculations of 'fully immunised' this probably represents delayed immunisation, with some contribution from immunisation incentives. Similarly, the decrease in coverage estimates for immunisations due at 4 years of age from March 2008, is primarily due to changing the assessment age from 6 years to 5 years of age from December 2007. A number of individual vaccines on the NIP are not currently assessed for 'fully immunised' status or for eligibility for incentive payments. These include pneumococcal conjugate and meningococcal C conjugate vaccines for which coverage is comparable to vaccines which are assessed for 'fully immunised' status, and rotavirus and varicella vaccines for which coverage is lower. Coverage is also suboptimal for vaccines recommended for Indigenous children only (i.e. hepatitis A and pneumococcal polysaccharide vaccine) as previously reported for other vaccines for both children and adults. Delayed receipt of vaccines is an important issue for vaccines recommended for Indigenous children and has not improved among non-Indigenous children despite improvements in coverage at the 24-month milestone. Although Indigenous children in Australia have coverage levels that are similar to non

  11. DFT-D study of adsorption of diaminoethane and propylamine molecules on anatase (101) TiO2 surface

    Science.gov (United States)

    Hemeryck, A.; Motta, A.; Lacaze-Dufaure, C.; Costa, D.; Marcus, P.

    2017-12-01

    The adsorption on anatase (101) TiO2 surface of two model amines, diaminoethane (DAE) and propylamine (PPA), was investigated using Density Functional Theory-Dispersion included (DFT-D) calculations. The investigated coverage is ranging from 0.25 monolayer to full coverage (one amine molecule per surface Ti ion). Both interactions of the adsorbed layer with the anatase (101) TiO2 surface and intermolecular interactions are described. A structural transition from a bridge to a perpendicular structure is found for DAE when evolving from 0.25 monolayer to full coverage. At full coverage, a dense, ordered adhesive layer is formed. For DAE, at intermediate coverage, different isoenergetic configurations are found and structural transition from a bridge to a perpendicular structure is found. In contrast, the adsorption mode of PPA is more regular with only perpendicularly adsorbed molecules at all investigated coverages. Dispersion forces already account for 40% of the adsorption energy at low coverage (0.25 ML) and are the driving force for monolayer formation with a contribution of 60% up to 100% at high coverage. As revealed by molecular dynamics, the molecules can change their orientation towards the surface in a concerted way.

  12. Adsorption Isotherms of Boron in Soil: the effects of Sodium Adsorption Ratio (SAR, pH and Ionic strength

    Directory of Open Access Journals (Sweden)

    Mojtaba Moqbeli

    2017-03-01

    Full Text Available Introduction: Boron (B is an essential plant micronutrient whose soil availability is influenced by many soil factors.Understanding the processes controling activity of boron (B in the soil solution is important for soil fertility management. The reaction of adsorption and desorption of boron in soil determines the amount of boron that is available to plants. Adsorption–desorption processes play a major role on boron equilibrium concentration and therefore on its bio-availability. Ionic strength, pH and ionic composition in exchangeable phase are among themajor factors affecting B adsorption reactions.Reducedadsorption of boron at high pH is because of a surface potential decrease onminerals with pH-dependent charge. Ionic strength has also a considerable effect on B adsorption.Several studies have been performed inthe adsorption of boron and the effect of factors such as ionicstrength and cations has been understudied, however, the effect of sodium adsorption ratio and itsinteraction with the ionic strength on boron adsorption behavior has not been reported. In thisstudy, the adsorption isotherms of boron in the soils affected by the combined effects of ionic strengthand sodium adsorption ratio were investigated. Materials and Methods: In order to assess the effects of ionic strength (IS and Sodium Adsorption Ratio (SAR on availability of B, the adsorption of B was investigated in a calcareous soil that hadlow levels of electrical conductivity, sodium adsorption ratio and available P. For this purpose, 5 g soil wasequilibrated with 20 mL of B solution (0, 2, 5, 8, 10, 15, 20 mg L-1 in 0.02, 0.06 and 0.12 M background solutions (prepared by NaC1,CaC12.2H2O, MgCl2.6H2O, at two SAR levels (20 and 100.The reaction temperature was 25◦C. The suspension was centrifuged, filtered, and a sample was removed and B was determined by Azomethine-H spectrophotometric method (at a wavelength of 420 nm. B adsorption in Soil was obtained by subtracting B in

  13. Adsorptive recovery of UO2(2+) from aqueous solutions using collagen-tannin resin.

    Science.gov (United States)

    Sun, Xia; Huang, Xin; Liao, Xue-pin; Shi, Bi

    2010-07-15

    Collagen-tannin resin (CTR), as a novel adsorbent, was prepared via reaction of collagen with black wattle tannin and aldehyde, and its adsorption properties to UO(2)(2+) were investigated in detail, including pH effect, adsorption kinetics, adsorption equilibrium and column adsorption kinetics. The adsorption of UO(2)(2+) on CTR was pH-dependent, and the optimal pH range was 5.0-6.0. CTR exhibited excellent adsorption capacity to UO(2)(2+). For instance, the adsorption capacity obtained at 303 K and pH 6.0 was as high as 0.91 mmol UO(2)(2+)/g when the initial concentration of UO(2)(2+) was 1.0 mmol/L. In kinetics studies, the adsorption equilibrium can be reached within 300 min, and the experimental data were well fitted by the pseudo-second-order rate model, and the equilibrium adsorption capacities calculated by the model were almost the same as those determined by experiments. The adsorption isotherms could be well described by the Freundlich equation with the correlation coefficients (R(2)) higher than 0.99, the adsorption behaviors of UO(2)(2+) on CTR column were investigated as well. Present study suggested that the CTR can be used for the adsorptive recovery of UO(2)(2+) from aqueous solutions. 2010 Elsevier B.V. All rights reserved.

  14. A pressure-amplifying framework material with negative gas adsorption transitions

    Science.gov (United States)

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M.; Zander, Stefan; Pillai, Renjith S.; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-01

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers—or metal-organic frameworks (MOFs)—has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  15. Adsorption behaviour of bulgur.

    Science.gov (United States)

    Erbaş, Mustafa; Aykın, Elif; Arslan, Sultan; Durak, Atike N

    2016-03-15

    The aim of this research was to determine the adsorption behaviour of bulgur. Three different particle sizes (2sorption equations. The equilibrium moisture content of bulgur increased both with decreasing temperature and bulgur size. The constants m0 and C of BET and GAB equations were determined to be between 2.54 and 5.03 g water per 100 g of dry matter and 4.96-16.57, respectively. Constant k was between 0.85 and 0.93, and GAB equation was determined to fit very well for bulgur adsorption, because of %E values lower than 10%. Bulgur must be stored below 70% relative humidity and with less than 10 g water per 100 g of dry mater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Neon and CO2 adsorption on open carbon nanohorns.

    Science.gov (United States)

    Krungleviciute, Vaiva; Ziegler, Carl A; Banjara, Shree R; Yudasaka, Masako; Iijima, S; Migone, Aldo D

    2013-07-30

    We present the results of a thermodynamics and kinetics study of the adsorption of neon and carbon dioxide on aggregates of chemically opened carbon nanohorns. Both the equilibrium adsorption characteristics, as well as the dependence of the kinetic behavior on sorbent loading, are different for these two adsorbates. For neon the adsorption isotherms display two steps before reaching the saturated vapor pressure, corresponding to adsorption on strong and on weak binding sites; the isosteric heat of adsorption is a decreasing function of sorbent loading (this quantity varies by about a factor of 2 on the range of loadings studied), and the speed of the adsorption kinetics increases with increasing loading. By contrast, for carbon dioxide there are no substeps in the adsorption isotherms; the isosteric heat is a nonmonotonic function of loading, the value of the isosteric heat never differs from the bulk heat of sublimation by more than 15%, and the kinetic behavior is opposite to that of neon, with equilibration times increasing for higher sorbent loadings. We explain the difference in the equilibrium properties observed for neon and carbon dioxide in terms of differences in the relative strengths of adsorbate-adsorbate to adsorbate-sorbent interaction for these species.

  17. Influence of organobentonite structure on toluene adsorption from water solution

    Directory of Open Access Journals (Sweden)

    Nuria Vidal

    2012-12-01

    Full Text Available Due to increase water pollution by organic compound derived from hydrocarbons such as toluene, several alternative technologies for remediation of polluted water have been originated. In this work natural bentonites were modified with cetyltrimethylammonium (CTMA+ for obtaining organophilic bentonites. The obtained CTMA-bentonites would be suitable for use as adsorbents of toluene present in water. The influence of structural characteristics of CTMA-bentonites on their adsorption capacity was studied. It was shown that adsorption of toluene depended on homogeneous interlayer space associated with arrangements of CTMA+ paraffin-monolayer and bilayer models, accompanied by a high degree ordering of the carbon chain of organic cation in both arrangements. However, packing density would not have an evident influence on the retention capacity of these materials. The solids obtained were characterized by chemical analysis, X-ray diffractions and infrared spectroscopy. Toluene adsorption was measured by UV-visible spectrophotometer. Adsorption capacity was studied by determining adsorption isotherms and adsorption coefficient calculation. The adsorption isotherms were straight-line indicating a partition phenomenon of toluene between the aqueous and organic phase present in organophilic bentonites.

  18. Cooperation within von Willebrand factors enhances adsorption mechanism.

    Science.gov (United States)

    Heidari, Maziar; Mehrbod, Mehrdad; Ejtehadi, Mohammad Reza; Mofrad, Mohammad R K

    2015-08-06

    von Willebrand factor (VWF) is a naturally collapsed protein that participates in primary haemostasis and coagulation events. The clotting process is triggered by the adsorption and conformational changes of the plasma VWFs localized to the collagen fibres found near the site of injury. We develop coarse-grained models to simulate the adsorption dynamics of VWF flowing near the adhesive collagen fibres at different shear rates and investigate the effect of factors such as interaction and cooperativity of VWFs on the success of adsorption events. The adsorption probability of a flowing VWF confined to the receptor field is enhanced when it encounters an adhered VWF in proximity to the collagen receptors. This enhancement is observed within a wide range of shear rates and is mostly controlled by the attractive van der Waals interactions rather than the hydrodynamic interactions among VWF monomers. The cooperativity between the VWFs acts as an effective mechanism for enhancing VWF adsorption to the collagen fibres. Additionally, this implies that the adsorption of such molecules is nonlinearly dependent on the density of flowing VWFs. These findings are important for studies of primary haemostasis as well as general adsorption dynamics processes in polymer physics. © 2015 The Author(s).

  19. Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Bermudez, P., E-mail: suriel21@yahoo.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico); Unidad de Posgrado, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, 04510, Mexico D.F. (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico)

    2011-12-15

    Thin films of tantalum, niobium, zirconium and titanium oxides were deposited by reactive magnetron sputtering and their wettability and surface energy, optical properties, roughness, chemical composition and microstructure were characterized using contact angle measurements, spectroscopic ellipsometry, profilometry, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The purpose of the work was to correlate the surface properties of the films to the Bovine Serum Albumin (BSA) adsorption, as a first step into the development of an initial in vitro test of the films biocompatibility, based on standardized protein adsorption essays. The films were immersed into BSA solutions with different protein concentrations and protein adsorption was monitored in situ by dynamic ellipsometry; the adsorption-rate was dependent on the solution concentration and the immersion time. The overall BSA adsorption was studied in situ using spectroscopic ellipsometry and it was found to be influenced by the wettability of the films; larger BSA adsorption occurred on the more hydrophobic surface, the ZrO{sub 2} film. On the Ta{sub 2}O{sub 5}, Nb{sub 2}O{sub 5} and TiO{sub 2} films, hydrophilic surfaces, the overall BSA adsorption increased with the surface roughness or the polar component of the surface energy.

  20. Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2Fenton-like system.

    Science.gov (United States)

    Issa Hamoud, Houeida; Finqueneisel, Gisèle; Azambre, Bruno

    2017-06-15

    In this study, the removal of binary mixtures of dyes with similar (Orange II/Acid Green 25) or opposite charges (Orange II/Malachite Green) was investigated either by simple adsorption on ceria or by the heterogeneous Fenton reaction in presence of H 2 O 2 . First, the CeO 2 nanocatalyst with high specific surface area (269 m 2 /g) and small crystal size (5 nm) was characterized using XRD, Raman spectroscopy and N 2 physisorption at 77 K. The adsorption of single dyes was studied either from thermodynamic and kinetic viewpoints. It is shown that the adsorption of dyes on ceria surface is highly pH-dependent and followed a pseudo-second order kinetic model. Adsorption isotherms fit well the Langmuir model with a complete monolayer coverage and higher affinity towards Orange II at pH 3, compared to other dyes. For the (Orange II/Acid Green 25) mixture, both the amounts of dyes adsorbed on ceria surface and discoloration rates measured from Fenton experiments were decreased by comparison with single dyes. This is due to the adsorption competition existing onto the same surface Ce x+ sites and the reaction competition with hydroxyl radicals, respectively. The behavior of the (Orange II/Malachite Green) mixture is markedly different. Dyes with opposite charges undergo paired adsorption on ceria as well as homogeneous and heterogeneous coagulation/flocculation processes, but can also be removed by heterogeneous Fenton process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Adsorption of ionisable pesticides in soils.

    Science.gov (United States)

    Kah, M; Brown, C D

    2006-01-01

    different proportion of ionic and neutral forms of the pesticide present at each pH level but also from the presence of surfaces with pH-dependent charges in soils. Soil organic matter generally promotes adsorption, although a negative influence has sometimes been reported. Clay and oxides can also play a significant role in some cases. So far, no modelling approach has been applied successfully to a range of ionisable pesticides to predict their adsorption in soils. The standardization of experimental settings and the application of approaches specific to a particular class of pesticide or different type of soil might be necessary to describe the complexity of interactions among ionisable molecules. Degradation of ionisable pesticides is influenced by soil pH in a particular way that relates to changes in sorption, changes in composition and activity of the microbial community, and to shifts in the balance between different degradative mechanisms.

  2. Acetate and phosphate anion adsorption linear sweep voltammograms simulated using density functional theory

    KAUST Repository

    Savizi, Iman Shahidi Pour

    2011-04-01

    Specific adsorption of anions to electrode surfaces may alter the rates of electrocatalytic reactions. Density functional theory (DFT) methods are used to predict the adsorption free energy of acetate and phosphate anions as a function of Pt(1 1 1) electrode potential. Four models of the electrode potential are used including a simple vacuum slab model, an applied electric field model with and without the inclusion of a solvating water bi-layer, and the double reference model. The linear sweep voltammogram (LSV) due to anion adsorption is simulated using the DFT results. The inclusion of solvation at the electrochemical interface is necessary for accurately predicting the adsorption peak position. The Langmuir model is sufficient for predicting the adsorption peak shape, indicating coverage effects are minor in altering the LSV for acetate and phosphate adsorption. Anion adsorption peak positions are determined for solution phase anion concentrations present in microbial fuel cells and microbial electrolysis cells and discussion is provided as to the impact of anion adsorption on oxygen reduction and hydrogen evolution reaction rates in these devices. © 2011 Elsevier Ltd. All rights reserved.

  3. Kinetic and equilibrium studies of urea adsorption onto activated carbon: Adsorption mechanism

    OpenAIRE

    Kameda, Tomohito; Ito, Saya; Yoshioka, Toshiaki

    2017-01-01

    We found that activated carbon effectively removed urea from solution and that urea adsorption onto activated carbon followed a pseudo-second-order kinetic model. We classified the urea adsorption on activated carbon as physical adsorption and found that it was best described by the Halsey adsorption isotherm, suggesting that the multilayer adsorption of urea molecules on the adsorption sites of activated carbon best characterized the adsorption system. The mechanism of adsorption of urea by ...

  4. Periodic Density Functional Theory Study of Water Adsorption on the a-Quartz (101) Surface.

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Kubicki, James D. [Pennsylvania State University; Sofo, Jorge O. [Pennsylvania State University

    2011-01-01

    Plane wave density functional theory (DFT) calculations have been performed to study the atomic structure, preferred H2O adsorption sites, adsorption energies, and vibrational frequencies for water adsorption on the R-quartz (101) surface. Surface energies and atomic displacements on the vacuum-reconstructed, hydrolyzed, and solvated surfaces have been calculated and compared with available experimental and theoretical data. By considering different initial positions of H2O molecules, the most stable structures of water adsorption at different coverages have been determined. Calculated H2O adsorption energies are in the range -55 to -65 kJ/mol, consistent with experimental data. The lowest and the highest O-H stretching vibrational bands may be attributed to different states of silanol groups on the watercovered surface. The dissociation energy of the silanol group on the surface covered by the adsorption monolayer is estimated to be 80 kJ/mol. The metastable states for the protonated surface bridging O atoms (Obr), which may lead to hydrolysis of siloxane bonds, have been investigated. The calculated formation energy of a Q2 center from a Q3 center on the (101) surface with 2/3 dense monolayer coverage is equal to 70 kJ/mol which is in the range of experimental activation energies for quartz dissolution.

  5. Electronic theoretical study of the influences of O adsorption on the electronic structure and optical properties of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Shuang, Zhou; Guili, Liu, E-mail: LGL63@sina.cn; Dazhi, Fan

    2017-02-01

    The electronic structure and optical properties of adsorbing O atoms on graphene with different O coverage are researched using the density functional theory based upon the first-principle study to obtain further insight into properties of graphene. The adsorption energies, band structures, the density of states, light absorption coefficient and reflectivity of each system are calculated theoretically after optimizing structures of each system with different O coverage. Our calculations show that adsorption of O atoms on graphene increases the bond length of C-C which adjacent to the O atoms. When the O coverage is 9.4%, the adsorption energy (3.91 eV) is the maximum, which only increases about 1.6% higher than that of 3.1% O coverage. We find that adsorbed O atoms on pristine graphene opens up indirect gap of about 0.493–0.952 eV. Adsorbing O atoms make pristine graphene from metal into a semiconductor. When the O coverage is 9.4%, the band gap (0.952 eV) is the maximum. Comparing with pristine graphene, we find the density of states at Fermi level of O atoms adsorbing on graphene with different coverage are significantly increased. We also find that light absorption coefficient and reflectivity peaks are significantly reduced, and the larger the coverage, the smaller the absorption coefficient and reflectivity peaks are. And the blue shift phenomenon appears.

  6. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W

    1962-01-01

    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse

  7. Ab initio study of the adsorption of antimony and arsenic on the Si(110) surface

    Energy Technology Data Exchange (ETDEWEB)

    Huitzil-Tepanecatl, Arely [Postgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, BUAP, Apartado Postal 52, Puebla 72000 (Mexico); Cocoletzi, Gregorio H., E-mail: cocoletz@sirio.ifuap.buap.m [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, Codigo Postal 22860, Apartado Postal 2732 Ensenada, Baja California (Mexico); Centro de Nanociencia y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California, 22800 (Mexico); Instituto de Fisica, Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Takeuchi, Noboru [Centro de Nanociencia y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California, 22800 (Mexico)

    2010-10-29

    We have performed first principles total energy calculations to investigate the adsorption of Sb and As adatoms on the Si(110) surface using a (2 x 3) supercell. The energetics and atomic structures have been investigated in four atomic configurations. One structure is obtained by placing 1/3 of a monolayer (ML) of Sb (As) atoms on the Si(110) surface. The other three geometries are obtained by depositing 1 ML of Sb (As) atoms on the surface. In the first case the structure is formed by four trimers, in the second case the geometry is formed by zigzag atomic chains and in the third case the structure contains 'microfacets'. The energetics results of the Sb adsorption show that for low coverage the tetrahedrons formed by the adsorption of 1/3 ML is the most stable configuration, while in the monolayer region the zigzag atomic chain is the most stable structure. However, the total energies of the trimer and microfacet structures are slightly higher, indicating that under some conditions, they may be formed. In an experimental report it has been suggested that the adsorption of 1/3 and 1 ML of Sb corresponds to the low and high coverage in the experiments of Zotov et al. [A. V. Zotov, V. G. Lifshifts, and A. N. Demidchik, Surf. Sci. 274, L583 (1992)]. On the other hand, our results of the As adsorption show that for low coverage, the tetrahedrons in the adsorption of 1/3 ML also give the most stable configuration. However, at the 1 ML coverage, a structure formed by microfacets is the most stable structure, in agreement with previous results.

  8. Adsorption of fulvic acid by carbon nanotubes from water

    Energy Technology Data Exchange (ETDEWEB)

    Yang Kun [Department of Environmental Science, Zhejiang University, Hangzhou 310028 (China); Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2009-04-15

    This study investigated adsorption of fulvic acid (FA) by single-walled (SWCNT) and multi-walled carbon nanotubes (MWCNT) and activated carbon. Adsorption of FA depends greatly on the adsorbent surface area and solution pH. SWCNT has higher adsorption than MWCNT and activated carbon. Lower E4/E6 (absorbance at 465 nm to that at 665 nm) and higher E2/E3 (absorbance at 250 nm to that at 365 nm) ratios of the residual FA in solution after adsorption than that of original FA in low pH ranges suggest that aromatic rich FA fractions with polar moieties readily adsorb on the adsorbents. The apparent interaction mechanisms between FA and CNT surfaces include electrostatic, hydrophobic, {pi}-{pi} and hydrogen-bond interactions. FA adsorption was reduced greatly with increasing pH because of the increase of electrostatic repulsion and the decrease of hydrophobic and hydrogen-bond interactions. - Adsorption of fulvic acid by carbon nanotubes depends greatly on the adsorbent surface area and solution pH.

  9. Maintaining Differentiated Coverage in Heterogeneous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Du Xiaojiang

    2005-01-01

    Full Text Available Most existing research considers homogeneous sensor networks, which suffer from performance bottleneck and poor scalability. In this paper, we adopt a heterogeneous sensor network model to overcome these problems. Sensing coverage is a fundamental problem in sensor networks and has been well studied over the past years. However, most coverage algorithms only consider the uniform coverage problem, that is, all the areas have the same coverage degree requirement. In many scenarios, some key areas need high coverage degree while other areas only need low coverage degree. We propose a differentiated coverage algorithm which can provide different coverage degrees for different areas. The algorithm is energy efficient since it only keeps minimum number of sensors to work. The performance of the differentiated coverage algorithm is evaluated through extensive simulation experiments. Our results show that the algorithm performs much better than any other differentiated coverage algorithm.

  10. Adsorption of (4-amino-2-methyl-5-pyrimidinyl methylthio) acetic acid on mild steel from hydrochloric acid solution (HCl) - Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Abiola, O.K.; Oforka, N.C

    2004-02-15

    The adsorption of (4-amino-2-methyl-5-pyrimidinyl methylthio) acetic acid (AMMPTA) on mild steel from hydrochloric acid solution was studied using the weight loss and hydrogen evolution techniques. The corrosion rates of mild steel in hydrochloric acid solution containing AMMPTA are measured as a function of AMMPTA concentration. The degree of surface covered is used to calculate the free energy of adsorption, {delta}G{sub ad} of AMMPTA. The variation of negative free energy of adsorption, {delta}G{sub ad} with surface coverage, {theta} is interpreted in terms of change in mechanism of inhibitor action of AMMPTA with concentration. Phenomenon of physical adsorption is proposed. The effect of AMMPTA is discussed from the viewpoint of adsorption model. The thermodynamic parameters of adsorption process were obtained from experimental data using Bockris-Swinkels adsorption isotherm.

  11. Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xia; Huang Xin [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); Liao Xuepin, E-mail: xpliao@scu.edu.cn [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China); Shi Bi, E-mail: shibi@scu.edu.cn [National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China)

    2011-02-28

    The collagen-tannin resin (CTR), as a novel adsorbent, was prepared via a reaction of collagen with black wattle tannin and aldehyde, and its adsorption properties to Cu(II) were systematically investigated, including pH effect, adsorption equilibrium, adsorption kinetics, and column adsorption. The adsorption capacity of Cu(II) on CTR was pH-dependent, and it increased with the increase of solution pH. The adsorption isotherms were well described by Langmuir isotherm model with correlating constant (R{sup 2}) higher than 0.99. The adsorption capacity determined at 303 K was high up to 0.26 mmol/g, which was close to the value (0.266 mmol/g) estimated from Langmuir equation. The adsorption capacity was increased with the increase of temperature, and thermodynamic calculations suggested that the adsorption of Cu(II) on CTR is an endothermic process. The adsorption kinetics were well fitted by the pseudo-second-order rate model. Further column studies suggested that CTR was effective for the removal of Cu(II) from solutions, and more than 99% of Cu(II) was desorbed from column using 0.1 mol/L HNO{sub 3} solution. The CTR column can be reused to adsorb Cu(II) without any loss of adsorption capacity.

  12. Competitive adsorption of naphthalene with 2,4-dichlorophenol and 4-chloroaniline on multiwalled carbon nanotubes.

    Science.gov (United States)

    Yang, Kun; Wu, Wenhao; Jing, Qingfeng; Jiang, Wei; Xing, Baoshan

    2010-04-15

    Competitive adsorption between nonpolar organic compounds and polar ionic organic compounds (IOCs) on carbon nanotubes (CNTs) is essential for application of CNTs as superior sorbents and for environmental risk assessment of both CNTs and organic contaminants. It was observed in this study that adsorption of neutral and dissociated species of polar 2,4-dichlorophenol (DCP) and 4-chloroaniline (PCAN) on a multiwalled CNT sample (MWCNT15) can be suppressed by nonpolar naphthalene. Naphthalene adsorption can also be suppressed by neutral DCP/PCAN, but not dissociated DCP/PCAN. Moreover, competition of naphthalene decreased the adsorption affinity of neutral DCP/PCAN, but not their adsorption capacity because of the formation of solute bilayer on MWCNT15. For dissociated DCP/PCAN, naphthalene not only decreased their adsorption affinity but also their adsorption capacity because no solute bilayer was formed. Neutral DCP/PCAN also decreased the adsorption affinity and adsorption capacity of naphthalene. These observations indicate that competitive adsorption of naphthalene with DCP/PCAN depends on the dissociation of DCP/PCAN, as interpreted by (i) the different sites on CNTs for adsorption of organic chemicals (i.e., naphthalene, and the neutral and dissociated species of DCP/PCAN), (ii) the interactions between organic chemicals, and (iii) the interactions of organic chemicals with CNT surface.

  13. Improved Isotherm Data for Adsorption of Methane on Activated Carbons

    KAUST Repository

    Loh, Wai Soong

    2010-08-12

    This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed to measure the adsorption isotherms. The experimental results presented herein demonstrate the improved accuracy of the uptake values compared with previous measurement techniques for similar adsorbate-adsorbent combinations. The results are analyzed with various adsorption isotherm models. The heat of adsorption, which is concentration and temperature dependent, has been calculated from the measured isotherm data. Henry\\'s law coefficients for these adsorbent-methane pairs are also evaluated at various temperatures. © 2010 American Chemical Society.

  14. Coulometric study of ethanol adsorption at a polycrystalline platinum electrode

    Science.gov (United States)

    Gilman, Sol

    2012-01-01

    For the first time, use of a novel pre-conditioning sequence and measurements of hydrogen blockage during fast cathodic scans has enabled the determination of rates of accumulation of ethanolic species on the surface of a platinum electrode under well-controlled conditions of surface cleanliness/activity and mass transport. For dilute solutions of ethanol in 1 N perchloric acid (HClO4), oxidative adsorption rates maximize at 0.3 V, drop off at more cathodic potentials due to competition with adsorbed hydrogen and drop off at more anodic potentials due to oxidative processes that produce products released to the electrolyte. The time and concentration dependence of adsorption follows relationships that are common for adsorption on a heterogeneous surface. Some evidence are presented supporting a mechanism for production of soluble products that does not involve the adsorbed species that are detected through the measurement of blockage of hydrogen adsorption sites.

  15. Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Jinpeng Wang

    2017-10-01

    Full Text Available By using cyclodextrin (α-CD self-assembly into a hydrogel with the triblock copolymer Pluronic F127, nanomicrocrystalline cellulose was introduced into a gel system to form a composite CNC-β-CD/α-CD/Pluronic F127 hydrogel (CCH. CCH was modified further by grafting acrylic acid to form a novel acrylated composite hydrogel (ACH. The swelling degree of ACH was 156 g/g. Adsorption isotherms show that the adsorption process for methylene blue proximity fitted the Freundlich model. The adsorption kinetics showed that ACH followed a quasi-second-order kinetic model. Methylene blue desorption showed that ACH was a temperature- and pH-dependent gel. Repeated adsorption and desorption experiments were carried out three times, and the removal rate of methylene blue at 75 mg/L was still 70.1%.

  16. Adsorption of chromium onto activated alumina: kinetics and thermodynamics studies.

    Science.gov (United States)

    Marzouk, Ikhlass; Dammak, Lassaad; Hamrouni, Béchir

    2013-02-01

    In this study, the removal of chromium (VI) by adsorption on activated alumina was investigated and the results were fitted to Langmuir, Freundlich, Dubinin-Redushkevich, and Temkin adsorption models at various temperatures. The constants of each model were evaluated depending on temperature. Thermodynamic parameters for the adsorption system were determined at 10, 25 and 40 degrees C. (deltaH degrees = -21.18 kJ x mol(-1); deltaG degrees = -8.75 to -7.43 kJ x mol(-1) and deltaS degrees = -0.043 kJ x K(-1) x mol(-1)). The obtained values showed that chromium (VI) adsorption is a spontaneous and exothermic process. The kinetic process was evaluated by first-order, second-order and Elovich kinetic models.

  17. Adsorption of emerging contaminant metformin using graphene oxide.

    Science.gov (United States)

    Zhu, Shuai; Liu, Yun-Guo; Liu, Shao-Bo; Zeng, Guang-Ming; Jiang, Lu-Hua; Tan, Xiao-Fei; Zhou, Lu; Zeng, Wei; Li, Ting-Ting; Yang, Chun-Ping

    2017-07-01

    The occurrence of emerging contaminants in our water resources poses potential threats to the livings. Due to the poor treatment in wastewater management, treatment technologies are needed to effectively remove these products for living organism safety. In this study, Graphene oxide (GO) was tested for the first time for its capacity to remove a kind of emerging wastewater contaminants, metformin. The research was conducted by using a series of systematic adsorption and kinetic experiments. The results indicated that GO could rapidly and efficiently reduce the concentration of metformin, which could provide a solution in handling this problem. The uptake of metformin on the graphene oxide was strongly dependent on temperature, pH, ionic strength, and background electrolyte. The adsorption kinetic experiments revealed that almost 80% removal of metformin was achieved within 20 min for all the doses studied, corresponding to the relatively high k 1 (0.232 min -1 ) and k 2 (0.007 g mg -1  min -1 ) values in the kinetic models. It indicated that the highest adsorption capacity in the investigated range (q m ) of GO for metformin was at pH 6.0 and 288 K. Thermodynamic study indicated that the adsorption was a spontaneous (ΔG 0  adsorption of metformin increased when the pH values changed from 4.0 to 6.0, and decreased adsorption were observed at pH 6.0-11.0. GO still exhibited excellent adsorption capacity after several desorption/adsorption cycles. Besides, both so-called π-π interactions and hydrogen bonds might be mainly responsible for the adsorption of metformin onto GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hydrogen adsorption on Ru(001) studied by Scanning TunnelingMicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tatarkhanov, Mous; Rose, Franck; Fomin, Evgeny; Ogletree, D.Frank; Salmeron, Miquel

    2008-01-18

    The adsorption of hydrogen on Ru(001) was studied by scanning tunneling microscopy at temperatures around 50 K. Hydrogen was found to adsorb dissociatively forming different ordered structures as a function of coverage. In order of increasing coverage {theta} in monolayers (ML) these were ({radical}3 x {radical}3)r30{sup o} at {theta} = 0.3 ML; (2 x 1) at {theta} = 0.50 ML, (2 x 2)-3H at {theta} = 0.75, and (1 x 1) at {theta} = 1.00. Some of these structures were observed to coexist at intermediate coverage values. Close to saturation of 1 ML, H-vacancies (unoccupied three fold fcc hollow Ru sites) were observed either as single entities or forming transient aggregations. These vacancies diffuse and aggregate to form active sites for the dissociative adsorption of hydrogen.

  19. Adsorption of intrinsically disordered barnacle adhesive proteins on silica surface

    Science.gov (United States)

    Wang, Xiaoqiang; Wang, Chao; Xu, Baomei; Wei, Junting; Xiao, Yang; Huang, Fang

    2018-01-01

    The adsorption of recombinant barnacle proteins Bacp19k and Mrcp19k on hydrophilic silica surface was characterized by spectroscopic ellipsometry in artificial seawater (pH = 8.2). They are homologous adhesive proteins destined for underwater adhesion but bear opposite net charges in seawater. As assessed with their primary and secondary structures, both proteins are intrinsically disordered and thus distinct from globular proteins that have dominated research in the field. Different from Mrcp19k, higher initial rate and adsorbed amount were obtained via curve fitting for Bacp19k in kinetic studies, due to favorable charge interactions with silica surface. The good fitting with the same dynamic model also indicates the formation of monolayer coverage in both cases. The two adsorption isotherms of Bacp19k and Mrcp19k are different in the initial change and maximum adsorption level, indicating different protein-surface affinities and charge interactions. Each isotherm fits the Langmuir model well, which is commonly used to describe monolayer adsorption, thus consistent with the predication from kinetic fitting. To further examine the effect of electrostatic interaction on the adsorption, the isotherm of the 1:1 mixture of Bacp19k and Mrcp19k was also constructed, which showed a higher correlation fit for Jovanovic than for Langmuir model. The presence of electrostatic attraction between Bacp19k and Mrcp19k deviated from one of the required conditions for Langmuir behavior, which may also result in the highest coadsorption level but slowest initial change among the three isotherms. The surface state of the adhesive proteins and the change with adsorption time were also examined by atomic force microscopy. The results thus obtained are in good agreement with the corresponding ellipsometric measurement.

  20. Adsorption and encapsulation of flexible polyelectrolytes in charged spherical vesicles

    Science.gov (United States)

    Shojaei, H. R.; Muthukumar, M.

    2017-06-01

    We present a theory of adsorption of flexible polyelectrolytes on the interior and exterior surfaces of a charged vesicle in an electrolyte solution. The criteria for adsorption and the density profiles of the adsorbed polymer chain are derived in terms of various characteristics of the polymer, vesicle, and medium, such as the charge density and length of the polymer, charge density and size of the vesicle, electrolyte concentration and dielectric constant of the medium. For adsorption inside the vesicle, the competition between the loss of conformational entropy and gain in adsorption energy results in two kinds of encapsulated states, depending on the strength of the polymer-vesicle interaction. By considering also the adsorption from outside the vesicle, we derive the entropic and energy contributions to the free energy change to transfer an adsorbed chain in the interior to an adsorbed chain on the exterior. In this paper, we have used the Wentzel-Kramers-Brillouin (WKB) method to solve the equation for the probability distribution function of the chain. The present WKB results are compared with the previous results based on variational methods. The WKB and variational results are in good agreement for both the interior and exterior states of adsorption, except in the zero-salt limit for adsorption in the exterior region. The adsorption criteria and density profiles for both the interior and exterior states are presented in terms of various experimentally controllable variables. Calculation of the dependencies of free energy change to transfer an adsorbed chain from the interior to the exterior surface on salt concentration and vesicle radius shows that the free energy penalty to expel a chain from a vesicle is only of the order of thermal energy.

  1. Immunisation coverage annual report, 2014.

    Science.gov (United States)

    Hull, Brynley P; Hendry, Alexandra J; Dey, Aditi; Beard, Frank H; Brotherton, Julia M; McIntyre, Peter B

    2017-03-31

    This 8th annual immunisation coverage report shows data for 2014 derived from the Australian Childhood Immunisation Register and the National Human Papillomavirus Vaccination Program Register. This report includes coverage data for 'fully immunised' and by individual vaccines at standard age milestones and timeliness of receipt at earlier ages according to Indigenous status. Overall, 'fully immunised' coverage has been mostly stable at the 12- and 24-month age milestones since late 2003, but at 60 months of age, it has increased by more than 10 percentage points since 2009. As in previous years, coverage for 'fully immunised' at 12 months of age among Indigenous children was 3.7% lower than for non-Indigenous children overall, varying from 6.9 percentage points in Western Australia to 0.3 of a percentage point in the Australian Capital Territory. In 2014, 73.4% of Australian females aged 15 years had 3 documented doses of human papillomavirus vaccine (jurisdictional range 67.7% to 77.4%), and 82.7% had at least 1 dose, compared with 71.4% and 81.5%, respectively, in 2013. The disparity in on-time vaccination between Indigenous and non-Indigenous children in 2014 diminished progressively from 20.2% for vaccines due by 12 months to 11.5% for those due by 24 months and 3.0% at 60 months of age.

  2. Crime News Coverage in Perspective.

    Science.gov (United States)

    Graber, Doris A.

    According to one sociological model, news is a product of socially determined notions of who and what is important and the organizational structures that result for routinizing news collection; events that deviate from these notions are ignored. This report describes a study of crime news coverage in the media that used this model to examine the…

  3. Is Crime News Coverage Excessive?

    Science.gov (United States)

    Graber, Doris A.

    1979-01-01

    Reports on the frequency and manner in which various crime and noncrime news topics were presented in selected newspapers and television newscasts in 1976. Examines news flow data to determine whether news output was inflexible, and whether crime news coverage distorted the amount of real-life crime. (PD)

  4. Fault Tolerant Coverage and Connectivity in Presence of Channel Randomness

    Directory of Open Access Journals (Sweden)

    Anil Kumar Sagar

    2014-01-01

    Full Text Available Some applications of wireless sensor network require K-coverage and K-connectivity to ensure the system to be fault tolerance and to make it more reliable. Therefore, it makes coverage and connectivity an important issue in wireless sensor networks. In this paper, we proposed K-coverage and K-connectivity models for wireless sensor networks. In both models, nodes are distributed according to Poisson distribution in the sensor field. To make the proposed model more realistic we used log-normal shadowing path loss model to capture the radio irregularities and studied its impact on K-coverage and K-connectivity. The value of K can be different for different types of applications. Further, we also analyzed the problem of node failure for K-coverage model. In the simulation section, results clearly show that coverage and connectivity of wireless sensor network depend on the node density, shadowing parameters like the path loss exponent, and standard deviation.

  5. Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions.

    Science.gov (United States)

    Givens, Brittany E; Xu, Zhenzhu; Fiegel, Jennifer; Grassian, Vicki H

    2017-05-01

    The interaction of a model protein, bovine serum albumin (BSA) with two different metal oxide nanoparticles, TiO2 (∼22nm) and SiO2 (∼14nm), was studied at both physiological and acidic pH. The pH- and nanoparticle-dependent differences in protein structure and protein adsorption were determined using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermogravimetric analysis (TGA). The results indicated that the surface coverage of BSA decreases with decreasing pH on both TiO2 and SiO2 surfaces, and BSA coverage is higher by a factor of ca. 3-10times more on TiO2 compared to SiO2. The secondary structure of BSA changes upon adsorption to either nanoparticle surface at both pH 7.4 and 2. At acidic pH, BSA appears to completely unfold on TiO2 nanoparticles whereas it assumes an extended conformation on SiO2. These differences highlight for the first time the extent to which the protein corona structure is significantly impacted by protein-nanoparticle interactions which depend on the interplay between pH and specific nanoparticle surface chemistry. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts

    Science.gov (United States)

    Fischer-Wolfarth, Jan-Henrik; Hartmann, Jens; Farmer, Jason A.; Flores-Camacho, J. Manuel; Campbell, Charles T.; Schauermann, Swetlana; Freund, Hans-Joachim

    2011-02-01

    -2) corresponds to the detection limit for adsorption of less than 1.5 × 1012 CO molecules cm-2 or less than 0.1% of the monolayer coverage (with respect to the 1.5 × 1015 surface Pt atoms cm-2). The absolute accuracy in energy is within ˜7%-9%. As a test of the new calorimeter, the adsorption heats of CO on Pt(111) at different temperatures were measured and compared to previously obtained calorimetric data at 300 K.

  7. Reactivity of transition metal atoms supported or not on TiO2(110) toward CO and H adsorption

    KAUST Repository

    Helali, Zeineb

    2015-04-01

    Following our strategy to analyze the metal–support interaction, we present periodic DFT calculations for adsorption of metal atoms on a perfect rutile TiO2(110) surface (at low coverage, θ = 1/3) to investigate the interaction of an individual metal atom, M, with TiO2 and its consequence on the coadsorption of H and CO over M/TiO2. M under investigation varies in a systematic way from K to Zn. It is found that the presence of the support decreases or increases the strength of M–H or M–CO interaction according to the nature of M. The site of the adsorption for H and the formation of HCO/M also depend on M. From the left- to the right-hand side of the period, C and O both interact while O progressively detaches from M. On the contrary, for M = Fe–Cu, CO dissociation is more likely to happen. For CO and H coadsorption, two extreme cases emerge: For Ni, the hydrogen adsorbed should easily move on the support and CO dissociation is more likely. For Ti or Sc, H is easily coadsorbed with CO on the metal and CO hydrogenation could be the initial step. © 2015, Springer-Verlag Berlin Heidelberg.

  8. Insight into chemoselectivity of nitroarene hydrogenation: A DFT-D3 study of nitroarene adsorption on metal surfaces under the realistic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lidong [Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China); Cao, Xiao-Ming, E-mail: xmcao@ecust.edu.cn [Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China); Hu, P., E-mail: p.hu@qub.ac.uk [Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China); School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast, BT9 5AG (United Kingdom)

    2017-01-15

    Highlights: • Comparing the chemical bonding strengths between different functional groups of nitroarenes and metal surfaces. • Obtaining the variation trends of adsorption configurations of nitrobenzene and 4-nitrostyrene against their coverage. • Identifying the coverage of nitroarene and hydrogen on Pt(111) and Au(111) under the realistic hydrogenation condition. • Proposing Gibbs free adsorption energy per surface area as a descriptor to roughly evaluate the hydrogenation selectivity. - Abstract: The adsorption of nitrobenzene and 4-nitrostyrene on the Pt(111) and the Au(111) surfaces under the general reaction condition of nitroarene catalytic hydrogenation is investigated utilizing periodic density functional theory calculations with the Grimme’s empirical three-body dispersion correction to understand the influence of adsorption configurations on chemoselectivity of nitroarene compound hydrogenation. It is found that at the low coverage both nitrobenzene and 4-nitrostyrene tend to adsorb paralleling to the Pt(111) and the Au(111) surfaces. Based on the crystal orbital Hamilton population analysis, it is found that the chemical bonding between nitro group and Pt(111) surface is weak. The adsorption configurations of nitrobenzene and 4-nitrostyrene are determined by the chemisorption strength of phenyl group and vinyl group. Under the reaction condition, the 1/9 ML nitrobenzene and 4/9 ML hydrogen atom can be coadsorbed while the 1/6 ML 4-nitrostyrene and 1/3 ML hydrogen atom can be coadsorbed on Pt(111). With the increase of the coverage, nitrobenzene still remains its paralleled adsorption configuration while the adsorption configuration of 4-nitrostyrene is switched to the tilted adsorption configuration through vinyl group without the chemisorption of phenyl and nitro group on Pt(111). In addition, the competitive adsorption with hydrogen will not change the adsorption configuration of nitrobenzene and 4-nitrostyrene under the reaction condition

  9. Intra-disciplinary differences in database coverage and the consequences for bibliometric research

    DEFF Research Database (Denmark)

    Faber Frandsen, Tove; Nicolaisen, Jeppe

    2008-01-01

    Bibliographic databases (including databases based on open access) are routinely used for bibliometric research. The value of a specific database depends to a large extent on the coverage of the discipline(s) under study. A number of studies have determined the coverage of databases in specific...... and psychology). The point extends to include both the uneven coverage of specialties and research traditions. The implications for bibliometric research are discussed, and precautions which need to be taken are outlined. ...

  10. Density functional theory study of oxygen and water adsorption on SrTiO{sub 3}(001)

    Energy Technology Data Exchange (ETDEWEB)

    Guhl, Hannes

    2010-12-03

    Strontium titanate is an extensively studied material with a wide range of application, for instance in photo-catalysis and most importantly, it is used as a substrate in growth of functional oxides. The surface chemistry is crucial and hence understanding the surface structure on atomic scale is essential for gaining insight into the fundamental processes in the aforementioned applications. Moreover, there exist a lot of evidence that this surface chemistry might be controlled to considerably by extrinsic species, such as residual hydrogen and water. Investigating the properties of water and oxygen on the strontium titanate surface is certainly a natural starting point for a theoretical study based on density functional theory, because these species are practically present on the surface on a wide range of experimental conditions and they are computationally feasible. For the oxygen and water adsorption the binding energy is controlled by long-range surface relaxations leading to an effective repulsion of the adsorbed specimen. The isolated oxygen ad-atom forms a covalently bonded ''quasi-peroxide anion'' in combination with a lattice oxygen atom. Contrariwise, in all investigated configurations containing water molecules and hydroxyl groups, the respective oxygen atoms assumed positions close to the oxygen sites of the continued perovskite lattice of the substrate. Most remarkably, on the strontium oxide termination, the water molecules adsorbs and dissociates effortlessly leading to the formation of a pair of hydroxyl groups. For the titanium dioxide termination, a coverage dependent adsorption mode is observed. Densely packings stabilize water molecules, whereas at lower coverage and finite temperatures the formation of hydroxyl groups is found. The energetics responsible for this behavior is consistent with recent experiments by Iwahori and coworkers. (orig.)

  11. Ibuprofen adsorption in four agricultural volcanic soils.

    Science.gov (United States)

    Estevez, Esmeralda; Hernandez-Moreno, Jose Manuel; Fernandez-Vera, Juan Ramon; Palacios-Diaz, Maria Pino

    2014-01-15

    Ibuprofen (IB) is a high environmental risk drug and one of the most frequently prescribed in human medicine. Recently, IB has been detected in Gran Canaria in reclaimed water for irrigation and in groundwater. Adsorption was studied in four volcanic soils from three islands of the Canarian Archipelago. Once the biodegradation process has been excluded from the experimental conditions, a batch method was applied using initial concentrations of 1-5-10-20-50-100-200 mg L(-1) and two soil/water ratios (w/V): 1:5 (OECD, 2000) and 1:1. Non-linear and linearized Langmuir and Freundlich equations were well fitted. The wide IB range tested in our batch studies allowed us to measure experimental adsorption values close to the maximum adsorption capacity (S(max)) as estimated by Langmuir, making it possible thereby to validate the use of the Langmuir equation when there is a burst of contamination at high concentration. The distribution coefficient (Kd), S(max) and Retardation Factor (RF) varied from 0.04 to 0.5 kg L(-1), 4-200 mgk g(-1) and 1.2-1.9, respectively. The lowest S(max) and Kd values were found for the 1:1S/W ratio whereas most batch studies employ 1:5S/W ratios, thus obtaining higher adsorption parameters than when considering field conditions (1:1). Despite the high anion retention of andic soils, similar Kd and RF to those reported for other soils were obtained in 1:5, while high S(max) was found. Our results demonstrate that IB adsorption in volcanic areas responds not only to the soil properties commonly cited in adsorption studies, but also depends on andic properties, sorbent concentration and Dissolved Organic Carbon, the higher values of which are related to the lower Kd and S(max). The low RF and low detection frequency of the IB in groundwater suggests that a) reclaimed water irrigation is not the main source of IB, and b) the existence of some uncontrolled water disposal points in the zone. © 2013.

  12. Hydrogen adsorption on rhodium

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, M.E.; Michri, A.A.; Kalish, T.V.; Pshenichnikov, A.G.; Kazarinov, V.E.

    1987-09-01

    Measurements of thermal desorption and electron work function were used to investigate the mechanism of hydrogen adsorption from the gas phase on rhodium single-crystal faces and on a polycrystalline rhodium sample at room temperatures over the pressure range from 1.3-10/sup -3/ to 1.3 x 10/sup -5/ Pa. It was found that dipoles oriented with their negative ends toward the gas phase (dipoles of type I) form more rapidly than dipoles having the opposite orientation (dipoles of type II). For formation of the latter, a mechanism is proposed according to which the rate-determining step of the overall process is the transition of reversibly adsorbed hydrogen to dipoles of type II (the spillover), which occurs at surface defects. It was shown that the kinetics of this process with respect to the individual defect obeys an equation which is zeroth order in theta/sub H/ and pressure.

  13. Shape Universality Classes in the Random Sequential Adsorption of Nonspherical Particles

    Science.gov (United States)

    Baule, Adrian

    2017-07-01

    Random sequential adsorption (RSA) of particles of a particular shape is used in a large variety of contexts to model particle aggregation and jamming. A key feature of these models is the observed algebraic time dependence of the asymptotic jamming coverage ˜t-ν as t →∞ . However, the exact value of the exponent ν is not known apart from the simplest case of the RSA of monodisperse spheres adsorbed on a line (Renyi's seminal "car parking problem"), where ν =1 can be derived analytically. Empirical simulation studies have conjectured on a case-by-case basis that for general nonspherical particles, ν =1 /(d +d ˜ ), where d denotes the dimension of the domain, and d ˜ the number of orientational degrees of freedom of a particle. Here, we solve this long-standing problem analytically for the d =1 case—the "Paris car parking problem." We prove, in particular, that the scaling exponent depends on the particle shape, contrary to the original conjecture and, remarkably, falls into two universality classes: (i) ν =1 /(1 +d ˜ /2 ) for shapes with a smooth contact distance, e.g., ellipsoids, and (ii) ν =1 /(1 +d ˜ ) for shapes with a singular contact distance, e.g., spherocylinders and polyhedra. The exact solution explains, in particular, why many empirically observed scalings fall in between these two limits.

  14. Hydrophilic and hydrophobic adsorption on Y zeolites

    Science.gov (United States)

    Halasz, Istvan; Kim, Song; Marcus, Bonnie

    The uniform large micropores of hydrothermally stable Y zeolites are used widely to confine both polar and non-polar molecules. This paper compares the physisorption of water, methanol, cyclohexane, benzene and other adsorbates over various Y zeolites. These adsorbents are commercial products with reproducibly controllable physical and chemical characteristics. Results indicate that the type I isotherms typical for micropore adsorption can turn into type II or type III isotherms depending on either or both the hydrophobicity of the adsorbent and the polarity of the adsorbate. Methanol produced a rare type V isotherm not reported over zeolites before. Canonical and grand canonical Monte Carlo molecular simulations with Metropolis importance sampling reproduced the experimental isotherms and showed characteristic geometric patterns for molecules confined in Na-X, Na-Y, dealuminated Y, and ZSM5 structures. Adsorbate-adsorbate interactions seem to determine the micropore condensation of both polar and non-polar molecules. Exchanged ions and lattice defects play a secondary role in shaping the adsorption isotherms. The force field of hydrophobic Y appears to exert an as yet unexplored sieving effect on adsorbates having different dipole moments and partial charge distributions. This mechanism is apparently different from both the monolayer formation controlled adsorption on hydrophobic mesopores and macropores and the polarizability and small-pore opening controlled micropore confinement in hydrophobic ZSM5.

  15. -Net Approach to Sensor -Coverage

    Directory of Open Access Journals (Sweden)

    Fusco Giordano

    2010-01-01

    Full Text Available Wireless sensors rely on battery power, and in many applications it is difficult or prohibitive to replace them. Hence, in order to prolongate the system's lifetime, some sensors can be kept inactive while others perform all the tasks. In this paper, we study the -coverage problem of activating the minimum number of sensors to ensure that every point in the area is covered by at least sensors. This ensures higher fault tolerance, robustness, and improves many operations, among which position detection and intrusion detection. The -coverage problem is trivially NP-complete, and hence we can only provide approximation algorithms. In this paper, we present an algorithm based on an extension of the classical -net technique. This method gives an -approximation, where is the number of sensors in an optimal solution. We do not make any particular assumption on the shape of the areas covered by each sensor, besides that they must be closed, connected, and without holes.

  16. Medical coverage of cycling events.

    Science.gov (United States)

    Martinez, John M

    2006-05-01

    Medical coverage of recreational and competitive cycling events requires significant planning and cooperation among the race and medical directors, race officials, and local emergency medical services. The medical team should be proficient in treating minor and self-limiting injuries such as abrasions and minor trauma. The medical team should also have contingency plans for medical emergencies, such as cardiac events and major trauma, that ensure rapid stabilization and transport of the athlete to the appropriate medical facility. Stationary and mobile medical teams may be necessary for proper coverage of the event. Event day communication systems between individual medical staff as well as race officials and local emergency medical services is important to the success of the event.

  17. Controlled swelling and adsorption properties of polyacrylate/montmorillonite composites

    Energy Technology Data Exchange (ETDEWEB)

    Natkanski, Piotr [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kustrowski, Piotr, E-mail: kustrows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Bialas, Anna; Piwowarska, Zofia [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Michalik, Marek [Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Krakow (Poland)

    2012-10-15

    A series of novel polyacrylate/montmorillonite composites was synthesized by in situ polymerization in aqueous slurry of clay. Dissociated (obtained by adding ammonium or sodium hydroxide) and undissociated forms of acrylic acid were used as monomers in the hydrogel synthesis. The structure and composition of the samples were studied by powder X-ray diffraction, diffuse reflectance infra-red Fourier transform spectroscopy, thermogravimetry and elemental analysis. It has been found that the kind of monomer influences strongly the location of a polymer chain in the formed composite. Complete intercalation of hydrogel into the interlayer space of montmorillonite was observed for sodium polyacrylate, whereas polyacrylic acid and ammonium polyacrylate mainly occupied the outer surface of the clay. The position of hydrogel determined the swelling and adsorption properties of the studied composites. The important factor influencing the kinetics of Fe(III) cation adsorption was pH. The analysis of adsorption isotherms allowed to propose the mechanism of Fe(III) cation adsorption. Highlights: Black-Right-Pointing-Pointer Polyacrylate hydrogels can be introduced into the interlayers of clay. Black-Right-Pointing-Pointer The position of hydrogel in the composite depends on the polymer type. Black-Right-Pointing-Pointer Ammonium polyacrylate places outside the clay, sodium one is intercalated into it. Black-Right-Pointing-Pointer Swelling and adsorption capacities can be controlled by the polymer position. Black-Right-Pointing-Pointer High adsorption efficiency in Fe(III) removal was observed.

  18. Adsorption properties of CdS-CdTe system semiconductors

    Science.gov (United States)

    Kirovskaya, I. A.; Nor, P. E.

    2013-12-01

    The adsorption of carbon(II) oxide and ammonia on nanofilms of solid solutions and binary compounds of the CdS-CdTe system is studied by means of piezoquartz microweighing, FTIR IR, and measuring electroconductivity. Allowing for the conditions and composition of semiconductor systems, we determine the mechanisms and principles of adsorption processes by analyzing the α p = f( T), α T = f( p), and α T = f( t) experimental dependences; IR spectra; the thermodynamic and kinetic characteristics of adsorption; the acid-base, electrophysical, and other characteristics of adsorbents; the electron nature of adsorbate molecules; and the obtained acid-base characteristics: the composition and adsorption characteristics and composition state diagrams. Previous statements on the nature and retention of local active centers responsible for adsorption and catalytic processes upon changes in their habitus and composition (as components of systems of the AIIIBV-AIIBVI and AIIBVI-AIIBVI types) on the surface of diamond-like semiconductors are confirmed. Specific features of the behavior of (CdS) x (CdTe)1 - x solid solutions are identified in addition to general features with binary compounds (CdS, CdTe), as is demonstrated by the presence of critical points on acid-base characteristics-composition and adsorption characteristics-composition diagrams. On the basis of these diagrams, the most active adsorbents (with respect to CO and NH3) used in designing highly sensitive and selective sensors are identified.

  19. Media coverage of women victimization

    OpenAIRE

    Konstantinović-Vilić, Slobodanka; Žunić, Natalija

    2012-01-01

    Mass media seem to be playing the central role in our everyday life and the media impact is so overpowering nowadays that we live in a mediasaturated culture. Not only are mass media an inseparable part of our contemporary life but they also significantly define and shape our daily existence. In order to explain the cultural impact that the media coverage of crime and victimization has in our society, it is necessary to understand the relationship between crime, victimization and mass media. ...

  20. Novel lignocellulosic wastes for comparative adsorption of Cr(VI: equilibrium kinetics and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Haroon Hajira

    2017-06-01

    Full Text Available Cr(VI adsorption was studied for abundantly available low-cost lignocellulosic adsorbents in Pakistan namely, tobacco stalks (TS, white cedar stem (WCS and eucalyptus bark (EB. Several process variables like contact time, adsorbent dose, pH, metal concentration, particle size and temperature were optimized in batch mode. EB showed high Cr(VI adsorption of 63.66% followed by WCS 62% and TS 57% at pH 2, which is higher than most of the reported literature. Langmuir isotherm (R2 = 0.999 was well fitted into the equilibrium Cr(VI data of EB, suggesting homogeneous active sites and monolayer coverage of Cr(VI onto the EB surface. Freundlich (R2 = 0.9982 isotherm was better fitted to the equilibrium data of TS and WCS, revealing the adsorption sites with heterogeneous energy distribution and multilayer Cr(VI adsorption. Moreover, the Cr(VI adsorption of studied adsorbents followed the pseudo-second order kinetic model. Thermodynamic properties were investigated in two temperature ranges, i.e., T1 (303–313 K and T2 (313–323 K. TS and EB showed the exothermic at T1 and endothermic reactions at T2 with entropy controlled adsorption at the solid-liquid interface, and WCS exhibited an opposite thermal trend with decreasing disorderness at solid-liquid interface as temperature rises. Gibbs free energy (ΔG>0 confirmed the non-spontaneous adsorption process for all studied adsorbents.

  1. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  2. Adsorption of Atenolol on Kaolinite

    Directory of Open Access Journals (Sweden)

    Yingmo Hu

    2015-01-01

    Full Text Available In this study the adsorption of atenolol (AT, a β-blocker, on kaolinite, a clay mineral of low surface charge, was investigated under varying initial AT concentration, equilibrium time, solution pH, ionic strength, and temperature conditions. The results showed that the amounts of AT uptake by kaolinite were close to its cation exchange capacity value and the AT adsorption was almost instantaneous, suggesting a surface adsorption. The adsorption was exothermic and the free energy of adsorption was small negative, indicating physical adsorption. The increase in ionic strength of the solution drastically reduced AT uptake on kaolinite. A significant reduction in AT uptake was found at solution pH below 5 or above 10. The FTIR results showed band shifting and disappearance for NH bending vibration and benzene ring skeletal vibration at 3360 and 1515 cm−1 and band splitting at 1412 and 1240 cm−1 attributed to C–N valence vibration coupled with NH bending vibrations and alkyl aryl ether linkage, suggesting the participation of NH, –O–, and benzene ring for AT adsorption on kaolinite.

  3. Increasing Coverage of Appropriate Vaccinations

    Science.gov (United States)

    Jacob, Verughese; Chattopadhyay, Sajal K.; Hopkins, David P.; Morgan, Jennifer Murphy; Pitan, Adesola A.; Clymer, John

    2016-01-01

    Context Population-level coverage for immunization against many vaccine-preventable diseases remains below optimal rates in the U.S. The Community Preventive Services Task Force recently recommended several interventions to increase vaccination coverage based on systematic reviews of the evaluation literature. The present study provides the economic results from those reviews. Evidence acquisition A systematic review was conducted (search period, January 1980 through February 2012) to identify economic evaluations of 12 interventions recommended by the Task Force. Evidence was drawn from included studies; estimates were constructed for the population reach of each strategy, cost of implementation, and cost per additional vaccinated person because of the intervention. Analyses were conducted in 2014. Evidence synthesis Reminder systems, whether for clients or providers, were among the lowest-cost strategies to implement and the most cost effective in terms of additional people vaccinated. Strategies involving home visits and combination strategies in community settings were both costly and less cost effective. Strategies based in settings such as schools and managed care organizations that reached the target population achieved additional vaccinations in the middle range of cost effectiveness. Conclusions The interventions recommended by the Task Force differed in reach, cost, and cost effectiveness. This systematic review presents the economic information for 12 effective strategies to increase vaccination coverage that can guide implementers in their choice of interventions to fit their local needs, available resources, and budget. PMID:26847663

  4. Investigating the thermodynamic stability of Bacillus subtilis spore-uranium(VI) adsorption though surface complexation modeling

    Science.gov (United States)

    Harrold, Z.; Hertel, M.; Gorman-Lewis, D.

    2012-12-01

    Dissolved uranium speciation, mobility, and remediation are increasingly important topics given continued and potential uranium (U) release from mining operations and nuclear waste. Vegetative bacterial cell surfaces are known to adsorb uranium and may influence uranium speciation in the environment. Previous investigations regarding U(VI) adsorption to bacterial spores, a differentiated and dormant cell type with a tough proteinaceous coat, include U adsorption affinity and XAFS data. We investigated the thermodynamic stability of aerobic, pH dependent uranium adsorption to bacterial spore surfaces using purified Bacillus subtilis spores in solution with 5ppm uranium. Adsorption reversibility and kinetic experiments indicate that uranium does not precipitate over the duration of the experiments and equilibrium is reached within 20 minutes. Uranium-spore adsorption edges exhibited adsorption at all pH measured between 2 and 10. Maximum adsorption was achieved around pH 7 and decreased as pH increased above 7. We used surface complexation modeling (SCM) to quantify uranium adsorption based on balanced chemical equations and derive thermodynamic stability constants for discrete uranium-spore adsorption reactions. Site specific thermodynamic stability constants provide insight on interactions occurring between aqueous uranium species and spore surface ligands. The uranium adsorption data and SCM parameters described herein, also provide a basis for predicting the influence of bacterial spores on uranium speciation in natural systems and investigating their potential as biosorption agents in engineered systems.

  5. The adsorption of nitrogen oxides on crystalline ice

    Directory of Open Access Journals (Sweden)

    T. Bartels

    2002-01-01

    Full Text Available The partitioning of nitrogen oxides between ice and air is of importance to the ozone budget in the upper troposphere. In the present study, adsorption of nitrogen oxides on ice was investigated at atmospheric pressure using a chromatographic technique with radioactively labelled nitrogen oxides at low concentrations. The measured retentions solely depended on molecular adsorption and were not influenced by dimerisation, formation of encapsulated hydrates on the ice surface, dissociation of the acids, nor by migration into a quasi-liquid layer or grain boundaries. Based on the chromatographic retention and the model of thermo-chromatography, the standard adsorption enthalpy of -20 kJ mol-1 for NO, -22kJ mol-1 for NO2, -30kJ mol-1 for peroxyacetyl nitrate, -32kJ mol-1 for HON} and -44 kJ mol-1 for HNO3 was calculated. To perform those calculations within the model of thermo-chromatography, the standard adsorption entropy was calculated based on statistical thermodynamics. In this work, two different choices of standard states were applied, and consequently different values of the standard adsorption entropy, of either between -39 kJ mol-1 and -45kJ mol-1, or -164 kJ mol-1 and -169 kJ mol-1 for each nitrogen oxide were derived. The standard adsorption enthalpy was identical for both standard adsorption entropies and thus shown to be independent of the choice of standard state. A brief outlook on environmental implications of our findings indicates that adsorption on ice might be an important removal process of HNO3. In addition, it might be of some importance for HONO and peroxyacetyl nitrate and irrelevant for NO and NO2.

  6. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper( ii ) and a positively charged dye

    KAUST Repository

    Sehaqui, H.

    2015-01-01

    © The Royal Society of Chemistry. Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby introducing positive charges onto the surface of the pulp fibers, and subsequently mechanically disintegrated into high surface area cellulose nanofibers (CNF). CNF with three different charge contents were produced and their adsorption capacity towards HA was investigated with UV-spectrophotometry, quartz crystal microbalance with dissipation, and ζ-potential measurements. Substantial coverage of the CNF surface with HA in a wide pH range led to a reversal of the positive ζ-potentials of CNF suspensions. The HA adsorption capacity and the kinetics of HA uptake were found to be promoted by both acidic pH conditions and the surface charge content of CNF. It is suggested that HA adsorption onto CNF depends on electrostatic interactions between the two components, as well as on the conformation of HA. At pH ∼ 6, up to 310 mg g-1 of HA were adsorbed by the functionalized CNF, a substantially higher capacity than that of previously reported HA sorbents in the literature. It is further shown that CNF-HA complexes could be freeze-dried into "soil-mimicking" porous foams having good capacity to capture Cu(ii) ions and positive dyes from contaminated water. Thus, the most abundant natural polymer, i.e., cellulose could effectively bind the most abundant natural organic matter for environmental remediation purpose.

  7. Adsorption of alcohols on a two-dimensional SiO2 single crystal - Alcohol adsorption on silicatene

    Science.gov (United States)

    Nayakasinghe, M. T.; Sivapragasam, N.; Burghaus, U.

    2017-12-01

    The adsorption kinetics of alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol) was studied on monoatomic, two-dimensional SiO2 single crystals (silicatene) using thermal desorption spectroscopy (TDS). Silicatene was grown on Mo(1 1 2) at ultra-high vacuum. In contrast to Mo, the alcohols physisorb molecularly on the hydrophobic SiO2/Mo surface. Zero coverage binding energies vary from 46.5 to 65.5 kJ/mol and increase with molecular size. Silicatene was characterized by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and water TDS.

  8. Carbon-covered mesoporous silica and its application in Rhodamine B adsorption.

    Science.gov (United States)

    Nascimento, R C S; Silva, A O S; Meili, L

    2017-05-18

    Modified versions of MCM-41 and SBA-15 were obtained from sucrose by carbon deposition. The ability of the resulting materials, MCM-41 CC and SBA-15 CC, to remove Rhodamine B from aqueous solutions was evaluated. TG/DTG, XRD, Nitrogen Adsorption (BET), and SEM were used to characterize the materials. Adsorption was investigated by finite bath studies. To characterize the adsorption behavior and mechanism, kinetics and equilibrium were assessed. MCM-41 CC provided the best adsorption results: adsorptive capacity of 11.91 mg of dye/g of material and 91.95% w/v dye removal (C0 = 50 mg L-1). The sucrose particles interacted well, to result in improved area and micropore volume. Hence, carbon deposition can afford materials with increased adsorptive capacity depending on the sieve employed during their preparation.

  9. Adsorption-desorption dynamics of cyprodinil and fludioxonil in vineyard soils.

    Science.gov (United States)

    Arias, M; Torrente, A C; López, E; Soto, B; Simal-Gándara, J

    2005-07-13

    Cyprodinil and fludioxonil are new-generation fungicides that are employed to protect grapevines from botrytis and various rots. In this work, their adsorption and desorption dynamics in eight vineyard soils from Galicia (northwestern Spain) were examined in batch and column experiments. Both fungicides exhibited linear adsorption isotherms, with more ready adsorption (greater Kd) of fludioxonil. Kd values for cyprodinil were significantly correlated with soil organic matter content (r 2= 0.675, p pesticides exhibited adsorption-desorption hysteresis, but desorption was easier and more variable for cyprodinil (12-21%, RSD = 17%) than for fludioxonil (3-5%, RSD = 13%) and appeared to depend on the formation of irreversible bonds in the former case and on poor solubility in the latter. A linear adsorption model involving nonequilibrium conditions and an irreversible adsorption term was found to reproduce transport behavior accurately.

  10. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  11. Surface complexation modeling of uranyl adsorption on corrensite from the Waste Isolation Pilot Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Won; Leckie, J.O. [Stanford Univ., CA (United States); Siegel, M.D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-09-01

    Corrensite is the dominant clay mineral in the Culebra Dolomite at the Waste Isolation Pilot Plant. The surface characteristics of corrensite, a mixed chlorite/smectite clay mineral, have been studied. Zeta potential measurements and titration experiments suggest that the corrensite surface contains a mixture of permanent charge sites on the basal plane and SiOH and AlOH sites with a net pH-dependent charge at the edge of the clay platelets. Triple-layer model parameters were determined by the double extrapolation technique for use in chemical speciation calculations of adsorption reactions using the computer program HYDRAQL. Batch adsorption studies showed that corrensite is an effective adsorbent for uranyl. The pH-dependent adsorption behavior indicates that adsorption occurs at the edge sites. Adsorption studies were also conducted in the presence of competing cations and complexing ligands. The cations did not affect uranyl adsorption in the range studied. This observation lends support to the hypothesis that uranyl adsorption occurs at the edge sites. Uranyl adsorption was significantly hindered by carbonate. It is proposed that the formation of carbonate uranyl complexes inhibits uranyl adsorption and that only the carbonate-free species adsorb to the corrensite surface. The presence of the organic complexing agents EDTA and oxine also inhibits uranyl sorption.

  12. A Study on Astrazon Black AFDL Dye Adsorption onto Vietnamese Diatomite

    Directory of Open Access Journals (Sweden)

    Bui Hai Dang Son

    2016-01-01

    Full Text Available In the present paper, the adsorption of Astrazon Black AFDL dye onto Vietnamese diatomite has been demonstrated. The diatomite was characterized by XRD, SEM, TEM, EDS, and nitrogen adsorption/desorption isotherms. The results show that diatomite mainly constituted centric type frustules characterized by pores as discs or as cylindrical shapes. The adsorption kinetics and isotherms of dye onto Vietnam diatomite were investigated. The experimental data were fitted well to both Freundlich and Langmuir in the initial concentration range of 400–1400 mg L−1. The average value of maximum adsorption capacity, qm, calculated from Freundlich equation is statistically similar to the average value of maximum monolayer adsorption capacity calculated from Langmuir equation. The thermodynamic parameters evaluated from the temperature dependent on adsorption isotherms in the range of 303–343 K show that the adsorption process was spontaneous and endothermic. The Webber and pseudo-first/second-order kinetic models were used to analyze the mechanism of adsorption. The piecewise linear regression and Akaike’s Information Criterion were used to analyze experimental data. The results show that the dye adsorption onto diatomite was film diffusion controlled and the goodness of fit of experimental data for kinetics modes was dependent on the initial concentration.

  13. Assessing Measurement Error in Medicare Coverage

    Data.gov (United States)

    U.S. Department of Health & Human Services — Assessing Measurement Error in Medicare Coverage From the National Health Interview Survey Using linked administrative data, to validate Medicare coverage estimates...

  14. Bimetallic Cobalt-Based Phosphide Zeolitic Imidazolate Framework: CoP x Phase-Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Xu, Bo Z. [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, Richland WA 99352 USA; Ye, Ranfeng [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Beckman, Scott P. [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-10-25

    Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/ RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion.

  15. Influence of Salts on Virus Adsorption to Microporous Filters†

    Science.gov (United States)

    Lukasik, Jerzy; Scott, Troy M.; Andryshak, Diane; Farrah, Samuel R.

    2000-01-01

    We investigated the direct and indirect effects of mono-, di-, and trivalent salts (NaCl, MgCl2, and AlCl3) on the adsorption of several viruses (MS2, PRD-1, φX174, and poliovirus 1) to microporous filters at different pH values. The filters studied included Millipore HA (nitrocellulose), Filterite (fiberglass), Whatman (cellulose), and 1MDS (charged-modified fiber) filters. Each of these filters except the Whatman cellulose filters has been used in virus removal and recovery procedures. The direct effects of added salts were considered to be the effects associated with the presence of the soluble salts. The indirect effects of the added salts were considered to be (i) changes in the pH values of solutions and (ii) the formation of insoluble precipitates that could adsorb viruses and be removed by filtration. When direct effects alone were considered, the salts used in this study promoted virus adsorption, interfered with virus adsorption, or had little or no effect on virus adsorption, depending on the filter, the virus, and the salt. Although we were able to confirm previous reports that the addition of aluminum chloride to water enhances virus adsorption to microporous filters, we found that the enhanced adsorption was associated with indirect effects rather than direct effects. The increase in viral adsorption observed when aluminum chloride was added to water was related to the decrease in the pH of the water. Similar results could be obtained by adding HCl. The increased adsorption of viruses in water at pH 7 following addition of aluminum chloride was probably due to flocculation of aluminum, since removal of flocs by filtration greatly reduced the enhancement observed. The only direct effect of aluminum chloride on virus adsorption that we observed was interference with adsorption to microporous filters. Under conditions under which hydrophobic interactions were minimal, aluminum chloride interfered with virus adsorption to Millipore, Filterite, and 1MDS

  16. Early stages of Cs adsorption mechanism for GaAs nanowire surface

    Science.gov (United States)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu

    2018-03-01

    In this study, the adsorption mechanism of Cs adatoms on the (100) surface of GaAs nanowire with [0001] growth direction is investigated utilizing first principles method based on density function theory. The adsorption energy, work function, atomic structure and electronic property of clean surface and Cs-covered surfaces with different coverage are discussed. Results show that when only one Cs is adsorbed on the surface, the most favorable adsorption site is BGa-As. With increasing Cs coverage, work function gradually decreases and gets its minimum at 0.75 ML, then rises slightly when Cs coverage comes to 1 ML, indicating the existence of 'Cs-kill' phenomenon. According to further analysis, Cs activation process can effectively reduce the work function due to the formation of a downward band bending region and surface dipole moment directing from Cs adatom to the surface. As Cs coverage increases, the conduction band minimum and valence band maximum both shift towards lower energy side, contributed by the orbital hybridization between Cs-5s, Cs-5p states and Ga-4p, As-4s, As-4p states near Fermi level. The theoretical calculations and analysis in this study can improve the Cs activation technology for negative electron affinity optoelectronic devices based on GaAs nanowires, and also provide a reference for the further Cs/O or Cs/NF3 activation process.

  17. CO Gas Adsorption on SnO2 Surfaces: Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Hayk Zakaryan

    2017-05-01

    Full Text Available This research is devoted to the investigation of the toxic carbon monoxide gas adsorption mechanisms on the tin dioxide semiconductor. We used density functional theory to describe adsorption processes and found out that the Mars- van Krevelen adsorption mechanism is not responsible for adsorption on (101 and (001 surface orientations of tin dioxide. For (110 and (100 surfaces, after adsorption carbon dioxide molecule forms and desorbs from the surfaces. For (101 surface orientation, carbon monoxide adsorb to the surface’s oxide by carbon atom and stay bonded to it. Charge transfer from the molecule to the surface, which equal to 1.9e calculated by Bader charge analysis. In the case of (001 surface orientation, carbon monoxide adsorb to surface’s oxygen and stay bonded too. Here, we consider half and full surface coverages. It was shown, that during full surface coverage, only one molecule can adsorbs and transfer 2e charge. Electronic density of states calculation was done to explain the increase of surface conductance.

  18. An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts.

    Science.gov (United States)

    Fischer-Wolfarth, Jan-Henrik; Hartmann, Jens; Farmer, Jason A; Flores-Camacho, J Manuel; Campbell, Charles T; Schauermann, Swetlana; Freund, Hans-Joachim

    2011-02-01

    J (or 120 nJ cm(-2)) corresponds to the detection limit for adsorption of less than 1.5 × 10(12) CO molecules cm(-2) or less than 0.1% of the monolayer coverage (with respect to the 1.5 × 10(15) surface Pt atoms cm(-2)). The absolute accuracy in energy is within ∼7%-9%. As a test of the new calorimeter, the adsorption heats of CO on Pt(111) at different temperatures were measured and compared to previously obtained calorimetric data at 300 K.

  19. Dynamic adsorption of ammonia: apparatus, testing conditions, and adsorption capacities

    Science.gov (United States)

    Amid, Hooman; Mazé, Benoît; Flickinger, Michael C.; Pourdeyhimi, Behnam

    2017-04-01

    There is a growing need for adsorbents with high capacities for adsorption of toxic gas molecules. Methods and conditions to test these materials introduce large discrepancies and overestimates (~90%) in the reported literature. This study describes a simple apparatus utilizing hand-held inexpensive gas sensors for testing adsorbents and hybrid adsorbent materials, explains possible sources for the observed discrepancies based on how the measurements are made, and provides guidelines for accurate measurements of adsorption capacity. Ammonia was the model gas and Ammonasorb™ activated carbon was the model commercial adsorbent. Inlet ammonia concentration, residence time, adsorbent pre-treatment (baking) and humidity, affected the measured adsorption capacities. Results suggest that the time lag in gas detection sensors leads to overestimated capacities. Monitoring both inlet and outlet concentrations using two calibrated sensors solved this issue. There was a direct relationship between adsorption capacity and residence time and capacities were higher at higher inlet concentrations. The size of the adsorbent particles did not show a significant effect on adsorption breakthrough, and the apparatus was able to quantify how humidity reduced the adsorption capacity.

  20. Atomic and molecular adsorption on Fe(110)

    Science.gov (United States)

    Xu, Lang; Kirvassilis, Demetrios; Bai, Yunhai; Mavrikakis, Manos

    2018-01-01

    Iron is the principal catalyst for the ammonia synthesis process and the Fischer-Tropsch process, as well as many other heterogeneously catalyzed reactions. It is thus of fundamental importance to understand the interactions between the iron surface and various reaction intermediates. Here, we present a systematic study of atomic and molecular adsorption behavior over Fe(110) using periodic, self-consistent density functional theory (DFT-GGA) calculations. The preferred binding sites, binding energies, and the corresponding surface deformation energies of five atomic species (H, C, N, O, and S), six molecular species (NH3, CH4, N2, CO, HCN, and NO), and eleven molecular fragments (CH, CH2, CH3, NH, NH2, OH, CN, COH, HCO, NOH, and HNO) were determined on the Fe(110) surface at a coverage of 0.25 monolayer. The binding strengths calculated using the PW91 functional decreased in the following order: C > CH >N > O > S > NH > COH > CN > CH2 > NOH > OH > HNO > HCO > NH2 > H > NO > HCN > CH3 > CO > N2 > NH3. No stable binding structures were observed for CH4. The estimated diffusion barriers and pathways, as well as the adsorbate-surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites, were identified. Using the calculated adsorption energetics, we constructed the potential energy surfaces for a few surface reactions including the decomposition of methane, ammonia, dinitrogen, carbon monoxide, and nitric oxide. These potential energy surfaces provide valuable insight into the ability of Fe(110) to catalyze common elementary steps.

  1. 15 CFR 14.31 - Insurance coverage.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Insurance coverage. 14.31 Section 14... COMMERCIAL ORGANIZATIONS Post-Award Requirements Property Standards § 14.31 Insurance coverage. Recipients shall, at a minimum, provide the equivalent insurance coverage for real property and equipment acquired...

  2. 40 CFR 30.31 - Insurance coverage.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Insurance coverage. 30.31 Section 30.31... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 30.31 Insurance coverage. Recipients shall, at a minimum, provide the equivalent insurance coverage for real property and equipment...

  3. 45 CFR 74.31 - Insurance coverage.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Insurance coverage. 74.31 Section 74.31 Public..., AND COMMERCIAL ORGANIZATIONS Post-Award Requirements Property Standards § 74.31 Insurance coverage. Recipients shall, at a minimum, provide the equivalent insurance coverage for real property and equipment...

  4. 28 CFR 70.31 - Insurance coverage.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Insurance coverage. 70.31 Section 70.31...-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 70.31 Insurance coverage. Recipients must, at a minimum, provide the equivalent insurance coverage for real property and equipment acquired...

  5. 32 CFR 32.31 - Insurance coverage.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Insurance coverage. 32.31 Section 32.31 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.31 Insurance coverage. Recipients shall, at a minimum, provide the equivalent insurance coverage for real property and equipment...

  6. 38 CFR 49.31 - Insurance coverage.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Insurance coverage. 49.31... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 49.31 Insurance coverage. Recipients shall, at a minimum, provide the equivalent insurance coverage for real property and equipment...

  7. 24 CFR 84.31 - Insurance coverage.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Insurance coverage. 84.31 Section 84.31 Housing and Urban Development Office of the Secretary, Department of Housing and Urban... Insurance coverage. Recipients shall, at a minimum, provide the equivalent insurance coverage for real...

  8. 49 CFR 19.31 - Insurance coverage.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Insurance coverage. 19.31 Section 19.31... Requirements Property Standards § 19.31 Insurance coverage. Recipients shall, at a minimum, provide the equivalent insurance coverage for real property and equipment acquired with Federal funds as provided to...

  9. Controls on polyacrylamide adsorption to quartz, kaolinite, and feldspar

    Science.gov (United States)

    Graveling, Gary J.; Vala Ragnarsdottir, K.; Allen, Geoff C.; Eastman, John; Brady, Patrick V.; Balsley, Steven D.; Skuse, David R.

    1997-09-01

    Potentiometric titrations of quartz, kaolinite, feldspar, and partially hydrolysed polyacrylamide (HPAM), and sorption measurements of HPAM on the minerals, allows identification of the general mechanisms of polyacrylamide adsorption to aluminosilicates and quartz. Adsorption was monitored at the mineral solution interface by way of X-ray photoelectron spectroscopy (XPS). XPS spectra of the unreacted minerals show bands in the Ols, Si2p, Al2p, and Cls regions. Additional peaks are observed in the C1s and N1s regions after treatment with polyacrylamide and the latter is used in this study to monitor polymer adsorption. N1s peak intensities increase with polymer concentration to a maximum corresponding to surface site saturation. At a fixed polymer concentration, adsorption varies with pH-dependent surface charge. The adsorption mechanism changes with pH, reflecting variation in the pH-dependent concentrations of ionizable groups on polyacrylamide and at aluminosilicate surfaces, and the extent of hydrogen-bonding between uncharged mineral surface sites and polymer amide groups.

  10. Effects of Crystallinity on Zn Isotope Fractionation during Adsorption onto Silica Surfaces

    Science.gov (United States)

    Nelson, J.; Wasylenki, L.; Bargar, J.; Brown, G. E.; Maher, K.

    2016-12-01

    Interactions between metal ions and minerals surfaces and attendant isotopic fractionation are highly dependent on mineral surface properties and the local chemical environment. Here we present equilibrium adsorption isotherms, X-ray absorption spectroscopy, and isotopic measurements to illustrate the effects of substrate crystallinity, ionic strength, and surface coverage on zinc complexation and isotope fractionation. In low ionic strength solutions (I = 0.004 M) at surface loadings adsorption complexes are not observed on amorphous silica surfaces. At higher ionic strength (I = 0.1 M) at higher surface loading (>0.6 µmol m-2), Zn forms inner-sphere, monodentate complexes in tetrahedral coordination with oxygen atoms at the quartz surface (RZn-O = 1.98 Å), with a measured equilibrium isotope fractionation of Δ66/64Znaqueous-sorbed= -0.62 ±0.05‰. At similar chemical conditions and surface loading, Zn forms inner-sphere, monodentate complexes at the amorphous silica surface, in tetrahedral coordination, with shorter zinc-oxygen bond distances (RZn-O = 1.94 Å) and a larger measured equilibrium isotope fractionation of Δ66/64Znaqueous-sorbed= -0.91 ±0.05‰. First row transition metals generally exhibit inner-sphere complexation with simple metal oxide surfaces; however, our results demonstrate that this assumption is not always supported. The impact of crystallinity on the type of adsorbed complexes formed at mineral surfaces is reflected in the equilibrium isotope fractionation. Moreover, different degrees of crystallinity alter bond distances in sorption complex geometries, which result in different equilibrium isotope fractionation factors.

  11. Multiattribute Utility Copulas for Multi-objective Coverage Control

    Directory of Open Access Journals (Sweden)

    Valicka Christopher G.

    2014-05-01

    Full Text Available This paper presents theoretical and experimental results related to the control and coordination of multirobot systems interested in dynamically covering a compact domain while remaining proximal, so as to promote robust inter-robot communications, and while remaining collision free with respect to each other and static obstacles. A design for a novel, gradient-based controller using nonnegative definite objective functions and an overapproximation to the maximum function is presented. By using a multiattribute utility copula to scalarize the multiobjective control problem, a control law is presented that allows for flexible tuning of the tradeofs between objectives. This procedure mitigates the controller’s dependence on objective function parameters and allows for the straightforward integration of a novel global coverage objective. Simulation and experiments demonstrate the controller’s efectiveness in promoting scenarios with collision free trajectories, robust communications, and satisfactory coverage of the entire coverage domain concurrently for a group of differential drive robots.

  12. HYPERCROSSLINKED SORBENTS AND THEIR ADSORPTION ...

    African Journals Online (AJOL)

    Chemistry and Chemical School, Henan University of Technology, Zhengzhou 450001, China. (Received ... hypercrosslinked fibers were remarkable materials exhibiting high specific surface area and exceptional adsorption ... Such hypercrosslinked polymers have been obtained by crosslinking linear polystyrene chains in.

  13. Multilayer adsorption on fractal surfaces.

    Science.gov (United States)

    Vajda, Péter; Felinger, Attila

    2014-01-10

    Multilayer adsorption is often observed in liquid chromatography. The most frequently employed model for multilayer adsorption is the BET isotherm equation. In this study we introduce an interpretation of multilayer adsorption measured on liquid chromatographic stationary phases based on the fractal theory. The fractal BET isotherm model was successfully used to determine the apparent fractal dimension of the adsorbent surface. The nonlinear fitting of the fractal BET equation gives us the estimation of the adsorption equilibrium constants and the monolayer saturation capacity of the adsorbent as well. In our experiments, aniline and proline were used as test molecules on reversed phase and normal phase columns, respectively. Our results suggest an apparent fractal dimension 2.88-2.99 in the case of reversed phase adsorbents, in the contrast with a bare silica column with a fractal dimension of 2.54. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... parameters, is used for the segregated and for the bulk phases. With this approach, few parameters are needed to correlate pure component adsorption isotherms. These parameters may be used to predict adsorption equilibria of multicomponent mixtures without additional adjustment. A connection between...... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  15. Adsorption of gold on hydrogen terminated Si(0 0 1): Formation of chain structure

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Bikash C., E-mail: bikashc.gupta@visva-bharati.ac.in [Department of Physics, Visva-Bharati, Santiniketan 731235 (India); Konar, Shyamal; Bose, Rudra P. [Department of Physics, Visva-Bharati, Santiniketan 731235 (India)

    2009-10-30

    Possible formation of stable Au atomic wire on the hydrogen terminated Si(0 0 1): 3x1 surface is investigated under the density functional formalism. The hydrogen terminated Si(0 0 1): 3x1 surface is patterned in two different ways by removing selective hydrogen atoms from the surface. The adsorption of Au on such surfaces is studied at different sub-monolayer coverages. At 4/9 monolayer (ML) coverage, zigzag continuous Au chains are found to be stable on the patterned hydrogen terminated Si(0 0 1): 3x1 surface. The reason for the stability of the wire structures at 4/9 ML coverage is explained. It is to be noted that beyond 4/9 ML coverage, the additional Au atoms may introduce clusters on the surface. The continuous atomic gold chains on the substrate may be useful for the fabrication of atomic scale devices.

  16. Adsorption of fluids on solid surfaces: A route toward very dense layers

    Energy Technology Data Exchange (ETDEWEB)

    Sartarelli, S.A. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, San Miguel (Argentina); Szybisz, L., E-mail: szybisz@tandar.cnea.gov.ar [Laboratorio TANDAR, Departamento de Fisica, Comision Nacional de Energia Atomica, RA-1429 Buenos Aires (Argentina); Departamento de Fiica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, RA-1033 Buenos Aires (Argentina)

    2012-08-15

    Adsorption of Xe on single planar walls is investigated in the frame of a density functional theory. The strength of the adsorbate-substrate attraction is changed by considering surfaces of Cs, Na, Li, and Mg. The behavior is analyzed by varying the temperature T (between the triple point T{sub t} and the critical T{sub c}) and the coverage {Gamma}{sub Script-Small-L }. The obtained adsorption isotherms exhibit a variety of wetting situations. Density profiles are reported. It is shown that for strongly attractive surfaces the adsorbed liquid becomes very dense reaching densities characteristic of solids.

  17. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone

    2012-01-01

    . This provides a basis for the high oxygen reduction activity of the NSA, as predicted by density functional theory calculations. The shift in *OH adsorption of around 0.16V towards more positive potentials can be clearly monitored in absence of O2 and under the oxygen reduction reaction (ORR) conditions...... for the Cu/Pt(111) NSA. In both cases, for Pt(111) and NSA, the *OH(*O) adsorption dynamics is very similar in the absence of oxygen and under ORR conditions. Therefore, theoretical assumptions about the coverage of adsorbates in the absence of oxygen can be reasonably extrapolated to the situation when...

  18. Tunable adsorption of isocyanides on group 14 (100)-2 × 1 surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Hyang; Woo, Jin Gyung; Shong, Bonggeun, E-mail: bshong@cnu.ac.kr

    2016-12-30

    Highlights: • The adsorption of isocyanides with different substituents on Si and Ge surfaces is studied. • The substituents govern the properties of isocyanide moieties. • The adsorption energy of isocyanides varies linearly according to the molecular orbital energy. • Most isocyanide adsorbates assume C-dative configuration except for CF{sub 3}NC/Si(100). • Charge transfer at the interface depends on bonding configuration and substituent. - Abstract: The adsorption of isocyanides (R-N≡C) on the Si and Ge (100)-2 × 1 surfaces was studied by dispersion-corrected density functional theory calculations. The molecular and adsorption characteristics of the isocyanides systematically depend on the substituents, both of which are effectively parametrized by the energy of C-lone pair molecular orbital. The stabilities of different adsorption geometries depend on the orbital energies in opposite directions. Consequently, most isocyanides with electron-donating substituents prefer C-dative configuration on both Si and Ge surfaces, while electron-withdrawing trifluoromethyl isocyanide on Si prefers a [1 + 2] cycloaddition structure. Analysis on the change in molecular orbitals upon adsorption offer chemical insights into bonding configurations. Our results confirm recent observations on isocyanide’s adsorption on the Ge(100) surface, but suggest that Si(100) literature requires revision. Varying sign and magnitude of charge transfer to the surface were obtained by adsorption of isocyanides, and such ability to modulate the surface properties may be useful toward a wide application of functionalization by isocyanides.

  19. The adsorption of Pb(sup2+) and Cu(sup2+) onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models

    CSIR Research Space (South Africa)

    Mittal, H

    2015-01-01

    Full Text Available microscopy. The adsorption of Pb(sup2+) and Cu(sup2+) from aqueous solution using the Gg-cl-P(AAm-co-AN) hydrogel polymer was studied in batch mode. The adsorption process was found to be highly pH dependent, and the maximum adsorption efficiency was observed...

  20. Hydrogen adsorption of nitrogen-doped carbon nanotubes ...

    Indian Academy of Sciences (India)

    ... (XC) functionals has been made. A thorough analysis showed that the electronic and magnetic properties of SWCNT are dependent on the TMs absorbed wherein, the composite material TM/4ND-CNxNT can act as a medium for storing hydrogen at room temperature manifested through favourable adsorption energy.

  1. elucidating the mechanism of the adsorption of mucin to ...

    African Journals Online (AJOL)

    dcu user

    Mechanism of corrosion depends on many factors like adsorption of mercury on aluminium surface, electrochemical oxidation and intergranular diffusion 6 of mercury in aluminium bulk. However, it appears that diffusion of aluminium in amalgam can be the limiting step of corrosion process. Electrochemical behaviour of.

  2. The kinetics and thermodynamics of adsorption of heavy metal ions ...

    African Journals Online (AJOL)

    A pseudo-second order kinetic model was used to characterize the metal ion transport mechanism and the correlation coefficients (r2) were high, confirming the validity of pseudosecond- order. The rate of adsorption was observed to increase with pillaring and does not only depend on the the metal ion concentration, but ...

  3. On the Adsorption of Some Anionic Collectors on Fluoride Minerals

    DEFF Research Database (Denmark)

    Sørensen, Emil

    1973-01-01

    Test flotations have been carried out in a small apparatus under standardized conditions in order to determine the dependence of the flotation yield on the reagent concentration for certain minerals and anionic collectors. The results suggest that a special adsorption mechanism is operating...

  4. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  5. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems.......Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary...

  6. Whole brain CT perfusion in acute anterior circulation ischemia: coverage size matters

    Energy Technology Data Exchange (ETDEWEB)

    Emmer, B.J. [Erasmus Medical Centre, Department of Radiology, Postbus 2040, Rotterdam (Netherlands); Rijkee, M.; Walderveen, M.A.A. van [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Niesten, J.M.; Velthuis, B.K. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands); Wermer, M.J.H. [Leiden University Medical Centre, Department of Neurology, Leiden (Netherlands)

    2014-12-15

    Our aim was to compare infarct core volume on whole brain CT perfusion (CTP) with several limited coverage sizes (i.e., 3, 4, 6, and 8 cm), as currently used in routine clinical practice. In total, 40 acute ischemic stroke patients with non-contrast CT (NCCT) and CTP imaging of anterior circulation ischemia were included. Imaging was performed using a 320-multislice CT. Average volumes of infarct core of all simulated partial coverage sizes were calculated. Infarct core volume of each partial brain coverage was compared with infarct core volume of whole brain coverage and expressed using a percentage. To determine the optimal starting position for each simulated CTP coverage, the percentage of infarct coverage was calculated for every possible starting position of the simulated partial coverage in relation to Alberta Stroke Program Early CT Score in Acute Stroke Triage (ASPECTS 1) level. Whole brain CTP coverage further increased the percentage of infarct core volume depicted by 10 % as compared to the 8-cm coverage when the bottom slice was positioned at the ASPECTS 1 level. Optimization of the position of the region of interest (ROI) in 3 cm, 4 cm, and 8 cm improved the percentage of infarct depicted by 4 % for the 8-cm, 7 % for the 4-cm, and 13 % for the 3-cm coverage size. This study shows that whole brain CTP is the optimal coverage for CTP with a substantial improvement in accuracy in quantifying infarct core size. In addition, our results suggest that the optimal position of the ROI in limited coverage depends on the size of the coverage. (orig.)

  7. Nanoparticles of varying hydrophobicity at the emulsion droplet-water interface: adsorption and coalescence stability.

    Science.gov (United States)

    Simovic, Spomenka; Prestidge, Clive A

    2004-09-14

    The coalescence stability of poly(dimethylsiloxane) emulsion droplets in the presence of silica nanoparticles ( approximately 50 nm) of varying contact angles has been investigated. Nanoparticle adsorption isotherms were determined by depletion from solution. The coalescence kinetics (determined under coagulation conditions at high salt concentration) and the physical structure of coalesced droplets were determined from optical microscopy. Fully hydrated silica nanoparticles adsorb with low affinity, reaching a maximum surface coverage that corresponds to a close packed monolayer, based on the effective particle radius and controlled by the salt concentration. Adsorbed layers of hydrophilic nanoparticles introduce a barrier to coalescence of approximately 1 kT, only slightly reduce the coalescence kinetics, and form kinetically unstable networks at high salt concentrations. Chemically hydrophobized silica nanoparticles, over a wide range of contact angles (25 to >90 degrees ), adsorb at the droplet interface with high affinity and to coverages equivalent to close-packed multilayers. Adsorption isotherms are independent of the contact angle, suggesting that hydrophobic attraction overcomes electrostatic repulsion in all cases. The highly structured and rigid adsorbed layers significantly reduce coalescence kinetics: at or above monolayer surface coverage, stable flocculated networks of droplets form and, regardless of their wettability, particles are not detached from the interface during coalescence. At sub-monolayer nanoparticle coverages, limited coalescence is observed and interfacial saturation restricts the droplet size increase. When the nanoparticle interfacial coverage is >0.7 and droplets, whereas mixtures of hydrophobized and hydrophilic nanoparticles do not effectively stabilize emulsion droplets.

  8. Metal adsorption on monolayer blue phosphorene: A first principles study

    Science.gov (United States)

    Khan, Imran; Son, Jicheol; Hong, Jisang

    2018-01-01

    We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77 μB /impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.

  9. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  10. Mechanism of chitosan adsorption on silica from aqueous solutions.

    Science.gov (United States)

    Tiraferri, Alberto; Maroni, Plinio; Rodríguez, Diana Caro; Borkovec, Michal

    2014-05-06

    We present a study of the adsorption of chitosan on silica. The adsorption behavior and the resulting layer properties are investigated by combining optical reflectometry and the quartz crystal microbalance. Exactly the same surfaces are used to measure the amount of adsorbed chitosan with both techniques, allowing the systematic combination of the respective experimental results. This experimental protocol makes it possible to accurately determine the thickness of the layers and their water content for chitosan adsorbed on silica from aqueous solutions of varying composition. In particular, we study the effect of pH in 10 mM NaCl, and we focus on the influence of electrolyte type and concentration for two representative pH conditions. Adsorbed layers are stable, and their properties are directly dependent on the behavior of chitosan in solution. In mildly acidic solutions, chitosan behaves like a weakly charged polyelectrolyte, whereby electrostatic attraction is the main driving force for adsorption. Under these conditions, chitosan forms rigid and thin adsorption monolayers with an average thickness of approximately 0.5 nm and a water content of roughly 60%. In neutral solutions, on the other hand, chitosan forms large aggregates, and thus adsorption layers are significantly thicker (∼10 nm) as well as dissipative, resulting in a large maximum of adsorbed mass around the pK of chitosan. These films are also characterized by a substantial amount of water, up to 95% of their total mass. Our results imply the possibility to produce adsorption layers with tailored properties simply by adjusting the solution chemistry during adsorption.

  11. Contrasting nitrate adsorption in Andisols of two coffee plantations in Costa Rica.

    Science.gov (United States)

    Ryan, M C; Graham, G R; Rudolph, D L

    2001-01-01

    Fertilizer use in coffee plantations is a suspected cause of rising ground water nitrate concentrations in the ground water-dependent Central Valley of Costa Rica. Nitrate adsorption was evaluated beneath two coffee (Coffea arabica L.) plantations in the Central Valley. Previous work at one site had identified unsaturated zone nitrate retardation relative to a tritium tracer. Differences in nitrate adsorption were assessed in cores to 4 m depth in Andisols at this and one other plantation using differences in KCl- and water-extractable nitrate as an index. Significant adsorption was confirmed at the site of the previous tracer test, but not at the second site. Anion exchange capacity, X-ray diffraction data, extractable Al and Si, and soil pH in NaF corroborated that differences in adsorption characteristics were related to subtle differences in clay mineralogy. Soils at the site with significant nitrate adsorption showed an Al-rich allophane clay content compared with a more weathered, Si-rich allophane and halloysite clay mineral content at the site with negligible adsorption. At the site with significant nitrate adsorption, nitrate occupied less than 10% of the total anion adsorption capacity, suggesting that adsorption may provide long-term potential for mitigation or delay of nitrate leaching. Evaluation of nitrate sorption potential of soil at local and landscape scales would be useful in development of nitrogen management practices to reduce nitrate leaching to ground water.

  12. Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar.

    Science.gov (United States)

    Zhang, Xiaokai; Sarmah, Ajit K; Bolan, Nanthi S; He, Lizhi; Lin, Xiaoming; Che, Lei; Tang, Caixian; Wang, Hailong

    2016-01-01

    Biochar is a carbonaceous sorbent and can be used as a potential material to reduce the bioavailability of organic pollutants in contaminated soils. In the present study, the adsorption and desorption of diethyl phthalate (DEP) onto soils amended with bamboo biochar was investigated with a special focus on the effect of biochar application rates and aging conditions on the adsorption capacity of the soils. Biochar amendment significantly enhanced the soil adsorption of DEP that increased with increasing application rates of biochar. However, the adsorption capacity decreased by two aging processes (alternating wet and dry, and constantly moist). In the soil with low organic carbon (OC) content, the addition of 0.5% biochar (without aging) increased the adsorption by nearly 98 times compared to the control, and exhibited the highest adsorption capacity among all the treatments. In the soil with high OC content, the adsorption capacity in the treatment of 0.5% biochar without aging was 3.5 and 3 times greater than those of the treatments of biochar aged by alternating wet and dry, and constantly moist, respectively. Moreover, constantly moist resulted in a greater adsorption capacity than alternating wet and dry treatments regardless of biochar addition. This study revealed that biochar application enhanced soil sorption of DEP, however, the enhancement of the adsorption capacity was dependent on the soil organic carbon levels, and aging processes of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterization and evaluation of amorphous carbon thin film (ACTF) for sodium ion adsorption

    Science.gov (United States)

    Fathy, Mahmoud; Mousa, Mahmoud Ahmed; Moghny, Th. Abdel; Awadallah, Ahmed E.

    2017-07-01

    The removal of sodium ions from aqueous solutions by adsorption onto amorphous carbon thin film (ACTF) has been studied in batch mode. In this work, the ACTF as new adsorbent was synthesized based on rice straw, then its structure and properties were taken into consideration to study its ability to adsorb sodium ions from synthetic water. The influence of pH, contact time, and temperature of the ion adsorption on ACTF was also studied using batch tests. We found that the contact time of sodium adsorption and its isothermal adsorption studied were described by pseudo-second-order kinetic model and Langmuir isotherm, respectively. Our results indicated that the adsorption of sodium ions on ACTF become be stronger and depends on pH, furthermore, the maximum adsorption capacities of sodium on ACTF recorded 107, 120 and 135 mg g-1 at 35, 45, and 65 °C. The thermodynamic parameters explain that the adsorption of sodium ions on ACTF is a spontaneous process and endothermic reaction. According to adsorption studies, we found that the ACTF can be used effectively for ion chromatography or desalinate sodium ion using ion exchange process in the hybrid desalination process with insignificant loss of adsorption capacity. However, the ACTF has better properties than any other carbon materials obtained from an agricultural byproduct.

  14. New BET-like models for heterogeneous adsorption in microporous adsorbents

    Science.gov (United States)

    Milewska-Duda, Janina; Duda, Jan T.

    2002-08-01

    The paper presents a package of isotherm equations for heterogeneous adsorption aimed at the analysis of pore structure of sub- and microporous materials. One considers adsorption of small nearly spherical molecules in irregular pores of molecular size. The generalized BET theory is exploited respecting restrictions for multilayer adsorption (LBET approach). The model is based on thermodynamic relationships expressing changes of internal energy and configurational entropy due to the process. The adsorption energy is evaluated by using the Berthelot rule, and corrected with a factor Z a representing a fraction of effective contacts enabling full adsorbent-adsorbate interaction. Side adsorbate-adsorbate interactions are neglected and constrained multilayer adsorption is considered. One assumes the values for Z a to be uniformly distributed over the first layer adsorption sites within a range depending on the pore size. New models make it possible to obtain information on structure of pores and adsorption mechanisms on the basis of adsorption isotherms of small molecule adsorbates. Exemplary results of new models application for adsorption of CO 2 and CH 4 in an activated carbon are discussed.

  15. Sensitive Detection of Competitive Molecular Adsorption by Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Altun, Ali O; Bond, Tiziana; Pronk, Wouter; Park, Hyung Gyu

    2017-07-18

    Surface adsorption plays a critical role in a wide variety of fields from surface catalysis to molecular separation. Despite the importance, limited access to simultaneously sensitive and selective detection mechanisms has hampered the acquisition of comprehensive and versatile experimental data needed to understand the complex aspects of mixture adsorption, calling for a molecular detection method capable of obtaining the surface adsorption isotherms over a wide range of concentrations as well as distinguishing the competitive adsorption of different adsorbates. Here, we test surface-enhanced Raman spectroscopy (SERS) as an effective analysis tool of surface adsorption phenomena. Using a sensitive SERS substrate, we characterize the adsorption isotherms of chemical species of various binding energies. We obtained the isotherms for strongly binding species in a concentration range from subpicomolar to micromolar. A log-sigmoidal dependency of the SERS signals to the analyte concentration could be modeled by surface binding theories accurately using molecular dynamics simulations, thereby bringing out the potential capability of sensitive SERS for describing a single-compound adsorption process. SERS also enabled the determination of competitive adsorption isotherms from a multiple-compound solution for the first time. The successful demonstration of the sensitive and selective characterization of surface adsorption lends SERS adaptability to a cheap, facile, and effective solution for chemical analysis.

  16. Adsorption affinity and selectivity of 3-ureidopropyltriethoxysilane grafted oil palm empty fruit bunches towards mercury ions.

    Science.gov (United States)

    Kunjirama, Magendran; Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Lye, Jimmy Wei Ping; Mat, Hanapi

    2017-06-01

    This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Q m.exp ) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Q m.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.

  17. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    Science.gov (United States)

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  18. Features of the adsorption of naproxen enantiomers on weak chiral anion-exchangers in nonlinear chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Asnin, Leonid [University of Tennessee, Knoxville (UTK); Kaczmarski, Krzysztof [University of Tennessee and Rzeszow University of Technology, Poland; Guiochon, Georges A [ORNL

    2008-01-01

    The retention mechanism of the enantiomers of naproxen on a Pirkle-type chiral stationary phase (CSP) was studied. This CSP is made of a porous silica grafted with quinidine carbamate. It can interact with the weak organic electrolyte naproxen either by adsorbing it or by ion-exchange. Using frontal chromatography, we explored the adsorption equilibrium under such experimental conditions that naproxen dissociates or cannot dissociate. Under conditions preventing ionic dissociation, the adsorption isotherms were measured, the adsorption energy distributions determined, and the chromatographic profiles calculated. Three different types of the adsorption sites were found for both enantiomers. The density and the binding energy of these sites depend on the nature of the organic modifier. Different solute species, anions, neutral molecules, solvent-ion associates, and solute dimers can coexist in solution, giving rise to different forms of adsorption. This study showed the unexpected occurrence of secondary steps in the breakthrough profiles of S-naproxen in the adsorption mode at high concentrations. Being enantioselective, this phenomenon was assumed to result from the association of solute molecules involving a chiral selector moiety. A multisite Langmuir adsorption model was used to calculate band profiles. Although this model accounts excellently for the experimental adsorption isotherms, it does not explain all the features of the breakthrough profiles. A comparison between the calculated and experimental profiles allowed useful conclusions concerning the effects of the adsorbate-adsorbate and adsorbate-solvent interactions on the adsorption mechanism.

  19. Plasma proteins adsorption mechanism on polyethylene-grafted poly(ethylene glycol) surface by quartz crystal microbalance with dissipation.

    Science.gov (United States)

    Jin, Jing; Jiang, Wei; Yin, Jinghua; Ji, Xiangling; Stagnaro, Paola

    2013-06-04

    Protein adsorption has a vital role in biomaterial surface science because it is directly related to the hemocompatibility of blood-contacting materials. In this study, monomethoxy poly(ethylene glycol) (mPEG) with two different molecular weights was grafted on polyethylene as a model to elucidate the adsorption mechanisms of plasma protein through quartz crystal microbalance with dissipation (QCM-D). Combined with data from platelet adhesion, whole blood clotting time, and hemolysis rate, the blood compatibility of PE-g-mPEG film was found to have significantly improved. Two adsorption schemes were developed for real-time monitoring of protein adsorption. Results showed that the preadsorbed bovine serum albumin (BSA) on the surfaces of PE-g-mPEG films could effectively inhibit subsequent adsorption of fibrinogen (Fib). Nonspecific protein adsorption of BSA was determined by surface coverage, not by the chain length of PEG. Dense PEG brush could release more trapped water molecules to resist BSA adsorption. Moreover, the preadsorbed Fib could be gradually displaced by high-concentration BSA. However, the adsorption and displacement of Fib was determined by surface hydrophilicity.

  20. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions.

    Science.gov (United States)

    Bai, Yingchen; Lin, Daohui; Wu, Fengchang; Wang, Zhenyu; Xing, Baoshan

    2010-04-01

    Surfactants can enhance the stabilization of carbon nanotubes (CNTs) in water through their adsorption, thus affecting the environmental behavior and application of CNTs. However, the quantitative relationship between adsorption and stabilization and the role of the surfactant structure in the surfactant-CNT interactions are largely unknown. Therefore, Triton X-series surfactants with a same hydrophobic functional group (4-(1,1,3,3-tetramethylbutyl)-phenyl) and different hydrophilic polyethoxyl chain lengths were selected to investigate their adsorption onto CNTs and their ability to stabilize CNT suspensions. Adsorption data were fitted well by Langmuir equation, indicating monolayer coverage on CNTs. Adsorption capacities of the surfactants increased with decreasing hydrophilic chain length: Triton-305hydrogen bond could be excluded as the main mechanism because adsorption was not significantly affected by pH change. Hydrophobic and pi-pi interactions between the surfactants and CNTs were the dominant mechanism for their adsorption. CNT suspension data were well fitted to a nonlinear equation with a similar form to the Langmuir equation. Suspended CNT amounts in water were positively related to the adsorption capacities of the surfactants, but negatively with the hydrophilic fraction ratio of the X-series surfactants. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Investigation of adatom adsorption on single layer buckled germanium selenide

    Energy Technology Data Exchange (ETDEWEB)

    Arkın, H., E-mail: holgar@eng.ankara.edu.tr [Department of Physics Engineering, Ankara University, Ankara (Turkey); Aktürk, E., E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-12-30

    Highlights: • Buckled GeSe (b-GeSe) has a stable honeycomb structure. • b-GeSe is a semiconductor with a indirect band gap of 2.29 eV. • In low coverage, b-GeSe attains half metallicity through the adsorption of Si, Ge, P and Br. - Abstract: A recent study of Hu et al. [1] predicted that 2D single layer of asymmetric washboard germanium selenide is found to be stable and display semiconducting properties. Motivating from this study, we have shown that another phase, which is 2D buckled honeycomb germanium selenide, is also stable. This phase exhibits semiconducting behavior with a band gap of 2.29 eV. Furthermore, on the basis of the first principles, spin-polarized density functional calculations, we investigate the effect of selected adatoms adsorption on the b-GeSe single layer. The adatoms Se, Ge, S, Si, C, Br and P are chemisorbed with significant binding energy where this effects modify the electronic structure of the single layer buckled GeSe locally by tuning the band gap. Net integer magnetic moment can be achieved and b-GeSe attains half metallicity through the adsorption of Si, Ge, P and Br.

  2. Adsorption of hexavalent chromium onto sisal pulp/polypyrrole composites

    Science.gov (United States)

    Tan, Y. Y.; Wei, C.; Gong, Y. Y.; Du, L. L.

    2017-02-01

    Sisal pulp/polypyrrole composites(SP/PPy) utilized for the removal of hexavalent chromium [Cr(VI)] from wastewater, were prepared via in-situ chemical oxidation polymerization approach. The structure and morphology of the SP/PPy were analyzed by polarizing optical microscopy (POM), field-emission scanning electron microscopy (SEM)), Energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), the results indicated SP could be efficient dispersion of PPy. The hexavalent chromium adsorption results indicate adsorption capacity of the SP/PPy were dependent on the initial pH, with an optimum pH of 2.0. The sorption kinetic data fitted well to the pseudo-second order model and isotherm data fitted well to the Langmuir isotherm model. The maximum adsorption capacity determined from the Langmuir isotherm is 336.70 mg/g at 25° C.

  3. Heat transfer to the adsorbent in solar adsorption cooling device

    Science.gov (United States)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  4. Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors

    Science.gov (United States)

    Liu, Nanshu; Zhou, Si

    2017-04-01

    Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase of phosphorus with phosphorene as to both fundamental properties and application prospects. Here, first-principles calculations are carried out to explore the adsorption behaviors of environmental gas molecules on monolayer blue phosphorus, including O2, NO, SO2, NH3, H2O, NO2, CO2, H2S, CO, and N2, and address their effects on the electronic properties of the material. Our calculations show that O2 is prone to dissociate and tends to chemisorb on the blue phosphorus sheet, phenomena which has also been observed in phosphorene. The other gas molecules can stably physisorb on monolayer blue phosphorus, showing different interaction strengths with the monolayer. These molecules induce distinct modifications to the band gap, carrier effective mass, and work function, which also depends on the molecular coverage. The responses of the electronic properties are subject to the charge transfer as well as alignment of the frontier molecular orbital levels of the gaseous molecules and band edges of the parent sheet. These results suggest that monolayer blue phosphorus is a promising candidate for novel gas sensors.

  5. Adsorption and thermal stability of 1,4 benzenedimethanethiol on InP(110)

    Science.gov (United States)

    Alarcón, Leonardo Salazar; Cristina, Lucila J.; Jia, Juanjuan; Chen, Lin; Giglia, Angelo; Pasquali, Luca; Sánchez, Esteban A.; Esaulov, Vladimir A.; Grizzi, Oscar

    2017-10-01

    Self-assembly of dithiol molecules is of interest because these can be used as linkers between metallic or semiconductor entities and thus employed in molecular electronics and plasmonic applications, or for building complex heterostructures. Here we focus on dithiol self-assembly by evaporation in vacuum, a method that could circumvent the dithiol oxidation that can occur in solution. We present a high resolution X-ray photoelectron spectroscopy (XPS) and an ion scattering study of adsorption and desorption of 1,4-benzenedimethanethiol on InP(110) as a function of exposure and sample temperature. Results for InP are compared to those on Au(111) and found to differ due to formation of a thick BDMT layer at room temperature, resulting from extra molecules sticking on top of the self-assembled monolayer. This may play an adverse effect in some afore-mentioned applications as in molecular electronics. We furthermore study the evolution of the dithiol film with sample temperature and the elements remaining at the surface after annealing and delineate initial coverage dependent effects.

  6. NSW annual immunisation coverage report, 2011.

    Science.gov (United States)

    Hull, Brynley; Dey, Aditi; Campbell-Lloyd, Sue; Menzies, Robert I; McIntyre, Peter B

    2012-12-01

    This annual report, the third in the series, documents trends in immunisation coverage in NSW for children, adolescents and the elderly, to the end of 2011. Data from the Australian Childhood Immunisation Register, the NSW School Immunisation Program and the NSW Population Health Survey were used to calculate various measures of population coverage. During 2011, greater than 90% coverage was maintained for children at 12 and 24 months of age. For children at 5 years of age the improvement seen in 2010 was sustained, with coverage at or near 90%. For adolescents, there was improved coverage for all doses of human papillomavirus vaccine, both doses of hepatitis B vaccine, varicella vaccine and the dose of diphtheria, tetanus and acellular pertussis given to school attendees in Years 7 and 10. Pneumococcal vaccination coverage in the elderly has been steadily rising, although it has remained lower than the influenza coverage estimates. This report provides trends in immunisation coverage in NSW across the age spectrum. The inclusion of coverage estimates for the pneumococcal conjugate, varicella and meningococcal C vaccines in the official coverage assessments for 'fully immunised' in 2013 is a welcome initiative.

  7. Adsorption of alkali and alkaline-earth metal atoms on stanene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Yelda; Ersan, Fatih [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökoğlu, Gökhan [Department of Physics, Karabük University, 78050 Karabük (Turkey); Aktürk, Olcay Üzengi [Department of Electrical & Electronics Engineering, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey); Aktürk, Ethem, E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-09-01

    This paper presents a study on the adsorption of alkali and alkaline-earth metal atoms on single-layer stanene with different levels of coverage using first-principles plane wave calculations within spin-polarized density functional theory. The most favorable adsorption site for alkali atoms (Li, Na, K) were found to be the hollow site similar to other group IV single-layers, but the case of alkaline-earths on stanene is different from silicene and germanene. Whereas Mg and Ca are bound to stanene at hollow site, the bridge site is found to be energetically favorable for Be adatom. All adsorbed atoms are positively charged due to the charge transfer from adatom to stanene single-layer. The semimetallic bare stanene become metallic except for Be adsorption. The Beryllium adsorption give rise to non-magnetic semiconducting ground state. Our results illustrate that stanene has a reactive and functionalizable surface similar to graphene or silicene. - Highlights: • Alkali and alkaline-earth metal atoms form stronger bonds with stanene compared to other group IV monolayers. • Semi-metallic stanene becomes nonmagnetic metal for Li, Na, K, Mg, and Ca atoms adsorption. • Semi-metallic stanene becomes nonmagnetic semiconductor with 94 meV band gap for Be atom adsorption.

  8. Adsorption of Thiophenic Compounds from Model Diesel Fuel Using Copper and Nickel Impregnated Activated Carbons

    Directory of Open Access Journals (Sweden)

    Ramin Karimzadeh

    2012-10-01

    Full Text Available Adsorption of sulfur compoundsby porous materials is an effective way to produce cleaner diesel fuel.In this study, adsorption of refractory thiophenic sulfur compounds, i.e., benzothiophene (BT, dibenzothiophene (DBT, and 4,6-dimethyldibenzothiophene (4,6-DMDBT in single-solute systems from n-hexane solutions onto metal-impregnated activated carbons was investigated. A hydrogen-treated activated carbon fiber was selectively loaded with Ni, NiO, Cu, Cu2O, and CuO species to systematically assess the impact of each metal species on the adsorption of thiophenic compounds (TC. Metal-loaded adsorbents had the same total metal contents and similar microporosities, but contained different types of copper or nickel species. All metal-loaded adsorbents showed enhanced adsorption of tested TC. Cu2O- or NiO-loaded adsorbents exhibited the highest uptakes, due to more specific interactions between Cu+ or Ni2+ species and TC molecules. The theoretical monolyer coverage of TC on the exposed Cu+ sites was estimated and compared with that calculated from the experimental data. Results suggested catalytic conversion of TC molecules to other compounds on the Cu+ sites, followed by adsorption of reaction products onto the carbon surface or multilayer accumulation of TC molecules on the Cu+sites. TC adsorption uptake of the majority of adsorbents followed the order of: 4,6-DMDBT > DBT > BT due to higher intensity of specific and non-specific interactions of larger TC molecules with adsorbents.

  9. Kinetics of Particle Adsorption in Stagnation Point Flow Studied by Optical Reflectometry

    Science.gov (United States)

    Böhmer; van der Zeeuw EA; Koper

    1998-01-15

    The kinetics of adsorption of nano-sized silica particles on a polymer pretreated surface were followed in situ by using optical reflectometry in a stagnation point flow setup. Conversion of the reflectometric signal to the surface coverage could be performed using a homogeneous slab model which was verified by determining the particle density on SEM pictures taken in the stagnation point and by comparison with a model which includes the particulate nature of the layer explicitly. The effects of salt concentration on the plateau adsorbed amounts for all particle sizes can be described with an effective hard sphere concept. Although initial slopes and plateau values are in reasonable agreement with a random sequential adsorption model, this model does not accurately describe the evolution of the surface coverage as a function of time in a stagnation point flow system. Copyright 1998 Academic Press. Copyright 1998Academic Press

  10. The effect of organic molecules adsorption on hydrogen absorption in relation to the hydrogen evolution reaction

    Directory of Open Access Journals (Sweden)

    LJILJANA VRACAR

    2001-12-01

    Full Text Available The competitive adsorption of organic molecules (2,7-naphthalenedisulfonic acid and adsorbed H is of interest in relation to its influence on H absorption into a Pd-Ni electrodeposited alloy. The experimental results, in acid solution, show an enhancement of the coverage of the electrode surface with adosrbed H due to the competitive adsorption of organic molecules that interfere with H atoms, through lateral attractive interactions between the adsorbed species and communal electronic effects, leading supposedly to a decreased probability of H entry into the alloy. Chemisorbed H is, on the other hand, an intermediate in the HER, so the enhancement of the electrode coverage in the presence of co-adsorbed organic molecules promotes the hydrogen evolution reaction.

  11. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A. [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  12. Reduced protein adsorption by osmolytes.

    Science.gov (United States)

    Evers, Florian; Steitz, Roland; Tolan, Metin; Czeslik, Claus

    2011-06-07

    Osmolytes are substances that affect osmosis and are used by cells to adapt to environmental stress. Here, we report a neutron reflectivity study on the influence of some osmolytes on protein adsorption at solid-liquid interfaces. Bovine ribonuclease A (RNase) and bovine insulin were used as model proteins adsorbing at a hydrophilic silica and at a hydrophobic polystyrene surface. From the neutron reflectivity data, the adsorbed protein layers were characterized in terms of layer thickness, protein packing density, and adsorbed protein mass in the absence and presence of urea, trehalose, sucrose, and glycerol. All data point to the clear effect of these nonionic cosolvents on the degree of protein adsorption. For example, 1 M sucrose leads to a reduction of the adsorbed amount of RNase by 39% on a silica surface and by 71% on a polystyrene surface. Trehalose was found to exhibit activity similar to that of sucrose. The changes in adsorbed protein mass can be attributed to a decreased packing density of the proteins in the adsorbed layers. Moreover, we investigated insulin adsorption at a hydrophobic surface in the absence and presence of glycerol. The degree of insulin adsorption is decreased by even 80% in the presence of 4 M of glycerol. The results of this study demonstrate that nonionic cosolvents can be used to tune and control nonspecific protein adsorption at aqueous-solid interfaces, which might be relevant for biomedical applications.

  13. First-Principles Calculations of the Adsorption of Nitromethane and 1,1-Diamino-2,2-dinitroethylene (FOX-7) Molecules on the Al(111) Surface

    National Research Council Canada - National Science Library

    Sorescu, Dan

    2003-01-01

    .... Based on these calculations, we have determined that both dissociative and nondissociative adsorption mechanisms are possible, depending on the molecular orientation and the particular surface sites involved...

  14. Combined quantum chemistry and Monte Carlo simulation of competitive adsorption of O{sub 2} and OH on Pt surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui, E-mail: ruililcu@gmail.com [Department of Chemistry, Liaocheng University, Liaocheng 252059 (China); Li, Haibo; Xu, Shuling [Department of Chemistry, Liaocheng University, Liaocheng 252059 (China); Liu, Jifeng, E-mail: liujifeng111@gmail.com [Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2017-07-15

    Highlights: • Competitive adsorption of O{sub 2} and OH on different Pt surfaces was theoretically studied. • The adsorption energies of O{sub 2} and OH depend on the Pt surfaces and the adsorption sites. • The order of O{sub 2} adsorption efficiency was characterized. - Abstract: To obtain a microscopic explanation on the difference of oxygen reduction reaction activity on different Pt low index surfaces, we simulated competitive adsorptions of O{sub 2} and OH on four Pt low index surfaces. Firstly, all possible chemical adsorption configurations of the O{sub 2} and OH molecules on the three surfaces were acquired through density functional theory. The distribution of these configurations on the different surfaces was collected from Monte Carlo simulations. Our results demonstrated that the adsorption energy order of O{sub 2} on different surfaces was (110)(1 × 2) > (110) > (100) > (111) and that the adsorption energy order of the OH molecules on Pt surfaces was the same. Considering the competitive adsorption of O{sub 2} and OH on Pt surfaces, the final O{sub 2} adsorption efficiencies order of three surfaces was (111) > (110) > (100) > (110)(1 × 2), which was consistent with the experimental activities of oxygen reduction. Our study provided theoretical references for previous experimental studies and had important significance for the understanding of oxygen adsorption on Pt surfaces.

  15. Analysis of Adsorption, Ion Exchange, Thermodynamic Behaviour of Some Organic Cations on Dowex 50WX4-50/H+ Cation Exchanger in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ehteram A. Noor

    2011-01-01

    Full Text Available The equilibrium adsorption, ion exchange characteristics of various concentrations of some organic cations from aqueous solutions onto dowex 50WEX/H+ cation exchanger were studied at different temperatures in the range of 30-50 °C. The studied cations showed good adsorptive properties onto dowex 50WX4-5/H+ at different concentrations and temperatures. Main adsorption behaviour was ion exchange between hydrogen ions and the organic cations as indicated from the linear relation between the initial concentration of the organic cations and the released hydrogen ions. It was found that the adsorption affinity of dowex 50WX4-50/H+ towards the studied organic cations depends on the substituent type of the organic cations giving the following increasing order: 1-H < 2-OH < 3-OCH3. Thermodynamic parameters for the adsorption of the studied organic cations were evaluated and discussed. It was found that the adsorption 1-H organic cation was spontaneous, ordered, exothermic and favored with decreasing temperature. On the other hand the adsorption of both 2-OH and 3-OCH3 organic cations was found to be spontaneous and disordered with enthalpy change varies significantly with increasing organic cation concentration, suggesting dipole-dipole adsorption forces as new active sites for adsorption under conditions of relatively high concentrations. Freundlich and Dubinin-Radushkevich adsorption isotherm models reasonably describe the adsorption of the studied organic cations onto dowex 50WX4-50/H+ by segmented straight lines depending on the studied range of concentration, indicating the existence of two different sets of adsorption sites with substantial difference in energy of adsorption. According to Dubinin-Radushkevich adsorption isotherm model, physical-ion exchange mechanism was suggested for the adsorption of 1-H organic cation and both physical and chemical-ion exchange mechanisms were suggested for the adsorption of 2-OH and 3-OCH3 organic cations

  16. Adsorption of Cu(II) on Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated and Carboxylated Fullerenes

    Science.gov (United States)

    Wang, Jing; Li, Zhan; Li, Shicheng; Qi, Wei; Liu, Peng; Liu, Fuqiang; Ye, Yuanlv; Wu, Liansheng; Wang, Lei; Wu, Wangsuo

    2013-01-01

    The adsorption of Cu(II) on oxidized multi-walled carbon nanotubes (oMWCNTs) as a function of contact time, pH, ionic strength, temperature, and hydroxylated fullerene (C60(OH)n) and carboxylated fullerene (C60(C(COOH)2)n) were studied under ambient conditions using batch techniques. The results showed that the adsorption of Cu(II) had rapidly reached equilibrium and the kinetic process was well described by a pseudo-second-order rate model. Cu(II) adsorption on oMWCNTs was dependent on pH but independent of ionic strength. Compared with the Freundlich model, the Langmuir model was more suitable for analyzing the adsorption isotherms. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Cu(II) adsorption on oMWCNTs was spontaneous and endothermic. The effect of C60(OH)n on Cu(II) adsorption of oMWCNTs was not significant at low C60(OH)n concentration, whereas a negative effect was observed at higher concentration. The adsorption of Cu(II) on oMWCNTs was enhanced with increasing pH values at pH adsorption of Cu(II) onto oMWCNTs at pH 4–6. The double sorption site model was applied to simulate the adsorption isotherms of Cu(II) in the presence of C60(OH)n and fitted the experimental data well. PMID:24009683

  17. The adsorptive-kinetic model of in-situ phosphorus doped film polysilicon deposition process

    Directory of Open Access Journals (Sweden)

    Nalivaiko O. Yu.

    2009-11-01

    Full Text Available The investigation of deposition kinetics of in-situ phosphorus doped polysilicon films has been performed. The adsorptive-kinetic model of in-situ phosphorus doped polysilicon deposition has been developed. The values of heterogeneous reaction constants and constants, which describe the desorption process for monosilane and phosphine, have been defined. The optimal process conditions, which provide the acceptable deposition rate, thickness uniformity, high doping level and conformal step coverage, have been founded.

  18. Asymmetric k-Center with Minimum Coverage

    DEFF Research Database (Denmark)

    Gørtz, Inge Li

    2008-01-01

    In this paper we give approximation algorithms and inapproximability results for various asymmetric k-center with minimum coverage problems. In the k-center with minimum coverage problem, each center is required to serve a minimum number of clients. These problems have been studied by Lim et al. [A....... Lim, B. Rodrigues, F. Wang, Z. Xu, k-center problems with minimum coverage, Theoret. Comput. Sci. 332 (1–3) (2005) 1–17] in the symmetric setting....

  19. Surveillance of Vaccination Coverage among Adult Populations - United States, 2015.

    Science.gov (United States)

    Williams, Walter W; Lu, Peng-Jun; O'Halloran, Alissa; Kim, David K; Grohskopf, Lisa A; Pilishvili, Tamara; Skoff, Tami H; Nelson, Noele P; Harpaz, Rafael; Markowitz, Lauri E; Rodriguez-Lainz, Alfonso; Fiebelkorn, Amy Parker

    2017-05-05

    19 years (a 4.1 percentage point increase to 64.7%). Herpes zoster vaccination coverage in 2015 met the Healthy People 2020 target of 30%. Aside from these modest improvements, vaccination coverage among adults in 2015 was similar to estimates from 2014. Racial/ethnic differences in coverage persisted for all seven vaccines, with higher coverage generally for whites compared with most other groups. Adults without health insurance reported receipt of influenza vaccine (all age groups), pneumococcal vaccine (adults aged 19-64 years at increased risk), Td vaccine (adults aged ≥19 years, 19-64 years, and 50-64 years), Tdap vaccine (adults aged ≥19 years and 19-64 years), hepatitis A vaccine (adults aged ≥19 years overall and among travelers), hepatitis B vaccine (adults aged ≥19 years, 19-49 years, and among travelers), herpes zoster vaccine (adults aged ≥60 years), and HPV vaccine (males and females aged 19-26 years) less often than those with health insurance. Adults who reported having a usual place for health care generally reported receipt of recommended vaccinations more often than those who did not have such a place, regardless of whether they had health insurance. Vaccination coverage was higher among adults reporting one or more physician contacts in the past year compared with those who had not visited a physician in the past year, regardless of whether they had health insurance. Even among adults who had health insurance and ≥10 physician contacts within the past year, depending on the vaccine, 18.2%-85.6% reported not having received vaccinations that were recommended either for all persons or for those with specific indications. Overall, vaccination coverage among U.S.-born adults was higher than that among foreign-born adults, with few exceptions (influenza vaccination [adults aged 19-49 years and 50-64 years], hepatitis A vaccination [adults aged ≥19 years], and hepatitis B vaccination [adults aged ≥19 years with diabetes or chronic liver

  20. First-principles study of CO adsorption on ZnO surfaces

    CERN Document Server

    Meyer, B

    2003-01-01

    Using density-functional theory we have calculated the equilibrium geometries and binding energies of a CO monolayer adsorbed on the nonpolar (1010) and the polar (0001)-Zn and (0001)-O surfaces of ZnO. Different adsorption sites and CO orientations were considered, and for the polar surfaces the influence of a hydrogen coverage upon CO adsorption was studied. For the clean surfaces we find that CO exclusively binds to Zn ions with a binding energy of 0.24 and 0.37 eV for the nonpolar (1010) and the polar (0001)-Zn surface, respectively. A purely repulsive interaction of CO with surface oxygen ions is obtained. On the other hand, if the polar surfaces are hydrogen saturated, we predict a weak chemisorption of CO to the OH-terminated (0001) surface with a binding energy of 0.20 eV but no CO adsorption for the ZnH-terminated (0001) face. (letter to the editor)

  1. Post Auction Coverage Baseline 2.0

    Data.gov (United States)

    Federal Communications Commission — FINAL TELEVISION CHANNEL ASSIGNMENT INFORMATION RELATED TO INCENTIVE AUCTION REPACKING. NOTE: This file provides new baseline coverage and population data for all...

  2. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh

    2011-06-03

    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  3. CO adsorption, dissociation and coupling formation mechanisms on Fe2C(001) surface

    Science.gov (United States)

    Yu, Xiaohu; Zhang, Xuemei; Meng, Yan; Zhao, Yaoping; Li, Yuan; Xu, Wei; Liu, Zhong

    2018-03-01

    By means of density functional theory calculations and atomic thermodynamics, we systematically investigated the CO adsorption on the Fe2C(001) surface at different coverage. It has been found that CO prefers to adsorb on the surface iron atom at low coverage (1-8 CO); CO prefers to adsorb at the bridge site of Fe and C atoms at high coverage (9-12 CO). Eight CO molecules binding on the Fe2C(001) surface is favorable thermodynamically as indicated by the stepwise adsorption energy. The phase diagram shows that addition of more CO molecules up to a number of 8 is thermodynamically favorable, and that the incremental energy gained by adding one more CO molecule is almost constant up to 4 CO molecules, decreases up to 8 CO molecules, after which it becomes thermodynamically unfavorable to add more CO molecules. Probability distribution of different singe-CO adsorbed states on the Fe2C(001) surface as function of temperature shows that CO dissociation and coupling are least preferred, indicating that carbide mechanism is not dominant in the iron-based Fischer-Tropsch synthesis reaction. The projected density of states (PDOS) was used to analyze the CO adsorption mechanism.

  4. The constancy of the differential heat of adsorption (DHA) on metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Mardaleishvili, R.E.; Fateev, V.N.

    1978-03-01

    The earlier established existence of two different types of adsorption sites on metal oxide surfaces (i.e., those related to metal (Me) and to oxygen (O) ions) suggested that adsorption of gases on these surfaces should occur sequentially, first on the Me-sites, and then on the O-sites, with lower DHA. Experiments on adsorption of nitrogen, carbon monoxide, and oxygen at -196/sup 0/C on vacuum-purified samples of alumina and magnesia proved this hypothesis by showing that the value of DHA decreased with increasing surface coverage (SC) stepwise rather than continuously. Two intervals of SC values were observed in which DHA remained constant (i.e., 0-0.2 and 0.7-1.0 monolayers for Al/sub 2/O/sub 3/ and 0-0.25 and 0.75-1.00 monolayers for MgO) independent of on the adsorbate. These intervals correspond to the coverage of one-half of the available Me and O sites on the surface of both oxides. DHA decreased continuously, however, in experiments with nonpurified oxides or after adsorption of water on pure oxide surfaces. Graphs.

  5. Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure.

    Science.gov (United States)

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-07-02

    Metal-organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH4 adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH4-CH4 intermolecular interactions are minimized and the energetics solely reflects the CH4-MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH4 independent of coverage. This calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH4 adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH4-HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.

  6. Selective Adsorption of Tetrahydropalmatine by a Molecularly ...

    African Journals Online (AJOL)

    NICO

    1School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, P.R. China. 2Guangxi ... Selective adsorption experiments demonstrated the high affinity and THP selectiv- ... Molecularly imprinted polymer, tetrahydropalmatine, selective adsorption, microcalorimetry, modified rosin. 1.

  7. Study of microporosity of active carbon spheres using inverse gas chromatographic and static adsorption techniques.

    Science.gov (United States)

    Singh, G S; Lal, Darshan; Tripathi, V S

    2004-05-21

    Active carbon spheres (ACSs) with different porous structures prepared in the laboratory were characterized by static adsorption studies and inverse gas chromatographic (IGC) technique. Surface properties such as BET surface area, micropore volume and pore size in different regions of porosity were determined using different theoretical approaches. Thermodynamic parameters such as isosteric heat of adsorption, free energy of adsorption and dispersive component of the surface energy were determined using IGC technique from corrected retention volume of normal alkanes and corresponding branched alkanes. Thermodynamic parameters were used to assess the molecular sieving property of ACSs. It is observed that thermodynamic properties strongly depend on microporous character of ACSs. The variations observed in pore size determined by both of the techniques that is by static adsorption measurements and IGC may be attributed to the variation in analysis temperature, i.e. liquid N2 temperature for adsorption studies and elevated temperature for IGC technique.

  8. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Podzus, P.E., E-mail: ppodzus@gmail.com [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Debandi, M.V. [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Daraio, M.E., E-mail: medit@fi.uba.ar [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2012-08-15

    A composite of Fe{sub 3}O{sub 4} nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  9. Adsorption of U(VI from Aqueous Solution onto Hydrotalcite-Like Compounds

    Directory of Open Access Journals (Sweden)

    Nguyen Van Suc

    2012-01-01

    Full Text Available Uranium adsorption by the synthesized compound of magnesium aluminum hydroxide hydrate – layered double hydrotalcite (STH-like compounds was studied. The calcinated STH was proven to be a highly effective in U(VI adsorption in pH range from 6.5 to 7. The time dependent experimental data were found to be fit to the pseudo-second-oder model. The equilibrium data have been modeled using Langmuir and Freundlich isotherms. The results showed that both model provide the best correlation with equilibrium data. The highest adsorption capacity, approximated 62.5 mg/g, was observed in the calcinated STH at 500 °C. The positive value of enthalpy change indicated that adsorption reaction of U(VI on STH was endothermic process. The regeneration experiments of STH using 0.1M Na2CO3 solution was successfully demonstrated multiple times without any significant effect on the initial adsorption capacity.

  10. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks.

    Science.gov (United States)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-03-30

    Adsorptive removal of naproxen and clofibric acid, two typical PPCPs (pharmaceuticals and personal care products), has been studied using metal-organic frameworks (MOFs) for the first time. The removal efficiency decreases in the order of MIL-101>MIL-100-Fe>activated carbon both in adsorption rate and adsorption capacity. The adsorption kinetics and capacity of PPCPs generally depend on the average pore size and surface area (or pore volume), respectively, of the adsorbents. The adsorption mechanism may be explained with a simple electrostatic interaction between PPCPs and the adsorbent. Finally, it can be suggested that MOFs having high porosity and large pore size can be potential adsorbents to remove harmful PPCPs in contaminated water. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Gold and gold-iron modified zeolites--towards the adsorptive deodourisation.

    Science.gov (United States)

    Sobczak, Izabela; Pawlowski, Hubert; Chmielewski, Jaroslaw; Ziolek, Maria

    2010-07-15

    Zeolites exhibiting different structures (Y, Beta, and ZSM-5) were modified with gold and iron and applied for odour adsorption from the air containing dibutyl sulphide (Bu(2)S) used as a representative odour producing compound. The structure of the zeolites used determines the rate of adsorption (higher on Y type zeolites and smaller on two other zeolites), whereas hydrophilicity affects the selectivity towards Bu(2)S adsorption increasing in the order: Yzeolite structure, Bu(2)S adsorption selectivity depends on the total acidity of zeolites which increases after iron modification. The texture and surface properties of the modified zeolites were studied by XRD, XPS, UV-vis, TEM, pyridine adsorption and FTIR, test reactions (acetonylacetone cyclisation, isopropanol decomposition). 2010 Elsevier B.V. All rights reserved.

  12. Energetics of CO2 and H2O adsorption on zinc oxide.

    Science.gov (United States)

    Gouvêa, Douglas; Ushakov, Sergey V; Navrotsky, Alexandra

    2014-08-05

    Adsorption of H2O and CO2 on zinc oxide surfaces was studied by gas adsorption calorimetry on nanocrystalline samples prepared by laser evaporation in oxygen to minimize surface impurities and degassed at 450 °C. Differential enthalpies of H2O and CO2 chemisorption are in the range -150 ±10 kJ/mol and -110 ±10 kJ/mol up to a coverage of 2 molecules per nm(2). Integral enthalpy of chemisorption for H2O is -96.8 ±2.5 kJ/mol at 5.6 H2O/nm(2) when enthalpy of water condensation is reached, and for CO2 is -96.6 ±2.5 kJ/mol at 2.6 CO2/nm(2) when adsorption ceases. These values are consistent with those reported for ZnO prepared by other methods after similar degas conditions. The similar energetics suggests possible competition of CO2 and H2O for binding to ZnO surfaces. Exposure of bulk and nanocrystalline ZnO with preadsorbed CO2 to water vapor results in partial displacement of CO2 by H2O. In contrast, temperature-programmed desorption (TPD) indicates that a small fraction of CO2 is retained on ZnO surfaces up to 800 °C, under conditions where all H2O is desorbed, with adsorption energies near -200 kJ/mol. Although molecular mechanisms of adsorption were not studied, the thermodynamic data are consistent with dissociative adsorption of H2O at low coverage and with several different modes of CO2 binding.

  13. Wetting and adsorption modification in the system

    Directory of Open Access Journals (Sweden)

    Yuliya Bogdanova

    2015-09-01

    Full Text Available Regularities of wetting and adsorption modification of surfaces of continual membranes made from highly permeable glassy polymers poly[1-(trimethylsilyl-1-propyne] (PTMSP and poly(4-methyl-2-pentyn (PMP with aqueous ethanol solutions and alcohol solutions containing organic dyes (Solvent Blue 35 and Remazol Brilliant Blue were investigated. Isotherms of stress wetting of polymer membrane surface by etanol solutions were found out to have maximums in the range of concentrations corresponding to the beginning of liquid sorption into the membrane and polymer swelling. Thus, the principal possibility of optimization of nanofiltration experiments by liquid wetting angle measurements on continuous polymer membrane surfaces was shown. The presence of the dye was shown not to affect PMP wetting. But in the case of PTMSP, it leads to shear of the maximum of stress wetting isotherms to the range of higher concentrations. It was found out the effectiveness of the adsorption surface modification of continuous polymer membrane surfaces by ethanol solutions containing dyes does not dependent on chemical nature of the dye. At the same time, there are different trends in the energy characteristics of the membrane surface.

  14. REVIEW ARTICLE: The transmission interferometric adsorption sensor

    Science.gov (United States)

    Heuberger, M.; Balmer, T. E.

    2007-12-01

    This paper describes a high-speed adsorption sensor based on thin-film interference at the interfaces. The sensor can be used as a stand-alone instrument or in combination with a direct surface force measurement, which yields a wide range of additional information on molecular interactions on adsorbed films. The achieved mass resolution of the presented method (1-10 ng cm-2 Hz-1/2) is comparable to or better than other modern bio-sensors. The dependence of mass resolution on various factors is presented and demonstrated in a number of relevant examples. The described method is suitable for the implementation of a low-cost bio-sensor with a minimal number of optical elements. The measurement spot size is one micrometre or more and sampling rates >10 Hz are readily possible. In contrast to other bio-sensors, the signal baseline has a remarkable long-term stability since the measured signal is virtually independent of refractive index changes in the fluid medium above the sensor surface. In combination with an optical spectral correlation method, the classical computer calculations are substituted by an optical calculator and a label-free real-time imaging adsorption sensor is realized. We demonstrate sensor operation both inside the extended surface forces apparatus as well as in a stand-alone bio-sensor configuration. As a final point, we illustrate the imaging capability of this new sensor technology on a patterned bio-functionalized surface.

  15. Coverage-based constraints for IMRT optimization.

    Science.gov (United States)

    Mescher, H; Ulrich, S; Bangert, M

    2017-09-05

    Radiation therapy treatment planning requires an incorporation of uncertainties in order to guarantee an adequate irradiation of the tumor volumes. In current clinical practice, uncertainties are accounted for implicitly with an expansion of the target volume according to generic margin recipes. Alternatively, it is possible to account for uncertainties by explicit minimization of objectives that describe worst-case treatment scenarios, the expectation value of the treatment or the coverage probability of the target volumes during treatment planning. In this note we show that approaches relying on objectives to induce a specific coverage of the clinical target volumes are inevitably sensitive to variation of the relative weighting of the objectives. To address this issue, we introduce coverage-based constraints for intensity-modulated radiation therapy (IMRT) treatment planning. Our implementation follows the concept of coverage-optimized planning that considers explicit error scenarios to calculate and optimize patient-specific probabilities [Formula: see text] of covering a specific target volume fraction [Formula: see text] with a certain dose [Formula: see text]. Using a constraint-based reformulation of coverage-based objectives we eliminate the trade-off between coverage and competing objectives during treatment planning. In-depth convergence tests including 324 treatment plan optimizations demonstrate the reliability of coverage-based constraints for varying levels of probability, dose and volume. General clinical applicability of coverage-based constraints is demonstrated for two cases. A sensitivity analysis regarding penalty variations within this planing study based on IMRT treatment planning using (1) coverage-based constraints, (2) coverage-based objectives, (3) probabilistic optimization, (4) robust optimization and (5) conventional margins illustrates the potential benefit of coverage-based constraints that do not require tedious adjustment of target

  16. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag.

    Science.gov (United States)

    Xue, Yongjie; Hou, Haobo; Zhu, Shujing

    2009-03-15

    The adsorption characteristics of phosphate adsorption on the basic oxygen furnace (BOF) slag were identified as a function of pH and ion strengths in solution. In addition, adsorption mechanisms were investigated by conducting batch tests on both the hydrolysis and phosphate adsorption process of the BOF slag, and making a comparative analysis to gain newer insights into understanding the adsorption process. Results show that the adsorption capacity from 4.97 to 3.71 mgP/g slag when the solution pH was increased from 2.0 to 13.0 and phosphate initial concentration was 50 mg/L, indicating that adsorption capacity is largely dependent upon the pH of the system. The results of the competitive adsorption between phosphate and typical anions found in wastewater, such as NO(3)(-), SO(4)(2-) and Cl(-), onto BOF slag reveal that BOF slag can selectively adsorb phosphate ions. The insignificant effect of NO(3)(-), SO(4)(2-) and Cl(-) on phosphate adsorption capacity indicates that phosphate adsorption is through a kind of inner-sphere complex reaction. During the adsorption process, the decrease of phosphate concentration in solution accompanied with an increase in pH values and concentrations of NO(3)(-), SO(4)(2-) and Cl(-) suggests that phosphate replaced the functional groups from the surface of BOF slag which infers that ligand exchange is the dominating mechanism for phosphate removal. At the same time, the simultaneous decreases in PO(4)(3-) and total calcium, magnesium and aluminum concentration in solution indicate that chemical reaction and precipitation are other mechanisms of phosphate removal.

  17. Preparation of crosslinked poly (acryloyloxyethyltrimethyl ammonium chloride) microsphere and its adsorption and mechanism towards shikimic acid.

    Science.gov (United States)

    Men, Jiying; Wang, Ruixin; Li, Huan; Li, Xinyan; Yang, Shanshan; Liu, Haisi; Gao, Baojiao

    2017-02-01

    Shikimic acid (SA) is a key raw material for the synthesis of the antiviral drug, but its extraction and separation from plants is still limited. Crosslinked poly (acryloyloxyethyltrimethyl ammonium chloride, DAC) microspheres were synthesized via inverse-phase suspension polymerization. In the synthesizing, N,N'-methylene bisacrylamide (MBA) was used as crosslinker, cyclohexane as dispersed medium and span-60 as dispersants, obtaining CPDAC gel microspheres. The effect of polymerization condition on balling performance and the characteristics of CPDAC were examined. The adsorption properties of CPDAC towards SA were mainly explored and the data of adsorption isotherm were analyzed by using Langmuir, Freundlich, Temkin, Sips and Toth models. Furthermore, the adsorption mechanism was analyzed in depth, and the adsorption thermodynamics was also investigated. The results show that in order to prepare CPDAC, water phase must be added dropwise to oil phase, and the volume ratio of oil-water is more than 2:1. The mean diameter of CPDAC decreases with increasing span-60 and accelerating agitating rate. The strong electrostatic interaction is formed between quaternary ammonium nitrogen of CPDAC and COO - of SA. The adsorption kinetic data is fitted well with pseudo-first-order model. The adsorption ability is higher in aqueous water than ethanol, reaching 108mg/g, and Toth model is more suitable for describing the actual adsorption process. The adsorption of CPDAC towards SA is dependent on the pH value of the medium. The adsorption process is exothermic, the adsorption amount decreases with the increase of temperature, and the process is driven by enthalpy. The adsorption amount decreases with the increase of salinity. The reusability of CPDAC towards SA can keep 86.1% at the sixth cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Adsorption and desorption of chlorpyrifos to soils and sediments.

    Science.gov (United States)

    Gebremariam, Seyoum Yami; Beutel, Marc W; Yonge, David R; Flury, Markus; Harsh, James B

    2012-01-01

    Chlorpyrifos, one of the most widely used insecticides, has been detected in air, rain, marine sediments, surface waters, drinking water wells, and solid and liquid dietary samples collected from urban and rural areas. Its metabolite, TCP, has also been widely detected in urinary samples collected from people of various age groups. With a goal of elucidating the factors that control the environmental contamination, impact, persistence, and ecotoxicity of chlorpyrifos, we examine, in this review, the peer-reviewed literature relating to chlorpyrifos adsorption and desorption behavior in various solid-phase matrices. Adsorption tends to reduce chlorpyrifos mobility, but adsorption to erodible particulates, dissolved organic matter, or mobile inorganic colloids enhances its mobility. Adsorption to suspended sediments and particulates constitutes a major off-site migration route for chlorpyrifos to surface waters, wherein it poses a potential danger to aquatic organisms. Adsorption increases the persistence of chlorpyrifos in the environment by reducing its avail- ability to a wide range of dissipative and degradative forces, whereas the effect of adsorption on its ecotoxicity is dependent upon the route of exposure. Chlorpyrifos adsorbs to soils, aquatic sediments, organic matter, and clay minerals to differing degrees. Its adsorption strongly correlates with organic carbon con- tent of the soils and sediments. A comprehensive review of studies that relied on the batch equilibrium technique yields mean and median Kd values for chlorpyrifos of 271 and 116 L/kg for soils, and 385 and 403 L/kg for aquatic sediments. Chlorpyrifos adsorption coefficients spanned two orders of magnitude in soils. Normalizing the partition coefficient to organic content failed to substantially reduce variability to commonly acceptable level of variation. Mean and median values for chlorpyrifos partition coefficients normalized to organic carbon, K, were 8,163 and 7,227 L/kg for soils and 13

  19. Thermodynamic Properties of Chromium Adsorption by Sediments ...

    African Journals Online (AJOL)

    From the results obtained for the adsorption envelop experiments, a good adsorption potential was recorded at initial pH of 2 and a temperature of 25oC. The experimental data obtained was subjected to different adsorption isotherm models including; Linear, Langmuir, Freundlich and Temkin to establish the mechanism of ...

  20. Immunoglobulin adsorption on modified surfaces

    NARCIS (Netherlands)

    Bremer, M.G.E.G.

    2001-01-01

    Preservation of biological functioning of proteins during immobilisation is of special interest in various biomedical and biotechnical applications. In industry physical adsorption of immunoglobulins (IgGs) onto solid surfaces is still the predominant immobilisation procedure because it is

  1. Thermodynamic features of dioxins’ adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, Marina [Department of Industrial and Information Engineering and of Economics, University of L’Aquila, Viale Giovanni Gronchi 18, L’Aquila 67100 (Italy); Piemonte, Vincenzo, E-mail: v.piemonte@unicampus.it [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy); Mazziotti di Celso, Giuseppe [Faculty of Bioscience, University of Teramo, Via R. Balzarini, 1, 64100 Teramo (Italy); Ronconi, Silvia [Arta Abruzzo, Department of L’Aquila, Bazzano (AQ), 67100 L’Aquila (Italy); Capocelli, Mauro [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy)

    2017-02-15

    Highlights: • We develop the P-T diagram for six PCDD. • We derive theoretical adsorption isotherms according to the Langmuir’s model. • We calculate K and w{sub max} values for several temperatures. • We estimate the adsorption heat with a good agreement with literature data. - Abstract: In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir’s model. In particular, the Langmuir isotherm parameters (K and w{sub max}) have been validated through the estimation of the adsorption heat (ΔH{sub ads}), which varies in the range 20–24 kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.

  2. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  3. Adsorption of Levofloxacin to Goethite

    NARCIS (Netherlands)

    Qin, Xiaopeng; Liu, Fei; Zhao, Long; Hou, Hong; Wang, Guangcai; Li, Fasheng; Weng, Liping

    2016-01-01

    Batch experiments were conducted to investigate the adsorption of a widely used fluoroquinolone antibiotic levofloxacin (LEV) to goethite and effects of nitrate, sulfate, small organic acids, and humic acid (HA). The concentrations of LEV and small organic acids in single systems or mixtures were

  4. Adsorptive membranes for bilirubin removal

    NARCIS (Netherlands)

    Avramescu, M.E.; Sager, W.F.C.; Borneman, Zandrie; Wessling, Matthias

    2004-01-01

    In this study, we employed ethylene vinyl alcohol (EVAL) adsorptive membranes with bovine serum albumin (BSA) as bioligand for affinity supports for bilirubin (BR) retention. Microfiltration membranes were prepared from ternary or quaternary water/(1-octanol)/DMSO/EVAL systems. To obtain active

  5. Protein Adsorption in Microengraving Immunoassays

    Science.gov (United States)

    Song, Qing

    2015-01-01

    Microengraving is a novel immunoassay forcharacterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales τD and τK determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when C0* is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 104–105 single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample. PMID:26501282

  6. Kinetic control of the coverage of oil droplets by DNA-functionalized colloids.

    Science.gov (United States)

    Joshi, Darshana; Bargteil, Dylan; Caciagli, Alessio; Burelbach, Jerome; Xing, Zhongyang; Nunes, André S; Pinto, Diogo E P; Araújo, Nuno A M; Brujic, Jasna; Eiser, Erika

    2016-08-01

    We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a "frozen" degree of loading but with fully ergodic colloidal dynamics on the droplets. We illustrate the equilibrium nature of the adsorbed colloidal phase by exploring the quasi-two-dimensional phase behavior of the adsorbed colloids under the influence of depletion interactions and present simulations of a simple model that illustrates the nature of the compositional arrest and the structural ergodicity.

  7. 24 CFR 200.17 - Mortgage coverage.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Mortgage coverage. 200.17 Section... Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Eligible Mortgage § 200.17 Mortgage coverage. The mortgage...

  8. Proteome coverage prediction with infinite Markov models

    Science.gov (United States)

    Claassen, Manfred; Aebersold, Ruedi; Buhmann, Joachim M.

    2009-01-01

    Motivation: Liquid chromatography tandem mass spectrometry (LC-MS/MS) is the predominant method to comprehensively characterize complex protein mixtures such as samples from prefractionated or complete proteomes. In order to maximize proteome coverage for the studied sample, i.e. identify as many traceable proteins as possible, LC-MS/MS experiments are typically repeated extensively and the results combined. Proteome coverage prediction is the task of estimating the number of peptide discoveries of future LC-MS/MS experiments. Proteome coverage prediction is important to enhance the design of efficient proteomics studies. To date, there does not exist any method to reliably estimate the increase of proteome coverage at an early stage. Results: We propose an extended infinite Markov model DiriSim to extrapolate the progression of proteome coverage based on a small number of already performed LC-MS/MS experiments. The method explicitly accounts for the uncertainty of peptide identifications. We tested DiriSim on a set of 37 LC-MS/MS experiments of a complete proteome sample and demonstrated that DiriSim correctly predicts the coverage progression already from a small subset of experiments. The predicted progression enabled us to specify maximal coverage for the test sample. We demonstrated that quality requirements on the final proteome map impose an upper bound on the number of useful experiment repetitions and limit the achievable proteome coverage. Contact: manfredc@inf.ethz.ch; jbuhmann@inf.ethz.ch PMID:19477982

  9. CDMA coverage under mobile heterogeneous network load

    NARCIS (Netherlands)

    Saban, D.; van den Berg, Hans Leo; Boucherie, Richardus J.; Endrayanto, A.I.

    2002-01-01

    We analytically investigate coverage (determined by the uplink) under non-homogeneous and moving traffic load of third generation UMTS mobile networks. In particular, for different call assignment policies, we investigate cell breathing and the movement of the coverage gap occurring between cells

  10. On optimal coverage with unreliable sensors

    NARCIS (Netherlands)

    Frasca, Paolo; Garin, Federica

    This paper regards the problem of placing unreliable sensors in a given one-dimensional environment, in such a way to optimize a given coverage cost. We specifically consider the disk-coverage cost, whose optimal solution for reliable sensors is simply an equally-spaced configuration of the sensors.

  11. 76 FR 7767 - Student Health Insurance Coverage

    Science.gov (United States)

    2011-02-11

    ... HUMAN SERVICES 45 CFR Parts 144 and 147 RIN 0950-AA20 Student Health Insurance Coverage AGENCY: Centers... proposed regulation that would establish rules for student health insurance coverage under the Public Health Service Act and the Affordable Care Act. The proposed rule would define ``student health insurance...

  12. A Semantic Framework for Test Coverage

    NARCIS (Netherlands)

    Brandan Briones, L.; Brinksma, Hendrik; Stoelinga, Mariëlle Ida Antoinette; Graf, Susanne; Zhang, Wenhui

    2006-01-01

    Since testing is inherently incomplete, test selection has vital importance. Coverage measures evaluate the quality of a test suite and help the tester select test cases with maximal impact at minimum cost. Existing coverage criteria for test suites are usually defined in terms of syntactic

  13. Earthquake Coverage by the Western Press.

    Science.gov (United States)

    Gaddy, Gary D.; Tanjong, Enoh

    1986-01-01

    Describes a study to determine the type and quantity of Western news coverage of Third World earthquakes. Finds little evidence of geographical bias in coverage studied, and suggests that care must be taken to examine the underlying news events before bias is alleged. (MS)

  14. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  15. A Study on adsorption of Li from aqueous solution using various adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Ryoo, Keon Sang [Dept. of Applied Chemistry, Andong National University, Andon (Korea, Republic of); Kim, Dae Ik [School of Electrical, Electronic Communication, and Computer Engineering, Chonnam National University, Yeosu (Korea, Republic of)

    2015-04-15

    The aim of the present study is to explore the possibility of utilizing fly ash, loess and activated charcoal for the adsorption of Li in aqueous solution. Batch adsorption experiments were performed to evaluate the influences of various factors like initial concentration, contact time, and temperature. The adsorption data showed that fly ash and activated charcoal are not effective for the adsorption of Li. On the contrary, loess showed much higher adsorption capacity for Li. The adsorption of Li on loess was highly concentration dependent. It was found that the adsorption capacity of loess is favored at a lower Li concentration. At equilibrium, approximately 95% of adsorption was achieved by loess. The equilibrium data were fitted well to the Freundlich isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher R 2 compared to the pseudo-first-order kinetic models. The thermodynamic parameters such as free energy ΔG, the enthalpy ΔH, and the entropy ΔS were calculated.

  16. Treatment by adsorption on zeolites of volatile organic compounds (VOC). Study of the absorption/adsorption coupling applied to air treatment; Traitement des composes organiques volatils (COV) par adsorption sur zeolithe. Etude du couplage absorption/adsorption applique au traitement de l'air

    Energy Technology Data Exchange (ETDEWEB)

    Brosillon, St.

    2000-11-01

    Absorption and adsorption are the most suitable techniques to treat strong flow rates of gaseous effluents with low concentrations of volatile organic compounds (VOCs). This works deals with the adsorption on zeolites of pure VOCs or VOC mixtures. The competitive adsorption phenomena, the adsorption equilibria and the adsorption kinetics are analyzed for the dimensioning of industrial facilities. The selectiveness of zeolites depends on 4 parameters: the polarity, the volatility and the composition of the gaseous mixture compounds, and the filling up ratio of zeolites. The modeling of adsorption isotherms has been done using the Langmuir model for pure compounds and using the ideal adsorbed solution theory for mixtures. The simulation results obtained are relatively different from the experimental ones. The adsorbed VOCs seem to form non-ideal adsorbates. The saturation curves obtained by simulation are in good agreement with experimental curves when the proper value of the internal transfer coefficient is used. The different values of this parameter have permitted to deduce the average value of the effective diffusion of the zeolite for the 4 VOCs studied. In the last part, it is shown that the coupling of absorption and adsorption can be efficient for the treatment of mixtures of water soluble and water insoluble VOCs. The poor efficiency of water curtains for the treatment of industrial solvents has been demonstrated and a VOC adsorption process that use two concentrator wheels is proposed. (J.S.)

  17. Uranium(VI adsorption on surfactant modified heulandite/clinoptilolite rich tuff

    Directory of Open Access Journals (Sweden)

    SRDJAN MATIJASEVIC

    2006-12-01

    Full Text Available The adsorption of uranium(VI on heulandite/clinoptilolite rich zeolitic tuff modified with diferent amounts (2, 5 and 10 meq/100 g of hexadecyltrimethyl ammonium (HDTMA ion was investigated. The organozeolites were prepared by ion exchange of inorganic cations at the zeolite surface with HDTMA ions, and the three prepared samples were denoted as OA-2, OA-5 and OA-10. The maximal amount of HDTMAin the organozeolite OA-10 (10 meq/100 g was equal to the external cation exchange capacity of the starting material. The results showed that uranium( VI adsorption on unmodified zeolitic tuff was low (0.34 mg uranium(VI/g adsorbent, while for the organozeolites, the adsorption increased with increasing amount of HDTMA at the zeolitic surface. The highest adsorption indexes were achieved for the organozeolite OA-10, in which all the surface inorganic cations had been replaced with HDTMA. An investigation of the adsorption of uranium(VI ions onto organozeolite OA-10 at different pH values (3, 6 and 8 showed that the adsorption index increased with increasing amount of adsorbent in the suspension. Since uranium(VI speciation is highly dependent on pH, from the adsorption isotherms, it can be seen that uranium(VI adsorption on organozeolite OA-10 at pH 6 and 8 is well described by a Langmuir type of isotherm, while at pH 3, it corresponds to a Type III isotherm.

  18. Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets.

    Science.gov (United States)

    Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; Hu, Xi; Chen, An-wei; Wang, Ya-qin; Guo, Yi-Mming; Li, Ting-ting; Zhou, Lu; Liu, Shao-heng; Zeng, Xiao-xia

    2014-07-15

    Cd(II) has posed severe health risks worldwide. To remove this contaminant from aqueous solution, the sulfanilic acid-grafted magnetic graphene oxide sheets (MGOs/SA) were prepared and characterized. The mutual effects of Cd(II) and aniline adsorption on MGOs/SA were studied. The effects of operating parameters such as pH, ionic strength, contact time and temperature on the Cd(II) enrichment, as well as the adsorption kinetics and isotherm were also investigated. The results demonstrated that MGOs/SA could effectively remove Cd(II) and aniline from the aqueous solution and the two adsorption processes were strongly dependent on solution pH. The Cd(II) adsorption was reduced by the presence of aniline at pH5.4. The presence of Cd(II) diminished the adsorption capacity for aniline at pHaniline adsorption at pH>7.8. The decontamination of Cd(II) by MGOs/SA was influenced by ionic strength. Besides, the adsorption process could be well described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that the intraparticle diffusion was not the only rate-limiting step for the adsorption process. Moreover, the experimental data of isotherm followed the Freundlich isotherm model. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Measurements of metal adsorption in oxide-clay mixtures: ``Competitive-additivity`` among mixture components

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, V.S. [Environmental and Earth Sciences Inst., McLean, VA (United States); Siegel, M.D. [Sandia National Labs., Albuquerque, NM (United States); Kooner, Z.S. [Tennessee Univ., Knoxville, TN (United States). Dept. of Geology

    1991-12-31

    An important question concerning the transport of radionuclides from nuclear waste repositories is whether the adsorption of metals by rocks and soils can be predicted from the properties of the constituent minerals. Attempts by previous researchers to use sorption models based on linear adsorption or weighted ``sorptive additivity`` have met with limited success. In this study, a ``competitive-additivity`` model based on surface complexation theory was used to model the ph-dependent adsorption of lead by goethite/Ca-montmorillonite mixtures using complexation constants obtained from single sorbent systems. Measurements of lead adsorption by goethite, Ca-montmorillonite, and goethite-Ca-montmorillonite mixtures (and similar studies of copper and zinc adsorption) demonstrate that the two adsorbents compete for adsorption of the metals over wide ranges of pH and concentrations of adsorbents and metals. The adsorption behaviors of the mixtures are determined by the relative concentrations of the two adsorbents and their respective affinities for the adsorbate metal. Particle-particle interactions such as heterocoagulation of the oxide and clay do not appear to be significant for the majority of the adsorption sites in this system.

  20. Random sequential adsorption of human adenovirus 2 onto polyvinylidene fluoride surface influenced by extracellular polymeric substances.

    Science.gov (United States)

    Lu, Ruiqing; Li, Qi; Nguyen, Thanh H

    2016-03-15

    Virus removal by membrane bioreactors depends on virus-membrane and virus-foulant interactions. The adsorption of human adenovirus 2 (HAdV-2) on polyvinylidene fluoride (PVDF) membrane and a major membrane foulant, extracellular polymeric substances (EPS), were measured in a quartz crystal microbalance. In 3-100mM CaCl2 solutions, irreversible adsorption of HAdV-2 was observed on both pristine and EPS-fouled PVDF surfaces. The HAdV-2 adsorption kinetics was successfully fitted with the random sequential adsorption (RSA) model. The applicability of the RSA model for HAdV-2 adsorption is confirmed by comparing the two fitting parameters, adsorption rate constant k(a) and area occupied by each adsorbed HAdV-2 particle a, with experimentally measured parameters. A linear correlation between the fitting parameter k(a) and the measured attachment efficiency was found, suggesting that the RSA model correctly describes the interaction forces dominating the HAdV-2 adsorption. By comparing the fitting parameter d(ads) with the hydrodynamic diameter of HAdV-2, we conclude that virus-virus and virus-surface interactions determine the area occupied by each adsorbed HAdV-2 particle, and thus influence the adsorption capacity. These results provide insights into virus retention and will benefit improving virus removal in membrane filtration. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Adsorption of Candida rugosa lipase at water-polymer interface: The case of poly( DL)lactide

    Science.gov (United States)

    Kamel, Gihan; Bordi, Federico; Chronopoulou, Laura; Lupi, Stefano; Palocci, Cleofe; Sennato, Simona; Verdes, Pedro V.

    2011-12-01

    Insights into the interactions between biological macromolecules and polymeric surfaces are of great interest because of potential uses in developing biotechnologies. In this study we focused on the adsorption of a model lipolytic enzyme, Candida rugosa lipase (CRL), on poly-(D,L)-lactic acid (PDLLA) polymer with the aim to gain deeper insights into the interactions between the enzyme and the carrier. Such studies are of particular relevance in order to establish the optimal conditions for enzyme immobilization and its applications. We employed two different approaches; by analyzing the influence of adsorbed CRL molecules on the thermodynamic behavior of Langmuir films of PDLLA deposited at air-water interface, we gained interesting information on the molecular interactions between the protein and the polymer. Successively, by a systematic analysis of the adsorption of CRL on PDLLA nanoparticles, we showed that the adsorption of a model lipase, CRL, on PDLLA is described in terms of a Langmuir-type adsorption behavior. In this model, only monomolecular adsorption takes place (i.e. only a single layer of the protein adsorbs on the support) and the interactions between adsorbed molecules and surface are short ranged. Moreover, both the adsorption and desorption are activated processes, and the heat of adsorption (the difference between the activation energy for adsorption and desorption) is independent from the surface coverage of the adsorbing species. Finally, we obtained an estimate of the number of molecules of the protein adsorbed per surface unit on the particles, a parameter of a practical relevance for applications in biocatalysis, and a semi-quantitative estimate of the energies (heat of adsorption) involved in the adsorption process.

  2. Improving estimates of insecticide-treated mosquito net coverage from household surveys: using geographic coordinates to account for endemicity

    OpenAIRE

    Burgert, Clara R.; Bradley, Sarah EK; Arnold, Fred; Eckert, Erin

    2014-01-01

    Background Coverage estimates of insecticide-treated nets (ITNs) are often calculated at the national level, but are intended to be a proxy for coverage among the population at risk of malaria. The analysis uses data for surveyed households, linking survey enumeration areas (clusters) with levels of malaria endemicity and adjusting coverage estimates based on the population at risk. This analysis proposes an approach that is not dependent on being able to identify malaria risk in a location d...

  3. Impact of invitation schemes on screening coverage

    DEFF Research Database (Denmark)

    Jacobsen, Katja Kemp; von Euler Chelpin, My; Vejborg, Ilse

    2017-01-01

    BACKGROUND: The porpuse of mammography screening is to decrease breast cancer mortality. To achieve this a high coverage by examination is needed. Within an organized screening programme, we examined the impact of changes in the invitation schedule on the interplay between coverage...... and participation. METHOD: We studied nine cohorts aged 50-51 when first targeted by mammography screening in Copenhagen, Denmark. Population data were retrieved from the Danish Civil Registration System; invitation and attendance data from the screening programme database. Data were linked using unique personal...... identification numbers. Coverage by invitation was defined as (number of invited women/number of targeted women), coverage by examination as (number of screened women/number of targeted women), and participation rate as (number of screened women/number of invited women). RESULTS: Coverage by invitation was close...

  4. Study of the processes of adsorption of amine-containing surface-active substance on the surface of Aluminum powder

    Directory of Open Access Journals (Sweden)

    Antonina Dyuryagina

    2012-03-01

    Full Text Available Equilibrium characteristics of adsorption on a surface of a pigment depending on concentration factors and temperature of the dispersive environment are defined. Kinetic laws of superficial activity of binary, threefold homogeneous and heterogeneous modeling systems are studied. The estimation of mechanisms of process of adsorption is carried out.

  5. Effect of Acid and Alcohol Network Forces within Functionalized Multiwall Carbon Nanotubes Bundles on Adsorption of Copper (II) Species

    Science.gov (United States)

    Adsorption of metals on carbon nanotubes (CNTs) has important applications in sensors, membranes, and water treatment. The adsorptive capacity of multiwall CNTs for copper species in water depends on the type of functional group present on their surface. The alcohol (COOH) and ac...

  6. Competitive protein adsorption--multilayer adsorption and surface induced protein aggregation.

    Science.gov (United States)

    Holmberg, Maria; Hou, Xiaolin

    2009-02-17

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces and that the outcome of IgG adsorption is much more sensitive to surface characteristics than the outcome of albumin adsorption. Using high concentrations of protein solution and hydrophobic polymer surfaces during adsorption can induce IgG aggregation, which is observed as extremely high IgG adsorptions. Besides using a more hydrophilic substrate, surface-induced IgG aggregation can be inhibited by changing the adsorption sequence of albumin and IgG.

  7. Ab initio prediction of adsorption isotherms for small molecules in metal-organic frameworks: the effect of lateral interactions for methane/CPO-27-Mg.

    Science.gov (United States)

    Sillar, Kaido; Sauer, Joachim

    2012-11-07

    A hybrid method that combines density functional theory for periodic structures with wave function-based electron correlation methods for finite-size models of adsorption sites is employed to calculate energies for adsorption of CH(4) onto different sites in the metal-organic framework (MOF) CPO-27-Mg (Mg-MOF-74) with chemical accuracy. The adsorption energies for the Mg(2+), linker, second layer sites are -27.8, -18.3, and -15.1 kJ/mol. Adsorbate-adsorbate interactions increase the average CH(4) adsorption energy by about 10% (2.4 kJ/mol). The free rotor-harmonic oscillator-ideal gas model is applied to calculate free energies/equilibrium constants for adsorption on the individual sites. This information is used in a multisite Langmuir model, augmented with a Bragg-Williams model for lateral interactions, to calculate adsorption isotherms. This ab initio approach yields the contributions of the individual sites to the final isotherms and also of the lateral interactions that contribute about 15% to the maximum excess adsorption capacity. Isotherms are calculated for both absolute amounts, for calculation of isosteric heats of adsorption as function of coverage, and excess amounts, for comparison with measured isotherms. Agreement with observed excess isotherms is reached if the experimentally determined limited accessibility of adsorption sites (78%) is taken into account.

  8. Adsorption Studies of Radish Leaf Powder

    Directory of Open Access Journals (Sweden)

    Ankita

    2016-01-01

    Full Text Available Radish leaves (Raphanus sativus powder fractions was subjected to moisture adsorption isotherms at different isothermal temperature conditions from 15-45°C with an equal interval of 10°C. The sorption data obtained in gravimetric static method under 0.11–0.90 water activity conditions were subjected for sorption isotherms and found to be typical sigmoid trend. Experimental data were assessed for the applicability in the prediction through sorption models fitting and found that Polynomial and GAB equations performed well over all fitted models in describing equilibrium moisture content – equilibrium relative humidity (EMC–ERH relationships for shelf stable dehydrated radish leaf powder, over the entire range of temperatures condition under study. The net isosteric heat of sorption, differential entropy and free energy were determined at different temperatures and their dependence was seen with respect to equilibrium moisture content.

  9. Determination of palladium by adsorptive stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, M. [Institute of Chemistry, Univ. of St. Cyril and Methodius, Skopje (Yugoslavia); Pihlar, B. [Department of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana (Slovenia)

    1997-04-01

    Adsorptive accumulation of the Pd(II) complex with dimethylglyoxime was evaluated for stripping voltammetry with respect to different parameters. The sensitivity of the method and the linearity between the peak current and the concentration of Pd(II) depends on the ionic strength, the electrode area, the preconcentration time, the transport rate to the electrode, and the potential scan rate. The most appropriate medium was 0.1 mol/L acetate buffer between pH 3.5 and 4. Using 2 min of preconcentration at a 2.6 mm{sup 2} electrode and the differential pulse mode, a detection limit of 0.05 {mu}g/L Pd was achieved for liquid samples and 50 ng/g for solid samples. Different aqueous and solid samples were analysed and the recovery from biological and inorganic materials investigated. (orig.). With 7 figs., 3 tabs.

  10. Adsorption of fulvic acid on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Filius, J.D.; Lumsdon, D.G.; Meeussen, J.C.L.; Hiemstra, T.; Riemsduk, W.H. van

    2000-01-01

    The adsorption of fulvic acid by goethite was determined experimentally as a function of concentration, pH, and ionic strength. The data were described with the CD-MUSIC model of Hiemstra and Van Riemsdijk (1996), which allows the distribution of charge of the bound fulvate molecule over a surface region. Simultaneously, the concentration, pH, and salt dependency of the binding of fulvic acid can be described. Using the same parameters, the basic charging behavior of the goethite in the absence of fulvic acid could be described well. The surface species used in the model indicate that inner sphere coordination of carboxylic groups of the fulvate molecule is important at low pH, whereas at high pH the outer sphere coordination with reactive groups of the fulvate molecule with high proton affinity is important.

  11. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  12. The likely effects of employer-mandated complementary health insurance on health coverage in France.

    Science.gov (United States)

    Pierre, Aurélie; Jusot, Florence

    2017-03-01

    In France, access to health care greatly depends on having a complementary health insurance coverage (CHI). Thus, the generalisation of CHI became a core factor in the national health strategy created by the government in 2013. The first measure has been to compulsorily extend employer-sponsored CHI to all private sector employees on January 1st, 2016 and improve its portability coverage for unemployed former employees for up to 12 months. Based on data from the 2012 Health, Health Care and Insurance survey, this article provides a simulation of the likely effects of this mandate on CHI coverage and related inequalities in the general population by age, health status, socio-economic characteristics and time and risk preferences. We show that the non-coverage rate that was estimated to be 5% in 2012 will drop to 4% following the generalisation of employer-sponsored CHI and to 3.7% after accounting for portability coverage. The most vulnerable populations are expected to remain more often without CHI whereas non coverage will significantly decrease among the less risk averse and the more present oriented. With its focus on private sector employees, the policy is thus likely to do little for populations that would benefit most from additional insurance coverage while expanding coverage for other populations that appear to place little value on CHI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2015-09-08

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions.

  14. Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors

    DEFF Research Database (Denmark)

    Marie, Rodolphe Charly Willy; Jensenius, Henriette; Thaysen, Jacob

    2002-01-01

    -mer thiol-modified DNA-oligo layer. The self-assembly induces a surface-stress change, which closely follows Langmuir adsorption model. The adsorption results in compressive surface-stress formation, which might be due to intermolecular repulsive forces in the oligo layer. The rate constant...... of the adsorption depends on the concentration of the oligo solution. Based on the calculated rate constants a surface free energy of the thiol-modified DNA-oligo adsorption on gold is found to be -32.4 kJ mol(-1). The adsorption experiments also indicate that first a single layer of DNA-oligos is assembled...... on the gold surface after which a significant unspecific adsorption takes place on top of the first DNA-oligo layer. The cantilever-based sensor principle has a wide range of applications in real-time local monitoring of chemical and biological interactions as well as in the detection of specific DNA...

  15. Role of Surface Molecular Architecture and Energetics of Hydrogen Bonding Sites in Adsorption of Polymers and Surfactants.

    Science.gov (United States)

    Bjelopavlic, Mick; Singh, Pankaj K.; El-Shall, Hassan; Moudgil, Brij M.

    2000-06-01

    Hydrogen bonding is generally thought to be an ubiquitous adsorption mechanism, which often foils selective adsorption schemes. Through investigation of hydrogen bonding energy and its dependence on surface molecular architecture, it may be possible to develop new methodologies to control the adsorption of surfactants and polymeric flocculants, depressants, and dispersants used in particulate processing industries. A model system using Stöber silica spheres and polyethylene oxide, a polymer known for its ability to form hydrogen bonds, was examined. The effect of two different surface treatments of the silica particles, calcination and rehydroxylation, upon the adsorption of two polymer molecular weights was studied. The adsorption behavior was then linked to the respective surface structures via characterization of the surfaces using FTIR, NMR, and Raman techniques. In this paper role of hydrogen bonding sites and surface architecture on adsorption is discussed. Copyright 2000 Academic Press.

  16. First-principles investigation of methanethiol adsorption and dissociation mechanisms on the high-Miller-index vicinal surface Cu(4 1 0).

    Science.gov (United States)

    Raouafi, Faycal; Seydou, Mahamadou; Lassoued, Karima; Taleb, Abdelhafed; Diawara, Boubakar

    2016-05-05

    In this work, we present detailed investigations of methanethiol adsorption on a Cu(4 1 0) surface within the framework of the self-consistent first-principles calculations as implemented in the Vienna ab initio simulation package (VASP). In particular, the adsorption sites, the surface coverage rate and electronic properties have been determined and compared to experimental values. The results indicate that the favorable adsorption site in the case of low coverage rate is a bridge on the step followed by the hollow site on the terrace. The adsorption significantly affects the outermost layer of the surface mainly for a higher coverage rate in a (2 × 2) supercell. The nature of the chemisorption process on the surface is analyzed by means of the density of states which, combined with charge density difference and atomic charge calculations, confirms the ionic character of the S-Cu bond. The specific effect of the presence of steps is highlighted by comparing the adsorption on the (1 0 0) terrace to the adsorption on the extended Cu(1 0 0) surface. Compared to the flat Cu(1 0 0), it is found here that while the stability is almost the same at p(2 × 2) coverage, the CH3S/Cu(4 1 0) becomes more stable than CH3S/Cu(1 0 0) at c(2 × 2) coverage with 0.30 eV per molecule. The mechanism of methanethiol dissociation is explored by the nudged elastic band method and demonstrates that the most favorable path is dissociation followed by migration of hydrogen from the step to its most stable position (hollow on the terrace) with energy barriers less than 0.5 eV.

  17. First-principles investigation of methanethiol adsorption and dissociation mechanisms on the high-Miller-index vicinal surface Cu(4 1 0)

    Science.gov (United States)

    Raouafi, Faycal; Seydou, Mahamadou; Lassoued, Karima; Taleb, Abdelhafed; Diawara, Boubakar

    2016-05-01

    In this work, we present detailed investigations of methanethiol adsorption on a Cu(4 1 0) surface within the framework of the self-consistent first-principles calculations as implemented in the Vienna ab initio simulation package (VASP). In particular, the adsorption sites, the surface coverage rate and electronic properties have been determined and compared to experimental values. The results indicate that the favorable adsorption site in the case of low coverage rate is a bridge on the step followed by the hollow site on the terrace. The adsorption significantly affects the outermost layer of the surface mainly for a higher coverage rate in a (2  ×  2) supercell. The nature of the chemisorption process on the surface is analyzed by means of the density of states which, combined with charge density difference and atomic charge calculations, confirms the ionic character of the S-Cu bond. The specific effect of the presence of steps is highlighted by comparing the adsorption on the (1 0 0) terrace to the adsorption on the extended Cu(1 0 0) surface. Compared to the flat Cu(1 0 0), it is found here that while the stability is almost the same at p(2  ×  2) coverage, the CH3S/Cu(4 1 0) becomes more stable than CH3S/Cu(1 0 0) at c(2  ×  2) coverage with 0.30 eV per molecule. The mechanism of methanethiol dissociation is explored by the nudged elastic band method and demonstrates that the most favorable path is dissociation followed by migration of hydrogen from the step to its most stable position (hollow on the terrace) with energy barriers less than 0.5 eV.

  18. Effect of shot peening coverage on fatigue limit in round bar of annealed medium carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Junji; Lee, Yong Sung; Seong Kyun [Seoul National Univ., Seoul (Korea, Republic of)

    2014-09-15

    Shot peening is an effective and economical technique for improving the fatigue strength of metallic components by inducing compressive residual stress and hardening the layer near the surface. The effect is generally evaluated by main two parameters: coverage and peening intensity. However, the valuable coverage for improving the fatigue strength depends on the shape of the target material. In this study, the effect of coverage on fatigue limit in round bar of annealed medium carbon steel was experimentally studied. The fatigue limits for shot peened round bar specimens with 140-2300% coverage increased 14-25% by comparing those for non-peened round bar specimens. The valuable range of coverage was 280-560% in the used material and shot peening condition for improving the fatigue limit in short time. The result indicates that the valuable coverage of the round bar material is higher than full coverage to improve the fatigue limit of the material due to the effect of incident angle on round bar, even though the degree depends on the materials and shot peening conditions.

  19. Elimination of aromatic pollutants present in wastewater by adsorption over zeolites

    Science.gov (United States)

    Koubaissy, Bachar; Toufaily, Joumana; El-murr, Maya; Hamieh, Tayssir; Magnoux, Patrick; Joly, Guy

    Phenol and substituted phenols are toxic organic pollutants commonly present in industrial waste streams especially in industrial wastewater. Water treatment by activated carbon adsorption technique is very advantageous due to their high adsorption capacity and low cost of these materials but it is poorly regenerable In recent years, researchers have focused on class of interesting recyclable adsorbents based on hydrophobic zeolites (Si / Al ratio high) in the field of water treatment. The study on adsorption showed that the affinity of phenol drifts toward the FAU is dependent on the pH solution and on the pollutant solubility in water and finally their economic cost for regeneration after saturation.

  20. From aggregative adsorption to surface depletion

    DEFF Research Database (Denmark)

    Rother, Gernot; Müter, Dirk; Bock, Henry

    2017-01-01

    Adsorption of a short-chain nonionic amphiphile (C6E3) at the surface of mesoporous silica glass (CPG) was studied by a combination of adsorption measurements and mesoscale simulations. Adsorption measurements covering a wide composition range of the C6E3 + water system show that no adsorption...... occurs up to the critical micelle concentration, at which a sharp increase of adsorption is observed that is attributed to ad-micelle formation at the pore walls. Intriguingly, as the concentration is increased further, the surface excess of the amphiphile begins to decrease and eventually becomes...... negative, which corresponds to preferential adsorption of water rather than amphiphile at high amphiphile concentrations. The existence of such a surface-azeotropic point has not previously been reported in the surfactant adsorption field. Dissipative particle dynamics simulations were performed to reveal...

  1. X-ray Spectromicroscopy Study of Protein Adsorption to a Polystyrene-Polylactide Blend

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Bonnie; Hitchcock, Adam; Cornelius, Rena; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Synchrotron-based X-ray photoemission electron microscopy (X-PEEM) was used to study the adsorption of human serum albumin (HSA) to polystyrene-polylactide (40:60 PS-PLA, 0.7 wt percent) thin films, annealed under various conditions. The rugosity of the substrate varied from 35 to 90 nm, depending on the annealing conditions. However, the characteristics of the protein adsorption (amounts and phase preference) were not affected by the changes in topography. The adsorption was also not changed by the phase inversion which occured when the PS-PLA substrate was annealed above Tg of the PLA. The amount of protein adsorbed depended on whether adsorption took place from distilled water or phosphate buffered saline solution. These differences are interpreted as a result of ionic strength induced changes in the protein conformation in solution.

  2. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    isotherm), the ionomer has varying affinities for CNFs (Keq. = between 5 and 22) as compared to Vulcan (Keq. = 18), depending on surface treatments. However, the interactions are most likely governed by different adsorption mechanisms depending on hydrophilicity / hydrophobicity of the adsorbent carbon......A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmuir....... The ionomer is probably adsorbed via the polar sulfonic group on hydrophilic Vulcan, whereas, it is adsorbed primarily via hydrophobic -CF2- backbone on the highly hydrophobic pristine CNFs. Ionomer adsorption behavior is gradually altered from apolar to polar group adsorption for the acid modified CNFs...

  3. Use of cellulose derivatives on gold surfaces for reduced nonspecific adsorption of immunoglobulin G.

    Science.gov (United States)

    Volden, Sondre; Zhu, Kaizheng; Nyström, Bo; Glomm, Wilhelm R

    2009-09-01

    This study addresses the design of protein-repellent gold surfaces using hydroxyethyl- and ethyl(hydroxyethyl) cellulose (HEC and EHEC) and hydrophobically modified analogues of these polymers (HM-HEC and HM-EHEC). Adsorption behavior of the protein immunoglobulin G (IgG) onto pure gold and gold surfaces coated with cellulose polymers was investigated and described by quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM) and contact angle measurements (CAM). Surfaces coated with the hydrophobically modified cellulose derivatives were found to significantly outperform a reference poly(ethylene glycol) (PEG) coating, which in turn prevented 90% of non-specific protein adsorption as compared to adsorption onto pure gold. HEC and EHEC prevented around 30% and 60% of the IgG adsorption observed on pure gold, while HM-HEC and HM-EHEC were both found to completely hinder biofouling when deposited on the gold substrates. Adsorption behavior of IgG has been discussed in terms of polymer surface coverage and roughness of the applied surfaces, together with hydrophobic interactions between protein and gold, and also polymer-protein interactions.

  4. A parametric study of rate of advance and area coverage rate performance of synthetic aperture radar.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hensley, Jr., William H. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Burns, Bryan L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Doerry, Armin Walter [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage rate performance.

  5. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Jeyachandran, Y L; Mielczarski, E; Rai, B; Mielczarski, J A

    2009-10-06

    We studied the adsorption of bovine serum albumin (BSA) from phosphate-buffered saline (pH 7.4) to hydrophilic and hydrophobic surfaces. Attenuated total reflection Fourier transform infrared spectroscopy, supported by spectral simulation, allowed us to determine with high precision the amount of BSA adsorbed (surface coverage) and its structural composition. The adsorbed BSA molecules had an alpha-helical structure on both hydrophobic and hydrophilic surfaces but had different molecular conformations and adsorption strengths on the two types of surface. Adsorption of BSA was saturated at around 50% surface coverage on the hydrophobic surface, whereas on the hydrophilic surface the adsorption reached 95%. The BSA molecules adsorbed to the hydrophilic surface with a higher interaction strength than to the hydrophobic surface. Very little adsorbed BSA could be desorbed from the hydrophilic surface, even using 0.1 M sodium dodecyl sulfate, a strong detergent solution. The formation of BSA-phosphate surface complexes was observed under different BSA adsorption conditions on hydrophobic and hydrophilic surfaces. The formation of these complexes correlated with the more efficient blocking of nonspecific interactions by the adsorbed BSA layer. Results from the molecular modeling of BSA interactions with hydrophobic and hydrophilic surfaces support the spectroscopic findings.

  6. Cs/NF3 adsorption on [001]-oriented GaN nanowire surface: A first principle calculation

    Science.gov (United States)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-11-01

    In this study, the adsorption mechanism of Cs/NF3 on the [001]-oriented GaN nanowire surface is investigated by using the density function theory based on first-principles. In the Cs/NF3 co-activation process, the system is inclined to form NF3-in structure. Through the calculation results of adsorption energy, NF3 molecule adsorption tends to take an orientation with F atoms on top and the most favorable adsorption site is BGa-N. The NF3 activation process can further cut down the work function of the Cs-covered nanowire surface only when Cs coverage is 0.75 ML and 1 ML, which can be explained by the double dipole moment theory. With increasing Cs coverage, the valence band and conduction band both shift to lower energy side, contributing to the appearance of a downward band bending region and promoting the escape of surface photoelectrons. After NF3 molecule adsorption, the peak of total density of states near Fermi level increase due to the orbital hybridization between NF3-2s, Cs-5s states and N-2p states, which strengthen the conductivity of the nanowire surface and leads to the metallic properties. All these calculations may direct the Cs/NF3 activation process of GaN nanowire optoelectronic devices.

  7. Insurance Coverage Policies for Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Andrew Hresko

    2012-10-01

    Full Text Available Adoption of personalized medicine in practice has been slow, in part due to the lack of evidence of clinical benefit provided by these technologies. Coverage by insurers is a critical step in achieving widespread adoption of personalized medicine. Insurers consider a variety of factors when formulating medical coverage policies for personalized medicine, including the overall strength of evidence for a test, availability of clinical guidelines and health technology assessments by independent organizations. In this study, we reviewed coverage policies of the largest U.S. insurers for genomic (disease-related and pharmacogenetic (PGx tests to determine the extent that these tests were covered and the evidence basis for the coverage decisions. We identified 41 coverage policies for 49 unique testing: 22 tests for disease diagnosis, prognosis and risk and 27 PGx tests. Fifty percent (or less of the tests reviewed were covered by insurers. Lack of evidence of clinical utility appears to be a major factor in decisions of non-coverage. The inclusion of PGx information in drug package inserts appears to be a common theme of PGx tests that are covered. This analysis highlights the variability of coverage determinations and factors considered, suggesting that the adoption of personal medicine will affected by numerous factors, but will continue to be slowed due to lack of demonstrated clinical benefit.

  8. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-08-01

    Full Text Available Gaseous formaldehyde (HCHO is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs. Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of  ∼  10 to 40 ppbv. For the determination of uptake coefficients (γ, we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity  =  0 %, an initial γ of (1.1 ± 0.05  ×  10−4 is determined, which gradually drops to (5.5 ± 0.4  ×  10−5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition at the atmosphere–soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  9. The influence of a fulvic acid on the adsorption of europium and strontium by alumina and quartz: effects of pH and ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Norden, M. (Dept. of Water and Environmental Studies, Linkoeping Univ. (Sweden)); Ephraim, J.H. (Dept. of Water and Environmental Studies, Linkoeping Univ. (Sweden)); Allard, B. (Dept. of Water and Environmental Studies, Linkoeping Univ. (Sweden))

    1994-01-01

    A batch method has been employed to study the adsorption of trace quantities of Eu and Sr on [alpha]-Al[sub 2]O[sub 3] and SiO[sub 2] as a function of pH (3-9), ionic strength (0.10 and 0.01 M NaClO[sub 4]) and the presence of a well-characterized aquatic fulvic acid (FA). A comparison of Eu and Sr adsorption by alumina showed that FA could both reduce and enhance metal ion adsorption. In the absence of FA the adsorption of the metal ions onto alumina was a function of both pH and ionic strength. In the presence of FA the ionic strength effect on the Eu adsorption vanished, while the Sr adsorption showed a clear dependence on ionic strength. The adsorption of Eu and Sr on quartz was lower than the adsorption of the metals on alumina. Additionally, the adsorption of Eu and Sr on quartz was apparently lower than the adsorption on alumina in the presence of Fa. For both metal ions the adsorption on quartz was higher at 0.10 M than at 0.01 M NaClO[sub 4] - an observation that was reversed in the case of alumina. Increasing concentrations of FA lowered the pH at which Eu adsorption on alumina would be reduced. (orig.)

  10. Spectroscopic study of amino acids adsorption on pyrite surface: From vacuum to solution conditions.

    Science.gov (United States)

    Mateo-Marti, E.; Sanchez-Arenillas, M.

    2015-10-01

    We characterized the adsorption of cystine molecules among other amino acids on pyrite surface via X-ray photoelectron spectroscopy. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the systems explored in this study hold interesting implications for supporting catalyzed prebiotic chemistry reactions.

  11. Role of electrostatic interactions in the adsorption kinetics of nanoparticles at fluid-fluid interfaces.

    Science.gov (United States)

    Dugyala, Venkateshwar Rao; Muthukuru, Jyothi Sri; Mani, Ethayaraja; Basavaraj, Madivala G

    2016-02-21

    The adsorption of particles to the fluid-fluid interface is a key factor for the stabilization of fluid-fluid interfaces such as those found in emulsions, foams and bijels. However, for the formation of stable particle-laden interfaces, the particles must migrate to the interface from the bulk. Recent studies show that the adsorption of particles to the interface formed during emulsification is influenced by the surface charge of the particles. To further investigate this phenomenon, we study the effect of the surface charge of the particle on the adsorption kinetics of particles to the oil-water interface. By suspending a drop of aqueous dispersion of charge stabilized nanoparticles in decane, the adsorption dynamics of particles to the decane-water interface is studied using the dynamic surface tension measurements. When the particles are highly charged (low salt), a negligible change in the interface tension is observed indicating that almost no particles are adsorbed. These results show that the charged particles experience an energy barrier when they approach the interface. But when the particle surface charge is screened by the addition of monovalent salt, a significant reduction in surface tension is observed indicating the migration and adsorption of particles to the decane-water interface. We estimate the effective diffusivity of particles to the interface by analyzing the initial decay in the measured surface tension by considering particle laden drops containing different amounts of salt using the modified Ward and Tordai theory. This effective diffusivity is used to calculate the energy barrier for the adsorption of particles to the interface. The energy barrier from the analysis of dynamic surface tension data agrees well with the concept of image charge repulsion which inhibits the adsorption of highly charged particles to the interface. By considering various types of relevant interactions, we derive an analytical expression that qualitatively

  12. Interpretation of dynamic frontal analysis data in solid/supercritical fluid adsorption systems. I: theory.

    Science.gov (United States)

    Gritti, Fabrice; Tarafder, Abhijit; Guiochon, Georges

    2013-05-17

    A theory is proposed to relate the elution times of the adsorption front shocks of breakthrough curves recorded during classical dynamic frontal analysis (FA) experiments with selected compounds and their adsorption isotherms in solid/supercritical fluid adsorption systems. The actual density and viscosity of binary mixtures of CO2 and methanol were obtained from the NIST REPPROP software. Diluted solutions of S-naproxen were considered (<2% in mass) but the possible effects of the analyte concentration on the viscosity and the density of the eluent percolating through the column were neglected. This allows the determination of the excess adsorption isotherm (or Gibbs excess isotherm) of the adsorbed analyte in the whole column at constant mass and volumetric flow rate of pure CO2 and of the modifier solution. A local Langmuir adsorption isotherm and a constant saturation capacity were assumed in the calculations. The variation of the adsorption-desorption constant with the eluent density was taken from the experimental variation of the retention factor of S-naproxen on a chiral column packed with Whelk-O1 particles. The results show that the isotherm parameters obtained from the best adjustment of the Langmuir model to the SFC excess adsorption data deviates by less than 7% from the assumed saturation capacity and from the average of the equilibrium constant along the chromatographic column. In practice, this conclusion holds true provided that the precision of the measurement of elution times of front shocks of breakthrough curves is better than 1% and that the maximum surface coverage qexp,max/qS is at least equal to 20%. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. [Adsorption of phenanthrene from aqueous solution on cetylpyridinium bromide (CPB) -modified zeolite].

    Science.gov (United States)

    Li, Jia; Lin, Jian-Wei; Zhan, Yan-Hui; Chen, Zu-Mei; Wang, Peng-Jun

    2014-02-01

    Surfactant-modified zeolites (SMZs) with different coverage types were prepared by loading of different amounts of cetylpyridinium bromide (CPB) onto natural zeolites and were used as adsorbents to remove phenanthrene from aqueous solution. The adsorption of phenanthrene from aqueous solution on monolayer and bilayer SMZs as a function of adsorbent dosage, initial phenanthrene concentration, contact time, and temperature was investigated using batch experiments. Results showed monolayer and bilayer SMZs were effective for the removal of phenanthrene from aqueous solution. The phenanthrene removal efficiency of SMZs increased with increasing adsorbent dosage, but the amount of phenanthrene adsorbed on SMZs decreased with increasing adsorbent dosage. The adsorption kinetics of phenanthrene on SMZs well followed a pseudo-second-order kinetic model. The equilibrium adsorption data of phenanthrene on SMZs at a low concentration of phenanthrene in solution could be described by the Linear equation and Freundlich equation. The main mechanism for phenanthrene adsorption onto monolayer SMZ is hydrophobic interaction, and the main mechanism for phenanthrene adsorption onto bilayer SMZ is organic partitioning. The calculated thermodynamic parameters such as Gibbs free energy change (deltaG(theta)), enthalpy changes (deltaH(theta)), and entropy change (deltaS(theta)) showed that the adsorption process of phenanthrene on SMZs is spontaneous and exothermic in nature. When the CPB loading amount of bilayer SMZ was twice as much as that of monolayer SMZ, the phenanthrene adsorption capacity for bilayer SMZ was slightly higher than that for monolayer SMZ. In a conclusion, both monolayer and bilayer SMZs are promising adsorbents for the removal of phenanthrene from water and wastewater, and monolayer SMZ is a more cost-effective adsorbent for phenanthrene removal than bilayer SMZ.

  14. Adsorption kinetics of individual dye molecules on semiconductor nanocrystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heidernaetsch, Mario; Schuster, Joerg; Borczyskowski, Christian von [Optical Spectroscopy and Molecular Physics, TU Chemnitz (Germany); Blaudeck, Thomas [Optical Spectroscopy and Molecular Physics, TU Chemnitz (Germany); Print and Media Technology, TU Chemnitz (Germany)

    2008-07-01

    Grafting of colloidal semiconductor quantum dots (QDs) with organic molecules is a common approach to adjust their optical, chemical, and electronic properties. In this respect, QD surfaces offer a certain yet finite number of binding sites to functionalization with molecules. With that, however, the common concepts of bimolecular reaction kinetics including their dissociation constants do not hold any more. In our computational study, we employ numerical ab-initio techniques to separate the nanoaggregate formation process into the Brownian motion of an individual molecule in solution and its eventual adsorption and desorption in the potential of a particular binding site on the QD surface. Interestingly, the extrapolation of these elementary processes to an ensemble of QDs and molecules allows insights into the relationship between surface coverage and binding energies. Conclusions thereon are up to date impossible to draw solely by experimental methods. The comparison with previous results on the formation kinetics further backs the presence of a dynamic equilibrium.

  15. Adsorption of methyl tert-butyl ether (MTBE) from aqueous solution by porous polymeric adsorbents.

    Science.gov (United States)

    Ji, Biyan; Shao, Fei; Hu, Guanjiu; Zheng, Shourong; Zhang, Qingmei; Xu, Zhaoyi

    2009-01-15

    MTBE has emerged as an important water pollutant because of its high mobility, persistence, and toxicity. In this study, a postcrosslinked polymeric adsorbent was prepared by postcrosslinking of a commercial chloromethylated polymer, and a nonpolar porous polymer with comparable surface area and micropore volume to the postcrosslinked polymer was prepared by suspended polymerization. The postcrosslinked polymer, nonpolar porous polymer and chloromethylated polymer were characterized by N2 adsorption, FTIR and XPS analysis. Results showed that postcrosslinking reaction led to the generation of a microporous postcrosslinked polymer with BET surface area 782m2g(-1), average pore width 3.0nm and micropore volume 0.33cm3g(-1). FTIR and XPS analysis indicated the formation of surface oxygen-containing groups on the postcrosslinked polymer. The three polymers were used as adsorbents to remove aqueous methyl tert-butyl ether (MTBE). Adsorption of MTBE over the postcrosslinked polymeric adsorbent was found to follow the linear adsorption isotherm, whereas MTBE adsorption onto the nonpolar porous polymer and chloromethylated polymer followed Langmuir adsorption model. Comparison of adsorption capacities of the postcrosslinked polymer, chloromethylated polymer and nonpolar porous polymer revealed that the adsorption of MTBE from aqueous solution is dependent on both pore structure and surface chemistry of polymeric adsorbents, and the high adsorption efficiency of the postcrosslinked polymer towards MTBE is attributed to its high surface area, large micropore volume and moderate hydrophility. The process of MTBE adsorption onto the adsorbents can be well described by pseudo-second-order kinetics, and the rate of adsorption decreased at higher MTBE initial concentration.

  16. Probing the relationship between silicalite-1 defects and polyol adsorption properties.

    Science.gov (United States)

    Mallon, Elizabeth E; Jeon, Mi Young; Navarro, Marta; Bhan, Aditya; Tsapatsis, Michael

    2013-06-04

    The relationship between polyol adsorption affinity and silanol defect density was investigated through the development of vapor and aqueous adsorption isotherms on silicalite-1 materials which vary in structural and surface properties. Silicalite-1 crystals prepared through alkaline synthesis, alkaline synthesis with steaming post-treatment, and fluoride synthesis routes were confirmed as crystalline mordenite framework inverted (MFI) by SEM and XRD and were shown to contain ~8.5-0 silanol defects per unit cell by (29)Si MAS, (1)H MAS, and (1)H-(29)Si CPMAS NMR. A hysteresis in the Ar 87 K adsorption isotherm at 10(-3)P/P0 evolved with a decrease in silanol defects, and, through features in the XRD and (29)Si MAS NMR spectra, it is postulated that the hysteresis is the result of an orthorhombic-monoclinic symmetry shift with decreasing silanol defect density. Gravimetric and aqueous solution measurements reveal that propylene glycol adsorption at 333 K is promoted by silanol defects, with a maximum 20-fold increase observed for aqueous adsorption at ~10(-3) g/mL with an increase from ~0 to 8.5 silanols per unit cell. A comparison of vapor and aqueous propylene glycol adsorption isotherms on defect-free silicalite-1 at 333 K, both of which exhibit the Type-V character, indicates that water enhances adsorption by a factor of ~2 in the Henry's Law regime. Henry's constants for aqueous C2-C4 polyol adsorption (concentrations below 0.004 g/mL) at 298 K are shown to have a linear dependence on the silanol defect density, demonstrating that these molecules preferentially adsorb at silanol defects at dilute concentrations. This systematic study of polyol adsorption on silicalite-1 materials highlights the critical role of defects on adsorption of hydrophilic molecules and clearly details the effects of coadsorption of water, which can guide the selection of zeolites for separation of biomass-derived oxygenates.

  17. Random sequential adsorption of cubes.

    Science.gov (United States)

    Cieśla, Michał; Kubala, Piotr

    2018-01-14

    Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.

  18. Influence of van der Waals forces on the adsorption structure of benzene on silicon studied using density functional theory

    DEFF Research Database (Denmark)

    Johnston, Karen; Kleis, Jesper; Lundqvist, Bengt

    2008-01-01

    Two different adsorption configurations of benzene on the Si(001)-(2×1) surface, the tight-bridge and butterfly structures, were studied using density functional theory. Several exchange and correlation functionals were used, including the recently developed van der Waals density functional (vd......W-DF), which accounts for the effect of van der Waals forces. In contrast to the Perdew-Burke-Ernzerhof (PBE), revPBE, and other generalized-gradient approximation functionals, the vdW-DF finds that, for most coverages, the adsorption energy of the butterfly structure is greater than that of the tight...

  19. Surface Adsorption in Nonpolarizable Atomic Models

    Energy Technology Data Exchange (ETDEWEB)

    Whitmer, Jonathan K.; Joshi, Abhijeet A.; Carlton, Rebecca J.; Abbott, Nicholas L.; de Pablo, Juan J.

    2014-12-09

    Many ionic solutions exhibit species dependent properties, including surface tension and the salting out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap “hard” ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate reprsenation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density- functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  20. Surface Adsorption in Nonpolarizable Atomic Models.

    Science.gov (United States)

    Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J

    2014-12-09

    Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  1. A thermodynamic approach to assess organic solute adsorption onto activated carbon in water

    KAUST Repository

    De Ridder, David J.

    2012-08-01

    In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon-water interaction (carbon hydrophobicity), but also on solute-water (solute hydrophobicity) and activated carbon-solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon. © 2012 Elsevier Ltd. All rights reserved.

  2. Equilibrium modeling and pH-dependence of the adsorption ...

    African Journals Online (AJOL)

    Batch pH profile experiment for lead and iron indicated that metal ion binding capacity of the biomass increased as pH increased, but was the reverse for magnesium ions. Optimum uptake for lead and iron occurred at pH 7.0 - 7.8 for lead and 7.8 for Iron in water from river Tammah. Optimum uptake occurred at the same pH ...

  3. Equilibrium modeling and pH-dependence of the adsorption ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-04

    Feb 4, 2009 ... irrigation and other agricultural uses in the town) and the confluence of two rivers called “Magami”. Batch pH ... deleterious effects on one or more aspects of water ... of industrial waste. The chronic adverse health effects are respiratory and dermatologic. Lead and its compounds may enter the environment.

  4. Mechanism exploration of adsorption-immobilized enzymatic reactor using polymer-coated silica microbeads.

    Science.gov (United States)

    Liu, Minbo; Hu, Yuanyuan; Zhang, Yahong; Lu, Haojie

    2013-06-15

    A verified mechanism of adsorption-immobilized enzymatic reactor for enhanced proteolysis is presented. Silica microbeads coated with poly (diallyldimethylammonium chloride) (PDDA) or poly (styrene sulfonate) (PSS) were used to trap trypsin and proteins on the surface through electrostatic interactions in order to improve digestion efficiency. Charge states measured by zeta-potentials showed their positively and negatively charged respectively. We found that high proteolytic efficiency could be achieved only if both proteases and proteins were adsorbed by materials. Once the proteins and proteases were confined together in a nanoscopic area, the enrichment of the substrate could lead to a high performance proteolytic effect. Electrostatic interactions were considered as the predominant adsorption factor rather than hydrophilic/hydrophobic interactions. In less than 5 min, in the presence of PSS-coated silica beads, 10 peptides digested from positively-charged cytochrome C were detected by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF), with the high sequence coverage up to 63%, while using PDDA-coated silica beads or conventional in-solution digestion yielded only 5 detectable peptides and 39% sequence coverage was obtained. Ovalbumin seemed incompatible with any kind of charged-material-aided tryptic digestion. The mechanism of adsorption-immobilized enzymatic processes has also been studied in detail. The adsorption equilibrium was proven to be attained in less than one minute, and the proteolytic procedure was regarded as the rate-determining step. This study provides a reasonable mechanism for an adsorption-material catalyzed proteolytic procedure and a promising guideline for designing the next generation of high-performance enzymatic reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Broadcast Network Coverage with Multicell Cooperation

    Directory of Open Access Journals (Sweden)

    Hongxiang Li

    2010-01-01

    Full Text Available Multicell cooperation has been identified as one of the underlying principles for future wireless communication systems. This paper studies the benefits of multicell cooperation in broadcast TV network from an information theoretical perspective. We define outage capacity as the figure of merit and derive the broadcast coverage area to evaluate such system. Specifically, we calculate the broadcast coverage area with given common information rate and outage probabilities when multiple base stations collaboratively transmit the broadcast signals. For the general MIMO case where receivers have multiple antennas, we provide simulation results to illustrate the expanded coverage area. In all cases, our results show that the coverage of a TV broadcast network can be significantly improved by multicell cooperation.

  6. 32 CFR 199.8 - Double coverage.

    Science.gov (United States)

    2010-07-01

    ... from the operation of a motor vehicle. (4) Exceptions. Double coverage plans do not include: (i) Plans... (for example, the Indian Health Service); or (v) State Victims of Crime Compensation Programs. (c...

  7. Continuous Eligibility for Medicaid and CHIP Coverage

    Data.gov (United States)

    U.S. Department of Health & Human Services — States have the option to provide children with 12 months of continuous coverage through Medicaid and CHIP, even if the family experiences a change in income during...

  8. Media Coverage of Nuclear Energy after Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Oltra, C.; Roman, P.; Prades, A.

    2013-07-01

    This report presents the main findings of a content analysis of printed media coverage of nuclear energy in Spain before and after the Fukushima accident. Our main objective is to understand the changes in the presentation of nuclear fission and nuclear fusion as a result of the accident in Japan. We specifically analyze the volume of coverage and thematic content in the media coverage for nuclear fusion from a sample of Spanish print articles in more than 20 newspapers from 2008 to 2012. We also analyze the media coverage of nuclear energy (fission) in three main Spanish newspapers one year before and one year after the accident. The results illustrate how the media contributed to the presentation of nuclear power in the months before and after the accident. This could have implications for the public understanding of nuclear power. (Author)

  9. Length and coverage of inhibitory decision rules

    KAUST Repository

    Alsolami, Fawaz

    2012-01-01

    Authors present algorithms for optimization of inhibitory rules relative to the length and coverage. Inhibitory rules have a relation "attribute ≠ value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. Paper contains also comparison of length and coverage of inhibitory rules constructed by a greedy algorithm and by the dynamic programming algorithm. © 2012 Springer-Verlag.

  10. Insurance Coverage Policies for Personalized Medicine

    OpenAIRE

    Andrew Hresko; Haga, Susanne B.

    2012-01-01

    Adoption of personalized medicine in practice has been slow, in part due to the lack of evidence of clinical benefit provided by these technologies. Coverage by insurers is a critical step in achieving widespread adoption of personalized medicine. Insurers consider a variety of factors when formulating medical coverage policies for personalized medicine, including the overall strength of evidence for a test, availability of clinical guidelines and health technology assessments by independent ...

  11. Limited Deposit Insurance Coverage and Bank Competition

    OpenAIRE

    SHY, Oz; Stenbacka, Rune; Yankov, Vladimir

    2014-01-01

    Deposit insurance schemes in many countries place a limit on the coverage of deposits in each bank. However, no limits are placed on the number of accounts held with different banks. Therefore, under limited deposit insurance, some consumers open accounts with different banks to achieve higher or full deposit insurance coverage. We compare three regimes of deposit insurance: No deposit insurance, unlimited deposit insurance, and limited deposit insurance. We show that limited deposit insuranc...

  12. St. Lukes' Survey on vaccination coverage

    African Journals Online (AJOL)

    To conf"1rID this very low coverage, a survey was done in the 5 km catchment area around the hospital. ... immunised; 13 (2.1%) had lost their card; 3 (0.5%) had partial immunisation and 2 (0.3%) had not received any ... St. Lukes hospital it was found that the already low estimated vaccine coverage of 57% for 1989, had.

  13. Dermal Coverage of Traumatic War Wounds

    Science.gov (United States)

    2017-01-01

    healing/non-healing of wound and donor site • Graft loss • Heterotrophic ossification • Infection • Scar contracture • Durability (i.e. abrasions/ injuries ...AWARD NUMBER: W81XWH-13-2-0004 TITLE: "Dermal Coverage of Traumatic War Wounds ” PRINCIPAL INVESTIGATOR: Dr. Leon Nesti CONTRACTING...REPORT DATE January 2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 31 Oct 2012- 30 Oct 2016 " Dermal Coverage of Traumatic War Wounds ” 5a

  14. Study of Cs adsorption on (100) surface of [001]-oriented GaN nanowires: A first principle research

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Sihao [Department of Optoelectronic Technology, School of Electronic and Optical Engineering, Nanjing University of Science and Technology Nanjing, 210094 (China); Liu, Lei, E-mail: liu1133_cn@sina.com.cn [Department of Optoelectronic Technology, School of Electronic and Optical Engineering, Nanjing University of Science and Technology Nanjing, 210094 (China); Kong, Yike [Department of Optoelectronic Technology, School of Electronic and Optical Engineering, Nanjing University of Science and Technology Nanjing, 210094 (China); Wang, Honggang; Wang, Meishan [School of Information and Electrical Engineering, Ludong University, Yantai 264025 (China)

    2016-11-30

    Highlights: • B{sub N} is the most stable adsorption site. • Work function is reduced after Cs adsorption. • Surface atomic structures are reconstructed. • Surface states near fermi level is contributed to the hybridization of Cs 5s state with Ga 4p and N 2p state. • NEA surface is demonstrated after Cs adsorption on GaN nanowire surface. - Abstract: Based on first-principle study, the adsorption mechanism of Cs on (100) crystal plane of GaN nanowire surface with coverage of 1/12 monolayer is explored. It is discovered that the most stable adsorption site is B{sub N} because of its lowest adsorption energy. The work function of GaN nanowire surface is reduced by 1.69 eV and will be further reduced with increasing Cs adsorption, which promotes the development of negative electron affinity (NEA) state of the materials. Furthermore, Cs adatom will make a great influence on the surface atomic structure, oppositely, little influence on the center atomic structure. There appears a dipole moment valued −6.93 Debye on the nanowire surface contributed to the formation the heterojunction on the surface, which is beneficial to the photoelectrons liberation. After Cs adsorption, the valence band and conduction band both move to lower energy side. The surface states mainly result from the hybridization of Cs 5s state with Ga 4p state and N 2p state. This study can help us to further experiment on the Cs adsorption processing on GaN nanowire and improve the photoemission performance of GaN nanowire devices.

  15. DFT study of oxygen adsorption on Mo{sub 2}C(001) and (201) surfaces at different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lihong, E-mail: chenglihong001@126.com [School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi (China); Li, Wenkui; Chen, Zhiqin; Ai, Jianping; Zhou, Zehua [School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi (China); Liu, Jianwen, E-mail: liujw@nsccsz.gov.cn [National Supercomputing Center in Shenzhen, Shenzhen 518055 (China)

    2017-07-31

    Highlights: • O adsorption manners on Mo{sub 2}C surfaces were calculated by DFT method. • Stable oxygen adsorption states and coverage were identified at given T and p. • O{sub 2} results in full oxidation while H{sub 2}O and CO{sub 2} cause partial oxidation of Mo{sub 2}C surfaces. • Hydrogen could be used to avoid Mo{sub 2}C surface oxidation. - Abstract: Density functional theory (DFT) calculations were performed to investigate oxygen adsorption on Mo{sub 2}C(001) and (201)surfaces at different coverage. The energies and structures of oxygen from lowest to saturated coverages were clearly identified on each surface. Thermodynamics method was introduced to reveal the roles of temperature, pressure as well as oxygen sources (O{sub 2}, H{sub 2}O and CO{sub 2}) on the surface oxygen coverage, which is related to the surface oxidation. On the basis of phase diagram, we can easily identify the stable oxygen coverage at different defined conditions. In addition, it reveals that O{sub 2} is the strongest oxidant, which results in the full coverage of oxygen on both surfaces in a wide range of temperature and pressure. Then, H{sub 2}O and CO{sub 2} are weaker oxidants, which could only cause partial oxidation of Mo{sub 2}C surfaces. These results indicate the facile oxidation of Mo{sub 2}C catalyst. The possible ways to avoid surface oxidation are keeping higher temperature and H{sub 2} pressure in the gas phase.

  16. Adsorptive stripping voltammetric methods for determination of aripiprazole

    Directory of Open Access Journals (Sweden)

    Derya Aşangil

    2012-06-01

    Full Text Available Anodic behavior of aripiprazole (ARP was studied using electrochemical methods. Charge transfer, diffusion and surface coverage coefficients of adsorbed molecules and the number of electrons transferred in electrode mechanisms were calculated for quasi-reversible and adsorption-controlled electrochemical oxidation of ARP at 1.15 V versus Ag/AgCl at pH 4.0 in Britton–Robinson buffer (BR on glassy carbon electrode. Voltammetric methods for direct determination of ARP in pharmaceutical dosage forms and biological samples were developed. Linearity range is found as from 11.4 μM (5.11 mg/L to 157 μM (70.41 mg/L without stripping mode and it is found as from 0.221 μM (0.10 mg/L to 13.6 μM (6.10 mg/L with stripping mode. Limit of detection (LOD was found to be 0.11 μM (0.05 mg/L in stripping voltammetry. Methods were successfully applied to assay the drug in tablets, human serum and human urine with good recoveries between 95.0% and 104.6% with relative standard deviation less than 10%. Keywords: Adsorptive stripping voltammetry, Aripiprazole, Electrochemical behavior, Human serum and urine, Pharmaceuticals

  17. Inverse gas chromatography of chromia. Part I. Zero surface coverage

    Directory of Open Access Journals (Sweden)

    LJ. V. RAJAKOVIC

    2001-04-01

    Full Text Available The surface properties of the solid obtained from colloidal chromiawere investigated by inverse gas chromatography (IGC, at zero surface coverage conditions. The solid samples I dried at 423 K and II heated at 1073 K in the amorphous and crystalline form, respectively, were studied in the temperature range 383–423 K. The dispersive components of the surface free energies, enthalpies, entropies, and the acid/base constants for the solidswere calculated from the IGC measurements and compared with the data for a commercially available chromia (III. Significantly lower enthalpies and entropies were obtained for cyclohexane on solid II and chloroform, highly polar organic, on solid I. The dispersive contributions to the surface energy of solid II and III were similar, but much greater in the case of solid I. All the sorbents had a basic character, with the KD/KAA ratio decreasing in the order I > II > III. The retention and resolution in the separation of a vapour mixture of C5–C8n-alkanes on the three substrates were different.Arapid separationwas observed on solid II and an enhanced retention on solid I. Generally, the heated chromia (II exhibited diminished adsorption capacity, and enhanced homogeneity of the surface.

  18. Cooperative Cloud Service Aware Mobile Internet Coverage Connectivity Guarantee Protocol Based on Sensor Opportunistic Coverage Mechanism

    Directory of Open Access Journals (Sweden)

    Qin Qin

    2015-01-01

    Full Text Available In order to improve the Internet coverage ratio and provide connectivity guarantee, based on sensor opportunistic coverage mechanism and cooperative cloud service, we proposed the coverage connectivity guarantee protocol for mobile Internet. In this scheme, based on the opportunistic covering rules, the network coverage algorithm of high reliability and real-time security was achieved by using the opportunity of sensor nodes and the Internet mobile node. Then, the cloud service business support platform is created based on the Internet application service management capabilities and wireless sensor network communication service capabilities, which is the architecture of the cloud support layer. The cooperative cloud service aware model was proposed. Finally, we proposed the mobile Internet coverage connectivity guarantee protocol. The results of experiments demonstrate that the proposed algorithm has excellent performance, in terms of the security of the Internet and the stability, as well as coverage connectivity ability.

  19. Insight into chemoselectivity of nitroarene hydrogenation: A DFT-D3 study of nitroarene adsorption on metal surfaces under the realistic reaction conditions

    Science.gov (United States)

    Zhang, Lidong; Cao, Xiao-Ming; Hu, P.

    2017-01-01

    The adsorption of nitrobenzene and 4-nitrostyrene on the Pt(111) and the Au(111) surfaces under the general reaction condition of nitroarene catalytic hydrogenation is investigated utilizing periodic density functional theory calculations with the Grimme's empirical three-body dispersion correction to understand the influence of adsorption configurations on chemoselectivity of nitroarene compound hydrogenation. It is found that at the low coverage both nitrobenzene and 4-nitrostyrene tend to adsorb paralleling to the Pt(111) and the Au(111) surfaces. Based on the crystal orbital Hamilton population analysis, it is found that the chemical bonding between nitro group and Pt(111) surface is weak. The adsorption configurations of nitrobenzene and 4-nitrostyrene are determined by the chemisorption strength of phenyl group and vinyl group. Under the reaction condition, the 1/9 ML nitrobenzene and 4/9 ML hydrogen atom can be coadsorbed while the 1/6 ML 4-nitrostyrene and 1/3 ML hydrogen atom can be coadsorbed on Pt(111). With the increase of the coverage, nitrobenzene still remains its paralleled adsorption configuration while the adsorption configuration of 4-nitrostyrene is switched to the tilted adsorption configuration through vinyl group without the chemisorption of phenyl and nitro group on Pt(111). In addition, the competitive adsorption with hydrogen will not change the adsorption configuration of nitrobenzene and 4-nitrostyrene under the reaction condition. On Au(111), the physical adsorption strength determines the adsorption configuration. The paralleled adsorption with the shortest average distance between the adsorbate and Au(111) surface is preferred. At the paralleled adsorption configuration, the chemoselectivities of the hydrogenation on these functional groups are similar if only in terms of geometric configuration. However, the hydrogenation on nitro group encounters the problem of steric hindrance at the tilted adsorption configuration through vinyl

  20. Using 3-D dense packing models to predict surface tension change due to protein adsorption

    Science.gov (United States)

    Lampe, Joshua W.; Ayyaswamy, Portonovo S.; Eckmann, David M.

    2010-01-01

    Protein adsorption modeling primarily focuses on the role of the complexities and differences in the role of the protein constituents. However, experimental evidence suggests that adsorption of human blood-borne protein molecules of widely varying size and purpose is more similar than different. A model, which treats proteins as hard, non-interacting spheres, explains the observed regularity of human blood borne protein adsorption as a result of the dominant role of the solvent in the adsorption process. Here we independently evaluate the efficacy of this model, and adjust the model to a dependence on molecular volume as opposed to molecular weight. In addition, we explore the role of adsorption-induced conformation or orientation changes, and demonstrate that volume invariant changes are well represented by this model and changes that include changes in the molecular volume are not. By focusing on molecular volume, the model can be applied to non-spherical molecules such as fibrinogen and accurately captures differences between BSA, multi-layer, and HSA, monolayer, adsorption. These findings confirm the importance of the solvent in protein adsorption, elucidate the importance of molecular volume on surface tension change, and suggest that this model is generally applicable. PMID:22514360

  1. Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics.

    Science.gov (United States)

    Khan, S Sudheer; Srivatsan, P; Vaishnavi, N; Mukherjee, Amitava; Chandrasekaran, N

    2011-08-15

    Indiscriminate and increased use of silver nanoparticles (SNPs) in consumer products leads to the release of it into the environment. The fate and transport of SNPs in environment remains unknown. We have studied the interaction of SNPs with extracellular protein (ECP) produced by two environmental bacterial species and the adsorption behavior in aqueous solutions. The effect of pH and salt concentrations on the adsorption was also investigated. The adsorption process was found to be dependent on surface charge (zeta potential). The capping of SNPs by ECP was confirmed by Fourier transform infrared spectroscopy and X-ray diffraction. The adsorption of ECP on SNPs was analyzed by Langmuir and Freundlich models, suggesting that the equilibrium adsorption data fitted well with Freundlich model. The equilibrium adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. The results indicated that pseudo-second-order kinetic equation would better describe the adsorption kinetics. The capping was stable at environmental pH and salt concentration. The destabilization of nanoparticles was observed at alkaline pH. The study suggests that the stabilization of nanoparticles in the environment might lead to the accumulation and transport of nanomaterials in the environment, and ultimately destabilizes the functioning of the ecosystem. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    Science.gov (United States)

    Hur, Jin; Shin, Jaewon; Yoo, Jeseung; Seo, Young-Soo

    2015-01-01

    Competitive adsorption isotherms of Cu(II), Pb(II), and Cd(II) were examined on a magnetic graphene oxide (GO), multiwalled carbon nanotubes (MWCNTs), and powered activated carbon (PAC). A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II) > Cu(II) > Cd(II), which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation. PMID:25861683

  3. Specific adsorption of arsenic and humic acid on Pt and PtO films

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Hebert A. [Department of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Filinto Muller, 1555, Cidade Universitaria s/n, C.P. 549, Campo Grande, MS 79070-900 (Brazil); Maia, Gilberto, E-mail: gmaia@nin.ufms.b [Department of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Filinto Muller, 1555, Cidade Universitaria s/n, C.P. 549, Campo Grande, MS 79070-900 (Brazil)

    2010-07-01

    A study of specific adsorption of arsenic (As) and humic acid (HM) onto Pt and PtO films using cyclic voltammetry and cyclic massogram in 0.5-M H{sub 2}SO{sub 4} is presented, which may serve as an alternative to studies involving specific adsorption of these species on soil minerals. Adsorption of As is normally evaluated by conducting batch adsorption experiments, followed by analysis using hydride-generation atomic absorption spectrophotometry (HGAA) or inductively coupled plasma-optical emission spectrometry (ICP-OES). We found that specific adsorption of As and HM depends both on the surface and on these species present in the adsorption solution. HM does not desorb previously adsorbed As at the HM concentrations used in the present study, but it does co-adsorb with As from a 1 x 10{sup -6}-M aqueous solution of As{sub 2}O{sub 3} containing 1 mg of carbon L{sup -1} HM. Arsenic adsorbs strongly on Pt in the presence of HM or during sequential specific adsorption with HM.

  4. Methods for Determination of Pesticide Adsorption Properties and Examination of Their Mobility in Soil

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2011-01-01

    Full Text Available Pesticide destiny in soil depends on a number of factors, as well as on presence and intensity of the processes such as adsorption, degradation, evaporation, rinsing and leaching. Since adsorption processes govern concentration of the free fraction of pesticide molecules, researches in this area are primarily focused on examination of this process, more precisely on determination of adsorption constants and adsorption/desorption isotherms which provide determination of the most responsible soil properties for the retention of the tested pesticides in the soil. Since rinsing across the soil profile is the most frequent and its intensity is indirectly determined by intensity of adsorption processes, determination of adsorption constants of pesticides provides determination of rinsing potential for these substances across the soil profile. Methods for determination of pesticides adsorption properties and examination of their mobility in soil, primarily across the soil profile, are presented in the paper. Special emphasisis placed on the „batch“ method, which is currently the most common, and which was actually proposed by the Organization for Economic Cooperation and Development (OECD.

  5. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges

    Directory of Open Access Journals (Sweden)

    Xingmao Ma

    2016-05-01

    Full Text Available The superior adsorption capacity of carbon nanotubes has been well recognized and there is a wealth of information in the literature concerning the adsorption of unionized organic pollutants on carbon nanotubes. Recently, the adsorption of emerging environmental pollutants, most of which are ionizable, has attracted increasing attention due to the heightened concerns about the accumulation of these emerging contaminants in the environment. These recent studies suggest that the adsorption of emerging ionizable contaminants on carbon nanotubes exhibit different characteristics than unionized ones. For example, a new charge-assisted intermolecular force has been proposed for ionizable compounds because some adsorption phenomenon cannot be easily explained by the conventional force theory. The adsorption of ionizable compounds also displayed much stronger dependence on solution pH and ionic strength than unionized compounds. This article aims to present a brief review on the current understanding of the adsorption of emerging ionizable contaminants to carbon nanotubes and discuss further research needs required to advance the mechanistic understanding of the interactions between ionizable contaminants and carbon nanotubes.

  6. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    Directory of Open Access Journals (Sweden)

    Jin Hur

    2015-01-01

    Full Text Available Competitive adsorption isotherms of Cu(II, Pb(II, and Cd(II were examined on a magnetic graphene oxide (GO, multiwalled carbon nanotubes (MWCNTs, and powered activated carbon (PAC. A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II > Cu(II > Cd(II, which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation.

  7. Effects of nano-SiO2on the adsorption of chiral metalaxyl to agricultural soils.

    Science.gov (United States)

    Huang, Junxing; Liang, Chuanzhou; Zhang, Xu

    2017-06-01

    The application of nanotechnology in agriculture, pesticide delivery and other related fields increases the occurrence of engineered nanoparticles (ENPs) in soil. Since ENPs have larger surface areas and normally a high adsorption capacity for organic pollutants, they are thought to influence the transport of pesticides in soils and thereafter influence the uptake and transformation of pesticides. The adsorption pattern of racemic-metalaxyl on agricultural soils including kinetics and isotherms changed in the presence of nano-SiO 2 . The adsorption of racemic-metalaxyl on agricultural soil was not enantioselective, in either the presence or the absence of SiO 2 . The adsorption of racemic-metalaxyl on SiO 2 decreased to some extent in soil-SiO 2 mixture, and the absolute decrease was dependent on soil properties. The decreased adsorption of metalaxyl on SiO 2 in soil-SiO 2 mixture arose from the competitive adsorption of soil-dissolved organic matter and the different dispersion and aggregation behaviors of SiO 2 in the presence of soil. Interactions between SiO 2 and soil particles also contributed to the decreased adsorption of metalaxyl on SiO 2 , and the interactions were analyzed by extended Derjaguin-Landau-Verwey-Overbeek theory. The results showed that the presence of nano-particles in soils could decrease the mobility of pesticides in soils and that this effect varied with different soil compositions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. High capacity oil adsorption by graphene capsules.

    Science.gov (United States)

    Ning, Guoqing; Ma, Xinlong; Wang, Mengyao; Li, Yongfeng

    2017-08-31

    We report on a chemical vapor deposition synthesis of graphene capsules (GCs) in sizes of tens to thousands of nanometers and their oil adsorption performance. MgO particles with different particle sizes are used as templates to produce GCs with different sizes. At a larger GC size and higher pore volume, a higher oil capacity is obtained. The highest oil adsorption capacity achieved by the GCs is 156 gdiesel gGC(-1), which is much higher than that obtained by expanded graphite. The adsorption capacity proportionally increases as the viscosity of the fluid increases. Both the capsule structure and the viscosity of oil are relative to the adsorption capacity, showing that capillary adsorption with a limited entrance might have contributed to the high capacity oil adsorption by GCs.

  9. The scaling of green space coverage in European cities.

    Science.gov (United States)

    Fuller, Richard A; Gaston, Kevin J

    2009-06-23

    Most people on the planet live in dense aggregations, and policy directives emphasize green areas within cities to ameliorate some of the problems of urban living. Benefits of urban green spaces range from physical and psychological health to social cohesion, ecosystem service provision and biodiversity conservation. Green space coverage differs enormously among cities, yet little is known about the correlates or geography of this variation. This is important because urbanization is accelerating and the consequences for green space are unclear. Here, we use standardized major axis regression to explore the relationships between urban green space coverage, city area and population size across 386 European cities. We show that green space coverage increases more rapidly than city area, yet declines only weakly as human population density increases. Thus, green space provision within a city is primarily related to city area rather than the number of inhabitants that it serves, or a simple space-filling effect. Thus, compact cities (small size and high density) show very low per capita green space allocation. However, at high levels of urbanicity, the green space network is robust to further city compaction. As cities grow, interactions between people and nature depend increasingly on landscape quality outside formal green space networks, such as street plantings, or the size, composition and management of backyards and gardens.

  10. Surface Tension and Adsorption without a Dividing Surface.

    Science.gov (United States)

    Marmur, Abraham

    2015-11-24

    The ingenious concept of a dividing surface of zero thickness that was introduced by Gibbs is the basis of the theory of surface tension and adsorption. However, some fundamental questions, mainly those related to the location of the dividing surface and the proper definition of relative adsorption, have remained open over the years. To avoid these questions, the present paper proposes to analyze an interfacial phase by defining a thermodynamic system of constant, but nonzero thickness. The interfacial phase is analyzed as it really is, namely a nonuniform three-dimensional entity. The current analysis redevelops the equation for calculating surface tension, though with different assumptions. However, the main point in the proposed model is that the thermodynamic interfacial system, due to its fixed thickness, conforms to the requirement of first-order homogeneity of the internal energy. This property is the key that allows using the Gibbs adsorption isotherm. It is also characteristic of the Gibbs dividing surface model, but has not always been discussed with regard to subsequent models. The resulting equation leads to a simple, "natural" expression for the relative adsorption. This expression may be compared with simulations and sophisticated surface concentration measurements, and from which the dependence of interfacial tension on the solution composition can be derived. Finally, it is important to point out that in order to calculate the interfacial tension as well as the relative adsorption from data on the properties of the interfacial phase, there is no need to know its exact thickness, as long as it is bigger than the actual thickness but sufficiently small.

  11. Heavy metal adsorption of Streptomyces chromofuscus K101

    Directory of Open Access Journals (Sweden)

    Said Mohamed Daboor

    2014-06-01

    Full Text Available Objective: To find the best actinomycete that has potential application value in the heavy metal remediation due to its special morphological and physiological metabolism. Methods: In some areas of River Nile, Egypt, a total of 67 actinomycete isolates (17 isolates from surface water and 50 from sediment were identified. In addition, the studied area was characterized by a large amount of submerged macrophyte species Ceratophyllum demersum, one free floating species Eichhornia crassipes and two emergent species Polygonum tomentosum and Saccharum spontaneum with the highest biomass production values. Many methods are used in this research like qualitative evaluation of heavy metals, minimum inhibitory concentration of heavy metal determination, metal binding assay, heavy metal assessment, etc. Results: Many actinomycetes isolates were isolated from River Nile, Egypt, the absorbent efficiency of one isolate Streptomyces chromofuscusK101 showed the most efficient metal binding activity. The adsorption process of Zn2+ , Pb2+ and Fe 2+ single or mixture metal ions was investigated, where the order of adsorption potential ( Zn2+ >Pb2+ >Fe 2+ was observed in single metal reaction. The adsorption in mixed metal reactions was the same order as in single-metal ion with a significant decrease in Fe 2+ and Pb2+ adsorption. Conclusions: In conclusion the metal adsorption reactions were very fast, pH dependent and culture age-independent, suggestive of a physicochemical reaction between cell wall components and heavy metal ions. The absorbent removal efficiency was determined as a function of ion concentration, pH and temperature.

  12. Competitive Effects from an Artificial Tear Solution to Protein Adsorption.

    Science.gov (United States)

    Hall, Brad; Jones, Lyndon W; Forrest, James A

    2015-07-01

    To compare the adsorption of lysozyme, lactoferrin, and albumin to various contact lens materials, between single-protein solutions and a multicomponent artificial tear solution (ATS). Additionally, extra steps were taken to distinguish loosely and tightly bound protein, the latter of which may be fully or partially denatured. Using a previously described ATS, we measured the time-dependent adsorption of lys, lac, and alb onto one conventional hydrogel and four silicone hydrogel contact lens materials between the first minute and up to 1 week of protein interaction with the material surface. Proteins were quantified using I radiolabeling of each protein individually in ATS and buffered saline. Extra steps were taken to limit the amount of unbound I and to quantify the amount of reversibly bound protein. Comfilcon A, balafilcon A, and etafilcon A did not show any relevant competitive adsorption between the ATS components and lys, lac, or alb until after 1 week. Competitive adsorption effects for lys, lac, and alb were observed in as little as 1 minute on lotrafilcon B. Lotrafilcon B had no reversibly bound protein at any time points. The ionic materials balafilcon A and etafilcon A deposited significant amounts of reversibly bound lysozyme and lactoferrin in just 10 minutes. Senofilcon A apparent deposition was below our thresholds of confidence for this protein quantification method. Both the competition between lys, lac, and alb and ATS components and the reversibility of these bound proteins is material specific. Coadsorption of lys, lac, and alb with ATS components can increase the reversibility of their adsorption.

  13. Comparative potential of black tea leaves waste to granular activated carbon in adsorption of endocrine disrupting compounds from aqueous solution

    Directory of Open Access Journals (Sweden)

    A.O. Ifelebuegu

    2015-07-01

    Full Text Available The adsorption properties and mechanics of selected endocrine disrupting compounds; 17 β-estradiol, 17 α – ethinylestradiol and bisphenol A on locally available black tea leaves waste and granular activated carbon were investigated. The results obtained indicated that the kinetics of adsorption were pH, adsorbent dose, contact time and temperature dependent with equilibrium being reached at 20 to 40 minutes for tea leaves waste and 40 to 60 minutes for granular activated compound. Maximum adsorption capacities of 3.46, 2.44 and 18.35 mg/g were achieved for tea leaves waste compared to granular activated compound capacities of 4.01, 2.97 and 16.26 mg/g for 17 β- estradiol, 17 α-ethinylestradiol and bisphenol A respectively. Tea leaves waste adsorption followed pseudo-first order kinetics while granular activated compound fitted better to the pseudo-second order kinetic model. The experimental isotherm data for both tea leaves waste and granular activated compound showed a good fit to the Langmuir, Freundlich and Temkin isotherm models with the Langmuir model showing the best fit. The thermodynamic and kinetic data for the adsorption indicated that the adsorption process for tea leaves waste was predominantly by physical adsorption while the granular activated compound adsorption was more chemical in nature. The results have demonstrated the potential of waste tea leaves for the adsorptive removal of endocrine disrupting compounds from water.

  14. Investigation of mono/competitive adsorption of environmentally relevant ionized weak acids on graphite: impact of molecular properties and thermodynamics.

    Science.gov (United States)

    Moustafa, Ahmed M A; McPhedran, Kerry N; Moreira, Jesús; Gamal El-Din, Mohamed

    2014-12-16

    The thermodynamics of adsorption and competitive interactions of five weak acids on a graphite surface was assessed in alkaline solutions. Adsorption of the acids in mono- and multicompound solutions followed their Freundlich isotherms which suggest a diversity of graphite adsorption sites as confirmed by the presence of carboxylic and phenolic groups observed on graphite surfaces. Thermodynamic calculations assigned the formation of the negatively charged assisted hydrogen bond (-CAHB) between ionized solutes and adsorbent surface groups as the possible adsorption mechanism. However, the similar pKa values of current acids resulted in comparable free energies for -CAHB formation (ΔG(-CAHB)) being less than solvation free energies (ΔGSolv). Thus, additional ΔG is supplemented by increased hydrophobicity due to proton exchange of ionized acids with water (ΔΔG Hydrophobicity). Adsorption capacities and competition coefficients indicated that ΔΔG Hydrophobicity values depend on the neutral and ionized acid Kow. Competitive adsorption implies that multilayer adsorption may occur via hydrophobic bonding with the CH3 ends of the self-assembled layer which affects the acid adsorption capacities in mixtures as compared to monocompound solutions. The determination of adsorption mechanisms will assist in understanding of the fate and bioavailability of emerging and classical weak acids released into natural waters.

  15. Competitive Adsorption of Cd(II), Cr(VI), and Pb(II) onto Nanomaghemite: A Spectroscopic and Modeling Approach.

    Science.gov (United States)

    Komárek, Michael; Koretsky, Carla M; Stephen, Krishna J; Alessi, Daniel S; Chrastný, Vladislav

    2015-11-03

    A combined modeling and spectroscopic approach is used to describe Cd(II), Cr(VI), and Pb(II) adsorption onto nanomaghemite and nanomaghemite coated quartz. A pseudo-second order kinetic model fitted the adsorption data well. The sorption capacity of nanomaghemite was evaluated using a Langmuir isotherm model, and a diffuse double layer surface complexation model (DLM) was developed to describe metal adsorption. Adsorption mechanisms were assessed using X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. Pb(II) adsorption occurs mainly via formation of inner-sphere complexes, whereas Cr(VI) likely adsorbs mainly as outer-sphere complexes and Cd(II) as a mixture of inner- and outer-sphere complexes. The simple DLM describes well the pH-dependence of single adsorption edges. However, it fails to adequately capture metal adsorption behavior over broad ranges of ionic strength or metal-loading on the sorbents. For systems with equimolar concentrations of Pb(II), Cd(II), and Cr(VI). Pb(II) adsorption was reasonably well predicted by the DLM, but predictions were poorer for Cr(VI) and Cd(II). This study demonstrates that a simple DLM can describe well the adsorption of the studied metals in mixed sorbate-sorbent systems, but only under narrow ranges of ionic strength or metal loading. The results also highlight the sorption potential of nanomaghemite for metals in complex systems.

  16. Interpregnancy intervals: impact of postpartum contraceptive effectiveness and coverage.

    Science.gov (United States)

    Thiel de Bocanegra, Heike; Chang, Richard; Howell, Mike; Darney, Philip

    2014-04-01

    The purpose of this study was to determine the use of contraceptive methods, which was defined by effectiveness, length of coverage, and their association with short interpregnancy intervals, when controlling for provider type and client demographics. We identified a cohort of 117,644 women from the 2008 California Birth Statistical Master file with second or higher order birth and at least 1 Medicaid (Family Planning, Access, Care, and Treatment [Family PACT] program or Medi-Cal) claim within 18 months after index birth. We explored the effect of contraceptive method provision on the odds of having an optimal interpregnancy interval and controlled for covariates. The average length of contraceptive coverage was 3.81 months (SD = 4.84). Most women received user-dependent hormonal contraceptives as their most effective contraceptive method (55%; n = 65,103 women) and one-third (33%; n = 39,090 women) had no contraceptive claim. Women who used long-acting reversible contraceptive methods had 3.89 times the odds and women who used user-dependent hormonal methods had 1.89 times the odds of achieving an optimal birth interval compared with women who used barrier methods only; women with no method had 0.66 times the odds. When user-dependent methods are considered, the odds of having an optimal birth interval increased for each additional month of contraceptive coverage by 8% (odds ratio, 1.08; 95% confidence interval, 1.08-1.09). Women who were seen by Family PACT or by both Family PACT and Medi-Cal providers had significantly higher odds of optimal birth intervals compared with women who were served by Medi-Cal only. To achieve optimal birth spacing and ultimately to improve birth outcomes, attention should be given to contraceptive counseling and access to contraceptive methods in the postpartum period. Copyright © 2014 Mosby, Inc. All rights reserved.

  17. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modelling

    NARCIS (Netherlands)

    Cui, Y.; Weng, L.

    2013-01-01

    The pH dependent solid-solution distribution of arsenate and phosphate in five Dutch agricultural soil samples was measured in the pH range 4–8, and the results were interpreted using the LCD (ligand and charge distribution) adsorption modeling. The pH dependency is similar for both oxyanions, with

  18. Solar heat utilization for adsorption cooling device

    Science.gov (United States)

    Pilát, Peter; Patsch, Marek; Malcho, Milan

    2012-04-01

    This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  19. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  20. Postsynthetic Functionalization of Mg-MOF-74 with Tetraethylenepentamine: Structural Characterization and Enhanced CO2Adsorption.

    Science.gov (United States)

    Su, Xiao; Bromberg, Lev; Martis, Vladimir; Simeon, Fritz; Huq, Ashfia; Hatton, T Alan

    2017-03-29

    Postsynthetic functionalization of magnesium 2,5-dihydroxyterephthalate (Mg-MOF-74) with tetraethylenepentamine (TEPA) resulted in improved CO 2 adsorption performance under dry and humid conditions. XPS, elemental analysis, and neutron powder diffraction studies indicated that TEPA was incorporated throughout the MOF particle, although it coordinated preferentially with the unsaturated metal sites located in the immediate proximity to the surface. Neutron and X-ray powder diffraction analyses showed that the MOF structure was preserved after amine incorporation, with slight changes in the lattice parameters. The adsorption capacity of the functionalized amino-Mg-MOF-74 (TEPA-MOF) for CO 2 was as high as 26.9 wt % versus 23.4 wt % for the original MOF due to the extra binding sites provided by the multiunit amines. The degree of functionalization with the amines was found to be important in enhancing CO 2 adsorption, as the optimal surface coverage improved performance and stability under both pure CO 2 and CO 2 /H 2 O coadsorption, and with partially saturated surface coverage, optimal CO 2 capacity could be achieved under both wet and dry conditions by a synergistic binding of CO 2 to the amines as well as metal centers.

  1. Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models.

    Science.gov (United States)

    Sellaoui, Lotfi; Dotto, Guilherme L; Lamine, Abdelmottaleb Ben; Erto, Alessandro

    2017-08-01

    In this work, a modeling analysis based on experimental tests of cadmium/zinc adsorption, in both single-compound and binary systems, was carried out. All the experimental tests were conducted at constant pH (around neutrality) and temperature (20 °C). The experimental results showed that the zinc adsorption capacity was higher than that of cadmium and it does not depend on cadmium presence in binary system. Conversely, cadmium adsorption is affected by zinc presence. In order to provide good understanding of the adsorption process, two statistical physics models were proposed. A monolayer and exclusive extended monolayer models were applied to interpret the single-compound and binary adsorption isotherms of zinc and cadmium on activated carbon. Based on these models, the modeling analysis demonstrated that zinc is dominant in solution and more favorably adsorbed on activated carbon surface. For instance, in single-compound systems, the number of ions bound per each receptor site was n (Zn2+) = 2.12 > n (Cd2+) = 0.98. Thus, the receptor sites of activated carbon are more selective for Zn2+ than for Cd2+. Moreover, the determination of adsorption energy through the adopted models confirmed that zinc is more favored for adsorption in single-compound system (adsorption energies equal to 12.12 and 7.12 kJ/mol for Zn and Cd, respectively) and its adsorption energy does not depend on the cadmium presence in binary system. Finally, the adsorption energy values suggested that single-compound and binary adsorption of zinc and cadmium is a physisorption.

  2. Mathematical modelling and simulation on the adsorption of Hydrogen Sulfide (H2S) gas

    Science.gov (United States)

    Zulkefli, N. N.; Masdar, M. S.; Isahak, W. R. W.; Jahim, J.; Majlan, E. H.; Rejab, S. A. M.; Lye, C. C.

    2017-06-01

    Hydrogen sulfide, H2S, a pollutant in biofuel gas, i.e., biohydrogen and biomethane, is produced at concentrations ranging from 100 ppm to 10,000 ppm and is recommended to be removed at the early stage of gas purification because it is known as a problematic compound. In this study, adsorption technologies show a promising technique to remove H2S from biofuel gas, which mainly depends on the operating parameters and adsorbent ability. In this study, the development of the models is important to investigate the fundamentals of H2S adsorption mechanism. The fitted mathematics model was performed by considering several assumptions made for fixed-bed adsorption, leading to the determination of the breakthrough curve by solving a set of partial differential equations (PDEs). The operating parameters were as follows: varied inlet concentration at 1000 ppm to 10,000 ppm, flow rate at 0.2 L/min to 0.6 L/min, length bed used at 10 cm to 30 cm, and pressure at 1.5 atm to 5 atm. The adsorption performance was also studied by using commercial activated carbon such as palm kernel shell (PKS-AC), coconut shell activated carbon (coconut shell-AC), and zeolite ZSM-5. To support the effectiveness of the mathematical models, the adsorption test was performed by loading the adsorbent into the fixed-bed adsorption column at an overall diameter of 6 cm and height of 30 cm. The system operated under room temperature, H2S inlet concentration of 1000 ppm, and varying flow rate as in the modelling for PKS-AC. As a result, in the modelling study, the inlet concentration effect was highest in adsorption capacity, breakthrough time, and exhaustion time. However, the increase of flow rate and length bed used only affected the breakthrough and exhaustion times but not adsorption capacity. The total pressure used did not affect adsorption performance. Coconut shell-AC shows longer exhaustion time compared with other adsorbents due to the less frequent changes of adsorbent. In the experimental

  3. Spectroscopic Methodologies for Characterizing the Adsorption Behavior and Distribution of Silver Nanoparticles to Hydrated Mineral Surfaces

    Science.gov (United States)

    Brittle, S. W.; O'Neil, K. A.; Foose, D. P.; Stahler, A. C.; Johnson, J. K.; Higgins, S. R.; Sizemore, I. E.; Sikon, J.

    2016-12-01

    The expansive incorporation of silver nanoparticles (AgNPs) into over 400 consumer products has raised considerable concern about their eventual release into the environment. Although minerals make up a large component of soils, there has been limited research on their interactions with AgNPs. In this study, a representative nonsilicate mineral, corundum (α-Al2O3), was used in fused beaded form (specific surface area of 6-8 m2 g-1) as a model to study the interaction between minerals and negatively-charged, Creighton AgNPs. A concentration of 1 mg L-1 of AgNPs was selected in order to ensure sub-monolayer surface coverage and to surpass the maximum contaminant level (MCL) set by the U.S. Environmental Agency (EPA) for Ag+ in drinking water (0.1 mg L-1). Raman maps collected on the corundum particles exposed to AgNPs at environmentally relevant pH values (6-11) demonstrated AgNP adsorption onto the hydrated mineral surface through OH- moieties regardless of surface charge (i.e. no pH dependence). In addition, two other well-established analytical techniques were employed for supportive purposes. Namely, the AgNP-corundum interaction was also confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES) through the quantification of the total amount of AgNPs adsorbed onto α-Al2O3. It was found that approximately 75% of the available AgNPs had adsorbed to the mineral surface at all pH values. Atomic force microscopy (AFM), in intermittent contact mode, was also performed to map AgNPs surface distribution on polished and annealed flatter corundum windows. To further demonstrate the Raman analysis, the corundum were also imaged to observe AgNPs adsorption with less surface area and onto other minerals through the occurrence of molecular Ag- vibrations and/or the enhancement of a tracer compound dispensed on mineral surfaces with adsorbed AgNPs (i.e., Surface Enhanced Raman Spectroscopy hot-spots). Overall, this spectroscopic-based analysis promotes

  4. Adsorption of Trivalent Cations on Silica.

    Science.gov (United States)

    Kosmulski

    1999-03-15

    The temperature effect on the magnitude of adsorption was used to explain the mechanism of adsorption of gadolinium on silica at very low concentrations. Standard enthalpy of adsorption of gadolinium equals 36 kJ mol-1 for a total Gd concentration of 2 x 10(-8) mol dm-3 and 67 kJ mol-1 for 2 x 10(-5) mol dm-3. This result confirms the hypothesis that the Gd adsorption at low initial concentration is governed by formation of strong ternary surface complexes involving anionic impurities. Copyright 1999 Academic Press.

  5. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    Science.gov (United States)

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth

    2000-01-01

    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...

  7. Sour pressure swing adsorption process

    Energy Technology Data Exchange (ETDEWEB)

    Bhadra, Shubhra Jyoti; Wright, Andrew David; Hufton, Jeffrey Raymond; Kloosterman, Jeffrey William; Amy, Fabrice; Weist, Jr., Edward Landis

    2017-11-07

    Methods and apparatuses for separating CO.sub.2 and sulfur-containing compounds from a synthesis gas obtained from gasification of a carbonaceous feedstock. The primary separating steps are performed using a sour pressure swing adsorption (SPSA) system, followed by an acid gas enrichment system and a sulfur removal unit. The SPSA system includes multiple pressure equalization steps and a rinse step using a rinse gas that is supplied from a source other than directly from one of the adsorber beds of the SPSA system.

  8. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  9. Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry.

    Science.gov (United States)

    Engel, Maya; Chefetz, Benny

    2016-06-01

    Increasing use of carbon nanotubes (CNTs) has led to their introduction into the environment where they can interact with dissolved organic matter (DOM). This study focuses on solution chemistry effects on DOM adsorption/desorption processes by single-walled CNTs (SWCNTs). Our data show that DOM adsorption is controlled by the attachment of DOM molecules to the SWCNTs, and that the initial adsorption rate is dependent on solution parameters. Adsorbed amount of DOM at high ionic strength was limited, possibly due to alterations in SWCNT bundling. Desorption of DOM performed at low pH resulted in additional DOM adsorption, whereas at high pH, adsorbed DOM amount decreased. The extent of desorption conducted at increased ionic strength was dependent on pre-adsorbed DOM concentration: low DOM loading stimulated additional adsorption of DOM, whereas high DOM loading facilitated release of adsorbed DOM. Elevated ionic strength and increased adsorbed amount of DOM reduced the oxidation temperature of the SWCNTs, suggesting that changes in the assembly of the SWCNTs had occurred. Moreover, DOM-coated SWCNTs at increased ionic strength provided fewer sites for atrazine adsorption. This study enhances our understanding of DOM-SWCNT interactions in aqueous systems influenced by rapid changes in salinity, and facilitates potential use of SWCNTs in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    Science.gov (United States)

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.

  11. Media coverage of climate change in Russia: governmental bias and climate silence.

    Science.gov (United States)

    Poberezhskaya, Marianna

    2015-01-01

    This paper explores which actors and factors influence media coverage of climate change in Russia. It does this by analysing the coverage of three events by five Russian national newspapers (Komsomol'skaya pravda, Rossiyskaya gazeta, Izvestiya, Kommersant and Sovetskaya Rossiya). The three events are the Kyoto Conference in 1997, the Copenhagen Conference in 2009 and the Russian heat-wave of 2010. This paper concludes that regardless of the ownership structure of the newspapers or their dependence on advertising, there is little difference in quantity and quality of overall coverage on climate change. With most newspapers relying on Russian officials as information sources, almost none criticise or question Russian climate policy. Furthermore, the article concludes that, in Russia, the omission of climate change issues from discussion in national newspapers becomes a greater problem than biased coverage, as the lack of commentary decidedly prevents these issues from entering the public debate. © The Author(s) 2014.

  12. Atomic geometry and electronic structure of Al0.25Ga0.75N(0 0 0 1) surfaces covered with different coverages of cesium: A first-principle research

    Science.gov (United States)

    Yang, Mingzhu; Chang, Benkang; Wang, Meishan

    2015-01-01

    We investigate cesium adsorption on Al0.25Ga0.75N(0 0 0 1) surface at different coverages using first principle method based on density functional theory. Adsorption energies, atomic structure, Mulliken charge distribution, electron transfer, band structures, and density of states of the adsorption systems corresponding to different Cs coverages were obtained. Total-energy calculations show that cesium adsorption on Al0.25Ga0.75N(0 0 0 1) surface is more and more difficult as the increase of cesium coverage. A single cesium adatom is preferred to locate at the top of Ga atom (TGa). Meanwhile, it is not the most stable configuration when two cesium atoms were located on the top of two Ga neighbors at the same time. This is mainly because the distance of Cs adatoms is so small that repulsive force between adatoms rises. At low coverage, electrons transfer from Cs adatom to Ga atoms on the topmost and second topmost bilayers. Meanwhile, the efficiency of electron transfer decreases as the increasing of Cs coverage. There appear new bands at -25 to -23 eV and -14 to -10 eV, which were caused by Cs 5s and Cs 5p state electrons. Under the joint effect of Cs 5s and 5p state electrons, density of states at Fermi level increases, and the adsorption surfaces show more metal properties. Electrons transferring from Cs adatoms to Al0.25Ga0.75N substrate induces dipole moment, which is useful to lower work function. What is more, there exists an optimum of cesium coverage to obtain the lowest work function.

  13. Neutron scattering study of adsorption in porous MCM-41 silica{sup 1}

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.J.C. [Queen' s Univ., Chemistry Dept., Kingston, ON (Canada); Evans, M.J.B. [Royal Military Coll., Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada); Tun, Z., E-mail: zin.tun@nrc.gc.ca [Canadian Neutron Beam Centre, National Research Council Canada, Chalk River, ON (Canada)

    2010-10-15

    Adsorption of n-pentane on MCM-41 silica has been studied by neutron scattering on both the adsorption and desorption isotherms. Adsorption takes place without hysteresis in either the isotherm or the neutron scattering profile. Adsorption of contrast-matched pentane in porous MCM-41 silica at first increases the intensity of the (10) Bragg peak but reduces the (11) and (20) peaks, and as the pores are filled the intensities of all Bragg peaks are reduced to zero. The SANS background has a 1/Q dependence, typical of a material prepared with templates of one-dimensional character (cylinders). The initial increase of (10) intensity allows estimation of the cylindrical pore diameter to be 37 AÅ based on the variation of form factor as a function of the cylinder radius. (author)

  14. Utilization of turkey manure as granular activated carbon: physical, chemical and adsorptive properties.

    Science.gov (United States)

    Lima, Isabel; Marshall, Wayne E

    2005-01-01

    The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.

  15. [Inclusion of proteins into polyelectrolyte microcapsules by coprecipitation and adsorption].

    Science.gov (United States)

    Kochetkova, O Iu; Kazakova, L I; Moshkov, D A; Vinokurov, M G; Shabarchina, L I

    2013-01-01

    In present study microcapsules composed of synthetic (PSS and PAA) and biodegradable (DS and PAr) polyelectrolytes on calcium carbonate microparticles were obtained. The ultrastructural organization of biodegradable microcapsules was studied using transmission electron microscopy. The envelope of such capsules consisting of six polyelectrolyte layers is already well-formed, having the average thickness of 44 ± 3.0 nm, and their internal polyelectrolyte matrix is sparser compared to the synthetic microcapsules. Spectroscopy was employed to evaluate the efficiency of incorporation of FITC-labeled BSA into synthetic microcapsules by adsorption, depending on the number of polyelectrolyte layers. It was shown that the maximal amount of protein incorporated into the capsules with 6 or 7 polyelectrolyte layers (4 and 2 pg/capsule, correspondingly). As a result we conclude that, in comparison with co-precipitation, the use of adsorption allows to completely avoid the loss of protein upon encapsulation.

  16. Adsorption of β-galactosidase on silica and aluminosilicate adsorbents

    Science.gov (United States)

    Atyaksheva, L. F.; Dobryakova, I. V.; Pilipenko, O. S.

    2015-03-01

    It is shown that adsorption of β-galactosidase of Aspergillus oryzae fungi on mesoporous and biporous silica and aluminosilicate adsorbents and the rate of the process grow along with the diameter of the pores of the adsorbent. It is found that the shape of the adsorption isotherms changes as well, depending on the texture of the adsorbent: the Michaelis constant rises from 0.3 mM for the enzyme in solution to 0.4-0.5 mM for the enzyme on a surface in the hydrolysis of o-nitrophenyl-β-D-galactopyranoside. It is concluded that β-galactosidase displays its maximum activity on the surface of biporous adsorbents.

  17. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.

    Science.gov (United States)

    Zhang, Jun; Webley, Paul A

    2008-01-15

    CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.

  18. Effects of bile salts and divalent cations on the adsorption of norfloxacin by agricultural soils.

    Science.gov (United States)

    Kong, Xuesong; Feng, Shixiang; Zhang, Xu; Li, Yan

    2014-04-01

    The effects of bile salts (sodium cholate and sodium deoxycholate, 0-20 mmol/L), divalent cations (Ca(2+), Mg(2+), Cu(2+) and Zn(2+), 0-20 mmol/L) or pH (3.0-10.0) on the adsorption of norfloxacin by three selected soils (Paddy_H, Paddy_G and Red_J) were systematically studied. Soil adsorption of norfloxacin follows a pseudo second-order kinetics model, and the maximum adsorption capacity has been determined from the nonlinear fit of the Langmuir isotherm model to be 88.8, 88.1 and 63.0 μmol/g for the adsorption onto Paddy_H, Paddy_G and Red_J, respectively. The results indicate that norfloxacin has a high adsorption affinity for the agricultural soils tested and that the organic content of these soils have at least a slight influence on this adsorption. The adsorption of norfloxacin to soils was strongly dependent on pH and exhibited a maximum at approximately pH 6. The presence of divalent cations prominently suppressed the adsorption of norfloxacin by paddy soils, which followed an order of Cu(2+) > Mg(2+) > Ca(2+) > Zn(2+), and by red soil, which followed an order of Cu(2+) > Zn(2+) > Ca(2+) > Mg(2+). The adsorption of norfloxacin (by the soils studied) sharply decreased as the amount of bile salts was increased. For uncharged norfloxacin at environmentally relevant pH values, such factors as soil type, exogenous divalent cations and macromolecules significantly altered the environmental fate and transport of norfloxacin between aquatic and soil interfaces. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  19. Adsorption of uranium from aqueous solution on heat and acid treated sepiolites.

    Science.gov (United States)

    Kilislioglu, Ayben; Aras, Gozde

    2010-10-01

    In this work adsorption of uranium on natural, heat and acid treated sepiolite was studied. For acid treatment HCl and H(2)SO(4) were used separately. Heat and acid treatment caused some changes in sepiolite such as surface area, micropore volume (cm(3)/g) and average pore diameter (A). Different amounts of Mg ions were extracted from the lattice depending on the type of acid. After acid treatment with HCl, the amount of Mg left in the sepiolite changed a little. During H(2)SO(4) treatment the sepiolite structure was progressively transformed into amorphous silica. These heat and acid treatments changed adsorption capacity and mechanism of uranium on sepiolite. Data obtained from the adsorption experiments were applied to Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. Using these isotherms different adsorption capacities were found for natural and treated sepiolite samples. The capacity values were 3.58x10(-3), 3.14x10(-3), 2.78x10(-3) and 1.55x10(-3)mol/g for HCl treated, heat treated, natural and H(2)SO(4) treated sepiolite samples, respectively. In order to evaluate the adsorption mechanism adsorption energies were calculated by the D-R isotherm. According to the adsorption energy values uranium fixed to the natural and heat treated sepiolite surface with ion exchange (12.75 and 12.12 kJ/mol, respectively). Simple physical attractions were the driving force for adsorption on HCl and H(2)SO(4) treated ones (6.62 and 6.87 kJ/mol, respectively). Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Microcalorimetric study of adsorption of human monoclonal antibodies on cation exchange chromatographic materials.

    Science.gov (United States)

    Dieterle, Michael; Blaschke, Tim; Hasse, Hans

    2008-09-26

    Adsorption of two human monoclonal antibodies on two different strong cation exchange resins is studied by isothermal titration microcalorimetry and independent adsorption isotherm measurements. The pH value is varied between 4.5 and 7.0, using different buffer systems, the temperature is always 25 degrees C. The adsorption isotherm data is fitted using two different Langmuir type models. Combining the calorimetric and the adsorption data, the specific enthalpy of adsorption of the protein Deltah(p)(ads) is determined. At pH values near 7.0, where the antibodies are only weakly charged, the adsorption is exothermal. At small loadings the absolute number of Deltah(p)(ads) is then large and almost constant but it significantly decreases at higher loadings. This shows that the arrangement of antibody molecules on the absorber material depends on the loading and is less favourable at higher loadings. Despite the high positive charge of the antibody at pH values of about 5 the value of Deltah(p)(ads) is almost zero along the entire isotherm. Furthermore, at pH 4.5 even endothermal effects are observed, although high binding capacities are found. At these conditions the adsorption process seems to be strongly influenced by the ions bound to the antibody. Their release upon absorption explains the endothermal caloric effect. The adsorption equilibrium constant K(eq) is calculated from the isotherms. From Deltag(p)(ads) and the calorimetric results for Deltah(p)(ads), Deltas(p)(ads), the entropy change upon adsorption of the protein is found for the different studied conditions.

  1. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G. [Chemical Process Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece); Laboratory of Energy and Environmental Processes, Chemical Process Engineering Research Institute, Thessaloniki (Greece); Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Diamantopoulou, Ir. [Chemical Process Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece)], E-mail: ediamant@vergina.eng.auth.gr; Pantoleontos, G. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Sakellaropoulos, G.P. [Chemical Process Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece); Laboratory of Energy and Environmental Processes, Chemical Process Engineering Research Institute, Thessaloniki (Greece)

    2008-10-01

    Activated carbons are suitable materials for Hg{sup 0} adsorption in fixed bed operation or in injection process. The fixed bed tests provide good indication of activated carbons effectiveness and service lives, which depend on the rates of Hg{sup 0} adsorption. In order to correlate fixed bed properties and operation conditions, with their adsorptive capacity and saturation time, Hg{sup 0} adsorption tests were realized in a bench-scale unit, consisted of F400 activated carbon fixed bed reactor. Hg{sup 0} adsorption tests were conducted at 50 deg. C, under 0.1 and 0.35 ng/cm{sup 3} Hg{sup 0} initial concentrations and with carbon particle sizes ranging between 75-106 and 150-250 {mu}m. Based on the experimental breakthrough data, kinetic studies were performed to investigate the mechanism of adsorption and the rate controlling steps. Kinetic models evaluated include the Fick's intraparticle diffusion equation, the pseudo-first order model, the pseudo-second order model and Elovich kinetic equation. The obtained experimental results revealed that the increase in particle size resulted in significant decrease of breakthrough time and mercury adsorptive capacity, due to the enhanced internal diffusion limitations and smaller external mass transfer coefficients. Additionally, higher initial mercury concentrations resulted in increased breakthrough time and mercury uptake. From the kinetic studies results it was observed that all the examined models describes efficiently Hg{sup 0} breakthrough curves, from breakpoint up to equilibrium time. The most accurate prediction of the experimental data was achieved by second order model, indicating that the chemisorption rate seems to be the controlling step in the procedure. However, the successful attempt to describe mercury uptake with Fick's diffusion model and the first order kinetic model, reveals that the adsorption mechanism studied was complex and followed both surface adsorption and particle diffusion.

  2. The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran.

    Science.gov (United States)

    Ozer, A; Pirinççi, H B

    2006-09-21

    The adsorption of Cd(II) ions which is one of the most important toxic metals by using sulphuric acid-treated wheat bran (STWB) was investigated. The effects of solution pH and temperature, contact time and initial Cd(II) concentration on the adsorption yield were studied. The equilibrium time for the adsorption process was determined as 4 h. The adsorbent used in this study gave the highest adsorption capacity at around pH 5.4. At this pH, adsorption capacity for an initial Cd(II) ions concentration of 100 mg/L was found to be 43.1 mg/g at 25 degrees C for contact time of 4 h. The equilibrium data were analysed using Langmuir and Freundlich isotherm models to calculate isotherm constants. The maximum adsorption capacity (qmax) which is a Langmuir constant decreased from 101.0 to 62.5 mg/g with increasing temperature from 25 to 70 degrees C. Langmuir isotherm data were evaluated to determine the thermodynamic parameters for the adsorption process. The enthalpy change (deltaH(o)) for the process was found to be exothermic. The free energy change (deltaG(o)) showed that the process was feasible. The kinetic results indicated that the adsorption process of Cd(II) ions by STWB followed first-order rate expression and adsorption rate constant was calculated as 0.0081 l/min at 25 degrees C. It was observed that the desorption yield of Cd(II) was highly pH dependent.

  3. Seasonal influenza vaccination coverage and its determinants among nursing homes personnel in western France

    Directory of Open Access Journals (Sweden)

    Christelle Elias

    2017-07-01

    Full Text Available Abstract Background Influenza-associated deaths is an important risk for the elderly in nursing homes (NHs worldwide. Vaccination coverage among residents is high but poorly effective due to immunosenescence. Hence, vaccination of personnel is an efficient way to protect residents. Our objective was to quantify the seasonal influenza vaccination (IV coverage among NH for elderly workers and identify its determinants in France. Methods We conducted a cross-sectional study in March 2016 in a randomized sample of NHs of the Ille-et-Vilaine department of Brittany, in western France. A standardized questionnaire was administered to a randomized sample of NH workers for face-to-face interviews. General data about the establishment was also collected. Results Among the 33 NHs surveyed, IV coverage for the 2015–2016 season among permanent workers was estimated at 20% (95% Confidence Interval (CI 15.3%–26.4% ranging from 0% to 69% depending on the establishments surveyed. Moreover, IV was associated with having previously experienced a “severe” influenza episode in the past (Prevalence Ratio 1.48, 95% CI 1.01–2.17, and varied by professional categories (p < 0.004 with better coverage among administrative staff. Better knowledge about influenza prevention tools was also correlated (p < 0.001 with a higher IV coverage. Individual perceptions of vaccination benefits had a significant influence on the IV coverage (p < 0.001. Although IV coverage did not reach a high rate, our study showed that personnel considered themselves sufficiently informed about IV. Conclusions IV coverage remains low in the NH worker population in Ille-et-Vilaine and also possibly in France. Strong variations of IV coverage among NHs suggest that management and working environment play an important role. To overcome vaccine “hesitancy”, specific communication tools may be required to be adapted to the various NH professionals to improve influenza prevention.

  4. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Mousseau, Normand [Département de Physique and RQMP, Université de Montréal, Case Postale 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7 (Canada); Becquart, Charlotte S. [UMET, UMR CNRS 8207, ENSCL, Université Lille I, 59655 Villeneuve d' Ascq Cédex (France); El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825, Doha (Qatar)

    2016-08-07

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from

  5. Adsorption properties versus oxidation states of rutile TiO2(110)

    DEFF Research Database (Denmark)

    Martinez, Umberto; Hammer, Bjørk

    2011-01-01

    Using density functional theory we have studied the adsorption properties of different atoms and molecules deposited on a stoichiometric, reduced, and oxidized rutile TiO2(110) surface. Depending on the oxidation state of the surface, electrons can flow from or to the substrate and, therefore...... of the charge flow depends on the oxidation state of the rutile surface and on the adsorption site. Generally, the charging effect leads to more stable complexes. However, the increase in the binding energy of the adsorbates is highly dependent on the electronic states of the surface prior to the adsorption...... event. In this work we have analyzed in details these mechanisms and we have also established a direct correlation between the enhanced binding energy of the adsorbates and the induced gap states...

  6. Effect of dynamic surfactant adsorption on emulsion stability.

    Science.gov (United States)

    Urbina-Villalba, German

    2004-05-11

    The effect of dynamic surfactant adsorption on the stability of concentrated oil in water emulsions is studied. For this purpose, a modification of the standard Brownian dynamics algorithm (Ermak, D.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352) previously used to study the behavior of bitumen emulsions assuming instantaneous adsorption (Urbina-Villalba, G.; García-Sucre, M. Langmuir 2000, 16, 7975) was employed. In the present case, dynamic adsorption (DA) was accounted for through a time-dependent electrostatic repulsion between the drops, a function of the surfactant surface excess. The surface excess was allowed to evolve with time according to well-established analytical expressions which depend parametrically on the surfactant diffusion constant (Ds) and the total surfactant concentration (C). The investigation required appropriate incorporation of hydrodynamic interactions in concentrated systems. This was achieved through a novel methodology, which expresses the diffusion constant of each particle as a function of its local concentration and the shortest distance of separation between nearest neighbors. In model systems, the variation of the number of drops as a function of time was followed for different magnitudes of the apparent diffusion constant D(app) of the surfactant. For each of these values, the effect of C and the volume fraction of internal phase (phi) was considered. DA was found to influence emulsion stability appreciably at moderately high phi. In this case, the average collision time between drops is comparable to the time required for the occurrence of a substantial surfactant adsorption, but the interdrop separation is sufficiently large to prevent a considerable slowdown of particle movement due to hydrodynamic interactions.

  7. Production of silica gel from Tunisian sands and its adsorptive properties

    Science.gov (United States)

    Lazaar, K.; Hajjaji, W.; Pullar, R. C.; Labrincha, J. A.; Rocha, F.; Jamoussi, F.

    2017-06-01

    Thanks to its highly absorbent character, silica gel is used in several applications, such as air moisture removal, as a treatment agent for effluents. In this study, silica gels were synthesised from Tunisian sands, collected from the Fortuna and Sidi Aich Formations in northern and central Tunisia. The collected quartz sand raw materials, as well as the prepared silica gels, were characterised by different techniques, such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). XRD patterns of quartz sands showed quartz as main phase (86.1-98%), with lower contents of potassic feldspars, along with kaolinite and calcite. These quartz sands presented relatively small quantities of Fe2O3 (0.3%-0.5%) and TiO2 (0.1%-0.6%). The synthesised silica gels exhibited pore diameters exceeding 20 Å and surface areas up to 194 m2/g, comparable with those described in the literature and commercial silica gel. N2 adsorption isotherms showed that the silica gels prepared from Tunisian sands are mesoporous materials with high adsorption capacities. To understand better their adsorbent properties and applicability on an industrial scale, these gels were tested for methylene blue (MB) absorption. Maximum decolourisation rates (up to 96% after a contact time of 180 min) occurred with products synthesised at pH 3. The adsorption mechanism fitted better with a Langmuir model, revealing a monolayer coverage process of MB molecules over the gel surface, and the adsorption kinetics of the dye on these materials is well described by the second order model. The corresponding equilibrium adsorption capacities obtained from experimental data (Qexp = 292-214 mg/g) were close to the estimated maximum adsorption capacities (Qe = 333-250 mg/g), and to that of an industrial silica gel (250 mg/g).

  8. CO{sub 2} adsorption in amine-grafted zeolite 13X

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Diôgo P. [GPSA, Universidade Federal do Ceará (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus Ipanguaçu, Rio Grande do Norte (Brazil); Silva, Francisco W.M. da; Moura, Pedro A.S. de; Sousa, Allyson G.S.; Vieira, Rodrigo S. [GPSA, Universidade Federal do Ceará (Brazil); Rodriguez-Castellon, Enrique [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Azevedo, Diana C.S., E-mail: diana@gpsa.ufc.br [GPSA, Universidade Federal do Ceará (Brazil)

    2014-09-30

    Highlights: • CO{sub 2} adsorption mechanism in amine-grafted zeolite 13X was investigated. • The loaded amine tends to fill zeolite micropores and most of it is unaccessible to react with CO{sub 2}. • Part of loaded MEA binds covalently to the zeolitic structure and will not detach from the surface even at low pressures. • Chemisorption is likely to lead to CO{sub 2} higher uptakes upon a rise in temperature for solids with the highest amine load. - Abstract: The adsorption of CO{sub 2} on Zeolite 13X functionalized with amino groups was studied. Adsorbent functionalization was carried out by grafting with different loads of monoethanolamine (MEA). The adsorbents were characterized by N{sub 2} adsorption/desorption isotherms at 77 K, x-ray diffraction, TGA, in situ FTIR, XPS and adsorption microcalorimetry. CO{sub 2} isotherms were studied in a gravimetric device up to 10 bar at 298 and 348 K. It was found that increasing loads of amine to the adsorbent tend to reduce micropore volume of the resulting adsorbents by pore blocking with MEA. There is experimental evidence that part of the loaded MEA is effectively covalently bonded to the zeolitic structure, whereas there is also physisorbed excess MEA which will eventually be desorbed by raising the temperature beyond MEA boiling point. Heats of adsorption at nearly zero coverage indicate that some of the adsorbed CO{sub 2} reacts with available amino groups, which agrees with the finding that the adsorption capacity increases with increasing temperature for the modified zeolite with the highest MEA load.

  9. Molecular dynamics simulation of the effect of pH on the adsorption of rhodamine laser dyes on TiO2 hydroxylated surfaces

    OpenAIRE

    Hamad, Said; Sanchez Valencia, Juan Ramon; Barranco, Angel; Mejias, Jose Antonio; González-Elipe, Agustin R.

    2009-01-01

    Abstract We have carried out a study of the adsorption, on the (101) surface of anatase TiO2, of two industrially relevant rhodamines molecules (rhodamine 6G and rhodamine 800) employing Molecular Dynamics. These theoretical studies have shown that Rhodamine 6G must adsorb on surfaces under basic conditions. Moreover, the adsorption of this molecule shows a strong dependence upon the pH of the system, i.e. under neutral conditions the adsorption energy is quite smaller, and under ...

  10. Using LTE Networks for UAV Command and Control Link: A Rural-Area Coverage Analysis

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; Amorim, Rafhael Medeiros de; Wigard, Jeroen

    2017-01-01

    In this paper we investigate the ability of Long-Term Evolution (LTE) network to provide coverage for Unmanned Aerial Vehicles (UAVs) in a rural area, in particular for the Command and Control (C2) downlink. The study takes into consideration the dependency of the large-scale path loss on the hei......In this paper we investigate the ability of Long-Term Evolution (LTE) network to provide coverage for Unmanned Aerial Vehicles (UAVs) in a rural area, in particular for the Command and Control (C2) downlink. The study takes into consideration the dependency of the large-scale path loss...

  11. Water vapor adsorption on goethite.

    Science.gov (United States)

    Song, Xiaowei; Boily, Jean-François

    2013-07-02

    Goethite (α-FeOOH) is an important mineral contributing to processes of atmospheric and terrestrial importance. Their interactions with water vapor are particularly relevant in these contexts. In this work, molecular details of water vapor (0.0-19.0 Torr; 0-96% relative humidity at 25 °C) adsorption at surfaces of synthetic goethite nanoparticles reacted with and without HCl and NaCl were resolved using vibrational spectroscopy. This technique probed interactions between surface (hydr)oxo groups and liquid water-like films. Molecular dynamics showed that structures and orientations adopted by these waters are comparable to those adopted at the interface with liquid water. Particle surfaces reacted with HCl accumulated less water than acid-free surfaces due to disruptions in hydrogen bond networks by chemisorbed waters and chloride. Particles reacted with NaCl had lower loadings below ∼10 Torr water vapor but greater loadings above this value than salt-free surfaces. Water adsorption reactions were here affected by competitive hydration of coexisting salt-free surface regions, adsorbed chloride and sodium, as well as precipitated NaCl. Collectively, the findings presented in this study add further insight into the initial mechanisms of thin water film formation at goethite surfaces subjected to variations in water vapor pressure that are relevant to natural systems.

  12. Conceptualising the lack of health insurance coverage.

    Science.gov (United States)

    Davis, J B

    2000-01-01

    This paper examines the lack of health insurance coverage in the US as a public policy issue. It first compares the problem of health insurance coverage to the problem of unemployment to show that in terms of the numbers of individuals affected lack of health insurance is a problem comparable in importance to the problem of unemployment. Secondly, the paper discusses the methodology involved in measuring health insurance coverage, and argues that the current method of estimation of the uninsured underestimates the extent that individuals go without health insurance. Third, the paper briefly introduces Amartya Sen's functioning and capabilities framework to suggest a way of representing the extent to which individuals are uninsured. Fourth, the paper sketches a means of operationalizing the Sen representation of the uninsured in terms of the disability-adjusted life year (DALY) measure.

  13. Resolution, coverage, and geometry beyond traditional limits

    Energy Technology Data Exchange (ETDEWEB)

    Ronen, Shuki; Ferber, Ralf

    1998-12-31

    The presentation relates to the optimization of the image of seismic data and improved resolution and coverage of acquired data. Non traditional processing methods such as inversion to zero offset (IZO) are used. To realize the potential of saving acquisition cost by reducing in-fill and to plan resolution improvement by processing, geometry QC methods such as DMO Dip Coverage Spectrum (DDCS) and Bull`s Eyes Analysis are used. The DDCS is a 2-D spectrum whose entries consist of the DMO (Dip Move Out) coverage for a particular reflector specified by it`s true time dip and reflector normal strike. The Bull`s Eyes Analysis relies on real time processing of synthetic data generated with the real geometry. 4 refs., 6 figs.

  14. Declines in employer-sponsored insurance between 2000 and 2008: examining the components of coverage by firm size.

    Science.gov (United States)

    Vistnes, Jessica; Zawacki, Alice; Simon, Kosali; Taylor, Amy

    2012-06-01

    To examine trends in employer-sponsored health insurance coverage rates and its associated components between 2000 and 2008, to provide a baseline for later evaluations of the Affordable Care Act, and to provide information to policy makers as they design the implementation details of the law. Private sector employer data from the 2000, 2001, and 2008 Medical Expenditure Panel Survey-Insurance Component (MEPS-IC). We examine time trends in employer offer, eligibility, and take-up rates. We add a new dimension to the literature by examining dependent coverage and decomposing its trends. We investigate heterogeneity in trends by firm size. The MEPS-IC is an annual survey, sponsored by the Agency for Healthcare Research and Quality and conducted by the U.S. Census Bureau. The MEPS-IC obtains information on establishment characteristics, whether an establishment offers health insurance, and details on up to four plans. We find that coverage rates for workers declined in both small and large firms. In small firms, coverage declined due to a drop in both offer and take-up rates. In the largest firms, offer rates were stable and the decline was due to falling take-up rates. In addition, enrollment shifted toward single coverage and away from dependent coverage in both small and large firms. For small firms, this shift was due to declining offer and take-up rates for dependent coverage. In large firms, offers of dependent coverage were stable but take-up rates dropped. Within the category of dependent coverage, the availability of employee-plus-one plans increased in all firm size categories, but take-up rates for these plans declined in small firms. © Health Research and Educational Trust.

  15. The nature of newspaper coverage of homicide.

    Science.gov (United States)

    Taylor, C A; Sorenson, S B

    2002-06-01

    Previous research has shown that some homicides are more likely than others to receive newspaper coverage (for example, homicides by strangers). The present investigation examined whether, once the decision has been made to report on a homicide, the nature of the coverage (that is, how much visibility is given to a story, what information is included, and how a story is written) differs according to two key variables, victim ethnicity, and victim-suspect relationship. Los Angeles, California (USA). Homicide articles from the 1990-94 issues of the Los Angeles Times were stratified according to the predictors of interest (victim ethnicity and victim-suspect relationship) and a sample was drawn. Data that characterized two primary aspects of newspaper coverage, prominence and story framing (including background information, story focus, use of opinions, story tone, and "hook" or leading introductory lines) were abstracted from the articles. Descriptive statistics and cross tabulations were generated. Multivariate analyses were conducted to examine the predictive value of victim ethnicity and victim-suspect relationship on the nature of the newspaper coverage. Newspaper coverage of homicide was generally factual, episodic, and unemotional in tone. Victim-suspect relationship, but not victim ethnicity, was related to how a story was covered, particularly the story frame. Homicides by intimates were covered consistently differently from other types of homicides; these stories were less likely to be opinion dominated, be emotional, and begin with a "hook". Victim-suspect relationship was related to the nature of coverage of homicides in a large, metropolitan newspaper. Given the agenda setting and issue framing functions of the news media, these findings have implications for the manner in which the public and policy makers perceive homicides and, consequently, for the support afforded to various types of solutions for addressing and preventing violence.

  16. 5 CFR 875.412 - When will my coverage terminate?

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false When will my coverage terminate? 875.412... REGULATIONS (CONTINUED) FEDERAL LONG TERM CARE INSURANCE PROGRAM Coverage § 875.412 When will my coverage terminate? Your coverage will terminate on the earliest of the following dates: (a) The date you specify to...

  17. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area. (b...

  18. 42 CFR 440.330 - Benchmark health benefits coverage.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Benchmark health benefits coverage. 440.330 Section... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Benchmark Benefit and Benchmark-Equivalent Coverage § 440.330 Benchmark health benefits coverage. Benchmark coverage is health...

  19. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Science.gov (United States)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  20. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.

    2016-01-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on