WorldWideScience

Sample records for covariant quark model

  1. Nucleon quark distributions in a covariant quark-diquark model

    Energy Technology Data Exchange (ETDEWEB)

    Cloet, I.C. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, University of Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: icloet@physics.adelaide.edu.au; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: awthomas@jlab.org

    2005-08-18

    Spin-dependent and spin-independent quark light-cone momentum distributions and structure functions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. We find excellent agreement between our model results and empirical data.

  2. Transversity quark distributions in a covariant quark-diquark model

    Energy Technology Data Exchange (ETDEWEB)

    Cloet, I.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439-4843 (United States)], E-mail: icloet@anl.gov; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)], E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); College of William and Mary, Williamsburg, VA 23187 (United States)], E-mail: awthomas@jlab.org

    2008-01-17

    Transversity quark light-cone momentum distributions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the relativistic Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. Particular attention is paid to comparing our results with the recent experimental extraction of the transversity distributions by Anselmino et al. We also compare our transversity results with earlier spin-independent and helicity quark distributions calculated in the same approach.

  3. Covariant introduction of quark spin into the dual resonance model

    International Nuclear Information System (INIS)

    Iroshnikov, G.S.

    1979-01-01

    A very simple method of insertion of a quark spin into the dual resonance model of hadron interaction is proposed. The method is suitable for amplitudes with an arbitrary number of particles. The amplitude of interaction of real particles is presented as a product of contribution of oscillatory excitations in the (q anti q) system and of a spin factor. The latter is equal to the trace of the product of the external particle wave functions constructed from structural quarks and satisfying the relativistic Bargman-Wigner equations. Two examples of calculating the meson interaction amplitudes are presented

  4. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  5. Mass spectra and wave functions of meson systems and the covariant oscillator quark model as an expansion basis

    International Nuclear Information System (INIS)

    Oda, Ryuichi; Ishida, Shin; Wada, Hiroaki; Yamada, Kenji; Sekiguchi, Motoo

    1999-01-01

    We examine mass spectra and wave functions of the nn-bar, cc-bar and bb-bar meson systems within the framework of the covariant oscillator quark model with the boosted LS-coupling scheme. We solve nonperturbatively an eigenvalue problem for the squared-mass operator, which incorporates the four-dimensional color-Coulomb-type interaction, by taking a set of covariant oscillator wave functions as an expansion basis. We obtain mass spectra of these meson systems, which reproduce quite well their experimental behavior. The resultant manifestly covariant wave functions, which are applicable to analyses of various reaction phenomena, are given. Our results seem to suggest that the present model may be considered effectively as a covariant version of the nonrelativistic linear-plus-Coulomb potential quark model. (author)

  6. Covariant three-dimensional equation for the wave function of π meson in the composite model of spinor quarks

    International Nuclear Information System (INIS)

    Savron, V.I.; Skachkov, N.B.; Tyumenkov, G.Yu.

    1982-01-01

    A covariant three dimensional equation is derived for a wave function of a pseudoscalar particle, compoused of two equal mass quarks (quark and antiquark) with spins 1/2. This equation describes a relative motion of two quarks in π meson. An asymptotics of the solution of this equation is found in the momentum representation in the case of quarks interaction chosen in a form of a one gluon exchange amplitude [ru

  7. Branching fractions of semileptonic D and D{sub s} decays from the covariant light-front quark model

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Yang; Kang, Xian-Wei [Academia Sinica, Institute of Physics, Taipei (China)

    2017-09-15

    Based on the predictions of the relevant form factors from the covariant light-front quark model, we show the branching fractions for the D(D{sub s}) → (P, S, V, A) lν{sub l} (l = e or μ) decays, where P denotes the pseudoscalar meson, S the scalar meson with a mass above 1 GeV, V the vector meson and A the axial-vector one. Comparison with the available experimental results are made, and we find an excellent agreement. The predictions for other decay modes can be tested in a charm factory, e.g., the BESIII detector. The future measurements will definitely further enrich our knowledge of the hadronic transition form factors as well as the inner structure of the even-parity mesons (S and A). (orig.)

  8. Quarkonia and heavy-light mesons in a covariant quark model

    Directory of Open Access Journals (Sweden)

    Leitão Sofia

    2016-01-01

    Full Text Available Preliminary calculations using the Covariant Spectator Theory (CST employed a scalar linear confining interaction and an additional constant vector potential to compute the mesonic mass spectra. In this work we generalize the confining interaction to include more general structures, in particular a vector and also a pseudoscalar part, as suggested by a recent study [1]. A one-gluon-exchange kernel is also implemented to describe the short-range part of the interaction. We solve the simplest CST approximation to the complete Bethe-Salpeter equation, the one-channel spectator equation, using a numerical technique that eliminates all singularities from the kernel. The parameters of the model are determined through a fit to the experimental pseudoscalar meson spectra, with a good agreement for both quarkonia and heavy-light states.

  9. Transformation of covariant quark Wigner operator to noncovariant one

    International Nuclear Information System (INIS)

    Selikhov, A.V.

    1989-01-01

    The gauge in which covariant and noncovariant quark Wigner operators coincide has been found. In this gauge the representations of vector potential via field strength tensor is valid. The system of equations for the coefficients of covariant Wigner operator expansion in the basis γ-matrices algebra is obtained. 12 refs.; 3 figs

  10. The quark propagator in a covariant gauge

    International Nuclear Information System (INIS)

    Bonnet, F.D.R.; Leinweber, D.B.; Williams, A.G.; Zanotti, J.M.

    2000-01-01

    Full text: The quark propagator is one of the fundamental building blocks of QCD. Results strongly depend on the ansatz for the propagator. Direct simulations of QCD on a space time lattice can provide guidance and constraints on the analytic structure of the quark propagator. On the lattice the infrared and asymptotic behaviour of the quark propagator is of particular interest since it is a reflection of the accuracy of the discretised quark action. In the deep infrared region, artefacts associated with the finite size of the lattice spacing become small. This is the most interesting region as nonperturbative physics lies here. However, the ultraviolet behaviour at large momentum of the propagator will in general strongly deviate from the correct continuum behaviour. This behaviour will be action dependent. Some interesting progress has been made in improving the ultraviolet behaviour of the propagator. A method, recently developed and referred to as tree-level correction, consists of using the knowledge of the tree-level behaviour to eliminate the obvious lattice artefacts. Tree-level correction represents a crucial step in extracting meaningful results for the mass function and the renormalisation function outside of the deep infrared region. The mass function is particularly interesting as it provides insights into the constituent quark mass as a measure of the nonperturbative physics. In this poster I will present results from the analytic structure of the propagator in recent lattice studies for a variety of fermion actions in lattice QCD. I will also present the new ratio method used to tree-level correct these quark propagators

  11. Strong decays of sc-bar mesons in the covariant oscillator quark model with the U tilde (4)DS x O(3, 1)L-classification scheme

    International Nuclear Information System (INIS)

    Maeda, Tomohito; Yamada, Kenji; Oda, Masuho; Ishida, Shin

    2010-01-01

    We investigate the strong decays with one pseudoscalar emission of charmed strange mesons in the covariant oscillator quark model. The wave functions of composite sc-bar mesons are constructed as the irreducible representations of the U tilde (4) DS xO(3,1) L . Through the observed mass and results of decay study we discuss a novel assignment of observed charmed strange mesons from the viewpoint of the U tilde (4) DS x O(3,1) L -classification scheme. It is shown that D s0 * (2317) and D s1 (2460) are consistently explained as ground state chiralons, appeared in the U tilde (4) DS xO(3,1) L scheme. Furthermore, it is also found that recently-observed D s1 * (2710) could be described as first excited state chiralon. (author)

  12. Nucleon Mass from a Covariant Three-Quark Faddeev Equation

    International Nuclear Information System (INIS)

    Eichmann, G.; Alkofer, R.; Krassnigg, A.; Nicmorus, D.

    2010-01-01

    We report the first study of the nucleon where the full Poincare-covariant structure of the three-quark amplitude is implemented in the Faddeev equation. We employ an interaction kernel which is consistent with contemporary studies of meson properties and aspects of chiral symmetry and its dynamical breaking, thus yielding a comprehensive approach to hadron physics. The resulting current-mass evolution of the nucleon mass compares well with lattice data and deviates only by ∼5% from the quark-diquark result obtained in previous studies.

  13. Quark confinement in a constituent quark model

    International Nuclear Information System (INIS)

    Langfeld, K.; Rho, M.

    1995-01-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model's phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density

  14. Strong interactions - quark models

    International Nuclear Information System (INIS)

    Goto, M.; Ferreira, P.L.

    1979-01-01

    The variational method is used for the PSI and upsilon family spectra reproduction from the quark model, through several phenomenological potentials, viz.: linear, linear plus coulomb term and logarithmic. (L.C.) [pt

  15. Covariant, chirally symmetric, confining model of mesons

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1991-01-01

    We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented

  16. The quark bag model

    International Nuclear Information System (INIS)

    Hasenfratz, P.; Kuti, J.

    1978-01-01

    The quark bag model is reviewed here with particular emphasis on spectroscopic applications and the discussion of exotic objects as baryonium, gluonium, and the quark phase of matter. The physical vacuum is pictured in the model as a two-phase medium. In normal phase of the vacuum, outside hadrons, the propagation of quark and gluon fields is forbidden. When small bubbles in a second phase are created in the medium of the normal phase with a characteristic size of one fermi, the hadron constituent fields may propagate inside the bubbles in normal manner. The bubble (bag) is stabilized against the pressure of the confined hadron constituent fields by vacuum pressure and surface tension. Inside the bag the colored quarks and gluons are governed by the equations of quantum chromodynamics. (Auth.)

  17. Chiral phase transition in a covariant nonlocal NJL model

    International Nuclear Information System (INIS)

    General, I.; Scoccola, N.N.

    2001-01-01

    The properties of the chiral phase transition at finite temperature and chemical potential are investigated within a nonlocal covariant extension of the NJL model based on a separable quark-quark interaction. We find that for low values of T the chiral transition is always of first order and, for finite quark masses, at certain end point the transition turns into a smooth crossover. Our predictions for the position of this point is similar, although somewhat smaller, than previous estimates. (author)

  18. The Quark's Model and Confinement

    Science.gov (United States)

    Novozhilov, Yuri V.

    1977-01-01

    Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)

  19. Covariant solution of the three-quark problem in quantum field theory: the nucleon

    Directory of Open Access Journals (Sweden)

    Nicmorus D.

    2010-04-01

    Full Text Available We provide details on a recent solution of the nucleon’s covariant Faddeev equation in an explicit three-quark approach. The full Poincaré-covariant structure of the three-quark amplitude is implemented through an orthogonal basis obtained from a partial-wave decomposition. We employ a rainbow-ladder gluon exchange kernel which allows for a comparison with meson Bethe-Salpeter and baryon quark-diquark studies. We describe the construction of the three-quark amplitude in full detail and compare it to a notation widespread in recent publications. Finally, we discuss first numerical results for the nucleon’s amplitude.

  20. Quark confinement and the quark model

    International Nuclear Information System (INIS)

    Kuti, J.

    1977-01-01

    The CERN-JINR School of Physics is meant to give young experimental physicists and introduction to the theoretical aspects of recent advances in elementary particle physics. The purpose of the lectures contained in this paper is to discuss recent work on the quark model and its applications to hadron spectroscopy and some high-energy phenomena. (Auth.)

  1. Transverse momentum correlations of quarks in recursive jet models

    Science.gov (United States)

    Artru, X.; Belghobsi, Z.; Redouane-Salah, E.

    2016-08-01

    In the symmetric string fragmentation recipe adopted by PYTHIA for jet simulations, the transverse momenta of successive quarks are uncorrelated. This is a simplification but has no theoretical basis. Transverse momentum correlations are naturally expected, for instance, in a covariant multiperipheral model of quark hadronization. We propose a simple recipe of string fragmentation which leads to such correlations. The definition of the jet axis and its relation with the primordial transverse momentum of the quark is also discussed.

  2. Meson form factors and covariant three-dimensional formulation of the composite model

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Solovtsov, I.L.

    1979-01-01

    An apparatus is developed which allows within the relativistic quark model, to find explicit expressions for meson form factors in terms of the wave functions of two-quark system that obey the covariant two-particle quasipotential equation. The exact form of wave functions is obtained by passing to the relativistic configurational representation. As an example, the quark Coulomb interaction is considered

  3. Models of quark bags and their consequences

    International Nuclear Information System (INIS)

    Bogolubov, P.N.

    1977-01-01

    The development of the first Dubna Quark Bag and the results obtained in this way are considered. The idea of the first Dubna Quark Bag is as follows: baryons are constructed of three quarks measons are constructed of two quarks, and each quark is interpreted as the Dirac particle which moves in a scalar square well. The so-called quasiindependent quark model is considered too. It is a simple quark model based on an analogy with the shell model for nuclei. The quarks are considered as moving in an arbitrary radially-symmetric field, and their one-particle wave function satisfies the usual Dirac equation. Such quark model can give at least the same results as the relativistic bag model. A possibility exists to improve the results of the relativistic quark model with the oscillator interaction between quarks. The results of the MIT-Bag model and the quasiindependent quark model coincide

  4. Quark models in hadron physics

    International Nuclear Information System (INIS)

    Phatak, Shashikant C.

    2007-01-01

    In this talk, we review the role played by the quark models in the study of interaction of strong, weak and electromagnetic probes with hadrons at intermediate and high momentum transfers. By hadrons, we mean individual nucleons as well as nuclei. We argue that at these momentum transfers, the structure of hadrons plays an important role. The hadron structure of the hadrons is because of the underlying quark structure of hadrons and therefore the quark models play an important role in determining the hadron structure. Further, the properties of hadrons are likely to change when these are placed in nuclear medium and this change should arise from the underlying quark structure. We shall consider some quark models to look into these aspects. (author)

  5. Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Shekhter, V [AN SSSR, Leningrad. Inst. Yadernoj Fiziki

    1981-04-01

    The history is described of the concept of quarks, ie., hypothetical particles of which,hadrons (strongly interacting particles) are believed to consist. The quark properties differ from those of known elementary particles. The electric charge of quarks is 1/3 and 2/3 of the electron charge and they obviously only exist inside hadrons. Quark existence is generally recognized because it has been confirmed by experimental verification of predictions made using a quark model.

  6. Quark model and QCD

    International Nuclear Information System (INIS)

    Anisovich, V.V.

    1989-06-01

    Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs

  7. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

  8. Baryons in the unquenched quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R.; Díaz-Gómez, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70-543, 04510 Mexico DF (Mexico); Lopez-Ruiz, M. A. [Physics Department and Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Santopinto, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, via Dodecaneso 33, I-16146 Italy (Italy)

    2016-07-07

    In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a {sup 3}P{sub 0} quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and β decays of octet baryons.

  9. Quasirelativistic quark model in quasipotential approach

    CERN Document Server

    Matveev, V A; Savrin, V I; Sissakian, A N

    2002-01-01

    The relativistic particles interaction is described within the frames of quasipotential approach. The presentation is based on the so called covariant simultaneous formulation of the quantum field theory, where by the theory is considered on the spatial-like three-dimensional hypersurface in the Minkowski space. Special attention is paid to the methods of plotting various quasipotentials as well as to the applications of the quasipotential approach to describing the characteristics of the relativistic particles interaction in the quark models, namely: the hadrons elastic scattering amplitudes, the mass spectra and widths mesons decays, the cross sections of the deep inelastic leptons scattering on the hadrons

  10. Heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.; Saleev, V.A.

    1996-07-01

    In the framework of the relativistic quasipotential quark model the mass spectrum of baryons with two heavy quarks is calculated. The quasipotentials for interactions of two quarks and of a quark with a scalar and axial vector diquark are evaluated. The bound state masses of baryons with J P =1/2 + , 3/2 + are computed. (orig.)

  11. Quark fragmentation function and the nonlinear chiral quark model

    International Nuclear Information System (INIS)

    Zhu, Z.K.

    1993-01-01

    The scaling law of the fragmentation function has been proved in this paper. With that, we show that low-P T quark fragmentation function can be studied as a low energy physocs in the light-cone coordinate frame. We therefore use the nonlinear chiral quark model which is able to study the low energy physics under scale Λ CSB to study such a function. Meanwhile the formalism for studying the quark fragmentation function has been established. The nonlinear chiral quark model is quantized on the light-front. We then use old-fashioned perturbation theory to study the quark fragmentation function. Our first order result for such a function shows in agreement with the phenomenological model study of e + e - jet. The probability for u,d pair formation in the e + e - jet from our calculation is also in agreement with the phenomenological model results

  12. Physics of the Quark Model

    Science.gov (United States)

    Young, Robert D.

    1973-01-01

    Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)

  13. Quark cluster model and confinement

    International Nuclear Information System (INIS)

    Koike, Yuji; Yazaki, Koichi

    2000-01-01

    How confinement of quarks is implemented for multi-hadron systems in the quark cluster model is reviewed. In order to learn the nature of the confining interaction for fermions we first study 1+1 dimensional QED and QCD, in which the gauge field can be eliminated exactly and generates linear interaction of fermions. Then, we compare the two-body potential model, the flip-flop model and the Born-Oppenheimer approach in the strong coupling lattice QCD for the meson-meson system. Having shown how the long-range attraction between hadrons, van der Waals interaction, shows up in the two-body potential model, we discuss two distinct attempts beyond the two-body potential model: one is a many-body potential model, the flip-flop model, and the other is the Born-Oppenheimer approach in the strong coupling lattice QCD. We explain how the emergence of the long-range attraction is avoided in these attempts. Finally, we present the results of the application of the flip-flop model to the baryon-baryon scattering in the quark cluster model. (author)

  14. Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations

    International Nuclear Information System (INIS)

    Zakout, I.; Jaqaman, H.R.

    2000-01-01

    Short-range quark-quark correlations in hot nuclear matter are examined within the modified quark-meson coupling (MQMC) model by adding repulsive scalar and vector quark-quark interactions. Without these correlations, the bag radius increases with the baryon density. However, when the correlations are introduced the bag size shrinks as the bags overlap. Also as the strength of the scalar quark-quark correlation is increased, the decrease of the effective nucleon mass M* N with the baryonic density is slowed down and tends to saturate at high densities. Within this model we study the phase transition from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the latter modelled as an ideal gas of quarks and gluons inside a bag. Two models for the QGP bag parameter are considered. In one case, the bag is taken to be medium-independent and the phase transition from the hadron phase to QGP is found to occur at five to eight times ordinary nuclear matter density for temperatures less than 60 MeV. For lower densities, the transition takes place at a higher temperature, reaching up to 130 MeV at zero density. In the second case, the QGP bag parameter is considered to be medium-dependent as in the MQMC model for the hadronic phase. In this case, it is found that the phase transition occurs at much lower densities. (author)

  15. Modeling Covariance Breakdowns in Multivariate GARCH

    OpenAIRE

    Jin, Xin; Maheu, John M

    2014-01-01

    This paper proposes a flexible way of modeling dynamic heterogeneous covariance breakdowns in multivariate GARCH (MGARCH) models. During periods of normal market activity, volatility dynamics are governed by an MGARCH specification. A covariance breakdown is any significant temporary deviation of the conditional covariance matrix from its implied MGARCH dynamics. This is captured through a flexible stochastic component that allows for changes in the conditional variances, covariances and impl...

  16. Deeply virtual Compton scattering in a relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Spitzenberg, T.

    2007-09-15

    This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N{yields}N and N{yields}{delta} transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N{yields}{delta} GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes. (orig.)

  17. Decay constants in the heavy quark limit in models a la Bakamjian and Thomas

    International Nuclear Information System (INIS)

    Morenas, V.; Le Yaouanc, A.; Oliver, L.; Pene, O.; Raynal, J.C.

    1997-07-01

    In quark models a la Bakamjian and Thomas, that yield covariance and Isgur-Wise scaling of form factors in the heavy quark limit, the decay constants f (n) and f 1/2 (n) of S-wave and P-wave mesons composed of heavy and light quarks are computed. Different Ansaetze for the dynamics of the mass operator at rest are discussed. Using phenomenological models of the spectrum with relativistic kinetic energy and regularized short distance part the decay constants in the heavy quark limit are calculated. The convergence of the heavy quark limit sum rules is also studied. (author)

  18. Variational approach to chiral quark models

    Energy Technology Data Exchange (ETDEWEB)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira

    1987-03-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.

  19. A variational approach to chiral quark models

    International Nuclear Information System (INIS)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.

    1987-01-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)

  20. The spin predictions of the relativistic quark model for baryon decuplet production

    CERN Document Server

    Montvay, István

    1973-01-01

    Single-quark scattering contributions are considered in the case of ground-state decuplet baryon production. It is shown within the framework of an explicitly covariant approach that the spin consequences of the quark additivity assumption hold in the t-channel helicity frame independently of much of the details of the model. (12 refs).

  1. Kaon quark distribution functions in the chiral constituent quark model

    Science.gov (United States)

    Watanabe, Akira; Sawada, Takahiro; Kao, Chung Wen

    2018-04-01

    We investigate the valence u and s ¯ quark distribution functions of the K+ meson, vK (u )(x ,Q2) and vK (s ¯)(x ,Q2), in the framework of the chiral constituent quark model. We judiciously choose the bare distributions at the initial scale to generate the dressed distributions at the higher scale, considering the meson cloud effects and the QCD evolution, which agree with the phenomenologically satisfactory valence quark distribution of the pion and the experimental data of the ratio vK (u )(x ,Q2)/vπ (u )(x ,Q2) . We show how the meson cloud effects affect the bare distribution functions in detail. We find that a smaller S U (3 ) flavor symmetry breaking effect is observed, compared with results of the preceding studies based on other approaches.

  2. Hadron matrix elements of quark operators in the relativistic quark model, 2. Model calculation

    Energy Technology Data Exchange (ETDEWEB)

    Arisue, H; Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, H

    1979-11-01

    Phenomenological studies of the matrix elements of two- and four-quark operators are made on the basis of relativistic independent quark model for typical three cases of the potentials: rigid wall, linearly rising and Coulomb-like potentials. The values of the matrix elements of two-quark operators are relatively well reproduced in each case, but those of four-quark operators prove to be too small in the independent particle treatment. It is suggested that the short-range two-quark correlations must be taken into account in order to improve the values of the matrix elements of the four-quark operators.

  3. A single quark effective potential model

    International Nuclear Information System (INIS)

    Bodmann, B.E.J.; Vasconcellos, C.A.Z.

    1994-01-01

    In the present work we construct a radial spherical symmetric single quark potential model for the nucleon, consistent with asymptotic freedom and confinement. The quark mass enters as potential parameter and that way induces indirectly an isospin dependence in the interaction. As a consequence, a contribution to the negative charge square radius of the neutron arises an an effect of the quark core, which simulates an isospin symmetry breaking effect in the nucleon due to strong interaction. (author)

  4. Generalization of the quark rearrangement model

    International Nuclear Information System (INIS)

    Fields, T.; Chen, C.K.

    1976-01-01

    An extension and generalization of the quark rearrangement model of baryon annihilation is described which can be applied to all annihilation reactions and which incorporates some of the features of the highly successful quark parton model. Some p anti-p interactions are discussed

  5. Quark matter in a chiral chromodielectric model

    International Nuclear Information System (INIS)

    Broniowski, W.; Kutschera, M.; Cibej, M.; Rosina, M.

    1989-03-01

    Zero and finite temperature quark matter is studied in a chiral chromodielectric model with quark, meson and chromodielectric degrees of freedom. Mean field approximation is used. Two cases are considered: two-flavor and three-flavor quark matter. It is found that at sufficiently low densities and temperatures the system is in a chirally broken phase, with quarks acquiring effective masses of the order of 100 MeV. At higher densities and temperatures a chiral phase transition occurs and the quarks become massless. A comparison to traditional nuclear physics suggests that the chirally broken phase with massive quark gas may be the ground state of matter at densities of the order of a few nuclear saturation densities. 24 refs., 5 figs. (author)

  6. The quark model and asymptotic freedom

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The authors stress that it is not their task to provide a detailed account of the quark model (this is given in many monographs and reviews). This chapter is merely a prolog to the complex contemporary problems of high-energy physics which form the main subject of the present monograph. The quark model is based on the idea that there exist hypothetical fundamental particles - quarks, which they shall denote by q-bar/sub i/ (the index i characterizes the type of quark). From these particles and their antiparticles one constructs bound states, which are identified with the known hadrons. It turns out that all the observed mesons can be constructed from a quark q/sub i/ and an antiquark q-bar/sub i/, while the baryons (antibaryons) can be constructed from three quarks (antiquarks). To make it possible to build up all the observed hadrons and their characteristics, the authors must postulate that the quarks (antiquarks) possess the following properties: 1) spin 1/2; 2) isospin. It is necessary to introduce isospin 1/2 for the construction of the nonstrange hadrons. It has been proposed to denote the quark with isospin projection tau/sub 3/ = 1/2 by the symbol u (from the English ''up'') and the quark with isospin projection tau/sub 3/ = -1/2 by the symbol d (from the English ''down'')

  7. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  8. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  9. Quark-diquark approximation of the three-quark structure of baryons in the quark confinement model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.; Lyubovitskij, V.E.

    1990-01-01

    Octet (1 + /2) and decuplet (3 + /2) of baryons as relativistic three-quark states are investigated in the quark confinement model (QCM), the relativistic quark model, based on some assumptions about hadronization and quark confinement. The quark-diquark approximation of the three-quark structure of baryons is proposed. In the framework of this approach the description of the main low-energy characteristics of baryons as magnetic moments, electromagnetic radii and form factors, ratio of axial and vector constants in semileptonic baryon octet decays, strong form factors and decay widths is given. The obtained results are in agreement with experimental data. 31 refs.; 4 figs.; 5 tabs

  10. Meson form factors and covariant three-dimensional formulation of composite model

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Solovtsov, I.L.

    1978-01-01

    An approach is developed which is applied in the framework of the relativistic quark model to obtain explicit expressions for meson form factors in terms of covariant wave functions of the two-quark system. These wave functions obey the two-particle quasipotential equation in which the relative motion of quarks is singled out in a covariant way. The exact form of the wave functions is found using the transition to the relativistic configurational representation with the help of the harmonic analysis on the Lorentz group instead of the usual Fourier expansion and then solving the relativistic difference equation thus obtained. The expressions found for form factors are transformed into the three-dimensional covariant form which is a direct geometrical relativistic generalization of analogous expressions of the nonrelativistic quantum mechanics and provides the decrease of the meson form factor by the Fsub(π)(t) approximately t -1 law as -t infinity, in the Coulomb field

  11. Hadron interactions in quark models

    International Nuclear Information System (INIS)

    Narodetskij, I.M.

    1987-01-01

    Some recent developments on the study of quark degrees of freedom in hadron scattering at intermediate energy are reviewed. Physical foundations of the P-matrix approach and the Quark Compound Bag method are discussed including applications to pion-pion, pion-nucleon, nucleon-nucleon and three-nucleon systems

  12. Quark Model in the Quantum Mechanics Curriculum.

    Science.gov (United States)

    Hussar, P. E.; And Others

    1980-01-01

    This article discusses in detail the totally symmetric three-quark karyonic wave functions. The two-body mesonic states are also discussed. A brief review of the experimental efforts to identify the quark model multiplets is given. (Author/SK)

  13. Diagrammatic group theory in quark models

    International Nuclear Information System (INIS)

    Canning, G.P.

    1977-05-01

    A simple and systematic diagrammatic method is presented for calculating the numerical factors arising from group theory in quark models: dimensions, casimir invariants, vector coupling coefficients and especially recoupling coefficients. Some coefficients for the coupling of 3 quark objects are listed for SU(n) and SU(2n). (orig.) [de

  14. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  15. Subquark model of leptons and quarks

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1979-09-01

    1) First, various subquark models so far proposed are briefly reviewed. Classifications of leptons and quarks in the models and their comparison are made. Our spinor-subquark model of leptons and quarks in which leptons and quarks are made of three subquarks of spin 1/2 is discussed in detail. 2) The possibility that guage bosons and Higgs scalars are also made of a subquark-antisubquark pair is discussed. 3) Exotic states of subquarks such as leptons and quarks of spin 3/2, exotic fermions, and exotic bosons are predicted in our model. 4) Subquark currents and their algebra are proposed. 5) Two unified subquark models of strong and electroweak interactions are discussed. The one is a gauge model and the other is a model of the Nambu-Jona-Lasinio type. 6) A subquark model of gravity and its supergrand unification is proposed. 7) An finally, a speculation is made on ''color-space correspondence''. (author)

  16. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Nicmorus Marinescu, Diana

    2007-01-01

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N→Δγ transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit within this

  17. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nicmorus Marinescu, Diana

    2007-06-14

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit

  18. Quark shell model using projection operators

    International Nuclear Information System (INIS)

    Ullah, N.

    1988-01-01

    Using the projection operators in the quark shell model, the wave functions for proton are calculated and expressions for calculating the wave function of neutron and also magnetic moment of proton and neutron are derived. (M.G.B.)

  19. A potential model for quark confinement

    International Nuclear Information System (INIS)

    Thaler, J.; Iqbal, M.J.

    1985-02-01

    A static quark potential model obtained from a relativistic wave-equation is considered. The long-part of the quadratic terms is suppressed by a glueball exchange mechanism and compatibility with the meson spectra is shown

  20. EQUIVALENT MODELS IN COVARIANCE STRUCTURE-ANALYSIS

    NARCIS (Netherlands)

    LUIJBEN, TCW

    1991-01-01

    Defining equivalent models as those that reproduce the same set of covariance matrices, necessary and sufficient conditions are stated for the local equivalence of two expanded identified models M1 and M2 when fitting the more restricted model M0. Assuming several regularity conditions, the rank

  1. Quasinuclear colored quark model for hadrons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1978-09-01

    Lectures are presented in which a quasinuclear constituent quark model in which constituent quarks are assumed to be made of constituent interacting with a two-body color-exchange logarithmic potential is considered. The color degree of freedom is discussed in detail. Some properties of the logarithmic potential and the definition of the quasinuclear model and its validity, and a comparison of some of its predictions with experiment are described. 31 references

  2. Ellipsoidal bag model for heavy quark system

    International Nuclear Information System (INIS)

    Bi Pinzhen; Fudan Univ., Shanghai

    1991-01-01

    The ellipsoidal bag model is used to describe heavy quark systems such as Qanti Q, Qanti Qg and Q 2 anti Q 2 . Instead of two step model, these states are described by an uniform picture. The potential derived from the ellipsoidal bag for Qanti Q is almost equivalent to the Cornell potential. For a Q 2 anti Q 2 system with large quark pair separation, an improvement of 70 MeV is obtained comparing with the spherical bag. (orig.)

  3. New quark model with weak triplet

    International Nuclear Information System (INIS)

    Suzuki, T.; Hori, S.; Yamada, E.; Yamanashi, K.; Abe, Y.

    1976-01-01

    We propose a new anomaly-free quark model with weak isotriplets for quarks. The ΔI=1/2 enhancement may be accounted for, the requirement of Golowich and Holstein being satisfied. There arises a mixing of left-handed charmed quarks with left-handed nucleonic ones - such mixing essentially gives an overall explanation of neutral-current effects, inclusive y distribution, the ratio sigma/sup T/(anti νd)/sigma/sup T/(νd), and copious dilepton events in ν and anti ν reactions

  4. Modern status of quark bag model

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Dorokhov, A.E.

    1987-01-01

    A review contains a modern status of the bag model - a composite quark model of hadrons. The idea of quasi-independent quarks moving in a finite closed region of space is a basic feature of the model. Dubna's formulation of the model and its different versions (MIT, chiral model and others) are given in detail. The role of symmetric and physical principles of the model is underlined, a critical review of mass formulas is given, the relation of the bag model and the soliton-like models (in particular with the Skyrme model) is considered

  5. Parity doublers in chiral potential quark models

    International Nuclear Information System (INIS)

    Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.

    2007-01-01

    The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated

  6. Gauging Non-local Quark Models

    International Nuclear Information System (INIS)

    Broniowski, W.

    1999-09-01

    The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter

  7. Quark model and high energy collisions

    International Nuclear Information System (INIS)

    Nyiri, J.; Kobrinsky, M.N.

    1982-06-01

    The aim of the present review is to show that the additive quark model describes well not only the static features of hadrons but also the interaction processes at high energies. Considerations of the hadron-hadron and hadron-nucleus interactions and of the hadron production in multiparticle production processes suggest serious arguments in favour of the nucleus-like hadron structure and show the possibility to apply the rules of quark statistics to the description of the secondary particle production. (author)

  8. The Model of Complex Structure of Quark

    Science.gov (United States)

    Liu, Rongwu

    2017-09-01

    In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.

  9. Vector and Axial-Vector Correlators in AN Instanton-Like Quark Model

    Science.gov (United States)

    Dorokhov, Alexander E.

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instanton-like quark-quark interaction. This function describes the transition between the high energy asymptotically free region of almost massless current quarks to the low energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, aμ hvp(1), is estimated.

  10. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    International Nuclear Information System (INIS)

    Dorokhov, Alexander E.

    2004-01-01

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, a μ hvp(1) , is estimated

  11. A chiral quark model of the nucleon

    International Nuclear Information System (INIS)

    Wakamatsu, M.; Yoshiki, H.

    1991-01-01

    The baryon-number-one extended solution of a chiral quark lagrangian is obtained in the stationary-phase approximation with full inclusion of the sea-quark degrees of freedom. The collective quantization method is then applied to this static solution to obtain the nucleon (and Δ) state with the definite spin and isospin. A fundamental quantity appearing in this quantization procedure is the moment of inertia of the soliton system. We evaluate this quantity without recourse to the derivative expansion, by performing the necessary double sum over all the positive- and negative-energy quark orbitals in the mean field potential. Closed formulas are-derived for the nucleon (and Δ) matrix elements of arbitrary quark bilinear operators. These formulas are then used for calculating various nucleon observables in a nonperturbative manner with inclusion of the sea-quark effects. An especially interesting observable is the spin expectation value of the proton related to the recent EMC experiment. We derive the proton spin sum rule, and then explicitly evaluate the detailed contents of this sum rule. The proton spin analysis is shown to be particularly useful for clarifying the underlying dynamical content of the Skyrme model at quark level, thereby providing us with valuable information about its utility and limitation. (orig.)

  12. Test of quark fragmentation in the quark-parton model framework

    International Nuclear Information System (INIS)

    Derrick, M.; Barish, S.J.; Barnes, V.E.

    1979-08-01

    The hadronic system produced in charged-current antineutrino interactions is used to study fragmentation of the d-quark. Some problems encountered in separating the current quark-fragments are discussed. The fragmentation function for the current quark is in good agreement with the expectations of the naive quark-parton model and, in particular, there is no evidence of either a Q 2 - or x/sub BJ/-dependence. 10 references

  13. Large Psub(tr) and quark-quark cross section in the dynamical model of factorizing quarks

    International Nuclear Information System (INIS)

    Kapshay, V.N.; Sidorov, A.V.; Skachkov, N.B.

    1978-01-01

    Dynamical model of factorizing quarks containing the quark mass as free model parameter was described. Model calculations were compared with the experimental data on the cross section of the inclusive πsup(o) meson production in the proton-proton interaction. It is shown that the results of the paper are in good agreement with experiments

  14. A semiclassical model for quark jet fragmentation

    International Nuclear Information System (INIS)

    Andersson, B.; Gustafson, G.; Peterson, C.

    1979-01-01

    A semiclassical model is presented for the way the energy of a fast quark is transformed into observable hadrons. It reproduces the features of 1+1 dimensional QED (the Schwinger model) concerning a flat rapidity distribution in the central region. It also reproduces results from phenomenological considerations, which, based upon scaling, predict that meson formation in the fragmentation region can be described by an iterative scheme, implying a set of coupled integral equations. In particular the model predicts that the probability to find a meson containing the leading quark is independent of the Feynman scaling variable z. The iterative structure corresponds to a Brownian motion with relevance both to the cofinement problems and to the distribution of mass in the quark jet. (orig.) [de

  15. Baryons in and beyond the quark-diquark model

    International Nuclear Information System (INIS)

    Eichmann, G.; Alkofer, R.; Krassnigg, A.; Fischer, C. S.; Nicmorus, D.

    2011-01-01

    We examine the nucleon's electromagnetic form factors in a Poincare-covariant Faddeev framework. The three-quark core contributions to the form factors are obtained by employing a quark-diquark approximation. We implement the self-consistent solution for the quark-photon vertex from its inhomogeneous Bethe-Salpeter equation. We find that the resulting transverse parts which add to the Ball-Chiu vertex have no significant impact on nucleon magnetic moments. The current-quark mass evolution of the form factors agrees with results from lattice QCD.

  16. Four-quark states in potential model

    International Nuclear Information System (INIS)

    Badalyan, A.M.; Kitoroage, D.I.

    1987-01-01

    The mass spectrum of S-wave q 2 q -2 mesons of u, d, s quarks is calculated in the framework of the nonrelativistic potential model and compared with the bag model predictions. The spin-spin splittings of almost all four-quark mesons with J PC = 0 ++ , 2 ++ , 1 +- are shown to coincide with an accuracy of ∼ 50 MeV in both approaches. Two exceptions are O S (9), C π S (9) mesons for which the discrepancy is ∼ 300 MeV. Calculated centers of gravity of the multiplets are systematically ∼ 120 MeV higher than the MIT bag predictions

  17. Constituent quarks as clusters in quark-gluon-parton model. [Total cross sections, probability distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education

    1976-12-01

    We present a quark-gluon-parton model in which quark-partons and gluons make clusters corresponding to two or three constituent quarks (or anti-quarks) in the meson or in the baryon, respectively. We explicitly construct the constituent quark state (cluster), by employing the Kuti-Weisskopf theory and by requiring the scaling. The quark additivity of the hadronic total cross sections and the quark counting rules on the threshold powers of various distributions are satisfied. For small x (Feynman fraction), it is shown that the constituent quarks and quark-partons have quite different probability distributions. We apply our model to hadron-hadron inclusive reactions, and clarify that the fragmentation and the diffractive processes relate to the constituent quark distributions, while the processes in or near the central region are controlled by the quark-partons. Our model gives the reasonable interpretation for the experimental data and much improves the usual ''constituent interchange model'' result near and in the central region (x asymptotically equals x sub(T) asymptotically equals 0).

  18. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ebert, D.

    1981-01-01

    It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically

  19. Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peng-Cheng; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang [Qingdao Technological University, School of Science, Qingdao (China); Li, Xiao-Hua [University of South China, School of Nuclear Science and Technology, Hengyang (China); University of South China, Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, Hengyang (China)

    2017-08-15

    We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β-equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β-equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model. (orig.)

  20. Quark cluster model in the three-nucleon system

    International Nuclear Information System (INIS)

    Osman, A.

    1986-11-01

    The quark cluster model is used to investigate the structure of the three-nucleon systems. The nucleon-nucleon interaction is proposed considering the colour-nucleon clusters and incorporating the quark degrees of freedom. The quark-quark potential in the quark compound bag model agrees with the central force potentials. The confinement potential reduces the short-range repulsion. The colour van der Waals force is determined. Then, the probability of quark clusters in the three-nucleon bound state systems are numerically calculated using realistic nuclear wave functions. The results of the present calculations show that quarks cluster themselves in three-quark systems building the quark cluster model for the trinucleon system. (author)

  1. Pseudoscaler meson masses in the quark model

    International Nuclear Information System (INIS)

    Karl, G.

    1976-10-01

    Pseudoscaler meson masses and sum rules are compared in two different limits of a quark model with 4 quarks. The conventional limit corresponds to a heavy c anti c state and generalizes ideal mixing in a nonet. The second limit corresponds to a missing SU 4 unitary singlet and appears more relevant to the masses of π, K, eta, eta'. If SU 3 is broken only by the mass difference between the strange and nonstrange quarks, the physical masses imply that the u anti u, d anti d and s anti s pairs account only for 33% of the composition of the eta'(960), while for the eta(548) this fraction is 86%. If some of the remaining matter is in the form of the constituents of J/psi, the relative proportion of the relative decays J/psi → eta γ vs J/psi → etaγ is accounted for in satisfactory agreement with experiment. (author)

  2. Quark model and high energy collisions

    CERN Document Server

    Anisovich, V V; Nyíri, J; Shabelski, Yu M

    2004-01-01

    This is an updated version of the book published in 1985. QCD-motivated, it gives a detailed description of hadron structure and soft interactions in the additive quark model, where hadrons are regarded as composite systems of dressed quarks. In the past decade it has become clear that nonperturbative QCD, responsible for soft hadronic processes, may differ rather drastically from perturbative QCD. The understanding of nonperturbative QCD requires a detailed investigation of the experiments and the theoretical approaches. Bearing this in mind, the book has been rewritten paying special attenti

  3. Bootstrap procedure in the quasinuclear quark model

    International Nuclear Information System (INIS)

    Anisovich, V.V.; Gerasyuta, S.M.; Keltuyala, I.V.

    1983-01-01

    The scattering amplitude for quarks (dressed quarks of a single flavour, and three colours) is obtained by means of a bootstrap procedure with introdUction of an initial paint-wise interaction due to a heavy gluon exchange. The obtained quasi-nuclear model (effective short-range interaction in the S-wave states) has reasonable properties: there exist colourless meson states Jsup(p)=0sup(-), 1 - ; there are no bound states in coloured channels, a virtual diquark level Jsup(p)=1sup(+) appears in the coloured state anti 3sub(c)

  4. Model uncertainties in top-quark physics

    CERN Document Server

    Seidel, Markus

    2014-01-01

    The ATLAS and CMS collaborations at the Large Hadron Collider (LHC) are studying the top quark in pp collisions at 7 and 8 TeV. Due to the large integrated luminosity, precision measurements of production cross-sections and properties are often limited by systematic uncertainties. An overview of the modeling uncertainties for simulated events is given in this report.

  5. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1981-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)

  6. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1980-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour

  7. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1981-01-01

    The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru

  8. and density-dependent quark mass model

    Indian Academy of Sciences (India)

    Since a fair proportion of such dense proto stars are likely to be ... the temperature- and density-dependent quark mass (TDDQM) model which we had em- ployed in .... instead of Tc ~170 MeV which is a favoured value for the ud matter [26].

  9. Second quantization approach to composite hadron interactions in quark models

    International Nuclear Information System (INIS)

    Hadjimichef, D.; Krein, G.; Veiga, J.S. da; Szpigel, S.

    1995-11-01

    Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions. (author). 13 refs., 1 fig

  10. Quark model and equivalent local potential

    International Nuclear Information System (INIS)

    Takeuchi, Sachiko; Shimizu, Kiyotaka

    2002-01-01

    In this paper, we investigate the short-range repulsion given by the quark cluster model employing an inverse scattering problem. We find that the local potential which reproduces the same phase shifts as those given by the quark cluster model has a strong repulsion at short distances in the NN 1 S 0 channel. There, however, appears an attractive pocket at very short distances due to a rather weak repulsive behavior at very high energy. This repulsion-attractive-pocket structure becomes more manifest in the channel which has an almost forbidden state, ΣN(T=3/2) 3 S 1 . In order to see what kinds of effects are important to reproduce the short-range repulsion in the quark cluster model, we investigate the contribution coming from the one-gluon-exchange potential and the normalization separately. It is clarified that the gluon exchange constructs the short-range repulsion in the NN 1 S 0 while the quark Pauli-blocking effect governs the feature of the repulsive behavior in the ΣN(T=3/2) 3 S 1 channel

  11. A special covariance structure for random coefficient models with both between and within covariates

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1990-07-01

    We review random coefficient (RC) models in linear regression and propose a bias correction to the maximum likelihood (ML) estimator. Asymmptotic expansion of the ML equations are given when the between individual variance is much larger or smaller than the variance from within individual fluctuations. The standard model assumes all but one covariate varies within each individual, (we denote the within covariates by vector χ 1 ). We consider random coefficient models where some of the covariates do not vary in any single individual (we denote the between covariates by vector χ 0 ). The regression coefficients, vector β k , can only be estimated in the subspace X k of X. Thus the number of individuals necessary to estimate vector β and the covariance matrix Δ of vector β increases significantly in the presence of more than one between covariate. When the number of individuals is sufficient to estimate vector β but not the entire matrix Δ , additional assumptions must be imposed on the structure of Δ. A simple reduced model is that the between component of vector β is fixed and only the within component varies randomly. This model fails because it is not invariant under linear coordinate transformations and it can significantly overestimate the variance of new observations. We propose a covariance structure for Δ without these difficulties by first projecting the within covariates onto the space perpendicular to be between covariates. (orig.)

  12. Properties of Doubly Heavy Baryons in the Relativistic Quark Model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.

    2005-01-01

    Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit

  13. Composite model for quarks and leptons

    International Nuclear Information System (INIS)

    Harari, H.

    1982-12-01

    We discuss the motivation for constructing composite models for quarks and leptons, the hopes we have for a successful model and the difficulties encountered, so far, in this field. This paper corresponds to the contents of lectures given at the SLAC Summer Institute (August 1982), at the DESY Workshop on ''Electroweak Interactions at High Energies'' (September 1982) and at the Solvay Conference at the University of Texas, Austin, Texas (November 1982). (author)

  14. A gauge model with eight quarks

    International Nuclear Information System (INIS)

    Ragiadakos, C.

    1977-01-01

    A gauge model with eight quarks, on the basis of the SU(2)U(1) gauge group, containing the Weinberg-Salam-GIM model is proposed. It may explain the ratio of the neutral current and charged current found at Gargamelle and HPWF, the large y anomaly and, with a convenient introduction of the leptonic sector, the energetic trimuons observed recently in neutrino nucleon collisions

  15. Deformed baryons: constituent quark model vs. bag model

    International Nuclear Information System (INIS)

    Iwamura, Y.; Nogami, Y.

    1985-01-01

    Recently Bhaduri et al. developed a nonrelativistic constituent quark model for deformed baryons. In that model the quarks move in a deformable mean field, and the deformation parameters are determined by minimizing the quark energy subject to the constraint of volume conservation. This constraint is an ad hoc assumption. It is shown that, starting with a bag model, a model similar to that of Bhaduri et al. can be constructed. The deformation parameters are determined by the pressure balance on the bag surface. There is, however, a distinct difference between the two models with respect to the state dependence of the ''volume''. Implications of this difference are discussed

  16. Exotic quarks in Twin Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsin-Chia [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Jung, Sunghoon [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Salvioni, Ennio [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Tsai, Yuhsin [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Maryland Center for Fundamental Physics,Department of Physics, University of Maryland,College Park, MD 20742 (United States)

    2016-03-14

    The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ∼ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. Depending on the details of the twin sector, the exotic quarks may be probed up to ∼ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.

  17. The potential model of coloured quarks

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1981-01-01

    The success of the additive potential model of colored quarks for the masses, decay rates, and other properties of single mesons and baryons does not imply that this model can yield the observed meson-nucleon and nucleon-nucleon interactions. We give a comprehensive discussion of this issue. In agreement with previous authors, we conclude that, on the contrary, this model predicts inverse-power color-analog van der Waals potentials between separated hadrons which are in substantial contradiction with experimental data. We also discuss pathologies of non-abelian confining potentials, and show that the hamiltonian is unbounded below for an arbitrary number of quarks and antiquarks in a definite color state for all color states, except the singlet, triplet, and antitriplet. (orig.)

  18. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei; Holbrook, Andrew; Fortin, Norbert J.; Ombao, Hernando; Shahbaba, Babak

    2017-01-01

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix

  19. Diquark structure in heavy quark baryons in a geometric model

    International Nuclear Information System (INIS)

    Paria, Lina; Abbas, Afsar

    1996-01-01

    Using a geometric model to study the structure of hadrons, baryons having one, two and three heavy quarks have been studied here. The study reveals diquark structure in baryons with one and two heavy quarks but not with three heavy identical quarks. (author). 15 refs., 2 figs., 2 tabs

  20. Results of the naive quark model

    International Nuclear Information System (INIS)

    Gignoux, C.

    1987-10-01

    The hypotheses and limits of the naive quark model are recalled and results on nucleon-nucleon scattering and possible multiquark states are presented. Results show that with this model, ropers do not come. For hadron-hadron interactions, the model predicts Van der Waals forces that the resonance group method does not allow. Known many-body forces are not found in the model. The lack of mesons shows up in the absence of a far reaching force. However, the model does have strengths. It is free from spuriousness of center of mass, and allows a democratic handling of flavor. It has few parameters, and its predictions are very good [fr

  1. Rare top quark decays in extended models

    International Nuclear Information System (INIS)

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2006-01-01

    Flavor changing neutral currents (FCNC) decays t → H0 + c, t → Z + c, and H0 → t + c-bar are discussed in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions where FCNC decays may take place at tree-level and are only suppressed by the mixing between ordinary top and charm quarks, which is poorly constraint by current experimental values. The non-manifest case is also briefly discussed

  2. Chiral quark model with relativistic kinematics

    International Nuclear Information System (INIS)

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum

  3. Chiral quark model with relativistic kinematics

    OpenAIRE

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  4. Top quark decays in extended models

    International Nuclear Information System (INIS)

    Gaitan, R.; Cabral-Rosetti, L.G.

    2011-01-01

    We evaluate the FCNC decays t → H 0 + c at tree-level and t → γ + c at one-loop level in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; in the first case, FCNC decays occurs at tree-level and they are only suppressed by the mixing between ordinary top and charm quarks. (author)

  5. Double parton correlations in Light-Front constituent quark models

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2015-01-01

    Full Text Available Double parton distribution functions (dPDF represent a tool to explore the 3D proton structure. They can be measured in high energy proton-proton and proton nucleus collisions and encode information on how partons inside a proton are correlated among each other. dPFDs are studied here in the valence quark region, by means of a constituent quark model, where two particle correlations are present without any additional prescription. This framework allows to understand the dynamical origin of the correlations and to clarify which, among the features of the results, are model independent. Use will be made of a relativistic light-front scheme, able to overcome some drawbacks of the previous calculation. Transverse momentum correlations, due to the exact treatment of the boosts, are predicted and analyzed. The role of spin correlations is also shown. Due to the covariance of the approach, some symmetries of the dPDFs are seen unambigously. For the valence sector, also the study of the QCD evolution of the model results, which can be performed safely thanks to the property of good support, has been also completed.

  6. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    Kotlorz, A.; Kutschera, M.

    1994-02-01

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  7. Charmonium suppression in a quark exchange model

    International Nuclear Information System (INIS)

    Martins, K.

    1995-01-01

    A diagrammatic approach to quark exchange processes in meson-meson scattering is applied to the case of inelastic reactions of the type (Q anti Q)+(q anti q)→(Q anti q)+(q anti Q), where Q and q refer to heavy and light quarks, respectively. This string-flip process is discussed as a microscopic mechanism for charmonium dissociation (absorption) in hadronic matter. The cross section for the reaction J/ψ+π→D+ anti D is calculated using a potential model. The behavior of a formed charmonium state in hadronic matter are discussed and consequences for ultrarelativistic hadron-nucleus and nucleus-nucleus collisions are discussed. (orig.)

  8. Hyperon-nucleon interaction in the quark cluster model

    International Nuclear Information System (INIS)

    Straub, U.; Zhang Zongye; Braeuer, K.; Faessler, A.; Khadkikar, S.B.; Luebeck, G.

    1988-01-01

    The lambda-nucleon and sigma-nucleon interaction is described in the nonrelativistic quark cluster model. The SU(3) flavor symmetry breaking due to the different quark masses is taken into account, i.e. different wavefunctions for the light (up, down) and heavy (strange) quarks are used in flavor and orbital space. The six-quark wavefunction is fully antisymmetrized. The model hamiltonian contains gluon exchange, pseudoscalar meson exchange and a phenomenological σ-meson exchange. The six-quark scattering problem is solved within the resonating group method. The experimental lambda-nucleon and sigma-nucleon cross sections are well reproduced. (orig.)

  9. Nonparametric Bayesian models for a spatial covariance.

    Science.gov (United States)

    Reich, Brian J; Fuentes, Montserrat

    2012-01-01

    A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.

  10. Pion polarizability in nonlocal quark model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Okhlopkova, V.A.

    1978-01-01

    The γγ→ππ amplitude was calculated in nonlocal quark model in the fourth order on the perturbation theory. The coefficients of electric[a) and magnetic polarizability (β) determined are equal in magnitude and opposite in sign αsub(π+-)=βsub(π+-)=+0.014α/msub(π)sup(3), αsub(πsup(0))=-βsub(πsup(0))=-0.07α/msub(π)sup(3). The results have been compared with calculations in other models

  11. Heavy hadron spectroscopy: A quark model perspective

    International Nuclear Information System (INIS)

    Vijande, J.; Valcarce, A.; Caramés, T.F.; Garcilazo, H.

    2013-01-01

    We present recent results of hadron spectroscopy and hadron–hadron interaction from the perspective of constituent quark models. We pay special attention to the role played by higher order Fock space components in the hadron spectra and the connection of this extension with the hadron–hadron interaction. The main goal of our description is to obtain a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about low-energy realization of the theory

  12. Sivers function in constituent quark models

    CERN Document Server

    Scopetta, S.; Fratini, F.; Vento, V.

    2008-01-01

    A formalism to evaluate the Sivers function, developed for calculations in constituent quark models, is applied to the Isgur-Karl model. A non-vanishing Sivers asymmetry, with opposite signs for the u and d flavor, is found; the Burkardt sum rule is fulfilled up to 2 %. Nuclear effects in the extraction of neutron single spin asymmetries in semi-inclusive deep inelastic scattering off 3He are also evaluated. In the kinematics of JLab, it is found that the nuclear effects described by an Impulse Approximation approach are under control.

  13. Important configurations in six-quark N-N states. II. Current quark model

    International Nuclear Information System (INIS)

    Stancu, F.; Wilets, L.

    1989-01-01

    Quark basis states constructed from molecular-type orbitals were shown previously to be more convenient to use than cluster model states for N-N processes. The usual cluster model representation omits configurations which emerge naturally in a molecular basis which contains the same number of spatial functions. The importance of the omitted states was demonstrated for a constituent quark model. The present work extends the study to the prototypical current quark model, namely the MIT bag. In order to test the expansion for short-range N-N interactions, the eigenstates and eigenenergies of six quarks in a spherical bag, including one-gluon exchange, are calculated. The lowest eigenenergies are lowered significantly with respect to the usual cluster model. This reaffirms the importance of dynamics for obtaining the needed short-range repulsion

  14. KN interaction in a constituent quark model

    International Nuclear Information System (INIS)

    Labarsouque, J.; Leandri, J.; Silvestre Brac, B.

    1997-01-01

    The kaon-nucleon s-wave phase shift have been calculated in a quark potential model using the resonating group method. The Hill-Wheeler equation has been solved numerically without any parametrization of the KN relative wave-function. The I = 0 phase shift has been found in agreement with the experimental data. In the I = 1 channel too much repulsion has been obtained., probably due to the lack of medium-range boson exchange type attraction. In a second step, pion and sigma-type exchange have been incorporated in the calculation

  15. Quark potential model of baryon spin-orbit mass splittings

    International Nuclear Information System (INIS)

    Wang Fan; Wong Chunwa

    1987-01-01

    We show that it is possible to make the P-wave spin-orbit mass splittings in Λ baryons consistent with those of nonstrange baryons in a naive quark model, but only by introducing additional terms in the quark-quark effective interaction. These terms might be related to contributions due to pomeron exchange and sea excitations. The implications of our model in meson spectroscopy and nuclear forces are discussed. (orig.)

  16. Validity of covariance models for the analysis of geographical variation

    DEFF Research Database (Denmark)

    Guillot, Gilles; Schilling, Rene L.; Porcu, Emilio

    2014-01-01

    1. Due to the availability of large molecular data-sets, covariance models are increasingly used to describe the structure of genetic variation as an alternative to more heavily parametrised biological models. 2. We focus here on a class of parametric covariance models that received sustained att...

  17. Hadron matrix elements of quark operators in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bando, Masako; Toya, Mihoko [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi

    1979-07-01

    General formulae for evaluating matrix elements of two- and four-quark operators sandwiched by one-hadron states are presented on the basis of the relativistic quark model. Observed hadronic quantities are expressed in terms of those matrix elements of two- and four-quark operators. One observes various type of relativistic expression for the matrix elements which in the non-relativistic case reduce to simple expression of the so-called ''the wave function at the origin /sup +/psi(0)/sup +/''.

  18. Approximating chiral quark models with linear σ-models

    International Nuclear Information System (INIS)

    Broniowski, Wojciech; Golli, Bojan

    2003-01-01

    We study the approximation of chiral quark models with simpler models, obtained via gradient expansion. The resulting Lagrangian of the type of the linear σ-model contains, at the lowest level of the gradient-expanded meson action, an additional term of the form ((1)/(2))A(σ∂ μ σ+π∂ μ π) 2 . We investigate the dynamical consequences of this term and its relevance to the phenomenology of the soliton models of the nucleon. It is found that the inclusion of the new term allows for a more efficient approximation of the underlying quark theory, especially in those cases where dynamics allows for a large deviation of the chiral fields from the chiral circle, such as in quark models with non-local regulators. This is of practical importance, since the σ-models with valence quarks only are technically much easier to treat and simpler to solve than the quark models with the full-fledged Dirac sea

  19. Vector-like bottom quarks in composite Higgs models

    DEFF Research Database (Denmark)

    Gillioz, M.; Grober, R.; Kapuvari, A.

    2014-01-01

    Like many other models, Composite Higgs Models feature the existence of heavy vector-like quarks. Mixing effects between the Standard Model fields and the heavy states, which can be quite large in case of the top quark, imply deviations from the SM. In this work we investigate the possibility of ...

  20. Effective field theory and the quark model

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc; Jaczko, Gregory

    2001-01-01

    We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections

  1. An algebraic model for quark mass matrices with heavy top

    International Nuclear Information System (INIS)

    Krolikowski, W.; Warsaw Univ.

    1991-01-01

    In terms of an intergeneration U(3) algebra, a numerical model is constructed for quark mass matrices, predicting the top-quark mass around 170 GeV and the CP-violating phase around 75 deg. The CKM matrix is nonsymmetric in moduli with |V ub | being very small. All moduli are consistent with their experimental limits. The model is motivated by the author's previous work on three replicas of the Dirac particle, presumably resulting into three generations of leptons and quarks. The paper may be also viewed as an introduction to a new method of intrinsic dynamical description of lepton and quark mass matrices. (author)

  2. Theory of Covariance Equivalent ARMAV Models of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, P.; Brincker, Rune; Kirkegaard, Poul Henning

    1996-01-01

    In this paper the theoretical background for using covariance equivalent ARMAV models in modal analysis is discussed. It is shown how to obtain a covariance equivalent ARMA model for a univariate linear second order continous-time system excited by Gaussian white noise. This result is generalized...

  3. Theory of Covariance Equivalent ARMAV Models of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, P.; Brincker, Rune; Kirkegaard, Poul Henning

    In this paper the theoretical background for using covariance equivalent ARMAV models in modal analysis is discussed. It is shown how to obtain a covariance equivalent ARMA model for a univariate linear second order continuous-time system excited by Gaussian white noise. This result is generalize...

  4. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  5. The quark-gluon model for particle production processes

    International Nuclear Information System (INIS)

    Volkovitskij, P.E.

    1983-01-01

    The quark-gluon model for hadronization of strings produced in soft and hard processes is suggested. The model is based on the distribution functions of valence quarks in hadrons which have correct Regge behaviour. The simplest case is discussed in which only the longitudinal degrees of freedom are taken into account

  6. Wave-particle duality in a quark model

    International Nuclear Information System (INIS)

    Gudder, S.P.

    1984-01-01

    A quark model based on finite-dimensional quantum mechanics is presented. Observables associated with color, flavor, charge, and spin are considered. Using these observables, quark and baryon Hamiltonians are constructed. Wave-particle dualities in this model are pointed out. (Auth.)

  7. Modelling the Covariance Structure in Marginal Multivariate Count Models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Olivero, J.; Grande-Vega, M.

    2017-01-01

    The main goal of this article is to present a flexible statistical modelling framework to deal with multivariate count data along with longitudinal and repeated measures structures. The covariance structure for each response variable is defined in terms of a covariance link function combined...... be used to indicate whether there was statistical evidence of a decline in blue duikers and other species hunted during the study period. Determining whether observed drops in the number of animals hunted are indeed true is crucial to assess whether species depletion effects are taking place in exploited...... with a matrix linear predictor involving known matrices. In order to specify the joint covariance matrix for the multivariate response vector, the generalized Kronecker product is employed. We take into account the count nature of the data by means of the power dispersion function associated with the Poisson...

  8. Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F

    2013-04-01

    In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.

  9. The proton's spin: A quark model perspective

    International Nuclear Information System (INIS)

    Close, F.E.

    1989-01-01

    Magnetic moments and g A /g V provide information on the correlations among quark spins and flavors in the proton. I compare this information with the deep inelastic polarized data from EMC which has been claimed to show that very little of the proton's spin is due to the quarks. The possibility that there is significant polarization of strange quarks within protons is discussed. 38 refs

  10. Testing the constituent quark model in KN scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, S. E-mail: lemaire@cenbg.in2p3.fr; Labarsouque, J.; Silvestre-Brac, B

    2003-02-10

    The kaon-nucleon S, P, D, F, G waves phase shifts have been calculated using a non-relativistic quark potential model and the resonating group method (RGM). The calculation has been performed using quark-quark potential which both includes gluon, pion and sigma exchanges and reproduces as well as possible the meson spectrum. The agreement obtained with the existing experimental phase shifts is quite poor. The results are also compared with a previous calculation based only on gluon exchanges at the quark level.

  11. Testing the constituent quark model in KN scattering

    International Nuclear Information System (INIS)

    Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.

    2003-01-01

    The kaon-nucleon S, P, D, F, G waves phase shifts have been calculated using a non-relativistic quark potential model and the resonating group method (RGM). The calculation has been performed using quark-quark potential which both includes gluon, pion and sigma exchanges and reproduces as well as possible the meson spectrum. The agreement obtained with the existing experimental phase shifts is quite poor. The results are also compared with a previous calculation based only on gluon exchanges at the quark level

  12. A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities

    Science.gov (United States)

    Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2018-05-01

    A systematic approach for the model building of Generalized Parton Distributions (GPDs), based on their overlap representation within the DGLAP kinematic region and a further covariant extension to the ERBL one, is applied to the valence-quark pion's case, using light-front wave functions inspired by the Nakanishi representation of the pion Bethe-Salpeter amplitudes (BSA). This simple but fruitful pion GPD model illustrates the general model building technique and, in addition, allows for the ambiguities related to the covariant extension, grounded on the Double Distribution (DD) representation, to be constrained by requiring a soft-pion theorem to be properly observed.

  13. Electroweak amplitudes in chiral quark models

    International Nuclear Information System (INIS)

    Fiolhais, Manuel

    2004-01-01

    After referring to some basic features of chiral models for baryons, with quarks and mesons, we describe how to construct model states representing physical baryons. We consider soliton models such as the Linear Sigma Model or the Chromodielectric Model, and bag models such as the Cloudy Bag Model. These models are solved approximately using variational approaches whose starting point is a mean-field description. We go beyond the mean-field description by introducing quantum fluctuations in the mesonic degrees of freedom. This is achieved, in a first step, by using a quantum state to represent meson clouds and, secondly, by performing an angular momentum and isospin projection from the mean-field state (actually a coherent state). Model states for baryons (nucleon, Delta, Roper) constructed in this way are used to determine several physical properties. I this seminar we paid a particular attention to the nucleon-delta electromagnetic and weak transition, presenting the model predictions for the electromagnetic and axial amplitudes

  14. Interactions between baryon octets by quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, S. [Suzuka National College of Technology, Suzuka, Mie (Japan); Fujiwara, Y. [Kyoto Univ., Faculty of Science, Kyoto (Japan); Suzuki, Y. [Niigata Univ., Faculty of Science, Niigata (Japan); Kohno, M. [Kyushu Dental College, Kita-kyushu, Fukuoka (Japan)

    2003-03-01

    Interactions between the baryon octets are studied by using the two spin flavor SU{sub 6} quark models, namely fss2 and FSS. In all channels, results that can be systematically understood along with the flavor symmetry are obtained. Effect of the channel coupling in the {sup 1}S{sub 0} state of the system of strangeness-2 shows a tendency to be weak in the system of isospin 0 while strong in the system of isospin 1. It is shown that this tendency is due to the competitive contributions of the color magnetic term and the effective meson exchange potential to the transition potential. Flavor symmetry breaking weakens both the repulsive force in the short range and the attractive force in the intermediate range. It is revealed that the overall qualitative behavior is determined as the result of the competitive effect of those interactions. (S. Funahashi)

  15. Partially linear varying coefficient models stratified by a functional covariate

    KAUST Repository

    Maity, Arnab; Huang, Jianhua Z.

    2012-01-01

    We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric

  16. Cumulative particle production in the quark recombination model

    International Nuclear Information System (INIS)

    Gavrilov, V.B.; Leksin, G.A.

    1987-01-01

    Production of cumulative particles in hadron-nuclear inteactions at high energies is considered within the framework of recombination quark model. Predictions for inclusive cross sections of production of cumulative particles and different resonances containing quarks in s state are made

  17. Model for dynamical chiral symmetry breaking and quark condensate

    International Nuclear Information System (INIS)

    Nekrasov, M.L.; Rochev, V.E.

    1986-01-01

    In the framework of the model, proposed earlier to describe nonperturbative QCD, the singularity of the type 1/k 4 in the gluon propagator is shown to result in dynamical chiral symmetry breaking and appearance of quark condensate. The value, obtained for quark condensate, is close to the phenomenological one

  18. A fermion-boson composite model of quarks and leptons

    Directory of Open Access Journals (Sweden)

    Yoshio Koide

    1983-01-01

    Full Text Available Quark and lepton masses and flavor-mixing angles are estimated on the basis of a fermion-boson composite model where the (u, d, (c, s and (t, b quarks are assigned to the diagonal elements π8, η8 and η1, respectively, in3 × 3* = 8 + 1 of the SU(3-generation symmetry.

  19. Systematics of quark mass matrices in the standard electroweak model

    International Nuclear Information System (INIS)

    Frampton, P.H.; Jarlskog, C.; Stockholm Univ.

    1985-01-01

    It is shown that the quark mass matrices in the standard electroweak model satisfy the empirical relation M = M' + O(lambda 2 ), where M(M') refers to the mass matrix of the charge 2/3 (-1/3) quarks normalized to the largest eigenvalue, msub(t) (msub(b)), and lambda = Vsub(us) approx.= 0.22. (orig.)

  20. Kaon-Nucleon scattering in a constituent quark model

    International Nuclear Information System (INIS)

    Lemaire, S.

    2002-06-01

    We have investigated Kaon-Nucleon (KN) interaction in a constituent quark model in the momentum range for the Kaon between 0 and 1 GeV/c in the laboratory frame. This study has been motivated by the fact that in an approach relying on a boson exchange mechanism the Bonn group was forced, in order to obtain good agreement with I = 0 s-wave phase shifts, to add the exchange of a short range fictitious repulsive scalar meson. This need for repulsion, whose range (∼ 0.2 fm) is smaller than the nucleon radius, clearly shows that the quark substructure of the nucleons and K + mesons cannot be neglected. The Kaon-Nucleon phase shifts are calculated in a quark potential model using the resonating group method (RGM). We have to cope with a five body problem with antisymmetrization with respect to the four ordinary quarks of the Kaon-Nucleon system. One requirement of our approach is that the quark-quark interaction must give a quite good description of the hadron spectra. One goal of the present work aims at determining the influence of a relativistic kinematics, in this constituent quark model, for the calculation of KN phase shifts. We have also investigated s, p, d, f, g waves KN elastic phase shifts and we have included a spin-orbit term in the quark-quark interaction. Then we have studied the influence of medium and long range exchange mechanism in the quark quark interaction on KN phase shifts. (author)

  1. Comparison of potential models through heavy quark effective theory

    International Nuclear Information System (INIS)

    Amundson, J.F.

    1995-01-01

    I calculate heavy-light decay constants in a nonrelativistic potential model. The resulting estimate of heavy quark symmetry breaking conflicts with similar estimates from lattice QCD. I show that a semirelativistic potential model eliminates the conflict. Using the results of heavy quark effective theory allows me to identify and compensate for shortcomings in the model calculations in addition to isolating the source of the differences in the two models. The results lead to a rule as to where the nonrelativistic quark model gives misleading predictions

  2. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.

    Science.gov (United States)

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2011-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.

  3. Nucleon-nucleon interaction and the quark model

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    The NN phase shifts are calculated using the quark model with a QCD inspired quark-quark force. The short range part of the NN force is given by quark and gluon exchange. The long range part is described by π and σ-meson exchange. The data fitted in the model are five values connected with three quarks only: the nucleon mass, the Δ mass, the root mean square radius of the charge distribution of the proton including the pion cloud, the π-N and the σ-N coupling constant at zero momentum transfer. The 1 S and 3 S phase shifts are nicely reproduced. The short range repulsion is decisively influenced by the node in the [42] r relative wave function. Very important is the colour magnetic quark-quark force which enlarges the [42] r admixture. In the OBEP's the short range repulsion is connected with the exchange of the ω-meson. But to reproduce the short range repulsion one had to blow up the ω-N coupling constant by a factor 2 to 3 compared to flavour SU 3 . With quark and gluon exchange the best fit to the ω-N coupling constant lies close to the SU 3 flavour value. This fact strongly supports the notion that the real nature of the short range repulsion of the NN interaction have been found

  4. Heavy mesons in the bootstrap quark model

    International Nuclear Information System (INIS)

    Gerasyuta, S.M.; Sarantsev, A.V.

    1990-01-01

    In the frame of an approach developed for light quarks the scattering amplitudes of heavy quarks qQ-bar→qQ-bar→,QQ-bar→QQ-bar (q=u,d,s; Q=c,b,t) are calculated. The obtained mass values of the lowest c,b-mesons multiplets (J P =0 - ,1 - ,0 + ) are in a good agreement with the experimental ones. The masses of the new heavy particles with the t-quark are predicted. 46 refs.; 4 figs.; 5 tabs

  5. Generalized Extreme Value model with Cyclic Covariate Structure ...

    Indian Academy of Sciences (India)

    48

    enhances the estimation of the return period; however, its application is ...... Cohn T A and Lins H F 2005 Nature's style: Naturally trendy; GEOPHYSICAL ..... Final non-stationary GEV models with covariate structures shortlisted based on.

  6. Y-Scaling in a simple quark model

    International Nuclear Information System (INIS)

    Kumano, S.; Moniz, E.J.

    1988-01-01

    A simple quark model is used to define a nuclear pair model, that is, two composite hadrons interacting only through quark interchange and bound in an overall potential. An ''equivalent'' hadron model is developed, displaying an effective hadron-hadron interaction which is strongly repulsive. We compare the effective hadron model results with the exact quark model observables in the kinematic region of large momentum transfer, small energy transfer. The nucleon reponse function in this y-scaling region is, within the traditional frame work sensitive to the nucleon momentum distribution at large momentum. We find a surprizingly small effect of hadron substructure. Furthermore, we find in our model that a simple parametrization of modified hadron size in the bound state, motivated by the bound quark momentum distribution, is not a useful way to correlate different observables

  7. Optimal covariance selection for estimation using graphical models

    OpenAIRE

    Vichik, Sergey; Oshman, Yaakov

    2011-01-01

    We consider a problem encountered when trying to estimate a Gaussian random field using a distributed estimation approach based on Gaussian graphical models. Because of constraints imposed by estimation tools used in Gaussian graphical models, the a priori covariance of the random field is constrained to embed conditional independence constraints among a significant number of variables. The problem is, then: given the (unconstrained) a priori covariance of the random field, and the conditiona...

  8. Electromagnetic properties of baryons in the constituent quark model

    International Nuclear Information System (INIS)

    Warns, M.

    1992-01-01

    The electromagnetic properties of baryons are investigated in the framework of a relativized quark model. The model includes beyond the usual single quark transition ansatz relativistic effects due to the strong interaction and confinement forces between the quarks. Furthermore the center-of-mass motion of the three-quark system is separated off in a Lorentz-invariant way. All relativistic correction terms are obtained by expanding the corresponding relativistic expressions in powers of the quark velocity. In this way recoil effects on the electromagnetic interaction between the photon and the baryon could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing from the Isgur-Karl model, the form factors of the nucleon and the electromagnetic transition amplitudes both for longitudinally and transversely polarized photons are calculated for the most important baryon resonances. An extension to baryons involving strange quarks is also considered. Comparisons are made with the results of the nonrelativistic quark model and with some other approaches. (orig.)

  9. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential

    International Nuclear Information System (INIS)

    Xu Shu-Sheng; Shi Chao; Cui Zhu-Fang; Zong Hong-Shi; Jiang Yu

    2015-01-01

    Generally speaking, the quark propagator is dependent on the quark chemical potential in the dense quantum chromodynamics (QCD). By means of the generating functional method, we prove that the quark propagator actually depends on p_4 + iμ from the first principle of QCD. The relation between quark number density and quark condensate is discussed by analyzing their singularities. It is concluded that the quark number density has some singularities at certain μ when T = 0, and the variations of the quark number density as well as the quark condensate are located at the same point. In other words, at a certain μ the quark number density turns to nonzero, while the quark condensate begins to decrease from its vacuum value. (paper)

  10. Radiative transitions in mesons within a non relativistic quark model

    International Nuclear Information System (INIS)

    Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.

    2002-01-01

    An exhaustive study of radiative transitions in mesons is performed in a non relativistic quark model. Three different types of mesons wave functions are tested. The effect of some usual approximations is commented. Overall agreement with experimental data is obtained

  11. Matérn-based nonstationary cross-covariance models for global processes

    KAUST Repository

    Jun, Mikyoung

    2014-01-01

    -covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters

  12. Orbital angular momentum parton distributions in quark models

    International Nuclear Information System (INIS)

    Scopetta, S.; Vento, V.

    2000-01-01

    At the low energy, hadronic, scale we calculate Orbital Angular Momentum (OAM) twist-two parton distributions for the relativistic MIT bag model and for nonrelativistic quark models. We reach the scale of the data by leading order evolution in perturbative QCD. We confirm that the contribution of quarks and gluons OAM to the nucleon spin grows with Q 2 , and it can be relevant at the experimental scale, even if it is negligible at the hadronic scale, irrespective of the model used. The sign and shape of the quark OAM distribution at high Q 2 may depend strongly on the relative size of the OAM and spin distributions at the hadronic scale. Sizeable quark OAM distributions at the hadronic scale, as proposed by several authors, can produce the dominant contribution to the nucleon spin at high Q 2 . (author)

  13. Quark-diquark model description for double charm baryons

    International Nuclear Information System (INIS)

    Majethiya, A.; Patel, B.; Vinodkumar, P. C.

    2010-01-01

    We report here the mass spectrum and magnetic moments of ccq(q (implied by) u, d, s) systems in the potential model framework by assuming the inter-quark potential as the colour coulomb plus power form with power index ν varying between 0.1 to 2.0. Here the two charm quarks are considered for the diquark states. The conventional one gluon exchange interaction has been employed to get the hyperfine and the fine structure between different states. We have predicted many low-lying states whose experimental verification can exclusively support the quark-diquark structure of the baryons. (authors)

  14. Extended particle model with quark confinement and charmonium spectroscopy

    International Nuclear Information System (INIS)

    Hasenfratz, Peter; Kuti, Julius; Szalay, A.S.

    Extended particle like vector gluon bubbles /bags/ are introduced which are stabilized against free expansion by a surface tension of volume tension. Since quraks are coupled to the gluon field, they are confined to the inside of the gluon bag without any further mechanism. Only color singlet gluon bags are allowed. Nonlinear boundary conditions are not imposed on the quark field in the model. A massless abelian gauge confined by a surface tension is first considered; in a four-dimensional relativistic picture the surface of the gauge field bubble appears as a tube with a three dimensional surface. As a first application, the model is used to study bound states of heavy charmed quarks (charmonium). Similar to the Born-Oppenheimer approximation in molecular physics, heavy charmed quarks are treated as nonrelativistic in their motion whereas the gluon bag and light quarks (u,d,s) are treated in an adiabatic approximation

  15. A relativized quark model for radiative baryon transitions

    International Nuclear Information System (INIS)

    Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.

    1989-03-01

    In this paper we investigate the electromagnetic form factors of baryons and their resonances using the framework of a relativized constituent quark model. Beyond the usual single-quark transition ansatz, we incorporate relativistic corrections which are well-determined by the intrinsic strong interaction and confinement forces between the quarks. Furthermore we separate off for the compound three-quark system the relativistic center-of-mass motion by an approximately Lorentz-invariant approach. In this way for the first time recoil effects could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing as derived in the Isgur-Karl model, after restoring gauge invariance our relativized interaction hamiltonian can be used to calculate the transversely and longitudinally polarized photon transition form factors of the baryons. (orig.)

  16. Color superconductivity from the chiral quark-meson model

    Science.gov (United States)

    Sedrakian, Armen; Tripolt, Ralf-Arno; Wambach, Jochen

    2018-05-01

    We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral phase transition in the quark-meson model where the interactions between quarks are generated by pion and sigma exchanges. Starting from the Nambu-Gorkov propagator in real-time formulation we obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the zero temperature limit using a model input spectral function. We find that these components of the gap display a complicated structure with the real part being strongly suppressed above 2Δ0, where Δ0 is its on-shell value. We find Δ0 ≃ 40MeV close to the chiral phase transition.

  17. Goldstone-Boson Dynamics for Constituent Quarks

    Science.gov (United States)

    Plessas, W.

    2003-07-01

    We address some essential features of the Goldstone-boson-exchange constituent quark model. Starting from its background we discuss the motivation for its construction and show its performance in light and strange baryon spectroscopy. Then we quote results from first applications of this type of constituent quark model in covariant calculations of electroweak nucleon form factors.

  18. Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)

    DEFF Research Database (Denmark)

    Agosto, Arianna; Cavaliere, Guiseppe; Kristensen, Dennis

    We develop a class of Poisson autoregressive models with additional covariates (PARX) that can be used to model and forecast time series of counts. We establish the time series properties of the models, including conditions for stationarity and existence of moments. These results are in turn used...

  19. Bayes factor covariance testing in item response models

    NARCIS (Netherlands)

    Fox, J.P.; Mulder, J.; Sinharay, Sandip

    2017-01-01

    Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning

  20. Bayes Factor Covariance Testing in Item Response Models

    NARCIS (Netherlands)

    Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip

    2017-01-01

    Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning

  1. Quark matter revisited with non-extensive MIT bag model

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Pedro H.G.; Nunes da Silva, Tiago; Menezes, Debora P. [Universidade Federal de Santa Catarina, Departamento de Fisica, CFM, Florianopolis (Brazil); Deppman, Airton [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo (Brazil)

    2017-10-15

    In this work we revisit the MIT bag model to describe quark matter within both the usual Fermi-Dirac and the Tsallis statistics. We verify the effects of the non-additivity of the latter by analysing two different pictures: the first order phase transition of the QCD phase diagram and stellar matter properties. While the QCD phase diagram is visually affected by the Tsallis statistics, the resulting effects on quark star macroscopic properties are barely noticed. (orig.)

  2. Hadron spectrum in quenched lattice QCD and quark potential models

    International Nuclear Information System (INIS)

    Iwasaki, Y.; Yoshie, T.

    1989-01-01

    We show that the quenched lattice QCD gives a hadron spectrum which remarkably agrees with that of quark potential models for quark mass m q ≥ m strange , even when one uses the standard one-plaquette gauge action. This is contrary to what is stated in the literature. We clarify the reason of the discrepancy, paying close attention to systematic errors in numerical calculations. (orig.)

  3. Covariate selection for the semiparametric additive risk model

    DEFF Research Database (Denmark)

    Martinussen, Torben; Scheike, Thomas

    2009-01-01

    This paper considers covariate selection for the additive hazards model. This model is particularly simple to study theoretically and its practical implementation has several major advantages to the similar methodology for the proportional hazards model. One complication compared...... and study their large sample properties for the situation where the number of covariates p is smaller than the number of observations. We also show that the adaptive Lasso has the oracle property. In many practical situations, it is more relevant to tackle the situation with large p compared with the number...... of observations. We do this by studying the properties of the so-called Dantzig selector in the setting of the additive risk model. Specifically, we establish a bound on how close the solution is to a true sparse signal in the case where the number of covariates is large. In a simulation study, we also compare...

  4. Bayes Factor Covariance Testing in Item Response Models.

    Science.gov (United States)

    Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip

    2017-12-01

    Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies.

  5. Dihadron fragmentation functions in the quark-jet model: Transversely polarized quarks

    Science.gov (United States)

    Matevosyan, Hrayr H.; Kotzinian, Aram; Thomas, Anthony W.

    2018-01-01

    Within the most recent extension of the quark-jet hadronization framework, we explore the transverse-polarization-dependent dihadron fragmentation functions (DiFFs) H1∢ and H1⊥ of a quark into π+π- pairs. Monte Carlo (MC) simulations are employed to model polarized quark hadronization and calculate the corresponding number densities. These, in turn, are used to extract the Fourier cosine moments of the DiFFs H1∢ and H1⊥. A notable finding is that there are previously unnoticed apparent discrepancies between the definitions of the so-called interference DiFF (IFF) H1∢ , entering the cross sections for two-hadron semi-inclusive electroproduction, and those involved in the production of two pairs of hadrons from back-to-back jets in electron-positron annihilation. This manuscript completes the studies of all four leading-twist DiFFs for unpolarized hadron pairs within the quark-jet framework, following our previous work on the helicity-dependent DiFF G1⊥.

  6. On the limits of application of the nolocal quark model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.; Novitsyn, E.A.; Ryabtsev, A.D.

    1983-01-01

    The possibility of application of the nolocal quark model (NQM) to the physics of mesons, containin charmed quarks, is considered. A method for description of states with identical quantum numbers is suggested. I' order to distinguish between such states different quark currents are introduced with additional condition of ''o thogonality'' implied. The latter allows one to neglect nondiagonal off-shell matrix elements in compositeness conditi ' for coupling constants. In the framework of NQM with ditional assumptions mentioned several decay widths of vector charmonium states have been computed, namely lepton c widths of J/psi(3100), psi'(3685) and psi(3770) an the decay width into charmed D-mesons psi(3770) → D nti D. It is shown that the two-parametric freedom of the m del is not sufficient to fit the experimental data. It is co'cluded that the revision of basic concepts of NQM is nec ssary in physics of mesons containing c-quarks

  7. Quark model calculations of current correlators in the nonperturbative domain

    International Nuclear Information System (INIS)

    Celenza, L.S.; Shakin, C.M.; Sun, W.D.

    1995-01-01

    The authors study the vector-isovector current correlator in this work, making use of a generalized Nambu-Jona-Lasinio (NJL) model. In their work, the original NJL model is extended to describe the coupling of the quark-antiquark states to the two-pion continuum. Further, a model for confinement is introduced that is seen to remove the nonphysical cuts that appear in various amplitudes when the quark and antiquark go on mass shell. Quite satisfactory results are obtained for the correlator. The authors also use the correlator to define a T-matrix for confined quarks and discuss a rho-dominance model for that T-matrix. It is also seen that the Bethe-Salpeter equation that determines the rho mass (in the absence of the coupling to the two-pion continuum) has more satisfactory behavior in the generalized model than in the model without confinement. That improved behavior is here related to the absence of the q bar q cut in the basic quark-loop integral of the generalized model. In this model, it is seen how one may work with both quark and hadron degrees of freedom, with only the hadrons appearing as physical particles. 12 refs., 16 figs., 1 tab

  8. Merons in a generally covariant model with Gursey term

    International Nuclear Information System (INIS)

    Akdeniz, K.G.; Smailagic, A.

    1982-10-01

    We study meron solutions of the generally covariant and Weyl invariant fermionic model with Gursey term. We find that, due to the presence of this term, merons can exist even without the cosmological constant. This is a new feature compared to previously studied models. (author)

  9. Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice

    NARCIS (Netherlands)

    Callot, Laurent A.F.; Kock, Anders B.; Medeiros, Marcelo C.

    2017-01-01

    We consider modeling and forecasting large realized covariance matrices by penalized vector autoregressive models. We consider Lasso-type estimators to reduce the dimensionality and provide strong theoretical guarantees on the forecast capability of our procedure. We show that we can forecast

  10. Modeling the Conditional Covariance between Stock and Bond Returns

    NARCIS (Netherlands)

    P. de Goeij (Peter); W.A. Marquering (Wessel)

    2002-01-01

    textabstractTo analyze the intertemporal interaction between the stock and bond market returns, we allow the conditional covariance matrix to vary over time according to a multivariate GARCH model similar to Bollerslev, Engle and Wooldridge (1988). We extend the model such that it allows for

  11. A reduced covariant string model for the extrinsic string

    International Nuclear Information System (INIS)

    Botelho, L.C.L.

    1989-01-01

    It is studied a reduced covariant string model for the extrinsic string by using Polyakov's path integral formalism. On the basis of this reduced model it is suggested that the extrinsic string has its critical dimension given by 13. Additionally, it is calculated in a simple way Poliakov's renormalization group law for the string rigidity coupling constants. (A.C.A.S.) [pt

  12. The transverse momentum dependence of quark fragmentation functions from cascade models

    International Nuclear Information System (INIS)

    Groot, E.H. de; Engels, J.

    1979-01-01

    A covariant generalization of the onedimensional cascade model for quark fragmentation functions is presented, so as to include the transverse momentum behaviour and the possibility to produce different particles at different vertices along the chain. In the scaling limit the exact solution is given, if the primordial function is of the type αZsup(α-1). T(pT). For the more general case of factorizing primordial functions an analytic expression for the seagull effect is derived, which turns out to be independent of the function T(pT). (orig.) [de

  13. Using Covariation Reasoning to Support Mathematical Modeling

    Science.gov (United States)

    Jacobson, Erik

    2014-01-01

    For many students, making connections between mathematical ideas and the real world is one of the most intriguing and rewarding aspects of the study of mathematics. In the Common Core State Standards for Mathematics (CCSSI 2010), mathematical modeling is highlighted as a mathematical practice standard for all grades. To engage in mathematical…

  14. Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models.

    Science.gov (United States)

    Garcia, Tanya P; Ma, Yanyuan

    2017-10-01

    We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- n consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.

  15. Superoperators in the dual model with coloured quarks

    International Nuclear Information System (INIS)

    Manida, S.N.

    1978-01-01

    The derivation of the dual model with coloured quarks is considered. The model is represented as a superoperator generalization of the Bardakci-Halpern model. It is shown that the three-regeon vertex of the model appears to be more compact and transparent

  16. Identifying nonproportional covariates in the Cox model

    Czech Academy of Sciences Publication Activity Database

    Kraus, David

    2008-01-01

    Roč. 37, č. 4 (2008), s. 617-625 ISSN 0361-0926 R&D Projects: GA AV ČR(CZ) IAA101120604; GA MŠk(CZ) 1M06047; GA ČR(CZ) GD201/05/H007 Institutional research plan: CEZ:AV0Z10750506 Keywords : Cox model * goodness of fit * proportional hazards assumption * time-varying coefficients Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.324, year: 2008

  17. Top quark pair production and modeling via QCD in CMS

    CERN Document Server

    Gonzalez Fernandez, Juan Rodrigo

    2017-01-01

    Measurements of the inclusive and differential top quark pair ($\\textrm{t}\\bar{\\textrm{t}}$) production cross section at centre-of-mass energies of 13 TeV and 5.02 TeV are presented, performed using CMS data collected in 2015 and 2016. The inclusive cross section is measured in the lepton+jets, dilepton and fully hadronic channels. Top quark pair differential cross sections are measured and are given as functions of various kinematic observables of (anti)top quark, the $\\textrm{t}\\bar{\\textrm{t}}$ system, and of the jets and leptons in the final state. Furthermore, the multiplicity and kinematic distributions of the additional jets produced in $\\textrm{t}\\bar{\\textrm{t}}$ events are also investigated and its modeling is compared for several generators. A new tune of parameters is developed for some of the generators. In addition, first measurements of top quark pair production with additional b quarks in the final state are presented. Furthermore, searches for four top quark production in CMS are also present...

  18. Recursive model for the fragmentation of polarized quarks

    Science.gov (United States)

    Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.

    2018-04-01

    We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The fragmentation is treated as a recursive process, where the splitting function of the subprocess q →h +q' depends on the spin density matrix of the quark q . The 3P0 mechanism is parametrized by a complex mass parameter μ , the imaginary part of which is responsible for single spin asymmetries. The model has been implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data from SIDIS and e+e- annihilation. The model predictions on the jet-handedness are also discussed.

  19. Quark compound bag (QCB) model and nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1983-01-01

    Quark degrees of freedom are treated in the NN system in the framework of the QCB model. The resulting QCB potential is in agreement with experimental data. P-matrix analysis inherent to the QCB model is discussed in detail. Applications of the QCB model are given including the weak NN interaction

  20. From the standard model to composite quarks and leptons

    International Nuclear Information System (INIS)

    Harari, H.

    1981-01-01

    An updated version of lectures delivered at the SLAC Summer Institute, 1980 is presented. Part I describes the present status of the standard model and gives a short survey of topics such as extensions of the electroweak group, grand unification, the generation puzzle and the connection between quark masses and generalized Cabibbo angles. Part II is devoted to the possibility that quarks and leptons are composite. The general theoretical difficulties are described and several published models are reviewed, including the dynamical rishon model. (H.K.)

  1. Non-uniform chiral phase in effective chiral quark models

    International Nuclear Information System (INIS)

    Sadzikowski, M.; Broniowski, W.

    2000-01-01

    We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

  2. Globally covering a-priori regional gravity covariance models

    Directory of Open Access Journals (Sweden)

    D. Arabelos

    2003-01-01

    Full Text Available Gravity anomaly data generated using Wenzel’s GPM98A model complete to degree 1800, from which OSU91A has been subtracted, have been used to estimate covariance functions for a set of globally covering equal-area blocks of size 22.5° × 22.5° at Equator, having a 2.5° overlap. For each block an analytic covariance function model was determined. The models are based on 4 parameters: the depth to the Bjerhammar sphere (determines correlation, the free-air gravity anomaly variance, a scale factor of the OSU91A error degree-variances and a maximal summation index, N, of the error degree-variances. The depth of Bjerhammar-sphere varies from -134km to nearly zero, N varies from 360 to 40, the scale factor from 0.03 to 38.0 and the gravity variance from 1081 to 24(10µms-22. The parameters are interpreted in terms of the quality of the data used to construct OSU91A and GPM98A and general conditions such as the occurrence of mountain chains. The variation of the parameters show that it is necessary to use regional covariance models in order to obtain a realistic signal to noise ratio in global applications.Key words. GOCE mission, Covariance function, Spacewise approach`

  3. Non-leptonic decays in an extended chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Eeg, J. O. [Dept. of Physics, Univ. of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)

    2012-10-23

    We consider the color suppressed (nonfactorizable) amplitude for the decay mode B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}. We treat the b-quark in the heavy quark limit and the energetic light (u,d,s) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} is suppressed by a factor of order {Lambda}{sub QCD}/m{sub b} with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}.

  4. NJL-jet model for quark fragmentation functions

    International Nuclear Information System (INIS)

    Ito, T.; Bentz, W.; Cloeet, I. C.; Thomas, A. W.; Yazaki, K.

    2009-01-01

    A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain why the elementary (lowest order) fragmentation process q→qπ is completely inadequate to describe the empirical data, although the crossed process π→qq describes the quark distribution functions in the pion reasonably well. Taking into account cascadelike processes in a generalized jet-model approach, we then show that the momentum and isospin sum rules can be satisfied naturally, without the introduction of ad hoc parameters. We present results for the Nambu-Jona-Lasinio (NJL) model in the invariant mass regularization scheme and compare them with the empirical parametrizations. We argue that the NJL-jet model, developed herein, provides a useful framework with which to calculate the fragmentation functions in an effective chiral quark theory.

  5. Dark matter admixed strange quark stars in the Starobinsky model

    Science.gov (United States)

    Lopes, Ilídio; Panotopoulos, Grigoris

    2018-01-01

    We compute the mass-to-radius profiles for dark matter admixed strange quark stars in the Starobinsky model of modified gravity. For quark matter, we assume the MIT bag model, while self-interacting dark matter inside the star is modeled as a Bose-Einstein condensate with a polytropic equation of state. We numerically integrate the structure equations in the Einstein frame, adopting the two-fluid formalism, and we treat the curvature correction term nonperturbatively. The effects on the properties of the stars of the amount of dark matter as well as the higher curvature term are investigated. We find that strange quark stars (in agreement with current observational constraints) with the highest masses are equally affected by dark matter and modified gravity.

  6. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei

    2017-11-08

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix into variance and correlation matrices. The highlight is that the correlations are represented as products of vectors on unit spheres. We propose a variety of distributions on spheres (e.g. the squared-Dirichlet distribution) to induce flexible prior distributions for covariance matrices that go beyond the commonly used inverse-Wishart prior. To handle the intractability of the resulting posterior, we introduce the adaptive $\\\\Delta$-Spherical Hamiltonian Monte Carlo. We also extend our structured framework to dynamic cases and introduce unit-vector Gaussian process priors for modeling the evolution of correlation among multiple time series. Using an example of Normal-Inverse-Wishart problem, a simulated periodic process, and an analysis of local field potential data (collected from the hippocampus of rats performing a complex sequence memory task), we demonstrated the validity and effectiveness of our proposed framework for (dynamic) modeling covariance and correlation matrices.

  7. The baryon-baryon interaction in a modified quark model

    International Nuclear Information System (INIS)

    Zhang Zongye; Faessler, Amand; Straub, U.; Glozman, L.Ya.

    1994-01-01

    The quark-cluster model with coupling constants constraint by chiral symmetry is extended to include strange quarks. In this model, besides the confinement and one-gluon exchange potentials, the pseudoscalar mesons and sigma (σ) meson exchanges are included as the nonperturbative effect. Using this interaction we studied the binding energy of the deuteron, the NN scattering phase shifts and the hyperon-nucleon cross sections in the framework of the resonating group method (RGM). The results are reasonably consistent with experiments. ((orig.))

  8. P-matrix in the quark compound bag model

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Narodetskij, I.M.; Veselov, A.I.

    1983-01-01

    Meaning of the P-matrix analysis is discussed within the quark compound bag (QCB) model. The most general version of this model is considered including the arbitrary coupling between quark and hadronic channels and the arbitrary smearipg of the surface interection region. The behaviour of P-matrix poles as functions of matching radius r,L0 is discussed for r 0 > + . In conclusion are presented the parameters of an illustrative set of NN potentials that has been obtained from the P-matrix fit to experimental data

  9. Generation labels in composite models for quarks and leptons

    International Nuclear Information System (INIS)

    Harari, H.; Seiberg, N.

    1981-03-01

    Models in which quarks and leptons are approximately massless composites of fundamental massless fermions which are confined by a hypercolor force are considered. The fundamental Lagrangian exhibits an axial U(1)sub(X) symmetry which is broken by hypercolor instantons, leaving a conserved discrete subgroup. It is proposed that the distinction between different generations of quarks and leptons is given by the X-number. The resulting generation labelling scheme does not lead to massless Goldstone bosons or to new anomalies and is based on a quantum number which is already contained in the theory. The dynamical rishon model is described as an illustrative example. (H.K.)

  10. Lepton and quark generations in the geometrical Rishon model

    International Nuclear Information System (INIS)

    Elbaz, E.; Uschersohn, J.; Meyer, J.

    1981-12-01

    We propose a concrete representation of leptons and quarks in different generations in the geometrical approach to the rishon model where rishons behave as the fundamental representations of the SU(3)sub(C) x SU(3)sub(H) group. The model allows a unified description of both hadronic and leptonic decays of elementary particles

  11. N-N potentials in QCD-motivated quark models

    International Nuclear Information System (INIS)

    Bender, I.; Dosch, H.G.

    1982-01-01

    Nucleon-nucleon interaction has been investigated in different QCD-inspired quark models, particularly the influence of configuration mixing. A string-motivated model is advocated, which yields a realistic short-range part of the nucleon-nucleon potential. (author)

  12. Constraints on constituent quark masses from potential models

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    1998-01-01

    Starting from reasonable hypotheses, the magnetic moments for the baryons are revisited dat the light of general space wave functions. They allow to put very severe bounds on the quark masses as derived from usual potential models. The experimental situation cannot be explained in the framework of such models. (author)

  13. Electromagnetic moments of hadrons and quarks in a hybrid model

    International Nuclear Information System (INIS)

    Gerasimov, S.B.

    1989-01-01

    Magnetic moments of baryons are analyzed on the basis of general sum rules following from the theory of broken symmetries and quark models including the relativistic effects and hadronic corrections due to the meson exchange currents. A new sum rule is proposed for the hyperon magnetic moments, which is in accord with the most precise new data and also with a theory of the electromagnetic ΛΣ 0 mixing. The numerical values of the quark electromagnetic moments are obtained within a hybrid model treating the pion cloud effects through the local coupling of the pion field with the constituent massive quarks. Possible sensitivity of the weak neutral current magnetic moments to violation of the Okubo-Zweig-Izuki rule is emphasized nand discussed. 39 refs.; 1 fig

  14. Quark model calculation of charmed baryon production by neutrinos

    International Nuclear Information System (INIS)

    Avilez, C.; Kobayashi, T.; Koerner, J.G.

    1976-11-01

    We study the neutrino production of 25 low-lying charmed baryon resonances in the four flavour quark model. The mass difference of ordinary and charmed quarks is explicitly taken into account. The quark model is used to determine the spectrum of the charmed baryon resonances and the q 2 = 0 values of the weak current transition matrix elements. These transition matrix elements are then continued to space-like q 2 -values by a generalized meson dominance ansatz for a set of suitably chosen invariant form factors. We find that the production of the L = 0 states C 0 , C 1 and C 1 * is dominant, with the C 0 produced most copiously. For L = 1, 2 the Jsup(P) = 3/2 - 5/2 + charm states are dominant. We give differential cross sections, total cross sections and energy integrated total cross sections using experimental neutrino fluxes. (orig./BJ) [de

  15. KN scattering in the nonrelativistic quark model

    International Nuclear Information System (INIS)

    Barnes, F.E.

    1995-01-01

    KN scattering is of interest as a probe of nuclear structure and, more fundamentally, as a laboratory for the study of nonresonant hadron-hadron interactions. KN is a I theoretically attractive channel because of its simplicity, having only S = 1/2, no one pion exchange contributions and no valence q anti q annihilation. It may therefore be useful for the study of short-ranged quark forces analogous to the NN repulsive core. Since there are two isospin states, comparison of two closely related amplitudes is possible. This contribution reviews the experimental status of S-wave KN scattering and related theoretical studies based on quark-gluon dynamics. The experimental low-energy S-wave phase shift is well established for I = 1, but is not yet well determined for I = 0. The ratio of I = 0 to I = 1 scattering lengths is an interesting number theoretically, and may discriminate between different scattering mechanisms. A measurement of these scattering lengths at DAPHNE would be a useful contribution to low energy hadron physics

  16. Covariant boost and structure functions of baryons in Gross-Neveu models

    International Nuclear Information System (INIS)

    Brendel, Wieland; Thies, Michael

    2010-01-01

    Baryons in the large N limit of two-dimensional Gross-Neveu models are reconsidered. The time-dependent Dirac-Hartree-Fock approach is used to boost a baryon to any inertial frame and shown to yield the covariant energy-momentum relation. Momentum distributions are computed exactly in arbitrary frames and used to interpolate between the rest frame and the infinite momentum frame, where they are related to structure functions. Effects from the Dirac sea depend sensitively on the occupation fraction of the valence level and the bare fermion mass and do not vanish at infinite momentum. In the case of the kink baryon, they even lead to divergent quark and antiquark structure functions at x=0.

  17. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    Science.gov (United States)

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  18. Working covariance model selection for generalized estimating equations.

    Science.gov (United States)

    Carey, Vincent J; Wang, You-Gan

    2011-11-20

    We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.

  19. On the quark structure of resonance states in dual models

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    It is shown using as an example the Veneziano dual model, that each particular dual model already contains a certain latent quark structure unambiauously determined by internal properties of the dual model. To prove this degeneration of the resonance state spectrum is studied by introducing an additional disturbing interaction into the model being considered. Induced transitions of particles into a vacuum act as such an additional disturbance. This method complements the known factorization method of Fubini, Gordon and Veneziano and turns out to be free from an essential limitation of the latter connected with implicit assumption about the basence of internal additive laws of conservation in the model. By using the method of induced transitions of particles into a vacuum it has been possible to show that the resonance state spectrum is indeed more degenerated than it should be expected from the factorization theorem, and that the supplementary degeneration corresponds to the quark model with an infinite number of quarks of the increasing mass. Structures of some terms of the dual amplitude expansion over the degrees of the constant of the induced transition of particles to vacuum are considered; it is shown that the summation of this expansion may be reduced to a solution of a certain integral equation. On the basis of the integral equation obtained an integral representation ofr dual amplitudes is established. The problems related with degeneration of resonance states and with determination of additive quantum numbers leading to the quark interpretation of the degeneration being considered are discussed

  20. E1 transitions in the Harari quark model

    International Nuclear Information System (INIS)

    Kamath, S.G.

    1976-10-01

    The radiative decays psi(3.684)→γchi(sup(3)P sub(J)) and chi(sup(3)Psub(J)→chipsi(3.1) have been analyzed within the framework of the Harari quark model. The spatial matrix elements describing these L=1 to L=0 transitions have been estimated from the A 2 (1310)→ chirho(770) mode by applying U(6) symmetry at the quark level. The resulting decay widths, which compare very well with experimental data, have subsequently been used to determine the SU(3)sub(H) assignments for the chi states

  1. The p-antip annihilation in the quark model

    International Nuclear Information System (INIS)

    Niskanen, J.A.

    1988-05-01

    After a concise review of the N-antiN annihilation in the quark rearrangement and 3 P 0 annihilation models, preliminary results are given for the case with an additional term where a q-antiq pair with the gluon quantum number 3 S 1

  2. Quark model and high-energy nuclear experiments

    International Nuclear Information System (INIS)

    Bialas, A.

    1979-05-01

    Theoretical aspects of the measurements of production of low transverse momentum secondaries in high-energy hadron-nucleus and nucleus-nucleus collisions are discussed. Applications of the quark model to those processes are discussed in some detail. 58 references

  3. Semileptonic Decays of Heavy Omega Baryons in a Quark Model

    International Nuclear Information System (INIS)

    Muslema Pervin; Winston Roberts; Simon Capstick

    2006-01-01

    The semileptonic decays of (Omega) c and (Omega) b are treated in the framework of a constituent quark model developed in a previous paper on the semileptonic decays of heavy Λ baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For (Omega) b to (Omega) c the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the non-recoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured Λ c + → Λe + ν rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of (Omega) b to pairs of ground and excited (Omega) c states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory, to a good approximation. Our predictions for the semileptonic elastic branching fraction of (Omega) Q vary minimally within the models we use. We obtain an average value of (84 ± 2%) for the fraction of (Omega) c → Ξ (*) decays to ground states, and 91% for the fraction of (Omega) c → (Omega) (*) decays to the ground state (Omega). The elastic fraction of (Omega) b → (Omega) c ranges from about 50% calculated with the two harmonic-oscillator models, to about 67% calculated with the two Sturmian models

  4. Quark model and high-energy nuclear experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bialas, A.

    1979-05-01

    Theoretical aspects of the measurements of production of low transverse momentum secondaries in high-energy hadron-nucleus and nucleus-nucleus collisions are discussed. Applications of the quark model to those processes are discussed in some detail. 58 references.

  5. Studies on the quark confinement in a non-relativistic quark model

    International Nuclear Information System (INIS)

    Pfenninger, T.

    1988-01-01

    In the framework of the non-relativistic quark model we have studied several aspects of the description of the confinement by a confinement potential. A first consideration applied to the effects of the long-range color van-der-Waals forces on the nucleon-nucleon scattering. Regarding color dipole states as an additional closed channel in a dynamical and nonlocal resonating-group calculation we found a strong attraction. Additionally it was possible by means of the RGM kernels to derive an against earlier calculations improved color van-der-Waals potential in adiabatic approximation which regards correctly the internal kinetic and the confinement energy of the color octet states. This potential is not confined to large NN distances and shows asymptotically a 1/R 2 behaviour if it is based on a harmonic confinement. A further study applied to the question how far a possible vector character of the confinement, which is suggested by the elementary quark-gluon vertex, has effects on baryon properties and the NN interaction. Here it resulted that the vector confinement reacts in view of the model parameters very sensitively in the baryon properties whereas the scalar confinement did not show this dependence. In the NN scattering this vector confinement however plays a more secondary role. Because of the difficulties of the usual confinement potential with long-range color van-der-Waals forces we proposed in the last part a new potential and additional orthogonality relations for the quark wave functions in order to accomodate in the potential model to the string degrees of freedom. In scattering calculations we again studied the effects of the modification on the NN interaction. (orig./HSI) [de

  6. Gluon and quark jets in a recursive model motivated by quantum chromodynamics

    International Nuclear Information System (INIS)

    Sukhatme, U.P.

    1979-01-01

    We compute observable quantities like the multiplicity and momentum distributions of hadrons in gluon and quark jets in the framework of a recursive cascade model, which is strongly motivated by the fundamental interactions of QCD. Fragmentation occurs via 3 types of breakups: quark → meson + quark, gluon → meson + gluon, gluon → quark + antiquark. In our model gluon jets are softer than quark jets. The ratio of gluon jet to quark jet multiplicity is found to be 2 asymptotically, but much less at lower energies. Some phenomenological consequences for γ decay are discussed. (orig.)

  7. Various decays of some hadronic systems in constituent quark models

    International Nuclear Information System (INIS)

    Bonnaz, R.

    2001-09-01

    The topic of this study is the decay of mesons in constituent quark models. Those models as well as the various quark-antiquark interaction potentials are presented. Strong decay of a meson into two or three mesons is studied in the second part. The original 3 P o model is presented as well as the research of a vertex function γ(p) depending on the momentum for the created qq-bar pair. We show that a function γ(p) of constant+Gaussian type is superior than the constant usually used. The second part is dedicated to electromagnetic transitions studied through the emission of a real or a virtual photon. In the case of real photon emission, the different approximations found in the literature are reviewed and compared to the formalism going beyond the long wave length approximation. Mixing angles are tested for some mesons. In the case of virtual photon, the expression of decay width obtained by van Royen and Weisskopf is re-demonstrated and then improved by taking into account the quark momentum distribution inside the meson. An electromagnetic dressing of quarks is introduced that improves the results. All along this study, wave functions of various sophistication degrees are used. The results of decay widths are compared to a large bulk of experimental data. (author)

  8. Coupling constants and the nonrelativistic quark model with charmonium potential

    International Nuclear Information System (INIS)

    Chaichian, M.; Koegerler, R.

    1978-01-01

    Hadronic coupling constants of the vertices including charm mesons are calculated in a nonrelativistic quark model. The wave functions of the mesons which enter the corresponding overlap integrals are obtained from the charmonium picture as quark-antiquark bound state solutions of the Schroedinger equation. The model for the vertices takes into account in a dynamical way the SU 4 breakings through different masses of quarks and different wave functions in the overlap integrals. All hadronic vertices involving scalar, pseudoscalar, vector, pseudovector and tensor mesons are calculated up to an overall normalization constant. Regularities among the couplings of mesons and their radial excitations are observed: i) Couplings decrease with increasing order of radial excitations; ii) In general they change sign if a particle is replaced by its next radial excitation. The k-dependence of the vertices is studied. This has potential importance in explaining the unorthodox ratios in different decay channels. Having got the hadronic couplings radiative transitions are obtained with the current coupled to mesons and their recurrences. The resulting width values are smaller than those conventionally obtained in the naive quark model. The whole picture is only adequate for nonrelativistic configurations, as for the members of the charmonium- or of the UPSILON-family and most calculations have been done for transitions among charmed states. To see how far nonrelativistic concepts can be applied, couplings of light mesons are also considered. (author)

  9. Some remarks on estimating a covariance structure model from a sample correlation matrix

    OpenAIRE

    Maydeu Olivares, Alberto; Hernández Estrada, Adolfo

    2000-01-01

    A popular model in structural equation modeling involves a multivariate normal density with a structured covariance matrix that has been categorized according to a set of thresholds. In this setup one may estimate the covariance structure parameters from the sample tetrachoricl polychoric correlations but only if the covariance structure is scale invariant. Doing so when the covariance structure is not scale invariant results in estimating a more restricted covariance structure than the one i...

  10. Ruling out exotic models of b quark decay

    International Nuclear Information System (INIS)

    Chen, A.; Goldberg, M.; Horwitz, N.; Jawahery, A.; Jibaly, M.; Kooy, H.; Lipari, P.; Moneti, G.C.; Van Hecke, H.; Alam, M.S.; Csorna, S.E.; Fridman, A.; Mestayer, M.; Panvini, R.S.; Andrews, D.; Avery, P.; Berkelman, K.; Cassel, D.G.; DeWire, J.W.; Ehrlich, R.; Ferguson, T.; Galik, R.; Gilchriese, M.G.D.; Gittelman, B.; Hartill, D.L.; Herrup, D.; Herzlinger, M.; Holner, S.; Ito, M.; Kandaswamy, J.; Kistiakowsky, V.; Kreinick, D.L.; Kubota, Y.; Mistry, N.B.; Morrow, F.; Nordberg, E.; Ogg, M.; Perchonok, R.; Plunckett, R.; Silverman, A.; Stein, P.C.; Stone, S.; Weber, D.; Wilcke, R.; Sadoff, A.J.; Bebek, C.; Haggerty, J.; Hassard, J.; Hempstead, M.; Izen, J.M.; MacKay, W.W.; Pipkin, F.M.; Rohlf, J.; Wilson, R.; Kagan, H.; Chadwick, K.; Chauveau, J.; Ganci, P.; Gentile, T.; Guida, J.A.; Kass, R.; Melissinos, A.C.; Olsen, S.L.; Parkhurst, G.; Poling, R.; Rosenfeld, C.; Rucinski, G.; Thorndike, E.H.; Green, J.; Hicks, R.G.; Sannes, F.; Skubic, P.; Snyder, A.; Stone, R.

    1983-01-01

    We consider three broad classes of nonstandard models for b quark decay: (1) b->llq with charged or neutral leptons of arbitrary flavor; (2) b->lanti qanti q; and (3) b->qa - where a - is a Higgs boson or hyperpion. For these classes of models we have calculated the charged energy fraction and the inclusive yields of electrons, muons, protons, and lambdas. We demonstrate that these model predictions are inconsistent with CLEO measurements at the T(4S). (orig.)

  11. Super-hypernuclei in the quark-shell model, 2

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1989-07-01

    By following the previous paper, where the quark-shell model of nuclei in quantum chromodynamics is briefly reviewed, a short review of the MIT bag model of nuclei is presented for comparison and a simple estimate of the Hλ ('hexalambda') mass is also made for illustration. Furthermore, an even shorter review of the 'nucleon cluster model' of nuclei is presented for further comparison. (J.P.N.)

  12. Partially linear varying coefficient models stratified by a functional covariate

    KAUST Repository

    Maity, Arnab

    2012-10-01

    We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric component and a profiling estimator of the parametric component of the model and derive their asymptotic properties. Specifically, we show the consistency of the nonparametric functional estimates and derive the asymptotic expansion of the estimates of the parametric component. We illustrate the performance of our methodology using a simulation study and a real data application.

  13. Quark fragmentation functions in NJL-jet model

    Science.gov (United States)

    Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony

    2014-09-01

    We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.

  14. Valence QCD: Connecting QCD to the quark model

    International Nuclear Information System (INIS)

    Liu, K.F.; Dong, S.J.; Draper, T.; Sloan, J.; Leinweber, D.; Woloshyn, R.M.

    1999-01-01

    A valence QCD theory is developed to study the valence quark properties of hadrons. To keep only the valence degrees of freedom, the pair creation through the Z graphs is deleted in the connected insertions, whereas the sea quarks are eliminated in the disconnected insertions. This is achieved with a new 'valence QCD' Lagrangian where the action in the time direction is modified so that the particle and antiparticle decouple. It is shown in this valence version of QCD that the ratios of isovector to isoscalar matrix elements (e.g., F A /D A and F S /D S ratios) in the nucleon reproduce the SU(6) quark model predictions in a lattice QCD calculation. We also consider how the hadron masses are affected on the lattice and discover new insights into the origin of dynamical mass generation. It is found that, within statistical errors, the nucleon and the Δ become degenerate for the quark masses we have studied (ranging from 1 to 4 times the strange mass). The π and ρ become nearly degenerate in this range. It is shown that valence QCD has the C, P, T symmetries. The lattice version is reflection positive. It also has the vector and axial symmetries. The latter leads to a modified partially conserved axial Ward identity. As a result, the theory has a U(2N F ) symmetry in the particle-antiparticle space. Through lattice simulation, it appears that this is dynamically broken down to U q (N F )xU bar q (N F ). Furthermore, the lattice simulation reveals spin degeneracy in the hadron masses and various matrix elements. This leads to an approximate U q (2N F )xU bar q (2N F ) symmetry which is the basis for the valence quark model. In addition, we find that the masses of N, Δ,ρ,π,a 1 , and a 0 all drop precipitously compared to their counterparts in the quenched QCD calculation. This is interpreted as due to the disappearance of the 'constituent' quark mass which is dynamically generated through tadpole diagrams. The origin of the hyperfine splitting in the baryon is

  15. Kaon-nucleon S-wave phase shifts in a QCD-motivated quark model

    International Nuclear Information System (INIS)

    Bender, I.; Dosch, H.G.

    1982-01-01

    We calculate kaon-nucleon central potentials and S-wave phase shifts for I = 0 and I = 1 in an QCD-motivated quark model. In our model the K-N interaction is derived from short-range perturbative quark-quark interactions. (orig.)

  16. Statistical mechanics of learning orthogonal signals for general covariance models

    International Nuclear Information System (INIS)

    Hoyle, David C

    2010-01-01

    Statistical mechanics techniques have proved to be useful tools in quantifying the accuracy with which signal vectors are extracted from experimental data. However, analysis has previously been limited to specific model forms for the population covariance C, which may be inappropriate for real world data sets. In this paper we obtain new statistical mechanical results for a general population covariance matrix C. For data sets consisting of p sample points in R N we use the replica method to study the accuracy of orthogonal signal vectors estimated from the sample data. In the asymptotic limit of N,p→∞ at fixed α = p/N, we derive analytical results for the signal direction learning curves. In the asymptotic limit the learning curves follow a single universal form, each displaying a retarded learning transition. An explicit formula for the location of the retarded learning transition is obtained and we find marked variation in the location of the retarded learning transition dependent on the distribution of population covariance eigenvalues. The results of the replica analysis are confirmed against simulation

  17. Semileptonic Decays of Heavy Lambda Baryons in a Quark Model

    Energy Technology Data Exchange (ETDEWEB)

    Winston Roberts; Muslema Pervin; Simon Capstick

    2005-03-01

    The semileptonic decays of {Lambda}{sub c} and {Lambda}{sub b} are treated in the framework of a constituent quark model. Both nonrelativistic and semirelativistic Hamiltonians are used to obtain the baryon wave functions from a fit to the spectra, and the wave functions are expanded in both the harmonic oscillator and Sturmian bases. The latter basis leads to form factors in which the kinematic dependence on q{sup 2} is in the form of multipoles, and the resulting form factors fall faster as a function of q{sup 2} in the available kinematic ranges. As a result, decay rates obtained in the two models using the Sturmian basis are significantly smaller than those obtained using the harmonic oscillator basis. In the case of the {Lambda}{sub c}, decay rates calculated using the Sturmian basis are closer to the experimentally reported rates. However, we find a semileptonic branching fraction for the {Lambda}{sub c} to decay to excited {Lambda}* states of 11% to 19%, in contradiction with what is assumed in available experimental analyses. Our prediction for the {Lambda}{sub b} semileptonic decays is that decays to the ground state {Lambda}{sub c} provide a little less than 70% of the total semileptonic decay rate. For the decays {Lambda}{sub b} {yields} {Lambda}{sub c}, the analytic form factors we obtain satisfy the relations expected from heavy-quark effective theory at the non-recoil point, at leading and next-to-leading orders in the heavy-quark expansion. In addition, some features of the heavy-quark limit are shown to naturally persist as the mass of the heavy quark in the daughter baryon is decreased.

  18. Emergent gravity on covariant quantum spaces in the IKKT model

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C. [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)

    2016-12-30

    We study perturbations of 4-dimensional fuzzy spheres as backgrounds in the IKKT or IIB matrix model. Gauge fields and metric fluctuations are identified among the excitation modes with lowest spin, supplemented by a tower of higher-spin fields. They arise from an internal structure which can be viewed as a twisted bundle over S{sup 4}, leading to a covariant noncommutative geometry. The linearized 4-dimensional Einstein equations are obtained from the classical matrix model action under certain conditions, modified by an IR cutoff. Some one-loop contributions to the effective action are computed using the formalism of string states.

  19. Asymmetric nuclear matter in a modified quark meson coupling model

    International Nuclear Information System (INIS)

    Mishra, R.N.; Sahoo, H.S.; Panda, P.K.; Barik, N.

    2014-01-01

    In an earlier attempt we have successfully used this model in developing the nuclear equation of state and analysed various other bulk properties of symmetric nuclear matter with the dependence of quark masses. In the present work we want to apply the model to analyze asymmetric nuclear matter with the variation of the asymmetry parameter y p as well as analyze the effects of symmetry energy and the slope of the symmetry energy L

  20. Exotic hadron production in a quark combination model

    International Nuclear Information System (INIS)

    Han Wei; Shao Fenglan; Li Shiyuan; Shang Yonghui; Yao Tao

    2009-01-01

    The philosophy on production of exotic hadrons (multiquark states) in the framework of the quark combination model is investigated, taking f 0 (980) as an example. The production rate and p T spectra of f 0 (980) considered as (ss) or (sqsq), respectively, are calculated and compared in Au+Au collisions at √(s NN )=200 GeV. The unitarity of various combination models, when open for exotic hadron production, is addressed.

  1. Multimesonic decays of charmonium states in the statistical quark model

    International Nuclear Information System (INIS)

    Montvay, I.; Toth, J.D.

    1978-01-01

    The data known at present of multimesonic decays of chi and psi states are fitted in a statistical quark model, in which the matrix elements are assumed to be constant and resonances as well as both strong and second order electromagnetic processes are taken into account. The experimental data are well reproduced by the model. Unknown branching ratios for the rest of multimesonic channels are predicted. The fit leaves about 40% for baryonic and radiative channels in the case of J/psi(3095). The fitted parameters of the J/psi decays are used to predict the mesonic decays of the pseudoscalar eta c. The statistical quark model seems to allow the calculation of competitive multiparticle processes for the studied decays. (D.P.)

  2. Meson decays in a quark model

    International Nuclear Information System (INIS)

    Roberts, W.; Silvestre-Brac, B.

    1998-01-01

    A recent model of hadron states is extended to include meson decays. We find that the overall success of the model is quite good. Possible improvements to the model are suggested. copyright 1997 The American Physical Society

  3. Consideration of the vacuum of QCD in a composite quark model. Strange hadrons

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kochelev, N.I.

    1986-01-01

    The method of inclusion of QCD vacuum condensates within the quark composite model is generalized to the case of hadrons containing strange quarks. The mass formula for such hadrons is obtained. The mass of strange quark is defined by analysing the energy spectrum of hadron ground states. The mixing angles of pseudoscalar mesons are estimated

  4. The strange quark contribution to the neutron electric dipole moment in multi-Higgs doublet models

    International Nuclear Information System (INIS)

    He, Xiao Gang; McKeller, H.J.; Pakvasa, S.

    1990-09-01

    The strange quark contribution to the neutron electric dipole moment was studied and compared with other contributions in multi-Higgs doublet models. It was found that the strange quark contribution is significant because the strange quark color dipole moment is larger than that of the down (up) quark by a factor m s /m d (m s /m u ). In the case of neutral Higgs it can be the dominant contribution to the neutron electric dipole moment. 18 refs

  5. A QCD derivation of the additive quark model from two and three gluon exchanges

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1982-06-01

    The contributions to the Pomeron from two and three gluon exchanges are shown to give the correct combinatorial factors for the additive quark model relation between meson and baryon Pomeron couplings, even though two-quark and three-quark operators are involved. Similar results hold for the contributions to hadron masses from three-gluon vertices as well as one-gluon exchange. The color algebra reduces the multiquark couplings to a linear function of quark number. (author)

  6. QCD topological susceptibility from the nonlocal chiral quark model

    Science.gov (United States)

    Nam, Seung-Il; Kao, Chung-Wen

    2017-06-01

    We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.

  7. Large degeneracy of excited hadrons and quark models

    International Nuclear Information System (INIS)

    Bicudo, P.

    2007-01-01

    The pattern of a large approximate degeneracy of the excited hadron spectra (larger than the chiral restoration degeneracy) is present in the recent experimental report of Bugg. Here we try to model this degeneracy with state of the art quark models. We review how the Coulomb Gauge chiral invariant and confining Bethe-Salpeter equation simplifies in the case of very excited quark-antiquark mesons, including angular or radial excitations, to a Salpeter equation with an ultrarelativistic kinetic energy with the spin-independent part of the potential. The resulting meson spectrum is solved, and the excited chiral restoration is recovered, for all mesons with J>0. Applying the ultrarelativistic simplification to a linear equal-time potential, linear Regge trajectories are obtained, for both angular and radial excitations. The spectrum is also compared with the semiclassical Bohr-Sommerfeld quantization relation. However, the excited angular and radial spectra do not coincide exactly. We then search, with the classical Bertrand theorem, for central potentials producing always classical closed orbits with the ultrarelativistic kinetic energy. We find that no such potential exists, and this implies that no exact larger degeneracy can be obtained in our equal-time framework, with a single principal quantum number comparable to the nonrelativistic Coulomb or harmonic oscillator potentials. Nevertheless we find it plausible that the large experimental approximate degeneracy will be modeled in the future by quark models beyond the present state of the art

  8. Angular correlations in top quark decays in standard model extensions

    International Nuclear Information System (INIS)

    Batebi, S.; Etesami, S. M.; Mohammadi-Najafabadi, M.

    2011-01-01

    The CMS Collaboration at the CERN LHC has searched for the t-channel single top quark production using the spin correlation of the t-channel. The signal extraction and cross section measurement rely on the angular distribution of the charged lepton in the top quark decays, the angle between the charged lepton momentum and top spin in the top rest frame. The behavior of the angular distribution is a distinct slope for the t-channel single top (signal) while it is flat for the backgrounds. In this Brief Report, we investigate the contributions which this spin correlation may receive from a two-Higgs doublet model, a top-color assisted technicolor (TC2) and the noncommutative extension of the standard model.

  9. Tetraquarks in a chiral constituent-quark model

    International Nuclear Information System (INIS)

    Vijande, J.; Fernandez, F.; Valcarce, A.; Silvestre-Brac, B.

    2004-01-01

    We analyze the possibility of heavy-light tetraquark bound states by means of a chiral constituent-quark model. The study is done in a variational approach. Special attention is paid to the contribution given by the different terms of the interacting potential and also to the role played by the different color channels. We find a stable state for both qq anti c anti c and qq anti b anti b configurations. Possible decay modes of these structures are analyzed. (orig.)

  10. Tetraquarks in a chiral constituent-quark model

    Energy Technology Data Exchange (ETDEWEB)

    Vijande, J.; Fernandez, F.; Valcarce, A. [Grupo de Fisica Nuclear, Universidad de Salamanca, E-37008, Salamanca (Spain); Silvestre-Brac, B. [Institut des Sciences Nucleaires, 53 Avenue des Martyrs, F-38026, Grenoble Cedex (France)

    2004-03-01

    We analyze the possibility of heavy-light tetraquark bound states by means of a chiral constituent-quark model. The study is done in a variational approach. Special attention is paid to the contribution given by the different terms of the interacting potential and also to the role played by the different color channels. We find a stable state for both qq anti c anti c and qq anti b anti b configurations. Possible decay modes of these structures are analyzed. (orig.)

  11. NN interaction from bag-model quark interchange

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, B.L.G.; Bozoian, M.; Maslow, J.N.; Weber, H.J.

    1982-03-01

    A partial-wave helicity-state analysis of elastic nucleon-nucleon scattering is carried out in momentum space. Its basis is a one- and two-boson exchange amplitude from a bag-model quark interchange mechanism. The resulting phase shifts and bound-state parameters of the deuteron are compared with other meson theoretic potentials and data up to laboratory energies of approx.350 MeV.

  12. NN interaction from bag-model quark interchange

    International Nuclear Information System (INIS)

    Bakker, B.L.G.; Bozoian, M.; Maslow, J.N.; Weber, H.J.

    1982-01-01

    A partial-wave helicity-state analysis of elastic nucleon-nucleon scattering is carried out in momentum space. Its basis is a one- and two-boson exchange amplitude from a bag-model quark interchange mechanism. The resulting phase shifts and bound-state parameters of the deuteron are compared with other meson theoretic potentials and data up to laboratory energies of approx.350 MeV

  13. Structural Equation Models in a Redundancy Analysis Framework With Covariates.

    Science.gov (United States)

    Lovaglio, Pietro Giorgio; Vittadini, Giorgio

    2014-01-01

    A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.

  14. Ultracentrifuge separative power modeling with multivariate regression using covariance matrix

    International Nuclear Information System (INIS)

    Migliavacca, Elder

    2004-01-01

    In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 460 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process variables, which significantly influence the δU values are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow rate F, cut θ and product line pressure P p . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heteroscedasticity with any explained regression model variable. The surface curves are made relating the separative power with the control variables F, θ and P p to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)

  15. Gluon condensation and modelling of quark confinement in QCD-motivated Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Ebert, D.; Emel'yanenko, A.V.

    1992-01-01

    The possibility of modelling of a quark propagator without poles realizing quark confinement is considered on the basis of a nonperturbative gluon propagator including gluon condensation and a dynamical gluon mass. The property of spontaneous chiral symmetry breaking is retained providing us with a reasonable pattern of low-lying meson properties. 2 figs.; 1 tab

  16. The impact of covariance misspecification in group-based trajectory models for longitudinal data with non-stationary covariance structure.

    Science.gov (United States)

    Davies, Christopher E; Glonek, Gary Fv; Giles, Lynne C

    2017-08-01

    One purpose of a longitudinal study is to gain a better understanding of how an outcome of interest changes among a given population over time. In what follows, a trajectory will be taken to mean the series of measurements of the outcome variable for an individual. Group-based trajectory modelling methods seek to identify subgroups of trajectories within a population, such that trajectories that are grouped together are more similar to each other than to trajectories in distinct groups. Group-based trajectory models generally assume a certain structure in the covariances between measurements, for example conditional independence, homogeneous variance between groups or stationary variance over time. Violations of these assumptions could be expected to result in poor model performance. We used simulation to investigate the effect of covariance misspecification on misclassification of trajectories in commonly used models under a range of scenarios. To do this we defined a measure of performance relative to the ideal Bayesian correct classification rate. We found that the more complex models generally performed better over a range of scenarios. In particular, incorrectly specified covariance matrices could significantly bias the results but using models with a correct but more complicated than necessary covariance matrix incurred little cost.

  17. Parity violating NN forcES in the quark compound bag model

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1982-01-01

    Parity violation (PV) in the interaction is considered as due to the Weinberg-Salam quark-quark interaction inside the six-quark bag. The initial and final strong interaction is described within the same quark compound bag (QCB) model, where the NN coupling to the six quark QCB is defined from the NN experimental data. The resulting PV amplitude contains no free parameters and allows therefore an unambiguous test of the QCB model. An estimate of the 1 S 0 → 3 P 0 contribution to the proton-proton asymmetry is in a rough agreement with experimental data [ru

  18. A diquark model for baryons containing one heavy quark

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Kettner, C.; Reinhardt, H.

    1995-06-01

    We present a phenomenological ansatz for coupling a heavy quark with two light quarks to form a heavy baryon. The heavy quark is treated in the heavy mass limit, and the light quark dynamics is approximated by propagating scalar and axial vector 'diquarks'. The resulting effective lagrangian, which incorporates heavy quark and chiral symmetry, describes interactions of heavy baryons with Goldstone bosons in the low energy region. As an application, the Isgur-Wise formfactors are estimated. (orig.)

  19. The breaking of Bjorken scaling in the covariant parton model

    International Nuclear Information System (INIS)

    Polkinghorne, J.C.

    1976-01-01

    Scale breaking is investigated in terms of a covariant parton model formulation of deep inelastic processes. It is shown that a consistent theory requires that the convergence properties of parton-hadron amplitudes should be modified as well as the parton being given form factors. Purely logarithmic violation is possible and the resulting model has many features in common with asymtotically free gauge theories. Behaviour at large and small ω and fixed q 2 is investigated. γW 2 should increase with q 2 at large ω and decrease with q 2 at small ω. Heuristic arguments are also given which suggest that the model would only lead to logarithmic modifications of dimensional counting results in purely hadronic deep scattering. (Auth.)

  20. Vortex in the chiral quark model

    Science.gov (United States)

    Hadasz, Leszek

    1995-02-01

    We construct the classical vortex solution in the model of chiral field interacting with the non-Abelian SU(2) gauge field. This solution is topologically nontrivial and well localized. We discuss its relevance for effective hadron models based on the flux-tube picture and the possibility of its extension to the higher symmetry gauge groups SU(N).

  1. Meson spectra using relativistic quark models

    International Nuclear Information System (INIS)

    Eggers, M.C.

    1985-01-01

    The complexity of QCD has led to the use of simpler, phenomenological models for hadrons, notably potential models. A short overview of the origin, rationale, merits and demerits of such models is given. Nonrelativistic models and scaling laws are discussed using the WKB technique for illustrative purposes. The failure of nonrelativistic models to describe the lighter mesons motivates the introduction of relativistic equations. Relativistic kinematics are incorporated into a Schroedinger formalism using equations derived by A. Barut, while two-body kinematics are brought into a one-body form via a substitution related to the Todorov equation. The potential used involves a semi-analytic solution to a harmonic oscillator modified by a spin-spin interaction term. The results seem to indicate that such a harmonic oscillator is unsuitable to describe diquark systems adequately

  2. B→D** lνbar semileptonic decays in the frame of covariant models of Bakamjian-Thomas-type form factors

    International Nuclear Information System (INIS)

    Morenas, Vincent

    1997-01-01

    The study of semileptonic decays is of crucial importance for the physics of beauty. It was usually believed that the rates of these reactions were saturated by the channels leading to the production of ground state D and D * mesons only. Yet, experimental results have shown recently that the contribution of orbitally excited mesons are not that small. In these thesis it is presented a study of the semileptonic decays of B mesons into the first orbitally excited charmed states D ** : by using the formalism of Bakamjian-Thomas to construct the mesonic states, together with the hypothesis of infinite mass limit of the heavy quark, we provide a covariant description of the hadronic transition amplitude; moreover, all the 'good' properties of the heavy quark symmetries are naturally fulfilled. We then fixed the dynamics of the bound states of quarks by introducing four spectroscopic models and made numerical predictions, which are discussed and compared to other theoretical and experimental data when available. Finally, we also applied this formalism to the study of annihilation processes: the transition amplitude are then also written in a covariant way and the properties of heavy quark symmetries fulfilled. Numerical predictions of decay constants were made with the same four spectroscopic models. (author)

  3. ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.

    Science.gov (United States)

    Lee, Keunbaik; Baek, Changryong; Daniels, Michael J

    2017-11-01

    In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.

  4. Threshold pion photoproduction in A light-cone quark model

    International Nuclear Information System (INIS)

    Konen, W.; Drechsel, D.

    1991-01-01

    The instantaneous and seagull graphs are calculated for pion photoproduction in a relativistic light-cone model of the nucleon. In both pseudoscalar and pseudovector coupling we find the ratios A (-) :A (0) :A (+) =1:(-1/2μ):(-9/5 1/2μ) in the nonrelativistic limit. These results correspond to the sum of seagull and Z-graph in the nonrelativistic quark model. In pseudovector coupling also the numerical results for realistic-model parameters are close to those values. (orig.)

  5. Higher bottomonia in the unquenched quark model

    Directory of Open Access Journals (Sweden)

    Ferretti J.

    2014-06-01

    Full Text Available We show our results for the bottomonium spectrum with self energy corrections, due to the coupling to the meson-meson continuum. We also discuss our results for the open bottom strong decays of higher bottomonia in the 3P0 pair-creation model.

  6. Building the nucleus from quarks: The cloudy bag model and the quark description of the nucleon-nucleon wave functions

    International Nuclear Information System (INIS)

    Miller, G.A.

    1984-01-01

    In the Cloudy Bag Model hadrons are treated as quarks confined in an M.I.T. bag that is surrounded by a cloud of pions. Computations of the charge and magnetism distributions of nucleons and baryons, pion-nucleon scattering, and the strong and electromagnetic decays of mesons are discussed. Agreement with experimental results is excellent if the nucleon bag radius is in the range between 0.8 and 1.1 fm. Underlying qualitative reasons which cause the pionic corrections to be of the obtained sizes are analyzed. If bags are of such reasonably large sizes, nucleon bags in nuclei will often come into contact. As a result one needs to consider whether explicit quark degrees of freedom are relevant for Nuclear Physics. To study such possibilities a model which treats a nucleus as a collection of baryons, pions and six-quark bags is discussed. In particular, the short distance part of a nucleon-nucleon wave function is treated as six quarks confined in a bag. This approach is used to study the proton-proton weak interaction, the asymptotic D to S state ratio of the deuteron, the pp → dπ reaction, the charge density of /sup 3/He, magnetic moments of /sup 3/He and /sup 3/H and, the /sup 3/He-/sup 3/H binding energy difference. It is found that quark effects are very relevant for understanding nuclear properties

  7. Hadron structure in a simple model of quark/nuclear matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Moniz, E.J.; Negele, J.W.

    1985-01-01

    We study a simple model for one-dimensional hadron matter with many of the essential features needed for examining the transition from nuclear to quark matter and the limitations of models based upon hadron rather than quark degrees of freedom. The dynamics are generated entirely by the quark confining force and exchange symmetry. Using Monte Carlo techniques, the ground-state energy, single-quark momentum distribution, and quark correlation function are calculated for uniform matter as a function of density. The quark confinement scale in the medium increases substantially with increasing density. This change is evident in the correlation function and momentum distribution, in qualitative agreement with the changes observed in deep-inelastic lepton scattering. Nevertheless, the ground-state energy is smooth throughout the transition to quark matter and is described remarkably well by an effective hadron theory based on a phenomenological hadron-hadron potential

  8. Successes and failures of the constituent quark model

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1982-01-01

    Our approach considers the model as a possible bridge between QCD and the experimental data and examines its predictions to see where these succeed and where they fail. We also attempt to improve the model by looking for additional simple assumptions which give better fits to the experimental data. But we avoid complicated models with too many ad hoc assumptions and too many free parameters; these can fit everything but teach us nothing. We define our constituent quark model by analogy with the constituent electron model of the atom and the constituent nucleon model of the nucleus. In the same way that an atom is assumed to consist only of constituent electrons and a central Coulomb field and a nucleus is assumed to consist only of constituent nucleons hadrons are assumed to consist only of their constituent valence quarks with no bag, no glue, no ocean, nor other constituents. Although these constituent models are oversimplified and neglect other constituents we push them as far as we can. Atomic physics has photons and vacuum polarization as well as constituent electrons, but the constituent model is adequate for calculating most features of the spectrum when finer details like the Lamb shift are neglected. 54 references

  9. The Influence of Normalization Weight in Population Pharmacokinetic Covariate Models.

    Science.gov (United States)

    Goulooze, Sebastiaan C; Völler, Swantje; Välitalo, Pyry A J; Calvier, Elisa A M; Aarons, Leon; Krekels, Elke H J; Knibbe, Catherijne A J

    2018-03-23

    In covariate (sub)models of population pharmacokinetic models, most covariates are normalized to the median value; however, for body weight, normalization to 70 kg or 1 kg is often applied. In this article, we illustrate the impact of normalization weight on the precision of population clearance (CL pop ) parameter estimates. The influence of normalization weight (70, 1 kg or median weight) on the precision of the CL pop estimate, expressed as relative standard error (RSE), was illustrated using data from a pharmacokinetic study in neonates with a median weight of 2.7 kg. In addition, a simulation study was performed to show the impact of normalization to 70 kg in pharmacokinetic studies with paediatric or obese patients. The RSE of the CL pop parameter estimate in the neonatal dataset was lowest with normalization to median weight (8.1%), compared with normalization to 1 kg (10.5%) or 70 kg (48.8%). Typical clearance (CL) predictions were independent of the normalization weight used. Simulations showed that the increase in RSE of the CL pop estimate with 70 kg normalization was highest in studies with a narrow weight range and a geometric mean weight away from 70 kg. When, instead of normalizing with median weight, a weight outside the observed range is used, the RSE of the CL pop estimate will be inflated, and should therefore not be used for model selection. Instead, established mathematical principles can be used to calculate the RSE of the typical CL (CL TV ) at a relevant weight to evaluate the precision of CL predictions.

  10. Superheavy Nuclei in the Quark-Meson-Coupling Model

    Directory of Open Access Journals (Sweden)

    Stone Jirina

    2017-01-01

    Full Text Available We present a selection of the first results obtained in a comprehensive calculation of ground state properties of even-even superheavy nuclei in the region of 96 < Z < 136 and 118 < N < 320 from the Quark-Meson-Coupling model (QMC. Ground state binding energies, the neutron and proton number dependence of quadrupole deformations and Qα values are reported for even-even nuclei with 100 < Z < 136 and compared with available experimental data and predictions of macro-microscopic models. Predictions of properties of nuclei, including Qα values, relevant for planning future experiments are presented.

  11. Towards a realistic composite model of quarks and leptons

    International Nuclear Information System (INIS)

    Li Xiaoyuan; Marshak, R.E.

    1985-06-01

    Within the context of the 't Hooft anomaly matching scheme, some guiding principles for the model building are discussed with an eye to low energy phenomenology. It is argued that Λsub(ch) (chiral symmetry breaking scale of the global color-flavor group Gsub(CF)) proportional Λsub(MC) (metacolor scale) and Λ sub(gsub(CF)) (unification scale of the gauge subgroup of Gsub(CF)) < or approx. Λsub(ch). As illustrations of the method, two composite models are suggested that can give rise to three or four generations of ordinary quarks and leptons without exotic fermions. (orig.)

  12. Contributions to Estimation and Testing Block Covariance Structures in Multivariate Normal Models

    OpenAIRE

    Liang, Yuli

    2015-01-01

    This thesis concerns inference problems in balanced random effects models with a so-called block circular Toeplitz covariance structure. This class of covariance structures describes the dependency of some specific multivariate two-level data when both compound symmetry and circular symmetry appear simultaneously. We derive two covariance structures under two different invariance restrictions. The obtained covariance structures reflect both circularity and exchangeability present in the data....

  13. Structure of Pioncare covariant tensor operators in quantum mechanical models

    International Nuclear Information System (INIS)

    Polyzou, W.N.; Klink, W.H.

    1988-01-01

    The structure of operators that transform covariantly in Poincare invariant quantum mechanical models is analyzed. These operators are shown to have an interaction dependence that comes from the geometry of the Poincare group. The operators can be expressed in terms of matrix elements in a complete set of eigenstates of the mass and spin operators associated with the dynamical representation of the Poincare group. The matrix elements are factored into geometrical coefficients (Clebsch--Gordan coefficients for the Poincare group) and invariant matrix elements. The geometrical coefficients are fixed by the transformation properties of the operator and the eigenvalue spectrum of the mass and spin. The invariant matrix elements, which distinguish between different operators with the same transformation properties, are given in terms of a set of invariant form factors. copyright 1988 Academic Press, Inc

  14. A model of quarks with Δ(6N2) family symmetry

    International Nuclear Information System (INIS)

    Ishimori, Hajime; King, Stephen F.

    2014-01-01

    We propose a first model of quarks based on the discrete family symmetry Δ(6N 2 ) in which the Cabibbo angle is correctly determined by a residual Z 2 ×Z 2 subgroup, and the smaller quark mixing angles may be qualitatively understood from the model. The present model of quarks may be regarded as a first step towards formulating a complete model of quarks and leptons based on Δ(6N 2 ), in which the lepton mixing matrix is fully determined by a Klein subgroup. For example, the choice N=28 provides an accurate determination of both the reactor angle and the Cabibbo angle

  15. CP violation for electroweak baryogenesis from mixing of standard model and heavy vector quarks

    International Nuclear Information System (INIS)

    McDonald, J.

    1996-01-01

    It is known that the CP violation in the minimal standard model is insufficient to explain the observed baryon asymmetry of the Universe in the context electroweak baryogenesis. In this paper we consider the possibility that the additional CP violation required could originate in the mixing of the standard model quarks and heavy vector quark pairs. We consider the baryon asymmetry in the context of the spontaneous baryogenesis scenario. It is shown that, in general, the CP-violating phase entering the mass matrix of the standard model and heavy vector quarks must be space dependent in order to produce a baryon asymmetry, suggesting that the additional CP violation must be spontaneous in nature. This is true for the case of the simplest models which mix the standard model and heavy vector quarks. We derive a charge potential term for the model by diagonalizing the quark mass matrix in the presence of the electroweak bubble wall, which turns out to be quite different from the fermionic hypercharge potentials usually considered in spontaneous baryogenesis models, and obtain the rate of baryon number generation within the wall. We find, for the particular example where the standard model quarks mix with weak-isodoublet heavy vector quarks via the expectation value of a gauge singlet scalar, that we can account for the observed baryon asymmetry with conservative estimates for the uncertain parameters of electroweak baryogenesis, provided that the heavy vector quarks are not heavier than a few hundred GeV and that the coupling of the standard model quarks to the heavy vector quarks and gauge singlet scalars is not much smaller than order of 1, corresponding to a mixing angle of the heavy vector quarks and standard model quarks not much smaller than order of 10 -1 . copyright 1996 The American Physical Society

  16. Parametric Covariance Model for Horizon-Based Optical Navigation

    Science.gov (United States)

    Hikes, Jacob; Liounis, Andrew J.; Christian, John A.

    2016-01-01

    This Note presents an entirely parametric version of the covariance for horizon-based optical navigation measurements. The covariance can be written as a function of only the spacecraft position, two sensor design parameters, the illumination direction, the size of the observed planet, the size of the lit arc to be used, and the total number of observed horizon points. As a result, one may now more clearly understand the sensitivity of horizon-based optical navigation performance as a function of these key design parameters, which is insight that was obscured in previous (and nonparametric) versions of the covariance. Finally, the new parametric covariance is shown to agree with both the nonparametric analytic covariance and results from a Monte Carlo analysis.

  17. Color symmetrical superconductivity in a schematic nuclear quark model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; da Providencia, J.

    2010-01-01

    In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle...... states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...

  18. KN phase shifts in a constituent quark model

    International Nuclear Information System (INIS)

    Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.

    2001-01-01

    In a first step, the I=1 and I=0 kaon-nucleon s-wave phase shifts have been calculated in a quark potential model using the resonating group method (RGM) and a relativistic kinematics. The spinless Salpeter equation has been solved numerically using the Fourier grid hamiltonian method. The results have been compared to the nonrelativistic ones. For each isospin channel the phase shifts obtained are not so far from the nonrelativistic results. Then, K-nucleon p, d, f, g-waves phase shifts have been calculated using a nonrelativistic kinematics

  19. H-particle stability in the nonrelativistic quark model

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1987-01-01

    The H particle with quark content (uuddss) is presented as a good candidate to be stable with respect to strong interactions. In the framework of a nonrelativistic potential model, the binding energy is calculated by a full dynamical approach using a resonating group trial wave function. The center-of-mass motion and the Pauli principle are correctly treated. Sophisticated baryon wave functions are employed and the equation of motion is solved with six coupled channels including radial excited baryon states. The effect of breaking SU(3)-flavor symmetry is discussed in detail

  20. The problem of nucleon production in the quark parton model

    International Nuclear Information System (INIS)

    Ranft, J.; Ranft, G.

    1977-06-01

    Quark fragmentation into hadrons, esp. nucleons, is studied fitting empirical fragmentation functions to e + e - annihilation data. We find fragmentation functions deviating from counting rule predictions as well as from scaling due to the threshold in kaon and nucleon production. Using these fragmentation functions we study particle production ratios in ep and large transverse momentum hadronic reactions. In both cases we find the ratios p/π + and antip/π - to agree roughly in magnitude with the measured ratios. The model is however inconsistent with the transverse momentum -12 behaviour of large transverse momentum proton spectra. (author)

  1. Incorporating pion effects into the naive quark model

    International Nuclear Information System (INIS)

    Nogami, Y.; Ohtuska, N.

    1982-01-01

    A hybrid of the naive nonrelativistic quark model and the Chew-Low model is proposed. The pion is treated as an elementary particle which interacts with the ''bare baryon'' or ''baryon core'' via the Chew-Low interaction. The baryon core, which is the source of the pion interaction, is described by the naive nonrelativistic quark model. It turns out that the baryon-core radius has to be as large as 0.8 fm, and consequently the cutoff momentum Λ for the pion interaction is < or approx. =3m/sub π/, m/sub π/ being the pion mass. Because of this small Λ (as compared with Λapprox. nucleon mass in the old Chew-Low model) the effects of the pion cloud are strongly suppressed. The baryon masses, baryon magnetic moments, and the nucleon charge radii can be reproduced quite well. However, we found it singularly difficult to fit the axial-vector weak decay constant g/sub A/

  2. The Mixed Quark-Gluon Condensate from the Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; LU Xiao-Fu; WANG Fan; ZHAO En-Guang

    2002-01-01

    The mixed quark-gluon condensate from the global color symmetry model is derived. It is shown that themixed quark-gluon condensate depends explicitly on the gluon propagator. This interesting feature may be regarded asan additional constraint on the model of gluon propagator. The values of the mixed quark-gluon condensate from someansatz for the gluon propagator are compared with those determined from QCD sum rules.

  3. QCD mixing effects in a gauge invariant quark model for photo- and electroproduction of baryon resonances

    International Nuclear Information System (INIS)

    Zhenping Li; Close, F.E.

    1990-03-01

    The photo and electroproduction of baryon resonances has been calculated using the Constituent Quark Model with chromodynamics consistent with O(υ 2 /c 2 ) for the quarks. We find that the successes of the nonrelativistic quark model are preserved, some problems are removed and that QCD mixing effects may become important with increasing q 2 in electroproduction. For the first time both spectroscopy and transitions receive a unified treatment with a single set of parameters. (author)

  4. The quark mass spectrum in the Universal Seesaw model

    International Nuclear Information System (INIS)

    Ranfone, S.

    1993-03-01

    In the context of a Universal Seesaw model implemented in a left-right symmetric theory, we show that, by allowing the two left-handed doublet Higgs fields to develop different vacuum-expectation-values (VEV's), it is possible to account for the observed structure of the quark mass spectrum without the need of any hierarchy among the Yukawa couplings. In this framework the top-quark mass is expected to be of the order of its present experimental lower bound, m t ≅ 90 to 100 GeV. Moreover, we find that, while one of the Higgs doublets gets essentially the standard model VEV of approximately 250 GeV, the second doublet is expected to have a much smaller VEV, of order 10 GeV. The identification of the large mass scale of the model with the Peccei-Quinn scale fixes the mass of the right-handed gauge bosons in the range 10 7 to 10 10 GeV, far beyond the reach of present collider experiments. (author)

  5. The quark model and the force between nucleons

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    The resonating group method is used to calculate in the six quark model the /sup 3/S and /sup 1/S phase shifts of the nucleon-nucleon interaction. For large distances the model is supplemented byπ, σ, rho and ω- meson exchange. The role of the orbital [42]/sub r/ symmetry for the short range repulsion is studied. It is shown that at short distances the orbital [42]/sub r/ symmetry plays an important role which is even enlarged by the colour magnetic interaction. The [42]/sub r/ symmetry enforces the short range repulsion by a node which it requests at short distances. The mechanism is complicated by the fact, that the orbital [6]/sub r/ symmetry ia admixed by about the same weight. The authors show that for meson exchanges which mediate the long range behaviour they can now use the SU/sub 3/ flavour ratios of the meson-nucleon coupling constants even for the ω-nucleon coupling. For the ω-meson one had to use in the OBEP's a ω-N coupling constant twice to three times as large as predicted by SU/sub 3/ flavour to describe the short range repulsion. They also comment on the different contributions to this conference about the quark-model and the NN interaction

  6. A chiral quark model for meson electroproduction in the S11 partial wave

    International Nuclear Information System (INIS)

    Golli, B.; Sirca, S.

    2011-01-01

    We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain a good overall agreement with the available experimental results for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model is consistent with the N(1535) resonance being dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons. (orig.)

  7. Beyond Standard Model searches with top quarks at ATLAS

    International Nuclear Information System (INIS)

    Chevalier, F.

    2008-01-01

    At the Lhc, the top quark is expected to provide a huge and clean signal. With about eight millions of expected top pairs and three millions of single top events produced per year in the low luminosity runs, and with a low level of backgrounds, the Lhc will open a new opportunity for precision measurements of the top quark properties and for exotic topology searches involving top quarks. As the ATLAS discovery potential on new physics with top quarks is being assessed with many analyses, this paper focuses on two particular topics: heavy neutral resonance and charged Higgs boson searches with top quarks. The analyses and the ATLAS expectations are described.

  8. Confinement of quarks

    International Nuclear Information System (INIS)

    Nambu, J.

    1978-01-01

    Three quark models of hadron structure, which suggest an explanation of quarks confinement mechanism in hadrons are considered. Quark classifications, quark flawors and colours, symmetry model of hadron structure based on the colour theory of strong interaction are discussed. Diagrams of colour combinations of quarks and antiquarks, exchange of gluons, binding quarks in hadron. Quark confinement models based on the field theory, string model rotating and bag model are discussed. Diagrams of the colour charge distribution explaining the phenomena of infrared ''slavery'' and ultraviolet ''freedom'' are given. The models considered explain but some quark properties, creating prerequisites for the development of the consequent theory of hadron structure

  9. The theory and phenomenology of coloured quark models

    CERN Document Server

    Close, F E

    1975-01-01

    A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3)- Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for psi phenomenology-the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (40 refs).

  10. The theory and phenomenology of coloured quark models

    International Nuclear Information System (INIS)

    Close, F.E.

    1975-01-01

    A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3) - Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for PSI phenomenology - the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (author)

  11. Effect of correlation on covariate selection in linear and nonlinear mixed effect models.

    Science.gov (United States)

    Bonate, Peter L

    2017-01-01

    The effect of correlation among covariates on covariate selection was examined with linear and nonlinear mixed effect models. Demographic covariates were extracted from the National Health and Nutrition Examination Survey III database. Concentration-time profiles were Monte Carlo simulated where only one covariate affected apparent oral clearance (CL/F). A series of univariate covariate population pharmacokinetic models was fit to the data and compared with the reduced model without covariate. The "best" covariate was identified using either the likelihood ratio test statistic or AIC. Weight and body surface area (calculated using Gehan and George equation, 1970) were highly correlated (r = 0.98). Body surface area was often selected as a better covariate than weight, sometimes as high as 1 in 5 times, when weight was the covariate used in the data generating mechanism. In a second simulation, parent drug concentration and three metabolites were simulated from a thorough QT study and used as covariates in a series of univariate linear mixed effects models of ddQTc interval prolongation. The covariate with the largest significant LRT statistic was deemed the "best" predictor. When the metabolite was formation-rate limited and only parent concentrations affected ddQTc intervals the metabolite was chosen as a better predictor as often as 1 in 5 times depending on the slope of the relationship between parent concentrations and ddQTc intervals. A correlated covariate can be chosen as being a better predictor than another covariate in a linear or nonlinear population analysis by sheer correlation These results explain why for the same drug different covariates may be identified in different analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Finite Nuclei in the Quark-Meson Coupling Model.

    Science.gov (United States)

    Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W

    2016-03-04

    We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.

  13. Maximum Mass of Hybrid Stars in the Quark Bag Model

    Science.gov (United States)

    Alaverdyan, G. B.; Vartanyan, Yu. L.

    2017-12-01

    The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.

  14. B{yields}D{sup **} l{nu}bar semileptonic decays in the frame of covariant models of Bakamjian-Thomas-type form factors; Desintegrations semileptoniques B{yields}D{sup **} l{nu}bar dans le cadre de modeles covariants de facteurs de forme a la Bakamjian-Thomas

    Energy Technology Data Exchange (ETDEWEB)

    Morenas, Vincent [Ecole Doctorale des Sciences Fondamentales, Universite Blaise Pascal, U.F.R. de Recherche Scientifique et Technique, F-63177 Aubiere (France)

    1997-12-19

    The study of semileptonic decays is of crucial importance for the physics of beauty. It was usually believed that the rates of these reactions were saturated by the channels leading to the production of ground state D and D{sup *} mesons only. Yet, experimental results have shown recently that the contribution of orbitally excited mesons are not that small. In these thesis it is presented a study of the semileptonic decays of B mesons into the first orbitally excited charmed states D{sup **}: by using the formalism of Bakamjian-Thomas to construct the mesonic states, together with the hypothesis of infinite mass limit of the heavy quark, we provide a covariant description of the hadronic transition amplitude; moreover, all the `good` properties of the heavy quark symmetries are naturally fulfilled. We then fixed the dynamics of the bound states of quarks by introducing four spectroscopic models and made numerical predictions, which are discussed and compared to other theoretical and experimental data when available. Finally, we also applied this formalism to the study of annihilation processes: the transition amplitude are then also written in a covariant way and the properties of heavy quark symmetries fulfilled. Numerical predictions of decay constants were made with the same four spectroscopic models. (author) 87 refs., 20 figs., 13 tabs.

  15. Real-time probabilistic covariance tracking with efficient model update.

    Science.gov (United States)

    Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li

    2012-05-01

    The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.

  16. A quark model of baryons with natural flavor

    International Nuclear Information System (INIS)

    Forsyth, C.P.; Cutkowsky, R.E.

    1983-01-01

    We have fitted the masses and elastic widths of the S=0 baryons in the context of the QCD-improved quark shell model. All states in the N=0, 1, 2 and 3 harmonic oscillator bands have been included. Three models for the decay of these states have been studied, and it is concluded that the usual spectator model for the decays must be modified. Many resonances in the N=2 and 3 bands were found to decouple from the πN channel, supporting a previous solution to the missing resonance puzzle. No evidence has been found for the tensor force, while conflicting data exist for the 3-body spin orbit term. We also have found evidence that the contact force varies with band. The (56,1 - ) multiplet is lower than expected. (orig.)

  17. Solar Extreme UV radiation and quark nugget dark matter model

    Science.gov (United States)

    Zhitnitsky, Ariel

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ωdark ~ Ωvisible when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter ΛQCD. We also present arguments suggesting that the transient brightening-like "nanoflares" in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  18. A cautionary note on generalized linear models for covariance of unbalanced longitudinal data

    KAUST Repository

    Huang, Jianhua Z.

    2012-03-01

    Missing data in longitudinal studies can create enormous challenges in data analysis when coupled with the positive-definiteness constraint on a covariance matrix. For complete balanced data, the Cholesky decomposition of a covariance matrix makes it possible to remove the positive-definiteness constraint and use a generalized linear model setup to jointly model the mean and covariance using covariates (Pourahmadi, 2000). However, this approach may not be directly applicable when the longitudinal data are unbalanced, as coherent regression models for the dependence across all times and subjects may not exist. Within the existing generalized linear model framework, we show how to overcome this and other challenges by embedding the covariance matrix of the observed data for each subject in a larger covariance matrix and employing the familiar EM algorithm to compute the maximum likelihood estimates of the parameters and their standard errors. We illustrate and assess the methodology using real data sets and simulations. © 2011 Elsevier B.V.

  19. Ground-state triply and doubly heavy baryons in a relativistic three-quark model

    International Nuclear Information System (INIS)

    Martynenko, A.P.

    2008-01-01

    Mass spectra of the ground-state baryons consisting of three or two heavy (b or c) and one light (u,d,s) quarks are calculated in the framework of the relativistic quark model and the hyperspherical expansion. The predictions of masses of the triply and doubly heavy baryons are obtained by employing the perturbation theory for the spin-independent and spin-dependent parts of the three-quark Hamiltonian

  20. Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model

    International Nuclear Information System (INIS)

    Song, X.; McCarthy, J.S.; Weber, H.J.

    1997-01-01

    The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society

  1. A quark-antiquark potential from a superconducting model of confinement

    Directory of Open Access Journals (Sweden)

    J.W. Alcock

    1983-10-01

    Full Text Available The Landau-Ginzburg phenomenological theory of superconductivity is used as a model of flux confinement. A monopole pair of sources is included to simulate a quark-antiquark system. The interaction energy is found in the static approximation appropriate for heavy quark systems, and equated with the interquark potential. This potential is compared with other suggested phenomenological potentials and succeeds in reproducing heavy quark spectra.

  2. Nucleon-nucleon forces in the quark compound bag model and few-nucleon systems

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Narodetskij, I.M.

    1984-01-01

    Role of quark-gluon degrees of freedom is discussed in nucleon-nucleon scattering at low and intermediate energies. It is shown that the existence of six-quark hags fixes the form of NN potential at small distances, which leads to the P-matrix satisfying the criterion of Jaffe and Low. The dynamical model of three-nucleon system is discussed taking into accoint the contribution of six-quark bags

  3. Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors

    KAUST Repository

    Sang, Huiyan; Jun, Mikyoung; Huang, Jianhua Z.

    2011-01-01

    This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models

  4. Symmetry relations and ambiguities in a free-quark model

    International Nuclear Information System (INIS)

    Battistel, O.A.; Nemes, M.C.; Battistel, O.L.

    1998-01-01

    We present a systematic study of one, two and three point functions of vector axial-vector scalar and pseudoscalar densities constructed in a free-quark model in a point of view of a alternative strategy to manipulate and calculate divergent amplitudes. The divergent content of the amplitudes in this technique are left in the form of (external momenta independent) 4-D integrals. Ambiguities and Symmetry Violations in all cases are shown to be associated to terms which involved relations between divergent integrals of the same degree of divergence. We conclude then that it's possible to avoid all these problems. For this purpose a set of conditions must be fulfilled the same ones we need for preserving gauge symmetry in QED. The implications of our studies to others theories and models are also discussed. (author)

  5. 'Relativistic' quark model for mesons with flavour-independent potential

    International Nuclear Information System (INIS)

    Kroesen, G.

    1987-01-01

    On the base of the Bethe-Salpeter equation in instantaneous approximation a unified model for the mass spectrum of the mesons was designed. The 'relativistic' structure of the Bethe-Salpeter equation allows a natural inclusion of the spin dependences and an extension of the model to small quark masses. The model contains as essential property two potential contributions where one represents the one-gluon exchange while the other represents the confinement potential. The annihilation of qanti q into gluons was not regarded. The spectrum and the amplitudes of the Bethe-Salpeter equation were solved approximatively in numerical way for the lowest states. The free parameters of the model were determined by a fit of the spectrum to a wellknown part of the meson spectrum. The results yield even at small quark masses a quantitatively good picture for all meson families. The result shows that the spectra of the heavy and light mesons can be described by a flavor-independent potential which contains 5 free parameters. Both the internal spin dependent structure and the absolute position of the families can so correctly be described. Especially the position of the D, D s , and B states and the position of the uanti u, danti d states can be simultaneously described by a constant C in the long-range part of the potential. The constant C is thereby essentially determined by the splitting between the Υ family and the B family repectively Ψ and D family. The 3 S 1- 3 D 1 respectively the 3 P 2 - 3 F 2 configuration mixing was regarded. The results show that this mixing is negligibly small. (orig./HSI) [de

  6. Quark condensates in nuclear matter in the global color symmetry model of QCD

    International Nuclear Information System (INIS)

    Liu Yuxin; Gao Dongfeng; Guo Hua

    2003-01-01

    With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks

  7. Effective theory analysis for vector-like quark model

    Science.gov (United States)

    Morozumi, Takuya; Shimizu, Yusuke; Takahashi, Shunya; Umeeda, Hiroyuki

    2018-04-01

    We study a model with a down-type SU(2) singlet vector-like quark (VLQ) as a minimal extension of the standard model (SM). In this model, flavor-changing neutral currents (FCNCs) arise at tree level and the unitarity of the 3× 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix does not hold. In this paper, we constrain the FCNC coupling from b\\rArr s transitions, especially B_s\\rArr μ^+μ^- and \\bar{B}\\rArr X_sγ processes. In order to analyze these processes we derive an effective Lagrangian that is valid below the electroweak symmetry breaking scale. For this purpose, we first integrate out the VLQ field and derive an effective theory by matching Wilson coefficients up to one-loop level. Using the effective theory, we construct the effective Lagrangian for b\\rArr sγ^{(*)}. It includes the effects of the SM quarks and the violation of CKM unitarity. We show the constraints on the magnitude of the FCNC coupling and its phase by taking account of the current experimental data on Δ M_{B_s}, Br[B_s\\rArrμ^+μ^-], Br[\\bar{B}\\rArr X_sγ], and CKM matrix elements, as well as theoretical uncertainties. We find that the constraint from Br[B_s\\rArrμ^+μ^-] is more stringent than that from Br[\\bar{B}\\rArr X_sγ]. We also obtain a bound for the mass of the VLQ and the strength of the Yukawa couplings related to the FCNC coupling of the b\\rArr s transition. Using the CKM elements that satisfy the above constraints, we show how the unitarity is violated on the complex plane.

  8. Quantum mechanics vs. general covariance in gravity and string models

    International Nuclear Information System (INIS)

    Martinec, E.J.

    1984-01-01

    Quantization of simple low-dimensional systems embodying general covariance is studied. Functional methods are employed in the calculation of effective actions for fermionic strings and 1 + 1 dimensional gravity. The author finds that regularization breaks apparent symmetries of the theory, providing new dynamics for the string and non-trivial dynamics for 1 + 1 gravity. The author moves on to consider the quantization of some generally covariant systems with a finite number of physical degrees of freedom, assuming the existence of an invariant cutoff. The author finds that the wavefunction of the universe in these cases is given by the solution to simple quantum mechanics problems

  9. Existence and uniqueness of the maximum likelihood estimator for models with a Kronecker product covariance structure

    NARCIS (Netherlands)

    Ros, B.P.; Bijma, F.; de Munck, J.C.; de Gunst, M.C.M.

    2016-01-01

    This paper deals with multivariate Gaussian models for which the covariance matrix is a Kronecker product of two matrices. We consider maximum likelihood estimation of the model parameters, in particular of the covariance matrix. There is no explicit expression for the maximum likelihood estimator

  10. Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2014-01-01

    markdownabstract__Abstract__ Modelling covariance structures is known to suffer from the curse of dimensionality. In order to avoid this problem for forecasting, the authors propose a new factor multivariate stochastic volatility (fMSV) model for realized covariance measures that accommodates

  11. Semileptonic Bc decays in the light-front quark model

    International Nuclear Information System (INIS)

    Choi, Ho-Meoyng; Ji, Chueng-Ryong

    2010-01-01

    We investigate the exclusive semileptonic B c →(D,η c ,B,B s )lν l , η b →B c lν l (l=e,μ,τ) decays using the light-front quark model constrained by the variational principle for the QCD motivated effective Hamiltonian. The form factors f + (q 2 ) and f - (q 2 ) are obtained from the analytic continuation method in the q + =0 frame. While the form factor f + (q 2 ) is free from the zero mode, the form factor f - (q 2 ) is not free from the zero mode in the q + =0 frame. Using our effective method to relate the non-wave function vertex to the light-front valence wave function, we incorporate the zero-mode contribution as a convolution of zero-mode operator with the initial and final state wave functions.

  12. Hadron form factors in the constituent quark model

    International Nuclear Information System (INIS)

    Cardarelli, F.; Salme', G.; Simula, S.; Pace, E.

    1998-01-01

    Hadron electromagnetic form factors are evaluated in a light-front constituent quark model based on the eigenfunctions of a mass operator, including in the q-q interaction a confining term and a one-gluon-exchange term (OGE). The spin-dependent part of the interaction plays an essential role for obtaining both a proper fit of the experimental nucleon electromagnetic form factors and the faster than dipole decrease of the magnetic N-P 33 (1232) transition form factor. The effects of the D wave, produced by the tensor part of the OGE interaction, on the quadrupole and Coulomb N-P 33 (1232) transition form factors have been found to be negligible. (author)

  13. Chiral bag model with constituent quarks: topological and nontopological decisions

    International Nuclear Information System (INIS)

    Malakhov, I.Yu.; Sveshnikov, K.A.; Fedorov, S.M.; Khalili, M.F.

    2002-01-01

    The three-phase modification of the hybrid chiral bag containing along with asymptotic freedom and hadronization phases and also intermediate phase of the constituent quarks is considered. The self-consistent solutions of the equations of the model in the (1 + 1)-dimensional case are determined with an account of the fermion vacuum polarization effects. The bag renormalized complete energy is studied as a function of the parameters characterizing the bag geometry and its topological (baryon) charge. It is shown that for nonzero topological charge there exists the whole series of configurations representing the local minima of the bag complete energy and containing all three phases, whereas the bag energy minimum in the nontopological case corresponds to zero dimensions of the area corresponding to asymptotic freedom phase [ru

  14. Nucleon parton distributions in a light-front quark model

    International Nuclear Information System (INIS)

    Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan

    2017-01-01

    Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q_v(x) and δq_v(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)

  15. Top quark decays with flavor violation in extended models

    International Nuclear Information System (INIS)

    Aranda, J I; Gómez, D E; Ramírez-Zavaleta, F; Tututi, E S; Cortés-Maldonado, I

    2016-01-01

    We analyze the top quark decays t → cg and t → cγ mediated by a new neutral gauge boson, identified as Z', in the context of the sequential Z model. We focus our attention on the corresponding branching ratios, which are a function of the Z' boson mass. The study range is taken from 2 TeV to 6 TeV, which is compatible with the resonant region of the dileptonic channel reported by ATLAS and CMS Collaborations. Finally, our preliminary results tell us that the branching ratios of t → cg and t → cγ processes can be of the order of 10 -11 and 10 -13 , respectively. (paper)

  16. Nucleon parton distributions in a light-front quark model

    Energy Technology Data Exchange (ETDEWEB)

    Gutsche, Thomas [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Lyubovitskij, Valery E. [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Tomsk Polytechnic University, Laboratory of Particle Physics, Mathematical Physics Department, Tomsk (Russian Federation); Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile); Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile)

    2017-02-15

    Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q{sub v}(x) and δq{sub v}(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)

  17. Deep inelastic processes. Phenomenology. Quark-parton model

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Lipatov, L.N.; Khoze, V.A.

    1983-01-01

    Main theoretical approaches and experimental results related to deep inelastic processes are systematically outlined: electroproduction, neutrino scattering on nucleon, electron-positron pairs annihilation into hadron γγ collisions, production of lepton pairs in hadron collisions with a large effective mass or hadrons with large transverse momenta. Kinematics and phenomenology, space-time description of deep inelastic processes, sum rules, parton and quark-parton models are considered. The experiment is briefly discussed in the book. It is performed from the stand point of comparing it with the theory, experimental data are given as of June, 1982. Since the time of accomplishing the study on the manuscript a number of new experimental results not changing however the statements made in the book appeared. Principal consists in experiments with colliding proton-antiproton beams in CERN, which resulted in discovery of intermediate W-bozon

  18. KN s-wave phase shifts in a quark model with gluon and boson exchange at the quark level

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Leandri, J.

    1997-01-01

    The kaon-nucleon s-wave phase shifts have been calculated in a quark potential model using the resonating group method (RGM). The interquark potential includes gluon, pion and sigma exchanges. The kaon and nucleon wave functions are expanded as a sum of Gaussian functions and the Hill-Wheeler (HW) equation is solved numerically. The I=0 phase shifts present too much attraction and in the I=1 channel too much repulsion is obtained. (orig.)

  19. Constraints on nucleon quark models from deep inelastic scattering data

    International Nuclear Information System (INIS)

    Nataf, R.S.

    1980-12-01

    Within the context of Q.C.D. it is assumed that quarks and gluons have rather sharply defined masses in the confinement region. Then the experimental data on structure functions give an upper limit to the light quark masses approximately 600MeV. Target mas corrections to scaling depend on further approximations

  20. Plane Symmetric Cosmological Model with Quark and Strange ...

    Indian Academy of Sciences (India)

    Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion of the Universe is an accelerated epoch. The most fascinating evidence for this is found in measurements ...

  1. Renormalizability of a quark-gluon model with soft BRST breaking in the infrared region

    CERN Document Server

    Baulieu, L; Gomez, A J; Lemes, V E R; Sobreiro, R F; Sorella, S P

    2010-01-01

    We prove the renormalizability of a quark-gluon model with a soft breaking of the BRST symmetry, which accounts for the modification of the large distance behavior of the quark and gluon correlation functions. The proof is valid to all orders of perturbation theory, by making use of softly broken Ward identities.

  2. Equation of state for neutron matter in the Quark Compound Bag model

    Science.gov (United States)

    Krivoruchenko, M. I.

    2017-11-01

    The equation of state for neutron matter is derived in the framework of the Quark Compound Bag model, in which the nucleon-nucleon interaction is generated by the s-channel exchange of six-quark Jaffe-Low primitives.

  3. The calculation of multiquark hadrons by the quark model baryon, meson and multiquark states

    International Nuclear Information System (INIS)

    Takeuchi, Sachiko; Takizawa, Makoto; Yasui, Shigehiro

    2011-01-01

    The 1st new hadron summer school related with the new science field, 'the comprehensive research of new hadron states searched by variable flavor number scheme', was held on August 18-20, 2010. This report is one of the 'quark model' lectures. The chapter 1 describes following problems: 1. The background and the significance as a phenomenological theory of the constituent quark model. 2. The introduction of the quark model. 3. The summary of the properties of hadrons in which the quark model can apply to three quarks (qqq) and, one quark and antiquark (q - q) configurations, but is difficult to apply to some configurations. 4. A brief summary of exotic hadrons and recent problems. In chapter 2, the introduction and some exercises of the stochastic variational method are reported as a technique of solving spatial part of multiquark states. In the chapter 3, spins and color parts in multiquark states are calculated. The group theory is applied to calculate the eigenvalues of the Casimir operators of SU(2), SU(3) and SU(6). In the problems of being unable to apply Casimir operators, the direct matrix diagonalization method, m-scheme, is employed for interacting quarks and for the interaction involving quark mass. To find the attractive interaction in tetraquark (QQqq-bar) state is given as an exercise problem. (Y. Kazumata)

  4. Flavor-singlet axial-vector current in quark model within background field

    International Nuclear Information System (INIS)

    Chen Kun; Yan Mulin

    1993-01-01

    The flavor-singlet axial-vector current is calculated in a quark model within pseudoscalar background-field through the Seeley-DeWitt coefficients. This current is responsible for the quark spin content of proton and is of O(1) in the large-N e expansion

  5. Polarized heavy baryon production in quark-diquark model considering two different scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Delpasand, M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of)

    2017-09-15

    At sufficiently large transverse momentum, the dominant production mechanism for heavy baryons is actually the fragmentation. In this work, we first study the direct fragmentation of a heavy quark into the unpolarized triply heavy baryons in the leading order of perturbative QCD. In a completely different approach, we also analyze the two-stage fragmentation of a heavy quark into a scalar diquark followed by the fragmentation of such a scalar diquark into a triply heavy baryon: quark-diquark model of baryons. The results of this model are in acceptable agreement with those obtained through a full perturbative regime. Relying on the quark-diquark model and considering two different scenarios we determine the spin-dependent fragmentation functions of polarized heavy baryons in such a way that a vector or a pseudoscalar heavy diquark is an intermediate particle between the initial heavy quark and the final state baryon. (orig.)

  6. The mass spectrum of double heavy baryons in new potential quark models

    Directory of Open Access Journals (Sweden)

    Kovalenko Vladimir

    2017-01-01

    Full Text Available A new approach to study the mass spectrum of double heavy baryons (QQ′q containing strange and charmed quarks is proposed. It is based on the separation of variables in the Schrodinger equation in the prolate spheroidal coordinates. Two nonrelativistic potential models are considered. In the first model, the interaction potential of the quarks is the sum of the Coulomb and non-spherically symmetrical linear confinement potential. In the second model it is assumed that the quark confinement provided by a spherically symmetric harmonic oscillator potential. In both models the mass spectrum is calculated, and a comparison with previous results from other models is performed.

  7. Fitting direct covariance structures by the MSTRUCT modeling language of the CALIS procedure.

    Science.gov (United States)

    Yung, Yiu-Fai; Browne, Michael W; Zhang, Wei

    2015-02-01

    This paper demonstrates the usefulness and flexibility of the general structural equation modelling (SEM) approach to fitting direct covariance patterns or structures (as opposed to fitting implied covariance structures from functional relationships among variables). In particular, the MSTRUCT modelling language (or syntax) of the CALIS procedure (SAS/STAT version 9.22 or later: SAS Institute, 2010) is used to illustrate the SEM approach. The MSTRUCT modelling language supports a direct covariance pattern specification of each covariance element. It also supports the input of additional independent and dependent parameters. Model tests, fit statistics, estimates, and their standard errors are then produced under the general SEM framework. By using numerical and computational examples, the following tests of basic covariance patterns are illustrated: sphericity, compound symmetry, and multiple-group covariance patterns. Specification and testing of two complex correlation structures, the circumplex pattern and the composite direct product models with or without composite errors and scales, are also illustrated by the MSTRUCT syntax. It is concluded that the SEM approach offers a general and flexible modelling of direct covariance and correlation patterns. In conjunction with the use of SAS macros, the MSTRUCT syntax provides an easy-to-use interface for specifying and fitting complex covariance and correlation structures, even when the number of variables or parameters becomes large. © 2014 The British Psychological Society.

  8. Quark confinement

    International Nuclear Information System (INIS)

    Joos, H.

    1976-07-01

    The main topics of these lectures are: phenomenological approach to quark confinement, standard Lagrangian of hadrondynamics, Lagrangian field theory and quark confinement, classical soliton solutions in a simple model, quantization of extended systems, colour charge screening and quantization on a lattice and remarks on applications. A survey of the scientific publications listed according to the topics until 26 March 1976 is supplemented. (BJ) [de

  9. Minkowski space pion model inspired by lattice QCD running quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Clayton S. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Melo, J.P.B.C. de [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP (Brazil); Frederico, T., E-mail: tobias@ita.br [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil)

    2017-03-10

    The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.

  10. Minkowski space pion model inspired by lattice QCD running quark mass

    Directory of Open Access Journals (Sweden)

    Clayton S. Mello

    2017-03-01

    Full Text Available The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.

  11. Radiative transitions of B and Bs mesons in a non relativistic quark model with hulthen potential

    International Nuclear Information System (INIS)

    D'Souza, Praveen P.; Monteiro, A.P.; Vijaya Kumar, K.B.

    2017-01-01

    Heavy light mesons composed of one heavy quark and one light quark. They are the only mesons containing quarks of the third generation. Which has contributed enormously to our understanding of elementary particles and their interactions. In our calculation we get variational parameter for different heavy-light mesons. Having variational parameter eigen energy will be obtained. For meson system, the Hulthen term acts like a Coulombic term. The spin dependent potential from One Gluon Exchange Potential (OGEP) is introduced. The goal of the present work is to obtain the decay widths and understand the uncertainties in the calculation in the frame work of non-relativistic quark models. In the non-relativistic models this is satisfied for the c, b and t quarks

  12. Simultaneous genetic analysis of longitudinal means and covariance structure in the simplex model using twin data

    NARCIS (Netherlands)

    Dolan, C.V.; Molenaar, P.C.M.; Boomsma, D.I.

    1991-01-01

    D. Soerbom's (1974, 1976) simplex model approach to simultaneous analysis of means and covariance structure was applied to analysis of means observed in a single group. The present approach to the simultaneous biometric analysis of covariance and mean structure is based on the testable assumption

  13. Robustness studies in covariance structure modeling - An overview and a meta-analysis

    NARCIS (Netherlands)

    Hoogland, Jeffrey J.; Boomsma, A

    In covariance structure modeling, several estimation methods are available. The robustness of an estimator against specific violations of assumptions can be determined empirically by means of a Monte Carlo study. Many such studies in covariance structure analysis have been published, but the

  14. A Systematic Approach for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling

    Science.gov (United States)

    Ding, Cherng G.; Jane, Ten-Der; Wu, Chiu-Hui; Lin, Hang-Rung; Shen, Chih-Kang

    2017-01-01

    It has been pointed out in the literature that misspecification of the level-1 error covariance structure in latent growth modeling (LGM) has detrimental impacts on the inferences about growth parameters. Since correct covariance structure is difficult to specify by theory, the identification needs to rely on a specification search, which,…

  15. The constituent quark model the spectrum of mesons

    International Nuclear Information System (INIS)

    Shojaei, M.R.; Rajabi, A.A.; Hasanabadi, H.

    2007-01-01

    Full text: We calculate exact solution of the Schroedinger equation analytically for a meson consisting of a quark and antiquark, considering the interaction potential between the particles as a combination of two potentials, a potential due to color charge and an oscillatory potential as confining potential. in this paper, first consider potential between quarks as a function of radios x, thus we assume this potential as a central potential. This potential is derived from that the central potential. This potential is derived from that the quark see itself under influence of another quark, in this case central potential is considered as: V(x)=ax 2 -c/x. Potential is obtained from interaction between a quark and an antiquary. The source of it is color charge and ax 2 potential plays confining potential. Because this potential shows oscillations of one quark to another quark in the distance x from it.. In addition to the above potentials we consider the spin-spin, spin - isospin and isospin - isospin interactions as perturbing potentials, and calculate the mass of the mesons for each potential separately finally using the equivalence of mass-energy we calculate the mass of the mesons

  16. Parton distributions and EMC ratios of the 6Li nucleus in the constituent quark exchange model

    Science.gov (United States)

    Modarres, M.; Hadian, A.

    2017-10-01

    While the constituent quark model (CQM), in which the quarks are assumed to be the complex objects, is used to calculate the parton distribution functions of the iso-scalar lithium-6 (6Li) nucleus, the u-d constituent quark distribution functions of the 6Li nucleus are evaluated from the valence quark exchange formalism (VQEF) for the A = 6 iso-scalar system. After computing the valence quark, sea quark, and gluon distribution functions in the constituent quark exchange model (CQEM, i.e., CQM +VQEF), the nucleus structure function is calculated for the 6Li nucleus at the leading order (LO) and the next-to-leading-order (NLO) levels to extract the European muon collaboration (EMC) ratio, at different hard scales, using the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGALP) evolution equations. The outcomes are compared with those of our previous works and the available NMC experimental data, and various physical points are discussed. It is observed that the present EMC ratios are considerably improved compared with those of our previous works, in which only the valence quark distributions were considered to calculate the EMC ratio, and are closer to the NMC data. Finally, it is concluded that at a given appropriate hard scale, the LO approximation may be enough for calculating the nucleus EMC ratio.

  17. Quark and gluon propagators in the spherical bag model

    Energy Technology Data Exchange (ETDEWEB)

    Kulish, Yu V [AN Ukrainskoj SSR, Fiziko-Tekhnicheskij Inst., Kharkov

    1983-12-01

    The quark and gluon propagators in a spherical cavity have been obtained by summation of the quark field modes (J-1/2, J is the total moment) and gluon field modes (J=1). The requirements for the spatial components of the gluon propagator Gsub(ik)(x, x') and the quark propagator S(x, x') to be Green functions of the wave equations result in the coincidence of directions for anti x and anti x' vectors. Relations have been derived which allow verification of the self-consistency of approximations used to calculate dynamic values.

  18. Quark and gluon propagators in the spherical bag model

    International Nuclear Information System (INIS)

    Kulish, Yu.V.

    1983-01-01

    The quark and gluon propagators in a spherical cavity have been obtained by summation of the quark field modes (J-1/2, J is the total moment) and gluon field modes (J=1). The requirements for the spatial components of the gluon propagator Gsub(ik)(x, x') and the quark propagator S(x, x') to be Green functions of the wave equations result in the coincidence of directions for anti x and anti x' vectors. Relations have been derived which allow verification of the self-consistency of approximations used to calculate dynamic values

  19. Topology of magnetic fields in particle physics, implications on the quark model

    Energy Technology Data Exchange (ETDEWEB)

    Jehle, H.

    1977-01-01

    The flux-loop model of quarks is considered covering electomagnetic gauge invariance, flux quantization, topological conditions for the magnetic field, the extended source model, the electric field, linkage of loop forms, topology and motion of flux loop forms, coalial loops of hadrons having weak interactions, magnetic moments of hadrons, strong interactions, some remarks about string models, and the implications of he topological quark model on the ground and excited states of mesons. 80 references. (JFP)

  20. General structure of democratic mass matrix of quark sector in E{sub 6} model

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, R., E-mail: rciftci@cern.ch [Ankara (Turkey); Çiftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch [Ankara University, Ankara (Turkey)

    2016-03-25

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E{sub 6} Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  1. Solar Extreme UV radiation and quark nugget dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Zhitnitsky, Ariel, E-mail: arz@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada)

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ω{sub dark} ∼ Ω{sub visible} when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter Λ{sub QCD}. We also present arguments suggesting that the transient brightening-like 'nanoflares' in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  2. Modified quark-meson coupling model for nuclear matter

    International Nuclear Information System (INIS)

    Jin, X.; Jennings, B.K.

    1996-01-01

    The quark-meson coupling model for nuclear matter, which describes nuclear matter as nonoverlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: One invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics. copyright 1996 The American Physical Society

  3. A scalar-vector model of quark-antiquark interaction under linear confinement

    International Nuclear Information System (INIS)

    Chakrabarty, S.

    1992-08-01

    Considering the idea that the constituent quark mass is the dressed sum of current quark mass and dynamical quark mass, and using the standard values of current quark masses we obtain approximate values of constituent quark masses, which are then used in our extensively studied Bethe-Salpeter-reduced potential model. We find that the mass formulas become much simpler for linear potential ar with zero anomalous magnetic moment (λ), the values of scalar-vector fraction (η) and 'a' in the linear potential being (1/4) and (1/5) respectively. Also, some of the quantities can be related to each other and the match with experimental data is good. (author). 18 refs, 3 tabs

  4. The Top Quark as a Window to Beyond the Standard Model Physics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chiu-Tien [Univ. of Wisconsin, Madison, WI (United States)

    2013-01-01

    The top quark was the last of the Standard Model quarks to be discovered, and is of considerable interest. The closeness of the top quark mass to the electroweak scale is suggestive that the top quark could be closely related to the mechanisms for electroweak symmetry breaking. Any new physics in electroweak symmetry breaking models could then preferentially couple to the top quark, making the top quark a promising probe for new physics. In this thesis, we will explore two aspects of the top quark as a harbinger to new physics: the top forward-backward asymmetry as seen at the Tevatron and the search for stops. In this thesis, we will discuss the Asymmetric Left-Right Model (ALRM), a model that is based on the gauge group $U'(1)\\times SU(2)\\times SU'(2)$ with couplings $g_1^\\prime, g_2^\\prime,$ and $g'$ associated with the fields $B',W,W'$, respectively, and show how this model can explain the top forward-backward asymmetry. We will then explore the scalar sector of the ALRM, and provide a specific Higgs mechanism that provides the masses for the $W'$ and $Z'$ bosons. The top forward-backward asymmetry is a test of invariance of charge-conjugation. Thus, we look at the $X$-gluon model, a model that was motivated by the top forward-backward asymmetry, and show that one can look at the longitudinal polarization of the top-quark to test parity conservation. Finally, we investigate searches for stop squarks, the supersymmetric partner of the top quark, at the Large Hadron Collider (LHC) using shape-based analyses.

  5. In quest of a relativistic constituent quark model - some constructive remarks

    International Nuclear Information System (INIS)

    Hofsaess, T.; Schierholz, G.

    1978-01-01

    The set-up of a relativistic constituent quark model in four dimensions is one of the outstanding problems in particle physics. For the time being this involves a great deal of model building which, very probably, will not change in the near future. In this paper we shall offer some general remarks which might help putting such models into shape. Most of the earlier attempts are found controversial. In particular, a conventional quark constituent interpretation could not be recovered. (orig.) [de

  6. On quark model relations for hypercharge-exchange reactions

    International Nuclear Information System (INIS)

    Kluyver, J.C.; Blokzijl, R.; Massaro, G.G.G.; Wolters, G.F.; Grossmann, P.; Lamb, P.R.; Wells, J.

    1978-01-01

    Peripheral two-body reactions of the type K - p → M 0 + Λ, Σ 0 or Σ 0 (1385) are considered. Predictions based on the additive quark model and SU(6) baryon wave functions are tested against data on cross sections and polarisations for given momentum transfer. Data obtained in a high statistics experiment at 4.2 GeV/c K - momentum, as well as data from a large variety of other experiments are used. Highly significant violations of these predictions are observed in the data. These violations are shown to occur in a systematic fashion, according to which SU(6) must be relaxed, but the amplitude structure implied by additivity would remain valid. As an application an amplitude analysis for natural parity exchange reactions with M 0 = π, phi and rho respectively is performed, which determines a relative phase, which cannot be obtained in model-independent analysis. Also reactions with M 0 = delta or B are considered, and some implications for coupling constants are discussed. (Auth.)

  7. Matérn-based nonstationary cross-covariance models for global processes

    KAUST Repository

    Jun, Mikyoung

    2014-07-01

    Many spatial processes in environmental applications, such as climate variables and climate model errors on a global scale, exhibit complex nonstationary dependence structure, in not only their marginal covariance but also their cross-covariance. Flexible cross-covariance models for processes on a global scale are critical for an accurate description of each spatial process as well as the cross-dependences between them and also for improved predictions. We propose various ways to produce cross-covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters vary over space, coupled with a differential operators approach for modeling large-scale nonstationarity. We compare their performance to the performance of some existing models in terms of the aic and spatial predictions in two applications: joint modeling of surface temperature and precipitation, and joint modeling of errors in climate model ensembles. © 2014 Elsevier Inc.

  8. Forward-backward asymmetry of the top quark in diquark models

    International Nuclear Information System (INIS)

    Arhrib, Abdesslam; Benbrik, Rachid; Chen, Chuan-Hung

    2010-01-01

    Motivated by the recent unexpected large forward-backward asymmetry of the top-quark observed by D0 and CDF at the Tevatron, we investigate a possible explanation for the anomaly within the framework of diquark models. In the diquark models, the top-quark pair production is mediated by the u-channel diagram. It is found that the color-triplet diquark can generate the forward-backward asymmetry of 20% when the constraint from the cross section of the top-quark pair production is taken into account.

  9. Color interaction of quarks and magnetic moments of baryons in the bag model

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1984-01-01

    The purpose of the present study is to saccount for the quark interaction in the bag model by calculating corrections to the baryon magnetic moments related to the colour interaction of quarks. The quark-in-bag wave function to that holds the confinement linear boundary condition has been found in the first order for the external magnetic field. Corrections to the baryon magnetic moments are calculated. They are related to energy variations of colour electric and colour magnetic fields. Numerical data are presented and the structure of corrections in the SU-3 group approximation is discussed. The results are compared with the potential model and the experiment

  10. The error and covariance structures of the mean approach model of pooled cross-section and time series data

    International Nuclear Information System (INIS)

    Nuamah, N.N.N.N.

    1991-01-01

    This paper postulates the assumptions underlying the Mean Approach model and recasts the re-expressions of the normal equations of this model in partitioned matrices of covariances. These covariance structures have been analysed. (author). 16 refs

  11. A quark-antiquark formation model for meson production in low transverse momentum hadron-hadron reactions

    International Nuclear Information System (INIS)

    Friebel, W.; Kriegel, U.; Nahnhauer, R.

    1979-01-01

    Introducing quark transverse momenta and masses it is proposed a 3-dimensional generalization of the quark recombination and the quark fusion model for meson production in low transverse momentum hadron-hadron reactions. A consistent description of vector meson production in proton-proton and proton-antiproton reactions from 12 - 405 GeV/c has been achieved. (author)

  12. Particle production in high energy collisions and the non-relativistic quark model

    International Nuclear Information System (INIS)

    Anisovich, V.V.; Nyiri, J.

    1981-07-01

    The present review deals with multiparticle production processes at high energies using ideas which originate in the non-relativistic quark model. Consequences of the approach are considered and they are compared with experimental data. (author)

  13. ND and NB systems in quark delocalization color screening model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lifang [Nanjing College of Information Technology, Department of Quality-Oriented Education, Nanjing (China); Huang, Hongxia; Ping, Jialun [Nanjing Normal University, Department of Physics, Nanjing (China)

    2017-02-15

    The ND and NB systems with I = 0 and 1, J{sup P} = (1)/(2){sup ±}, (3)/(2){sup ±}, and (5)/(2){sup ±} are investigated within the framework of the quark delocalization color screening model. The results show that all the positive-parity states are unbound. By coupling to the ND* channel, the state ND with I = 0, J{sup P} = (1)/(2){sup -} can form a bound state, which can be invoked to explain the observed Σ(2800) state. The mass of the ND* with I = 0, J{sup P} = (3)/(2){sup -} is close to that of the reported Λ{sub c}(2940){sup +}, which indicates that Λ{sub c}(2940){sup +} can be explained as a ND* molecular state in QDCSM. Besides, the ΔD* with I = 1, J{sup P} = (5)/(2){sup -} is also a possible resonance state. The results of the bottom case of the NB system are similar to those of the ND system. Searching for these states will be a challenging subject of experiments. (orig.)

  14. Radiative decay of mesons in an independent-quark potential model

    International Nuclear Information System (INIS)

    Barik, N.; Dash, P.C.; Panda, A.R.

    1992-01-01

    We investigate in a potential model of independent quarks the M1 transitions among the low-lying vector (V) and pseudoscalar (P) mesons. We perform a ''static'' calculation of the partial decay widths of twelve possible M1 transitions such as V→Pγ and P→Vγ within the traditional picture of photon emission by a confined quark and/or antiquark. The model accounts well for the observed decay widths

  15. Hidden Fine Tuning In The Quark Sector Of Little Higgs Models

    CERN Document Server

    Grinstein, Benjamin; Uttayarat, Patipan

    2010-01-01

    In Little Higgs models a collective symmetry prevents the higgs from acquiring a quadratically divergent mass at one loop. We have previously shown that the couplings in the Littlest Higgs model introduced to give the top quark a mass do not naturally respect the collective symmetry. We extend our previous work showing that the problem is generic: it arises from the fact that the would be collective symmetry of any one top quark mass term is broken by gauge interactions.

  16. Light-cone quark model with spin force for the nucleon and Δ(1232)

    International Nuclear Information System (INIS)

    Weber, H.J.

    1992-01-01

    Electromagnetic structure functions for the nucleon, static observables for the nucleon and N→D(1232) transition form factors are calculated in a relativistic constituent quark model on the light cone. The model simulates the main effect of the spin force between quarks in terms of smaller (and lighter) scalar ud diquarks in the nucleon. The polarized proton structure function is found to agree with the EMC data. (orig.)

  17. Leading Twist TMDs in a Light-Front Quark-Diquark Model for Proton

    Science.gov (United States)

    Maji, Tanmay; Chakrabarti, Dipankar

    2018-05-01

    We present p_{\\perp } variation (fixed x) of the leading-twist T-even transverse momentum dependent parton distributions (TMDs) of a proton in a light-front quark-diquark model at μ ^2=2.4 and 20 GeV^2. The quark densities for unpolarized and transversely polarized proton are also presented. We observe a Soffer bound for TMDs in this model.

  18. Top quark and Higgs physics in standard model extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Patrick Jose

    2012-05-25

    In this thesis we have studied several extensions of the SM and their implications on the strength and structure of the tbW vertex, on the production and decays of pseudoscalar and heavy Higgs scalars at the LHC, and the effects that models with a fourth generation have on electroweak precision observables. Apart from the SM with a fourth generation of chiral fermions, the extensions we studied all feature an extended electroweak symmetry breaking (EWSB) sector. In the case of the type-II 2HDM and the MSSM, the extended EWSB sector consists of elementary Higgs fields. In the case of Topcolor assisted Technicolor (TC2), which is a model of dynamical EWSB, the scalar and pseudoscalar fields are composite. By scanning over the phenomenologically and theoretically allowed regions of the respective parameters spaces, we determined the largest possible cross sections σ(pp→φ→VV{sup '}) where VV{sup p}rime element of {W"+W"-, ZZγγ, Zγ} for both the heavy scalar and pseudoscalar states in the above models. We found that non-SUSY models with an extended Higgs sector and only three generations, namely the type-II 2HDM and the TC2, still allow for observable pseudoscalar cross sections σ(pp → A → VV') at the LHC. In particular for the final states W{sup +}W{sup -} and γγ. In the MSSM, the discovery of the pseudoscalar A through its decays into electroweak gauge bosons is very unlikely. However, scalar cross sections σ(pp→H→W{sup +}W{sup -}) can still be of observable size at the LHC in large parts of the MSSM parameter space. SM extensions with an extended EWSB sector and four chiral generations are strongly disfavoured; direct Higgs boson searches exclude large parts of the parameter space and it is challenging to bring such an extension into accordance with electroweak precision data. On the other hand, models with additional vector-like quarks and an extended Higgs sector are still viable. The SM with four chiral generations is (still) not

  19. When is a heavy quark not a parton? Charged Higgs production and heavy quark mass effects in the QCD-based parton model

    International Nuclear Information System (INIS)

    Olness, F.I.; Tung, Wu-Ki

    1989-10-01

    Applications of the QCD-based parton model to new physics processes involving heavy partons are illustrated using charged Higgs production. The naive parton model predictions are found to over-estimate the actual cross section by a factor of 2 to 5. The role of the top quark as a ''parton'' is examined, and the energy range over which heavy quarks (or other particles) should or should not be naturally treated as ''partons'' is delineated. 12 refs., 5 figs

  20. Cosmological axion and a quark nugget dark matter model

    Science.gov (United States)

    Ge, Shuailiang; Liang, Xunyu; Zhitnitsky, Ariel

    2018-02-01

    We study a dark matter (DM) model offering a very natural explanation of two (naively unrelated) problems in cosmology: the observed relation ΩDM˜Ωvisible and the observed asymmetry between matter and antimatter in the Universe, known as the "baryogenesis" problem. In this framework, both types of matter (dark and visible) have the same QCD origin, form at the same QCD epoch, and are proportional to one and the same dimensional parameter of the system, ΛQCD, which explains how these two naively distinct problems could be intimately related, and could be solved simultaneously within the same framework. More specifically, the DM in this model is composed by two different ingredients: the (well-studied) DM axions and the (less-studied) quark nuggets made of matter or antimatter. We focus on the quantitative analysis of the relation between these two distinct components contributing to the dark sector of the theory determined by ΩDM≡[ΩDM(nuggets)+ΩDM(axion)] . We argue that the nuggets' DM component always traces the visible matter density, i.e., ΩDM(nuggets)˜Ωvisible , and this feature is not sensitive to the parameters of the system such as the axion mass ma or the misalignment angle θ0. It should be contrasted with conventional axion production mechanisms due to the misalignment when ΩDM(axion) is highly sensitive to the axion mass ma and the initial misalignment angle θ0. We also discuss the constraints on this model related to the inflationary scale HI, nonobservation of the isocurvature perturbations and the tensor modes. We also comment on some constraints related to various axion search experiments.

  1. Gravitational form factors and angular momentum densities in light-front quark-diquark model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Narinder [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Sharma, Neetika [I K Gujral Punjab Technical University, Department of Physical Sciences, Jalandhar, Punjab (India); Panjab University, Department of Physics, Chandigarh (India)

    2017-12-15

    We investigate the gravitational form factors (GFFs) and the longitudinal momentum densities (p{sup +} densities) for proton in a light-front quark-diquark model. The light-front wave functions are constructed from the soft-wall AdS/QCD prediction. The contributions from both the scalar and the axial vector diquarks are considered here. The results are compared with the consequences of a parametrization of nucleon generalized parton distributions (GPDs) in the light of recent MRST measurements of parton distribution functions (PDFs) and a soft-wall AdS/QCD model. The spatial distribution of angular momentum for up and down quarks inside the nucleon has been presented. At the density level, we illustrate different definitions of angular momentum explicitly for an up and down quark in the light-front quark-diquark model inspired by AdS/QCD. (orig.)

  2. Qq(Q-bar)(q-bar)' states in chiral SU(3) quark model

    International Nuclear Information System (INIS)

    Zhang Haixia; Zhang Min; Zhang Zongye

    2007-01-01

    We study the masses of Qq(Q-bar)(q-bar)' states with J PC =0 ++ , 1 ++ , 1 +- and 2 ++ in the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q(q') is the light quark (u,d or s). According to our numerical results, it is improbable to make the interpretation of [cn(c-bar)(n-bar)] 1 ++ and [cn(c-bar)(n-bar)] 2 ++ (n=u,d) states as X(3872) and Y(3940), respectively. However, it is interesting to find the tetraquarks in the bq(b-bar)(q-bar)' system. (authors)

  3. Studies on top-quark Monte Carlo modelling for Top2016

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This note summarises recent studies on Monte Carlo simulation setups of top-quark pair production used by the ATLAS experiment and presents a new method to deal with interference effects for the $Wt$ single-top-quark production which is compared against previous techniques. The main focus for the top-quark pair production is on the improvement of the modelling of the Powheg generator interfaced to the Pythia8 and Herwig7 shower generators. The studies are done using unfolded data at centre-of-mass energies of 7, 8, and 13 TeV.

  4. Strangeness content and structure function of the nucleon in a statistical quark model

    CERN Document Server

    Trevisan, L A; Tomio, L

    1999-01-01

    The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the new muon collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions. (27 refs).

  5. Quark-parton model from dual topological unitarization

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.; El Hassouni, A.; Kalinowski, J.; Peschanski, R.

    1979-01-01

    Topology, which occurs in the topological expansion of quantum chromodynamics (QCD) and in the dual topological unitarization (DTU) schemes, allows us to establish a quantitative correspondence between QCD and the dual S-matrix approaches. This topological correspondence, proposed by Veneziano and made more explicit in a recent paper for current-induced reactions, provides a clarifying and unifying quark-parton interpretation of soft inclusive processes. Precise predictions for inclusive cross sections in hadron-hadron collisions, structure functions of hadrons, and quark fragmentation functions including absolute normalizations are shown to agree with data. On a more theoretical ground the proposed scheme suggests a new approach to the confinement problem

  6. The Quark - A Decade Later

    Science.gov (United States)

    Dakin, James T.

    1974-01-01

    Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)

  7. Leptonic decay of light vector mesons in an independent quark model

    International Nuclear Information System (INIS)

    Barik, N.; Dash, P.C.; Panda, A.R.

    1993-01-01

    Leptonic decay widths of light vector mesons are calculated in a framework based on the independent quark model with a scalar-vector harmonic potential. Assuming a strong correlation to exist between the quark-antiquark momenta inside the meson, so as to make their total momentum identically zero in the center-of-mass frame of the meson, we extract the quark and antiquark momentum distribution amplitudes from the bound quark eigenmode. Using the model parameters determined from earlier studies, we arrive at the leptonic decay widths of (ρ,ω,φ) as (6.26 keV, 0.67 keV, 1.58 keV) which are in very good agreement with the respective experimental data (6.77±0.32 keV, 0.6±0.02 keV, 1.37±0.05 keV)

  8. Evaluation of the spectra of baryons containing two heavy quarks in a bag model

    International Nuclear Information System (INIS)

    He Daheng; Qian Ke; Ding Yibing; Li Xueqian; Shen Pengnian

    2004-01-01

    In this work, we evaluate the mass spectra of baryons which consist of two heavy quarks and one light quark in the MIT bag model. The two heavy quarks constitute a heavy scalar or axial-vector diquark. Concretely, we calculate the spectra of vertical bar q(QQ ' )> 1/2 and vertical bar q(QQ ' )> 3/2 where Q and Q ' stand for b and/or c quarks. Especially, for vertical bar q(bc)> 1/2 there can be a mixing between vertical bar q(bc) 0 > 1/2 and vertical bar q(bc) 1 > 1/2 where the subscripts 0 and 1 refer to the spin state of the diquark (bc), the mixing is not calculable in the framework of quantum mechanics as the potential model is employed, but can be evaluated by the quantum field theory. Our numerical results indicate that the mixing is sizable

  9. A Standardized Generalized Dimensionality Discrepancy Measure and a Standardized Model-Based Covariance for Dimensionality Assessment for Multidimensional Models

    Science.gov (United States)

    Levy, Roy; Xu, Yuning; Yel, Nedim; Svetina, Dubravka

    2015-01-01

    The standardized generalized dimensionality discrepancy measure and the standardized model-based covariance are introduced as tools to critique dimensionality assumptions in multidimensional item response models. These tools are grounded in a covariance theory perspective and associated connections between dimensionality and local independence.…

  10. 1/M corrections to baryonic form factors in the quark model

    International Nuclear Information System (INIS)

    Cheng, H.; Tseng, B.

    1996-01-01

    Weak current-induced baryonic form factors at zero recoil are evaluated in the rest frame of the heavy parent baryon using the nonrelativistic quark model. Contrary to previous similar work in the literature, our quark model results do satisfy the constraints imposed by heavy quark symmetry for heavy-heavy baryon transitions at the symmetric point v·v'=1 and are in agreement with the predictions of the heavy quark effective theory for antitriplet-antitriplet heavy baryon form factors at zero recoil evaluated to order 1/m Q . Furthermore, the quark model approach has the merit that it is applicable to any heavy-heavy and heavy-light baryonic transitions at maximum q 2 . Assuming a dipole q 2 behavior, we have applied the quark model form factors to nonleptonic, semileptonic, and weak radiative decays of the heavy baryons. It is emphasized that the flavor suppression factor occurring in many heavy-light baryonic transitions, which is unfortunately overlooked in most literature, is very crucial towards an agreement between theory and experiment for the semileptonic decay Λ c →Λe + ν e . Predictions for the decay modes Λ b →J/ψΛ, Λ c →pφ, Λ b →Λγ, Ξ b →Ξγ, and for the semileptonic decays of Λ b , Ξ b, c, and Ω b are presented. copyright 1996 The American Physical Society

  11. Testing Constancy of the Error Covariance Matrix in Vector Models against Parametric Alternatives using a Spectral Decomposition

    DEFF Research Database (Denmark)

    Yang, Yukay

    I consider multivariate (vector) time series models in which the error covariance matrix may be time-varying. I derive a test of constancy of the error covariance matrix against the alternative that the covariance matrix changes over time. I design a new family of Lagrange-multiplier tests against...... to consider multivariate volatility modelling....

  12. The Misspecification of the Covariance Structures in Multilevel Models for Single-Case Data: A Monte Carlo Simulation Study

    Science.gov (United States)

    Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim

    2016-01-01

    The impact of misspecifying covariance matrices at the second and third levels of the three-level model is evaluated. Results indicate that ignoring existing covariance has no effect on the treatment effect estimate. In addition, the between-case variance estimates are unbiased when covariance is either modeled or ignored. If the research interest…

  13. On adjustment for auxiliary covariates in additive hazard models for the analysis of randomized experiments

    DEFF Research Database (Denmark)

    Vansteelandt, S.; Martinussen, Torben; Tchetgen, E. J Tchetgen

    2014-01-01

    We consider additive hazard models (Aalen, 1989) for the effect of a randomized treatment on a survival outcome, adjusting for auxiliary baseline covariates. We demonstrate that the Aalen least-squares estimator of the treatment effect parameter is asymptotically unbiased, even when the hazard...... that, in view of its robustness against model misspecification, Aalen least-squares estimation is attractive for evaluating treatment effects on a survival outcome in randomized experiments, and the primary reasons to consider baseline covariate adjustment in such settings could be interest in subgroup......'s dependence on time or on the auxiliary covariates is misspecified, and even away from the null hypothesis of no treatment effect. We furthermore show that adjustment for auxiliary baseline covariates does not change the asymptotic variance of the estimator of the effect of a randomized treatment. We conclude...

  14. Ratios of Vector and Pseudoscalar B Meson Decay Constants in the Light-Cone Quark Model

    Science.gov (United States)

    Dhiman, Nisha; Dahiya, Harleen

    2018-05-01

    We study the decay constants of pseudoscalar and vector B meson in the framework of light-cone quark model. We apply the variational method to the relativistic Hamiltonian with the Gaussian-type trial wave function to obtain the values of β (scale parameter). Then with the help of known values of constituent quark masses, we obtain the numerical results for the decay constants f_P and f_V, respectively. We compare our numerical results with the existing experimental data.

  15. Remarks on electromagnetic form factors of hadrons in the quark model

    International Nuclear Information System (INIS)

    Vainshtein, A.I.; Zakharov, V.I.

    1977-01-01

    Relations between the transversal and longitudinal parts of elastic and quasielastic form factors are studied within the quark model. It is shown that for an even number of the constituent quarks the longitudinal part dominates while for an odd number the transversal part is the largest one. Consequences form this result are considered for deuteron form factor and for matrix elements of the electromagnetic transitions between π, rho, A 1 mesons

  16. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    A systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated Nambu-Jona-Lasinio model is presented. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling constant κ. 20 refs

  17. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    We present a systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated NJL model. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling κ. (orig.)

  18. Divergence of the quark self-energy in the second quantized chiral bag model

    International Nuclear Information System (INIS)

    Oset, E.

    1983-01-01

    When summing over the intermediate quark states of a spherical cavity, the quark self-energy of the chiral bag model, in lowest order of the pion coupling, is shown to generate a series of terms, each one growing linearly with the angular variable kappa. However, there is a cancellation between terms for different kappa, which finally leads to an overall linearly divergent series. (orig.)

  19. Color-flavor locked strange quark matter in a mass density-dependent model

    International Nuclear Information System (INIS)

    Chen Yuede; Wen Xinjian

    2007-01-01

    Properties of color-flavor locked (CFL) strange quark matter have been studied in a mass-density-dependent model, and compared with the results in the conventional bag model. In both models, the CFL phase is more stable than the normal nuclear matter for reasonable parameters. However, the lower density behavior of the sound velocity in this model is completely opposite to that in the bag model, which makes the maximum mass of CFL quark stars in the mass-density-dependent model larger than that in the bag model. (authors)

  20. Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model. I. Phenomenological predictions

    International Nuclear Information System (INIS)

    Wakamatsu, M.

    2003-01-01

    Theoretical predictions are given for the light-flavor sea-quark distributions in the nucleon including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken of the SU(3) symmetry breaking effects due to the mass difference Δm s between the strange and nonstrange quarks, which is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the light-flavor sea-quark asymmetry as exemplified by the observables d-bar(x)-u-bar(x),d-bar(x)/u-bar(x),Δu-bar(x)-Δd-bar(x) as well as on the particle-antiparticle asymmetry of the strange quark distributions represented by s(x)-s-bar(x),s(x)/s-bar(x),Δs(x)-Δs-bar(x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for d-bar(x)-u-bar(x), the E866 data for d-bar(x)/u-bar(x), the CCFR data and the fit of Barone et al. for s(x)/s-bar(x), etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)<<Δs-bar(x) < or approx. 0 and Δd-bar(x)<0<Δu-bar(x), although the verification of these predictions must await more elaborate experimental investigations in the near future

  1. π-π scattering in a consistent relativistic quark model

    International Nuclear Information System (INIS)

    Micu, L.

    1977-12-01

    Introducing the expression of the interpolating field of a pion as a product of suitable modified free quark fields and of a scalar unquantified field into the LSZ formalism one deduces the vanishing of the exotic amplitudes and of the π-π scattering lengths. The asymptotic vanishing of the elastic π - π scattering amplitude may also be obtained under special requirements. (author)

  2. Plane Symmetric Cosmological Model with Quark and Strange ...

    Indian Academy of Sciences (India)

    theories of gravity have been evolved to explain such issues of current cosmic .... quark matter attached to the string cloud in general relativity. Yılmaz et al. (2012) have ... Einstein's field equations we considered power-law relation between ...

  3. Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors

    KAUST Repository

    Sang, Huiyan

    2011-12-01

    This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models. Our method allows for a nonseparable and nonstationary cross-covariance structure. We also present a covariance approximation approach to facilitate the computation in the modeling and analysis of very large multivariate spatial data sets. The covariance approximation consists of two parts: a reduced-rank part to capture the large-scale spatial dependence, and a sparse covariance matrix to correct the small-scale dependence error induced by the reduced rank approximation. We pay special attention to the case that the second part of the approximation has a block-diagonal structure. Simulation results of model fitting and prediction show substantial improvement of the proposed approximation over the predictive process approximation and the independent blocks analysis. We then apply our computational approach to the joint statistical modeling of multiple climate model errors. © 2012 Institute of Mathematical Statistics.

  4. Hyperon-nucleon and hyperon-hyperon interaction in the quark cluster model

    International Nuclear Information System (INIS)

    Straub, U.

    1988-01-01

    The nonrelativistic quark cluster model is used for the description of the hyperon-nucleon and hyperon-hyperon interaction. The different mass of the quarks is consistently regarded in the Hamiltonian and in the shape of the spatial wave functions of the quarks. The six-quark wave function is completely antisymmetrisized. By means of the resonating-group method the dynamic equations for the determination of the binding and scattering states of the six-quark problem are formulated. The corresponding resonating-group kernels are explicitely given. We calculate the lambda-nucleon and sigma-nucleon interaction. The sigma-nucleon scattering in the isospin (T=3/2) channel can be treated in a one-channel calculation. The sigma-nucleon (T=1/2) interaction and the lambda-nucleon interaction are studied in a coupled two-channel calculation. From a fit of the experimental lambda-nucleon interaction cross section the strength of the sigma-meson exchange is determined. The calculation of the sigma-nucleon scattering follows then completely parameterless. The agreement of the theory with the experiment is good. Subsequently the cluster model with this parameter is applied to the dihyperon which is a possibly bound state of two up quarks, two down quarks, and two strange quarks. We solve for this a coupled three-channel calculation. The cluster model presented here gives a binding energy of the dihyperon of (20±5) MeV below the lambda-lambda threshold. The mass of the dihyperon is predicted by this as (2211±5) MeV. (orig.) [de

  5. Accounting for covariate measurement error in a Cox model analysis of recurrence of depression.

    Science.gov (United States)

    Liu, K; Mazumdar, S; Stone, R A; Dew, M A; Houck, P R; Reynolds, C F

    2001-01-01

    When a covariate measured with error is used as a predictor in a survival analysis using the Cox model, the parameter estimate is usually biased. In clinical research, covariates measured without error such as treatment procedure or sex are often used in conjunction with a covariate measured with error. In a randomized clinical trial of two types of treatments, we account for the measurement error in the covariate, log-transformed total rapid eye movement (REM) activity counts, in a Cox model analysis of the time to recurrence of major depression in an elderly population. Regression calibration and two variants of a likelihood-based approach are used to account for measurement error. The likelihood-based approach is extended to account for the correlation between replicate measures of the covariate. Using the replicate data decreases the standard error of the parameter estimate for log(total REM) counts while maintaining the bias reduction of the estimate. We conclude that covariate measurement error and the correlation between replicates can affect results in a Cox model analysis and should be accounted for. In the depression data, these methods render comparable results that have less bias than the results when measurement error is ignored.

  6. A Proportional Hazards Regression Model for the Subdistribution with Covariates-adjusted Censoring Weight for Competing Risks Data

    DEFF Research Database (Denmark)

    He, Peng; Eriksson, Frank; Scheike, Thomas H.

    2016-01-01

    function by fitting the Cox model for the censoring distribution and using the predictive probability for each individual. Our simulation study shows that the covariate-adjusted weight estimator is basically unbiased when the censoring time depends on the covariates, and the covariate-adjusted weight......With competing risks data, one often needs to assess the treatment and covariate effects on the cumulative incidence function. Fine and Gray proposed a proportional hazards regression model for the subdistribution of a competing risk with the assumption that the censoring distribution...... and the covariates are independent. Covariate-dependent censoring sometimes occurs in medical studies. In this paper, we study the proportional hazards regression model for the subdistribution of a competing risk with proper adjustments for covariate-dependent censoring. We consider a covariate-adjusted weight...

  7. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    Science.gov (United States)

    Zinovjev, G. M.; Molodtsov, S. V.

    2016-03-01

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen-Cooper-Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  8. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    International Nuclear Information System (INIS)

    Zinovjev, G. M.; Molodtsov, S. V.

    2016-01-01

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen–Cooper–Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  9. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zinovjev, G. M., E-mail: Gennady.Zinovjev@cern.ch [National Academy of Sciences of Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine); Molodtsov, S. V. [Joint Institute for Nuclear Research (Russian Federation)

    2016-03-15

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen–Cooper–Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  10. Quark Loop Effects on Dressed Gluon Propagator in Framework of Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    Based on the global color symmetry model (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one should use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.

  11. Axial charges of octet and decuplet baryons in a perturbative chiral quark model

    Science.gov (United States)

    Liu, X. Y.; Samart, D.; Khosonthongkee, K.; Limphirat, A.; Xu, K.; Yan, Y.

    2018-05-01

    Using the perturbative chiral quark model (PCQM), we investigate and predict in this work axial charges gAB of octet and decuplet N , Σ , Ξ , Δ , Σ*, and Ξ* baryons, considering both the ground and excited states in the quark propagator. The PCQM predictions are in good agreement with the experimental data, lattice-QCD values, and other approaches. In addition, the study reveals that the meson cloud is influential in the PCQM, contributing around 30% to the total values of gAB, and the meson cloud contribution to gAB stems mainly from the diagrams with the ground-state quark propagator while the excited intermediate quark states reduce gAB by 10-20%.

  12. Exact solutions to a schematic nuclear quark model and colorless superconductivity

    DEFF Research Database (Denmark)

    Bohr, Henrik; da Providencia, Joao

    2008-01-01

    Exact solutions are found to the equations of a standard nuclear quark model exemplified by the Bonn model which is defined in terms of an effective pairing force. We show, by symmetry arguments, that, in general, the ground state of this model is not color neutral. In particular, color-neutral s......Exact solutions are found to the equations of a standard nuclear quark model exemplified by the Bonn model which is defined in terms of an effective pairing force. We show, by symmetry arguments, that, in general, the ground state of this model is not color neutral. In particular, color...

  13. Promotion time cure rate model with nonparametric form of covariate effects.

    Science.gov (United States)

    Chen, Tianlei; Du, Pang

    2018-05-10

    Survival data with a cured portion are commonly seen in clinical trials. Motivated from a biological interpretation of cancer metastasis, promotion time cure model is a popular alternative to the mixture cure rate model for analyzing such data. The existing promotion cure models all assume a restrictive parametric form of covariate effects, which can be incorrectly specified especially at the exploratory stage. In this paper, we propose a nonparametric approach to modeling the covariate effects under the framework of promotion time cure model. The covariate effect function is estimated by smoothing splines via the optimization of a penalized profile likelihood. Point-wise interval estimates are also derived from the Bayesian interpretation of the penalized profile likelihood. Asymptotic convergence rates are established for the proposed estimates. Simulations show excellent performance of the proposed nonparametric method, which is then applied to a melanoma study. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Stochastic modeling of the Earth's magnetic field: Inversion for covariances over the observatory era

    DEFF Research Database (Denmark)

    Gillet, N.; Jault, D.; Finlay, Chris

    2013-01-01

    Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge of the magnetic field at the core-mantle boundary together with its associated model covariances. However, most currently available field models have been built using regularization conditions...... variation error model in core flow inversions and geomagnetic data assimilation studies....

  15. Stochastic modelling of the Earth’s magnetic field: inversion for covariances over the observatory era

    DEFF Research Database (Denmark)

    Gillet, Nicolas; Jault, D.; Finlay, Chris

    2013-01-01

    Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge of the magnetic field at the core mantle boundary together with its associated model covariances. However, all currently available field models have been built using regularization conditions...... variation error model in core flow inversions and geomagnetic data assimilation studies....

  16. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

    KAUST Repository

    Dreano, Denis; Tandeo, P.; Pulido, M.; Ait-El-Fquih, Boujemaa; Chonavel, T.; Hoteit, Ibrahim

    2017-01-01

    Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended

  17. Simulations and cosmological inference: A statistical model for power spectra means and covariances

    International Nuclear Information System (INIS)

    Schneider, Michael D.; Knox, Lloyd; Habib, Salman; Heitmann, Katrin; Higdon, David; Nakhleh, Charles

    2008-01-01

    We describe an approximate statistical model for the sample variance distribution of the nonlinear matter power spectrum that can be calibrated from limited numbers of simulations. Our model retains the common assumption of a multivariate normal distribution for the power spectrum band powers but takes full account of the (parameter-dependent) power spectrum covariance. The model is calibrated using an extension of the framework in Habib et al. (2007) to train Gaussian processes for the power spectrum mean and covariance given a set of simulation runs over a hypercube in parameter space. We demonstrate the performance of this machinery by estimating the parameters of a power-law model for the power spectrum. Within this framework, our calibrated sample variance distribution is robust to errors in the estimated covariance and shows rapid convergence of the posterior parameter constraints with the number of training simulations.

  18. Low-lying 1/2-hidden strange pentaquark states in the constituent quark model

    Institute of Scientific and Technical Information of China (English)

    Hui Li; Zong-Xiu Wu; Chun-Sheng An; Hong Chen

    2017-01-01

    We investigate the spectrum of the low-lying 1/2-hidden strange pentaquark states,employing the constituent quark model,and looking at two ways within that model of mediating the hyperfine interaction between quarks-Goldstone boson exchange and one gluon exchange.Numerical results show that the lowest 1/2-hidden strange pentaquark state in the Goldstone boson exchange model lies at ~ 1570 MeV,so this pentaquark configuration may form a notable component in S11(1535) if the Goldstone boson exchange model is applied.This is consistent with the prediction that S11 (1535) couples very strongly to strangeness channels.

  19. A multivariate multilevel Gaussian model with a mixed effects structure in the mean and covariance part.

    Science.gov (United States)

    Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel

    2014-05-20

    A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Univariate and Multivariate Specification Search Indices in Covariance Structure Modeling.

    Science.gov (United States)

    Hutchinson, Susan R.

    1993-01-01

    Simulated population data were used to compare relative performances of the modification index and C. Chou and P. M. Bentler's Lagrange multiplier test (a multivariate generalization of a modification index) for four levels of model misspecification. Both indices failed to recover the true model except at the lowest level of misspecification. (SLD)

  1. Adaptive Non-Interventional Heuristics for Covariation Detection in Causal Induction: Model Comparison and Rational Analysis

    Science.gov (United States)

    Hattori, Masasi; Oaksford, Mike

    2007-01-01

    In this article, 41 models of covariation detection from 2 x 2 contingency tables were evaluated against past data in the literature and against data from new experiments. A new model was also included based on a limiting case of the normative phi-coefficient under an extreme rarity assumption, which has been shown to be an important factor in…

  2. P2 : A random effects model with covariates for directed graphs

    NARCIS (Netherlands)

    van Duijn, M.A.J.; Snijders, T.A.B.; Zijlstra, B.J.H.

    A random effects model is proposed for the analysis of binary dyadic data that represent a social network or directed graph, using nodal and/or dyadic attributes as covariates. The network structure is reflected by modeling the dependence between the relations to and from the same actor or node.

  3. Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Patton, Andrew J.; Quaedvlieg, Rogier

    We propose a new framework for modeling and forecasting common financial risks based on (un)reliable realized covariance measures constructed from high-frequency intraday data. Our new approach explicitly incorporates the effect of measurement errors and time-varying attenuation biases into the c......We propose a new framework for modeling and forecasting common financial risks based on (un)reliable realized covariance measures constructed from high-frequency intraday data. Our new approach explicitly incorporates the effect of measurement errors and time-varying attenuation biases...

  4. MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY

    Directory of Open Access Journals (Sweden)

    Pablo Gregori

    2014-03-01

    Full Text Available This paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF, tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even when negative covariance between some couples of locations are evident. We show some strategies in order to escape from these restrictions, on the basis of rich classes of well known stationary or isotropic non negative covariance models, and through suitable operations, like linear combinations, generalized means, or with particular Fourier transforms.

  5. Weak leptonic decay of light and heavy pseudoscalar mesons in an independent quark model

    International Nuclear Information System (INIS)

    Barik, N.; Dash, P.C.

    1993-01-01

    Weak leptonic decays of light and heavy pseudoscalar mesons are studied in a field-theoretic framework based on the independent quark model with a scalar-vector harmonic potential. Defining the quark-antiquark momentum distribution amplitude obtainable from the bound quark eigenmodes of the model with the assumption of a strong correlation between quark-antiquark momenta inside the decaying meson in its rest frame, we derive the partial decay width with correct kinematical factors from which we extract an expression for the pseudoscalar decay constants f M . Using the model parameters determined from earlier studies in the light-flavor sector and heavy-quark masses m c and m b from the hyperfine splitting of (D * ,D) and (B * ,B), we calculate the pseudoscalar decay constants. We find that while (f π ,f K )≡(138,157 MeV); (f D ,f Ds )≡(161,205 MeV), (f B ,f Bs )≡(122,154 MeV), and f Bc =221 MeV. We also obtain the partial decay widths and branching ratios for some kinematically allowed weak leptonic decay processes

  6. On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models

    Science.gov (United States)

    Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.

    2017-12-01

    Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.

  7. A Matérn model of the spatial covariance structure of point rain rates

    KAUST Repository

    Sun, Ying

    2014-07-15

    It is challenging to model a precipitation field due to its intermittent and highly scale-dependent nature. Many models of point rain rates or areal rainfall observations have been proposed and studied for different time scales. Among them, the spectral model based on a stochastic dynamical equation for the instantaneous point rain rate field is attractive, since it naturally leads to a consistent space–time model. In this paper, we note that the spatial covariance structure of the spectral model is equivalent to the well-known Matérn covariance model. Using high-quality rain gauge data, we estimate the parameters of the Matérn model for different time scales and demonstrate that the Matérn model is superior to an exponential model, particularly at short time scales.

  8. A Matérn model of the spatial covariance structure of point rain rates

    KAUST Repository

    Sun, Ying; Bowman, Kenneth P.; Genton, Marc G.; Tokay, Ali

    2014-01-01

    It is challenging to model a precipitation field due to its intermittent and highly scale-dependent nature. Many models of point rain rates or areal rainfall observations have been proposed and studied for different time scales. Among them, the spectral model based on a stochastic dynamical equation for the instantaneous point rain rate field is attractive, since it naturally leads to a consistent space–time model. In this paper, we note that the spatial covariance structure of the spectral model is equivalent to the well-known Matérn covariance model. Using high-quality rain gauge data, we estimate the parameters of the Matérn model for different time scales and demonstrate that the Matérn model is superior to an exponential model, particularly at short time scales.

  9. Charge asymmetry in e+e- → γ + hadrons: New tests of the quark-parton model and fractional charge

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Carlson, C.E.; Suaya, R.

    1976-01-01

    We consider the process e + e - → γ + h + X, where h is a hadron and γ is a hard photon, and show how it can be used to test the quark-parton model. Detailed formulas are given for the cross sections, which in the quark-parton model are products of cross sections for e + e - → γμanti μ and quark breakup functions. We focus on the asymmetry between h and h-bar production, and display sum rules and ratio tests which measure the quark charge, the quark Compton amplitude, and the large-x behavior of the quark breakup function. The asymmetry is calculated for the muon case, and is about 100% for the forward direction

  10. On the possibility on constructing covariant chromomagnetic field models

    International Nuclear Information System (INIS)

    Cabo, A.; Penaranda, S.; Martinez, R.

    1995-03-01

    Expressions for SO(4) invariant euclidean QCD generating functionals are introduced which should produce non-vanishing gluon condensates. Their investigation is started here by initially considering the loop expansion of the corresponding effective action searching for a description differing from the usual perturbation theory. At this level, we consider special free propagators showing a sort or off-diagonal long range order. The calculation of the polarization tensor leads to a gluon mass term which is proportional to the squared root of the also finite value for 2 >. The summation of all the one-loop contributions to the energy having only mass insertions, indicates the spontaneous generation of the condensate from the perturbative grounds state in a way resembling the similar effect in the case of the chromomagnetic field models. This initial inspection suggests the need for a closer investigation which will be considered elsewhere. (author). 22 refs

  11. Baryon magnetic moments in the quark model and pion cloud contributions

    International Nuclear Information System (INIS)

    Sato, Toshiro; Sawada, Shoji

    1981-01-01

    Baryon magnetic moment is studied paying attention to the effects of pion cloud which is surrounding the 'bare' baryon whose magnetic moment is given by the quark model with broken SU(6) symmetry. The precisely measured nucleon magnetic moments are reproduced by the pion cloud contributions from the distance larger than 1.4 fm. The effects of pion cloud on the hyperon magnetic moments are also discussed. It is shown that the pion cloud contributions largely reduce the discrepancies between the quark model predictions and the recent accurate experimental data on the hyperon magnetic moments. (author)

  12. Strange star candidates revised within a quark model with chiral mass scaling

    Institute of Scientific and Technical Information of China (English)

    Ang Li; Guang-Xiong Peng; Ju-Fu Lu

    2011-01-01

    We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (~ 1.6 M⊙) and radius (~ 10 km). Together with a broad collection of modern neutron star models, we discuss some recent astrophysical observational data that could shed new light on the possible presence of strange quark matter in compact stars. We conclude that none of the present astrophysical observations can prove or confute the existence of strange stars.

  13. Repetition of the quark-lepton states in a supersymmetric composite model with complementarity

    International Nuclear Information System (INIS)

    Yamada, Hirofumi; Yasue, Masaki.

    1986-04-01

    In a supersymmetric composite model based on an SU(4) sc loc confining theory, complementarity is used to support the symmetry-breaking pattern and spectrum of massless particles in a confining phase. The model is found to accommodate two generations of quarks and leptons as quasi Nambu-Goldstone fermions and another two generations as chiral fermions. Masses of composite particles are examined and the quark-lepton generations are classified according to possible mass splittings. The suppression of dangerous flavor-changing interactions is also considered. (author)

  14. Quantum chromodynamic quark model study of hadron and few hadron systems

    International Nuclear Information System (INIS)

    Ji, Chueng-Ryong.

    1990-10-01

    This report details research progress and results obtained during the five month period July 1, 1990 to November 30, 1990. The research project, entitled ''Quantum Chromodynamic Quark Model Study of Hadron and Few Hadron Systems,'' is supported by grant FG05-90ER40589 between North Carolina State University and the United States Department of Energy. This is a research program addressing theoretical investigations of hadron structure and reactions using quantum chromodynamic quark models. The new, significant research results are briefly summarized in the following sections

  15. Exactly solvable model of phase transition between hadron and quark-gluon-matter

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Petrov, V.K.; Shelest, V.P.; Zinovjev, G.M.

    1982-01-01

    An exactly solvable model of phase transition between hadron and quark-gluon matter is proposed. The hadron phase of this model is considered as a gas of bags filled by point massless constituents. The mass and volume spectrum of the bag is found. The thermodynamical characteristics of a bag gas in the neighbourhood of a phase transition point are ascertained in analytical form

  16. Difficulties for SU(N) quark models of the new particles

    International Nuclear Information System (INIS)

    Colglazier, E.W.; Barnes, K.J.; Hey, A.J.; Zia, R.K.

    1975-01-01

    If preliminary experimental results on the new particles are confirmed and if conventional theoretical prejudices are accepted, it is shown that Harari's SU(6) model is the minimal N-quark model (with hidden color) which can accommodate these constraints. (author)

  17. Possible D(*) anti D(*) and B(*) anti B(*) molecular states in the extended constituent quark models

    International Nuclear Information System (INIS)

    Yang, You-Chang; Tan, Zhi-Yun; Ping, Jialun; Zong, Hong-Shi

    2017-01-01

    The possible neutral D (*) anti D (*) and B (*) anti B (*) molecular states are studied in the framework of the constituent quark models, which is extended by including the s-channel one-gluon exchange. Using different types of quark-quark potentials, we solve the four-body Schroedinger equation by means of the Gaussian expansion method. The bound states of D (*) anti D (*) with J PC = 1 ++ , 2 ++ and B (*) anti B (*) with J PC = 0 ++ , 1 +- , 1 ++ , 2 ++ are obtained. The molecular states D* anti D with J PC = 1 ++ and B* anti B with J PC = 1 +- are good candidates for X(3872) and Z 0 b (10610), respectively. The dependence of the results on the model parameters is also discussed. (orig.)

  18. Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1

    CERN Document Server

    Blanke, Monika; Recksiegel, Stefan

    2016-04-02

    The Littlest Higgs Model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. We present a new analysis of quark observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare $K$ and $B$ decays are still allowed to depart from their SM values. This includes $K^+\\to\\pi^+\

  19. TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION.

    Science.gov (United States)

    Allen, Genevera I; Tibshirani, Robert

    2010-06-01

    Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable , meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal , in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility.

  20. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    OpenAIRE

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implem...

  1. Magnetic moments of confined quarks and baryons in an independent-quark model based on Dirac equation with power-law potential

    International Nuclear Information System (INIS)

    Barik, N.; Das, M.

    1983-01-01

    The effect of confinement on the magnetic moment of a quark has been studied in a simple independent-quark model based on the Dirac equation with a power-law potential. The magnetic moments so obtained for the constituent quarks, which are found to be significantly different from their corresponding Dirac moments, are used in predicting the magnetic moments of baryons in the nucleon octet as well as those in the charmed and b-flavored sectors. We not only get an improved result for the proton magnetic moment, but the calculation for the rest of the nucleon octet also turns out to be in reasonable agreement with experiment. The overall predictions for the charmed and b-flavored baryons are also comparable with other model predictions

  2. Integrating lysimeter drainage and eddy covariance flux measurements in a groundwater recharge model

    DEFF Research Database (Denmark)

    Vasquez, Vicente; Thomsen, Anton Gårde; Iversen, Bo Vangsø

    2015-01-01

    Field scale water balance is difficult to characterize because controls exerted by soils and vegetation are mostly inferred from local scale measurements with relatively small support volumes. Eddy covariance flux and lysimeters have been used to infer and evaluate field scale water balances...... because they have larger footprint areas than local soil moisture measurements.. This study quantifies heterogeneity of soil deep drainage (D) in four 12.5 m2 repacked lysimeters, compares evapotranspiration from eddy covariance (ETEC) and mass balance residuals of lysimeters (ETwbLys), and models D...

  3. Bias-Corrected Estimation of Noncentrality Parameters of Covariance Structure Models

    Science.gov (United States)

    Raykov, Tenko

    2005-01-01

    A bias-corrected estimator of noncentrality parameters of covariance structure models is discussed. The approach represents an application of the bootstrap methodology for purposes of bias correction, and utilizes the relation between average of resample conventional noncentrality parameter estimates and their sample counterpart. The…

  4. Promoting Modeling and Covariational Reasoning among Secondary School Students in the Context of Big Data

    Science.gov (United States)

    Gil, Einat; Gibbs, Alison L.

    2017-01-01

    In this study, we follow students' modeling and covariational reasoning in the context of learning about big data. A three-week unit was designed to allow 12th grade students in a mathematics course to explore big and mid-size data using concepts such as trend and scatter to describe the relationships between variables in multivariate settings.…

  5. Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling

    Czech Academy of Sciences Publication Activity Database

    Rebmann, C.; Göckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Carrara, A.; Cescatti, A.; Ceulemans, R.; Clement, R.; Elbers, J. A.; Granier, A.; Grünwald, T.; Guyon, D.; Havránková, Kateřina; Heinesch, B.; Knohl, A.; Laurila, T.; Longdoz, B.; Marcolla, B.; Markkanen, T.; Miglietta, F.; Moncrieff, J.; Montagnani, L.; Moors, E.; Nardino, M.; Ourcival, J.-M.; Rambal, S.; Rannik, Ü.; Rotenberg, E.; Sedlák, Pavel; Unterhuber, G.; Vesala, T.; Yakir, D.

    2005-01-01

    Roč. 80, - (2005), s. 121-141 ISSN 0177-798X Grant - others:Carboeuroflux(XE) EVK-2-CT-1999-00032 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z6087904 Keywords : Eddy covariance * Quality assurance * Quality control * Footprint modelling * Heterogeneity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.295, year: 2005

  6. Deriving Genomic Breeding Values for Residual Feed Intake from Covariance Functions of Random Regression Models

    DEFF Research Database (Denmark)

    Strathe, Anders B; Mark, Thomas; Nielsen, Bjarne

    2014-01-01

    Random regression models were used to estimate covariance functions between cumulated feed intake (CFI) and body weight (BW) in 8424 Danish Duroc pigs. Random regressions on second order Legendre polynomials of age were used to describe genetic and permanent environmental curves in BW and CFI...

  7. Lagged PM2.5 effects in mortality time series: Critical impact of covariate model

    Science.gov (United States)

    The two most common approaches to modeling the effects of air pollution on mortality are the Harvard and the Johns Hopkins (NMMAPS) approaches. These two approaches, which use different sets of covariates, result in dissimilar estimates of the effect of lagged fine particulate ma...

  8. Exact sampling of the unobserved covariates in Bayesian spline models for measurement error problems.

    Science.gov (United States)

    Bhadra, Anindya; Carroll, Raymond J

    2016-07-01

    In truncated polynomial spline or B-spline models where the covariates are measured with error, a fully Bayesian approach to model fitting requires the covariates and model parameters to be sampled at every Markov chain Monte Carlo iteration. Sampling the unobserved covariates poses a major computational problem and usually Gibbs sampling is not possible. This forces the practitioner to use a Metropolis-Hastings step which might suffer from unacceptable performance due to poor mixing and might require careful tuning. In this article we show for the cases of truncated polynomial spline or B-spline models of degree equal to one, the complete conditional distribution of the covariates measured with error is available explicitly as a mixture of double-truncated normals, thereby enabling a Gibbs sampling scheme. We demonstrate via a simulation study that our technique performs favorably in terms of computational efficiency and statistical performance. Our results indicate up to 62 and 54 % increase in mean integrated squared error efficiency when compared to existing alternatives while using truncated polynomial splines and B-splines respectively. Furthermore, there is evidence that the gain in efficiency increases with the measurement error variance, indicating the proposed method is a particularly valuable tool for challenging applications that present high measurement error. We conclude with a demonstration on a nutritional epidemiology data set from the NIH-AARP study and by pointing out some possible extensions of the current work.

  9. Bayesian semiparametric mixture Tobit models with left censoring, skewness, and covariate measurement errors.

    Science.gov (United States)

    Dagne, Getachew A; Huang, Yangxin

    2013-09-30

    Common problems to many longitudinal HIV/AIDS, cancer, vaccine, and environmental exposure studies are the presence of a lower limit of quantification of an outcome with skewness and time-varying covariates with measurement errors. There has been relatively little work published simultaneously dealing with these features of longitudinal data. In particular, left-censored data falling below a limit of detection may sometimes have a proportion larger than expected under a usually assumed log-normal distribution. In such cases, alternative models, which can account for a high proportion of censored data, should be considered. In this article, we present an extension of the Tobit model that incorporates a mixture of true undetectable observations and those values from a skew-normal distribution for an outcome with possible left censoring and skewness, and covariates with substantial measurement error. To quantify the covariate process, we offer a flexible nonparametric mixed-effects model within the Tobit framework. A Bayesian modeling approach is used to assess the simultaneous impact of left censoring, skewness, and measurement error in covariates on inference. The proposed methods are illustrated using real data from an AIDS clinical study. . Copyright © 2013 John Wiley & Sons, Ltd.

  10. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-05-01

    Full Text Available We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences.

  11. Estimation of group means when adjusting for covariates in generalized linear models.

    Science.gov (United States)

    Qu, Yongming; Luo, Junxiang

    2015-01-01

    Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model-based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model-based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Semileptonic (Λb → Λc eV) decay in a field theoretic quark model

    International Nuclear Information System (INIS)

    Das, R.K.; Panda, A.R.; Sahoo, R.K.; Swain, M.R.

    2002-01-01

    The semileptonic decay width of heavy baryons such as (Λ b → Λ c eV) has been estimated in the framework of a nonrelativistic field theoretic quark model where four component quark field operators along with a harmonic oscillator wave function are used to describe translationally invariant hadronic states. The present estimation does not make an explicit use of heavy quark symmetry and has a reasonable agreement with the experimentally measured decay width, polarisation ratio and form factors with the harmonic oscillator radii and quark momentum distribution inside the hadron as free parameters. (author)

  13. J/ψ→γB anti B decays and the quark-pair creation model

    International Nuclear Information System (INIS)

    Ping Ronggang; Jiang Huanqing; Shen Pengnian; Zou Bingsong

    2002-01-01

    The authors generalize the quark-pair creation model to a study of the radiative decays J/ψ→γB anti B by assuming that the u, d or s quark pairs are created with the same interaction strength. From the calculation of the ratio of the decay widths Γ(J/ψ→γp anti B)/Γ(J/ψ→p anti p), the authors extract the quark-pair creation strength gI=15.40 GeV. Based on the SU(6) spin-flavour basis and the 'uds' basis, the radiative decay branching ratios containing strange baryons are evaluated. Measurements for these decay widths from the BESII data are suggested

  14. Born term for high-energy meson-hadron collisions from QCD and chiral quark model

    International Nuclear Information System (INIS)

    Ochs, W.; Shimada, T.

    1988-01-01

    Various experimental observations reveal a sizeable hard component in the high-energy 'soft' hadronic collisions. For primary meson beams we propose a QCD Born term which describes the dissociation of the primary meson into a quark-antiquark pair in the gluon field of the target. A pointlike effective pion-quark coupling is assumed as in the chiral quark model by Manohar and Georgi. We derive the total cross sections which for pion beams, for example, are given in terms of f π -2 and some properties of the hadronic final states. In particular, we stress the importance of studying three-jet events in meson-nucleon scattering and discuss the seagull effect. (orig.)

  15. J/psi-> gamma B anti B decays and the quark-pair creation model

    CERN Document Server

    Ping Rong Gang; Shen Peng Nian; Zou Bing Song

    2002-01-01

    The authors generalize the quark-pair creation model to a study of the radiative decays J/psi-> gamma B anti B by assuming that the u, d or s quark pairs are created with the same interaction strength. From the calculation of the ratio of the decay widths GAMMA(J/psi-> gamma p anti B)/GAMMA(J/psi->p anti p), the authors extract the quark-pair creation strength gI=15.40 GeV. Based on the SU(6) spin-flavour basis and the 'uds' basis, the radiative decay branching ratios containing strange baryons are evaluated. Measurements for these decay widths from the BESII data are suggested

  16. Radiative generation of quark masses and mixing angles in the two Higgs doublet model

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Solaguren-Beascoa, Ana

    2014-01-01

    We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zeroth order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo–Kobayashi–Maskawa matrix are generated at first order, hence explaining the observed hierarchy |V ub |,|V cb |≪|V us |. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale

  17. Effects of renormalizing the chiral SU(2) quark-meson model

    Science.gov (United States)

    Zacchi, Andreas; Schaffner-Bielich, Jürgen

    2018-04-01

    We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.

  18. Nucleon-nucleon interaction in the quark-compound-bag model

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1982-01-01

    The NN potential is investigated in the framework of the quark-compound-bag model. The cluster decomposition of the total six-quark wave function are obtained. The resulting potential is nonlocal and energy dependent with coefficients which can be derived both phenomenologically and theoretically. Stringent conditions exist for those coefficients. As an example the NN potentials for the 3 S 1 and 1 S 0 states are presented. The properties of the wave functions are studied both in the configurational and momentum space

  19. Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Hill, C.T.

    1994-01-01

    We study a solvable QCD-like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system, corresponding to a (0 - ,1 - ) multiplet and a (0 + ,1 + ) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger-Treiman relation and g A is found to be small. The Isgur-Wise function ξ(w), the decay constant f B , and other observables are studied

  20. Excited State Contributions to the Heavy Baryon Fragmentation Functions in a Quark-Diquark Model

    CERN Document Server

    Adamov, A D; Goldstein, Gary R.

    2001-01-01

    Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. The resulting $\\Lambda_b$ production rate and polarization at LEP energies are in agreement with experiment. The $\\Lambda_c$ and $\\Xi_c$ functions are also obtained. The spin independent $f_1(z)$ is compared to data. The integrated values for production rates agree with the data.

  1. Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error.

    Science.gov (United States)

    Shen, Chung-Wei; Chen, Yi-Hau

    2015-10-01

    Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Yield response of winter wheat cultivars to environments modeled by different variance-covariance structures in linear mixed models

    Energy Technology Data Exchange (ETDEWEB)

    Studnicki, M.; Mądry, W.; Noras, K.; Wójcik-Gront, E.; Gacek, E.

    2016-11-01

    The main objectives of multi-environmental trials (METs) are to assess cultivar adaptation patterns under different environmental conditions and to investigate genotype by environment (G×E) interactions. Linear mixed models (LMMs) with more complex variance-covariance structures have become recognized and widely used for analyzing METs data. Best practice in METs analysis is to carry out a comparison of competing models with different variance-covariance structures. Improperly chosen variance-covariance structures may lead to biased estimation of means resulting in incorrect conclusions. In this work we focused on adaptive response of cultivars on the environments modeled by the LMMs with different variance-covariance structures. We identified possible limitations of inference when using an inadequate variance-covariance structure. In the presented study we used the dataset on grain yield for 63 winter wheat cultivars, evaluated across 18 locations, during three growing seasons (2008/2009-2010/2011) from the Polish Post-registration Variety Testing System. For the evaluation of variance-covariance structures and the description of cultivars adaptation to environments, we calculated adjusted means for the combination of cultivar and location in models with different variance-covariance structures. We concluded that in order to fully describe cultivars adaptive patterns modelers should use the unrestricted variance-covariance structure. The restricted compound symmetry structure may interfere with proper interpretation of cultivars adaptive patterns. We found, that the factor-analytic structure is also a good tool to describe cultivars reaction on environments, and it can be successfully used in METs data after determining the optimal component number for each dataset. (Author)

  3. Quark compound Bag model for NN scattering up to 1 GeV

    International Nuclear Information System (INIS)

    Fasano, C.; Lee, T.S.H.

    1987-01-01

    A Quark Compound Bag model has been constructed to describe NN s-wave scattering up to 1 GeV. The model contains a vertex interaction H/sub D/leftrightarrow/NN/ for describing the excitation of a confined six-quark Bag state, and a meson-exchange interaction obtained from modifying the phenomenological core of the Paris potential. Explicit formalisms and numerical results are presented to reveal the role of the Bag excitation mechanism in determining the relative wave function, P- and S-matrix of NN scattering. We explore the merit as well as the shortcoming of the Quark Compound Bag model developed by the ITEP group. It is shown that the parameters of the vertex interaction H/sub D/leftrightarrow/NN/ can be more rigorously determined from the data if the notation of the Chiral/Cloudy Bag model is used to allow the presence of the background meson-exchange interaction inside Bag excitation region. The application of the model in the study of quark degrees of freedom in nuclei is discussed. 41 refs., 6 figs., 3 tabs

  4. Covariant quantization of infinite spin particle models, and higher order gauge theories

    International Nuclear Information System (INIS)

    Edgren, Ludde; Marnelius, Robert

    2006-01-01

    Further properties of a recently proposed higher order infinite spin particle model are derived. Infinitely many classically equivalent but different Hamiltonian formulations are shown to exist. This leads to a condition of uniqueness in the quantization process. A consistent covariant quantization is shown to exist. Also a recently proposed supersymmetric version for half-odd integer spins is quantized. A general algorithm to derive gauge invariances of higher order Lagrangians is given and applied to the infinite spin particle model, and to a new higher order model for a spinning particle which is proposed here, as well as to a previously given higher order rigid particle model. The latter two models are also covariantly quantized

  5. Data Fusion of Gridded Snow Products Enhanced with Terrain Covariates and a Simple Snow Model

    Science.gov (United States)

    Snauffer, A. M.; Hsieh, W. W.; Cannon, A. J.

    2017-12-01

    Hydrologic planning requires accurate estimates of regional snow water equivalent (SWE), particularly areas with hydrologic regimes dominated by spring melt. While numerous gridded data products provide such estimates, accurate representations are particularly challenging under conditions of mountainous terrain, heavy forest cover and large snow accumulations, contexts which in many ways define the province of British Columbia (BC), Canada. One promising avenue of improving SWE estimates is a data fusion approach which combines field observations with gridded SWE products and relevant covariates. A base artificial neural network (ANN) was constructed using three of the best performing gridded SWE products over BC (ERA-Interim/Land, MERRA and GLDAS-2) and simple location and time covariates. This base ANN was then enhanced to include terrain covariates (slope, aspect and Terrain Roughness Index, TRI) as well as a simple 1-layer energy balance snow model driven by gridded bias-corrected ANUSPLIN temperature and precipitation values. The ANN enhanced with all aforementioned covariates performed better than the base ANN, but most of the skill improvement was attributable to the snow model with very little contribution from the terrain covariates. The enhanced ANN improved station mean absolute error (MAE) by an average of 53% relative to the composing gridded products over the province. Interannual peak SWE correlation coefficient was found to be 0.78, an improvement of 0.05 to 0.18 over the composing products. This nonlinear approach outperformed a comparable multiple linear regression (MLR) model by 22% in MAE and 0.04 in interannual correlation. The enhanced ANN has also been shown to estimate better than the Variable Infiltration Capacity (VIC) hydrologic model calibrated and run for four BC watersheds, improving MAE by 22% and correlation by 0.05. The performance improvements of the enhanced ANN are statistically significant at the 5% level across the province and

  6. Lost states of the quark model and how to find them

    International Nuclear Information System (INIS)

    Hey, A.J.G.

    1975-01-01

    The two-quanta-excited quark states for mesons are studied using an explicit SU(6) model as a guide. A possible understanding emerges of some of the experimentally undetected multiplets, and the calculations further suggest that the decays of N = 2 mesons may provide a prolific source of some of the elusive N = 1 mesons such as the A 1

  7. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    International Nuclear Information System (INIS)

    Barik, N.

    1987-01-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data. (author)

  8. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Das, M

    1987-05-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.

  9. Additive quark model and double scattering of pions and protons in deuterium

    International Nuclear Information System (INIS)

    Bialas, A.; Czyz, W.; Kisielewska, D.

    1981-01-01

    It is shown that the additive quark model is compatible with the data on double scattering of pions and protons in deuterium. The cross-section for interaction of the hadrons created in the first collision with the second nucleon of the target is determined to be 20-25 mb. (author)

  10. Top quark in the standard model and a little way beyond

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1988-09-01

    The role of the top quark is briefly reviewed, mentioning (1) arguments for its existence, (2) experimental signatures, (3) constraints from existing data in the Standard Model and (4) the implications of some small excursions beyond. (Mini-rapporteur talk at the XXIV International Conference on High Energy Physics, Munich, August 1988). (author)

  11. Cabibbo angle and quark masses in the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Ma, E.; Pakvasa, S.

    1978-10-01

    The renormalization behavior of the Yukawa couplings in the Weinberg--Salam model is examined and its implication for the q 2 dependence of the Cabibbo angle and of the quark masses discussed. A possible explanation for m/sub u/ < m/sub d/ is found. 9 references

  12. The quark and gluon condensates in the Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-10-01

    Systematic study of the role of the nonperturbative gluon condensate arising in a QCD motivated NJL model is presented. The effects of the gluon condensate on meson coupling constants, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the decrease of the scale Λ of chiral symmetry breaking. (author). 21 refs

  13. The Nonlinear Effects of Pion-Quark Coupling in the Cloudy Bag Model

    OpenAIRE

    Yasuhiko, FUTAMI; Satoru, AKIYAMA; Department of Physics, Faculty of Science and Technology Science University of Tokyo; Department of Physics, Faculty of Science and Technology Science University of Tokyo

    1990-01-01

    The nonlinear pion-quark interaction in the Cloudy Bag Model is investigated. The Hamiltonian is normal-ordered. The vacuum expectation value of pion field squared is evaluated by introducting some cutoff momentum for the virtual pions.We then calculate g_A, including other corrections.

  14. The nonlinear effects of pion-quark coupling in the Cloudy Bag Model

    International Nuclear Information System (INIS)

    Futami, Yasuhiko; Akiyama, Satoru

    1990-01-01

    The nonlinear pion-quark interaction in the Cloudy Bag Model is investigated. The Hamiltonian is normal-ordered. The vacuum expectation value of pion field squared is evaluated by introducing some cutoff momentum for the virtual pions. We then calculate g A , including other corrections. (author)

  15. Robust entry guidance using linear covariance-based model predictive control

    Directory of Open Access Journals (Sweden)

    Jianjun Luo

    2017-02-01

    Full Text Available For atmospheric entry vehicles, guidance design can be accomplished by solving an optimal issue using optimal control theories. However, traditional design methods generally focus on the nominal performance and do not include considerations of the robustness in the design process. This paper proposes a linear covariance-based model predictive control method for robust entry guidance design. Firstly, linear covariance analysis is employed to directly incorporate the robustness into the guidance design. The closed-loop covariance with the feedback updated control command is initially formulated to provide the expected errors of the nominal state variables in the presence of uncertainties. Then, the closed-loop covariance is innovatively used as a component of the cost function to guarantee the robustness to reduce its sensitivity to uncertainties. After that, the models predictive control is used to solve the optimal problem, and the control commands (bank angles are calculated. Finally, a series of simulations for different missions have been completed to demonstrate the high performance in precision and the robustness with respect to initial perturbations as well as uncertainties in the entry process. The 3σ confidence region results in the presence of uncertainties which show that the robustness of the guidance has been improved, and the errors of the state variables are decreased by approximately 35%.

  16. Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation

    International Nuclear Information System (INIS)

    Jarlskog, C.

    1985-06-01

    The structure of the quark mass matrices in the Standard Electroweak Model is investigated. The commutator of the quark mass matrices is found to provide a conventional independent measure of CP-violation. The question of maximal CP-violation is discussed. The present experimental data indicate that CP is nowhere maximally violated. (author)

  17. Hadronization of quark-diquark model for nucleon structure and nuclear force by path integral

    International Nuclear Information System (INIS)

    Nagata, Keitaro

    2003-01-01

    One of the central issues of the hadron physics is how to interpret the properties and the origin of nuclear force. Nuclear force is in principle the manifestation of dynamics of quarks and gluons but no trial has been successful yet in describing the nuclear force by using QCD, the fundamental theory of the strong interactions. Phenomenon related to the chiral symmetry and the spontaneous breaking of the chiral symmetry is one of the important phenomena for the understanding of hadron physics. Nambu-Jona-Lasinio (NJL) model is one of the quark system models to explain the phenomena concerning the chiral symmetry. Although the method to deduce the Lagrangian describing mesons by applying the path integral to NJL model has been well known as the bosonization, it has been difficult to extend it to baryons because baryons are three-body system. In this paper, a method is reported to deduce Lagrangian which describes baryon-meson from quark-diquark Lagrangian by assuming that baryons are the bound states of quark and diquark. (S. Funahashi)

  18. Quark-quark interactions

    International Nuclear Information System (INIS)

    Jacob, M.

    1982-01-01

    This chapter discusses interactions only at the constituent level, as observed in hadron-hadron collisions. It defines quarks and gluons as constituents of the colliding hadrons, reviews some applications of perturbative OCD, discussing in turn lepton pair production, which in lowest order approximation corresponds to the Drell-Yan process. It investigates whether quark-quark interactions could not lead to some new color structure different from those prevalent for known baryons and mesons, which could be created in hadron interactions, and whether color objects (not specifically quarks or gluons) could not appear as free particles. Discussed is perturbative QCD in hadron collisions; the quark approach to soft processes; and new color structures. It points out that perturbative QCD has been at the origin of much progress in the understanding of hadron interactions at the constituent level

  19. Applications of Multidimensional Item Response Theory Models with Covariates to Longitudinal Test Data. Research Report. ETS RR-16-21

    Science.gov (United States)

    Fu, Jianbin

    2016-01-01

    The multidimensional item response theory (MIRT) models with covariates proposed by Haberman and implemented in the "mirt" program provide a flexible way to analyze data based on item response theory. In this report, we discuss applications of the MIRT models with covariates to longitudinal test data to measure skill differences at the…

  20. Robust estimation for partially linear models with large-dimensional covariates.

    Science.gov (United States)

    Zhu, LiPing; Li, RunZe; Cui, HengJian

    2013-10-01

    We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of [Formula: see text], where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.

  1. Flexible Modeling of Survival Data with Covariates Subject to Detection Limits via Multiple Imputation.

    Science.gov (United States)

    Bernhardt, Paul W; Wang, Huixia Judy; Zhang, Daowen

    2014-01-01

    Models for survival data generally assume that covariates are fully observed. However, in medical studies it is not uncommon for biomarkers to be censored at known detection limits. A computationally-efficient multiple imputation procedure for modeling survival data with covariates subject to detection limits is proposed. This procedure is developed in the context of an accelerated failure time model with a flexible seminonparametric error distribution. The consistency and asymptotic normality of the multiple imputation estimator are established and a consistent variance estimator is provided. An iterative version of the proposed multiple imputation algorithm that approximates the EM algorithm for maximum likelihood is also suggested. Simulation studies demonstrate that the proposed multiple imputation methods work well while alternative methods lead to estimates that are either biased or more variable. The proposed methods are applied to analyze the dataset from a recently-conducted GenIMS study.

  2. Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling

    Directory of Open Access Journals (Sweden)

    A. Budishchev

    2014-09-01

    Full Text Available Most plot-scale methane emission models – of which many have been developed in the recent past – are validated using data collected with the closed-chamber technique. This method, however, suffers from a low spatial representativeness and a poor temporal resolution. Also, during a chamber-flux measurement the air within a chamber is separated from the ambient atmosphere, which negates the influence of wind on emissions. Additionally, some methane models are validated by upscaling fluxes based on the area-weighted averages of modelled fluxes, and by comparing those to the eddy covariance (EC flux. This technique is rather inaccurate, as the area of upscaling might be different from the EC tower footprint, therefore introducing significant mismatch. In this study, we present an approach to validate plot-scale methane models with EC observations using the footprint-weighted average method. Our results show that the fluxes obtained by the footprint-weighted average method are of the same magnitude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily timescale are also captured (r2 = 0.7. In contrast, using the area-weighted average method yielded a low (r2 = 0.14 correlation with the EC measurements. This shows that the footprint-weighted average method is preferable when validating methane emission models with EC fluxes for areas with a heterogeneous and irregular vegetation pattern.

  3. Polarized quark distributions in bound nucleon and polarized EMC effect in Thermodynamical Bag Model

    Energy Technology Data Exchange (ETDEWEB)

    Ganesamurthy, Kuppusamy, E-mail: udckgm@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India); Sambasivam, Raghavan, E-mail: udcsam@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India)

    2011-04-15

    The polarized parton distribution functions (PDFs) and nuclear structure functions are evaluated by the phenomenological Thermodynamical Bag Model for nuclear media {sup 7}Li and {sup 27}Al. The Fermi statistical distribution function which includes the spin degree of freedom is used in this statistical model. We predict a sizeable polarized EMC effect. The results of quark spin sum and axial coupling constant of bound nucleons are compared with theoretical predictions of modified Nambu-Jona-Lasinio (NJL) model by Bentz et al.

  4. Study of light baryons in the three-quark-cluster model: Exact calculations

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Gignoux, C.

    1985-01-01

    Within the nonrelativistic model, all the baryons built with three quarks of flavors, u, d, and s (N,Δ,Λ,Σ,Ψ,Ω) are studied with the Bhaduri-Cohler-Nogami potential. It is shown that the free-parameter simplest model is able to reproduce most of the experimental properties and allows the extraction of the rare effects which need a more elaborate model. The validity of the description in terms of a harmonic-oscillator basis is also tested

  5. Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.

    Science.gov (United States)

    Martínez, C A; Khare, K; Rahman, S; Elzo, M A

    2017-10-01

    Several statistical models used in genome-wide prediction assume uncorrelated marker allele substitution effects, but it is known that these effects may be correlated. In statistics, graphical models have been identified as a useful tool for covariance estimation in high-dimensional problems and it is an area that has recently experienced a great expansion. In Gaussian covariance graph models (GCovGM), the joint distribution of a set of random variables is assumed to be Gaussian and the pattern of zeros of the covariance matrix is encoded in terms of an undirected graph G. In this study, methods adapting the theory of GCovGM to genome-wide prediction were developed (Bayes GCov, Bayes GCov-KR and Bayes GCov-H). In simulated data sets, improvements in correlation between phenotypes and predicted breeding values and accuracies of predicted breeding values were found. Our models account for correlation of marker effects and permit to accommodate general structures as opposed to models proposed in previous studies, which consider spatial correlation only. In addition, they allow incorporation of biological information in the prediction process through its use when constructing graph G, and their extension to the multi-allelic loci case is straightforward. © 2017 Blackwell Verlag GmbH.

  6. lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals.

    Science.gov (United States)

    Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel

    2018-02-27

    Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .

  7. Multiple production of hadrons at high energies in the model of quark-gluon strings

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Ter-Martirosyan, K.A.

    1983-01-01

    Multiple production of hadrons at high energies is considered in the framework of the approach based on a picture of formation and subsequent fission of the quark-gluon strings, corresponding to the Pomeron with αsub(P)(0) > 1. The topological (1/nsub(f))-expansion and the colour-tube model is used. Inclusive cross-sections are expressed in therms of the structure functions and fragmentation functions of quarks and their limiting values are in an agreement with the results of the reggeon theory. It is pointed out that an account of rapidity fluctuations of the ends of the quark-gluon strings, connected to valence or sea quarks, allows one to explain a number of characteristic features of the multiple production of hadrons. In particular the model, which takes into account multipomeron configurations, reproduces the experimentally observed rise of inclusive spectra in a central region and well describes both rapidity and multiplicity distributions of charged particles up to energies of the SPS-collider. It is shown that in this approach the KNO-scaling is only approximately satisfied and the pattern of its violation at energies √ s approximately 10 3 GeV is predicted. Inclusive spectra are investigated in the whole region 0 or approximately 0.1) Feynman scaling is violated only logarithmically and deviations from it are very rsmall at s 3 +10 4 GeV

  8. Soliton bag model of the nucleon and delta dressed by a quark-antiquark pion

    International Nuclear Information System (INIS)

    Dethier, J.L.L.

    1985-01-01

    The Friedberg-Lee soliton bag model is used to describe the nucleon, delta and pion. The author builds upon the mean-field solutions to the model taking into account the one-gluon-exchange interaction by the use of a free gluon propagator in the Coulomb gauge and allowing the nucleon or delta to consist of a bare three quark bag and a three quark bag dressed by one quark-antiquark pion. This way of treating the pion cloud differs from most other works on the subject by the fact that he takes the quark substructure of the pion into account. The generator coordinate method enables him to find an approximate solution to the ground state of the nucleon and the delta from which static physical properties can be calculated. The soliton field part of the ground state is treated in a coherent state approximation (similar to the mean-field approximation, but remaining a true quantum state). The generator coordinate or Hill-Wheeler integral equations are solved numerically with the help of the Tikhonov regularization. Detailed numerical results are given for different sets of parameters. The agreement with experiment is as good as in the mean-field approximation but new quantities are now accessible to computation (e.g., the neutron charge radius and the NN[ and NΔπ coupling constants

  9. Lowest-lying even-parity anti B{sub s} mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses

    Energy Technology Data Exchange (ETDEWEB)

    Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)

    2017-03-15

    The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)

  10. Influence of covariate distribution on the predictive performance of pharmacokinetic models in paediatric research

    Science.gov (United States)

    Piana, Chiara; Danhof, Meindert; Della Pasqua, Oscar

    2014-01-01

    Aims The accuracy of model-based predictions often reported in paediatric research has not been thoroughly characterized. The aim of this exercise is therefore to evaluate the role of covariate distributions when a pharmacokinetic model is used for simulation purposes. Methods Plasma concentrations of a hypothetical drug were simulated in a paediatric population using a pharmacokinetic model in which body weight was correlated with clearance and volume of distribution. Two subgroups of children were then selected from the overall population according to a typical study design, in which pre-specified body weight ranges (10–15 kg and 30–40 kg) were used as inclusion criteria. The simulated data sets were then analyzed using non-linear mixed effects modelling. Model performance was assessed by comparing the accuracy of AUC predictions obtained for each subgroup, based on the model derived from the overall population and by extrapolation of the model parameters across subgroups. Results Our findings show that systemic exposure as well as pharmacokinetic parameters cannot be accurately predicted from the pharmacokinetic model obtained from a population with a different covariate range from the one explored during model building. Predictions were accurate only when a model was used for prediction in a subgroup of the initial population. Conclusions In contrast to current practice, the use of pharmacokinetic modelling in children should be limited to interpolations within the range of values observed during model building. Furthermore, the covariate point estimate must be kept in the model even when predictions refer to a subset different from the original population. PMID:24433411

  11. Covariance matrices for nuclear cross sections derived from nuclear model calculations

    International Nuclear Information System (INIS)

    Smith, D. L.

    2005-01-01

    The growing need for covariance information to accompany the evaluated cross section data libraries utilized in contemporary nuclear applications is spurring the development of new methods to provide this information. Many of the current general purpose libraries of evaluated nuclear data used in applications are derived either almost entirely from nuclear model calculations or from nuclear model calculations benchmarked by available experimental data. Consequently, a consistent method for generating covariance information under these circumstances is required. This report discusses a new approach to producing covariance matrices for cross sections calculated using nuclear models. The present method involves establishing uncertainty information for the underlying parameters of nuclear models used in the calculations and then propagating these uncertainties through to the derived cross sections and related nuclear quantities by means of a Monte Carlo technique rather than the more conventional matrix error propagation approach used in some alternative methods. The formalism to be used in such analyses is discussed in this report along with various issues and caveats that need to be considered in order to proceed with a practical implementation of the methodology

  12. Hadron spectra and quarks

    International Nuclear Information System (INIS)

    Gasiorowicz, S.; Rosner, J.L.

    1982-01-01

    The quark model began as little more than a quantum-number counting device. After a brief period during which quarks only played a symmetry role, serious interest in quark dynamics developed. The marriage of the principle of local gauge invariance and quarks has been astonishingly productive. Although many questions still need to be be answered, there is little doubt that the strong, weak and electroweak interactions of matter are described by gauge theories of interactions of the quarks. This review is focussed on the successes

  13. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  14. Covariance of random stock prices in the Stochastic Dividend Discount Model

    OpenAIRE

    Agosto, Arianna; Mainini, Alessandra; Moretto, Enrico

    2016-01-01

    Dividend discount models have been developed in a deterministic setting. Some authors (Hurley and Johnson, 1994 and 1998; Yao, 1997) have introduced randomness in terms of stochastic growth rates, delivering closed-form expressions for the expected value of stock prices. This paper extends such previous results by determining a formula for the covariance between random stock prices when the dividends' rates of growth are correlated. The formula is eventually applied to real market data.

  15. Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Ricardo L.S. [Universidade Federal de Santa Maria, Departamento de Fisica, Santa Maria, RS (Brazil); Kent State University, Physics Department, Kent, OH (United States); Timoteo, Varese S. [Universidade Estadual de Campinas (UNICAMP), Grupo de Optica e Modelagem Numerica (GOMNI), Faculdade de Tecnologia, Limeira, SP (Brazil); Avancini, Sidney S.; Pinto, Marcus B. [Universidade Federal de Santa Catarina, Departamento de Fisica, Florianopolis, Santa Catarina (Brazil); Krein, Gastao [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B, T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with G(B, T) are compared with the ones obtained at constant coupling, G. The model with G(B, T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic-field-dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the coupling constant can be easily implemented to improve typical model applications to magnetized quark matter. (orig.)

  16. Low-lying 1/2- hidden strange pentaquark states in the constituent quark model

    Science.gov (United States)

    Li, Hui; Wu, Zong-Xiu; An, Chun-Sheng; Chen, Hong

    2017-12-01

    We investigate the spectrum of the low-lying 1/2- hidden strange pentaquark states, employing the constituent quark model, and looking at two ways within that model of mediating the hyperfine interaction between quarks - Goldstone boson exchange and one gluon exchange. Numerical results show that the lowest 1/2- hidden strange pentaquark state in the Goldstone boson exchange model lies at ˜1570 MeV, so this pentaquark configuration may form a notable component in S 11(1535) if the Goldstone boson exchange model is applied. This is consistent with the prediction that S 11(1535) couples very strongly to strangeness channels. Supported by National Natural Science Foundation of China (11675131, 11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)

  17. Propagation of cosmic rays through the atmosphere in the quark-gluon strings model

    Science.gov (United States)

    Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.

    1985-01-01

    The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.

  18. Unpolarized structure functions and the parton distributions for nucleon in an independent quark model

    International Nuclear Information System (INIS)

    Barik, N.; Mishra, R.N.

    2001-01-01

    Considering the nucleon as consisting entirely of its valence quarks confined independently in a scalar-vector harmonic potential; unpolarized structure functions F 1 (x, μ 2 ) and F 2 (x, μ 2 ) are derived in the Bjorken limit under certain simplifying assumptions; from which valence quark distribution functions u v (x, μ 2 ) and d v (x, μ 2 ) are appropriately extracted satisfying the normalization constraints. QCD-evolution of these input distributions from a model scale of μ 2 = 0.07 GeV 2 to a higher Q 2 scale of Q 0 2 = 15 GeV 2 yields xu v (x, Q 0 2 ) and xd v (x, Q 0 2 ) in good agreement with experimental data. The gluon and sea-quark distributions such as G (x, Q 0 2 ) and q s (x, Q 0 2 ) are dynamically generated with a reasonable qualitative agreement with the available data; using the leading order renormalization group equations with appropriate valence-quark distributions as the input. (author)

  19. Unpolarized structure functions and the parton distributions for nucleon in an independent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N [Dept. of Physics, Utkal Univ., Bhubaneswar (India); Mishra, R N [Dept. of Physics, Dhenkanal College, Dhenkanal (India)

    2001-04-01

    Considering the nucleon as consisting entirely of its valence quarks confined independently in a scalar-vector harmonic potential; unpolarized structure functions F{sub 1} (x, {mu}{sup 2}) and F{sub 2} (x, {mu}{sup 2}) are derived in the Bjorken limit under certain simplifying assumptions; from which valence quark distribution functions u{sub v} (x, {mu}{sup 2}) and d{sub v} (x, {mu}{sup 2}) are appropriately extracted satisfying the normalization constraints. QCD-evolution of these input distributions from a model scale of {mu}{sup 2} = 0.07 GeV{sup 2} to a higher Q{sup 2} scale of Q{sub 0}{sup 2} = 15 GeV{sup 2} yields xu{sub v} (x, Q{sub 0}{sup 2}) and xd{sub v} (x, Q{sub 0}{sup 2}) in good agreement with experimental data. The gluon and sea-quark distributions such as G (x, Q{sub 0}{sup 2}) and q{sub s} (x, Q{sub 0}{sup 2}) are dynamically generated with a reasonable qualitative agreement with the available data; using the leading order renormalization group equations with appropriate valence-quark distributions as the input. (author)

  20. Thermodynamics of a solvable quark model inspired by the Gribov-Zwanziger theory

    International Nuclear Information System (INIS)

    Mintz, B.W.; Guimaraes, M.S.

    2013-01-01

    Full text: In an attempt to solve the problem of spurious gauge copies in the path integral approach to gauge theories, V. N. Gribov proposed in 1978 a method to restrict the integration domain of the path integral to only one gauge field representative of each physical field configuration. As a result, the quadratic part of the gluon propagator is modified in the infrared, so that it acquires complex poles, i.e., complex m asses . This implies the absence of gluons in the physical spectrum, which is a necessary condition for confinement. An analogous reasoning may be applied to quark fields coupled to the gauge fields. As a consequence, the quark propagator also gets modified in the infrared, giving rise to unphysical propagators (i.e., with complex poles) at small momenta. Such a property is understood as a sign of both quark confinement and of the breaking of chiral symmetry in the vacuum. In this work, we study the thermodynamics of this model by exactly calculating the partition function using standard methods of finite-temperature quantum field theory. We find that the infrared behavior of the quark propagator leads to a highly nontrivial pressure as a function of the temperature, which is qualitatively close to the results from lattice QCD at finite temperature. (author)

  1. Covariances for neutron cross sections calculated using a regional model based on local-model fits to experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Guenther, P.T.

    1983-11-01

    We suggest a procedure for estimating uncertainties in neutron cross sections calculated with a nuclear model descriptive of a specific mass region. It applies standard error propagation techniques, using a model-parameter covariance matrix. Generally, available codes do not generate covariance information in conjunction with their fitting algorithms. Therefore, we resort to estimating a relative covariance matrix a posteriori from a statistical examination of the scatter of elemental parameter values about the regional representation. We numerically demonstrate our method by considering an optical-statistical model analysis of a body of total and elastic scattering data for the light fission-fragment mass region. In this example, strong uncertainty correlations emerge and they conspire to reduce estimated errors to some 50% of those obtained from a naive uncorrelated summation in quadrature. 37 references.

  2. Covariances for neutron cross sections calculated using a regional model based on local-model fits to experimental data

    International Nuclear Information System (INIS)

    Smith, D.L.; Guenther, P.T.

    1983-11-01

    We suggest a procedure for estimating uncertainties in neutron cross sections calculated with a nuclear model descriptive of a specific mass region. It applies standard error propagation techniques, using a model-parameter covariance matrix. Generally, available codes do not generate covariance information in conjunction with their fitting algorithms. Therefore, we resort to estimating a relative covariance matrix a posteriori from a statistical examination of the scatter of elemental parameter values about the regional representation. We numerically demonstrate our method by considering an optical-statistical model analysis of a body of total and elastic scattering data for the light fission-fragment mass region. In this example, strong uncertainty correlations emerge and they conspire to reduce estimated errors to some 50% of those obtained from a naive uncorrelated summation in quadrature. 37 references

  3. Nucleon deep-inelastic structure functions in a quark model with factorizability assumptions

    International Nuclear Information System (INIS)

    Linkevich, A.D.; Skachkov, N.B.

    1979-01-01

    Formula for structure functions of deep-inelastic electron scattering on nucleon is derived. For this purpose the dynamic model of factorizing quark amplitudes is used. It has been found that with increase of Q 2 transferred pulse square at great values of x kinemastic variable the decrease of structure function values is observed. At x single values the increase of structure function values is found. The comparison With experimental data shows a good agreement of the model with experiment

  4. Quark-model study of the hadron structure and the hadron-hadron interaction

    International Nuclear Information System (INIS)

    Valcarce, A; Caramés, T F; Vijande, J; Garcilazo, H

    2011-01-01

    Recent results of hadron spectroscopy and hadron-hadron interaction within a quark model framework are reviewed. Higher order Fock space components are considered based on new experimental data on low-energy hadron phenomenology. The purpose of this study is to obtain a coherent description of the low-energy hadron phenomenology to constrain QCD phenomenological models and try to learn about low-energy realizations of the theory.

  5. Covariance evaluation system

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Shibata, Keiichi.

    1997-09-01

    A covariance evaluation system for the evaluated nuclear data library was established. The parameter estimation method and the least squares method with a spline function are used to generate the covariance data. Uncertainties of nuclear reaction model parameters are estimated from experimental data uncertainties, then the covariance of the evaluated cross sections is calculated by means of error propagation. Computer programs ELIESE-3, EGNASH4, ECIS, and CASTHY are used. Covariances of 238 U reaction cross sections were calculated with this system. (author)

  6. Numerical Differentiation Methods for Computing Error Covariance Matrices in Item Response Theory Modeling: An Evaluation and a New Proposal

    Science.gov (United States)

    Tian, Wei; Cai, Li; Thissen, David; Xin, Tao

    2013-01-01

    In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…

  7. Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1.

    Science.gov (United States)

    Blanke, Monika; Buras, Andrzej J; Recksiegel, Stefan

    2016-01-01

    The Littlest Higgs model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. The latter originate in the interactions of ordinary quarks and leptons with heavy mirror quarks and leptons that are mediated by new heavy gauge bosons. Also a heavy fermionic top partner is present in this model which communicates with the SM fermions by means of standard [Formula: see text] and [Formula: see text] gauge bosons. We present a new analysis of quark flavour observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare K and B decays are still allowed to depart from their SM values. This includes [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. Taking into account the constraints from [Formula: see text] processes, significant departures from the SM predictions for [Formula: see text] and [Formula: see text] are possible, while the effects in B decays are much smaller. In particular, the LHT model favours [Formula: see text], which is not supported by the data, and the present anomalies in [Formula: see text] decays cannot be explained in this model. With the recent lattice and large N input the imposition of the [Formula: see text] constraint implies a significant suppression of the branching ratio for [Formula: see text] with respect to its SM value while allowing only for small modifications of [Formula: see text]. Finally, we investigate how the LHT physics could be distinguished from other models by means of indirect measurements and

  8. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  9. Rotational covariance and light-front current matrix elements

    International Nuclear Information System (INIS)

    Keister, B.D.

    1994-01-01

    Light-front current matrix elements for elastic scattering from hadrons with spin 1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements

  10. Tests for detecting overdispersion in models with measurement error in covariates.

    Science.gov (United States)

    Yang, Yingsi; Wong, Man Yu

    2015-11-30

    Measurement error in covariates can affect the accuracy in count data modeling and analysis. In overdispersion identification, the true mean-variance relationship can be obscured under the influence of measurement error in covariates. In this paper, we propose three tests for detecting overdispersion when covariates are measured with error: a modified score test and two score tests based on the proposed approximate likelihood and quasi-likelihood, respectively. The proposed approximate likelihood is derived under the classical measurement error model, and the resulting approximate maximum likelihood estimator is shown to have superior efficiency. Simulation results also show that the score test based on approximate likelihood outperforms the test based on quasi-likelihood and other alternatives in terms of empirical power. By analyzing a real dataset containing the health-related quality-of-life measurements of a particular group of patients, we demonstrate the importance of the proposed methods by showing that the analyses with and without measurement error correction yield significantly different results. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Partonic transverse momenta in non-relativistic hyper-central quark potential models

    International Nuclear Information System (INIS)

    Diakonos, F.K.; Kaplis, N.K.; Maintas, X.N.

    2009-01-01

    We investigate the impact of three-body forces on the transverse-momentum distribution of partons inside the proton. This is achieved by considering the three-body problem in a class of hyper-central quark potential models. Solving the corresponding Schroedinger equation, we determine the quark wave function in the proton and with appropriate transformations and projections we find the transverse-momentum distribution of a single quark. In each case the parameters of the quark potentials are adjusted in order to sufficiently describe observable properties of the proton. Using a factorization ansatz, we incorporate the obtained transverse-momentum distribution in a perturbative QCD scheme for the calculation of the cross-section for prompt photon production in pp collisions. A large set of experimental data is fitted using as a single free parameter the mean partonic transverse momentum. The dependence of left angle k T right angle on the collision characteristics (initial energy and transverse momentum of the final photon) is much smoother when compared with similar results found in the literature using a Gaussian distribution for the partonic transverse momenta. Within the considered class of hyper-central quark potentials the one with the weaker dependence on the hyper-radius is preferred for the description of the data since it leads to the smoothest mean partonic transverse-momentum profile. We have repeated all the calculations using a two-body potential of the same form as the optimal (within the considered class) hyper-central potential in order to check if the presence of three-body forces is supported by the experimental data. Our analysis indicates that three-body forces influence significantly the form of the parton transverse-momentum distribution and consequently lead to an improved description of the considered data. (orig.)

  12. Relativistic quark model and behaviour of the meson electromagnetic form factors at small and intermediate momentum transfer Q2

    International Nuclear Information System (INIS)

    Bagdasaryan, A.S.; Esaybegyan, S.V.; Ter-Isaakyan, N.L.

    1982-01-01

    In a model of hadrons composed of relativistic quarks a description of meson static characteristics and pion electromagnetic form factor in the range of small and intermediate values of momentum transfer 0 2 2 have obtained. It is shown that in such a model the data available on the pion electromagnetic form factor may be described basing on a simplest quark without gluon exchange. The contribution of a one-gluon exchange diagram in such a model cannot exceed 30%

  13. Revisiting the quasi-particle model of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Bannur, V.M.

    2007-01-01

    The quasi-particle model of the quark-gluon plasma (QGP) is revisited here with a new method, different from earlier studies, one without the need of a temperature dependent bag constant and other effects such as confinement, effective degrees of freedom etc. Our model has only one system dependent parameter and shows a surprisingly good fit to the lattice results for the gluon plasma, and for 2-flavor, 3-flavor and (2+1)-flavor QGP. The basic idea is first to evaluate the energy density ε from the grand partition function of quasi-particle QGP, and then derive all other thermodynamic functions from ε. Quasi-particles are assumed to have a temperature dependent mass equal to the plasma frequency. Energy density, pressure and speed of sound at zero chemical potential are evaluated and compared with the available lattice data. We further extend the model to a finite chemical potential, without any new parameters, to obtain the quark density, quark susceptibility etc., and the model fits very well with the lattice results on 2-flavor QGP. (orig.)

  14. Five-quark model with flavour-changing neutral current and dimuon events

    International Nuclear Information System (INIS)

    Kim, J.E.; Kang, K.

    1976-01-01

    The recent dimuon data seem to suggest either the necessity of flavor-changing hadronic neutral current or proliferation of quarks beyond charm or both. It is shown how a five-quark model based on simple gauge group SU(2) x U(1) x U(1)' can generate the flavor-changing, in particular the needed charm-changing, neutral current in a natural fashion. A substantial D 0 --D -0 mixing can be obtained to account for the ''wrong-sign'' dimuons observed in ν/sub μ/-induced reactions. Because of the role of the extra neutral boson in this model, the flavor-changing neutral current is decoupled from leptonic sectors, thus suppressing the trimuon events as experiments indicate thus far

  15. Fits of the baryon magnetic moments to the quark model and spectrum-generating SU(3)

    International Nuclear Information System (INIS)

    Bohm, A.; Teese, R.B.

    1982-01-01

    We show that for theoretical as well as phenomenological reasons the baryon magnetic moments that fulfill simple group transformation properties should be taken in intrinsic rather than nuclear magnetons. A fit of the recent experimental data to the reduced matrix elements of the usual octet electromagnetic current is still not good, and in order to obtain acceptable agreement, one has to add correction terms to the octet current. We have texted two kinds of corrections: U-spin-scalar terms, which are singles out by the model-independent algebraic properties of the hadron electromagnetic current, and octet U-spin vectors, which could come from quark-mass breaking in a nonrelativistic quark model. We find that the U-spin-scalar terms are more important than the U-spin vectors for various levels of demanded theoretical accuracy

  16. Strange mesonic transition form factor in the chiral constituent quark model

    International Nuclear Information System (INIS)

    Ito, H.; Ramsey-Musolf, M.J.

    1998-01-01

    The form factor g ρπ (S) (Q 2 ) of the strange vector current transition matrix element left-angle ρ|bar sγ μ s|π right-angle is calculated within the chiral quark model. A strange vector current of the constituent U and D quarks is induced by kaon radiative corrections and this mechanism yields the nonvanishing values of g ρπ (S) (0). The numerical result at the photon point is consistent with the one given by the φ-meson dominance model, but the falloff in the Q 2 dependence is faster than the monopole form factor. Mesonic radiative corrections are also examined for the electromagnetic ρ-to-π and K * -to-K transition amplitudes. copyright 1998 The American Physical Society

  17. Bayesian nonparametric generative models for causal inference with missing at random covariates.

    Science.gov (United States)

    Roy, Jason; Lum, Kirsten J; Zeldow, Bret; Dworkin, Jordan D; Re, Vincent Lo; Daniels, Michael J

    2018-03-26

    We propose a general Bayesian nonparametric (BNP) approach to causal inference in the point treatment setting. The joint distribution of the observed data (outcome, treatment, and confounders) is modeled using an enriched Dirichlet process. The combination of the observed data model and causal assumptions allows us to identify any type of causal effect-differences, ratios, or quantile effects, either marginally or for subpopulations of interest. The proposed BNP model is well-suited for causal inference problems, as it does not require parametric assumptions about the distribution of confounders and naturally leads to a computationally efficient Gibbs sampling algorithm. By flexibly modeling the joint distribution, we are also able to impute (via data augmentation) values for missing covariates within the algorithm under an assumption of ignorable missingness, obviating the need to create separate imputed data sets. This approach for imputing the missing covariates has the additional advantage of guaranteeing congeniality between the imputation model and the analysis model, and because we use a BNP approach, parametric models are avoided for imputation. The performance of the method is assessed using simulation studies. The method is applied to data from a cohort study of human immunodeficiency virus/hepatitis C virus co-infected patients. © 2018, The International Biometric Society.

  18. Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci.

    Science.gov (United States)

    Yap, John Stephen; Fan, Jianqing; Wu, Rongling

    2009-12-01

    Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.

  19. Hadronic J/psi and charmed particle production and correlating quark rearrangement model

    International Nuclear Information System (INIS)

    Nishitani, Tadashi

    1979-01-01

    On the basis of the correlating quark rearrangement model, the exclusive and inclusive production cross sections of J/psi and charmed particles in hadron collisions are calculated. It is shown that the inclusive production cross section of charmed particles is several tens of μb at p sub( l) -- 100 GeV/c in hadron collisions. The OZI rule is discussed in connection with the production mechanism of J/psi particles. (author)

  20. Influence of a relativistic kinematics on s-wave KN phase shifts in a quark model

    International Nuclear Information System (INIS)

    Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.

    2001-01-01

    The I = 1 and I = 0 kaon-nucleon s-wave phase shifts have been calculated in a quark potential model using the resonating group method (RGM) and a relativistic kinematics. The spinless Salpeter equation has been solved numerically using the Fourier grid Hamiltonian method. The results have been compared to the non-relativistic ones. For each isospin channel the phase shifts obtained are not so far from the non-relativistic results. (author)

  1. The baryonic spectrum in a constituent quark model including a three-body force

    International Nuclear Information System (INIS)

    Desplanques, B.; Gignoux, C.; Silvestre-Brac, B.; Gonzalez, P.; Navarro, J.; Noguera, S.

    1992-01-01

    We analyze, within a non-relativistic quark model, the low energy part of the baryonic spectrum in the octet and decuplet flavour representations. The relevance of a strong Coulomb potential is emphasized in order to explain its general features. The addition of a three-body force allows to solve the 'Roper puzzle', giving a consistent explanation to its relative position in the spectrum. (orig.)

  2. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.

    Science.gov (United States)

    Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M

    2018-05-07

    A Bayesian model for sparse, hierarchical inverse covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fmri, meg and eeg data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in meg beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.

  3. Top quark electric dipole moment in a minimal supersymmetric standard model extension with vectorlike multiplets

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran

    2010-01-01

    The electric dipole moment (EDM) of the top quark is calculated in a model with a vector like multiplet which mixes with the third generation in an extension of the minimal supersymmetric standard model. Such mixings allow for new CP violating phases. Including these new CP phases, the EDM of the top in this class of models is computed. The top EDM arises from loops involving the exchange of the W, the Z as well as from the exchange involving the charginos, the neutralinos, the gluino, and the vector like multiplet and their superpartners. The analysis of the EDM of the top is more complicated than for the light quarks because the mass of the external fermion, in this case the top quark mass cannot be ignored relative to the masses inside the loops. A numerical analysis is presented and it is shown that the top EDM could be close to 10 -19 ecm consistent with the current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM of size 10 -19 ecm could be accessible in collider experiments such as the International Linear Collider.

  4. Relativistic form factors for hadrons with quark-model wave functions

    International Nuclear Information System (INIS)

    Stanley, D.P.; Robson, D.

    1982-01-01

    The relationship between relativistic form factors and quark-potential-model wave functions is examined using an improved version of an approach by Licht and Pagnamenta. Lorentz-contraction effects are expressed in terms of an effective hadron mass which varies as the square root of the number of quark constituents. The effective mass is calculated using the rest-frame wave functions from the mean-square momentum along the direction of the momentum transfer. Applications with the parameter-free approach are made to the elastic form factors of the pion, proton, and neutron using a Hamiltonian which simultaneously describes mesons and baryons. A comparison of the calculated radii for pions and kaons suggests that the measured kaon radius should be slightly smaller than the corresponding pion radius. The large negative squared charge radius for the neutron is partially explained via the quark model but a full description requires the inclusion of a small component of a pion ''cloud'' configuration. The problematic connection between the sizes of hadrons deduced from form factors and the ''measured'' values of average transverse momenta is reconciled in the present model

  5. Chromoelectric dipole moment of the top quark in models with vectorlike multiplets

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran

    2011-01-01

    The chromoelectric dipole moment of the top quark is calculated in a model with a vectorlike multiplet, which mixes with the third generation in an extension of the minimal supersymmetric standard model. Such mixings allow for new CP violating phases. Including these new CP phases, the chromoelectric dipole moment that generates an electric dipole of the top in this class of models is computed. The top chromoelectric dipole moment operator arises from loops involving the exchange of the W, the Z, as well as from the exchange involving the charginos, the neutralinos, the gluino, and the vectorlike multiplet and their superpartners. The analysis of the chromoelectric dipole moment operator of the top is more complicated than for the light quarks because the mass of the external fermion, in this case the top quark mass, cannot be ignored relative to the masses inside the loops. A numerical analysis is presented and it is shown that the contribution to the top electric dipole moment (EDM) could lie in the range (10 -19 -10 -18 ) ecm, consistent with the current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM of size (10 -19 -10 -18 ) ecm could be accessible in collider experiments such as at the LHC and at the International Linear Collider.

  6. Flavour physics beyond the standard model in top and bottom quarks

    International Nuclear Information System (INIS)

    Stamou, Emmanuel

    2013-01-01

    The Large Hadron Collider is currently exploring dynamics at high energies where we expect physics beyond the standard model to emerge as an answer to at least some of the questions the standard model cannot address. We consider the low-energy flavour signatures of a model with a dynamical explanation of quark masses and mixings, construct a model with new strong interactions that account for the anomalously large measurement of an asymmetry in top antitop production at Tevatron, and compute next-to-leading-order electroweak corrections to the recently observed rare decay B s →μ + μ - .

  7. Baryon axial-vector couplings and SU(3)-symmetry breaking in chiral quark models

    International Nuclear Information System (INIS)

    Horvat, D.; Ilakovac, A.; Tadic, D.

    1986-01-01

    SU(3)-symmetry breaking is studied in the framework of the chiral bag models. Comparisons are also made with the MIT bag model and the harmonic-oscillator quark model. An important clue for the nature of the symmetry breaking comes from the isoscalar axial-vector coupling constant g/sub A//sup S/ which can be indirectly estimated from the Bjorken sum rules for deep-inelastic scattering. The chiral bag model with two radii reasonably well accounts for the empirical values of g/sub A//sup S/ and of the axial-vector coupling constants measured in hyperon semileptonic decays

  8. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

    KAUST Repository

    Dreano, Denis

    2017-04-05

    Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.

  9. ΔT=1/2 rule in quark models with unconfined colour

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Kompaneetz, F.F.; Tikhonin, F.F.

    1977-01-01

    In the triplet quark model with unconfined colour a weak hadronic current is obtained with the following properties: a) it satisfies weak SU(2) algebra; b) the neutral current is completely diagonal and coincides with electromagnetic one in the quark structure ; c) the ''white'' part of the current possesses the properties of the Cabbibo current. The properties of the ''white'' part of nonleptonic Lagrangian derived from this current are : a)between the coefficients of the transition amplitudes ΔT=1/2 and ΔT=3/2 there is a ratio approximately 25 corresponding to experiment; b) there are no transitions ΔS=2; c) the values for the transitions ΔT=0,1,2 of the Lagrangian without changes of strangeness are compatible with each other

  10. The half-skyrmion phase in a chiral-quark model

    International Nuclear Information System (INIS)

    Mantovani Sarti, Valentina; Vento, Vicente

    2014-01-01

    The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in the nuclear matter phase diagram. Dense soliton matter described by the Wigner–Seitz approximation generates a periodic potential in terms of the sigma and pion fields that leads to the formation of a band structure. The analysis up to three times nuclear matter density shows that soliton matter undergoes two separate phase transitions: a delocalization of the baryon number density leading to B=1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger densities. This description fits well into the so-called quarkyonic phase where, before deconfinement, nuclear matter should undergo structural changes involving the restoration of fundamental symmetries of QCD

  11. Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model

    International Nuclear Information System (INIS)

    Pierre Guichon; Hrayr Matevosyan; N. Sandulescu; Anthony Thomas

    2006-01-01

    A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model--a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding impressive results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars

  12. Chiral Quark-Meson model of N and DELTA with vector mesons

    International Nuclear Information System (INIS)

    Broniowski, W.; Banerjee, M.K.

    1985-10-01

    Vector mesons rho, A 1 and ω are introduced in the Chiral Quark-Meson Theory (CQMT) of N and Δ. We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ω to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA)

  13. Models for Quarks and Elementary Particles. Part IV: How Much do We Know of This Universe?

    Directory of Open Access Journals (Sweden)

    Neumann U. K. W.

    2008-07-01

    Full Text Available Essential laws and principles of the natural sciences were discovered at the high aggre- gation levels of matter such as molecules, metal crystals, atoms and elementary parti- cles. These principles reappear in these models in modified form at the fundamental level of the quarks. However, the following is probably true: since the principles apply at the fundamental level of the quarks they also have a continuing effect at the higher aggregation levels. In the manner of the law of mass action, eight processes for weak interaction are formulated, which are also called Weak Processes here. Rules for quark exchange of the reacting elementary particles are named and the quasi-Euclidian or complex spaces introduced in Part I associated with the respective particles. The weak processes are the gateway to the “second” strand of this universe which we practically do not know. The particles with complex space, e.g. the neutrino, form this second strand. According to the physical model of gravitation from Part III the particles of both strands have >-fields and are thus subject to the superposition, which results in the attraction by gravity of the particles of both strands. The weak processes (7 and (8 offer a fair chance for the elimination of highly radioactive waste.

  14. Quark parton model with logarithmic scaling violation and high energy neutrino interactions

    International Nuclear Information System (INIS)

    Isaev, P.S.; Kovalenko, S.G.

    1979-01-01

    In the framework of the proposed earlier quark parton model with logarithmic scaling violation the cross sections of deep inelastic ν(anti ν)N interactions are calculated, the contribution of the charmed particle production are evaluated. The kinematical mass corrections to scaling violations and threshold effects are taken into account. Joint analysis of the experimental data on deep inelastic ep, ed scattering and charged current neutrino interaction are performed by using the unique set of free parameters of the model. Evaluations of the c-quark and W-boson masses are obtained. Neutral current data as well are analysed. The analysis is performed with taken into account scaling violation effects. The obtained estimations of the charmed quark mass Msub(c)=3.0+-1.2 GeV. W-boson mass Mw=50+-10 GeV, and the Weinberg angle SINsup(2)THETAsub(w)=0.26+-0.04 are within errors in agreement with the generally accepted ones

  15. Models for Quarks and Elementary Particles --- Part IV: How Much Do We Know of This Universe?

    Directory of Open Access Journals (Sweden)

    Ulrich K. W. Neumann

    2008-07-01

    Full Text Available Essential laws and principles of the natural sciences were discovered at the high aggregation levels of matter such as molecules, metal crystals, atoms and elementary particles. These principles reappear in these models in modified form at the fundamental level of the quarks. However, the following is probably true: since the principles apply at the fundamental level of the quarks they also have a continuing effect at the higher aggregation levels. In the manner of the law of mass action, eight processes for weak interaction are formulated, which are also called Weak Processes here. Rules for quark exchange of the reacting elementary particles are named and the quasi-Euclidian or complex spaces introduced in Part I associated with the respective particles. The weak processes are the gateway to the second strand of this universe which we practically do not know. The particles with complex space, e.g. the neutrino, form this second strand. According to the physical model of gravitation from Part III the particles of both strands have fields and are thus subject to the superposition, which results in the attraction by gravity of the particles of both strands. The weak processes (7 and (8 offer a fair chance for the elimination of highly radioactive waste.

  16. Hadron production at RHIC: recombination of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.

  17. Relating covariant and canonical approaches to triangulated models of quantum gravity

    International Nuclear Information System (INIS)

    Arnsdorf, Matthias

    2002-01-01

    In this paper we explore the relation between covariant and canonical approaches to quantum gravity and BF theory. We will focus on the dynamical triangulation and spin-foam models, which have in common that they can be defined in terms of sums over spacetime triangulations. Our aim is to show how we can recover these covariant models from a canonical framework by providing two regularizations of the projector onto the kernel of the Hamiltonian constraint. This link is important for the understanding of the dynamics of quantum gravity. In particular, we will see how in the simplest dynamical triangulation model we can recover the Hamiltonian constraint via our definition of the projector. Our discussion of spin-foam models will show how the elementary spin-network moves in loop quantum gravity, which were originally assumed to describe the Hamiltonian constraint action, are in fact related to the time-evolution generated by the constraint. We also show that the Immirzi parameter is important for the understanding of a continuum limit of the theory

  18. Simulation of parametric model towards the fixed covariate of right censored lung cancer data

    Science.gov (United States)

    Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Ridwan Olaniran, Oyebayo; Enera Amran, Syahila

    2017-09-01

    In this study, simulation procedure was applied to measure the fixed covariate of right censored data by using parametric survival model. The scale and shape parameter were modified to differentiate the analysis of parametric regression survival model. Statistically, the biases, mean biases and the coverage probability were used in this analysis. Consequently, different sample sizes were employed to distinguish the impact of parametric regression model towards right censored data with 50, 100, 150 and 200 number of sample. R-statistical software was utilised to develop the coding simulation with right censored data. Besides, the final model of right censored simulation was compared with the right censored lung cancer data in Malaysia. It was found that different values of shape and scale parameter with different sample size, help to improve the simulation strategy for right censored data and Weibull regression survival model is suitable fit towards the simulation of survival of lung cancer patients data in Malaysia.

  19. Duality and quarks

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    As it has shown, the study of vacuum transitions in dual models makes it possible to establish certain relations between duality, on the one hand, and the quark structure of resonances and the internal symmetries, on the other. In the case of Veneziano model the corresponding quark structure of resonances is determined by the infinity number of quarks of increasing mass. The intercents of the main trajectory and all adopted trajectories are additive with respect to squares of mass-forming quarks. The latter circumstance results in a number of important consequences: the presence of quadratic mass formulas for resonance states; the exact SU(infinity)-symmetry for the three-resonance coupling constants; the validity of Adler's self-consistency principle for external particles composed of different quarks and anti-quarks, etc

  20. A versatile method for confirmatory evaluation of the effects of a covariate in multiple models

    DEFF Research Database (Denmark)

    Pipper, Christian Bressen; Ritz, Christian; Bisgaard, Hans

    2012-01-01

    to provide a fine-tuned control of the overall type I error in a wide range of epidemiological experiments where in reality no other useful alternative exists. The methodology proposed is applied to a multiple-end-point study of the effect of neonatal bacterial colonization on development of childhood asthma.......Modern epidemiology often requires testing of the effect of a covariate on multiple end points from the same study. However, popular state of the art methods for multiple testing require the tests to be evaluated within the framework of a single model unifying all end points. This severely limits...