Coupling non-gravitational fields with simplicial spacetimes
International Nuclear Information System (INIS)
McDonald, Jonathan R; Miller, Warner A
2010-01-01
The inclusion of source terms in discrete gravity is a long-standing problem. Providing a consistent coupling of source to the lattice in the Regge calculus (RC) yields a robust unstructured spacetime mesh applicable to both numerical relativity and quantum gravity. RC provides a particularly insightful approach to this problem with its purely geometric representation of spacetime. The simplicial building blocks of RC enable us to represent all matter and fields in a coordinate-free manner. We provide an interpretation of RC as a discrete exterior calculus framework into which non-gravitational fields naturally couple with the simplicial lattice. Using this approach we obtain a consistent mapping of the continuum action for non-gravitational fields to the Regge lattice. In this paper we apply this framework to scalar, vector and tensor fields. In particular we reconstruct the lattice action for (1) the scalar field, (2) Maxwell field tensor and (3) Dirac particles. The straightforward application of our discretization techniques to these three fields demonstrates a universal implementation of the coupling source to the lattice in RC.
Geometrical Aspects of non-gravitational interactions
Roldan, Omar; Barros Jr, C. C.
2016-01-01
In this work we look for a geometric description of non-gravitational forces. The basic ideas are proposed studying the interaction between a punctual particle and an electromagnetic external field. For this purpose, we introduce the concept of proper space-time, that allow us to describe this interaction in a way analogous to the one that the general relativity theory does for gravitation. The field equations that define this geometry are similar to the Einstein's equations, where in general...
Chameleons with Field Dependent Couplings
Brax, Philippe; Mota, David F; Nunes, Nelson J; Winther, Hans A
2010-01-01
Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power run-away potentials and field independent couplings to matter. In this paper we investigate field-theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for E\\"ot-Wash experiments, fifth-force searches and Casimir force experiments. Requiring that the scalar-field evades gravitational tests, we find that the coupling is sensitive to a mass-scale which is of order of the Hubble scale today.
Anomalous coupling of scalars to gauge fields
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Geneve Univ. (Switzerland). Dept. de Physique Theorique; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Seery, David [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Weltman, Amanda [Cape Town Univ., Rondebosch (South Africa). Astronomy, Cosmology and Gravity Centre
2010-10-15
We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)
Anomalous coupling of scalars to gauge fields
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine; Seery, David; Weltman, Amanda
2010-10-01
We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)
Dynamics of coupled phantom and tachyon fields
Energy Technology Data Exchange (ETDEWEB)
Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Pathak, S.D.; Li, Shiyuan [Shandong University, School of Physics, Jinan (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, Department of Physics, GCAP-CASPER, Waco, TX (United States)
2017-10-15
In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)
Dynamics of coupled phantom and tachyon fields
International Nuclear Information System (INIS)
Shahalam, M.; Pathak, S.D.; Li, Shiyuan; Myrzakulov, R.; Wang, Anzhong
2017-01-01
In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)
Chameleons with field-dependent couplings
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Mota, David F.; Winther, Hans A.; Nunes, Nelson J.
2010-01-01
Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power runaway potentials and field-independent couplings to matter. In this paper we investigate field theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for Eoet-Wash experiments, fifth-force searches and Casimir-force experiments. Requiring that the scalar field evades gravitational tests, we find that the coupling is sensitive to a mass scale which is of order of the Hubble scale today.
Kundt spacetimes minimally coupled to scalar field
Energy Technology Data Exchange (ETDEWEB)
Tahamtan, T. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic); Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic); Svitek, O. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic)
2017-06-15
We derive an exact solution belonging to the Kundt class of spacetimes both with and without a cosmological constant that are minimally coupled to a free massless scalar field. We show the algebraic type of these solutions and give interpretation of the results. Subsequently, we look for solutions additionally containing an electromagnetic field satisfying nonlinear field equations. (orig.)
Coupling brane fields to bulk supergravity
Energy Technology Data Exchange (ETDEWEB)
Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-12-15
In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)
Scalar fields nonminimally coupled to pp waves
International Nuclear Information System (INIS)
Ayon-Beato, Eloy; Hassaiene, Mokhtar
2005-01-01
Here, we report pp waves configurations of three-dimensional gravity for which a scalar field nonminimally coupled to them acts as a source. In absence of self-interaction the solutions are gravitational plane waves with a profile fixed in terms of the scalar wave. In the self-interacting case, only power-law potentials parameterized by the nonminimal coupling constant are allowed by the field equations. In contrast with the free case the self-interacting scalar field does not behave like a wave since it depends only on the wave-front coordinate. We address the same problem when gravitation is governed by topologically massive gravity and the source is a free scalar field. From the pp waves derived in this case, we obtain at the zero topological mass limit, new pp waves solutions of conformal gravity for any arbitrary value of the nonminimal coupling parameter. Finally, we extend these solutions to the self-interacting case of conformal gravity
Extended inflation with nonminimally coupled inflation field
International Nuclear Information System (INIS)
Panchapakesan, N.; Sethi, S.K.
1992-01-01
In this paper, an extended inflation model, in which the inflation field is nonminimally coupled to the gravity, is discussed. It is shown that the nucleation rate of bubbles, during a phase transition in the inflaton field, can increase as the transition proceeds for a wide range of parameters of the inflaton potential. The bounce action for three possible cases - the strong gravity regime, the thick-walled Coleman-DeLuccia bubbles and the thin-walled bubbles - is evaluated. The resulting bubble distribution for all the cases is shown to be in conformity with cosmological constraints for ω < 500
Coupled transport in field-reversed configurations
Steinhauer, L. C.; Berk, H. L.; TAE Team
2018-02-01
Coupled transport is the close interconnection between the cross-field and parallel fluxes in different regions due to topological changes in the magnetic field. This occurs because perpendicular transport is necessary for particles or energy to leave closed field-line regions, while parallel transport strongly affects evolution of open field-line regions. In most toroidal confinement systems, the periphery, namely, the portion with open magnetic surfaces, is small in thickness and volume compared to the core plasma, the portion with closed surfaces. In field-reversed configurations (FRCs), the periphery plays an outsized role in overall confinement. This effect is addressed by an FRC-relevant model of coupled particle transport that is well suited for immediate interpretation of experiments. The focus here is particle confinement rather than energy confinement since the two track together in FRCs. The interpretive tool yields both the particle transport rate χn and the end-loss time τǁ. The results indicate that particle confinement depends on both χn across magnetic surfaces throughout the plasma and τǁ along open surfaces and that they provide roughly equal transport barriers, inhibiting particle loss. The interpretation of traditional FRCs shows Bohm-like χn and inertial (free-streaming) τǁ. However, in recent advanced beam-driven FRC experiments, χn approaches the classical rate and τǁ is comparable to classic empty-loss-cone mirrors.
Noether symmetry for non-minimally coupled fermion fields
International Nuclear Information System (INIS)
Souza, Rudinei C de; Kremer, Gilberto M
2008-01-01
A cosmological model where a fermion field is non-minimally coupled with the gravitational field is studied. By applying Noether symmetry the possible functions for the potential density of the fermion field and for the coupling are determined. Cosmological solutions are found showing that the non-minimally coupled fermion field behaves as an inflaton describing an inflationary scenario, whereas the minimally coupled fermion field describes a decelerated period, behaving as a standard matter field
Force field refinement from NMR scalar couplings
Energy Technology Data Exchange (ETDEWEB)
Huang Jing [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)
2012-03-02
Graphical abstract: We show that two classes of H-bonds are sufficient to quantitatively describe scalar NMR coupling constants in small proteins. Highlights: Black-Right-Pointing-Pointer We present force field refinements based on explicit MD simulations using scalar couplings across hydrogen bonds. Black-Right-Pointing-Pointer This leads to {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.03 Hz at best compared to experiment. Black-Right-Pointing-Pointer A classification of H-bonds according to secondary structure is not sufficiently robust. Black-Right-Pointing-Pointer Grouping H-bonds into two classes and reparametrization yields an RMSD of 0.07 Hz. Black-Right-Pointing-Pointer This is an improvement of 50. - Abstract: NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.
Euclidean wormholes with minimally coupled scalar fields
International Nuclear Information System (INIS)
Ruz, Soumendranath; Modak, Bijan; Debnath, Subhra; Sanyal, Abhik Kumar
2013-01-01
A detailed study of quantum and semiclassical Euclidean wormholes for Einstein's theory with a minimally coupled scalar field has been performed for a class of potentials. Massless, constant, massive (quadratic in the scalar field) and inverse (linear) potentials admit the Hawking and Page wormhole boundary condition both in the classically forbidden and allowed regions. An inverse quartic potential has been found to exhibit a semiclassical wormhole configuration. Classical wormholes under a suitable back-reaction leading to a finite radius of the throat, where the strong energy condition is satisfied, have been found for the zero, constant, quadratic and exponential potentials. Treating such classical Euclidean wormholes as an initial condition, a late stage of cosmological evolution has been found to remain unaltered from standard Friedmann cosmology, except for the constant potential which under the back-reaction produces a term like a negative cosmological constant. (paper)
TIME EVOLUTION OF WOUTHUYSEN-FIELD COUPLING
International Nuclear Information System (INIS)
Roy, Ishani; Shu Chiwang; Xu Wen; Fang Lizhi; Qiu Jingmei
2009-01-01
We study the Wouthuysen-Field (W-F) coupling at early universe with numerical solutions of the integrodifferential equation describing the kinetics of photons undergoing resonant scattering. The numerical solver is developed based on the weighted essentially nonoscillatory (WENO) scheme for the Boltzmann-like integrodifferential equation. This method has perfectly passed the tests of the analytic solution and conservation property of the resonant scattering equation. We focus on the time evolution of the Wouthuysen-Field (W-F) coupling in relation to the 21 cm emission and absorption at the epoch of reionization. We especially pay attention to the formation of the local Boltzmann distribution, e -(ν-ν 0 )/kT , of photon frequency spectrum around resonant frequency ν 0 within width ν l , i.e., |ν - ν 0 | ≤ ν l . We show that a local Boltzmann distribution will be formed if photons with frequency ∼ν 0 have undergone a 10,000 or more times of scattering, which corresponds to the order of 10 3 yr for neutral hydrogen density of the concordance ΛCDM model. The time evolution of the shape and width of the local Boltzmann distribution actually do not depend on the details of atomic recoil, photon sources, or initial conditions very much. However, the intensity of photon flux at the local Boltzmann distribution is substantially time dependent. The timescale of approaching the saturated intensity can be as long as 10 5 -10 6 yr for typical parameters of the ΛCDM model. The intensity of the local Boltzmann distribution at time less than 10 5 yr is significantly lower than that of the saturation state. Therefore, it may not be always reasonable to assume that the deviation of the spin temperature of 21 cm energy states from cosmic background temperature is mainly due to the W-F coupling if first stars or their emission/absorption regions evolved with a timescale equal to or less than Myr.
The Rainich problem for coupled gravitational and scalar meson fields
International Nuclear Information System (INIS)
Hyde, J.M.
1975-01-01
The equations of the coupled gravitational and scalar meson fields in general relativity are considered. It is shown that the wave equation for the scalar meson field which is usually specified explicitly in addition to the Einstein field equations is implied by Einstein's equations. Using this result it is then shown how the scalar field may be eliminated explicitly from the field equations, thus solving the Rainich problem for the coupled gravitational and scalar meson fields. (author) [fr
Four-pomeron couplings in cut reggeon field theory
International Nuclear Information System (INIS)
Grassberger, P.
1980-01-01
Four-pomeron cutting rules are studied in cut reggeon field theory (CRFT). Without any microscopic model, CRFT allows for three different 4-pomeron couplings. Demanding that CRFT is interpretable as a Markov process, only one of these couplings remains. The cutting rules for the 4-pomeron vertex thus become unique, disagreeing with those found in weak coupling diameter 3 theory. (orig.)
Weakly coupled mean-field game systems
Gomes, Diogo A.; Patrizi, Stefania
2016-01-01
Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem
On the ionospheric coupling of auroral electric fields
Directory of Open Access Journals (Sweden)
G. T. Marklund
2009-04-01
Full Text Available The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦ_{II}, as inferred from the characteristic energy of upward ion (electron beams for the upward (downward current region and the high-altitude perpendicular (to B potential, ΔΦ_{bot}, as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985. This gives a scale size dependent coupling where structures are coupled (decoupled above (below a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.
Quantum field model of strong-coupling binucleon
International Nuclear Information System (INIS)
Amirkhanov, I.V.; Puzynin, I.V.; Puzynina, T.P.; Strizh, T.A.; Zemlyanaya, E.V.; Lakhno, V.D.
1996-01-01
The quantum field binucleon model for the case of the nucleon spot interaction with the scalar and pseudoscalar meson fields is considered. It is shown that the nonrelativistic problem of the two nucleon interaction reduces to the one-particle problem. For the strong coupling limit the nonlinear equations describing two nucleons in the meson field are developed [ru
Coupled oscillators as models of phantom and scalar field cosmologies
International Nuclear Information System (INIS)
Faraoni, Valerio
2004-01-01
We study a toy model for phantom cosmology recently introduced in the literature and consisting of two oscillators, one of which carries negative kinetic energy. The results are compared with the exact phase space picture obtained for similar dynamical systems describing, respectively, a massive canonical scalar field conformally coupled to the spacetime curvature and a conformally coupled massive phantom. Finally, the dynamical system describing exactly a minimally coupled phantom is studied and compared with the toy model
Minimally coupled scalar field cosmology in anisotropic ...
Indian Academy of Sciences (India)
2017-01-03
Jan 3, 2017 ... So far, a large class of scalar field dark energy mod- els have been ... gains a lot of interest, under the light of the recently announced Planck Probe ...... Figure 1. wm vs. t for c2 = 1, V0 = 1 and some values of λ and α. Figure 2.
Weakly coupled mean-field game systems
Gomes, Diogo A.
2016-07-14
Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem. Finally, by a limiting procedure, we obtain solutions to the MFG problem. © 2016 Elsevier Ltd
Four dimensional sigma model coupled to the metric tensor field
International Nuclear Information System (INIS)
Ghika, G.; Visinescu, M.
1980-02-01
We discuss the four dimensional nonlinear sigma model with an internal O(n) invariance coupled to the metric tensor field satisfying Einstein equations. We derive a bound on the coupling constant between the sigma field and the metric tensor using the theory of harmonic maps. A special attention is paid to Einstein spaces and some new explicit solutions of the model are constructed. (author)
Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination
Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael
2014-05-01
Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of
On symmetry inheritance of nonminimally coupled scalar fields
Barjašić, Irena; Smolić, Ivica
2018-04-01
We present the first symmetry inheritance analysis of fields non-minimally coupled to gravity. In this work we are focused on the real scalar field ϕ with nonminimal coupling of the form ξφ2 R . Possible cases of symmetry noninheriting fields are constrained by the properties of the Ricci tensor and the scalar potential. Examples of such spacetimes can be found among those which are ‘dressed’ with the stealth scalar field, a nontrivial scalar field configuration with the vanishing energy–momentum tensor. We classify the scalar field potentials which allow symmetry noninheriting stealth field configurations on top of the exact solutions of the Einstein’s gravitational field equation with the cosmological constant.
Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.
2014-01-01
Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.
Near-field strong coupling of single quantum dots.
Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert
2018-03-01
Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.
Inflationary dynamics of kinetically-coupled gauge fields
DEFF Research Database (Denmark)
Ferreira, Ricardo J. Z.; Ganc, Jonathan
2015-01-01
We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quant......We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can...... be quantized using the standard creation, annihilation operator algebra. This second constraint limits us to scenarios where the system can be diagonalized into the sum of two decoupled, massless, vector fields with a varying kinetic-term coefficient. Such a system might be interesting for magnetogenesis...... because of how the strong coupling problem generalizes. We explore this idea by assuming that one of the gauge fields is the Standard Model U(1) field and that the other dark gauge field has no particles charged under its gauge group. We consider whether it would be possible to transfer a magnetic field...
Strong coupling in a gauge invariant field theory
Energy Technology Data Exchange (ETDEWEB)
Johnson, K. [Physics Department, Massachusetts Institute of Technology, Cambridge, MA (United States)
1963-01-15
I would like to discuss some approximations which may be significant in the domain of strong coupling in a field system analogous to quantum electrodynamics. The motivation of this work is the idea that the strong couplings and elementary particle spectrum may be the consequence of the dynamics of a system whose underlying description is in terms of a set of Fermi fields gauge invariantly coupled to a single (''bare'') massless neutral vector field. The basis of this gauge invariance would of course be the exact conservation law of baryons or ''nucleonic charge''. It seems to me that a coupling scheme based on an invariance principle is most attractive if that invariance is an exact one. It would then be nice to try to account for the approximate invariance principles in the same way one would describe ''accidental degeneracies'' in any quantum system.
Matter coupled to quantum gravity in group field theory
International Nuclear Information System (INIS)
Ryan, James
2006-01-01
We present an account of a new model incorporating 3d Riemannian quantum gravity and matter at the group field theory level. We outline how the Feynman diagram amplitudes of this model are spin foam amplitudes for gravity coupled to matter fields and discuss some features of the model. To conclude, we describe some related future work
Emission Spectrum Property of Modulated Atom-Field Coupling System
International Nuclear Information System (INIS)
Gao Yun-Feng; Feng Jian; Li Yue-Ke
2013-01-01
The emission spectrum of a two-level atom interacting with a single mode radiation field in the case of periodic oscillation coupling coefficient is investigated. A general expression for the emission spectrum is derived. The numerical results for the initial field in pure number stare are calculated. It is found that the effect of the coupling coefficient modulation on the spectral structure is very obvious in the case of a low modulation frequency and larger amplitude when the initial field is vacuum, which is potentially useful for exploring a modulated light source. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
N-body simulations for coupled scalar-field cosmology
International Nuclear Information System (INIS)
Li Baojiu; Barrow, John D.
2011-01-01
We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the ΛCDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.
Direct coupled amplifiers using field effect transistors
Energy Technology Data Exchange (ETDEWEB)
Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1964-03-15
The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with
Massive Abelian gauge fields coupled with nonconserved currents
International Nuclear Information System (INIS)
Nakazato, Hiromichi; Namiki, Mikio; Yamanaka, Yoshiya; Yokoyama, Kan-ichi.
1985-04-01
A massive Abelian gauge field coupled with a nonconserved mass-changing current is described within the framework of canonical quantum theory with indefinite metric. In addition to the conventional Lagrange multiplier fields, another ghost field is introduced to preserve gauge invariance and unitarity of a physical S-matrix in the case of the nonconserved current. The renormalizability of the theory is explicitly shown in the sense of superpropagator approach for nonpolynomial Lagrangian theories. (author)
Nonminimally coupled scalar fields may not curve spacetime
International Nuclear Information System (INIS)
Ayon-Beato, Eloy; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge
2005-01-01
It is shown that flat spacetime can be dressed with a real scalar field that satisfies the nonlinear Klein-Gordon equation without curving spacetime. Surprisingly, this possibility arises from the nonminimal coupling of the scalar field with the curvature, since a footprint of the coupling remains in the energy-momentum tensor even when gravity is switched off. Requiring the existence of solutions with vanishing energy-momentum tensor fixes the self-interaction potential as a local function of the scalar field depending on two coupling constants. The solutions describe shock waves and, in the Euclidean continuation, instanton configurations in any dimension. As a consequence of this effect, the tachyonic solutions of the free massive Klein-Gordon equation become part of the vacuum
Effective field theory: A modern approach to anomalous couplings
International Nuclear Information System (INIS)
Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen
2013-01-01
We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics
Broken Weyl symmetry. [Gauge model, coupling, Higgs field
Energy Technology Data Exchange (ETDEWEB)
Domokos, G.
1976-05-01
It is argued that conformal symmetry can be properly understood in the framework of field theories in curved space. In such theories, invariance is required under general coordinate transformations and conformal rescalings. A gauge model coupled to a Higgs field is examined. In the tree approximation, the vacuum solution exhibits two Higgs phenomena; both the phase (Goldstone boson) and the coordinate dependent part of the radial component of the scalar field can be removed by a Higgs-Kibble transformation. The resulting vacuum solution corresponds to a space of constant curvature and constant vacuum expectation value of the scalar field.
Dynamics of coupled field solitons: A collective coordinate approach
Indian Academy of Sciences (India)
of the coupled fields with local inhomogeneity like a delta function potential .... The derivation of the collective action for the motion of the vortex centres .... We can define collective forces on solitons if we look at the above equations as F1 =.
On Closely Coupled Dipoles in a Random Field
DEFF Research Database (Denmark)
Andersen, Jørgen Bach; Vincent, L.
2006-01-01
Reception of partially correlated fields by two closely coupled electrical dipoles is discussed as a function of load impedances and open-circuit correlations. Two local maxima of the power may be achieved for two different load impedances, but in those cases the output correlations are high...
Switching field of partially exchange-coupled particles
International Nuclear Information System (INIS)
Oliva, M.I.; Bertorello, H.R.; Bercoff, P.G.
2004-01-01
The magnetization reversal of partially exchange-coupled particles is studied in detail. The starting point is the observation of a complicated phenomenology in the irreversible susceptibility and FORC distribution functions of Ba hexaferrite samples obtained by means of different sintering conditions. Several peaks in the first-order reversal curve (FORC) distribution functions were identified and associated with clusters with different number of particles. The switching fields of these clusters were related to an effective anisotropy constant Keff that depends on the number of particles in the cluster. Keff is linked to the exchange-coupled volume between two neighboring particles and as a weighted mean between the anisotropy constants of the coupled and uncoupled volumes. By using the modified Brown's equation αex=0.322 is obtained.In order to interpret these results, the switching field of a two-particle system with partial exchange coupling is studied. It is assumed that the spins reorientation across the contact plane between the particles is like a Bloch wall. The energy of the system is written in terms of the fraction of volume affected by exchange coupling and the switching fields for both particles are calculated. At small interaction volume fraction each particle inverts its magnetization independently from the other. As the fraction of exchange-coupled volume increases, cooperative effects appear and the two particles invert their magnetization in a cooperative way.The proposed model allows to interpret for the first time the empirical factor αex in terms of physical arguments and also explain the details observed in the FORC distribution function
Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph
Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.
Evaluation of nonuniform field exposures with coupling factors
International Nuclear Information System (INIS)
Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; De Santis, Valerio; Onishi, Teruo
2015-01-01
In this study, the safety compliance for nonuniform field exposures is discussed using coupling factor concepts. The coupling factor, which is defined in the International Electrotechnical Commission 62311 standard, is extended to consider the effects of harmonics and also to apply to the specific absorption rate (for frequencies up to 30 MHz). The proposed compliance procedure is applied to and demonstrated for a prototype wireless power transfer (WPT) system with induction coupling operating at the fundamental frequency in 140 kHz band. First, measurements confirm that the perturbation of the external magnetic field strength and S 11 parameter of a one-loop antenna by a human-equivalent phantom are sufficiently small, suggesting the applicability of the magneto-quasi-static approximation to frequencies up to 30 MHz. Then, the frequency characteristics of the coupling factor are derived for the WPT system. For the prototype system that is not optimized for commercial usage, the maximum allowable transmitting power is relaxed by a factor of 23 with the proposed procedure. The contribution of the harmonics decreased the allowable transmitting power by 39%, indicating their importance for safety compliance. (paper)
Evaluation of nonuniform field exposures with coupling factors.
Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; De Santis, Valerio; Onishi, Teruo
2015-10-21
In this study, the safety compliance for nonuniform field exposures is discussed using coupling factor concepts. The coupling factor, which is defined in the International Electrotechnical Commission 62311 standard, is extended to consider the effects of harmonics and also to apply to the specific absorption rate (for frequencies up to 30 MHz). The proposed compliance procedure is applied to and demonstrated for a prototype wireless power transfer (WPT) system with induction coupling operating at the fundamental frequency in 140 kHz band. First, measurements confirm that the perturbation of the external magnetic field strength and S11 parameter of a one-loop antenna by a human-equivalent phantom are sufficiently small, suggesting the applicability of the magneto-quasi-static approximation to frequencies up to 30 MHz. Then, the frequency characteristics of the coupling factor are derived for the WPT system. For the prototype system that is not optimized for commercial usage, the maximum allowable transmitting power is relaxed by a factor of 23 with the proposed procedure. The contribution of the harmonics decreased the allowable transmitting power by 39%, indicating their importance for safety compliance.
Coupled scalar fields in a flat FRW universe. Renormalisation
Energy Technology Data Exchange (ETDEWEB)
Baacke, Juergen [Technische Univ. Dortmund (Germany). Fakultaet Physik; Covi, Laura [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kevlishvili, Nina [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Andronikashvili Institute of Physics, Tbilisi (Georgia)
2010-06-15
We study the non-equilibrium dynamics of a system of coupled scalar fields in a Friedmann-Robertson-Walker (FRW) universe. We consider the evolution of spatially homogeneous ''classical'' fields and of their quantum fluctuations including the quantum backreaction in the one-loop approximation. We discuss in particular the dimensional regularisation of the coupled system and a special subtraction procedure in order to obtain the renormalised equations of motion and the renormalised energy-momentum tensor and ensure that the energy is well-defined and covariantly conserved. These results represent at the same time a theoretical analysis and a viable scheme for stable numerical simulations. As an example for an application of the general formalism, we present simulations for a hybrid inflationary model. (orig.)
Quantum field theories coupled to supergravity. AdS/CFT and local couplings
International Nuclear Information System (INIS)
Grosse, J.
2006-01-01
This dissertation is devoted to the investigation of the interplay of supersymmetric Yang-Mills theories (SYM) and supergravity (SUGRA). The topic is studied from two points of view: Firstly from the point of view of AdS/CFT correspondence, which realises the coupling of four dimensional superconformal N=4 SYM theory and ten dimensional type IIB SUGRA in a holographic way. In order to arrive at theories that resemble quantum chromodynamics (QCD) more closely, fundamental fields are introduced using probe D7-branes and nontrivial background configuration are considered. In particular supergravity solutions that are only asymptotically anti-de Sitter and break supersymmetry are used. This allows the description of spontaneous chiral symmetry breaking. The meson spectrum is calculated and the existence of an associated Goldstone mode is demonstrated. Moreover it is shown that highly radially excited mesons are not degenerate. Additionally instanton configurations on the D7-branes are investigated, which lead to a holographic description of the dual field theory's Higgs branch. Finally a holographic description of heavy-light mesons is developed, which are mesons consisting of quarks with a large mass difference, such that a treatment of B mesons can be achieved. The second approach to the topic of this thesis is the technique of socalled space-time dependent couplings (also known as ''local couplings''), where coupling constants are promoted to external sources. This allows to explore the conformal anomaly of quantum field theories coupled to a classical gravity background. The technique is extended to the superfield description of N=1 supergravity, a complete basis for the anomaly is given and the consistency conditions that arise from a cohomological treatment are calculated. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed. (orig.)
Quantum field theories coupled to supergravity. AdS/CFT and local couplings
Energy Technology Data Exchange (ETDEWEB)
Grosse, J.
2006-08-03
This dissertation is devoted to the investigation of the interplay of supersymmetric Yang-Mills theories (SYM) and supergravity (SUGRA). The topic is studied from two points of view: Firstly from the point of view of AdS/CFT correspondence, which realises the coupling of four dimensional superconformal N=4 SYM theory and ten dimensional type IIB SUGRA in a holographic way. In order to arrive at theories that resemble quantum chromodynamics (QCD) more closely, fundamental fields are introduced using probe D7-branes and nontrivial background configuration are considered. In particular supergravity solutions that are only asymptotically anti-de Sitter and break supersymmetry are used. This allows the description of spontaneous chiral symmetry breaking. The meson spectrum is calculated and the existence of an associated Goldstone mode is demonstrated. Moreover it is shown that highly radially excited mesons are not degenerate. Additionally instanton configurations on the D7-branes are investigated, which lead to a holographic description of the dual field theory's Higgs branch. Finally a holographic description of heavy-light mesons is developed, which are mesons consisting of quarks with a large mass difference, such that a treatment of B mesons can be achieved. The second approach to the topic of this thesis is the technique of socalled space-time dependent couplings (also known as ''local couplings''), where coupling constants are promoted to external sources. This allows to explore the conformal anomaly of quantum field theories coupled to a classical gravity background. The technique is extended to the superfield description of N=1 supergravity, a complete basis for the anomaly is given and the consistency conditions that arise from a cohomological treatment are calculated. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed. (orig.)
Vertically coupled double quantum rings at zero magnetic field
Malet, Francesc; Barranco, Manuel; Lipparini, Enrico; Pi, Ricardo Mayol Martí; Climente, Juan Ignacio; Planelles, Josep
2006-01-01
Within local-spin-density functional theory, we have investigated the `dissociation' of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of inter-ring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble thos...
Do Capacity Coupled Electric Fields Accelerate Tibial Stress Fracture Healing
2006-12-01
MRI confirmed a large coexisting haemangioma which may have confounded perception of stress fracture symptoms. Table 1 is a comprehensive subject...Johnson JR, Light KI, Yuan HA: A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24...Simmons JW, Jr., Mooney V, Thacker I: Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J
Coupled-cluster treatment of molecular strong-field ionization
Jagau, Thomas-C.
2018-05-01
Ionization rates and Stark shifts of H2, CO, O2, H2O, and CH4 in static electric fields have been computed with coupled-cluster methods in a basis set of atom-centered Gaussian functions with a complex-scaled exponent. Consideration of electron correlation is found to be of great importance even for a qualitatively correct description of the dependence of ionization rates and Stark shifts on the strength and orientation of the external field. The analysis of the second moments of the molecular charge distribution suggests a simple criterion for distinguishing tunnel and barrier suppression ionization in polyatomic molecules.
Laterally coupled circular quantum dots under applied electric field
Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.
2016-03-01
The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.
Characterization of complementary electric field coupled resonant surfaces
Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.
2008-11-01
We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.
Group field theory formulation of 3D quantum gravity coupled to matter fields
International Nuclear Information System (INIS)
Oriti, Daniele; Ryan, James
2006-01-01
We present a new group field theory describing 3D Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs coloured with SU(2) algebraic data, from which one can reconstruct at once a three-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3D quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss
Search for new photon couplings in a magnetic field
International Nuclear Information System (INIS)
Cameron, R.E.
1992-01-01
Of great interest to particle physics is the question of the existence of new, light, pseudoscalar (or scalar) particles. In particular, the existence of a light pseudoscalar boson, known as the axion, would prove a solution to the strong CP problem. These particles, which must be very weakly coupled to ordinary matter, could also be the missing matter in the universe. The author attempted to produce axions in the laboratory by shining a laser beam through a transverse magnetic field. Only light polarized parallel to the magnetic field produces axions, so the polarization state of the light was carefully controlled. To increase the production of axions, the author constructed a multipass optical cavity that makes the light travel as much as 4 km through the magnetic field region. Using two different methods to detect the production of axions, limits were set on the axion coupling to two photons. In the first experiment, the change in polarization of the light was measured. To do this, the author constructed an ellipsometer, which could measure changes in polarization angle as small as 4 x 10 -11 rad. From the absence of an optical rotation due to the production of axions, it was possible to set a limit on axion coupling to two photons of g aγγ -7 GeV -1 . In the second experiment the author attempted to more directly measure the production of axions. In this case the axions were reconverted to photons, and the regenerated photons were counted by a low dark current photomultiplier tube. No photons in excess of the dark current were detected and the limit on axion coupling to two photons from this experiment is g aγγ -7 GeV -1
The Characterization of Non-Gravitational Perturbations That Act on Near-Earth Asteroid Orbits
Margot, Jean-Luc; Greenberg, Adam H.; Verma, Ashok K.; Taylor, Patrick A.
2017-10-01
The Yarkovsky effect is a thermal process acting upon the orbits of small celestial bodies which can cause these orbits to slowly expand or contract with time. The effect is subtle -- typical drift rates lie near 1e-4 au/My for a ~1 km diameter object -- and is thus generally difficult to measure. However, objects with long observation intervals, as well as objects with radar detections, serve as excellent candidates for the observation of this effect.We analyzed both optical and radar astrometry for all numbered Near-Earth Asteroids (NEAs), as well as several un-numbered NEAs. In order to quantify the likelihood of Yarkovsky detections, we developed a metric based on the quality of Yarkovsky fits as compared to that of gravity-only fits. Based on the metric results, we report 167 objects with measured Yarkovsky drifts.Our Yarkovsky sample is the largest published set of such detections, and presents an opportunity to examine the physical properties of these NEAs and the Yarkovsky effect in a statistical manner. In particular, we confirm the Yarkovsky effect's theoretical size dependence of 1/D, where D is diameter. We also examine the efficiency with which this effect converts absorbed light into orbital drift. Using our set of 167 objects, we find typical efficiences of around 5%. This efficiency can be used to place bounds on spin and thermal properties. We report the ratio of positive to negative drift rates and interpret this ratio in terms of prograde/retrograde rotators and main belt escape mechanisms. The observed ratio has a probability of 1 in 9 million of occurring by chance, which confirms the presence of a non-gravitational influence. We examine how the presence of radar data affect the strength and precision of our detections. We find that, on average, the precision of radar+optical detections improves by a factor of approximately 1.6 for each additional apparition with ranging data compared to that of optical-only solutions.
Gauge theories of Yang-Mills vector fields coupled to antisymmetric tensor fields
International Nuclear Information System (INIS)
Anco, Stephen C.
2003-01-01
A non-Abelian class of massless/massive nonlinear gauge theories of Yang-Mills vector potentials coupled to Freedman-Townsend antisymmetric tensor potentials is constructed in four space-time dimensions. These theories involve an extended Freedman-Townsend-type coupling between the vector and tensor fields, and a Chern-Simons mass term with the addition of a Higgs-type coupling of the tensor fields to the vector fields in the massive case. Geometrical, field theoretic, and algebraic aspects of the theories are discussed in detail. In particular, the geometrical structure mixes and unifies features of Yang-Mills theory and Freedman-Townsend theory formulated in terms of Lie algebra valued curvatures and connections associated to the fields and nonlinear field strengths. The theories arise from a general determination of all possible geometrical nonlinear deformations of linear Abelian gauge theory for one-form fields and two-form fields with an Abelian Chern-Simons mass term in four dimensions. For this type of deformation (with typical assumptions on the allowed form considered for terms in the gauge symmetries and field equations), an explicit classification of deformation terms at first-order is obtained, and uniqueness of deformation terms at all higher orders is proven. This leads to a uniqueness result for the non-Abelian class of theories constructed here
Non-minimally coupled tachyon field in teleparallel gravity
Energy Technology Data Exchange (ETDEWEB)
Fazlpour, Behnaz [Department of Physics, Babol Branch, Islamic Azad University, Shariati Street, Babol (Iran, Islamic Republic of); Banijamali, Ali, E-mail: b.fazlpour@umz.ac.ir, E-mail: a.banijamali@nit.ac.ir [Department of Basic Sciences, Babol University of Technology, Shariati Street, Babol (Iran, Islamic Republic of)
2015-04-01
We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.
Non-minimally coupled tachyon field in teleparallel gravity
International Nuclear Information System (INIS)
Fazlpour, Behnaz; Banijamali, Ali
2015-01-01
We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P 4 ), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field
Gauge and matter fields coupled to N=2 supergravity
International Nuclear Information System (INIS)
Wit, B. de; Lauwers, P.G.; Philippe, R.; Su, S.-Q.; Proeyen, A. van.
1983-07-01
The authors consider the potential of a general matter system of N=2 vector and scalar multiplets coupled to supergravity. For lagrangians that are initially quadratic in the matter fields the potential is proved to be either positive or unbounded from below. The results have been obtained in the framework of a superconformal multiplet calculus, and it has been verified that they can be derived from each of the three off-shell representations. As an example the authors consider SO(6) Yang-Mills theory coupled to scalar multiplets in the 10+10 representation, which, for suitably chosen parameters, leads to the potential of gauged N=8 supergravity. Finally, a discussion of the possibility to set residual nonabelian symmetry groups after breaking of N=8 supersymmetry to N=1 or 2 is presented. (Auth.)
Computing the scalar field couplings in 6D supergravity
Saidi, El Hassan
2008-11-01
Using non-chiral supersymmetry in 6D space-time, we compute the explicit expression of the metric the scalar manifold SO(1,1)×{SO(4,20)}/{SO(4)×SO(20)} of the ten-dimensional type IIA superstring on generic K3. We consider as well the scalar field self-couplings in the general case where the non-chiral 6D supergravity multiplet is coupled to generic n vector supermultiplets with moduli space SO(1,1)×{SO(4,n)}/{SO(4)×SO(n)}. We also work out a dictionary giving a correspondence between hyper-Kähler geometry and the Kähler geometry of the Coulomb branch of 10D type IIA on Calabi-Yau threefolds. Others features are also discussed.
Far-field coupling in nanobeam photonic crystal cavities
Energy Technology Data Exchange (ETDEWEB)
Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas [Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)
2016-05-16
We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out of GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.
Coupled electron/photon transport in static external magnetic fields
International Nuclear Information System (INIS)
Halbleib, J.A. Sr.; Vandevender, W.H.
A model is presented which describes coupled electron/photon transport in the presence of static magnetic fields of arbitrary spatial dependence. The method combines state-of-the-art condensed-history electron collisional Monte Carlo and single-scattering photon Monte Carlo, including electron energy-loss straggling and the production and transport of all generations of secondaries, with numerical field integration via the best available variable-step-size Runge-Kutta-Fehlberg or variable-order/variable-step-size Adams PECE differential equation solvers. A three-dimensional cartesian system is employed in the description of particle trajectories. Although the present model is limited to multilayer material configurations, extension to more complex material geometries should not be difficult. Among the more important options are (1) a feature which permits the neglect of field effects in regions where transport is collision dominated and (2) a method for describing the transport in variable-density media where electron energies and material densities are sufficiently low that the density effect on electronic stopping powers may be neglected. (U.S.)
Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings
Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)
2016-01-01
The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.
Conserved charges of minimal massive gravity coupled to scalar field
Setare, M. R.; Adami, H.
2018-02-01
Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected.
Conserved charges of minimal massive gravity coupled to scalar field
International Nuclear Information System (INIS)
Setare, M.R.; Adami, H.
2018-01-01
Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected. (orig.)
Conserved charges of minimal massive gravity coupled to scalar field
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R.; Adami, H. [University of Kurdistan, Department of Science, Sanandaj (Iran, Islamic Republic of)
2018-02-15
Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected. (orig.)
Coupled-spin filtered MR imaging in a low field
International Nuclear Information System (INIS)
Baudouin, C.J.; Bryant, D.J.; Coutts, G.A.; Bydder, G.M.; Young, I.R.
1990-01-01
This paper investigates the use of an editing method of imaging using spin-echo sequences with differing radio-frequency (RF) pulses for lipid imaging in poor fields and to compare it with solvent-suppression methods. A technique of echo difference imaging (EDI) has been described in which two data sets are acquired: a normal spin-echo sequence (90-180) and a 90-90 spin-echo sequence. The intrinsic signal of uncoupled spins in the EDI method is one-half that of the conventional sequence, so that subtracting twice the EDI signal from the conventional signal should result in signal cancellation. With coupled spins, the application of the second 90 degrees pulse results in coherence transfer, and echo magnitude will not be one-half that of the 90-180 echo. This method of lipid imaging may be less vulnerable to field inhomogeneity than are solvent-suppression methods. Phantom and in vivo studies were performed at 0.15 T (TE = 44 msec and various TRs)
Enhanced Soundings for Local Coupling Studies Field Campaign Report
Energy Technology Data Exchange (ETDEWEB)
Ferguson, Craig R [University at Albany, State University of New York; Santanello, Joseph A [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Gentine, Pierre [Columbia Univ., New York, NY (United States)
2016-04-01
This document presents initial analyses of the enhanced radiosonde observations obtained during the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Enhanced Soundings for Local Coupling Studies Field Campaign (ESLCS), which took place at the ARM Southern Great Plains (SGP) Central Facility (CF) from June 15 to August 31, 2015. During ESLCS, routine 4-times-daily radiosonde measurements at the ARM-SGP CF were augmented on 12 days (June 18 and 29; July 11, 14, 19, and 26; August 15, 16, 21, 25, 26, and 27) with daytime 1-hourly radiosondes and 10-minute ‘trailer’ radiosondes every 3 hours. These 12 intensive operational period (IOP) days were selected on the basis of prior-day qualitative forecasts of potential land-atmosphere coupling strength. The campaign captured 2 dry soil convection advantage days (June 29 and July 14) and 10 atmospherically controlled days. Other noteworthy IOP events include: 2 soil dry-down sequences (July 11-14-19 and August 21-25-26), a 2-day clear-sky case (August 15-16), and the passing of Tropical Storm Bill (June 18). To date, the ESLCS data set constitutes the highest-temporal-resolution sampling of the evolution of the daytime planetary boundary layer (PBL) using radiosondes at the ARM-SGP. The data set is expected to contribute to: 1) improved understanding and modeling of the diurnal evolution of the PBL, particularly with regard to the role of local soil wetness, and (2) new insights into the appropriateness of current ARM-SGP CF thermodynamic sampling strategies.
The effect of a coupling field on the entanglement dynamics of a three-level atom
International Nuclear Information System (INIS)
Mortezapour, Ali; Mahmoudi, Mohammad; Abedi, Majid; Khajehpour, M R H
2011-01-01
The effect of a coupling laser field on the entanglement of a three-level quantum system and its spontaneous emission is investigated via the reduced quantum entropy. We consider two schemes: the upper- and lower-level couplings. By calculating the degree of entanglement (DEM) for both systems, it is shown that the entanglement between the atom and its spontaneous emission can be controlled by the coupling laser field. This field, however, affects the entanglement differently in the two schemes; it is only the lower-level coupling scheme that shows a non-zero steady state DEM which can be controlled by the intensity and detuning of the coupling laser field.
The effect of a coupling field on the entanglement dynamics of a three-level atom
Energy Technology Data Exchange (ETDEWEB)
Mortezapour, Ali; Mahmoudi, Mohammad [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Abedi, Majid; Khajehpour, M R H, E-mail: mahmoudi@iasbs.ac.ir, E-mail: pour@iasbs.ac.ir [Institute for Advanced Studies in Basic Sciences, PO Box 45195-159, Zanjan (Iran, Islamic Republic of)
2011-04-28
The effect of a coupling laser field on the entanglement of a three-level quantum system and its spontaneous emission is investigated via the reduced quantum entropy. We consider two schemes: the upper- and lower-level couplings. By calculating the degree of entanglement (DEM) for both systems, it is shown that the entanglement between the atom and its spontaneous emission can be controlled by the coupling laser field. This field, however, affects the entanglement differently in the two schemes; it is only the lower-level coupling scheme that shows a non-zero steady state DEM which can be controlled by the intensity and detuning of the coupling laser field.
Magnetic field reversals, polar wander, and core-mantle coupling.
Courtillot, V; Besse, J
1987-09-04
True polar wander, the shifting of the entire mantle relative to the earth's spin axis, has been reanalyzed. Over the last 200 million years, true polar wander has been fast (approximately 5 centimeters per year) most of the time, except for a remarkable standstill from 170 to 110 million years ago. This standstill correlates with a decrease in the reversal frequency of the geomagnetic field and episodes of continental breakup. Conversely, true polar wander is high when reversal frequency increases. It is proposed that intermittent convection modulates the thickness of a thermal boundary layer at the base of the mantle and consequently the core-to-mantle heat flux. Emission of hot thermals from the boundary layer leads to increases in mantle convection and true polar wander. In conjunction, cold thermals released from a boundary layer at the top of the liquid core eventually lead to reversals. Changes in the locations of subduction zones may also affect true polar wander. Exceptional volcanism and mass extinctions at the Cretaceous-Tertiary and Permo-Triassic boundaries may be related to thermals released after two unusually long periods with no magnetic reversals. These environmental catastrophes may therefore be a consequence of thermal and chemical couplings in the earth's multilayer heat engine rather than have an extraterrestrial cause.
Noncommutative conformally coupled scalar field cosmology and its commutative counterpart
International Nuclear Information System (INIS)
Barbosa, G.D.
2005-01-01
We study the implications of a noncommutative geometry of the minisuperspace variables for the Friedmann-Robertson-Walker universe with a conformally coupled scalar field. The investigation is carried out by means of a comparative study of the universe evolution in four different scenarios: classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative, the last two employing the Bohmian formalism of quantum trajectories. The role of noncommutativity is discussed by drawing a parallel between its realizations in two possible frameworks for physical interpretation: the NC frame, where it is manifest in the universe degrees of freedom, and in the C frame, where it is manifest through θ-dependent terms in the Hamiltonian. As a result of our comparative analysis, we find that noncommutative geometry can remove singularities in the classical context for sufficiently large values of θ. Moreover, under special conditions, the classical noncommutative model can admit bouncing solutions characteristic of the commutative quantum Friedmann-Robertson-Walker universe. In the quantum context, we find nonsingular universe solutions containing bounces or being periodic in the quantum commutative model. When noncommutativity effects are turned on in the quantum scenario, they can introduce significant modifications that change the singular behavior of the universe solutions or that render them dynamical whenever they are static in the commutative case. The effects of noncommutativity are completely specified only when one of the frames for its realization is adopted as the physical one. Nonsingular solutions in the NC frame can be mapped into singular ones in the C frame
Confined solutions of the Thirring model coupled to a Schwinger field
International Nuclear Information System (INIS)
Hortacsu, M.
1976-08-01
In the study of the confined classical solutions of the bosonized massive Thirring field coupled to a Schwinger field, it is observed that, regardless of their respective magnitudes and signs, the Thirring interaction is dominant over the other one, in determining whether such a solution exists. Confined solutions for the Thirring field are possible if and only if the Thirring coupling is attractive. Solutions are constructed for the Thirring model coupling attractive, repulsive and equal to zero
Seizure Dynamics of Coupled Oscillators with Epileptor Field Model
Zhang, Honghui; Xiao, Pengcheng
The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.
Classical electromagnetic non-minimal coupling for spin 3/2 fields
International Nuclear Information System (INIS)
Villanueva, V. M.; Obregon, O.; Nieto, J. A.
1996-01-01
We obtain a non-minimal electromagnetic coupling for spin 3/2 particles from linearized N=2 Supergravity. This coupling coincides with the one found by Ferrara et al. by demanding g=2 at the tree level. Linearized Einstein field equations plus interaction terms are obtained by squaring the Rarita-Schwinger with this non-minimal coupling by using generalized Poisson brackets
Constraining non-minimally coupled tachyon fields by the Noether symmetry
International Nuclear Information System (INIS)
De Souza, Rudinei C; Kremer, Gilberto M
2009-01-01
A model for a homogeneous and isotropic Universe whose gravitational sources are a pressureless matter field and a tachyon field non-minimally coupled to the gravitational field is analyzed. The Noether symmetry is used to find expressions for the potential density and for the coupling function, and it is shown that both must be exponential functions of the tachyon field. Two cosmological solutions are investigated: (i) for the early Universe whose only source of gravitational field is a non-minimally coupled tachyon field which behaves as an inflaton and leads to an exponential accelerated expansion and (ii) for the late Universe whose gravitational sources are a pressureless matter field and a non-minimally coupled tachyon field which plays the role of dark energy and is responsible for the decelerated-accelerated transition period.
Coupled Maxwell-pseudoscalar field from the Einstein-Mayer theory
International Nuclear Information System (INIS)
Mahanta, M.N.; Gupta, Y.K.
1987-01-01
A coupled system of field equations representing interacting gravitational, electromagnetic and pseudoscalar fields is obtained using the five-dimensional formalism of Einstein and Mayer (1931-1932). Solutions of the system for concrete cases are under investigation. (author)
Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter
2018-04-01
The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.
Panel discussion on near-field coupled processes with emphasis on performance assessment
International Nuclear Information System (INIS)
Codell, R.B.; Baca, R.G.; Ahola, M.P.
1996-01-01
The presentations in this panel discussion involve the general topic of near-field coupled processes and postclosure performance assessment with an emphasis on rock mechanics. The potential impact of near-field rock mass deformation on repository performance was discussed, as well as topics including long term excavation deterioration, the performance of geologic seals, and coupled processes concerning rock mechanics in performance assessments
Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields
Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes
2014-01-01
Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.
DEFF Research Database (Denmark)
Nerkararyan, Khachatur V.; Yezekyan, Torgom S.; Bozhevolnyi, Sergey I.
2018-01-01
electromagnetic field. Considering the QDE-field interactions in the regime of strong QDE-field coupling, we show that the feedback provided by the MNP on the QDE (due to the LSP excitation with the field generated by the dipole moment of the QDE transition) influences significantly the coherent process of Rabi...
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
An exact solution is obtained for coupled dilaton and electromagnetic ﬁeld in a cylindrically symmetric spacetime where an axial magnetic ﬁeld as well as a radial electric ﬁeld both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric ﬁeld or to that ...
Coupled Higgs field equation and Hamiltonian amplitude equation ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 79; Issue 1. Coupled Higgs ﬁeld equation and ... School of Mathematics and Computer Applications, Thapar University, Patiala 147 004, India; Department of Mathematics, Jaypee University of Information Technology, Waknaghat, Distt. Solan 173 234, India ...
The dynamics of coupled atom and field assisted by continuous external pumping
International Nuclear Information System (INIS)
Burlak, G.; Hernandez, J.A.; Starostenko, O.
2006-01-01
The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)
The dynamics of coupled atom and field assisted by continuous external pumping
Energy Technology Data Exchange (ETDEWEB)
Burlak, G.; Hernandez, J.A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma de Morelos, Cuernavaca, Morelos (Mexico); Starostenko, O. [Departamento de Fisica, Electronica, Sistemas y Mecatronica, Universidad de las Americas, 72820 Puebla (Mexico)
2006-07-01
The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)
Dynamics of coupled electron-nuclei-systems in laser fields
International Nuclear Information System (INIS)
Falge, Mirjam
2012-01-01
This work aimed at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. In the first part of this thesis, the isotope effect and influence of vibrational excitation on high harmonic generation were investigated for the isotope pairs H 2 O/D 2 O and H 2 /D 2 . It was shown that on the one hand high harmonic intensities strongly depend on the vibrational quantum number of the initial state of the water molecule and on the other hand the spectra of H 2 O and D 2 O exhibit a clear isotope effect for certain vibrationally excited states. Also it was shown that high harmonics of vibrationally excited states show an even more pronounced isotope effect than the ground state. The second and third part of this work treats the influence of coupled electron and nuclear dynamics on photoelectron spectra. In order to facilitate a numerically exact description of this dynamics, a simple one-dimensional model system (Shin-Metiu model) was used. It consists of only a single electronic and nuclear degree-of-freedom and allows for a switching between adiabatic and strongly non-adiabatic dynamics by its parameterization. This model served for the analysis of the dynamics of three different cases ranging from weak over intermediate to strong electron-nuclear coupling. To investigate the influence of non-adiabatic effects on photoelectron spectra, time-resolved photoelectron spectra were calculated applying two methods: a numerically exact treatment and an adiabatic approach neglecting the electron-nuclear coupling. Subsequently, the dependence of the efficiency of a non-adiabatic transition on the nuclear mass was analysed. To this end, the population dynamics and photoelectron spectra were calculated numerically exactly for a strong electron and nuclear coupling. Thereafter the asymmetry in forward and backward direction of time-resolved photoelectron spectra and the
Covariant quantization of Lagrangians with quadratic dependent fields and derivative couplings
International Nuclear Information System (INIS)
Lam, C.S.; Wang, K.
1977-01-01
A covariant path-integral formula is derived for Lagrangians with quadratic dependent fields and derivative couplings. It differs from the naive one by a factor which can be viewed graphically as due to the coupling with ghost fields. These path integrals can be shown to be unitary and to satisfy equations of motion if and only if this extra factor is present. Applications of this formula to gauge and other field theories are discussed
Dependence of EIA spectra on mutual coherence between coupling and probe fields in Cs atomic vapors
Energy Technology Data Exchange (ETDEWEB)
Kwon, Mi Rang; Kim, Kyoung Dae; Park, Hyun Deok; Kim, Jung Bog [Korea National University of Education, Chungwon (Korea, Republic of); Moon, Han Seb [Korea Research Institute of the Standards and Science, Taejon (Korea, Republic of)
2002-03-01
We observed the dependence of EIA spectra on the mutual coherence between the coupling and the probe fields in the D{sub 2}F{sub 9} = 4 {r_reversible} F{sub e} = 5 transition of Cs vapors at room temperature where the coupling and the probe fields were made from one laser source or two independent laser sources. By using one source having a high mutual coherence, we found EIA spectra linewidths much narrower than 0.1 {gamma} on the weak coupling field and the transparent spectra with linewidths narrower than 1 MHz within subnatural absorption on the strong coupling field. On the other hand, where the two sources which were nearly incoherent with each other were used, the absorption profiles showed the same dependence on the coupling power as the spectra for the one source, but their linewidths were broad, on the order of the natural linewidth.
The gluonic field of a heavy quark in conformal field theories at strong coupling
Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.
2011-10-01
We determine the gluonic field configuration sourced by a heavy quark undergoing arbitrary motion in mathcal{N} = 4 super-Yang-Mills at strong coupling and large number of colors. More specifically, we compute the expectation value of the operator Tr[ F 2 + …] in the presence of such a quark, by means of the AdS/CFT correspondence. Our results for this observable show that signals propagate without temporal broadening, just as was found for the expectation value of the energy density in recent work by Hatta et al. We attempt to shed some additional light on the origin of this feature, and propose a different interpretation for its physical significance. As an application of our general results, we examine (Tr[ F 2 + …])when the quark undergoes oscillatory motion, uniform circular motion, and uniform acceleration. Via the AdS/CFT correspondence, all of our results are pertinent to any conformal field theory in 3 + 1 dimensions with a dual gravity formulation.
Production of pulsed electric fields using capacitively coupled electrodes
Kendall, B. R. F.; Schwab, F. A. S.
1980-01-01
It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.
Induced magnetic-field effects in inductively coupled plasmas
International Nuclear Information System (INIS)
Cohen, R.H.; Rognlien, T.D.
1995-01-01
In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest
Coupled field induced conversion between destructive and constructive quantum interference
Energy Technology Data Exchange (ETDEWEB)
Jiang, Xiangqian, E-mail: xqjiang@hit.edu.cn; Sun, Xiudong
2016-12-15
We study the control of quantum interference in a four-level atom driven by three coherent fields forming a closed loop. The spontaneous emission spectrum shows two sets of peaks which are dramatically influenced by the fields. Due to destructive quantum interference, a dark line can be observed in the emission spectrum, and the condition of the dark line is given. We found that the conversion between destructive and constructive quantum interference can be achieved through controlling the Rabi frequency of the external fields.
Numerical simulation of interior ballistic process of railgun based on the multi-field coupled model
Directory of Open Access Journals (Sweden)
Qinghua Lin
2016-04-01
Full Text Available Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and structural field. The magnetic diffusion equations were solved by a finite-element boundary-element coupling method. The thermal diffusion equations and structural equations were solved by a finite element method. A coupled calculation was achieved by the transfer data from the electromagnetic field to the thermal and structural fields. Some characteristics of railgun shot, such as velocity skin effect, melt-wave erosion and magnetic sawing, which are generated under the condition of large-current and high-speed sliding electrical contact, were demonstrated by numerical simulation.
Baryon non-invariant couplings in Higgs effective field theory
International Nuclear Information System (INIS)
Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario
2017-01-01
The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)
Radiative decay of coupled states in an external dc field
International Nuclear Information System (INIS)
Pal'chikov, V.; Sokolov, Y.; Yakovlev, V.
2001-01-01
This paper examines two theoretical aspects of the interference of atomic states in hydrogen which comes from the application of an external electric field F to the 2s metastable state. The radiative corrections to the Bethe-Lamb formula and anisotropy contribution to the angular distribution, which arises from interference between electric-field-induced E1-radiation and forbidden M1-radiation, are analysed
Radiative decay of coupled states in an external dc field
Energy Technology Data Exchange (ETDEWEB)
Pal' chikov, V. [National Research Inst. for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Mendeleevo, Moscow Region (Russian Federation); Sokolov, Y. [Kurchatov Inst., Russian Research Centre, Moscow (Russian Federation); Yakovlev, V. [Moscow Engineering Physics Inst., Moscow (Russian Federation)
2001-07-01
This paper examines two theoretical aspects of the interference of atomic states in hydrogen which comes from the application of an external electric field F to the 2s metastable state. The radiative corrections to the Bethe-Lamb formula and anisotropy contribution to the angular distribution, which arises from interference between electric-field-induced E1-radiation and forbidden M1-radiation, are analysed.
Coupling between eddy current and deflection in cantilevered beams in magnetic fields
International Nuclear Information System (INIS)
Hua, T.Q.
1986-01-01
Experiments were performed to investigate the coupling between eddy currents and deflection in cantilevered beams in longitudinal and transverse magnetic fields. This coupling effect reduces the current, deflection, and material stress to levels far less severe than would be predicted if coupling is disregarded. The experiments were conducted using the FELIX (Fusion ELectromagnetic Induction experiment) facility at the Argonne National Laboratory. The beams, which provide a simple model for the limiter blades in a tokamak fusion reactor, are subjected to crossed time-varying and constant magnetic fields. The time-varying field simulates the decaying field during a plasma disruption and the constant field models the toroidal field. Several test pieces are employed to allow variations in thicknesses and mechanical and electrical properties. Various magnetic field levels and decay time constants of time-varying are used to study the extent of the coupling from weak to strong coupling. The ratios of constant field to time-varying field are kept in the range from 10:1 to 20:1 as would be appropriate to tokamak limiters. Major parameters measured as functions of time are beam deflection, measured with an electro-optical device; total circulating current, measured with a Rogowski coil; strain recorded by strain gauges; and magnetic fields measured with Hall probes
Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole
Huang, Lu; Chen, Juhua; Wang, Yongjiu
2018-06-01
In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.
Reconstruction of coupling architecture of neural field networks from vector time series
Sysoev, Ilya V.; Ponomarenko, Vladimir I.; Pikovsky, Arkady
2018-04-01
We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.
Temperature dependence of high field electromechanical coupling in ferroelectric ceramics
Energy Technology Data Exchange (ETDEWEB)
Weaver, P M; Cain, M G; Stewart, M, E-mail: paul.weaver@npl.co.u [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)
2010-04-28
A study of the temperature dependence of the electromechanical response of ferroelectric lead zirconate titanate (PZT) ceramics at high electric fields (up to 1.3 kV mm{sup -1}) is reported. Simultaneous measurements were performed of strain, electric field and polarization to form a complete response map from room temperature up to 200 {sup 0}C. An electrostrictive model is shown to provide an accurate description of the electromechanical response to high levels of induced polarization and electric field. This provides a method for decoupling strain contributions from thermal expansion and polarization changes. Direct measurements of electrostriction and thermal expansion, above and below the Curie temperature, are reported. Electrostriction coefficients are shown to be temperature dependent in these ceramic materials, with different values above and below the Curie temperature.
Hydrodynamic fluctuations from a weakly coupled scalar field
Jackson, G.; Laine, M.
2018-04-01
Studies of non-equilibrium dynamics of first-order cosmological phase transitions may involve a scalar field interacting weakly with the energy-momentum tensor of a thermal plasma. At late times, when the scalar field is approaching equilibrium, it experiences both damping and thermal fluctuations. We show that thermal fluctuations induce a shear viscosity and a gravitational wave production rate, and propose that including this tunable contribution may help in calibrating the measurement of the gravitational wave production rate in hydrodynamic simulations. Furthermore it may enrich their physical scope, permitting in particular for a study of the instability of growing bubbles.
Dynamic of Ising model with transverse field for two coupled sublattices in disordered phase
International Nuclear Information System (INIS)
Sa Motta, C.E.H. de.
1984-02-01
The dynamics of the two coupled sublattices tridimensional Ising model in a transverse field was studied by means of a continued fraction expansion for coupled operators. The static Correlation Functions necessary for studying the dynamics were calculated with the Green's Functions Method in the Random Phase Approximation (RPA). The spectral function was calculated in the region T c → . (Author) [pt
Fields and coupling between coils embedded in conductive environments
Directory of Open Access Journals (Sweden)
Chu Son
2018-01-01
Full Text Available An approximate solution is developed for the mutual inductance of two circular coils enclosed by insulating cavities in a conducting medium. This solution is used to investigate the variation of the mutual inductance upon the conductivity of the background (e.g., soil, seawater or human body, as well as upon other parameters such as the vertical of the coils and the displacement of one of the coils in the horizontal plane. Our theoretical results are compared with full wave simulations and a previous solution valid when a conductive slab is inserted between two coupled resonant coils. The proposed approach can have direct impact on the design and optimisation of magnetoinductive waveguides and wireless power transfer for underground/underwater networks and embedded biomedical systems.
Fields and coupling between coils embedded in conductive environments
Chu, Son; Vallecchi, Andrea; Stevens, Christopher J.; Shamonina, Ekaterina
2018-02-01
An approximate solution is developed for the mutual inductance of two circular coils enclosed by insulating cavities in a conducting medium. This solution is used to investigate the variation of the mutual inductance upon the conductivity of the background (e.g., soil, seawater or human body), as well as upon other parameters such as the vertical of the coils and the displacement of one of the coils in the horizontal plane. Our theoretical results are compared with full wave simulations and a previous solution valid when a conductive slab is inserted between two coupled resonant coils. The proposed approach can have direct impact on the design and optimisation of magnetoinductive waveguides and wireless power transfer for underground/underwater networks and embedded biomedical systems.
Low energy constituent quark and pion effective couplings in a weak external magnetic field
Braghin, Fábio L.
2018-03-01
An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.
Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings
International Nuclear Information System (INIS)
Karna, S.P.
1997-01-01
A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society
String-coupling constant and dilaton vacuum expectation value in string field theory
International Nuclear Information System (INIS)
Yoneya, Tamiaki
1987-01-01
In the first quantized approaches to strings, it is well known that the string-coupling constant is determined by the vacuum expectation value of the dilaton field. This property, however, has never been demonstrated within the framework of string field theory. An explicit reparametrization of the string field associated with the shifts of the dilaton vacuum expectation value and the string-coupling constant is constructed exhibiting the above property in the light-cone field theory of the closed bosonic string. (orig.)
Inverse magnetic catalysis from the properties of the QCD coupling in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Ayala, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico); Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Dominguez, C.A. [Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Hernández, L.A., E-mail: HRNLUI001@myuct.ac.za [Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Loewe, M. [Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Centro Científico-Tecnológico de Valparaíso, Casilla 110-V, Valparaíso (Chile); Zamora, R. [Centro de Investigación y Desarrollo en Ciencias Aeroespaciales (CIDCA), Fuerza Aérea de Chile, Santiago (Chile); Instituto de Ciencias Básicas, Universidad Diego Portales, Casilla 298-V, Santiago (Chile)
2016-08-10
We compute the vacuum one-loop quark–gluon vertex correction at zero temperature in the presence of a magnetic field. From the vertex function we extract the effective quark–gluon coupling and show that it grows with increasing magnetic field strength. The effect is due to a subtle competition between the color charge associated to gluons and the color charge associated to quarks, the former being larger than the latter. In contrast, at high temperature the effective thermo-magnetic coupling results exclusively from the contribution of the color charge associated to quarks. This produces a decrease of the coupling with increasing field strength. We interpret the results in terms of a geometrical effect whereby the magnetic field induces, on average, a closer distance between the (electrically charged) quarks and antiquarks. At high temperature, since the effective coupling is proportional only to the color charge associated to quarks, such proximity with increasing field strength makes the effective coupling decrease due to asymptotic freedom. In turn, this leads to a decreasing quark condensate. In contrast, at zero temperature both the effective strong coupling and the quark condensate increase with increasing magnetic field. This is due to the color charge associated to gluons dominating over that associated to quarks, with both having the opposite sign. Thus, the gluons induce a kind of screening of the quark color charge, in spite of the quark–antiquark proximity. We discuss the implications for the inverse magnetic catalysis phenomenon.
Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D
2017-08-01
We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.
Summability of Connected Correlation Functions of Coupled Lattice Fields
Lukkarinen, Jani; Marcozzi, Matteo; Nota, Alessia
2018-04-01
We consider two nonindependent random fields ψ and φ defined on a countable set Z. For instance, Z=Z^d or Z=Z^d× I, where I denotes a finite set of possible "internal degrees of freedom" such as spin. We prove that, if the cumulants of ψ and φ enjoy a certain decay property, then all joint cumulants between ψ and φ are ℓ _2-summable in the precise sense described in the text. The decay assumption for the cumulants of ψ and φ is a restricted ℓ _1 summability condition called ℓ _1-clustering property. One immediate application of the results is given by a stochastic process ψ _t(x) whose state is ℓ _1-clustering at any time t: then the above estimates can be applied with ψ =ψ _t and φ =ψ _0 and we obtain uniform in t estimates for the summability of time-correlations of the field. The above clustering assumption is obviously satisfied by any ℓ _1-clustering stationary state of the process, and our original motivation for the control of the summability of time-correlations comes from a quest for a rigorous control of the Green-Kubo correlation function in such a system. A key role in the proof is played by the properties of non-Gaussian Wick polynomials and their connection to cumulants
Equations of motion for massive spin 2 field coupled to gravity
International Nuclear Information System (INIS)
Buchbinder, I.L.; Gitman, D.M.; Krykhtin, V.A.; Pershin, V.D.
2000-01-01
We investigate the problems of consistency and causality for the equations of motion describing massive spin two field in external gravitational and massless scalar dilaton fields in arbitrary spacetime dimension. From the field theoretical point of view we consider a general classical action with non-minimal couplings and find gravitational and dilaton background on which this action describes a theory consistent with the flat space limit. In the case of pure gravitational background all field components propagate causally. We show also that the massive spin two field can be consistently described in arbitrary background by means of the lagrangian representing an infinite series in the inverse mass. Within string theory we obtain equations of motion for the massive spin two field coupled to gravity from the requirement of quantum Weyl invariance of the corresponding two-dimensional sigma-model. In the lowest order in α' we demonstrate that these effective equations of motion coincide with consistent equations derived in field theory
Externally controlled local magnetic field in a conducting mesoscopic ring coupled to a quantum wire
International Nuclear Information System (INIS)
Maiti, Santanu K.
2015-01-01
In the present work, the possibility of regulating local magnetic field in a quantum ring is investigated theoretically. The ring is coupled to a quantum wire and subjected to an in-plane electric field. Under a finite bias voltage across the wire a net circulating current is established in the ring which produces a strong magnetic field at its centre. This magnetic field can be tuned externally in a wide range by regulating the in-plane electric field, and thus, our present system can be utilized to control magnetic field at a specific region. The feasibility of this quantum system in designing spin-based quantum devices is also analyzed
Energy Technology Data Exchange (ETDEWEB)
Wei, Xile; Zhang, Danhong; Wang, Jiang; Yu, Haitao, E-mail: htyu@tju.edu.cn [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Lu, Meili [School of Informational Technology and Engineering, Tianjin University of Technology and Education, Tianjin 300222 (China); Che, Yanqiu [School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222 (China)
2015-01-15
This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.
International Nuclear Information System (INIS)
Wei, Xile; Zhang, Danhong; Wang, Jiang; Yu, Haitao; Lu, Meili; Che, Yanqiu
2015-01-01
This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance
Wei, Xile; Zhang, Danhong; Lu, Meili; Wang, Jiang; Yu, Haitao; Che, Yanqiu
2015-01-01
This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.
Near field fluid coupling between internal motion of the organ of Corti and the basilar membrane
Energy Technology Data Exchange (ETDEWEB)
Elliott, Stephen J.; Ni, Guangjian [Institute of Sound and Vibration Research, University of Southampton, Southampton (United Kingdom)
2015-12-31
The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motion will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.
Spin-Orbit Coupling, Antilocalization, and Parallel Magnetic Fields in Quantum Dots
DEFF Research Database (Denmark)
Zumbuhl, D.; Miller, Jessica; M. Marcus, C.
2002-01-01
We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak localizat...
International Nuclear Information System (INIS)
Iannarella, L.; Guimaraes, A.P.; Silva, X.A. da.
1990-01-01
The magnetic behavior at T = O K of a system consisting of conduction electrons coupled to localized electrons, the latter submitted to an inhomogeneous crystal field distribution, is studied. The study implies that the inhomogeneity of the crystal field attenuates the quenching effects. The model is interesting to the study of disordered rare-earth intermetallic compounds. (A.C.A.S.) [pt
Conformal coupling of gravitational wave field to curvature
International Nuclear Information System (INIS)
Grishchuk, L.P.; Yudin, V.
1980-01-01
Conformal properties of the equations for weak gravitational waves in a curved space--time are investigated. The basic equations are derived in the linear approximation from Einstein's equations. They represent, in fact, the equations for the second-rank tensor field h/sub alphabeta/, restricted by the auxiliary conditions h/sub α//sup β//sub ;/α =0, hequivalentγ/sub alphabeta/h/sup alphabeta/=0, and embedded into the background space--time with the metric tensor γ/sub alphabeta/. It is shown that the equations for h/sub alphabeta/ are not conformally invariant under the transformations gamma-circumflex/sub alphabeta/ =e/sup 2sigma/γ/sub alphabeta/ and h/sub alphabeta/ =e/sup sigma/h/sub alphabeta/, except for those metric rescalings which transform the Ricci scalar R of the original background space--time into e/sup -2sigma/R, where R is the Ricci scalar of the conformally related background space--time. The general form of the equations for h/sub alphabeta/ which are conformally invariant have been deduced. It is shown that these equations cannot be derived in the linear approximation from any tensor equations which generalize the Einstein equations
Low-frequency transient electric and magnetic fields coupling to child body
International Nuclear Information System (INIS)
Ozen, S.
2008-01-01
Much of the research related to residential electric and magnetic field exposure focuses on cancer risk for children. But until now only little knowledge about coupling of external transient electric and magnetic fields with the child's body at low frequency transients existed. In this study, current densities, in the frequency range from 50 Hz up to 100 kHz, induced by external electric and magnetic fields to child and adult human body, were investigated, as in residential areas, electric and magnetic fields become denser in this frequency band. For the calculations of induced fields and current density, the ellipsoidal body models are used. Current density induced by the external magnetic field (1 μT) and external electric field (1 V/m) is estimated. The results of this study show that the transient electric and magnetic fields would induce higher current density in the child body than power frequency fields with similar field strength. (authors)
Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer
International Nuclear Information System (INIS)
Pokotilovski, Yu.N.
2013-01-01
The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated
Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer
Energy Technology Data Exchange (ETDEWEB)
Pokotilovski, Yu.N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)
2013-02-26
The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated.
On scalar and vector fields coupled to the energy-momentum tensor
Jiménez, Jose Beltrán; Cembranos, Jose A. R.; Sánchez Velázquez, Jose M.
2018-05-01
We consider theories for scalar and vector fields coupled to the energy-momentum tensor. Since these fields also carry a non-trivial energy-momentum tensor, the coupling prescription generates self-interactions. In analogy with gravity theories, we build the action by means of an iterative process that leads to an infinite series, which can be resumed as the solution of a set of differential equations. We show that, in some particular cases, the equations become algebraic and that is also possible to find solutions in the form of polynomials. We briefly review the case of the scalar field that has already been studied in the literature and extend the analysis to the case of derivative (disformal) couplings. We then explore theories with vector fields, distinguishing between gauge-and non-gauge-invariant couplings. Interactions with matter are also considered, taking a scalar field as a proxy for the matter sector. We also discuss the ambiguity introduced by superpotential (boundary) terms in the definition of the energy-momentum tensor and use them to show that it is also possible to generate Galileon-like interactions with this procedure. We finally use collider and astrophysical observations to set constraints on the dimensionful coupling which characterises the phenomenology of these models.
Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials
International Nuclear Information System (INIS)
Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan
2015-01-01
Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials
Alternative integral equations and perturbation expansions for self-coupled scalar fields
International Nuclear Information System (INIS)
Ford, L.H.
1985-01-01
It is shown that the theory of a self-coupled scalar field may be expressed in terms of a class of integral equations which include the Yang-Feldman equation as a particular case. Other integral equations in this class could be used to generate alternative perturbation expansions which contain a nonanalytic dependence upon the coupling constant and are less ultraviolet divergent than the conventional perturbation expansion. (orig.)
Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.
Kim, S C; Yang, S-R Eric
2015-10-01
We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.
A study of fermions coupled to gauge and gravitational fields on a cylinder
Energy Technology Data Exchange (ETDEWEB)
Lano, R.P. [Iowa Univ., Iowa City, IA (United States). Dept. of Physics and Astronomy; Rodgers, V.G.J. [Iowa Univ., Iowa City, IA (United States). Dept. of Physics and Astronomy
1995-03-06
Fermions on a cylinder coupled to background gravitation and gauge fields are examined by studying the geometric action associated with the symmetries of such a system. We are able to show that the gauge coupling constant is constrained to a value of 1/N where N is an integer. Furthermore, in direct analogy with a Yang-Mills theory a new gravitational theory is introduced which couples to the fermions by promoting the coadjoint vector of the diffeomorphism sector to a dynamical variable. The classical dynamics of this theory are examined by displaying its symplectic structure and showing that it is equivalent to a one-dimensional system. ((orig.)).
Dynamics modeling for a rigid-flexible coupling system with nonlinear deformation field
International Nuclear Information System (INIS)
Deng Fengyan; He Xingsuo; Li Liang; Zhang Juan
2007-01-01
In this paper, a moving flexible beam, which incorporates the effect of the geometrically nonlinear kinematics of deformation, is investigated. Considering the second-order coupling terms of deformation in the longitudinal and transverse deflections, the exact nonlinear strain-displacement relations for a beam element are described. The shear strains formulated by the present modeling method in this paper are zero, so it is reasonable to use geometrically nonlinear deformation fields to demonstrate and simplify a flexible beam undergoing large overall motions. Then, considering the coupling terms of deformation in two dimensions, finite element shape functions of a beam element and Lagrange's equations are employed for deriving the coupling dynamical formulations. The complete expression of the stiffness matrix and all coupling terms are included in the formulations. A model consisting of a rotating planar flexible beam is presented. Then the frequency and dynamical response are studied, and the differences among the zero-order model, first-order coupling model and the new present model are discussed. Numerical examples demonstrate that a 'stiffening beam' can be obtained, when more coupling terms of deformation are added to the longitudinal and transverse deformation field. It is shown that the traditional zero-order and first-order coupling models may not provide an exact dynamic model in some cases
Gravity- and non-gravity-mediated couplings in multiple-field inflation
International Nuclear Information System (INIS)
Bernardeau, Francis
2010-01-01
Mechanisms for the generation of primordial non-Gaussian metric fluctuations in the context of multiple-field inflation are reviewed. As long as kinetic terms remain canonical, it appears that nonlinear couplings inducing non-Gaussianities can be split into two types. The extension of the one-field results to multiple degrees of freedom leads to gravity-mediated couplings that are ubiquitous but generally modest. Multiple-field inflation offers however the possibility of generating non-gravity-mediated coupling in isocurvature directions that can eventually induce large non-Gaussianities in the metric fluctuations. The robustness of the predictions of such models is eventually examined in view of a case study derived from a high-energy physics construction.
Numerical study of droplet evaporation in coupled high-temperature and electrostatic fields
Directory of Open Access Journals (Sweden)
Ziwen Zuo
2015-03-01
Full Text Available The evaporation of a sessile water droplet under the coupled electrostatic and high-temperature fields is studied numerically. The leaky dielectric model and boiling point evaporation model are used for calculating the electric force and heat mass transfer. The free surface is captured using the volume of fluid method accounting for the variable surface tension and the transition of physical properties across the interface. The flow behaviors and temperature evolutions in different applied fields are predicted. It shows that in the coupled fields, the external electrostatic field restrains the flow inside the droplet and keeps a steady circulation. The flow velocity is reduced due to the interaction between electric body force and the force caused by temperature gradient. The heat transfer from air into the droplet is reduced by the lower flow velocity. The evaporation rate of the droplet in the high-temperature field is decreased.
International Nuclear Information System (INIS)
Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Skugoreva, Maria A.; Toporensky, Alexey V.
2016-01-01
We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.
Vortex solutions of a Maxwell-Chern-Simons field coupled to four-fermion theory
International Nuclear Information System (INIS)
Hyun, S.; Shin, J.; Yee, J.H.; Lee, H.
1997-01-01
We find the static vortex solutions of the model of a Maxwell-Chern-Simons gauge field coupled to a (2+1)-dimensional four-fermion theory. Especially, we introduce two matter currents coupled to the gauge field minimally: the electromagnetic current and a topological current associated with the electromagnetic current. Unlike other Chern-Simons solitons the N-soliton solution of this theory has binding energy and the stability of the solutions is maintained by the charge conservation laws. copyright 1997 The American Physical Society
The photonics collapse-revival's of intensity-dependent coupling of lambda atoms and fields
International Nuclear Information System (INIS)
Hajivandi, J.; Golshan, M. M.
2007-01-01
In this paper, we extend the intensity-dependent coupling of the interaction of two-level atoms and an electromagnetic field, originated by Sivakumar, to that of Λ-type atoms. In addition, we assume that the interaction occurs in a Kerr medium. In the present model we allow the Λ-type atom to interact with two quantized electromagnetic fields, one of which is initially coherent while the other one is not. We thus report the effect of such coupling and the medium on the collapse-revival's of the photonic mean numbers.
Dynamical Properties of Two Coupled Dissipative QED Cavities Driven by Coherent Fields
International Nuclear Information System (INIS)
Hou Bangpin; Sun Weili; Wang Shunjin; Wang Gang
2007-01-01
When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the environment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.
Temperature and cooling field dependent exchange coupling in [Cr/Gd]{sub 5} multilayers
Energy Technology Data Exchange (ETDEWEB)
Jiao, Z.W.; Chen, H.J.; Jiang, W.D.; Wang, J.F.; Yu, S.J. [Department of Physics, China Jiliang University, Hangzhou (China); Hou, Y.L.; Lu, B.; Ye, Q.L. [Department of Physics, Hangzhou Normal University, Hangzhou (China)
2016-09-15
Exchange coupling has been investigated in the [Cr/Gd]{sub 5} multilayers deposited at 25, 200, and 400 C, where the Neel temperature (T{sub N}) of antiferromagnetic Cr is slightly higher than the Curie temperature (T{sub C}) of ferromagnetic Gd. It was found that the exchange coupling existed not only at T{sub C} < T < T{sub N}, but also above the temperature (T{sub N}) of antiferromagnetic orderings with incommensurate spin-density wave structures transiting to paramagnetic state. These results can be discussed in terms of the crucial role played by the antiferromagnetic spins of Cr with commensurate spin-density wave structures in the vicinity of the Cr/Gd interfaces. Moreover, the exchange coupling of the multilayers grown at different temperatures exhibited different dependencies on the measuring temperature and the cooling field, respectively. Positive exchange bias was observed in the multilayers grown at 200 and 400 C. The interfacial roughness, grain size, and the antiferromagnetic orderings of Cr may be responsible for the anomalous exchange coupling of the multilayers. In addition, the competition between the exchange coupling at Cr/Gd interfaces and the external field-Cr surface magnetic coupling can explain the appearance of negative or positive exchange bias. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Effect of the induced magnetic field on peristaltic flow of a couple stress fluid
International Nuclear Information System (INIS)
Mekheimer, Kh.S.
2008-01-01
We have analyzed the MHD flow of a conducting couple stress fluid in a slit channel with rhythmically contracting walls. In this analysis we are taking into account the induced magnetic field. Analytical expressions for the stream function, the magnetic force function, the axial pressure gradient, the axial induced magnetic field and the distribution of the current density across the channel are obtained using long wavelength approximation. The results for the pressure rise, the frictional force per wave length, the axial induced magnetic field and distribution of the current density across the channel have been computed numerically and the results were studied for various values of the physical parameters of interest, such as the couple stress parameter γ, the Hartmann number M, the magnetic Reynolds number R m and the time averaged mean flow rate θ. Contour plots for the stream and magnetic force functions are obtained and the trapping phenomena for the flow field is discussed
Energy Technology Data Exchange (ETDEWEB)
Zhu, Yuping, E-mail: zhuyuping@126.com [Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Chen, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Liu, Bingfei [Airport College, Civil Aviation University of China, Tianjin 300300 (China); Xue, Lijun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384 (China)
2016-11-01
Directionally solidified, polycrystalline Ni–Mn–Ga is studied in this paper. The polycrystalline Ni–Mn–Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading–unloading cycle were measured. The experimental results show that the mechanical behavior during the loading–unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications. - Highlights: • The magnetic-induced strains in different directions are tested. • The temperature-induced strains in different directions are tested. • The effects of coupling factors on directional solidification samples are studied.
External field induced switching of tunneling current in the coupled quantum dots
Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.
2014-01-01
We investigated the tunneling current peculiarities in the system of two coupled by means of the external field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations. It was found that tuning of the external field frequency induces fast multiple tunneling current switching and leads to the negative tunneling conductivity. Special role of multi-electrons states was demonstrated. Moreover we revealed conditions for bistable behavior of the tunneling curre...
Analyticity of effective coupling and propagators in massless models of quantum field theory
International Nuclear Information System (INIS)
Oehme, R.
1982-01-01
For massless models of quantum field theory, some general theorems are proved concerning the analytic continuation of the renormalization group functions as well as the effective coupling and the propagators. Starting points are analytic properties of the effective coupling and the propagators in the momentum variable k 2 , which can be converted into analyticity of β- and γ-functions in the coupling parameter lambda. It is shown that the β-function can have branch point singularities related to stationary points of the effective coupling as a function of k 2 . The type of these singularities of β(lambda) can be determined explicitly. Examples of possible physical interest are extremal values of the effective coupling at space-like points in the momentum variable, as well as complex conjugate stationary points close to the real k 2 -axis. The latter may be related to the sudden transition between weak and strong coupling regimes of the system. Finally, for the effective coupling and for the propagators, the analytic continuation in both variables k 2 and lambda is discussed. (orig.)
Mean field analysis of exchange coupling in amorphous DyFe2-B alloy ribbons
International Nuclear Information System (INIS)
Lee, J.M.; Jung, J.K.; Lim, S.H.
2001-01-01
Experimental magnetization-temperature curves for melt-spun ribbons of amorphous alloys (Dy 0.33 Fe 0.67 ) 1-x B x with x=0, 0.05, 0.1 and 0.15 (in atomic fraction) are fitted with theoretical equations based on the mean field theory in order to investigate exchange couplings between constituent elements as a function of the B content. The sign of the exchange coupling between Dy and Fe is negative, indicating that the magnetization direction of Dy is antiparallel to that of Fe. The sign of the other two couplings are positive. The exchange coupling between Fe ions are greatest, while that between Dy ions is negligible. The exchange couplings between Fe ions, and between Dy and Fe increase with increasing B content, the increase of the latter being much greater than the former. Resulting, the exchange coupling between Dy and Fe becomes about one half of that between Fe ions at the highest B content. The increase of the exchange coupling between Fe ions may be explained by the increase of the Fe-Fe separation with the increase of the B content. The total magnetization is dominated by the Dy sublattice magnetization. As the B content increases, the magnetization decreases over the whole temperature range, and the Curie temperature also decreases
The Bekenstein bound in strongly coupled O(N) scalar field theory
International Nuclear Information System (INIS)
Magalhaes, T. Santos; Svaiter, N.F.; Menezes, G.
2009-09-01
We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β -1 , we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)
Alinea, Allan L.; Kubota, Takahiro
2018-03-01
We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field inflation with varying speed of sound. The subtraction is performed within the framework of earlier study by Urakawa and Starobinsky dealing with the canonical inflation. Inspired by Fakir and Unruh's model on nonminimally coupled chaotic inflation, we find upon imposing near scale-invariant condition, that the subtraction term exponentially decays with the number of e -folds. As in the result for the canonical inflation, the regularized power spectrum tends to the "bare" power spectrum as the Universe expands during (and even after) inflation. This work justifies the use of the "bare" power spectrum in standard calculation in the most general context of slow-roll single-field inflation involving nonminimal coupling and varying speed of sound.
Directory of Open Access Journals (Sweden)
Long Zhang
2013-01-01
Full Text Available The power source with the limited life span has motivated the development of the energy harvesters that can scavenge the ambient environment energy and convert it into the electrical energy. With the coupled field characteristics of structure to electricity, piezoelectric energy harvesters are under consideration as a means of converting the mechanical energy to the electrical energy, with the goal of realizing completely self-powered sensor systems. In this paper, two previous models in the literatures for predicting the open-circuit and close-circuit voltages of a piezoelectric cantilever bimorph (PCB energy harvester are first described, that is, the mechanical equivalent spring mass-damper model and the electrical equivalent circuit model. Then, the development of an enhanced coupled field model for the PCB energy harvester based on another previous model in the literature using a conservation of energy method is presented. Further, the laboratory experiments are carried out to evaluate the enhanced coupled field model and the other two previous models in the literatures. The comparison results show that the enhanced coupled field model can better predict the open-circuit and close-circuit voltages of the PCB energy harvester with a proof mass bonded at the free end of the structure in order to increase the energy-harvesting level of the system.
Can Hall drag be observed in Coulomb coupled quantum wells in a magnetic field?
DEFF Research Database (Denmark)
Hu, Ben Yu-Kuang
1997-01-01
We study the transresistivity rho(21) (or equivalently, the drag rate) of two Coulomb-coupled quantum wells in the presence of a perpendicular magnetic field, using semi-classical transport theory. Elementary arguments seem to preclude any possibility of observation of ''Hall drag'' (i.e., a non...
Effective potential in N=1, d=4 supergravity coupled to the Volkov-Akulov field
International Nuclear Information System (INIS)
Jasinschi, R.S.; Smith, A.W.
1984-01-01
The only-loop effective potential for N=1, d=4 supergravity theory coupled to the Volkov-Akulov field is calculated. Then it is shown that after an ajustment of some parameters the local supersymmetry is dynamically broken and as a consequence the gravitino acquires mass. (Author) [pt
Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric
2010-01-01
A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well
Grobbe, N.
2016-01-01
In this thesis, I study coupled poroelastic waves and electromagnetic fields in layered media. The focus is two-fold:
1. Increase the theoretical and physical understanding of the seismo-electromagnetic phenomenon by analytically-based numerical modeling.
2. Investigate the potential of
Deficiency in Monte Carlo simulations of coupled neutron-gamma-ray fields
Maleka, Peane P.; Maucec, Marko; de Meijer, Robert J.
2011-01-01
The deficiency in Monte Carlo simulations of coupled neutron-gamma-ray field was investigated by benchmarking two simulation codes with experimental data. Simulations showed better correspondence with the experimental data for gamma-ray transport only. In simulations, the neutron interactions with
Lagrangian derivation of the two coupled field equations in the Janus cosmological model
Petit, Jean-Pierre; D'Agostini, G.
2015-05-01
After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.
Should the coupling constants be mass dependent in the relativistic mean field models
International Nuclear Information System (INIS)
Levai, P.; Lukacs, B.
1986-05-01
Mass dependent coupling constants are proposed for baryonic resonances in the relativistic mean field model, according to the mass splitting of the SU-6 multiplet. With this choice the negative effective masses are avoided and the system remains nucleon dominated with moderate antidelta abundance. (author)
Energy Technology Data Exchange (ETDEWEB)
Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics
1976-03-22
By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.
Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field
Zhang, Zhong-Qiang; Dong, Xin; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning; Ling, Zhi-Yong
2015-02-01
Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.
Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories
International Nuclear Information System (INIS)
Carnahan, C.L.
1983-11-01
In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent
Initial time singularities and admissible initial states for a system of coupled scalar fields
Energy Technology Data Exchange (ETDEWEB)
Baacke, Juergen [Technische Univ. Dortmund (Germany). Fakultaet Physik; Kevlishvili, Nina [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); GAS, Tbilisi (Georgia). Andronikashvili Inst. of Physics
2009-10-15
We discuss the problem of initial states for a system of coupled scalar fields out of equilibrium in the one-loop approximation. The fields consist of classical background fields, taken constant in space, and quantum fluctuations. If the initial state is the adiabatic vacuum, i.e., the ground state of a Fock space of particle excitations that diagonalize the mass matrix, the energy-momentum tensor is infinite at t=0, its most singular part behaves as 1/t. When the system is coupled to gravity this presents a problem that we solve by a Bogoliubov transformation of the naive initial state. As a side result we also discuss the canonical formalism and the adiabatic particle number for such a system. Most of the formalism is presented for Minkowksi space. Embedding the system and its dynamics into a flat FRW universe is straightforward and we briefly address the essential modifications. (orig.)
Initial time singularities and admissible initial states for a system of coupled scalar fields
International Nuclear Information System (INIS)
Baacke, Juergen; Kevlishvili, Nina; GAS, Tbilisi
2009-10-01
We discuss the problem of initial states for a system of coupled scalar fields out of equilibrium in the one-loop approximation. The fields consist of classical background fields, taken constant in space, and quantum fluctuations. If the initial state is the adiabatic vacuum, i.e., the ground state of a Fock space of particle excitations that diagonalize the mass matrix, the energy-momentum tensor is infinite at t=0, its most singular part behaves as 1/t. When the system is coupled to gravity this presents a problem that we solve by a Bogoliubov transformation of the naive initial state. As a side result we also discuss the canonical formalism and the adiabatic particle number for such a system. Most of the formalism is presented for Minkowksi space. Embedding the system and its dynamics into a flat FRW universe is straightforward and we briefly address the essential modifications. (orig.)
Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields?
Martinez-Banaclocha, Marcos
2018-02-01
The close anatomical and functional relationship between neuronal circuits and the astroglial network in the neocortex has been demonstrated at several organization levels supporting the idea that neuron-astroglial crosstalk can play a key role in information processing. In addition to chemical and electrical neurotransmission, other non-synaptic mechanisms called ephaptic interactions seem to be important to understand neuronal coupling and cognitive functions. Recent interest in this issue comes from the fact that extra-cranial electric and magnetic field stimulations have shown therapeutic actions in the clinical practice. The present paper reviews the current knowledge regarding the ephaptic effects in mammalian neocortex and proposes that astroglial bio-magnetic fields associated with Ca 2+ transients could be implicated in the ephaptic coupling of neurons by a direct magnetic modulation of the intercellular local field potentials. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field
International Nuclear Information System (INIS)
Bach, V.; Sigal, I.M.
1999-01-01
We consider systems of static nuclei and electrons - atoms and molecules - coupled to the quantized radiation field. The interactions between electrons and the soft modes of the quantized electromagnetic field are described by minimal coupling, p→p-eA(x), where A(x) is the electromagnetic vector potential with an ultraviolet cutoff. If the interactions between the electrons and the quantized radiation field are turned off, the atom or molecule is assumed to have at least one bound state. We prove that, for sufficiently small values of the fine structure constant α, the interacting system has a ground state corresponding to the bottom of its energy spectrum. For an atom, we prove that its excited states above the ground state turn into metastable states whose life-times we estimate. Furthermore the energy spectrum is absolutely continuous, except, perhaps,in a small interval above the ground state energy and around the threshold energies of the atom or molecule. (orig.)
Magnetic-field-dependent optical properties and interdot correlations in coupled quantum dots
International Nuclear Information System (INIS)
Bellucci, Devis; Troiani, Filippo; Goldoni, Guido; Molinari, Elisa
2005-01-01
We theoretically investigate the properties of neutral and charged excitons in vertically coupled quantum dots, as a function of the in-plane magnetic field. The single-particle states are computed by numerically solving the 3D effective-mass equation, while the neutral- and charged-exciton states are obtained by means of a configuration interaction approach. We show that the field determines an enhancement of the interdot correlations, resulting in unexpected carrier localization. The field effect on the excitonic binding energies is also discussed, and is shown to strongly depend on the charging
Naturalness of Nonlinear Scalar Self-Couplings in a Relativistic Mean Field Theory for Neutron Stars
International Nuclear Information System (INIS)
Maekawa, Claudio; Razeira, Moises; Vasconcellos, Cesar A. Z.; Dillig, Manfred; Bodmann, Bardo E. J.
2004-01-01
We investigate the role of naturalness in effective field theory. We focus on dense hadronic matter using a generalized relativistic multi-baryon lagrangian density mean field approach which contains nonlinear self-couplings of the σ, δ meson fields and the fundamental baryon octet. We adjust the model parameters to describe bulk static properties of ordinary nuclear matter. Then, we show that our approach represents a natural modelling of nuclear matter under the extreme conditions of density as the ones found in the interior of neutron stars
Thermal inflation with a thermal waterfall scalar field coupled to a light spectator scalar field
Dimopoulos, Konstantinos; Lyth, David H.; Rumsey, Arron
2017-05-01
A new model of thermal inflation is introduced, in which the mass of the thermal waterfall field is dependent on a light spectator scalar field. Using the δ N formalism, the "end of inflation" scenario is investigated in order to ascertain whether this model is able to produce the dominant contribution to the primordial curvature perturbation. A multitude of constraints are considered so as to explore the parameter space, with particular emphasis on key observational signatures. For natural values of the parameters, the model is found to yield a sharp prediction for the scalar spectral index and its running, well within the current observational bounds.
Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...
Formulation, stability and application of a semi-coupled 3-D four-field algorithm
International Nuclear Information System (INIS)
Kunz, R.F.; Siebert, B.W.; Cope, W.K.; Foster, N.F.; Antal, S.P.; Ettorre, S.M.
1996-06-01
A new 3-D four-field algorithm has been developed to predict general two-phase flows. Ensemble averaged transport equations of mass, momentum, energy and turbulence transport are solved for each field (continuous liquid, continuous vapor, disperse liquid, disperse vapor). This four-field structure allows for analysis of adiabatic and boiling systems which contain flow regimes from bubbly through annular. Interfacial mass, momentum, turbulence and heat transfer models provide coupling between phases. A new semi-coupled implicit method is utilized to solve the set of 25 equations which arise in the formulation. In this paper, three important component numerical strategies employed in the method are summarized. These include: (1) incorporation of interfacial momentum force terms in the control volume face flux reconstruction, (2) phase coupling at the linear solver level, and in the pressure-velocity coupling itself and (3) a multi-step Jacobi block correction scheme for efficient solution of the pressure-Poisson equation. The necessity/effectiveness of these strategies is demonstrated in applications to realistic engineering flows. Though some heated flow test cases are considered, the particular numerics discussed here are germane to adiabatic flows with and without mass transfer
Equations of motion for massive spin 2 field coupled to gravity
Energy Technology Data Exchange (ETDEWEB)
Buchbinder, I.L. E-mail: ilb@mail.tomsknet.ru; Gitman, D.M. E-mail: gitman@fma.if.usp.br; Krykhtin, V.A. E-mail: krykhtin@phys.dfe.tpu.edu.ru; Pershin, V.D. E-mail: pershin@ic.tsu.ru
2000-09-18
We investigate the problems of consistency and causality for the equations of motion describing massive spin two field in external gravitational and massless scalar dilaton fields in arbitrary spacetime dimension. From the field theoretical point of view we consider a general classical action with non-minimal couplings and find gravitational and dilaton background on which this action describes a theory consistent with the flat space limit. In the case of pure gravitational background all field components propagate causally. We show also that the massive spin two field can be consistently described in arbitrary background by means of the lagrangian representing an infinite series in the inverse mass. Within string theory we obtain equations of motion for the massive spin two field coupled to gravity from the requirement of quantum Weyl invariance of the corresponding two-dimensional sigma-model. In the lowest order in {alpha}' we demonstrate that these effective equations of motion coincide with consistent equations derived in field theory.
Stošić, Dušan; Auroux, Aline
Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.
Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas
DEFF Research Database (Denmark)
Ostrikov, K.N.; Tsakadze, E.L.; Xu, S.
2003-01-01
Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (similar to500 kHz) inductively coupled plasmas have been measured using miniature magnetic probes. In the low-power (similar to170 W) E-mode, the magnetic field pattern is purely linear......, with the fundamental frequency harmonics only. After transition to higher-power (similar to1130 W) H-mode, the second-harmonic nonlinear azimuthal magnetic field B-phi(2omega) that is in 4-6 times larger than the fundamental frequency component B-phi(omega), has been observed. A simplified plasma fluid model...... explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source is proposed. The nonlinear second harmonic poloidal (r-z) rf current generating the azimuthal magnetic field B-phi(2omega) is attributed to nonlinear interactions between the fundamental frequency radial...
The S-Matrix coupling dependence for a, d and e affine Toda field theory
International Nuclear Information System (INIS)
Braden, H.W.; Sasaki, R.
1990-09-01
Affine Toda field theories are solvable 1+1 dimensional quantum field theories closely related to integrable deformations of conformal field theory. The S-Matrix elements for an affine Toda field theory are known to depend on the coupling constant β through one universal function B(β) which cannot be determined by unitarity, crossing and the bootstrap. From the requirement of nonexistence of extra poles in the physical region its form is conjectured to be B(β) = (2π) -1 ·β 2 /((1+β 2 )/4π). We show that the above conjecture is correct up to one loop order (i.e., β 4 ) of perturbation for simply laced, i.e., a, d and e affine Toda field theories using a general argument which exhibits much of the richness of these theories. (author)
Anderson localization with second quantized fields in a coupled array of waveguides
International Nuclear Information System (INIS)
Thompson, Clinton; Vemuri, Gautam; Agarwal, G. S.
2010-01-01
We report a theoretical study of Anderson localization of nonclassical light in an array of waveguides in which neighboring waveguides are evanescently coupled and in which the disorder can be added in a controlled manner. We use squeezed light at the input to investigate the effects of nonclassicality and compare the results with those obtained by using conventional classical fields, such as a coherent field and a Gaussian field. Our results show that there is an enhancement in fluctuations of localized light due to the medium's disorder. We find superbunching of the localized light, which may be useful for enhancing the interaction between radiation and matter. Another important consequence of sub-Poissonian statistics of the incoming light is to quench the total fluctuations at the output. Finally, we show that as a result of the multiplicative noise in the problem, the output field is far from Gaussian even if the input is a coherent field.
International Nuclear Information System (INIS)
Gelis, Francois; Venugopalan, Raju
2006-01-01
We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory
Spin dynamics under local gauge fields in chiral spin-orbit coupling systems
International Nuclear Information System (INIS)
Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.
2011-01-01
Research highlights: → We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). → Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. → SOC mediated magnetization switching is predicted in rare earth metals (large SOC). → The magnetization trajectory and frequency can be modulated by applied voltage. → This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.
Bagci, Hakan
2010-08-01
A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.
Dependence of synchronization transitions on mean field approach in two-way coupled neural system
Shi, J. C.; Luo, M.; Huang, C. S.
2018-03-01
This work investigates the synchronization transitions in two-way coupled neural system by mean field approach. Results show that, there exists a critical noise intensity for the synchronization transitions, i.e., above (or below) the critical noise intensity, the synchronization transitions are decreased (or hardly change) with increasing the noise intensity. Meanwhile, the heterogeneity effect plays a negative role for the synchronization transitions, and above critical coupling strength, the heterogeneity effect on synchronization transitions can be negligible. Furthermore, when an external signal is introduced into the coupled system, the novel frequency-induced and amplitude-induced synchronization transitions are found, and there exist an optimal frequency and an optimal amplitude of external signal which makes the system to display the best synchronization transitions. In particular, it is observed that the synchronization transitions can not be further affected above critical frequency of external signal.
Gu, Yongzhen; Duan, Baoyan; Du, Jingli
2018-05-01
The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.
International Nuclear Information System (INIS)
Lindner, J.
1992-09-01
In this thesis in the framework of our model of the field-strength dependent coupling the properties of infinitely extended, homogeneous, static, spin- and isospin-saturated nuclear matter are studied. Thereby we use the Hartree-Mean-Field and the Hartree-Fock approximation, whereby the influence of the antiparticle states in the Fermi sea is neglected. In chapter 2 the Lagrangian density basing to our model is fixed. Starting from the Walecka model we modify in the Lagrangian density the Linear coupling of the scalar field to the scalar density as follows g S φanti ψψ→g S f(φ) anti ψψ. In chapter 3 we fix three different functions f(φ). For these three cases and for the Walecka model with f(φ)=φ nuclear-matter calculations are performed. In chapter 4 for the Hartree-Fock calculations, but also very especially regarding the molecular-dynamics calculations, the properties of the Dirac spinors in the plane-wave representation are intensively studied. (orig.)
Research on evaluation of coupled thermo-hydro-mechanical phenomena in the near-field
International Nuclear Information System (INIS)
Chijimatsu, Masakazu; Imai, Hisashi; Fukutome, Kazuhito; Kayukawa, Koji; Sasaki, Hajime; Moro, Yoshiji
2004-02-01
After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against EXperiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. We carried out the simulation against the Task 1 (simulation of FEBEX in-situ full-scale experiment), Task 3 BMT1 (Bench Mark Test against the near field coupling phenomena) and Task 3 BMT2 (Bench Mark Test against the up-scaling of fractured rock mass). This report shows the simulation results against these tasks. Furthermore, technical investigations about the in-situ full-scale experiment (called Prototype Repository Project) in Aespoe HRL facility by SKB of Sweden were performed. In order to evaluate the coupled phenomena in the engineered barrier, we use the new swelling model based on the theoretical approach. In this paper, we introduce the modeling approach and applicability about the new model. (author)
Magnetic-Field Dependence of Raman Coupling Strength in Ultracold "4"0K Atomic Fermi Gas
International Nuclear Information System (INIS)
Huang Liang-Hui; Wang Peng-Jun; Meng Zeng-Ming; Peng Peng; Chen Liang-Chao; Li Dong-Hao; Zhang Jing
2016-01-01
We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of "4"0K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splitting depends on the external bias magnetic field. The Raman coupling strength is determined by measuring the Rabi oscillation frequency. The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies. The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases, which is in good agreement with the theoretical prediction. (paper)
Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2018-05-01
If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.
On infrared problems of effective Lagrangians of massive spin 2 fields coupled to gauge fields
Energy Technology Data Exchange (ETDEWEB)
Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia (Chile); Giacomini, Alex, E-mail: alexgiacomini@uach.cl [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile); Zerwekh, Alfonso R., E-mail: alfonso.zerwekh@usm.cl [Departamento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile)
2016-12-15
In this paper we analyze the interactions of massive spin-2 particles charged under both Abelian and non-Abelian group using the Porrati–Rahman Lagrangian. This theory is valid up to an intrinsic cutoff scale. Phenomenologically a theory valid up to a cutoff scale is sensible as all known higher spin particles are non-fundamental and it is shown that indeed this action can be used to estimate some relevant cross section. Such action necessarily includes Stückelberg field and therefore it is necessary to fix the corresponding gauge symmetry. We show that this theory, when the Stückelberg symmetry is gauge-fixed, possesses a non-trivial infrared problem. A gauge fixing ambiguity arises which is akin to the Gribov problem in QCD in the Abelian case as well. In some cases (such as when the space–time is the four-dimensional torus) the vacuum copies can be found analytically. A similar phenomenon also appears in the case of Proca fields. A very interesting feature of these copies is that they arise only for “large enough” gauge potentials. This opens the possibility to avoid the appearance of such gauge fixing ambiguities by using a Gribov–Zwanziger like approach.
Johne, R.; Schutjens, H.A.W.; Fattahpoor, S.; Jin, C.; Fiore, A.
2015-01-01
We propose a scheme for the ultrafast control of the emitter-field coupling rate in cavity quantum electrodynamics. This is achieved by the control of the vacuum field seen by the emitter through a modulation of the optical modes in a coupled-cavity structure. The scheme allows the on-off switching
The edge of entanglement: getting the boundary right for non-minimally coupled scalar fields
Energy Technology Data Exchange (ETDEWEB)
Herzog, Christopher P. [C.N. Yang Institute for Theoretical Physics,Department of Physics and Astronomy, Stony Brook University,Stony Brook, NY 11794 (United States); Nishioka, Tatsuma [Department of Physics, Faculty of Science, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan)
2016-12-27
In entanglement computations for a free scalar field with coupling to background curvature, there is a boundary term in the modular Hamiltonian which must be correctly specified in order to get sensible results. We focus here on the entanglement in flat space across a planar interface and (in the case of conformal coupling) other geometries related to this one by Weyl rescaling of the metric. For these “half-space entanglement” computations, we give a new derivation of the boundary term and revisit how it clears up a number of puzzles in the literature, including mass corrections and twist operator dimensions. We also discuss how related boundary terms may show up in other field theories.
Thermodynamics of de Sitter black holes with a conformally coupled scalar field
International Nuclear Information System (INIS)
Barlow, Anne-Marie; Doherty, Daniel; Winstanley, Elizabeth
2005-01-01
We study the thermodynamics of de Sitter black holes with a conformally coupled scalar field. The geometry is that of the lukewarm Reissner-Nordstroem-de Sitter black holes, with the event and cosmological horizons at the same temperature. This means that the region between the event and cosmological horizons can form a regular Euclidean instanton. The entropy is modified by the nonminimal coupling of the scalar field to the geometry, but can still be derived from the Euclidean action, provided suitable modifications are made to deal with the electrically charged case. We use the first law as derived from the isolated horizons formalism to compute the local horizon energies for the event and cosmological horizons
Coupling coefficient between the Pc3 frequency and the value of the interplanetary magnetic field
International Nuclear Information System (INIS)
Gul'el'mi, A.V.
1988-01-01
Mean value and spread of coupling coefficient g between geomagnetic pulsation Ps3 frequency and interplanetary magnetic field (IMF) value are evaluated according to a set of all measurements described in literature and to additional measurements at Borok observatory (50 hour intervals in January, 1973). Attention is paid to a relatively small spread of g and to a weak g dependence on IMF orientation. The both facts are out of scope of the elementary Ps3 theory
International Nuclear Information System (INIS)
Harada, Masayasu; Kikukawa, Yoshio; Yamawaki, Koichi
2003-01-01
This issue presents the important recent progress in both theoretical and phenomenological issues of strong coupling gauge theories, with/without supersymmetry and extra dimensions, etc. Emphasis in a placed on dynamical symmetry breaking with large anomalous dimensions governed by the dynamics near the nontrivial fixed point. Also presented are recent developments of the corresponding effective field theories. The 43 of the presented papers are indexed individually. (J.P.N)
Perturbation theory and coupling constant analyticity in two-dimensional field theories
International Nuclear Information System (INIS)
Simon, B.
1973-01-01
Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)
Macroscopic spin-orbit coupling in non-uniform magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Tabat, N.; Edelman, H. S.; Song, D. [Semaphore Scientific, Inc., St. Cloud, Minnesota 56301 (United States); Vogt, T. [Department of Electrical and Computer Engineering, St. Cloud State University, St. Cloud, Minnesota 56301 (United States)
2015-03-02
Translational dynamics of aggregated magnetic nano-particles placed in a rotating external magnetic field is described. It is observed and explained that aggregates that spin within a radially decreasing field strength must execute an orbital motion of their center of mass in a sense that counters their spin rotation. This orbital motion is tightly coupled to the spin dynamics of the aggregates. An analytical model for the canonical variables describing the orbital motion is derived and shown to be in good agreement with the measured values.
Macroscopic spin-orbit coupling in non-uniform magnetic fields
International Nuclear Information System (INIS)
Tabat, N.; Edelman, H. S.; Song, D.; Vogt, T.
2015-01-01
Translational dynamics of aggregated magnetic nano-particles placed in a rotating external magnetic field is described. It is observed and explained that aggregates that spin within a radially decreasing field strength must execute an orbital motion of their center of mass in a sense that counters their spin rotation. This orbital motion is tightly coupled to the spin dynamics of the aggregates. An analytical model for the canonical variables describing the orbital motion is derived and shown to be in good agreement with the measured values
Singular-perturbation--strong-coupling field theory and the moments problem
International Nuclear Information System (INIS)
Handy, C.R.
1981-01-01
Motivated by recent work of Bender, Cooper, Guralnik, Mjolsness, Rose, and Sharp, a new technique is presented for solving field equations in terms of singular-perturbation--strong-coupling expansions. Two traditional mathematical tools are combined into one effective procedure. Firstly, high-temperature lattice expansions are obtained for the corresponding power moments of the field solution. The approximate continuum-limit power moments are subsequently obtained through the application of Pade techniques. Secondly, in order to reconstruct the corresponding approximate global field solution, one must use function-moments reconstruction techniques. The latter involves reconsidering the traditional ''moments problem'' of interest to pure and applied mathematicians. The above marriage between lattice methods and moments reconstruction procedures for functions yields good results for the phi 4 field-theory kink, and the sine-Gordon kink solutions. It is argued that the power moments are the most efficient dynamical variables for the generation of strong-coupling expansions. Indeed, a momentum-space formulation is being advocated in which the long-range behavior of the space-dependent fields are determined by the small-momentum, infrared, domain
Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.
2013-12-01
Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.
Black holes and asymptotics of 2+1 gravity coupled to a scalar field
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge
2002-01-01
We consider 2+1 gravity minimally coupled to a self-interacting scalar field. The case in which the fall-off of the fields at infinity is slower than that of a localized distribution of matter is analyzed. It is found that the asymptotic symmetry group remains the same as in pure gravity (i.e., the conformal group). The generators of the asymptotic symmetries, however, acquire a contribution from the scalar field, but the algebra of the canonical generators possesses the standard central extension. In this context, new massive black hole solutions with a regular scalar field are found for a one-parameter family of potentials. These black holes are continuously connected to the standard zero mass black hole
Feng, Yan; Lin, Wei; Murillo, M. S.
2017-11-01
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge
2007-01-01
We examine anti-de Sitter gravity minimally coupled to a self-interacting scalar field in D>=4 dimensions when the mass of the scalar field is in the range m * 2 = 2 * 2 +l -2 . Here, l is the AdS radius, and m * 2 is the Breitenlohner-Freedman mass. We show that even though the scalar field generically has a slow fall-off at infinity which back reacts on the metric so as to modify its standard asymptotic behavior, one can still formulate asymptotic conditions (i) that are anti-de Sitter invariant; and (ii) that allows the construction of well-defined and finite Hamiltonian generators for all elements of the anti-de Sitter algebra. This requires imposing a functional relationship on the coefficients a, b that control the two independent terms in the asymptotic expansion of the scalar field. The anti-de Sitter charges are found to involve a scalar field contribution. Subtleties associated with the self-interactions of the scalar field as well as its gravitational back reaction, not discussed in previous treatments, are explicitly analyzed. In particular, it is shown that the fields develop extra logarithmic branches for specific values of the scalar field mass (in addition to the known logarithmic branch at the B-F bound)
Fischer, M. J.
2014-02-01
There are many different methods for investigating the coupling between two climate fields, which are all based on the multivariate regression model. Each different method of solving the multivariate model has its own attractive characteristics, but often the suitability of a particular method for a particular problem is not clear. Continuum regression methods search the solution space between the conventional methods and thus can find regression model subspaces that mix the attractive characteristics of the end-member subspaces. Principal covariates regression is a continuum regression method that is easily applied to climate fields and makes use of two end-members: principal components regression and redundancy analysis. In this study, principal covariates regression is extended to additionally span a third end-member (partial least squares or maximum covariance analysis). The new method, regularized principal covariates regression, has several attractive features including the following: it easily applies to problems in which the response field has missing values or is temporally sparse, it explores a wide range of model spaces, and it seeks a model subspace that will, for a set number of components, have a predictive skill that is the same or better than conventional regression methods. The new method is illustrated by applying it to the problem of predicting the southern Australian winter rainfall anomaly field using the regional atmospheric pressure anomaly field. Regularized principal covariates regression identifies four major coupled patterns in these two fields. The two leading patterns, which explain over half the variance in the rainfall field, are related to the subtropical ridge and features of the zonally asymmetric circulation.
Stability of braneworlds with non-minimally coupled multi-scalar fields
Energy Technology Data Exchange (ETDEWEB)
Chen, Feng-Wei; Gu, Bao-Min [Lanzhou University, Institute of Theoretical Physics, Lanzhou (China); Lanzhou University, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou (China); Liu, Yu-Xiao [Lanzhou University, Research Center of Gravitation, Lanzhou (China)
2018-02-15
Linear stability of braneworld models constructed with multi-scalar fields is very different from that of single-scalar field models. It is well known that both the tensor and the scalar perturbations of the latter are stable at linear level. However, in general there is no effective method to deal with the stability problem of the scalar perturbations for braneworld models constructed with non-minimally coupled multi-scalar fields. In this work we present a systematic covariant approach to deal with the scalar perturbations. By introducing the orthonormal bases in field space and making the Kaluza-Klein decomposition, we get a set of coupled Schroedinger-like equations of the scalar perturbation modes. Using the nodal theorem, we show that the result is model-dependent. For superpotential derived brane models, the scalar perturbations are stable, but there exist normalizable scalar zero modes, which will result in unacceptable fifth force on the brane. We also use this method to analyze the f(R) braneworld model with an explicit solution and find that the scalar perturbations are stable and the scalar zero modes cannot be localized on the brane, which ensures that there is no extra long-range force and the Newtonian potential on the brane can be recovered. (orig.)
Mean field dynamics of networks of delay-coupled noisy excitable units
Energy Technology Data Exchange (ETDEWEB)
Franović, Igor, E-mail: franovic@ipb.ac.rs [Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Todorović, Kristina; Burić, Nikola [Department of Physics and Mathematics, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade (Serbia); Vasović, Nebojša [Department of Applied Mathematics, Faculty of Mining and Geology, University of Belgrade, PO Box 162, Belgrade (Serbia)
2016-06-08
We use the mean-field approach to analyze the collective dynamics in macroscopic networks of stochastic Fitzhugh-Nagumo units with delayed couplings. The conditions for validity of the two main approximations behind the model, called the Gaussian approximation and the Quasi-independence approximation, are examined. It is shown that the dynamics of the mean-field model may indicate in a self-consistent fashion the parameter domains where the Quasi-independence approximation fails. Apart from a network of globally coupled units, we also consider the paradigmatic setup of two interacting assemblies to demonstrate how our framework may be extended to hierarchical and modular networks. In both cases, the mean-field model can be used to qualitatively analyze the stability of the system, as well as the scenarios for the onset and the suppression of the collective mode. In quantitative terms, the mean-field model is capable of predicting the average oscillation frequency corresponding to the global variables of the exact system.
International Nuclear Information System (INIS)
Wang Zhigang; Zheng Zhiren; Yu Junhua
2007-01-01
The transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure is reported. The transient process of the system, which is induced by the external coherent coupling field, shows the property of no inverse gain. We find that the transient behavior of the probe field can be tuned by the change of tunneling barrier. Both the amplitude of the transient gain and the frequency of the oscillation can be affected by the lifetime broadening
Critical fields of an exchange coupled two-layer composite particle
International Nuclear Information System (INIS)
Goll, D.; Kronmueller, H.
2008-01-01
High-density recording systems require magnetic bits with perpendicular easy axis and large magnetocrystalline anisotropy to guarantee thermal stability. However, the large magnetic fields up to 10 T for the reversal of magnetization cannot be afforded by conventional write heads. Therefore, composite exchange coupled spring systems of soft and hard magnetic layers may be used to reduce the switching field. In this case the reversal of magnetization in general takes place in two steps: a nucleation process in the soft layer and a depinning process for the displacement of the domain wall at the phase boundary of the soft and the hard magnetic layer. The nucleation and depinning fields are determined on the basis of the continuum theory of micromagnetism. It is shown that the nucleation fields decrease according to a 1/L 2 law with increasing thickness L of the soft layer and the depinning field of the charged Neel wall may be reduced by factors of 3-6 in comparison with the ideal nucleation field of the hard magnetic phase. One-step rectangular hysteresis loops are obtained for thicknesses of the soft layer smaller than the exchange length of the magnetostatic field
Thermal coupling of conjugate ionospheres and the tilt of the earth's magnetic field
Richards, P. G.; Torr, D. G.
1986-01-01
The effect of thermal coupling and the tilt of the earth's magnetic field on interhemispheric coupling is investigated, and, due to a longitudinal displacement in the conjugate points, it is found that the tilt significantly effects the upward flow of H(+) flux such that the maximum upward flux can occur several hours before local sunrise. Heating from the conjugate atmosphere, which accompanies solar illumination in one hemisphere, produces electron temperatures 1000 K higher in the dark than in the sunlit hemisphere, and the morning upward H(+) fluxes in the dark ionosphere are as large as the daytime fluxes. A strong symmetry is also noted in the overall behavior of the H(+) fluxes due to the differing day lengths at the conjugate points, which are separated by 15 deg in latitude. Electron temperatures in the conjugate hemispheres are found to be strongly coupled above the F region peaks, though in the vicinity of the peaks near 250 km, the coupling is weak during the day and strong during the night.
Kutateladze, Andrei G; Mukhina, Olga A
2014-09-05
Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.
Alexeev, Evgeny M; Catanzaro, Alessandro; Skrypka, Oleksandr V; Nayak, Pramoda K; Ahn, Seongjoon; Pak, Sangyeon; Lee, Juwon; Sohn, Jung Inn; Novoselov, Kostya S; Shin, Hyeon Suk; Tartakovskii, Alexander I
2017-09-13
Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent, and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridization of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The color and brightness in such images are used here to identify mono- and few-layer crystals and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in heterobilayers composed of mechanically exfoliated flakes and as a function of the twist angle in atomic layers grown by chemical vapor deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterization of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.
An ab-initio coupled mode theory for near field radiative thermal transfer.
Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L
2014-12-01
We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.
CO-CO coupling on Cu facets: Coverage, strain and field effects
International Nuclear Information System (INIS)
Sandberg, Robert B.; Montoya, Joseph H.; Chan, Karen; Nørskov, Jens K.
2016-01-01
We present a DFT study on the effect of coverage, strain, and electric field on CO-CO coupling energetics on Cu (100), (111), and (211). Our calculations indicate that CO-CO coupling is facile on all three facets in the presence of a cation-induced electric field in the Helmholtz plane, with the lowest barrier on Cu(100). The CO dimerization pathway is therefore expected to play a role in C_2 formation at potentials negative of the Cu potential of zero charge, corresponding to CO_2/CO reduction conditions at high pH. Both increased *CO coverage and tensile strain further improve C-C coupling energetics on Cu (111) and (211). Since CO dimerization is facile on all 3 Cu facets, subsequent surface hydrogenation steps may also play an important role in determining the overall activity towards C_2 products. Adsorption of *CO, *H, and *OH on the 3 facets were investigated with a Pourbaix analysis. Here, the (211) facet has the largest propensity to co-adsorb *CO and *H, which would favor surface hydrogenation following CO dimerization.
Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity
Energy Technology Data Exchange (ETDEWEB)
Priyesh, K. V.; Thayyullathil, Ramesh Babu [Department of Physics, Cochin University of Science and Technology, Cochin (India)
2014-01-28
We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.
Energy Technology Data Exchange (ETDEWEB)
Coelho, L A A [Programa de Pos-Graduacao em Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, RJ, 20550-900 (Brazil); Skea, J E F [Departamento de Fisica Teorica, Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, RJ, 20550-900 (Brazil); Stuchi, T J [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68528, Rio de Janeiro, RJ, 21945-970 (Brazil)], E-mail: luis@dft.if.uerj.br, E-mail: jimsk@dft.if.uerj.br, E-mail: tstuchi@if.ufrj.br
2008-02-22
In this paper, we use a nonintegrability theorem by Morales and Ramis to analyse the integrability of Friedmann-Robertson-Walker cosmological models with a conformally coupled massive scalar field. We answer the long-standing question of whether these models with a vanishing cosmological constant and non-self-interacting scalar field are integrable: by applying Kovacic's algorithm to the normal variational equations, we prove analytically and rigorously that these equations and, consequently, the Hamiltonians are nonintegrable. We then address the models with a self-interacting massive scalar field and cosmological constant and show that, with the exception of a set of measure zero, the models are nonintegrable. For the spatially curved cases, we prove that there are no additional integrable cases other than those identified in the previous work based on the non-rigorous Painleve analysis. In our study of the spatially flat model, we explicitly obtain a new possibly integrable case.
International Nuclear Information System (INIS)
Carvalho-Santos, Vagson L.; Dandoloff, Rossen
2013-01-01
We study the Heisenberg model in an external magnetic field on curved surfaces with rotational symmetry. The Euler-Lagrange static equations, derived from the Hamiltonian, lead to the inhomogeneous double sine-Gordon equation. Nonetheless, if the magnetic field is coupled to the metric elements of the surface, and consequently to its curvature, the homogeneous double sine-Gordon equation emerges and a 2π-soliton solution is obtained. In order to satisfy the self-dual equations, surface deformations are predicted to appear at the sector where the spin direction is opposite to the magnetic field. On the basis of the model, we find the characteristic length of the 2π-soliton for three specific rotationally symmetric surfaces: the cylinder, the catenoid, and the hyperboloid. On finite surfaces, such as the sphere, torus, and barrels, fractional 2π-solitons are predicted to appear. (author)
A multiple-field coupled resistive transition model for superconducting Nb3Sn
Directory of Open Access Journals (Sweden)
Lin Yang
2016-12-01
Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.
A multiple-field coupled resistive transition model for superconducting Nb3Sn
Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li
2016-12-01
A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.
Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines
Qian, Wei; Werner, Wendelin
2018-06-01
We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.
Fiber-Coupled Wide Field of View Optical Receiver for High Speed Space Communication
Suddath, Shannon N.
Research groups at NASA Glenn Research Center are interested in improving data rates on the International Space Station (ISS) using a free-space optical (FSO) link. However, known flexure of the ISS structure is expected to cause misalignment of the FSO link. Passive-control designs for mitigating misalignment are under investigation, including using a fiber-bundle for improved field of view. The designs must overcome the obstacle of coupling directly to fiber, rather than a photodetector, as NASA will maintain the use of small form-factor pluggable optical transceivers (SFPs) in the ISS network. In this thesis, a bundle-based receiver capable of coupling directly to fiber is designed, simulated, and tested in lab. Two 3-lens systems were evaluated for power performance in the lab, one with a 20 mm focal length aspheric lens and the other with a 50 mm focal length aspheric lens. The maximum output power achieved was 8 muW.
Field-theoretic methods in strongly-coupled models of general gauge mediation
International Nuclear Information System (INIS)
Fortin, Jean-François; Stergiou, Andreas
2013-01-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split
Near-Field Coupling and Mode Competition in Multiple Anapole Systems
Mazzone, Valerio
2017-05-24
All-dielectric metamaterials are a promising platform for the development of integrated photonics applications. In this work, we investigate the mutual coupling and interaction of an ensemble of anapole states in silicon nanoparticles. Anapoles are intriguing non-radiating states originated by the superposition of internal multipole components which cancel each other in the far-field. While the properties of anapole states in single nanoparticles have been extensively studied, the mutual interaction and coupling of several anapole states have not been characterized. By combining first-principles simulations and analytical results, we demonstrate the transferring of anapole states across an ensemble of nanoparticles, opening to the development of advanced integrated devices and robust waveguides relying on non-radiating modes.
Weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field
International Nuclear Information System (INIS)
Sato, Masahiro; Oshikawa, Masaki
2002-01-01
We study weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field. Applying mean-field (MF) theory, spin-wave theory and chain MF (CMF) theory, we can see analytically some effects of the staggered field in this higher dimensional spin system. In particular, when the staggered field and the inter-chain inter-action compete with each other, we conjecture from the MF theory that a nontrivial phase is present. The spin wave theory predicts that the behavior of the gaps induced by a staggered field is different between the competitive case and the non-competitive case. When the inter-chain interactions are weak enough, we can improve the MF phase diagram by using CMF theory and the analytical results of field theories. The ordered phase region predicted by the CMF theory is fairly smaller than one of the MF theory. Cu-benzoate, CuCl 2 · 2DMSO (dimethylsulphoxide), BaCu 2 (Si 1-x Ge x ) 2 O 7 , etc., could be described by our model in enough low temperature. (author)
International Nuclear Information System (INIS)
Chowdhury, A.R.; Roy, T.
1980-01-01
We have considered the problem of evaluating the large order estimates of perturbation theory in a quantum field theory with more than one coupling constant. The theory considered is four dimensional and possesses instanton-type solutions. It contains a Boson field coupled with a Fermion through the usual g anti psi psi phi type interaction, along with the self-interaction of the Boson lambda phi 4 . Our analysis reveals a phenomenon not observed in a theory with only one coupling constant. One gets different kinds of behavior in different regions of the (lambda, g) plane. The results are quite encouraging for the application to more realistic field theories
Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.
2017-12-01
Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.
Investigation of the field dependent spin structure of exchange coupled magnetic heterostructures
International Nuclear Information System (INIS)
Gurieva, Tatiana
2016-05-01
This thesis describes the investigation of the field dependent magnetic spin structure of an antiferromagnetically (AF) coupled Fe/Cr heterostructure sandwiched between a hardmagnetic FePt buffer layer and a softmagnetic Fe top layer. The depth-resolved experimental studies of this system were performed via Magneto-optical Kerr effect (MOKE), Vibrating Sample Magnetometry (VSM) and various measuring methods based on nuclear resonant scattering (NRS) technique. Nucleation and evolution of the magnetic spiral structure in the AF coupled Fe/Cr multilayer structure in an azimuthally rotating external magnetic field were observed using NRS. During the experiment a number of time-dependent magnetic side effects (magnetic after-effect, domain-wall creep effect) caused by the non-ideal structure of a real sample were observed and later explained. Creation of the magnetic spiral structure in rotating external magnetic field was simulated using a one-dimensional micromagnetic model.The cross-sectional magnetic X-ray diffraction technique was conceived and is theoretically described in the present work. This method allows to determine the magnetization state of an individual layer in the magnetic heterostructure. It is also applicable in studies of the magnetic structure of tiny samples where conventional x-ray reflectometry fails.
Directory of Open Access Journals (Sweden)
Seidman Seth J
2011-10-01
Full Text Available Abstract Background Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. Methods To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. Results The electric current induced by low frequency RFID emitter
One-Dimensional Stationary Mean-Field Games with Local Coupling
Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana
2017-01-01
A standard assumption in mean-field game (MFG) theory is that the coupling between the Hamilton–Jacobi equation and the transport equation is monotonically non-decreasing in the density of the population. In many cases, this assumption implies the existence and uniqueness of solutions. Here, we drop that assumption and construct explicit solutions for one-dimensional MFGs. These solutions exhibit phenomena not present in monotonically increasing MFGs: low-regularity, non-uniqueness, and the formation of regions with no agents.
Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields
Hadasz, Leszek; Lindström, Ulf; Roček, Martin; von Unge, Rikard
2004-05-01
We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case, we find a tower of new stationary time-dependent solutions, all with the same charge density, but with increasing energies. The dynamics of these solitons cannot be studied using traditional moduli space techniques, but we do find a nontrivial symplectic form on the phase space indicating that the moduli space is not flat. In the relativistic case we find the metric on the two soliton moduli space.
Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields
International Nuclear Information System (INIS)
Hadasz, Leszek; Lindstroem, Ulf; Rocek, Martin; Unge, Rikard von
2004-01-01
We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case, we find a tower of new stationary time-dependent solutions, all with the same charge density, but with increasing energies. The dynamics of these solitons cannot be studied using traditional moduli space techniques, but we do find a nontrivial symplectic form on the phase space indicating that the moduli space is not flat. In the relativistic case we find the metric on the two soliton moduli space
ANALYSIS OF INDUCTION MOTOR WITH BROKEN BARS AND CONSTANT SPEED USING CIRCUIT-FIELD COUPLED METHOD
Directory of Open Access Journals (Sweden)
N. Halem
2015-07-01
Full Text Available The paper presents the use of the two-dimensional finite element method for modeling the three-phase squirrel-cage induction motor by using circuit coupled method. In order to analyze the machine performances, the voltage source is considered. The Ansys magnetic analysis software is used for calculating the magnetic field of an induction motor having a cage fault. The experimental results prove that the proposed approach constitutes a useful tool for the study and diagnostics of induction motors.
International Nuclear Information System (INIS)
Carnahan, C.L.
1991-11-01
A numerical simulator of reactive chemical transport with coupling from precipitation-dissolution reactions to fluid flow, via changes of porosity and permeability, is applied to precipitation-dissolution of quartz and calcite in spatially and temporally variable fields of temperature. Significant effects on fluid flow are found in the quartz-silicic acid system in the presence of persistent, strong gradient of temperature. Transient heat flow in the quartz-silicic acid system and in a calcite-calcium ion-carbonato species system produces vanishingly small effects on fluid flow
One-Dimensional Stationary Mean-Field Games with Local Coupling
Gomes, Diogo A.
2017-05-25
A standard assumption in mean-field game (MFG) theory is that the coupling between the Hamilton–Jacobi equation and the transport equation is monotonically non-decreasing in the density of the population. In many cases, this assumption implies the existence and uniqueness of solutions. Here, we drop that assumption and construct explicit solutions for one-dimensional MFGs. These solutions exhibit phenomena not present in monotonically increasing MFGs: low-regularity, non-uniqueness, and the formation of regions with no agents.
Black holes of dimensionally continued gravity coupled to Born-Infeld electromagnetic field
Meng, Kun; Yang, Da-Bao
2018-05-01
In this paper, for dimensionally continued gravity coupled to Born-Infeld electromagnetic field, we construct topological black holes in diverse dimensions and construct dyonic black holes in general even dimensions. We study thermodynamics of the black holes and obtain first laws. We study thermal phase transitions of the black holes in T-S plane and find van der Waals-like phase transitions for even-dimensional spherical black holes, such phase transitions are not found for other types of black holes constructed in this paper.
A dynamic mean-field glass model with reversible mode coupling and a trivial Hamiltonian
International Nuclear Information System (INIS)
Kawasaki, Kyozi; Kim, Bongsoo
2002-01-01
Often the current mode coupling theory (MCT) of glass transitions is compared with mean field theories. We explore this possible correspondence. After showing a simple-minded derivation of MCT with some difficulties we give a concise account of our toy model developed to gain more insight into MCT. We then reduce this toy model by adiabatically eliminating rapidly varying velocity-like variables to obtain a Fokker-Planck equation for the slowly varying density-like variables where the diffusion matrix can be singular. This gives room for non-ergodic stationary solutions of the above equation. (author)
Troiani, Filippo; Affronte, Marco; Carretta, Stefano; Santini, Paolo; Amoretti, Giuseppe
2005-05-20
We propose a scheme for the implementation of quantum gates which is based on the qubit encoding in antiferromagnetic molecular rings. We show that a proper engineering of the intercluster link would result in an effective coupling that vanishes as far as the system is kept in the computational space, while it is turned on by a selective excitation of specific auxiliary states. These are also shown to allow the performing of single-qubit and two-qubit gates without an individual addressing of the rings by means of local magnetic fields.
Finite action for three dimensional gravity with a minimally coupled scalar field
International Nuclear Information System (INIS)
Gegenberg, Jack; Martinez, Cristian; Troncoso, Ricardo
2003-01-01
Three-dimensional gravity with a minimally coupled self-interacting scalar is considered. The falloff of the fields at infinity is assumed to be slower than that of a localized distribution of matter in the presence of a negative cosmological constant. However, the asymptotic symmetry group remains to be the conformal group. The counterterm Lagrangian needed to render the action finite is found by demanding that the action attain an extremum for the boundary conditions implied by the above falloff of the fields at infinity. These counterterms explicitly depend on the scalar field. As a consequence, the Brown-York stress-energy tensor acquires a nontrivial contribution from the matter sector. Static circularly symmetric solutions with a regular scalar field are explored for a one-parameter family of potentials. Their masses are computed via the Brown-York quasilocal stress-energy tensor, and they coincide with the values obtained from the Hamiltonian approach. The thermal behavior, including the transition between different configurations, is analyzed, and it is found that the scalar black hole can decay into the Banados-Teitelboim-Zanelli solution irrespective of the horizon radius. It is also shown that the AdS conformal field theory correspondence yields the same central charge as for pure gravity
Eason, Kwaku
There is strong interest in the use of small low-cost highly sensitive magnetic field sensors for applications (e.g. biomedical devices) requiring weak field measurements. Among weak-field sensors, the magneto-impedance (MI) sensor has demonstrated an absolute resolution of 10-11 T. The MI effect is a sensitive realignment of a periodic magnetization in response to an external field in small ferromagnets. However, design of MI sensors has relied primarily on trial and error experimental methods along with decoupled models describing the MI effect. To offer a basis for more cost-effective designs, this thesis research begins with a general formulation describing MI sensors, which relaxes assumptions commonly made for decoupling. The coupled set of nonlinear equations is solved numerically using an efficient meshless method in a point collocation formulation. For the problem considered, the chosen method is shown to offer advantages over alternative methods including the finite element method. Projection methods are used to stabilize the time discretization while quasi-Newton methods (nonlinear solver) are shown to be more computationally efficient, as well. Specifically, solutions for two MI sensor element geometries are presented, which were validated against published experimental data. While the examples illustrated here are for MI sensors, the approach presented can also be extended to other weak-field sensors like fluxgate and Hall effect sensors.
Coupling behaviors of graphene/SiO2/Si structure with external electric field
Onishi, Koichi; Kirimoto, Kenta; Sun, Yong
2017-02-01
A traveling electric field in surface acoustic wave was introduced into the graphene/SiO2/Si sample in the temperature range of 15 K to 300 K. The coupling behaviors between the sample and the electric field were analyzed using two parameters, the intensity attenuation and time delay of the traveling-wave. The attenuation originates from Joule heat of the moving carriers, and the delay of the traveling-wave was due to electrical resistances of the fixed charge and the moving carriers with low mobility in the sample. The attenuation of the external electric field was observed in both Si crystal and graphene films in the temperature range. A large attenuation around 190 K, which depends on the strength of external electric field, was confirmed for the Si crystal. But, no significant temperature and field dependences of the attenuation in the graphene films were detected. On the other hand, the delay of the traveling-wave due to ionic scattering at low temperature side was observed in the Si crystal, but cannot be detected in the films of the mono-, bi- and penta-layer graphene with high conductivities. Also, it was indicated in this study that skin depth of the graphene film was less than thickness of two graphene atomic layers in the temperature range.
Dynamics of Entanglement in Jaynes–Cummings Nodes with Nonidentical Qubit-Field Coupling Strengths
Directory of Open Access Journals (Sweden)
Li-Tuo Shen
2017-07-01
Full Text Available How to analytically deal with the general entanglement dynamics of separate Jaynes–Cummings nodes with continuous-variable fields is still an open question, and few analytical approaches can be used to solve their general entanglement dynamics. Entanglement dynamics between two separate Jaynes–Cummings nodes are examined in this article. Both vacuum state and coherent state in the initial fields are considered through the numerical and analytical methods. The gap between two nonidentical qubit-field coupling strengths shifts the revival period and changes the revival amplitude of two-qubit entanglement. For vacuum-state fields, the maximal entanglement is fully revived after a gap-dependence period, within which the entanglement nonsmoothly decreases to zero and partly recovers without exhibiting sudden death phenomenon. For strong coherent-state fields, the two-qubit entanglement decays exponentially as the evolution time increases, exhibiting sudden death phenomenon, and the increasing gap accelerates the revival period and amplitude decay of the entanglement, where the numerical and analytical results have an excellent coincidence.
Cosmological dynamics with non-minimally coupled scalar field and a constant potential function
International Nuclear Information System (INIS)
Hrycyna, Orest; Szydłowski, Marek
2015-01-01
Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory
Mean-field behavior in coupled oscillators with attractive and repulsive interactions.
Hong, Hyunsuk; Strogatz, Steven H
2012-05-01
We consider a variant of the Kuramoto model of coupled oscillators in which both attractive and repulsive pairwise interactions are allowed. The sign of the coupling is assumed to be a characteristic of a given oscillator. Specifically, some oscillators repel all the others, thus favoring an antiphase relationship with them. Other oscillators attract all the others, thus favoring an in-phase relationship. The Ott-Antonsen ansatz is used to derive the exact low-dimensional dynamics governing the system's long-term macroscopic behavior. The resulting analytical predictions agree with simulations of the full system. We explore the effects of changing various parameters, such as the width of the distribution of natural frequencies and the relative strengths and proportions of the positive and negative interactions. For the particular model studied here we find, unexpectedly, that the mixed interactions produce no new effects. The system exhibits conventional mean-field behavior and displays a second-order phase transition like that found in the original Kuramoto model. In contrast to our recent study of a different model with mixed interactions [Phys. Rev. Lett. 106, 054102 (2011)], the π state and traveling-wave state do not appear for the coupling type considered here.
Cosmological dynamics with non-minimally coupled scalar field and a constant potential function
Energy Technology Data Exchange (ETDEWEB)
Hrycyna, Orest [Theoretical Physics Division, National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Kraków (Poland)
2015-11-01
Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.
International Nuclear Information System (INIS)
Sohnius, M.; West, P.
1982-01-01
The tensor calculus for the new alternative minimal auxiliary field formulation of N = 1 supergravity is given. It is used to construct the couplings of this formulation of supergravity to matter. These couplings are found to be different, in several respects to those of the old minimal formulation of N = 1 supergravity. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.
2007-07-01
Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.
Coupled force-balance and particle-occupation rate equations for high-field electron transport
International Nuclear Information System (INIS)
Lei, X. L.
2008-01-01
It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field
Design of a high power cross field amplifier at X band with an internally coupled waveguide
International Nuclear Information System (INIS)
Eppley, K.; Ko, Kwok.
1991-01-01
Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. We have developed a simulation model for CFAs using the PIC code CONDOR. Our simulations indicate that there are limits to the maximum RF field strength that a CEA can sustain. When the fields become too high, efficiency becomes very poor, and the currents drawn may become so large that secondary emission cannot be maintained. It is therefore desirable to reduce the circuit impedance of a very high power tube. One method for doing this, proposed by Feinstein, involves periodically coupling a standard CFA circuit to an internal waveguide. Most of the power flows in the waveguide, so the overall impedance is much reduced. By adjusting the guide dimensions one can vary the impedance. Thus one can retain high impedance at the low power end but low impedance at the high power end. In principle one can maintain constant RF voltage throughout the tube. CONDOR simulations have identified a good operating point at X band, with power generation of over 5 MW per cm and total efficiency of over 60 percent. ARGUS simulations have modelled the cold test properties of the coupled structure. The nominal design specifications are 300 MW output, 17 db gain, frequency 11.4 GHz, dc voltage 142 kV, magnetic field 5 kG, anode cathode gap 3.6 mm, total interaction length about 60 cm. We will discuss the results of code simulations and report on the status of the experimental effort
On the coupling of fields and particles in accelerator and plasma physics
Energy Technology Data Exchange (ETDEWEB)
Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-10-15
In accelerator and plasma physics it is generally accepted that there is no need to solve the dynamical equations for particles motion in manifestly covariant form, that is by using the coordinate-independent proper time to parameterize particle world-lines in space-time. In other words, in order to describe the dynamical processes in the laboratory frame there is no need to use the laws of relativistic kinematics. It is sufficient to take into account the relativistic dependence of the particles momentum on the velocity in the second Newton's law. Therefore, the coupling of fields and particles is based, on the one hand, on the use of result from particle dynamics treated according to Newton's laws in terms of the relativistic three-momentum and, on the other hand, on the use of Maxwell's equations in standard form. In previous papers we argued that this is a misconception. The purpose of this paper is to describe in detail how to calculate the coupling between fields and particles in a correct way and how to develop a new algorithm for a particle tracking code in agreement with the use of Maxwell's equations in their standard form. Advanced textbooks on classical electrodynamics correctly tell us that Maxwell's equations in standard form in the laboratory frame and charged particles are coupled by introducing particles trajectories as projections of particles world-lines onto coordinates of the laboratory frame and by subsequently using the laboratory time to parameterize the trajectory curves. For the first time we showed a difference between conventional and covariant particle tracking results in the laboratory frame. This essential point has never received attention in the physical community. Only the solution of the dynamical equations in covariant form gives the correct coupling between field equations in standard form and particles trajectories in the laboratory frame. We conclude that previous theoretical and simulation results in
On the coupling of fields and particles in accelerator and plasma physics
International Nuclear Information System (INIS)
Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni
2016-10-01
In accelerator and plasma physics it is generally accepted that there is no need to solve the dynamical equations for particles motion in manifestly covariant form, that is by using the coordinate-independent proper time to parameterize particle world-lines in space-time. In other words, in order to describe the dynamical processes in the laboratory frame there is no need to use the laws of relativistic kinematics. It is sufficient to take into account the relativistic dependence of the particles momentum on the velocity in the second Newton's law. Therefore, the coupling of fields and particles is based, on the one hand, on the use of result from particle dynamics treated according to Newton's laws in terms of the relativistic three-momentum and, on the other hand, on the use of Maxwell's equations in standard form. In previous papers we argued that this is a misconception. The purpose of this paper is to describe in detail how to calculate the coupling between fields and particles in a correct way and how to develop a new algorithm for a particle tracking code in agreement with the use of Maxwell's equations in their standard form. Advanced textbooks on classical electrodynamics correctly tell us that Maxwell's equations in standard form in the laboratory frame and charged particles are coupled by introducing particles trajectories as projections of particles world-lines onto coordinates of the laboratory frame and by subsequently using the laboratory time to parameterize the trajectory curves. For the first time we showed a difference between conventional and covariant particle tracking results in the laboratory frame. This essential point has never received attention in the physical community. Only the solution of the dynamical equations in covariant form gives the correct coupling between field equations in standard form and particles trajectories in the laboratory frame. We conclude that previous theoretical and simulation results in accelerator and plasma
Quantum effects of a massive 3-form coupled to a Dirac field
International Nuclear Information System (INIS)
Aurilia, Antonio; Spallucci, Euro
2004-01-01
The computation of the quantum vacuum pressure must take into account the contribution of zero-point oscillations of a rank-three gauge field A μνρ . This result was established in a previous paper where we calculated both the Casimir pressure within a region of vacuum simulating a hadronic bag and the Wilson factor for the three-index potential associated with the boundary of the bag. The resulting 'volume law' satisfied by the Wilson loop is consistent with the basic confining requirement that the static interquark potential increases with the distance between two test charges. As a sequel to that paper, we consider here the coupling of A μνρ to the generic current of a matter field, later identified with the spin density current of a Dirac field. In fact, one of the objectives of this paper is to investigate the impact of the quantum fluctuations of A μνρ on the effective dynamics of the spinor field. The consistency of the field equations, even at the classical level, requires the introduction of a mass term for A μνρ . In this case, the Casimir vacuum pressure includes a contribution that is explicitly dependent on the mass of A μνρ and leads us to conclude that the mass term plays the same role as the infrared cutoff needed to regularize the finite volume partition functional previously calculated in the massless case. Remarkably, even in the presence of a mass term, A μνρ contains a mixture of massless and massive spin-0 fields so that the resulting equation is still gauge invariant. This is yet another peculiar, but physically relevant property of A μνρ since it is reflected in the effective dynamics of the spinor fields and confirms the confining property of A μνρ already expected from the earlier calculation of the Wilson loop
Charge and field coupling phenomena at metal-oxide interfaces and their applications
Voora, Venkata M.
Heterostructures composed of polar materials, such as ferroelectric and/or piezoelectric, are interesting due to their interface lattice charge coupling (LCC) effects. In this thesis, coupling effects between switchable ferroelectric and non-switchable piezoelectric semiconductor spontaneous polarizations are addressed. Also discussed is a dielectric continuum model approach for studying LCC effects in double layer piezoelectric semiconductor-ferroelectric and triple layer piezoelectric semiconductor-ferroelectric-piezoelectric semiconductor heterostructures. The dielectric continuum model augments the effects of electric field driven switchable polarization due to LCC with depletion layer formation in semiconductor heterostructures. Electrical investigations were used to study a reference single layer (BaTiO3), a double layer (BaTiO3-ZnO), and a triple layer (ZnO-BaTiO 3-ZnO) heterostructure grown by pulsed laser deposition. The coupling between the non-switchable spontaneous polarization of ZnO and the electrically switchable spontaneous polarization of BaTiO3 causes strong asymmetric polarization hysteresis behavior. The n-type ZnO layer within double and triple layered heterostructures reveals hysteresis-dependent capacitance variations upon formation of depletion layers at the ZnO/BaTiO 3 interfaces. Model analysis show very good agreement between the generated data and the experimental results. The dielectric continuum model approach allows for the derivation of the amount and orientation of the spontaneous polarization of the piezoelectric constituents, and can be generalized towards multiple layer piezoelectric semiconductor-ferroelectric heterostructures. Based on experimental results the polarization coupled ZnO-BaTiO 3-ZnO heterostructures is identified as a two-terminal unipolar ferroelectric bi-junction transistor which can be utilized in memory storage devices. Furthermore it is discussed, that the triple layer heterostructure with magnetically
International Nuclear Information System (INIS)
Zhao, X.G.; Chen, S.G.
1992-01-01
In this paper, the energy spectrum and the wave functions for a tight-binding Bloch electron on coupled chains under the action of both uniform electric and magnetic fields are studied in detail. Exact results are obtained for the case when the coupling between chains is large by using the perturbation theory, from which it is found that the spectrum is that of two interspaced Stark ladders. The magnetic field dependence of the energy spectrum is also discussed
Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap
Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.
2015-05-01
The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.
An investigation of coupling of the internal kink mode to error field correction coils in tokamaks
International Nuclear Information System (INIS)
Lazarus, E.A.
2013-01-01
The coupling of the internal kink to an external m/n = 1/1 perturbation is studied for profiles that are known to result in a saturated internal kink in the limit of a cylindrical tokamak. It is found from three-dimensional equilibrium calculations that, for A ≈ 30 circular plasmas and A ≈ 3 elliptical shapes, this coupling of the boundary perturbation to the internal kink is strong; i.e., the amplitude of the m/n = 1/1 structure at q = 1 is large compared with the amplitude applied at the plasma boundary. Evidence suggests that this saturated internal kink, resulting from small field errors, is an explanation for the TEXTOR and JET measurements of q 0 remaining well below unity throughout the sawtooth cycle, as well as the distinction between sawtooth effects on the q-profile observed in TEXTOR and DIII-D. It is proposed that this excitation, which could readily be applied with error field correction coils, be explored as a mechanism for controlling sawtooth amplitudes in high-performance tokamak discharges. This result is then combined with other recent tokamak results to propose an L-mode approach to fusion in tokamaks. (paper)
Heat transfer and thermal stress analysis in fluid-structure coupled field
International Nuclear Information System (INIS)
Li, Ming-Jian; Pan, Jun-Hua; Ni, Ming-Jiu; Zhang, Nian-Mei
2015-01-01
In this work, three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out. The structure considered is from the dual-coolant lithium-lead (DCLL) blanket, which is the key technology of International Thermo-nuclear Experimental Reactor (ITER). The model was developed based on finite element-finite volume method and was employed to investigate mechanical behaviours of Flow Channel Insert (FCI) and heat transfer in the blanket under nuclear reaction. Temperature distribution, thermal deformation and thermal stresses were calculated in this work, and the effects of thermal conductivity, convection heat transfer coefficient and flow velocity were analyzed. Results show that temperature gradients and thermal stresses of FCI decrease when FCI has better heat conductivity. Higher convection heat transfer coefficient will result in lower temperature, thermal deformations and stresses in FCI. Analysis in this work could be a theoretical basis of blanket optimization. - Highlights: • We use FVM and FEM to investigate FCI structural safety considering heat transfer and FSI effects. • Higher convective heat transfer coefficient is beneficial for the FCI structural safety without much affect to bulk flow temperature. • Smaller FCI thermal conductivity can better prevent heat leakage into helium, yet will increase FCI temperature gradient and thermal stress. • Three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out
Jiancheng, Shi; Min, Luo; Chusheng, Huang
2017-08-01
The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.
Non-topological solitons in field theories with kinetic self-coupling
International Nuclear Information System (INIS)
Diaz-Alonso, Joaquin; Rubiera-Garcia, Diego
2007-01-01
We investigate some fundamental features of a class of non-linear relativistic Lagrangian field theories with kinetic self-coupling. We focus our attention upon theories admitting static, spherically symmetric solutions in three space dimensions which are finite-energy and stable. We determine general conditions for the existence and stability of these non-topological soliton solutions. In particular, we perform a linear stability analysis that goes beyond the usual Derrick-like criteria. On the basis of these considerations we obtain a complete characterization of the soliton-supporting members of the aforementioned class of non-linear field theories. We then classify the family of soliton-supporting theories according to the central and asymptotic behaviors of the soliton field, and provide illustrative explicit examples of models belonging to each of the corresponding sub-families. In the present work we restrict most of our considerations to one and many-components scalar models. We show that in these cases the finite-energy static spherically symmetric solutions are stable against charge-preserving perturbations, provided that the vacuum energy of the model vanishes and the energy density is positive definite. We also discuss briefly the extension of the present approach to models involving other types of fields, but a detailed study of this more general scenario will be addressed in a separate publication
International Nuclear Information System (INIS)
Zhao Junhui; Thomson, Douglas J; Freund, Michael S; Pilapil, Matt; Pillai, Rajesh G; Aminur Rahman, G M
2010-01-01
Dynamic resistive memory devices based on a conjugated polymer composite (PPy 0 DBS - Li + (PPy: polypyrrole; DBS - : dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.
Effects of Rashba spin–orbit coupling and a magnetic field on a polygonal quantum ring
International Nuclear Information System (INIS)
Tang, Han-Zhao; Zhai, Li-Xue; Shen, Man; Liu, Jian-Jun
2014-01-01
Using standard quantum network method, we analytically investigate the effect of Rashba spin–orbit coupling (RSOC) and a magnetic field on the spin transport properties of a polygonal quantum ring. Using Landauer–Büttiker formula, we have found that the polarization direction and phase of transmitted electrons can be controlled by both the magnetic field and RSOC. A device to generate a spin-polarized conductance in a polygon with an arbitrary number of sides is discussed. This device would permit precise control of spin and selectively provide spin filtering for either spin up or spin down simply by interchanging the source and drain. - Highlights: • Spin conductance of polygon with RSOC and magnetic field is calculated analytically. • We show how the RSOC and a magnetic field control the phase of electron in polygon. • The AB oscillation and shape-dependent conductance are studied in a polygonal ring. • Our model can provide spin filtering simply by interchanging the source and drain
Two-dimensional topological field theories coupled to four-dimensional BF theory
International Nuclear Information System (INIS)
Montesinos, Merced; Perez, Alejandro
2008-01-01
Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level
Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V
2018-04-01
We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that
International Nuclear Information System (INIS)
Souza, Rafael S. de; Opher, Reuven
2011-01-01
The origin of magnetic fields in astrophysical objects is a challenging problem in astrophysics. Throughout the years, many scientists have suggested that non-minimal gravitational-electromagnetic coupling (NMGEC) could be the origin of the ubiquitous astrophysical magnetic fields. We investigate the possible origin of intense magnetic fields by NMGEC near rotating black holes, connected with quasars and gamma-ray bursts. Whereas these intense magnetic fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC.
Topological black holes dressed with a conformally coupled scalar field and electric charge
International Nuclear Information System (INIS)
Martinez, Cristian; Troncoso, Ricardo; Staforelli, Juan Pablo
2006-01-01
Electrically charged solutions for gravity with a conformally coupled scalar field are found in four dimensions in the presence of a cosmological constant. If a quartic self-interaction term for the scalar field is considered, there is a solution describing an asymptotically locally AdS charged black hole dressed with a scalar field that is regular on and outside the event horizon, which is a surface of negative constant curvature. This black hole can have negative mass, which is bounded from below for the extremal case, and its causal structure shows that the solution describes a ''black hole inside a black hole''. The thermodynamics of the nonextremal black hole is analyzed in the grand canonical ensemble. The entropy does not follow the area law, and there is an effective Newton constant which depends on the value of the scalar field at the horizon. If the base manifold is locally flat, the solution has no electric charge, and the scalar field has a vanishing stress-energy tensor so that it dresses a locally AdS spacetime with a nut at the origin. In the case of vanishing self interaction, the solutions also dress locally AdS spacetimes, and if the base manifold is of negative constant curvature a massless electrically charged hairy black hole is obtained. The thermodynamics of this black hole is also analyzed. It is found that the bounds for the black holes parameters in the conformal frame obtained from requiring the entropy to be positive are mapped into the ones that guarantee cosmic censorship in the Einstein frame
Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.
Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo
2010-06-01
A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.
Design of a high power cross field amplifier at X band with an internally coupled waveguide
International Nuclear Information System (INIS)
Eppley, K.; Ko, K.
1991-01-01
This paper reports that cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. The authors have developed a simulation model for CFAs using the PIC code CONDOR. The authors simulations indicate that there are limits to the maximum RF field strength that a CFA can sustain. When the fields become too high, efficiency becomes very poor, and the currents drawn may become so large that secondary emission cannot be maintained. It is therefore desirable to reduce the circuit impedance of a very high power tube. One method for doing this, proposed by Feinstein, involves periodically coupling a standard CFA circuit to an internal waveguide. Most of the power flows in the waveguide, so the overall impedance is much reduced. By adjusting the guide dimensions one can vary the impedance. Thus one can retain high impedance at the low power end but low impedance at the high power end. In principle one can maintain constant RF voltage throughout the tube
Metric-like formalism for matter fields coupled to 3D higher spin gravity
Fujisawa, Ippei; Nakayama, Ryuichi
2014-12-01
The action integral for a matter system composed of 0- and 2-forms, C and Bμν, topologically coupled to 3D spin-3 gravity is considered first in the frame-like formalism. The field C satisfies an equation of motion, \\partial _{\\mu } \\, C+A_{\\mu } \\, C-C \\, \\bar{A}_{\\mu }=0, where Aμ and \\bar{A}_{\\mu } are the Chern-Simons gauge fields. With a suitable gauge fixing of a new local symmetry and diffeomorphism, only one component of Bμν, say Bϕr, remains non-vanishing and satisfies \\partial _{\\mu } \\, B_{\\phi r}+\\bar{A}_{\\mu } \\, B_{\\phi r}-B_{\\phi r} \\, A_{\\mu }=0. These equations are the same as those for 3D (free) Vasiliev scalars, C and \\tilde{C}. The spin connection is eliminated by solving the equation of motion for the total action, and it is shown that in the resulting metric-like formalism, (BC)2 interaction terms are induced because of the torsion. The world-volume components of the matter field, C0, Cμ and C(μν), are introduced by contracting the local-frame index of C with those of the inverse vielbeins, E_a^{\\mu } and E_a^{(\\mu \
Non-minimal derivative coupling scalar field and bulk viscous dark energy
Energy Technology Data Exchange (ETDEWEB)
Mostaghel, Behrang [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moshafi, Hossein [Institute for Advanced Studies in Basic Sciences, Department of Physics, Zanjan (Iran, Islamic Republic of); Movahed, S.M.S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)
2017-08-15
Inspired by thermodynamical dissipative phenomena, we consider bulk viscosity for dark fluid in a spatially flat two-component Universe. Our viscous dark energy model represents phantom-crossing which avoids big-rip singularity. We propose a non-minimal derivative coupling scalar field with zero potential leading to accelerated expansion of the Universe in the framework of bulk viscous dark energy model. In this approach, the coupling constant, κ, is related to viscosity coefficient, γ, and the present dark energy density, Ω{sub DE}{sup 0}. This coupling is bounded as κ element of [-1/9H{sub 0}{sup 2}(1 - Ω{sub DE}{sup 0}), 0]. We implement recent observational data sets including a joint light-curve analysis (JLA) for SNIa, gamma ray bursts (GRBs) for most luminous astrophysical objects at high redshifts, baryon acoustic oscillations (BAO) from different surveys, Hubble parameter from HST project, Planck CMB power spectrum and lensing to constrain model free parameters. The joint analysis of JLA + GRBs + BAO + HST shows that Ω{sub DE}{sup 0} = 0.696 ± 0.010, γ = 0.1404 ± 0.0014 and H{sub 0} = 68.1 ± 1.3. Planck TT observation provides γ = 0.32{sup +0.31}{sub -0.26} in the 68% confidence limit for the viscosity coefficient. The cosmographic distance ratio indicates that current observed data prefer to increase bulk viscosity. The competition between phantom and quintessence behavior of the viscous dark energy model can accommodate cosmological old objects reported as a sign of age crisis in the ΛCDM model. Finally, tension in the Hubble parameter is alleviated in this model. (orig.)
Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment
Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.
2017-12-01
Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.
Multi-field coupled sensing network for health monitoring of composite bolted joint
Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav
2016-04-01
Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.
Directory of Open Access Journals (Sweden)
Guang Li
2016-09-01
Full Text Available Increasing pore pressure due to CO2 injection can lead to stress and strain changes of the reservoir. One of the safely standards for long term CO2 storage is whether stress and strain changes caused by CO2 injection will lead to irreversible mechanical damages of the reservoir and impact the integrity of caprock which could lead to CO2 leakage through previously sealing structures. Leakage from storage will compromise both the storage capacity and the perceived security of the project, therefore, a successful CO2 storage project requires large volumes of CO2 to be injected into storage site in a reliable and secure manner. Yougou hydrocarbon field located in Orods basin was chosen as storage site based on it's stable geological structure and low leakage risks. In this paper, we present a fluid pressure and stress-strain variations analysis for CO2 geological storage based on a geomechanical-fluid coupling model. Using nonlinear elasticity theory to describe the geomechanical part of the model, while using the Darcy's law to describe the fluid flow. Two parts are coupled together using the poroelasticity theory. The objectives of our work were: 1 evaluation of the geomechanical response of the reservoir to different CO2 injection scenarios. 2 assessment of the potential leakage risk of the reservoir caused by CO2 injection.
Electromagnetic core-mantle coupling associated with changes in the geomagnetic dipole field
International Nuclear Information System (INIS)
Watanabe, Hidehumi; Yukutake, Takesi.
1975-01-01
On a shelluar earth model electromagnetic coupling between the mantle and the core is investigated when the geomagnetic dipole field changes its intensity. Besides electromagnetic interaction between the dipole change and the relative slip of the mantle to the core, coupling of the dipole change with shear motions within the core is considered. If, in the core, the dipole change is limited within a surface layer shallower than a few hundred kilometers, the electromagnetic interaction gives the same order of magnitudes and phases of mantle oscillation as suggested from observation for three different periods, 8000, 400 and 65 years, provided that the electrical conductivity of the bottom part of the mantle is 10 -9 to 10 -8 emu. It is shown that mean motion of the surface shells of the core thus calculated is compatible with the observed variations in the drift velocity of the geomagnetic secular change. Except for surface shells, those in the deep interior is confirmed to oscillate almost with the same angular velocity, like a rigid rotation, for all the periods. (auth.)
Micro-/nanoscale multi-field coupling in nonlinear photonic devices
Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu
2017-08-01
The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.
Resonant atom-field interaction in large-size coupled-cavity arrays
International Nuclear Information System (INIS)
Ciccarello, Francesco
2011-01-01
We consider an array of coupled cavities with staggered intercavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity is excited, either the atomic dynamics is frozen or a Jaynes-Cummings-like energy exchange is triggered between the bound photonic mode and its atomic analog. As these phenomena are effective with any number of cavities, they are prone to be experimentally observed even in small-size arrays.
Zhang, Yifan
2016-08-18
For face naming in TV series or movies, a typical way is using subtitles/script alignment to get the time stamps of the names, and tagging them to the faces. We study the problem of face naming in videos when subtitles are not available. To this end, we divide the problem into two tasks: face clustering which groups the faces depicting a certain person into a cluster, and name assignment which associates a name to each face. Each task is formulated as a structured prediction problem and modeled by a hidden conditional random field (HCRF) model. We argue that the two tasks are correlated problems whose outputs can provide prior knowledge of the target prediction for each other. The two HCRFs are coupled in a unified graphical model called coupled HCRF where the joint dependence of the cluster labels and face name association is naturally embedded in the correlation between the two HCRFs. We provide an effective algorithm to optimize the two HCRFs iteratively and the performance of the two tasks on real-world data set can be both improved.
DEFF Research Database (Denmark)
Lange, Simon Lehnskov; Iwaszczuk, Krzysztof; Hoffmann, Matthias
2016-01-01
We present here a novel design for a coupled split ring resonator antenna optimized for time-domain electric field enhancement in the 0.1 to 1 terahertz (THz) range. The antenna is designed to be sensitive to the incident field polarization and seeks to avoid metal damage due to electron bombardm...
Entropy Squeezing in Coupled Field-Superconducting Charge Qubit with Intrinsic Decoherence
Institute of Scientific and Technical Information of China (English)
YAN Xue-Qun; SHAO Bin; ZOU Jian
2007-01-01
We investigate the entropy squeezing in the system of a superconducting charge qubit coupled to a single mode field. We find an exact solution of the Milburn equation for the system and discuss the influence of intrinsic decoherence on entropy squeezing. As a comparison, we also consider the variance squeezing. Our results show that in the absence of the intrinsic decoherence both entropy and variance squeezings have the same periodic properties of time,and occur at the same range of time. However, when the intrinsic decoherence is considered, we find that as the time going on the entropy squeezing disappears fast than the variance squeezing, there exists a range of time where entropy squeezing can occur but variance squeezing cannot.
International Nuclear Information System (INIS)
Zhang Ruijie; Jing Tao; Jie Wanqi; Liu Baicheng
2006-01-01
To simulate quantitatively the microstructural evolution in the solidification process of multicomponent alloys, we extend the phase-field model for binary alloys to multicomponent alloys with consideration of the solute interactions between different species. These interactions have a great influence not only on the phase equilibria but also on the solute diffusion behaviors. In the model, the interface region is assumed to be a mixture of solid and liquid with the same chemical potential, but with different compositions. The simulation presented is coupled with thermodynamic and diffusion mobility databases, which can accurately predict the phase equilibria and the solute diffusion transportation in the whole system. The phase equilibria in the interface and other thermodynamic quantities are obtained using Thermo-Calc through the TQ interface. As an example, two-dimensional computations for the dendritic growth in Al-Cu-Mg ternary alloy are performed. The quantitative solute distributions and diffusion matrix are obtained in both solid and liquid phases
A Coupled Hidden Markov Random Field Model for Simultaneous Face Clustering and Tracking in Videos
Wu, Baoyuan
2016-10-25
Face clustering and face tracking are two areas of active research in automatic facial video processing. They, however, have long been studied separately, despite the inherent link between them. In this paper, we propose to perform simultaneous face clustering and face tracking from real world videos. The motivation for the proposed research is that face clustering and face tracking can provide useful information and constraints to each other, thus can bootstrap and improve the performances of each other. To this end, we introduce a Coupled Hidden Markov Random Field (CHMRF) to simultaneously model face clustering, face tracking, and their interactions. We provide an effective algorithm based on constrained clustering and optimal tracking for the joint optimization of cluster labels and face tracking. We demonstrate significant improvements over state-of-the-art results in face clustering and tracking on several videos.
Exciton in vertically coupled type II quantum dots in threading magnetic field
Energy Technology Data Exchange (ETDEWEB)
Mendoza-Cantillo, J., E-mail: jhofry@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia); Universidad de la Guajira, Riohacha (Colombia); Escorcia-Salas, G. Elizabeth, E-mail: elizabethescorcia@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia); Mikhailov, I.D., E-mail: mikhail2811@gmail.com [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia); Sierra-Ortega, J., E-mail: jsierraortega@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia)
2014-11-15
We analyze the energy spectrum of a neutral exciton confined in a semiconductor heterostructure formed by two vertically coupled axially symmetrical type II quantum dots located close to each other. The electron in the structure is mainly located inside dots tunneling between them while the hole generally is placed in the exterior region close to the symmetry axis. Solutions of the Schrödinger equation are obtained by a variational separation of variables in the adiabatic limit. Numerical results are presented for the energies of bonding and anti-bonding lowest-lying of the exciton states and for the density of states for different InP/GaInP quantum dots' morphologies and the magnetic field strength values.
Stand alone power system coupling a PV field and a fuel cell: first experimental results
Energy Technology Data Exchange (ETDEWEB)
Busquet, S.; Labbe, J.; Leroux, P.; Metkemeijer, R.; Mayer, D. [ENSMP-CENERG, Sophia Antipolis (France)
2003-07-01
The purpose of the work, through the PVFC-SYS project, is to optimise the operation of a system coupling a photovoltaic field, an electrolyser, a gas storage, a fuel cell and a power management unit. A test bench is at present finalised in the Laboratory. All components have been selected for an optimal, automatic, safe and reliable operation of the complete system. Fully instrumented, this test bench furnishes new data concerning each component and the complete system behaviour for variable real weather conditions and different load demands. The paper describes the test bench, the simulation tool based on empirical model fitted to the component experimental data and the complete system performance for different load profiles along a year of operation. (orig.)
Liu, Wei; Yang, Shufeng; Li, Jingshe; Wang, Minghui
2017-07-01
A 3D transient numerical model of dephosphorization kinetics coupled with flow field in a top blown converter was built. Through the model the dephosphorization reaction rate influenced by the oxygen jets and the steel flow were simulated. The results show that the dephosphorization rate at the droplet metal-slag interface is two orders of magnitude faster than that at bath metal-slag interface. When the lance oxygen pressure increases from 0.7 to 0.8 MPa, the dephosphorization rate increases notably and the end content of P has a decrease of 19 %. However, when the pressure continues rising to 0.9 MPa, the dephosphorization rate has no significant increase. In addition, the lance height shows a nearly linear relation to the end P content of steel, that the lower the height, the faster the dephosphorization rate.
C-metric solution for conformal gravity with a conformally coupled scalar field
Energy Technology Data Exchange (ETDEWEB)
Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)
2017-02-15
The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.
Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation
Fortin, Jean-Francois
2013-01-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry-breaking arises both from a hidden sector and dynamically.
Energy Technology Data Exchange (ETDEWEB)
Starkov, Konstantin E., E-mail: kstarkov@ipn.mx
2015-06-12
In this paper we study some features of global dynamics for one Hamiltonian system arisen in cosmology which is formed by the minimally coupled field; this system was introduced by Maciejewski et al. in 2007. We establish that under some simple conditions imposed on parameters of this system all trajectories are unbounded in both of time directions. Further, we present other conditions for system parameters under which we localize the domain with unbounded dynamics; this domain is defined with help of bounds for values of the Hamiltonian level surface parameter. We describe the case when our system possesses periodic orbits which are found explicitly. In the rest of the cases we get some localization bounds for compact invariant sets. - Highlights: • Domain with unbounded dynamics is localized. • Equations for periodic orbits are given in one level set. • Localizations for compact invariant sets are got.
International Nuclear Information System (INIS)
Sulbhewar, Litesh N; Raveendranath, P
2014-01-01
An efficient piezoelectric smart beam finite element based on Reddy’s third-order displacement field and layerwise linear potential is presented here. The present formulation is based on the coupled polynomial field interpolation of variables, unlike conventional piezoelectric beam formulations that use independent polynomials. Governing equations derived using a variational formulation are used to establish the relationship between field variables. The resulting expressions are used to formulate coupled shape functions. Starting with an assumed cubic polynomial for transverse displacement (w) and a linear polynomial for electric potential (φ), coupled polynomials for axial displacement (u) and section rotation (θ) are found. This leads to a coupled quadratic polynomial representation for axial displacement (u) and section rotation (θ). The formulation allows accommodation of extension–bending, shear–bending and electromechanical couplings at the interpolation level itself, in a variationally consistent manner. The proposed interpolation scheme is shown to eliminate the locking effects exhibited by conventional independent polynomial field interpolations and improve the convergence characteristics of HSDT based piezoelectric beam elements. Also, the present coupled formulation uses only three mechanical degrees of freedom per node, one less than the conventional formulations. Results from numerical test problems prove the accuracy and efficiency of the present formulation. (paper)
Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining
2018-05-01
The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.
DEFF Research Database (Denmark)
Verbrugghe, Tim; Troch, Peter; Kortenhaus, Andreas
2016-01-01
Wave energy converters (WECs) need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC farm...... of a wave-structure interaction solver and a wave propagation model, both based on the potential flow theory. This paper discusses the coupling method and illustrates the functionality with a proof-of-concept. Additionally, a projection of the evolution of the numerical tool is given. It can be concluded...... is complex; it is difficult to simulate both near field and far field effects with a single numerical model, with relatively fast computing times. Within this research a numerical tool is developed to model near-field and far-field wave transformations caused by WECs. The tool is based on the coupling...
DEFF Research Database (Denmark)
Lyssenko, V. G.; Østergaard, John Erland; Hvam, Jørn Märcher
1999-01-01
Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we investig......Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we...... investigate a MBE-grown GaAs sample with a sequence of 15 single quantum wells having a successive increase of 1 monolayer in width ranging from 62 A to 102 A and with AlGaAs barriers of 17 Å....
Gauss–Bonnet cosmology with induced gravity and a non-minimally coupled scalar field on the brane
International Nuclear Information System (INIS)
Nozari, Kourosh; Fazlpour, Behnaz
2008-01-01
We construct a cosmological model with a non-minimally coupled scalar field on the brane, where Gauss–Bonnet and induced gravity effects are taken into account. This model has 5D character at both high and low energy limits but reduces to 4D gravity for intermediate scales. While induced gravity is a manifestation of the IR limit of the model, the Gauss–Bonnet term and non-minimal coupling of the scalar field and induced gravity are essentially related to the UV limit of the scenario. We study the cosmological implications of this scenario focusing on the late time behavior of the solutions. In this setup, non-minimal coupling plays the role of an additional fine-tuning parameter that controls the initial density of the predicted finite density big bang. Also, non-minimal coupling has important implications for the bouncing nature of the solutions
Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST
Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Yao, Feng-Rui; Lu, Shi-Yang; Wang, Ye-Long; Liu, Chun-Heng; Zhang, Yong-Cheng; Lü, Yue-Guang; Li, Shan-Dong
2015-12-01
A composite ceramic with nominal composition of 45.0 wt%(Ba0.5Sr0.5)TiO3-55.0 wt%MgO (acronym is BST-MgO) is sintered for fabricating a frequency reconfigurable aperture-coupled microstrip antenna. The calcined BST-MgO composite ceramic exhibits good microwave dielectric properties at X-band with appropriate dielectric constant ɛr around 85, lower dielectric loss tan δ about 0.01, and higher permittivity tunability 14.8% at 8.33 kV/cm. An ultrahigh E-field tunability of working frequency up to 11.0% (i.e., from 9.1 GHz to 10.1 GHz with a large frequency shift of 1000 MHz) at a DC bias field from 0 to 8.33 kV/cm and a considerably large center gain over 7.5 dB are obtained in the designed frequency reconfigurable microstrip antenna. These results demonstrate that BST materials are promising for the frequency reconfigurable antenna. Project supported by the National Natural Science Foundation of China (Grant No. 11074040) and the Key Project of Shandong Provincial Department of Science and Technology, China (Grant No. ZR2012FZ006).
Quantum Fluctuations and the Unruh effect in strongly-coupled conformal field theories
Cáceres, Elena; Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.
2010-06-01
Through the AdS/CFT correspondence, we study a uniformly accelerated quark in the vacuum of strongly-coupled conformal field theories in various dimensions, and determine the resulting stochastic fluctuations of the quark trajectory. From the perspective of an inertial observer, these are quantum fluctuations induced by the gluonic radiation emitted by the accelerated quark. From the point of view of the quark itself, they originate from the thermal medium predicted by the Unruh effect. We scrutinize the relation between these two descriptions in the gravity side of the correspondence, and show in particular that upon transforming the conformal field theory from Rindler space to the open Einstein universe, the acceleration horizon disappears from the boundary theory but is preserved in the bulk. This transformation allows us to directly connect our calculation of radiation-induced fluctuations in vacuum with the analysis by de Boer et al. of the Brownian motion of a quark that is on average static within a thermal medium. Combining this same bulk transformation with previous results of Emparan, we are also able to compute the stress-energy tensor of the Unruh thermal medium.
International Nuclear Information System (INIS)
Chang, Jui-Yung; Yang, Yue; Wang, Liping
2016-01-01
Coupled surface plasmon/phonon polaritons and hyperbolic modes are known to enhance radiative transfer across nanometer vacuum gaps but usually require identical materials. It becomes crucial to achieve strong near-field energy transfer between dissimilar materials for applications like near-field thermophotovoltaic and thermal rectification. In this work, we theoretically demonstrate enhanced near-field radiative transfer between a nanostructured metamaterial emitter and a graphene-covered planar receiver. Strong near-field coupling with two orders of magnitude enhancement in the spectral heat flux is achieved at the gap distance of 20 nm. By carefully selecting the graphene chemical potential and doping levels of silicon nanohole emitter and silicon plate receiver, the total near-field radiative heat flux can reach about 500 times higher than the far-field blackbody limit between 400 K and 300 K. The physical mechanism is elucidated by the near-field surface plasmon coupling with fluctuational electrodynamics and dispersion relations. The effects of graphene chemical potential, emitter and receiver doping levels, and vacuum gap distance on the near-field coupling and radiative energy transfer are analyzed in detail. - Highlights: • Near-field radiative transfer between a metamaterial and a graphene-covered plate is studied. • Effective medium theory with uniaxial optics is employed to model nanohole metamaterials. • Enhancement by 2 orders is found between dissimilar materials with graphene coating. • Extraordinary coupling of the nanostructured emitter with graphene is elucidated. • Effects of doping level of silicon and graphene chemical potential are investigated.
International Nuclear Information System (INIS)
Feu, W H M; Villas-Boas, J M; Cury, L A; Guimaraes, P S S; Vieira, G S; Tanaka, R Y; Passaro, A; Pires, M P; Landi, S M; Souza, P L
2009-01-01
A study of magnetotunnelling in weakly coupled multi-quantum wells reveals a new phenomenon which constitutes a kind of memory effect in the sense that the electrical resistance of the sample after application of the magnetic field is different from before and contains the information that a magnetic field was applied previously. The change in the electric field domain configuration triggered by the magnetic field was compared for two samples, one strictly periodic and another with a thicker quantum well inserted into the periodic structure. For applied biases at which two electric field domains are present in the sample, as the magnetic field is increased a succession of discontinuous reductions in the electrical resistance is observed due to the magnetic field-induced rearrangement of the electric field domains, i.e. the domain boundary jumps from well to well as the magnetic field is changed. The memory effect is revealed for the aperiodic structure as the electric field domain configuration triggered by the magnetic field remains stable after the field is reduced back to zero. This effect is related to the multi-stability in the current-voltage characteristics observed in some weakly coupled multi-quantum well structures.
Directory of Open Access Journals (Sweden)
Khaled Sadek
2009-10-01
Full Text Available In this paper, the reliability of capacitive shunt RF MEMS switches have been investigated using three dimensional (3D coupled multiphysics finite element (FE analysis. The coupled field analysis involved three consecutive multiphysics interactions. The first interaction is characterized as a two-way sequential electromagnetic (EM-thermal field coupling. The second interaction represented a one-way sequential thermal-structural field coupling. The third interaction portrayed a two-way sequential structural-electrostatic field coupling. An automated substructuring algorithm was utilized to reduce the computational cost of the complicated coupled multiphysics FE analysis. The results of the substructured FE model with coupled field analysis is shown to be in good agreement with the outcome of previously published experimental and numerical studies. The current numerical results indicate that the pull-in voltage and the buckling temperature of the RF switch are functions of the microfabrication residual stress state, the switch operational frequency and the surrounding packaging temperature. Furthermore, the current results point out that by introducing proper mechanical approaches such as corrugated switches and through-holes in the switch membrane, it is possible to achieve reliable pull-in voltages, at various operating temperatures. The performed analysis also shows that by controlling the mean and gradient residual stresses, generated during microfabrication, in conjunction with the proposed mechanical approaches, the power handling capability of RF MEMS switches can be increased, at a wide range of operational frequencies. These design features of RF MEMS switches are of particular importance in applications where a high RF power (frequencies above 10 GHz and large temperature variations are expected, such as in satellites and airplane condition monitoring.
Merzlikin, Boris S.; Shapiro, Ilya L.; Wipf, Andreas; Zanusso, Omar
2017-12-01
Using covariant methods, we construct and explore the Wetterich equation for a nonminimal coupling F (ϕ )R of a quantized scalar field to the Ricci scalar of a prescribed curved space. This includes the often considered nonminimal coupling ξ ϕ2R as a special case. We consider the truncations without and with scale- and field-dependent wave-function renormalization in dimensions between four and two. Thereby the main emphasis is on analytic and numerical solutions of the fixed point equations and the behavior in the vicinity of the corresponding fixed points. We determine the nonminimal coupling in the symmetric and spontaneously broken phases with vanishing and nonvanishing average fields, respectively. Using functional perturbative renormalization group methods, we discuss the leading universal contributions to the RG flow below the upper critical dimension d =4 .
Energy Technology Data Exchange (ETDEWEB)
Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk [Mathematics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Berrada, K. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Physics, Riyadh (Saudi Arabia); Eleuch, H. [Department of Physics, McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Department of Physics, Université de Montréal, 2900 boul. douard-Montpetit, Montreal, QC, H3T 1J4 (Canada)
2015-10-15
The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount of SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.
Simons, Rainee N.; Miranda, Felix A.
2006-01-01
In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1x1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.
Misconception regarding conventional coupling of fields and particles in XFEL codes
Energy Technology Data Exchange (ETDEWEB)
Geloni, Gianluca [Europeam XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [DESY Hamburg (Germany)
2016-01-15
Maxwell theory is usually treated in the laboratory frame under the standard time order, that is the usual light-signal clock synchronization. In contrast, particle tracking in the laboratory frame usually treats time as an independent variable. As a result, here we argue that the evolution of electron beams is usually treated according to the absolute time convention i.e. using a different time order defined by a non-standard clock synchronization procedure. This essential point has never received attention in the accelerator community. There are two possible ways of coupling fields and particles in this situation. The first, Lorentz's prerelativistic way, consists in a 'translation' of Maxwell's electrodynamics to the absolute time world-picture. The second, Einstein's way, consists in a 'translation' of particle tracking results to the electromagnetic world-picture, obeying the standard time order. Conventional particle tracking shows that the electron beam direction changes after a transverse kick, while the orientation of the microbunching phase front stays unvaried. Here we show that in the ultrarelativistic asymptotic v → c, the orientation of the planes of simultaneity, i.e. the orientation of the microbunching fronts, is always perpendicular to the electron beam velocity when the evolution of the modulated electron beam is treated under Einstein's time order. This effect allows for the production of coherent undulator radiation from a modulated electron beam in the kicked direction without suppression. We hold a recent FEL study at the LCLS as a direct experimental evidence that the microbunching wavefront indeed readjusts its direction after the electron beam is kicked by a large angle, limited only by the beamline aperture. In a previous paper we quantitatively described this result invoking the aberration of light effect, which corresponds to Lorentz's way of coupling fields and particles. The purpose of
Misconception regarding conventional coupling of fields and particles in XFEL codes
International Nuclear Information System (INIS)
Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni
2016-01-01
Maxwell theory is usually treated in the laboratory frame under the standard time order, that is the usual light-signal clock synchronization. In contrast, particle tracking in the laboratory frame usually treats time as an independent variable. As a result, here we argue that the evolution of electron beams is usually treated according to the absolute time convention i.e. using a different time order defined by a non-standard clock synchronization procedure. This essential point has never received attention in the accelerator community. There are two possible ways of coupling fields and particles in this situation. The first, Lorentz's prerelativistic way, consists in a 'translation' of Maxwell's electrodynamics to the absolute time world-picture. The second, Einstein's way, consists in a 'translation' of particle tracking results to the electromagnetic world-picture, obeying the standard time order. Conventional particle tracking shows that the electron beam direction changes after a transverse kick, while the orientation of the microbunching phase front stays unvaried. Here we show that in the ultrarelativistic asymptotic v → c, the orientation of the planes of simultaneity, i.e. the orientation of the microbunching fronts, is always perpendicular to the electron beam velocity when the evolution of the modulated electron beam is treated under Einstein's time order. This effect allows for the production of coherent undulator radiation from a modulated electron beam in the kicked direction without suppression. We hold a recent FEL study at the LCLS as a direct experimental evidence that the microbunching wavefront indeed readjusts its direction after the electron beam is kicked by a large angle, limited only by the beamline aperture. In a previous paper we quantitatively described this result invoking the aberration of light effect, which corresponds to Lorentz's way of coupling fields and particles. The purpose of
International Nuclear Information System (INIS)
Bae, In-Ho; Moon, Han Seb
2011-01-01
We present the continuous control of the light group velocity from subluminal to superluminal propagation with an on-resonant standing-wave coupling field in the 5S 1/2 -5P 1/2 transition of the Λ-type system of 87 Rb atoms. When a coupling field was changed from a traveling-wave to a standing-wave field by adjusting the power of a counterpropagating coupling field, the probe pulse propagation continuously transformed from subluminal propagation, due to electromagnetically induced transparency with the traveling-wave coupling field, to superluminal propagation, due to narrow enhanced absorption with the standing-wave coupling field. The group velocity of the probe pulse was measured to be approximately 0.004c to -0.002c as a function of the disparity between the powers of the copropagating and the counterpropagating coupling fields.
Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan
2018-02-01
Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.
He, Yong
2017-06-23
We utilize the surface plasmon field of a metal nanoparticle (MNP) to show strain-mediated coupling in a quantum dot-mechanical resonator hybrid system including a quantum dot (QD) embedded within a conical nanowire (NW) and a MNP in the presence of an external field. Based on the numerical solutions of the master equation, we find that a slow oscillation, originating from the strain-mediated coupling between the QD and the NW, appears in the time evolution of the plasmon field enhancement. The results show that the period (about [Formula: see text]) of the slow oscillation is equal to that of the mechanical resonator of NW, which suggests that the time-resolved measurement of the plasmon field enhancement can be easily achieved based on the current experimental conditions. Its amplitude increases with the increasing strain-mediated coupling strength, and under certain conditions there is a linear relationship between them. The slow oscillation of the plasmon field enhancement provides valuable tools for measurements of the mechanical frequency and the strain-mediated coupling strength.
Du, A. M.; Tsurutani, B. T.; Sun, W.
2012-04-01
Sudden energy release (ER) events in the midnight sector at auroral zone latitudes during intense (B > 10 nT), long-duration (T > 3 hr), northward (Bz > 0 nT = N) IMF magnetic clouds (MCs) during solar cycle 23 (SC23) have been examined in detail. The MCs with northward-then-southward (NS) IMFs were analyzed separately from MCs with southward-then-northward (SN) configurations. It is found that there is a lack of substorms during the N field intervals of NS clouds. In sharp contrast, ER events do occur during the N field portions of SN MCs. From the above two results it is reasonable to conclude that the latter ER events represent residual energy remaining from the preceding S portions of the SN MCs. We derive a new solar wind-magnetosphere coupling function during northward IMFs: ENIMF = α N-1/12V 7/3B1/2 + β V |Dstmin|. The first term on the right-hand side of the equation represents the energy input via "viscous interaction", and the second term indicates the residual energy stored in the magnetotail. It is empirically found that the magnetosphere/magnetotail can store energy for a maximum of ~ 4 hrs before it has dissipated away. This concept is defining one for ER/substorm energy storage. Our scenario indicates that the rate of solar wind energy injection into the magnetosphere/magnetotail determines the form of energy release into the magnetosphere/ionosphere. This may be more important than the dissipation mechanism itself (in understanding the form of the release). The concept of short-term energy storage is applied for the solar case. It is argued that it may be necessary to identify the rate of energy input into solar magnetic loop systems to be able to predict the occurrence of solar flares.
EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation
Bony, Sandrine; Stevens, Bjorn; Ament, Felix; Bigorre, Sebastien; Chazette, Patrick; Crewell, Susanne; Delanoë, Julien; Emanuel, Kerry; Farrell, David; Flamant, Cyrille; Gross, Silke; Hirsch, Lutz; Karstensen, Johannes; Mayer, Bernhard; Nuijens, Louise; Ruppert, James H.; Sandu, Irina; Siebesma, Pier; Speich, Sabrina; Szczap, Frédéric; Totems, Julien; Vogel, Raphaela; Wendisch, Manfred; Wirth, Martin
2017-11-01
Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.
Anomalous triple gauge couplings in the effective field theory approach at the LHC
Energy Technology Data Exchange (ETDEWEB)
Falkowski, Adam [Laboratoire de Physique Théorique,Bat. 210, Université Paris-Sud, 91405 Orsay (France); González-Alonso, Martín [IPN de Lyon/CNRS,Universite Lyon 1, Villeurbanne (France); Greljo, Admir [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); Faculty of Science, University of Sarajevo,Zmaja od Bosne 33-35, 71000 Sarajevo (Bosnia and Herzegovina); Marzocca, David [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); Son, Minho [Department of Physics, Korea Advanced Institute of Science and Technology,291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)
2017-02-22
We discuss how to perform consistent extractions of anomalous triple gauge couplings (aTGC) from electroweak boson pair production at the LHC in the Standard Model Effective Field Theory (SMEFT). After recasting recent ATLAS and CMS searches in pp→WZ(WW)→ℓ{sup ′}νℓ{sup +}ℓ{sup −}(ν{sub ℓ}) channels, we find that: (a) working consistently at order Λ{sup −2} in the SMEFT expansion the existing aTGC bounds from Higgs and LEP-2 data are not improved, (b) the strong limits quoted by the experimental collaborations are due to the partial Λ{sup −4} corrections (dimension-6 squared contributions). Using helicity selection rule arguments we are able to explain the suppression in some of the interference terms, and discuss conditions on New Physics (NP) models that can benefit from such LHC analyses. Furthermore, standard analyses assume implicitly a quite large NP scale, an assumption that can be relaxed by imposing cuts on the underlying scale of the process (√(ŝ)). In practice, we find almost no correlation between √(ŝ) and the experimentally accessible quantities, which complicates the SMEFT interpretation. Nevertheless, we provide a method to set (conservative) aTGC bounds in this situation, and recast the present searches accordingly. Finally, we introduce a simple NP model for aTGC to compare the bounds obtained directly in the model with those from the SMEFT analysis.
Canonical quantisation via conditional symmetries of the closed FLRW model coupled to a scalar field
International Nuclear Information System (INIS)
Zampeli, Adamantia
2015-01-01
We study the classical, quantum and semiclassical solutions of a Robertson-Walker spacetime coupled to a massless scalar field. The Lagrangian of these minisuperspace models is singular and the application of the theory of Noether symmetries is modified to include the conditional symmetries of the corresponding (weakly vanishing) Hamiltonian. These are found to be the simultaneous symmetries of the supermetric and the superpotential. The quantisation is performed adopting the Dirac proposal for constrained systems. The innovation in the approach we use is that the integrals of motion related to the conditional symmetries are promoted to operators together with the Hamiltonian and momentum constraints. These additional conditions imposed on the wave function render the system integrable and it is possible to obtain solutions of the Wheeler-DeWitt equation. Finally, we use the wave function to perform a semiclassical analysis following Bohm and make contact with the classical solution. The analysis starts with a modified Hamilton-Jacobi equation from which the semiclassical momenta are defined. The solutions of the semiclassical equations are then studied and compared to the classical ones in order to understand the nature and behaviour of the classical singularities. (paper)
Higher order alchemical derivatives from coupled perturbed self-consistent field theory.
Lesiuk, Michał; Balawender, Robert; Zachara, Janusz
2012-01-21
We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics
EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation
Bony, Sandrine; Stevens, Bjorn; Ament, Felix; Bigorre, Sebastien; Chazette, Patrick; Crewell, Susanne; Delanoë, Julien; Emanuel, Kerry; Farrell, David; Flamant, Cyrille; Gross, Silke; Hirsch, Lutz; Karstensen, Johannes; Mayer, Bernhard; Nuijens, Louise; Ruppert, James H.; Sandu, Irina; Siebesma, Pier; Speich, Sabrina; Szczap, Frédéric; Totems, Julien; Vogel, Raphaela; Wendisch, Manfred; Wirth, Martin
Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of tradecumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of tradecumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.
Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature
International Nuclear Information System (INIS)
Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.
2009-01-01
We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), and (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.
Peng, Yu-Xiang; Wang, Kai-Jun; He, Meng-Dong; Luo, Jian-Hua; Zhang, Xin-Min; Li, Jian-Bo; Tan, Shi-Hua; Liu, Jian-Qiang; Hu, Wei-Da; Chen, Xiaoshuang
2018-04-01
In this paper, we demonstrate the effect of polarization conversion in a plasmonic metasurface structure, in which each unit cell consists of a metal bar and four metal split-ring resonators (SRRs). Such effect is attributed to the fact that the dark plasmon mode of SRRs (bar), which radiates cross-polarized component, is induced by the bright plasmon mode of bar (SRRs) due to the electromagnetic near-field coupling between bar and SRRs. We find that there are two ways to achieve a large cross-polarized component in our proposed metasurface structure. The first way is realized when the dark plasmon mode of bar (SRRs) is in resonance, while at this time the bright plasmon mode of SRRs (bar) is not at resonant state. The second way is realized when the bright plasmon mode of SRRs (bar) is resonantly excited, while the dark plasmon mode of bar (SRRs) is at nonresonant state. It is also found that the linearly polarized light can be rotated by 56.50 after propagation through the metasurface structure. Furthermore, our proposed metasurface structure exhibits an asymmetric transmission for circularly polarized light. Our findings take a further step in developing integrated metasurface-based photonics devices for polarization manipulation and modulation.
International Nuclear Information System (INIS)
Erdinc, Ahmet; Canko, Osman; Keskin, Mustafa
2006-01-01
We have studied the antiferromagnetic Blume-Emery-Griffiths model with the repulsive biquadratic coupling in an external magnetic field using the lowest approximation of the cluster variation method which is identical to the mean-field approximation. First, we have investigated the thermal variations of the sublattice magnetizations and obtained four different main topological types. Then, we have calculated the phase diagrams and five main different phase diagram topologies are found. Finally, the discussion and comparison of the phase diagrams are made
Energy Technology Data Exchange (ETDEWEB)
Erdinc, Ahmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr
2006-06-15
We have studied the antiferromagnetic Blume-Emery-Griffiths model with the repulsive biquadratic coupling in an external magnetic field using the lowest approximation of the cluster variation method which is identical to the mean-field approximation. First, we have investigated the thermal variations of the sublattice magnetizations and obtained four different main topological types. Then, we have calculated the phase diagrams and five main different phase diagram topologies are found. Finally, the discussion and comparison of the phase diagrams are made.
International Nuclear Information System (INIS)
Zazula, J.M.
1984-01-01
This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Bøknæs, Niels; Nielsen, P.L.
factors leading to variations and uncertainties in prediction of the right process parameters. The current work is focused on modelling of OH of solid food pieces of varying sizes cooked in one batch. A 3D mathematical model of coupled heat transfer and electric field during OH of shrimps has been...
Anderson, David; Yunes, Nicolás
2017-09-01
Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.
International Nuclear Information System (INIS)
Coelho, R.; Lazzaro, E.
2000-01-01
The unlocking of static resistive tearing modes by rotating external magnetic perturbations such as those which may arise from the natural tokamak error-field is discussed. For a single mode the balance between the accelerating torque imparted by the error-field and the braking torque due to the interaction of the mode with the wall sets a threshold for the error-field current [H. P. Furth et al. Phys. Fluids 6, 459 (1963)], below which the mode frequency will not lock to the error-field frequency. If the mode resonant with the error-field is coupled to another mode with a rational surface located elsewhere in the plasma, the unlocking process is more elaborated and substantial modifications to the current threshold are expected. The present analysis may contribute to the explanation of some mode unlocking events in tokamak discharges with a non negligible error-field. (orig.)
Near field resonant inductive coupling to power electronic devices dispersed in water
Kuipers, J.; Bruning, H.; Bakker, S.; Rijnaarts, H.H.M.
2012-01-01
The purpose of this research was to investigate inductive coupling as a way to wirelessly power electronic devices dispersed in water. The most important parameters determining this efficiency are: (1) the coupling between transmitting and receiving coils, (2) the quality factors of the transmitting
Magnetic-Field Dependence of Tunnel Couplings in Carbon Nanotube Quantum Dots
DEFF Research Database (Denmark)
Grove-Rasmussen, Kasper; Grap, S.; Paaske, Jens
2012-01-01
By means of sequential and cotunneling spectroscopy, we study the tunnel couplings between metallic leads and individual levels in a carbon nanotube quantum dot. The levels are ordered in shells consisting of two doublets with strong- and weak-tunnel couplings, leading to gate-dependent level...
Jin, Q.; Zheng, Z.; Zhu, C.
2006-12-01
Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the
Propagator for a spin-Bose system with the Bose field coupled to a reservoir of harmonic oscillators
Banerjee, S
2003-01-01
We consider the general problem of a single two-level atom interacting with a multimode radiation field (without the rotating-wave approximation), and additionally take the field to be coupled to a thermal reservoir. Using the method of bosonization of the spin operators in the Hamiltonian, and working in the Bargmann representation for all the boson operators, we obtain the propagator for the composite system using the techniques of functional integration, under a reasonable approximation scheme. The propagator is explicitly evaluated for a simplified version of the system with one spin and a dynamically coupled single-mode field. The results are also checked on the known problem of quantum Brownian motion.
International Nuclear Information System (INIS)
Adam, J.; Jacquinot, J.
1977-04-01
Detailed calculations concerning the field structure and excitation of the fast magnetosonic wave are presented keeping in mind RF heating of a Tokamak near the ion cyclotron harmonic. The new contributions are - a discussion of the cylindrical problem in an inhomogeneous plasma including surface waves and the splitting of the eigenmodes by the poloidal field - a calculation of the field structure in the toroidal cavity resonator and the application to mode tracking - a formulation of the loading impedance of various coupling structures: array of coils in the low frequency limit or transmission lines in the high frequency case
Nakonieczna, Anna; Yeom, Dong-han
2016-05-01
Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.
Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai
2011-01-01
The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...
DEFF Research Database (Denmark)
Sakellariou, Jason; Roudi, Yasser; Mezard, Marc
2012-01-01
We study how the degree of symmetry in the couplings influences the performance of three mean field methods used for solving the direct and inverse problems for generalized Sherrington-Kirkpatrick models. In this context, the direct problem is predicting the potentially time-varying magnetizations...... than the other two approximations, TAP outperforms MF when the coupling matrix is nearly symmetric, while MF works better when it is strongly asymmetric. For the inverse problem, MF performs better than both TAP and nMF, although an ad hoc adjustment of TAP can make it comparable to MF. For high...
Hess, R; Neubert, H; Seifert, A; Bierbaum, S; Hart, D A; Scharnweber, D
2012-12-01
The purpose of this study was to develop a new apparatus for in vitro studies applying low frequency electrical fields to cells without interfering side effects like biochemical reactions or magnetic fields which occur in currently available systems. We developed a non-invasive method by means of the principle of transformer-like coupling where the magnetic field is concentrated in a toroid and, therefore, does not affect the cell culture. Next to an extensive characterization of the electrical field parameters, initial cell culture studies have focused on examining the response of bone marrow-derived human mesenchymal stem cells (MSCs) to pulsed electrical fields. While no significant differences in the proliferation of human MSCs could be detected, significant increases in ALP activity as well as in gene expression of other osteogenic markers were observed. The results indicate that transformer-like coupled electrical fields can be used to influence osteogenic differentiation of human MSCs in vitro and can pose a useful tool in understanding the influence of electrical fields on the cellular and molecular level.
International Nuclear Information System (INIS)
Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen
2011-01-01
This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied. (interdisciplinary physics and related areas of science and technology)
International Nuclear Information System (INIS)
Zhou, W.; Arthur, R.; Xu, T.; Pruess, K.
2005-01-01
Full text of publication follows: Bentonite is planned for use as a buffer material in the Swedish nuclear waste disposal concept (KBS-3). Upon emplacement, the buffer is expected to experience a complex set of coupled processes involving heating, re-saturation, reaction and transport of groundwater imbibed from the host rock. The effect of these processes may eventually lead to changes in desirable physical and rheological properties of the buffer, but these processes are not well understood. In this paper, a new quantitative model is evaluated to help improve our understanding of the long-term performance of buffer materials. This is an extension of a previous study [1] that involved simple thermal and chemical models applied to a fully saturated buffer. The thermal model in the present study uses heating histories for spent fuel in a single waste package [2]. The model uses repository dimensions, such as borehole and tunnel spacings [2], which affect the temperature distribution around the waste package. At the time of emplacement, bentonite is partially saturated with water having a different composition than the host-rock groundwater. The present model simulates water imbibition from the host rock into the bentonite under capillary and hydraulic pressure gradients. The associated chemical reactions and solute transport are simulated using Aespoe water composition [3]. The initial mineralogy of bentonite is assumed to be dominated by Na-smectite with much smaller amounts of anhydrite and calcite. Na-smectite dissolution is assumed to be kinetically-controlled while all other reactions are assumed to be at equilibrium controlled. All equilibrium and kinetic constants are temperature dependent. The modeling tool used is TOUGHREACT, developed by Lawrence Berkeley National Laboratory [4]. TOUGHREACT is a numerical model that is well suited for near-field simulations because it accounts for feedback between porosity and permeability changes from mineral
Directory of Open Access Journals (Sweden)
Marek Danielewski
2015-01-01
Full Text Available The problem of Kirkendall’s trajectories in finite, three- and one-dimensional ternary diffusion couples is studied. By means of the parabolic transformation method, we calculate the solute field, the Kirkendall marker velocity, and displacement fields. The velocity field is generally continuous and can be integrated to obtain a displacement field that is continuous everywhere. Special features observed experimentally and reported in the literature are also studied: (i multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple evolve into two locations as a result of the initial distribution, (ii multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple move into two locations due to composition dependent mobilities, and (iii a Kirkendall plane that coincides with the interphase interface. The details of the deformation (material trajectories in these special situations are given using both methods and are discussed in terms of the stress-free strain rate associated with the Kirkendall effect. Our nonlinear transform generalizes the diagonalization method by Krishtal, Mokrov, Akimov, and Zakharov, whose transform of diffusivities was linear.
Barnak, D. H.; Davies, J. R.; Fiksel, G.; Chang, P.-Y.; Zabir, E.; Betti, R.
2018-03-01
Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015)], was developed at the Laboratory for Laser Energetics to conduct magnetized HEDP experiments on both the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495-506 (1997)] and OMEGA EP [J. H. Kelly et al., J. Phys. IV France 133, 75 (2006) and L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)] laser systems. Extremely high magnetic fields are a necessity for magnetized HEDP, and the need for stronger magnetic fields continues to drive the redevelopment of the MIFEDS device. It is proposed in this paper that a magnetic coil that is inductively coupled rather than directly connecting to the MIFEDS device can increase the overall strength of the magnetic field for HEDP experiments by increasing the efficiency of energy transfer while decreasing the effective magnetized volume. A brief explanation of the energy delivery of the MIFEDS device illustrates the benefit of inductive coupling and is compared to that of direct connection for varying coil size and geometry. A prototype was then constructed to demonstrate a 7-fold increase in energy delivery using inductive coupling.
Energy Technology Data Exchange (ETDEWEB)
Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Ben Mahrsia, R.; Bouzaiene, L.; Maaref, H.
2013-12-15
In this paper we explore the effects of the structural dimensions, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). The analytical expression of the NOR is analyzed by using the density matrix formalism, the effective mass and the Finite Difference Method (FDM). Obtained results show that the NOR obtained with this coupled system is not a monotonic function of the barrier width, electromagnetic fields, pressure and temperature. Also, calculated results reveal that the resonant peaks of the NOR can be blue-shifted or red-shifted energies depending on the energy of the lowest confined states in the VCQDs structure. In addition, this condition can be controlled by changes in the structural dimensions and the external proofs mentioned above. -- Highlights: • In this paper we explore the effects of the barrier width, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). • The calculated results reveal that the resonant peaks of the NOR can be blue-shifted to large photon energies or red-shifted to lower photon energies. • In this paper, all parameters: electromagnetic fields, pressure and temperature effects are introduced and investigated. • The resonant energy and the magnitude of the NOR are controlled and adjusted.
DEFF Research Database (Denmark)
Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.
1992-01-01
A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... to the full configuration interaction limit. Comparisons are made with state-averaged MCSCF results for MgH2 and finite-difference configuration interaction by perturbation with multiconfigurational zeroth-order wave function reflected by interactive process (CIPSI) results for BH....
Panotopoulos, Grigoris; Rincón, Ángel
2018-04-01
In the present work we study the propagation of a probe minimally coupled scalar field in Einstein-power-Maxwell charged black hole background in (1 +2 ) dimensions. We find analytical expressions for the reflection coefficient as well as for the absorption cross section in the low energy regime, and we show graphically their behavior as functions of the frequency for several values of the free parameters of the theory.
Energy Technology Data Exchange (ETDEWEB)
Correa, J.D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2015-09-01
A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field.
Energy Technology Data Exchange (ETDEWEB)
Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044 (China)
2015-03-16
In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.
International Nuclear Information System (INIS)
Dahmen, Bernd
1994-01-01
A systematic method to obtain strong coupling expansions for scattering quantities in hamiltonian lattice field theories is presented. I develop the conceptual ideas for the case of the hamiltonian field theory analogue of the Ising model, in d space and one time dimension. The main result is a convergent series representation for the scattering states and the transition matrix. To be explicit, the special cases of d=1 and d=3 spatial dimensions are discussed in detail. I compute the next-to-leading order approximation for the phase shifts. The application of the method to investigate low-energy scattering phenomena in lattice gauge theory and QCD is proposed. ((orig.))
International Nuclear Information System (INIS)
Correa, J.D.; Mora-Ramos, M.E.; Duque, C.A.
2015-01-01
A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-López, Mariam; Kumar, K. Sravan; Marto, João [Departamento de Física, Universidade da Beira Interior, Rua Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal); Morais, João [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); Zhuk, Alexander, E-mail: mbl@ubi.pt, E-mail: sravan@ubi.pt, E-mail: jmarto@ubi.pt, E-mail: jviegas001@ikasle.ehu.eus, E-mail: ai.zhuk2@gmail.com [Astronomical Observatory, Odessa National University, Street Dvoryanskaya 2, Odessa 65082 (Ukraine)
2016-07-01
In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K -essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K -essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K -essence models: (i) the pure kinetic K -essence field, (ii) a K -essence with a constant speed of sound and (iii) the K -essence model with the Lagrangian bX + cX {sup 2}− V (φ). We demonstrate that if the K -essence is coupled, all these K -essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.
Self-duality in Maxwell-Chern-Simons theories with non minimal coupling with matter field
Chandelier, F; Masson, T; Wallet, J C
2000-01-01
We consider a general class of non-local MCS models whose usual minimal coupling to a conserved current is supplemented with a (non-minimal) magnetic Pauli-type coupling. We find that the considered models exhibit a self-duality whenever the magnetic coupling constant reaches a special value: the partition function is invariant under a set of transformations among the parameter space (the duality transformations) while the original action and its dual counterpart have the same form. The duality transformations have a structure similar to the one underlying self-duality of the (2+1)-dimensional Z sub n - Abelian Higgs model with Chern-Simons and bare mass term.
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
Report on Modeling Coupled Processes in the Near Field of a Clay Repository
Energy Technology Data Exchange (ETDEWEB)
Liu, Hui -Hai [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, Jim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Lianchong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Asahina, Daisuke [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Fei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2012-08-01
Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world. Coupled thermal, hydrological, mechanical, and chemical (THMC) processes have a significant impact on the long-term safety of a clay repository. For example, the excavation damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability. This report documents results from three R&D activities: (1) implementation and validation of constitutive relationships, (2) development of a discrete fracture network (DFN) model for investigating coupled processes in the EDZ, and (3) development of a THM model for the FE tests at Mont Terri, Switzerland, for the purpose of model validation. The overall objective of these activities is to provide an improved understanding of EDZ evolution in clay repositories and the associated coupled processes, and to develop advanced relevant modeling capabilities.
Wang, Dan; Du, Haoyuan; Wang, Linxiang; Melnik, Roderick
2018-05-01
The fully coupled thermo-electro-mechanical properties of nanoscale ferroelectric actuators are investigated by a phase field model. Firstly, the thermal effect is incorporated into the commonly-used phase field model for ferroelectric materials in a thermodynamic consistent way and the governing equation for the temperature field is derived. Afterwards, the modified model is numerically implemented to study a selected prototype of the ferroelectric actuators, where strain associated with electric field-induced non-180° domain switching is employed. The temperature variation and energy flow in the actuation process are presented, which enhances our understanding of the working mechanism of the actuators. Furthermore, the influences of the input voltage frequency and the thermal boundary condition on the temperature variation are demonstrated and carefully discussed in the context of thermal management for real applications.
The concept of coupling impedance in the self-consistent plasma wake field excitation
International Nuclear Information System (INIS)
Fedele, R.; Akhter, T.; De Nicola, S.; Migliorati, M.; Marocchino, A.; Massimo, F.; Palumbo, L.
2016-01-01
Within the framework of the Vlasov–Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accelerators. It is shown that also here the coupling impedance is a very useful tool for the Nyquist-type stability analysis. Examples of specific physical situations are finally illustrated.
Directory of Open Access Journals (Sweden)
Xujian Shu
2018-03-01
Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.
The mode coupling theory in the FDR-preserving field theory of interacting Brownian particles
International Nuclear Information System (INIS)
Kim, Bongsoo; Kawasaki, Kyozi
2007-01-01
We develop a renormalized perturbation theory for the dynamics of interacting Brownian particles, which preserves the fluctuation-dissipation relation order by order. We then show that the resulting one-loop theory gives a closed equation for the density correlation function, which is identical with that in the standard mode coupling theory. (fast track communication)
Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network
International Nuclear Information System (INIS)
Deng, Bin; Wang, Lin; Wang, Jiang; Wei, Xi-le; Yu, Hai-tao
2014-01-01
Highlights: • We study effects of endogenous fields on stochastic resonance in a neural network. • Stochastic resonance can be notably enhanced by endogenous field feedback. • Endogenous field feedback delay plays a vital role in stochastic resonance. • The parameters of low-passed filter play a subtle role in SR. - Abstract: Endogenous field, evoked by structured neuronal network activity in vivo, is correlated with many vital neuronal processes. In this paper, the effects of endogenous fields on stochastic resonance (SR) in a randomly connected neuronal network are investigated. The network consists of excitatory and inhibitory neurons and the axonal conduction delays between neurons are also considered. Numerical results elucidate that endogenous field feedback results in more rhythmic macroscope activation of the network for proper time delay and feedback coefficient. The response of the network to the weak periodic stimulation can be notably enhanced by endogenous field feedback. Moreover, the endogenous field feedback delay plays a vital role in SR. We reveal that appropriately tuned delays of the feedback can either induce the enhancement of SR, appearing at every integer multiple of the weak input signal’s oscillation period, or the depression of SR, appearing at every integer multiple of half the weak input signal’s oscillation period for the same feedback coefficient. Interestingly, the parameters of low-passed filter which is used in obtaining the endogenous field feedback signal play a subtle role in SR
Energy Technology Data Exchange (ETDEWEB)
Hashino, Katsuya, E-mail: hashino@jodo.sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kakizaki, Mitsuru, E-mail: kakizaki@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kanemura, Shinya, E-mail: kanemu@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Ko, Pyungwon, E-mail: pko@kias.re.kr [School of Physics, KIAS, Seoul 02455 (Korea, Republic of); Matsui, Toshinori, E-mail: matsui@kias.re.kr [School of Physics, KIAS, Seoul 02455 (Korea, Republic of)
2017-03-10
We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.
International Nuclear Information System (INIS)
Anselmi, Damiano
2003-01-01
I study some aspects of the renormalization of quantum field theories with infinitely many couplings in arbitrary spacetime dimensions. I prove that when the spacetime manifold admits a metric of constant curvature, the propagator is not affected by terms with higher derivatives. More generally, certain Lagrangian terms are not turned on by renormalization, if they are absent at the tree level. This restricts the form of the action of a non-renormalizable theory, and has applications to quantum gravity. The new action contains infinitely many couplings, but not all of the ones that might have been expected. In quantum gravity, the metric of constant curvature is an extremal, but not a minimum, of the complete action. Nonetheless, it appears to be the right perturbative vacuum, at least when the curvature is negative, suggesting that the quantum vacuum has a negative asymptotically constant curvature. The results of this paper give also a set of rules for a more economical use of effective quantum field theories and suggest that it might be possible to give mathematical sense to theories with infinitely many couplings at high energies, to search for physical predictions
Directory of Open Access Journals (Sweden)
Katsuya Hashino
2017-03-01
Full Text Available We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.
Kim, Ilkyu
Recent developments in mobile communications have led to an increased appearance of short-range communications and high data-rate signal transmission. New technologies provides the need for an accurate near-field coupling analysis and novel antenna designs. An ability to effectively estimate the coupling within the near-field region is required to realize short-range communications. Currently, two common techniques that are applicable to the near-field coupling problem are 1) integral form of coupling formula and 2) generalized Friis formula. These formulas are investigated with an emphasis on straightforward calculation and accuracy for various distances between the two antennas. The coupling formulas are computed for a variety of antennas, and several antenna configurations are evaluated through full-wave simulation and indoor measurement in order to validate these techniques. In addition, this research aims to design multi-functional and high performance antennas based on MEMS (Microelectromechanical Systems) switches, EBG (Electromagnetic Bandgap) structures, and septum polarizers. A MEMS switch is incorporated into a slot loaded patch antenna to attain frequency reconfigurability. The resonant frequency of the patch antenna can be shifted using the MEM switch, which is actuated by the integrated bias networks. Furthermore, a high gain base-station antenna utilizing beam-tilting is designed to maximize gain for tilted beam applications. To realize this base-station antenna, an array of four dipole-EBG elements is constructed to implement a fixed down-tilt main beam with application in base station arrays. An improvement of the operating range with the EBG-dipole array is evaluated using a simple linkbudget analysis. The septum polarizer has been widely used in circularly polarized antenna systems due to its simple and compact design and high quality of circularity. In this research, the sigmoid function is used to smoothen the edge in the septum design, which
Unconventional low-field magnetic response of a diffusive ring with spin–orbit coupling
International Nuclear Information System (INIS)
Patra, Moumita; Maiti, Santanu K.
2017-01-01
We report an unconventional behavior of electron transport in the limit of zero magnetic flux in a one-dimensional disordered ring, be it completely random or any correlated one, subjected to Rashba spin–orbit (SO) coupling. It exhibits much higher circulating current compared to a fully perfect ring for a wide range of SO coupling yielding larger electrical conductivity which is clearly verified from our Drude weight analysis. - Highlights: • Unconventional behavior of electron transport in a 1D disordered ring is reported. • Interplay between Rashba So interaction and disorder is discussed. • Disordered ring provides much higher current compared to a perfect one. • Results are independent with disorderness, be it correlated or random. • MI transition and selective switching effects are discussed.
A fully analytic treatment of resonant inductive coupling in the far field
Sedwick, Raymond J.
2012-02-01
For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation.
Unconventional low-field magnetic response of a diffusive ring with spin–orbit coupling
Energy Technology Data Exchange (ETDEWEB)
Patra, Moumita; Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in
2017-01-30
We report an unconventional behavior of electron transport in the limit of zero magnetic flux in a one-dimensional disordered ring, be it completely random or any correlated one, subjected to Rashba spin–orbit (SO) coupling. It exhibits much higher circulating current compared to a fully perfect ring for a wide range of SO coupling yielding larger electrical conductivity which is clearly verified from our Drude weight analysis. - Highlights: • Unconventional behavior of electron transport in a 1D disordered ring is reported. • Interplay between Rashba So interaction and disorder is discussed. • Disordered ring provides much higher current compared to a perfect one. • Results are independent with disorderness, be it correlated or random. • MI transition and selective switching effects are discussed.
Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Jiang, Yunlu; Wei, Qiuping; Yu, Zhiming; Long, Hangyu; Zhu, Hekang; Xie, Youneng; Ma, Li; Lin, Cheng-Te; Su, Weitao
2018-03-01
In this paper, both electric field and magnetic field were used to assist the hot filament chemical vapor deposition (HFCVD) and we systematically investigated the effects of which on the (1) phase composition, (2) grain size, (3) thickness and (4) preferred orientation of diamond films through SEM, Raman and XRD. The application of magnetic field in electric field, so called ‘the magnetic and electric coupling fields’, enhanced the graphitization and refinement of diamond crystals, slowed down the decrease of film thickness along with the increase of bias current, and suppressed diamond (100) orientation. During the deposition process, the electric field provided additional energy to HFCVD system and generated large number of energetic particles which might annihilate at the substrate and lose kinetic energy, while the Lorentz force, provided by magnetic field, could constrict charged particles (including electrons) to do spiral movement, which prolonged their moving path and life, thus the system energy increased. With the graphitization of diamond films intensified, the preferred orientation of diamond films completely evolved from (110) to (100), until the orientation and diamond phase disappeared, which can be attributed to (I) the distribution and concentration ratio of carbon precursors (C2H2 and CH3) and (II) graphitization sequence of diamond crystal facets. Since the electron field emission property of carbon film is sensitive to the phase composition, thickness and preferred orientation, nano- carbon cones, prepared by the negative bias current of 20 mA and magnetic field strength of 80 Gauss, exhibited the lowest turn-on field of 6.1 V -1 μm-1.
International Nuclear Information System (INIS)
Kanter, F.J.J. de; Sagdeev, R.Z.
1978-01-01
Magnetic field dependent biradical CIDNP has been observed in the natural abundance 13 C and 1 H NMR spectra taken immediately after irradiation of cyclic ketones in an auxillary magnet. The 13 C field dependence curves differ from the corresponding 1 H curves: The maxima of the curves for the C 11 and C 12 biradicals appear at a higher magnetic field strength, and the 13 C curves are broader than the 1 H curves. These differences are due to the different magnitudes of the hyperfine coupling constants for 13 C and 1 H and can be accounted for by a model based on a stochastic Liouville method which incorporates the dynamics of the biradicals. (Auth.)
International Nuclear Information System (INIS)
Peng Juan; Li Shu-Shen
2012-01-01
We study the electronic spectrum of coupled quantum dots (QDs) arranged as a graphene hexagonal lattice in the presence of an external perpendicular magnetic field. In our tight-binding model, the effect of the magnetic field is included in both the Peierls phase of the Hamiltonian and the tight-binding basis Wannier function. The energy of the system is analyzed when the magnetic flux through the lattice unit cell is a rational fraction of the quantum flux. The calculated spectrum has recursive properties, similar to those of the classical Hofstadter butterfly. However, unlike the ideal Hofstadter butterfly structure, our result is asymmetric since the impacts of the specific material and the magnetic field on the wavefunctions are included, making the results more realistic. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling.
Kehr, S C; Liu, Y M; Martin, L W; Yu, P; Gajek, M; Yang, S-Y; Yang, C-H; Wenzel, M T; Jacob, R; von Ribbeck, H-G; Helm, M; Zhang, X; Eng, L M; Ramesh, R
2011-01-01
A planar slab of negative-index material works as a superlens with sub-diffraction-limited resolution, as propagating waves are focused and, moreover, evanescent waves are reconstructed in the image plane. Here we demonstrate a superlens for electric evanescent fields with low losses using perovskites in the mid-infrared regime. The combination of near-field microscopy with a tunable free-electron laser allows us to address precisely the polariton modes, which are critical for super-resolution imaging. We spectrally study the lateral and vertical distributions of evanescent waves around the image plane of such a lens, and achieve imaging resolution of λ/14 at the superlensing wavelength. Interestingly, at certain distances between the probe and sample surface, we observe a maximum of these evanescent fields. Comparisons with numerical simulations indicate that this maximum originates from an enhanced coupling between probe and object, which might be applicable for multifunctional circuits, infrared spectroscopy and thermal sensors.
Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling
Kehr, S.C.; Liu, Y.M.; Martin, L.W.; Yu, P.; Gajek, M.; Yang, S.-Y.; Yang, C.-H.; Wenzel, M.T.; Jacob, R.; von Ribbeck, H.-G.; Helm, M.; Zhang, X.; Eng, L.M.; Ramesh, R.
2011-01-01
A planar slab of negative-index material works as a superlens with sub-diffraction-limited resolution, as propagating waves are focused and, moreover, evanescent waves are reconstructed in the image plane. Here we demonstrate a superlens for electric evanescent fields with low losses using perovskites in the mid-infrared regime. The combination of near-field microscopy with a tunable free-electron laser allows us to address precisely the polariton modes, which are critical for super-resolution imaging. We spectrally study the lateral and vertical distributions of evanescent waves around the image plane of such a lens, and achieve imaging resolution of λ/14 at the superlensing wavelength. Interestingly, at certain distances between the probe and sample surface, we observe a maximum of these evanescent fields. Comparisons with numerical simulations indicate that this maximum originates from an enhanced coupling between probe and object, which might be applicable for multifunctional circuits, infrared spectroscopy and thermal sensors. PMID:21427720
Kurz, S
1999-01-01
In this paper a new technique for the accurate calculation of magnetic fields in the end regions of superconducting accelerator magnets is presented. This method couples Boundary Elements (BEM) which discretize the surface of the iron yoke and Finite Elements (FEM) for the modelling of the nonlinear interior of the yoke. The BEM-FEM method is therefore specially suited for the calculation of 3-dimensional effects in the magnets, as the coils and the air regions do not have to be represented in the finite-element mesh and discretization errors only influence the calculation of the magnetization (reduced field) of the yoke. The method has been recently implemented into the CERN-ROXIE program package for the design and optimization of the LHC magnets. The field shape and multipole errors in the two-in-one LHC dipoles with its coil ends sticking out of the common iron yoke is presented.
A fully analytic treatment of resonant inductive coupling in the far field
International Nuclear Information System (INIS)
Sedwick, Raymond J.
2012-01-01
For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation. - Highlights: ► An analytic framework finds power and efficiency for resonant inductive coupling. ► The framework supports superconducting, resistive and dielectric elements. ► Maximum power transfer occurs at an efficiency of 50% when in close proximity. ► A 100 turn superconducting design achieves 10% efficiency out to 280 coil radii. ► The system response to narrow band amplitude modulation is modeled and presented.
International Nuclear Information System (INIS)
Accioly, A.J.
1988-01-01
A theory of nonminimal coupling of electromagnetism and gravitation in the framework of Riomannian geometry is constructed. As a consequence the main difficulties concerning the Einstein-Maxwell theory are cleared away. The theory works as a kind of correction to the Einstein-Maxwell one for regions with strong curvature and for times much greater than the Planck time. A Reissner-Nordstroem-type solution is exhibited and comments are made on a parameter which somewhat resembles the ''Schwarzschild radius''. A mechanism of charge creation via nonminimal coupling is also discussed. We calculate the propagation of photons in a Robertson-Walker background and find that the effect of the nonminimal coupling in this case may be to deviate the photon from the null geodesics, increasing its velocity beyond the flat-space value. Taking into account this results, the observed isotropy of the background radiation can be explained in a simple way, regardless of any assumption about the state of the Universe prior to the Planck time. (author) [pt
Thermal coupling in low fields between the nuclear and electronic spins in Tm2+ doped CaF2
International Nuclear Information System (INIS)
Urbina, Cristian.
1977-01-01
It is shown that in a CaF 2 crystal doped with divalent thulium ions there is in low fields, a thermal coupling between the electron magnetic moments of Tm 2+ and the nuclear moments of 19 F. When these ones have been lowered down to temperature through dynamical high-field polarization and adiabatic demagnetization in succession the resulting polarisation of the formed ones can overstep their original polarization in high field. A trial is given to explain this Zeeman electronic energy cooling through nuclear Zeeman energy with invoking a thermal coupling between both systems through the spin-spin electronic interaction but no theoretical model is developed in view of a quantitative explanation of the dynamics of such a process. The magnetic resonance spectrum of Tm 2 + in low field is also investigated: an important shift and narrowing of the electron resonance line in low field are obtained when 19 F nuclei are very cold. This special spectral characters are explained as due to magnetic interactions between electronic impurities and the neighbouring 19 F nuclei and a theoretical model is developed (based on the local Weiss field approximation) which explains rather well the changes in the spectral shift as a function of the 19 F nucleus temperature. A second theoretical model has also been developed in view of a quantitative explanation of both the narrowing and shift of the spectrum, but its prediction disagree with the experimental results. It is shown that in low fieldsx it is possible to get rid of paramagnetic impurities after they have been reused as reducing agents for 19 F nucleus entropy populating at about 80%, a non magnetic metastable state with these impurities [fr
Virgo, Simon; Ankit, Kumar; Nestler, Britta; Urai, Janos L.
2016-04-01
Crack-seal veins form in a complex interplay of coupled thermal, hydraulic, mechanical and chemical processes. Their formation and cyclic growth involves brittle fracturing and dilatancy, phases of increased fluid flow and the growth of crystals that fill the voids and reestablish the mechanical strength. Existing numerical models of vein formation focus on selected aspects of the coupled process. Until today, no model exists that is able to use a realistic representation of the fracturing AND sealing processes, simultaneously. To address this challenge, we propose the bidirectional coupling of two numerical methods that have proven themselves as very powerful to model the fundamental processes acting in crack-seal systems: Phase-field and the Discrete Element Method (DEM). The phase-field Method was recently successfully extended to model the precipitation of quartz crystals from an aqueous solution and applied to model the sealing of a vein over multiple opening events (Ankit et al., 2013; Ankit et al., 2015a; Ankit et al., 2015b). The advantage over former, purely kinematic approaches is that in phase-field, the crystal growth is modeled based on thermodynamic and kinetic principles. Different driving forces for microstructure evolution, such as chemical bulk free energy, interfacial energy, elastic strain energy and different transport processes, such as mass diffusion and advection, can be coupled and the effect on the evolution process can be studied in 3D. The Discrete Element Method was already used in several studies to model the fracturing of rocks and the incremental growth of veins by repeated fracturing (Virgo et al., 2013; Virgo et al., 2014). Materials in DEM are represented by volumes of packed spherical particles and the response to the material to stress is modeled by interaction of the particles with their nearest neighbours. For rocks, in 3D, the method provides a realistic brittle failure behaviour. Exchange Routines are being developed that
Liao, Shu-Hsien; Chen, Ming-Jye; Yang, Hong-Chang; Lee, Shin-Yi; Chen, Hsin-Hsien; Horng, Herng-Er; Yang, Shieh-Yueh
2010-10-01
In this paper, an instrumentation of the Earth's field nuclear magnetic resonance (EFNMR) inside a laboratory is presented. A lock-in analysis (LIA) technique was proposed to enhance the signal-to-noise ratio (SNR). A SNR of 137.8 was achieved in a single measurement for 9 ml tap water, and the LIA technique significantly enhanced the SNR to 188 after a 10-average in a noisy laboratory environment. The proton-phosphorus coupling in trimethyl phosphate ((CH(3)O)(3)PO) with J-coupling J[H,F]=(10.99±0.013) Hz has been demonstrated. The LIA technique improves the SNR, and a 2.6-fold improvement in SNR over that of the frequency-adjusted averaging is achieved. To reduce the noise in EFNMR, it was suggested that the LIA technique and the first order gradient shim be used to achieve a subhertz linewidth.
Puebla, Ricardo; Casanova, Jorge; Plenio, Martin B.
2018-03-01
The dynamics of the quantum Rabi model (QRM) in the deep strong coupling regime is theoretically analyzed in a trapped-ion set-up. Recognizably, the main hallmark of this regime is the emergence of collapses and revivals, whose faithful observation is hindered under realistic magnetic dephasing noise. Here, we discuss how to attain a faithful implementation of the QRM in the deep strong coupling regime which is robust against magnetic field fluctuations and at the same time provides a large tunability of the simulated parameters. This is achieved by combining standing wave laser configuration with continuous dynamical decoupling. In addition, we study the role that amplitude fluctuations play to correctly attain the QRM using the proposed method. In this manner, the present work further supports the suitability of continuous dynamical decoupling techniques in trapped-ion settings to faithfully realize different interacting dynamics.
International Nuclear Information System (INIS)
Carvalho-Santos, Vagson L.; Dandoloff, Rossen
2012-01-01
We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.
Hidayat, Iki; Sutopo; Pratama, Heru Berian
2017-12-01
The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.
Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H
2011-04-01
An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images.
International Nuclear Information System (INIS)
Membiela, Federico Agustín; Bellini, Mauricio
2010-01-01
Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. We use simultaneously the Lorentz and Feynman gauges. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of electric and magnetic field modes during the early inflationary epoch of the universe on cosmological scales. This is the first time that solutions for the electric field fluctuations are investigated in a systematic way as embeddings for inflationary models in 4D. An important and new result here obtained is that the spectrum of the electric field fluctuations depend with the scale, such that the spectral index increases quadratically as the scale decreases
Energy Technology Data Exchange (ETDEWEB)
Membiela, Federico Agustín; Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar, E-mail: membiela@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina)
2010-10-01
Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. We use simultaneously the Lorentz and Feynman gauges. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of electric and magnetic field modes during the early inflationary epoch of the universe on cosmological scales. This is the first time that solutions for the electric field fluctuations are investigated in a systematic way as embeddings for inflationary models in 4D. An important and new result here obtained is that the spectrum of the electric field fluctuations depend with the scale, such that the spectral index increases quadratically as the scale decreases.
Stochastic mean-field dynamics for fermions in the weak coupling limit
Energy Technology Data Exchange (ETDEWEB)
Lacroix, D
2005-09-15
Assuming that the effect of the residual interaction beyond mean-field is weak and can be treated as a statistical ensemble of two-body interactions, a Markovian quantum jump theory is developed for fermionic systems. In this theory, jumps occur between many-body densities formed of pairs of states D |{phi}{sub a}> <|{phi}{sub b}| / <|{phi}{sub b} | |{phi} {sub a}> where |{phi}{sub a}> and |{phi}{sub b}> are anti-symmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical {sup 40}Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. In this example, the mean-field evolution of one-body observables is recovered by averaging over different stochastic trajectories while fluctuations beyond mean-field are observed. Finally, the nature of the fluctuations is discussed. (author)
Near-Field Coupling and Mode Competition in Multiple Anapole Systems
Mazzone, Valerio; Gongora, J. S. Totero; Fratalocchi, Andrea
2017-01-01
are intriguing non-radiating states originated by the superposition of internal multipole components which cancel each other in the far-field. While the properties of anapole states in single nanoparticles have been extensively studied, the mutual interaction
Stochastic mean-field dynamics for fermions in the weak coupling limit
International Nuclear Information System (INIS)
Lacroix, D.
2005-09-01
Assuming that the effect of the residual interaction beyond mean-field is weak and can be treated as a statistical ensemble of two-body interactions, a Markovian quantum jump theory is developed for fermionic systems. In this theory, jumps occur between many-body densities formed of pairs of states D |Φ a > b | / b | |Φ a > where |Φ a > and |Φ b > are anti-symmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical 40 Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. In this example, the mean-field evolution of one-body observables is recovered by averaging over different stochastic trajectories while fluctuations beyond mean-field are observed. Finally, the nature of the fluctuations is discussed. (author)
Directory of Open Access Journals (Sweden)
Xiaokai Huo
2014-01-01
Full Text Available Accurate estimation of water content in an oil-water mixture is a key technology in oil exploration and production. Based on the principles of the microwave transmission line (MTL, the logging probe is an important water content measuring apparatus. However, the effects of mixed fluid flow on the measurement of electromagnetic field parameters are rarely considered. This study presents the coupling model for low-speed multiphase flow and high-frequency electromagnetic field in a complex pipeline structure. We derived the S-parameter equations for the stratified oil/water flow model. The corresponding relationship between the S-parameters and water holdup is established. Evident coupling effects of the fluid flow and the electromagnetic field are confirmed by comparing the calculated S-parameters for both stratified and homogeneous flow patterns. In addition, a multiple-solution problem is analyzed for the inversion of dielectric constant from the S-parameters. The most sensitive phase angle range is determined to improve the detection of variation in the dielectric constant. Suggestions are proposed based on the influence of the oil/water layer on measurement sensitivity to optimize the geometric parameters of a device structure. The method proposed elucidates how accuracy and sensitivity can be improved in water holdup measurements under high water content conditions.
Universal effective coupling constant ratios of 3D scalar ϕ4 field theory and pseudo-ϵ expansion
Directory of Open Access Journals (Sweden)
Sokolov A. I.
2016-01-01
Full Text Available The ratios R2k = g2k/gk − 14 of renormalized coupling constants g2k entering the small-field equation of state approach universal values R*2k at criticality. They are calculated for the three-dimensional λϕ4 field theory within the pseudo-ϵ expansion approach. Pseudo-ϵ expansions for R*6, R*8, R*10 are derived in the five-loop approximation, numerical estimates are obtained with a help of the Padé–Borel–Leroy resummation technique. Its use gives R*6 = 1.6488, the number which perfectly agrees with the most recent lattice result R*6 = 1.649. For the octic coupling the pseudo-ϵ expansion is less favorable numerically. Nevertheless the Padé–Borel–Leroy resummation leads to the estimate R*8 = 0.890 close to the values R*8 = 0.87, R*8 = 0.857 extracted from the lattice and field-theoretical calculations. The pseudo-ϵ expansion for R*10 turns out to have big and rapidly increasing coefficients. This makes correspondent estimates strongly dependent on the Borel–Leroy shift parameter b and prevents proper evaluation of R*10
A novel potential/viscous flow coupling technique for computing helicopter flow fields
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1993-01-01
The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.
Massive spin-one fields from couplings with five massless real scalars
Bizdadea, Constantin; Cioroianu, Eugen-Mihaita; Saliu, Solange-Odile
2017-12-01
In this paper we implement a new procedure by which one may generate mass for a vector field in the context of its interactions to a system of five real scalar fields. This purpose will be achieved by means of the general multi-step program from [1] adapted to the present situation: (1) we begin with a free theory in four space-time dimensions whose Lagrangian action is given by the sum between the standard Maxwell action and that for a collection consisting in five massless real scalar fields; (2) we construct a general class of gauge theories whose free limit is that from step (1) by means of the deformation of the solution to the master equation [2, 3] with the help of local BRST cohomology [4-6]; (3) we perform some suitable redefinitions of the free parameters that label interacting theories from (2) such that the mass terms become manifest in the new free limit. The outputs of our procedure can be synthesized in: (A) the vector field acquires mass; (B) the scalar fields gain gauge transformations; (C) the gauge algebras of the interacting theories are Abelian; (D) the propagator of the massive vector field emerging from the gauge-fixed actions behaves, in the limit of large Euclidean momenta, like that from the massless case.
Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian
2014-12-25
The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.
International Nuclear Information System (INIS)
Awada, M.A.
1990-01-01
We further study the universal equations of the supersymmetric modified KdV (MKdV) hierarchy in its generalized form. We show that these equations describe the dynamical quantum equations of the odd series of N = 1 minimal (p,q) superconformal field theory coupled to N = 1 supergravity in particular those unitary series with p = 2k + 3, and q = 2k = 1. The string susceptibility of these models is γ sstr. (0) = -2/2k + 1. We demonstrate explicitly the cases k = 2; and k = 3. 10 refs
Chauvin, Nicolas; Mavel, Amaury; Jaffal, Ali; Patriarche, Gilles; Gendry, Michel
2018-02-01
Excitation photoluminescence spectroscopy is usually used to extract the crystal field splitting (ΔCR) and spin orbit coupling (ΔSO) parameters of wurtzite (Wz) InP nanowires (NWs). However, the equations expressing the valence band splitting are symmetric with respect to these two parameters, and a choice ΔCR > ΔSO or ΔCR InP NWs grown on silicon. The experimental results combined with a theoretical model and finite difference time domain calculations allow us to conclude that ΔCR > ΔSO in Wz InP.
International Nuclear Information System (INIS)
Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A.
2014-01-01
In this work, we study the defect mode and bistability behavior of 1-D photonic band gap structure with magnetized plasma and coupled nonlinear defects. The transfer matrix method has been employed to investigate the magnetic field effect on defect mode frequency and bistability threshold. The obtained results show that the frequency of defect mode and bistability threshold can be altered, without changing the structure of the photonic multilayer. Therefore, the bistability behavior of the subjected structure in the presence of magnetized plasma can be utilized in manufacturing wide frequency range devices
International Nuclear Information System (INIS)
Siquieri, R; Emmerich, H; Doernberg, E; Schmid-Fetzer, R
2009-01-01
In this work we present experimental and theoretical investigations of the directional solidification of Al-36 wt% Ni alloy. A phase-field approach (Folch and Plapp 2005 Phys. Rev. E 72 011602) is coupled with the CALPHAD (calculation of phase diagrams) method to be able to simulate directional solidification of Al-Ni alloy including the peritectic phase Al 3 Ni. The model approach is calibrated by systematic comparison to microstructures grown under controlled conditions in directional solidification experiments. To illustrate the efficiency of the model it is employed to investigate the effect of temperature gradient on the microstructure evolution of Al-36 wt% Ni during solidification.
Effect of δ meson and ρ-ω cross couplings in effective field theory motivated Lagrangian approach
International Nuclear Information System (INIS)
Jagota, R.K.; Dhiman, S.K.; Sharma, B.K.; Arumugam, P.; Patra, S.K.
2005-01-01
It is shown that the self and cross couplings of ω meson plays an important role to make the nuclear equation of state (EOS) softer. The parameter set G2, obtained from the effective field theory motivated Lagrangian (E-RMF) approach, is very successful to reproduce the nuclear matter properties including the structure of neutron star as well as of finite nuclei. The motivation of the present report is to see the effects of these terms in the E-RMF Lagrangian on infinite nuclear matter as well as finite nuclei
Luo, Zhaochu; Xiong, Chengyue; Zhang, Xu; Guo, Zhen-Gang; Cai, Jianwang; Zhang, Xiaozhong
2016-04-13
The anomalous Hall effect of a magnetic material is coupled to the nonlinear transport effect of a semiconductor material in a simple structure to achieve a large geometric magnetoresistance (MR) based on a diode-assisted mechanism. An extremely large MR (>10(4) %) at low magnetic fields (1 mT) is observed at room temperature. This MR device shows potential for use as a logic gate for the four basic Boolean logic operations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Glassley, W. E.; Nitao, J. J.
1998-01-01
Heat deposited by waste packages in nuclear waste repositories can modify rock properties by instigating mineral dissolution and precipitation along hydrothermal flow pathways. Modeling this reactive transport requires coupling fluid flow to permeability changes resulting from dissolution and precipitation. Modification of the NUFT thermohydrologic (TH) code package to account for this coupling in a simplified geochemical system has been used to model the time- dependent change in porosity, permeability, matrix and fracture saturation, and temperature in the vicinity of waste-emplacement drifts, using conditions anticipated for the potential Yucca Mountain repository. The results show, within a few hundred years, dramatic porosity reduction approximately 10 m above emplacement drifts. Most of this reduction is attributed to deposition of solute load at the boiling front, although some of it also results from decreasing temperature along the flow path. The actual distribution of the nearly sealed region is sensitive to the time- dependent characteristics of the thermal load imposed on the environment and suggests that the geometry of the sealed region can be engineered by managing the waste-emplacement strategy
International Nuclear Information System (INIS)
Chirde, V.R.; Shekh, S.H.
2016-01-01
The modified theories of gravity have engrossed much attention in the last decade, especially f(R) gravity. In this contextual exploration, we investigate interaction between barotropic fluid and dark energy with zero-mass scalar field for the spatially homogeneous and isotropic flat FRW universe. In this universe, the field equations correspond to the particular choice of f(R) = R+bR m . The exact solutions of the field equations are obtained by applying volumetric power law and exponential law of expansion. In power and exponential law of expansion, the universe shows both matter dominated and DE era for b ≤ 0 and b ≥ 0 and remain present in dark era respectively, but power law model is fully occupying with real matter for b > 0 and for b < 0 exponential model expands with negative pressure and remain present in matter dominated phase respectively. The physical behavior of the universe has been discussed by using some physical quantities
Xue, Xu; Zhou, Ziyao; Dong, Guohua; Feng, Mengmeng; Zhang, Yijun; Zhao, Shishun; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming
2017-09-26
Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a La 0.7 Sr 0.3 MnO 3 (LSMO)/Pb(Mn 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.
Dimensional reduction of the Standard Model coupled to a new singlet scalar field
Energy Technology Data Exchange (ETDEWEB)
Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Tenkanen, Tuomas V.I. [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Weir, David J. [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland)
2017-03-01
We derive an effective dimensionally reduced theory for the Standard Model augmented by a real singlet scalar. We treat the singlet as a superheavy field and integrate it out, leaving an effective theory involving only the Higgs and SU(2){sub L}×U(1){sub Y} gauge fields, identical to the one studied previously for the Standard Model. This opens up the possibility of efficiently computing the order and strength of the electroweak phase transition, numerically and nonperturbatively, in this extension of the Standard Model. Understanding the phase diagram is crucial for models of electroweak baryogenesis and for studying the production of gravitational waves at thermal phase transitions.
Optical-coupling nuclear spin maser under highly stabilized low static field
Energy Technology Data Exchange (ETDEWEB)
Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)
2008-01-15
A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.
Directory of Open Access Journals (Sweden)
Lihang Feng
Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong
2015-01-01
Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
Directory of Open Access Journals (Sweden)
Ulrich H.J. Körtner
2008-01-01
Full Text Available The attitudes towards sexuality in Western society are undergoing dramatic change. One of the main problems sexual ethics has to deal with today is the question whether the church should acknowledge unmarried long-term relationships. The debate about the acknowledgement of homosexuality as a form of human sexuality equal to heterosexuality is aiming towards the acknowledgement of the equal status of homosexual partnerships and heterosexual marriages as a final consequence. In addition to these issues the article also discusses the issue of the blessing of unmarried or homosexual couples. In light of such public blessings and their liturgical form, the article aims to discuss the question about the promise such blessings holds according to Christian ethics.
Electric-field domain boundary instability in weakly coupled semiconductor superlattices
Energy Technology Data Exchange (ETDEWEB)
Rasulova, G. K., E-mail: rasulova@sci.lebedev.ru [P.N. Lebedev Physical Institute of Russian Academy of Sciences, 119991 Moscow (Russian Federation); Pentin, I. V. [Moscow State Pedagogical University, 119991 Moscow (Russian Federation); Brunkov, P. N. [A. F. Ioffe Physical and Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg (Russian Federation); Egorov, A. Yu. [National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg (Russian Federation)
2016-05-28
Damped oscillations of the current were observed in the transient current pulse characteristics of a 30-period weakly coupled GaAs/AlGaAs superlattice (SL). The switching time of the current is exponentially decreased as the voltage is verged towards the current discontinuity region indicating that the space charge necessary for the domain boundary formation is gradually accumulated in a certain SL period in a timescale of several hundreds ns. The spectral features in the electroluminescence spectra of two connected in parallel SL mesas correspond to the energy of the intersubband transitions and the resonance detuning of subbands caused by charge trapping in the quantum wells (QWs) residing in a region of the expanded domain boundary. The obtained results support our understanding of the origin of self-oscillations as a cyclic dynamics of the subband structure in the QWs forming the expanded domain boundary.
Energy Technology Data Exchange (ETDEWEB)
Hauet, Thomas; Gunther, Christian M.; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter; Hellwig, Olav
2008-12-09
We investigate the reversal process in antiferromagnetically coupled [Co/Pt]{sub X-1}/{l_brace}Co/Ru/[Co/Pt]{sub X-1}{r_brace}{sub 16} multilayer films by combining magnetometry and Magnetic soft X-ray Transmission Microscopy (MXTM). After out-of-plane demagnetization, a stable one dimensional ferromagnetic (FM) stripe domain phase (tiger-tail phase) for a thick stack sample (X=7 is obtained), while metastable sharp antiferromagnetic (AF) domain walls are observed in the remanent state for a thinner stack sample (X=6). When applying an external magnetic field the sharp domain walls of the thinner stack sample transform at a certain threshold field into the FM stripe domain wall phase. We present magnetic energy calculations that reveal the underlying energetics driving the overall reversal mechanisms.
International Nuclear Information System (INIS)
Bartels, J.; Wu, T.T.
1988-01-01
This paper contains the first part of a systematic semiclassical analysis of the weak-coupling limit of lattice gauge theories, using the Hamiltonian formulation. The model consists of an N 3 cubic lattice of pure SU(2) Yang-Mills theory, and in this first part we limit ourselves to the subspace of constant field configurations. We investigate the flow of classical trajectories, with a particular emphasis on the existence and location of caustics. There the ground-state wave function is expected to peak. It is found that regions densely filled with caustics are very close to the origin, i.e., in the domain of weak field configurations. This strongly supports the expectation that caustics are essential for quantities of physical interest
Manicke, Nicholas E.; Belford, Michael
2015-05-01
One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.
Green Ocean Amazon 2014/15 – Scaling Amazon Carbon Water Couplings Field Campaign Report
Energy Technology Data Exchange (ETDEWEB)
Dubey, Manvendra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parket, Harrison [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rahn, Thom [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Christoffersson, B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wunch, Debra [California Inst. of Technology (CalTech), Pasadena, CA (United States); Wennberg, Paul [California Inst. of Technology (CalTech), Pasadena, CA (United States)
2016-08-01
Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1), moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st Century is largely unknown. Rainforests are the most active ecosystems, with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We set out to resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional-scale high-frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O, and CO at the T3 site in Manacupuru, Brazil, as part of DOE's GoAmazon 2014/15 project. Our data will be used to inform and develop DOE's Community Land Model (CLM) on the tropical carbon-water couplings at the appropriate grid scale (10-50 km). Our measurements will also validate the CO2 data from Japan's Greenhouse gases Observing Satellite (GOSAT) and NASA's Orbiting Carbon Observatory (OCO)-2 satellite (launched in July, 2014). Our data addresses these science questions: 1. How does ecosystem heterogeneity and climate variability influence the rainforest carbon cycle? 2. How well do current tropical ecosystem models simulate the observed regional carbon cycle? 3. Does nitrogen deposition (from the Manaus, Brazil, plume) enhance rainforest carbon uptake?
Energy Technology Data Exchange (ETDEWEB)
Vasconcellos, C. A. Zen, E-mail: cesarzen@cesarzen.com [Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970, Porto Alegre (Brazil); International Center for Relativistic Astrophysics Network (ICRANet), Piazza della Repubblica 10, 65122 Pescara (Italy)
2015-12-17
Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.
Duval, J.F.L.; Minor, M.; Cecilia, J.; Leeuwen, van H.P.
2003-01-01
A quantitative theory is presented for the bipolar behavior of conducting planar surfaces in a thin-layer cell of a type commonly used in electrokinetic studies. The lateral current density distribution in the cell, as dictated by the externally applied field in the solution, is formulated for the
Towards a coupled-cluster treatment of SU(N) lattice gauge field theory
Bishop, Raymond F.; Ligterink, N.E.; Walet, Niels R.
2006-01-01
A consistent approach to Hamiltonian SU(N) lattice gauge field theory is developed using the maximal-tree gauge and an appropriately chosen set of angular variables. The various constraints are carefully discussed, as is a practical means for their implementation. A complete set of variables for the
Goldwyn, Joshua H; Rinzel, John
2016-04-01
The ongoing activity of neurons generates a spatially and time-varying field of extracellular voltage (Ve). This Ve field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates Ve and how this Ve feeds back and influences membrane potential (Vm). We find that these "ephaptic interactions" are small but not negligible. The model neural population can generate Ve with millivolt-scale amplitude, and this Ve perturbs the Vm of "nearby" cables and effectively increases their electrotonic length. After using passive cable theory to systematically study ephaptic coupling, we explore a test case: the medial superior olive (MSO) in the auditory brain stem. The MSO is a possible locus of ephaptic interactions: sounds evoke large (millivolt scale)Vein vivo in this nucleus. The Ve response is thought to be generated by MSO neurons that perform a known neuronal computation with submillisecond temporal precision (coincidence detection to encode sound source location). Using a biophysically based model of MSO neurons, we find millivolt-scale ephaptic interactions consistent with the passive cable theory results. These subtle membrane potential perturbations induce changes in spike initiation threshold, spike time synchrony, and time difference sensitivity. These results suggest that ephaptic coupling may influence MSO function. Copyright © 2016 the American Physiological Society.
Energy Technology Data Exchange (ETDEWEB)
Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar (Germany); Thamburaja, P., E-mail: prakash.thamburaja@gmail.com [Department of Mechanical & Materials Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 (Malaysia); Rabczuk, T., E-mail: timon.rabczuk@tdt.edu.vn [Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City (Viet Nam)
2016-12-15
A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substrate and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.
International Nuclear Information System (INIS)
Mierau, Anna
2013-01-01
The new international facility for antiproton and ion research FAIR will be built in Darmstadt (Germany). The existing accelerator facility of GSI Helmholtzzentrum for Heavy Ion Research will serve as a pre-accelerator for the new facility. FAIR will provide high-energy antiproton and ion beams with unprecedented intensity and quality for fundamental research of states of matter and the evolution of the universe. The central component of FAIR's accelerator and storage rings complex is a double-ring accelerator consisting of two heavy ion synchrotrons SIS100 and SIS300. The SIS100 is the primary accelerator of FAIR. The desired beam properties of SIS100 require a design of the machine much more challenging than the conventional design of existing proton and ion synchrotrons. The key technical components of each synchrotron are the special electromagnets, which allow guiding the charged particles on their orbits in the synchrotron during the acceleration processes. For a stable operation of the SIS100's the magnets have to produce extremely homogeneous magnetic fields. Furthermore, the SIS100 high-intensity ion beam modes, for example with U 28+ ions, require an ultra-high vacuum in the beam pipe of the synchrotron, which can be generated effectively only at low temperatures below 15 K. Due to the field quality requirements for the magnets, the properties of the dynamic vacuum in the beam pipe but also in order to minimise future operating costs, fast ramped superconducting magnets will be used to guide the beam in SIS100. These magnets have been developed at GSI within the framework of the FAIR project. Developing a balanced design of a superconducting accelerator magnet requires a sound understanding of the interaction between its thermal and electromagnetic fields. Of special importance in this case are the magnetic field properties such as the homogeneity of the static magnetic field in the aperture of the magnet, and the dynamic heat losses of the whole magnet
DEFF Research Database (Denmark)
Manevski, Kiril; Jabloun, Mohamed; Gupta, Manika
2016-01-01
a more powerful input to a nonparametric analysis for discrimination at the field scale, when compared with unaltered reflectance and parametric analysis. However, the discrimination outputs interact and are very sensitive to the number of observations - an important implication for the design......Remote sensing of land covers utilizes an increasing number of methods for spectral reflectance processing and its accompanying statistics to discriminate between the covers’ spectral signatures at various scales. To this end, the present chapter deals with the field-scale sensitivity...... of the vegetation spectral discrimination to the most common types of reflectance (unaltered and continuum-removed) and statistical tests (parametric and nonparametric analysis of variance). It is divided into two distinct parts. The first part summarizes the current knowledge in relation to vegetation...
Massless fermions coupled to N-pseudoparticle field: isospin 3/2
International Nuclear Information System (INIS)
Viswanathan, K.S.; Yee, J.H.
1978-01-01
Adapting the spinorial formalism of Jackiw and Rebbi, we treat the problem of masslss fermions of isospin 3/2 in an N-pseudoparticle field. The Atiyah-Singer index theorem, applied to this problem, indicates the existence of 10N zero energy normalizable solutions. 3N solutions are explicitly constructed. The remaining 7N solutions are reduced to quadratures. We demonstrate the regularity and normalizability of these solutions. (author)
Simulating the dependence of seismo-ionospheric coupling on the magnetic field inclination
Mohan Joshi, Lalit; Sripathi, Samireddipelle; Kumar, Muppidi Ravi; Alam Kherani, Esfhan
2018-01-01
Infrasound generated during a seismic event upon reaching the ionospheric heights possesses the ability to perturb the ionosphere. Detailed modelling investigation considering 1-D dissipative linear dynamics, however, indicates that the magnitude of ionospheric perturbation strongly depends on the magnetic field inclination. Physics-based SAMI2 model codes have been utilized to simulate the ionosphere perturbations that are generated due to the action of the vertical wind perturbations associated with the seismic infrasound. The propagation of the seismic energy and the vertical wind perturbations associated with the infrasound in the model has been considered to be symmetric about the epicentre in the north-south directions. Ionospheric response to the infrasound wind, however, has been highly asymmetric in the model simulation in the north-south directions. This strong asymmetry is related to the variation in the inclination of the Earth's magnetic field north and south of the epicentre. Ionospheric monitoring generally provides an efficient tool to infer the crustal propagation of the seismic energy. However, the results presented in this paper indicate that the mapping between the crustal process and the ionospheric response is not a linear one. These results also imply that the lithospheric behaviour during a seismic event over a wide zone in low latitudes can be estimated through ionospheric imaging only after factoring in the magnetic field geometry.
Simulating the dependence of seismo-ionospheric coupling on the magnetic field inclination
Directory of Open Access Journals (Sweden)
L. M. Joshi
2018-01-01
Full Text Available Infrasound generated during a seismic event upon reaching the ionospheric heights possesses the ability to perturb the ionosphere. Detailed modelling investigation considering 1-D dissipative linear dynamics, however, indicates that the magnitude of ionospheric perturbation strongly depends on the magnetic field inclination. Physics-based SAMI2 model codes have been utilized to simulate the ionosphere perturbations that are generated due to the action of the vertical wind perturbations associated with the seismic infrasound. The propagation of the seismic energy and the vertical wind perturbations associated with the infrasound in the model has been considered to be symmetric about the epicentre in the north–south directions. Ionospheric response to the infrasound wind, however, has been highly asymmetric in the model simulation in the north–south directions. This strong asymmetry is related to the variation in the inclination of the Earth's magnetic field north and south of the epicentre. Ionospheric monitoring generally provides an efficient tool to infer the crustal propagation of the seismic energy. However, the results presented in this paper indicate that the mapping between the crustal process and the ionospheric response is not a linear one. These results also imply that the lithospheric behaviour during a seismic event over a wide zone in low latitudes can be estimated through ionospheric imaging only after factoring in the magnetic field geometry.
International Nuclear Information System (INIS)
Jabbour, Chirelle
2016-01-01
A near field laser ablation method was developed for chemical analysis of solid samples at sub-micrometric scale. This analytical technique combines a nanosecond laser Nd:YAG, an atomic Force Microscope (AFM), and an inductively coupled plasma mass spectrometer (ICPMS). In order to improve the spatial resolution of the laser ablation process, the near-field enhancement effect was applied by illuminating, by the laser beam, the apex of the AFM conductive sharp tip maintained at a few nanometers (5 to 30 nm) above the sample surface. The interaction between the illuminated tip and the sample surface enhances locally the incident laser energy and leads to the ablation process. By applying this technique to conducting gold and tantalum samples, and semiconducting silicon sample, a lateral resolution of 100 nm and depths of a few nanometers were demonstrated. Two home-made numerical codes have enabled the study of two phenomena occurring around the tip: the enhancement of the laser electrical field by tip effect, and the induced laser heating at the sample surface. The influence of the main operating parameters on these two phenomena, amplification and heating, was studied. an experimental multi-parametric study was carried out in order to understand the effect of different experimental parameters (laser fluence, laser wavelength, number of laser pulses, tip-to-sample distance, sample and tip nature) on the near-field laser ablation efficiency, crater dimensions and amount of ablated material. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Temizer, Umuet [Department of Physics, Bozok University, 66100 Yozgat (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2008-06-15
We study, within a mean-field approach, the stationary states of the kinetic Blume-Emery-Griffiths model with repulsive biquadratic coupling under the presence of a time-varying (sinusoidal) magnetic field. We employ the Glauber-type stochastic dynamics to construct set of dynamic equations of motion. The behavior of the time dependence of the order parameters and the behavior of the average order parameters in a period, which is also called the dynamic order parameters, as functions of the reduced temperature are investigated. The dynamic phase transition points are calculated and phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The dynamical transition from one regime to the other can be of first- or second order depending on the region in the phase diagram. According to the values of the crystal field interaction or single-ion anisotropy constant and biquadratic exchange constant, we find 20 fundamental types of phase diagrams which exhibit many dynamic critical points, such as tricritical points, zero-temperature critical points, double critical end points, critical end point, triple point and multicritical point. Moreover, besides a disordered and ordered phases, seven coexistence phase regions exist in the system.
Franović, Igor; Todorović, Kristina; Vasović, Nebojša; Burić, Nikola
2014-02-01
We consider the approximations behind the typical mean-field model derived for a class of systems made up of type II excitable units influenced by noise and coupling delays. The formulation of the two approximations, referred to as the Gaussian and the quasi-independence approximation, as well as the fashion in which their validity is verified, are adapted to reflect the essential properties of the underlying system. It is demonstrated that the failure of the mean-field model associated with the breakdown of the quasi-independence approximation can be predicted by the noise-induced bistability in the dynamics of the mean-field system. As for the Gaussian approximation, its violation is related to the increase of noise intensity, but the actual condition for failure can be cast in qualitative, rather than quantitative terms. We also discuss how the fulfillment of the mean-field approximations affects the statistics of the first return times for the local and global variables, further exploring the link between the fulfillment of the quasi-independence approximation and certain forms of synchronization between the individual units.
A coupled three dimensional model of vanadium redox flow battery for flow field designs
International Nuclear Information System (INIS)
Yin, Cong; Gao, Yan; Guo, Shaoyun; Tang, Hao
2014-01-01
A 3D (three-dimensional) model of VRB (vanadium redox flow battery) with interdigitated flow channel design is proposed. Two different stack inlet designs, single-inlet and multi-inlet, are structured in the model to study the distributions of fluid pressure, electric potential, current density and overpotential during operation of VRB cell. Electrolyte flow rate and stack channel dimension are proved to be the critical factors affecting flow distribution and cell performance. The model developed in this paper can be employed to optimize both VRB stack design and system operation conditions. Further improvements of the model concerning current density and electrode properties are also suggested in the paper. - Highlights: • A coupled three-dimensional model of vanadium redox flow cell is proposed. • Interdigitated flow channels with two different manifold designs are simulated. • Manifold structure affects uniformity of distribution patterns significantly. • Increased electrolyte flow rate improves cell performance for both designs. • Decreased channel size and enlarged land width enhance cell voltage
Darbandi, Masoud; Abrar, Bagher
2018-01-01
The spectral-line weighted-sum-of-gray-gases (SLW) model is considered as a modern global model, which can be used in predicting the thermal radiation heat transfer within the combustion fields. The past SLW model users have mostly employed the reference approach to calculate the local values of gray gases' absorption coefficient. This classical reference approach assumes that the absorption spectra of gases at different thermodynamic conditions are scalable with the absorption spectrum of gas at a reference thermodynamic state in the domain. However, this assumption cannot be reasonable in combustion fields, where the gas temperature is very different from the reference temperature. Consequently, the results of SLW model incorporated with the classical reference approach, say the classical SLW method, are highly sensitive to the reference temperature magnitude in non-isothermal combustion fields. To lessen this sensitivity, the current work combines the SLW model with a modified reference approach, which is a particular one among the eight possible reference approach forms reported recently by Solovjov, et al. [DOI: 10.1016/j.jqsrt.2017.01.034, 2017]. The combination is called "modified SLW method". This work shows that the modified reference approach can provide more accurate total emissivity calculation than the classical reference approach if it is coupled with the SLW method. This would be particularly helpful for more accurate calculation of radiation transfer in highly non-isothermal combustion fields. To approve this, we use both the classical and modified SLW methods and calculate the radiation transfer in such fields. It is shown that the modified SLW method can almost eliminate the sensitivity of achieved results to the chosen reference temperature in treating highly non-isothermal combustion fields.
Anisotropic inflation with a non-minimally coupled electromagnetic field to gravity
Adak, Muzaffer; Akarsu, Özgür; Dereli, Tekin; Sert, Özcan
2017-11-01
We consider the non-minimal model of gravity in Y(R) F2-form. We investigate a particular case of the model, for which the higher order derivatives are eliminated but the scalar curvature R is kept to be dynamical via the constraint YRFmnFmn =-2/κ2. The effective fluid obtained can be represented by interacting electromagnetic field and vacuum depending on Y(R), namely, the energy density of the vacuum tracks R while energy density of the conventional electromagnetic field is dynamically scaled with the factor Y(R)/2. We give exact solutions for anisotropic inflation by assuming the volume scale factor of the Universe exhibits a power-law expansion. The directional scale factors do not necessarily exhibit power-law expansion, which would give rise to a constant expansion anisotropy, but expand non-trivially and give rise to a non-monotonically evolving expansion anisotropy that eventually converges to a non-zero constant. Relying on this fact, we discuss the anisotropic e-fold during the inflation by considering observed scale invariance in CMB and demanding the Universe to undergo the same amount of e-folds in all directions. We calculate the residual expansion anisotropy at the end of inflation, though as a result of non-monotonic behaviour of expansion anisotropy all the axes of the Universe undergo the same of amount of e-folds by the end of inflation. We also discuss the generation of the modified electromagnetic field during the first few e-folds of the inflation and its persistence against to the vacuum till end of inflation.
Entropy Exchange in Coupled Field-Superconducting Charge Qubit System with Intrinsic Decoherence
Institute of Scientific and Technical Information of China (English)
SHAO Bin; ZHANG Jian; ZOU Jian
2006-01-01
Based on the intrinsic decoherence effect, partial entropy properties of a super conducting charge qubitinside a single-mode cavity field is investigated, and entropy exchange which is recently regarded as a kind of anti-correlated behavior of the entropy between subsystems is explored. Our results show that although the intrinsic decoherenceleads to an effective irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator and has an apparently influence on the partial entropy of two individual subsystems, it does not effect the entropy exchange between the two subsystems.
DEFF Research Database (Denmark)
Amiot, Fabien; Hild, F.; Kanoufi, F.
2007-01-01
Metal coated microcantilevers are used as transducers of their electrochemical environment. Using the metallic layer of these cantilevers as a working electrode allows one to modify the electrochemical state of the cantilever surface. Since the mechanical behaviour of micrometre scale objects...... is significantly surface-driven, this environment modification induces bending of the cantilever. Using a full-field interferometric measurement set-up to monitor the objects then provides an optical phase map, which is found to originate from both electrochemical and mechanical effects. The scaling...
Magnetic-Field Control Of Tunnel-Coupling In Strongly Confined One-Dimensional Electron Systems
Fischer, S. F.; Apetrii, G.; Kunze, U.; Schuh, D.; Abstreiter, G.
2007-04-01
One-dimensional (1D) ballistic electron transport is studied through stacked 1D quantum conductors separated by a thin tunneling barrier. The 1D electron systems of large 1D subband spacings (more than 10 meV) allow single mode operation. Degeneracies of 1D subbands of equal lateral mode index are lifted by the formation of symmetric and antisymmetric states and are depicted by anti-crossings of transconductance maxima. We observe a mode-dependent turnover from level anti-crossings to crossings in longitudinal magnetic fields.
International Nuclear Information System (INIS)
Maenchen, J.E.
1983-01-01
The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source. A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm 2 dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current after 30 ns, coupling 60% of the diode energy into ions
Quantum cosmology of a Bianchi III LRS geometry coupled to a source free electromagnetic field
Karagiorgos, A.; Pailas, T.; Dimakis, N.; Terzis, Petros A.; Christodoulakis, T.
2018-03-01
We consider a Bianchi type III axisymmetric geometry in the presence of an electromagnetic field. A first result at the classical level is that the symmetry of the geometry need not be applied on the electromagnetic tensor Fμν the algebraic restrictions, implied by the Einstein field equations to the stress energy tensor Tμν, suffice to reduce the general Fμν to the appropriate form. The classical solution thus found contains a time dependent electric and a constant magnetic charge. The solution is also reachable from the corresponding mini-superspace action, which is strikingly similar to the Reissner-Nordstr{öm one. This points to a connection between the black hole geometry and the cosmological solution here found, which is the analog of the known correlation between the Schwarzschild and the Kantowski-Sachs metrics. The configuration space is drastically modified by the presence of the magnetic charge from a 3D flat to a 3D pp wave geometry. We map the emerging linear and quadratic classical integrals of motion, to quantum observables. Along with the Wheeler-DeWitt equation these observables provide unique, up to constants, wave functions. The employment of a Bohmian interpretation of these quantum states results in deterministic (semi-classical) geometries most of which are singularity free.
Menéndez-Miranda, Mario; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo
2015-11-27
Hyphenation of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) is proposed as a powerful diagnostic tool for quantum dots bioconjugation studies. In particular, conjugation effectiveness between a "model" monoclonal IgG antibody (Ab) and CdSe/ZnS core-shell Quantum Dots (QDs), surface-coated with an amphiphilic polymer, has been monitored here by such hybrid AF4-ICP-MS technique. Experimental conditions have been optimized searching for a proper separation between the sought bioconjugates from the eventual free reagents excesses employed during the bioconjugation (QDs and antibodies). Composition and pH of the carrier have been found to be critical parameters to ensure an efficient separation while ensuring high species recovery from the AF4 channel. An ICP-MS equipped with a triple quadropole was selected as elemental detector to enable sensitive and reliable simultaneous quantification of the elemental constituents, including sulfur, of the nanoparticulated species and the antibody. The hyphenated technique used provided nanoparticle size-based separation, elemental detection, and composition analysis capabilities that turned out to be instrumental in order to investigate in depth the Ab-QDs bioconjugation process. Moreover, the analytical strategy here proposed allowed us not only to clearly identify the bioconjugation reaction products but also to quantify nanoparticle:antibodies bioconjugation efficiency. This is a key issue in future development of analytical and bioanalytical photoluminescent QDs applications. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Shankar, B.M.; Rudraiah, N.
2013-01-01
The linear stability of electrohydrodynamic poorly conducting couple stress viscous parallel fluid flow in a channel is studied in the presence of a non-uniform transverse electric field and Coriolis force using energy method and supplemented with Galerkin Technique. The sufficient condition for stability is obtained for sufficiently small values of the Reynolds number, R e . From this condition we show that strengthening or weakening of the stability criterion is dictated by the values of the strength of electric field, the coefficient of couple stress fluid and independent of Taylor number. In particular, it is shown that the interaction of electric field with couple stress is more effective in stabilizing the poorly conducting couple stress fluid compared to that in an ordinary Newtonian viscous fluid. (author)
Jang, Hyun-June; Lee, Taein; Song, Jian; Russell, Luisa; Li, Hui; Dailey, Jennifer; Searson, Peter C; Katz, Howard E
2018-05-16
A field-effect transistor-based cortisol sensor was demonstrated in physiological conditions. An antibody-embedded polymer on the remote gate was proposed to overcome the Debye length issue (λ D ). The sensing membrane was made by linking poly(styrene- co-methacrylic acid) (PSMA) with anticortisol before coating the modified polymer on the remote gate. The embedded receptor in the polymer showed sensitivity from 10 fg/mL to 10 ng/mL for cortisol and a limit of detection (LOD) of 1 pg/mL in 1× PBS where λ D is 0.2 nm. A LOD of 1 ng/mL was shown in lightly buffered artificial sweat. Finally, a sandwich ELISA confirmed the antibody binding activity of antibody-embedded PSMA.
Study of the solar wind coupling to the time difference horizontal geomagnetic field
Directory of Open Access Journals (Sweden)
P. Wintoft
2005-07-01
Full Text Available The local ground geomagnetic field fluctuations (Δ B are dominated by high frequencies and 83% of the power is located at periods of 32 min or less. By forming 10-min root-mean-square (RMS of Δ B a major part of this variation is captured. Using measured geomagnetic induced currents (GIC, from a power grid transformer in Southern Sweden, it is shown that the 10-min standard deviation GIC may be computed from a linear model using the RMS Δ X and Δ Y at Brorfelde (BFE: 11.67° E, 55.63° N, Denmark, and Uppsala (UPS: 17.35° E, 59.90° N, Sweden, with a correlation of 0.926±0.015. From recurrent neural network models, that are driven by solar wind data, it is shown that the log RMS Δ X and Δ Y at the two locations may be predicted up to 30 min in advance with a correlation close to 0.8: 0.78±0.02 for both directions at BFE; 0.81±0.02 and 0.80±0.02 in the X- and Y-directions, respectively, at UPS. The most important inputs to the models are the 10-min averages of the solar wind magnetic field component B_{z} and velocity V, and the 10-min standard deviation of the proton number density σ_{n}. The average proton number density n has no influence.
Keywords. Magnetospheric physics (Solar wind - magnetosphere interactions – Geomagnetism and paleomagnetism (Rapid time variations
Energy Technology Data Exchange (ETDEWEB)
Morreeuw, J.P.; Dubroca, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Sangam, A.; Dubroca, B.; Charrier, P.; Tikhonchuk, V.T. [Bordeaux-1 Univ., CELIA, 33 - Talence (France); Sangam, A.; Dubroca, B.; Charrier, P. [Bordeaux-1 Univ., MAB, 33 - Talence (France)
2006-06-15
The laser interaction with an underdense plasma leads to an anisotropic laser heating of electrons. This temperature anisotropy gradient in turn is the source of an early magnetic field, which has an important effect on the plasma evolution, due to the thermal flux reduction. We describe the temperature anisotropy by an evolution equation including the anisotropy-magnetic field coupling and observe a rather efficient magnetic field generation. However at high anisotropy levels, a small-scale instability emerges, leading to a serious problem in numerical calculations. We introduce the kinetics effects, which fix the problem by the anisotropy diffusion through the heat flux tensor. A constant-coefficient Fokker-Planck model in the 2-dimensional geometry allows us to derive an anisotropy diffusion term. The diffusion coefficient is fitted from the kinetic theory of the collisional anisotropic (Weibel) instability growth rate. Such an anisotropy diffusion term wipes out the unphysical instability without any undesirable smoothing. This diffusion along with the viscosity term leads also to a quite good restitution of the Weibel instability growth rate and to the short wavelength cutoff, even in a weakly collisional situation. This allows us to use such a model to predict the emergence of the Weibel instability as well as its saturation. (authors)
International Nuclear Information System (INIS)
Wang, Lang Chen.
1990-01-01
A semi-implicit coupling technique (treating only the fluid temperature in the energy source term implicitly) of fluid heat-transfer to conduction slabs is presently used in TRAC-PF1. In this study, a fully implicit coupling scheme between the flow field and conduction slab for the one-dimensional capability of TRAC-PF1 has been developed. The new methods treat the heat-transfer coefficient and wall temperature in the energy source term of both the convection and the conduction equation implicitly. In order to test the accuracy of the standard TRAC coupling method and the new methods used in TRAC-PF1, a series of simple tube experiments were modeled with TRAC-PF1 version 3.9B. Additional studies showed the current TRAC-PF1 convergence variables (pressure fraction change and temperature change) and the current convergence criteria are not appropriate for obtaining an accurate result. Use of these values would produce non-physical double values or would adversely affect results in the reflood calculation. Another study also had been done to determine the importance of each HTC variable on computational accuracy and speed by using the non-linear oterative method. It is found that the heat-transfer correlations have a strong dependency on the local void fraction rather than on fluid velocity, fluid temperature, and wall surface temperature in the film boiling heat-transfer regime. At the beginning of a cooldown transient, the old time void fraction is always higher than the new time void fraction in the same time step. The old time void fraction evaluates a lower heat-transfer coefficient for that cell and initiates cooldown later and more slowly. This then leads to a longer quench time and lowers the fluid temperature and the wall temperature plateau for the downstream control volumes
International Nuclear Information System (INIS)
Chijimatsu, Masakazu; Taniguchi, Wataru
1999-02-01
necessary. The parameters of the van Genuchten model are obtained from the back analysis of infiltration test. The water movement due to thermal gradient and the swelling process are also considered. The parameters related to these phenomena are obtained from the laboratory tests by back analysis. The validation of T-H-M model for buffer material is carried out by comparing with the results of BIG-BEN experiment. The coupled T-H-M processes in the near field are simulated with fully coupled model. The material of buffer is bentonite-sand mixture and dry density is l.6 g/cm 3 . From the results, the following conclusions are obtained. (1) The maximum temperature in the buffer obtained by coupled analysis is compared with that obtained by thermal analysis. Two cases is considered as initial water content in the buffer. One is 7%, which correspond to natural water content, and the other is 17%, which is correspond to optimized water content by the in-situ compaction. In both cases, maximum temperature in the buffer that is obtained by coupled analysis is lower than that obtained by thermal analysis. (2) Re-saturation time of buffer is strongly dependent on the water pressure in the rock mass. However, it is not dependent on the permeability of rock mass if the intrinsic permeability of rock mass is in the 10 13 - 10 18 m 2 range. (3) In the case that the intrinsic permeability of rock mass is approximately 10 -15 m 2 , the initial water content in the buffer does not exert influence on the re-saturation time of buffer. (4) Two dimensional T-H-M analysis in consideration of pore pressure decreasing in the rock mass due to the excavation of drift is carried out. As a result, re-saturation time of buffer is in the 10 - 30 years range if the initial water pressure head is 1000 m. (author)
Quantum features derived from the classical model of a bouncer-walker coupled to a zero-point field
International Nuclear Information System (INIS)
Schwabl, H; Mesa Pascasio, J; Fussy, S; Grössing, G
2012-01-01
In our bouncer-walker model a quantum is a nonequilibrium steady-state maintained by a permanent throughput of energy. Specifically, we consider a 'particle' as a bouncer whose oscillations are phase-locked with those of the energy-momentum reservoir of the zero-point field (ZPF), and we combine this with the random-walk model of the walker, again driven by the ZPF. Starting with this classical toy model of the bouncer-walker we were able to derive fundamental elements of quantum theory. Here this toy model is revisited with special emphasis on the mechanism of emergence. Especially the derivation of the total energy hω o and the coupling to the ZPF are clarified. For this we make use of a sub-quantum equipartition theorem. It can further be shown that the couplings of both bouncer and walker to the ZPF are identical. Then we follow this path in accordance with Ref. [2], expanding the view from the particle in its rest frame to a particle in motion. The basic features of ballistic diffusion are derived, especially the diffusion constant D, thus providing a missing link between the different approaches of our previous works.
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)
2013-08-01
We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 Multiplication-Sign 4 matrices (for the gas-radiation interaction) and 3 Multiplication-Sign 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.
Statistical approach to Higgs boson couplings in the standard model effective field theory
Murphy, Christopher W.
2018-01-01
We perform a parameter fit in the standard model effective field theory (SMEFT) with an emphasis on using regularized linear regression to tackle the issue of the large number of parameters in the SMEFT. In regularized linear regression, a positive definite function of the parameters of interest is added to the usual cost function. A cross-validation is performed to try to determine the optimal value of the regularization parameter to use, but it selects the standard model (SM) as the best model to explain the measurements. Nevertheless as proof of principle of this technique we apply it to fitting Higgs boson signal strengths in SMEFT, including the latest Run-2 results. Results are presented in terms of the eigensystem of the covariance matrix of the least squares estimators as it has a degree model-independent to it. We find several results in this initial work: the SMEFT predicts the total width of the Higgs boson to be consistent with the SM prediction; the ATLAS and CMS experiments at the LHC are currently sensitive to non-resonant double Higgs boson production. Constraints are derived on the viable parameter space for electroweak baryogenesis in the SMEFT, reinforcing the notion that a first order phase transition requires fairly low-scale beyond the SM physics. Finally, we study which future experimental measurements would give the most improvement on the global constraints on the Higgs sector of the SMEFT.
Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell
Funk, Richard HW
2018-01-01
In this review we compile results cited in reliable journals that show a ratio for the use of pulsed electromagnetic fields (PEMF) in therapy, indeed. This is true especially for chronically inflamed joints. Furthermore, we try to link this therapeutic approach to the molecular background of chronic inflammation and arthritis. At first we start with the clinical outcome of PEMF therapy. Then, we look for possible triggers and an electromagnetic counterpart that is endogenously inherent in cell biology and in the tissues of interest. Finally, we want to investigate causal molecular and cellular mechanisms of possible PEMF actions. It shows that there are endogenous mechanisms, indeed, which can act as triggers for PEMF like the resting membrane potential as well as resonance mechanisms in charged moieties like membrane transporters. Especially voltage-gated calcium channels can be triggered. These may lead into specific signaling pathways and also may elicit nitric oxide as well as moderate radical reactions, which can ultimately lead to e.g. NFκB-like reactions. Concerted in the right way, these reactions can cause a kind of cell protection and ultimately lead to a dampening of inflammatory signals like interleukins.
International Nuclear Information System (INIS)
Takahashi, Hiroyuki R.; Ohsuga, Ken
2013-01-01
We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 × 4 matrices (for the gas-radiation interaction) and 3 × 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag
Energy Technology Data Exchange (ETDEWEB)
Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)
1998-06-01
Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)
International Nuclear Information System (INIS)
Zhong Ming; Tong Peiqing
2011-01-01
The Loschmidt echo (LE) of a central two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field is studied. A general formula for LE is derived, which we use to discuss the influence of the criticality of the environment on LE. It is found that for the periodic XY chain the behaviors of LE in the vicinity of the critical points are similar to those of the uniform case. It is different for the disordered transverse Ising chains. For the aperiodic chains, if the surrounding systems are bounded chains, the behaviors of LE are similar to those of the uniform case, while if the surrounding systems are unbounded chains, they are similar to those of the disordered case.
The quantum anomalous Hall effect on a star lattice with spin-orbit coupling and an exchange field
International Nuclear Information System (INIS)
Chen Mengsu; Wan Shaolong
2012-01-01
We study a star lattice with Rashba spin-orbit coupling and an exchange field and find that there is a quantum anomalous Hall effect in this system, and that there are five energy gaps at Dirac points and quadratic band crossing points. We calculate the Berry curvature distribution and obtain the Hall conductivity (Chern number ν) quantized as integers, and find that ν =- 1,2,1,1,2 when the Fermi level lies in these five gaps. Our model can be viewed as a general quantum anomalous Hall system and, in limit cases, can give what the honeycomb lattice and kagome lattice give. We also find that there is a nearly flat band with ν = 1 which may provide an opportunity for realizing the fractional quantum anomalous Hall effect. Finally, the chiral edge states on a zigzag star lattice are given numerically, to confirm the topological property of this system. (paper)
Directory of Open Access Journals (Sweden)
Corrado Napoli
2018-03-01
Full Text Available In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular beacons (MBs. Their integration with organic-transistor based sensors, never explored before, paves the way to a new class of low-cost, easy-to-use, and portable genetic sensors with enhanced performances. Thanks to the peculiar characteristics of the employed sensor, measurements can be performed at relatively high ionic strengths, thus optimizing the probes’ functionality without affecting the detection ability of the device. A complete electrical characterization of the sensor is reported, including calibration with different target concentrations in the measurement environment and selectivity evaluation. In particular, DNA hybridization detection for target concentration as low as 100 pM is demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Starkov, Konstantin E., E-mail: kstarkov@ipn.mx
2015-07-03
In this paper we study invariant domains with unbounded dynamics for one cosmological Hamiltonian system which is formed by the conformally coupled field; this system was introduced by Maciejewski et al. (2007). We find a few groups of conditions imposed on parameters of this system for which all trajectories are unbounded in both of time directions. Further, we present a few groups of other conditions imposed on system parameters under which we localize the invariant domain with unbounded dynamics; this domain is defined with help of bounds for values of the Hamiltonian level surface parameter. We describe one group of conditions when our system possesses two periodic orbits found explicitly. In some of rest cases we get localization bounds for compact invariant sets. - Highlights: • Equations for periodic orbits are got for many level sets. • Domains with unbounded dynamics are localized. • Localizations for compact invariant sets are obtained.
International Nuclear Information System (INIS)
Huang, J H; Wang, X J; Wang, J
2016-01-01
The primary purpose of this paper is to propose a mathematical model of PLZT ceramic with coupled multi-physics fields, e.g. thermal, electric, mechanical and light field. To this end, the coupling relationships of multi-physics fields and the mechanism of some effects resulting in the photostrictive effect are analyzed theoretically, based on which a mathematical model considering coupled multi-physics fields is established. According to the analysis and experimental results, the mathematical model can explain the hysteresis phenomenon and the variation trend of the photo-induced voltage very well and is in agreement with the experimental curves. In addition, the PLZT bimorph is applied as an energy transducer for a photovoltaic–electrostatic hybrid actuated micromirror, and the relation of the rotation angle and the photo-induced voltage is discussed based on the novel photostrictive mathematical model. (paper)
Activating persulfate by Fe⁰ coupling with weak magnetic field: performance and mechanism.
Xiong, Xinmei; Sun, Bo; Zhang, Jing; Gao, Naiyun; Shen, Jimin; Li, Jialing; Guan, Xiaohong
2014-10-01
Weak magnetic field (WMF) and Fe(0) were proposed to activate PS synergistically (WMF-Fe(0)/PS) to degrade dyes and aromatic contaminants. The removal rates of orange G (OG) by WMF-Fe(0)/PS generally decreased with increasing initial pH (3.0-10.0) and increased with increasing Fe(0) (0.5-3.0 mM) or PS dosages (0.5-3.0 mM). Compared to its counterpart without WMF, the WMF-Fe(0)/PS process could induce a 5.4-28.2 fold enhancement in the removal rate of OG under different conditions. Moreover, the application of WMF significantly enhanced the decolorization rate and the mineralization of OG. The degradation rates of caffeine, 4-nitrophenol, benzotriazole and diuron by Fe(0)/PS were improved by 2.1-11.1 fold due to the superimposed WMF. Compared to many other sulfate radical-based advanced oxidation technologies under similar reaction conditions, WMF-Fe(0)/PS technology could degrade selected organic contaminants with much greater rates. Sulfate radical was identified to be the primary radical species responsible for the OG degradation at pH 7.0 in WMF-Fe(0)/PS process. This study unraveled that the presence of WMF accelerated the corrosion rate of Fe(0) and thus promoted the release of Fe(2+), which induced the increased production of sulfate radicals from PS and promoted the degradation of organic contaminants. Employing WMF to enhance oxidation capacity of Fe(0)/PS is a novel, efficient, promising and environmental-friendly method since it does not need extra energy and costly reagents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Caputo, M. C.; de Carlo, L.; de Benedictis, F.; Vurro, M.
2009-04-01
The shallow and/or karstic and fractured aquifers are among the most important water resources. At the same time, they are particularly vulnerable to contamination. A detailed scientific knowledge of the behavior of these aquifers is essential for the development of sustainable groundwater management. Different investigation methods have been developed with the aim to characterize the subsurface and to monitor the flow and solute transport in these hydrogeology systems. This study presents the results of an investigation method, that combine large infiltrometer measurements with elettrical resistivity profiles, carried out in two different experimental sites characterized by different hydrogeology systems. One site, close to Altamura a city in the South of Italy, is represented from karstic and fractured limestone that overlays the deep aquifer. This area has been affected by sludge waste deposits derived from municipal and industrial wastewater treatment plants. The second site, close to San Pancrazio Salentino town in Southern Italy also, is represented from a quarry of calcarenite that has been used as a dump of sludge of mycelium producted from pharmaceutical industry. In both these cases the waste disposal have caused soil-subsoil contamination. Knowledge of the flow rate of the unsaturated zone percolation is needed to investigate the vertical migration of pollutants and the vulnerability of the aquifers. In this study, subsurface electrical resistivity measurements were used to visualize the infiltration of water in the subsoil due to unsaturated water flow. Simultaneously, the vertical flow was investigated by measuring water levels during infiltrometer tests carried out using a large adjustable ring infiltrometer, designed to be installed in the field directly on the outcrop of rock. In addition electrical resistivity azimuthal surveys have been conducted to detect principal fractures strike directions that cause preferential flow. The results obtained
International Nuclear Information System (INIS)
Farnell, D J J; Zinke, R; Richter, J; Schulenburg, J
2009-01-01
We apply the coupled cluster method (CCM) in order to study the ground-state properties of the (unfrustrated) square-lattice and (frustrated) triangular-lattice spin-half Heisenberg antiferromagnets in the presence of external magnetic fields. Approximate methods are difficult to apply to the triangular-lattice antiferromagnet because of frustration, and so, for example, the quantum Monte Carlo (QMC) method suffers from the 'sign problem'. Results for this model in the presence of magnetic field are rarer than those for the square-lattice system. Here we determine and solve the basic CCM equations by using the localized approximation scheme commonly referred to as the 'LSUBm' approximation scheme and we carry out high-order calculations by using intensive computational methods. We calculate the ground-state energy, the uniform susceptibility, the total (lattice) magnetization and the local (sublattice) magnetizations as a function of the magnetic field strength. Our results for the lattice magnetization of the square-lattice case compare well to the results from QMC approaches for all values of the applied external magnetic field. We find a value for the magnetic susceptibility of χ = 0.070 for the square-lattice antiferromagnet, which is also in agreement with the results from other approximate methods (e.g., χ = 0.0669 obtained via the QMC approach). Our estimate for the range of the extent of the (M/M s =) 1/3 magnetization plateau for the triangular-lattice antiferromagnet is 1.37 SWT = 0.0794. Higher-order calculations are thus suggested for both SWT and CCM LSUBm calculations in order to determine the value of χ for the triangular lattice conclusively.
Coupled energy-drift and force-balance equations for high-field hot-carrier transport
International Nuclear Information System (INIS)
Huang, Danhong; Alsing, P.M.; Apostolova, T.; Cardimona, D.A.
2005-01-01
Coupled energy-drift and force-balance equations that contain a frictional force for the center-of-mass motion of electrons are derived for hot-electron transport under a strong dc electric field. The frictional force is found to be related to the net rate of phonon emission, which takes away the momentum of a phonon from an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltzmann scattering equation, which depends on the distribution of electrons interacting with phonons. The work done by the frictional force is included into the energy-drift equation for the electron-relative scattering motion and is found to increase the thermal energy of the electrons. The importance of the hot-electron effect in the energy-drift term under a strong dc field is demonstrated in reducing the field-dependent drift velocity and mobility. The Doppler shift in the energy conservation of scattering electrons interacting with impurities and phonons is found to lead to an anisotropic distribution of electrons in the momentum space along the field direction. The importance of this anisotropic distribution is demonstrated through a comparison with the isotropic energy-balance equation, from which we find that defining a state-independent electron temperature becomes impossible. To the leading order, the energy-drift equation is linearized with a distribution function by expanding it into a Fokker-Planck-type equation, along with the expansions of both the force-balance equation and the Boltzmann scattering equation for hot phonons
Miyagawa, Akihisa; Harada, Makoto; Okada, Tetsuo
2018-02-06
We present a novel analytical principle in which an analyte (according to its concentration) induces a change in the density of a microparticle, which is measured as a vertical coordinate in a coupled acoustic-gravitational (CAG) field. The density change is caused by the binding of gold nanoparticles (AuNP's) on a polystyrene (PS) microparticle through avidin-biotin association. The density of a 10-μm PS particle increases by 2% when 500 100-nm AuNP's are bound to the PS. The CAG can detect this density change as a 5-10 μm shift of the levitation coordinate of the PS. This approach, which allows us to detect 700 AuNP's bound to a PS particle, is utilized to detect biotin in solution. Biotin is detectable at a picomolar level. The reaction kinetics plays a significant role in the entire process. The kinetic aspects are also quantitatively discussed based on the levitation behavior of the PS particles in the CAG field.
International Nuclear Information System (INIS)
Kosako, Toshiso; Nakazawa, Masaharu; Sekiguchi, Akira; Wakabayashi, Hiroaki.
1976-10-01
Intermediate neutron column of YAYOI reactor is here evaluated as an intermediate energy neutron standard field which provides a base of the measurements of various reaction rates in that energy region, including detector calibration and Doppler coefficient determination. The experiments were performed using YAYOI's core as a fast neutron source by coupling with the large lead pile, which is a 160 ton's octagon of 2.5 m high and with a thickness of about 2.5 m face to face distance. Spatial variation of the neutron flux in the lead pile was estimated by gold activation foils, and the neutron spectrum by sandwich foils, a helium-3 proportional counter and a proton recoil counter. The calculated results were obtained using one and two- dimensional discrete ordinate code, ANISN and TWOTRAN II. Through comparison of experiment with calculation, it became clear that the neutron field at the central block has simple energy spectrum and stable spatial distribution of the neutron flux, the absolute of which was 5.0 x 10 4 (n/cm 2 /sec/Watt) at the representative energy of 1 KeV. The energy spectrum of the position and the spatial dependent neutron flux in the lead pile are both represented by the semiempirical formula, which must be useful both for evaluation of experimental data and for future applications. (auth.)
Yang, Yuan; Yang, Jian; Li, Xiaobing; Zhao, Yue
2018-03-01
We investigate the topological phase transitions in an anisotropic square-octagon lattice in the presence of spin-orbit coupling and exchange field. On the basis of the Chern number and spin Chern number, we find a number of topologically distinct phases with tuning the exchange field, including time-reversal-symmetry-broken quantum spin Hall phases, quantum anomalous Hall phases and a topologically trivial phase. Particularly, we observe a coexistent state of both the quantum spin Hall effect and quantum anomalous Hall effect. Besides, by adjusting the exchange filed, we find the phase transition from time-reversal-symmetry-broken quantum spin Hall phase to spin-imbalanced and spin-polarized quantum anomalous Hall phases, providing an opportunity for quantum spin manipulation. The bulk band gap closes when topological phase transitions occur between different topological phases. Furthermore, the energy and spin spectra of the edge states corresponding to different topological phases are consistent with the topological characterization based on the Chern and spin Chern numbers.
Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie
2016-06-01
High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show
Wallace, Brian D.
A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind
International Nuclear Information System (INIS)
Li Ke; Ling Weijun
2011-01-01
The information entropy properties of the atoms of coupled Λ-type three-level atoms interacting with coherent field are studied by means of quantum theory, and discussed the time evolutions of the information entropy of the atoms via the average photon number, initial state of the atoms, detuning, coupling constant between the atoms and the coefficient of Kerr medium. Numerical calculation results show that the time evolutions of the information entropy properties of the atoms strongly dependent on the initial state of the system and the average photon number. Detuning, coupling constant between the atoms and the Kerr coefficient still make influence on the information entropy of the atoms. (authors)
Energy Technology Data Exchange (ETDEWEB)
Sanchez, Marcelo J. [Texas A & M Univ., College Station, TX (United States); Santamarina, J. Carlos [King Abdullah Univ. of Science and Technology (Saudi Arabia)
2017-02-14
Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (also through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.
International Nuclear Information System (INIS)
Huang, Danhong; Apostolova, T.; Alsing, P.M.; Cardimona, D.A.
2004-01-01
The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate electrons. This approach allows us to include the anisotropic energy-relaxation process which has been neglected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the incident infrared field with different polarizations. Based on this model, the transport of electrons is explored under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic dependence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the infrared field due to a suppressed momentum-relaxation process (or frictional force) under parallel polarization but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular polarization
International Nuclear Information System (INIS)
Tangarife, E.; Duque, C.A.
2011-01-01
This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. Calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a non-linear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum-well wires. -- Research highlights: → Binding energy for donor impurity in coupled wires strongly depends on the confinement potential. → Polarizability for donor impurity in coupled wires strongly depends on the confinement potential. → Binding energy strongly depends on the direction of the applied electric field. → Polarizability strongly depends on the direction of the applied electric field. → The coupling between the two parallel wires increases with the hydrostatic pressure.
Kamiya, Yusuke; Akpalu, Bright; Mahama, Emmanuel; Ayipah, Emmanuel Kwesi; Owusu-Agyei, Seth; Hodgson, Abraham; Shibanuma, Akira; Kikuchi, Kimiyo; Jimba, Masamine
2017-03-15
How does the gap in preferences between married couples affect their happiness after childbirth? Are couples that share similar preferences happier? In recent years, gender, marriage, and happiness have been considered to be key issues in public health research. Although much research has examined the happiness status of married couples, practically no study has explored the gender gap in relation to happiness and the preferences of married couples after childbirth. Therefore, our study was conducted to assess the association between the preference gap and the happiness status among married couples in the afterbirth period. We conducted a field experiment in rural communities in the Brong-Ahafo region of Ghana. Participants were 80 married couples who had experienced childbirth within 2 years prior to the survey. As preference indicators, we measured trust, reciprocity, altruism, and risk lovingness through an economic experiment. Then, we assessed how, for a couple, the gap between these preferences affected their happiness. Wives' happiness was positively associated with the absolute value of the gap in risk lovingness between a couple (OR = 4.83, p = 0.08), while husbands' happiness was negatively associated with the gap in trust (OR = -3.58, p = 0.04) or altruism (OR = -3.33, p = 0.02). Within a couple, wives felt greater happiness than their husbands if there was a wider gap in trust (OR = 6.22, p = 0.01), reciprocity (OR = 2.80, p = 0.01), or risk lovingness (OR = 3.81, p = 0.07). The gender gaps in the preference indicators were found to be closely associated with the happiness levels between married couples after childbirth. For the further improvement of maternal and child health, we must consider the gender gaps between couples in relation to happiness and preferences.
International Nuclear Information System (INIS)
Roy, G.
1988-11-01
Second order coupling terms for sector bending magnets due to edge effects at high energy are reviewed. Motion in the horizontal plane (bending plane) and in the vertical (nonbending) plane is considered. The model of Heaviside's function is outlined. The case of the complete bending magnet is treated. Three second order coupling terms between the vertical and horizontal planes in a complete bending magnet are found. Their origin is the fringing field, i.e., the intensity difference of the magnetic field between the outside and the inside of the magnet
Riondato, J; Vanhaecke, F; Moens, L; Dams, R
2001-07-01
In the framework of an international certification campaign, sector-field inductively coupled plasma mass spectrometry (sector-field ICP-MS) was used for the accurate determination of the rare earth elements in five candidate reference materials: aquatic plant, calcareous soil, mussel tissue, river sediment, and tuna muscle. All samples were taken into solution by use of microwave-assisted or mixed microwave-assisted / open beaker acid digestion. Subsequently, the samples were appropriately diluted and subjected to ICP-MS analysis. Except for Sc, all the elements involved were determined at low mass resolution (R = 300). For Sc, application of a higher resolution setting (R = 3,000) was required to separate the analyte signal from those of several molecular ions which gave rise to spectral overlap at low mass resolution. Some of the heavier REE can also suffer from spectral overlap attributed to the occurrence of oxide ions (MO+) of the lighter REE and Ba. This spectral overlap could be successfully overcome by mathematical correction. Matrix effects were overcome by use of two carefully selected internal standards, such that external calibration could be used. On each occasion, a geological reference material was analyzed as a quality-control sample and the reliability of all results obtained was additionally checked by means of chondrite normalization. For tuna muscle the content of all REE was below the limit of detection. For calcareous soil and river sediment, low to sub microg g(-1) values were observed, whereas the REE content of aquatic plant and mussel tissue was considerably lower (low to sub ng g(-1)). Overall, the results obtained were in excellent agreement with the average values, calculated on the basis of all "accepted" values, obtained in different laboratories using different techniques.
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
International Nuclear Information System (INIS)
Couvant, T.; Vaillant, F.; Miloudi, S.; Deforge, D.; Thebault, Y.
2011-01-01
Some IGSCC (Intergranular Stress Corrosion Cracks) indications have been observed at the cold work surface of the hot side (325 C) of some divider plates of steam generators (SG) since 2002. Based on many in-service inspection campaigns (about 100 SG inspections), no evidence of propagation following the first detection has never been observed. In this context, crack propagation tests were carried out in EDF in order to evaluate the susceptibility to SCC of warm rolled plates made of Alloy 600 as a function of the degree of cold work. Some results recently obtained in the EDF Hot Laboratories on the decommissioned SG1 of Chinon B1 were coupled with calibrated crack propagation laws on cold worked materials. Results enlightened the restricted susceptibility to observe a significant crack depth over the steam generator lifetime. Along the most probable crack growth path, the maximal crack growth rate (CGR) was lower than 300 μm.cycle -1 and the CGR did not exceed 260 μm.cycle -1 as soon as the local plastic deformation was lower than 0.07. A laboratory SCC test on a specimen with a superficial cold worked layer confirmed the good resistance to SCC when the local plastic strain was lower than 0.07, in good agreement with the field experience. (authors)
Ceccuzzi, Silvio; Jandieri, Vakhtang; Baccarelli, Paolo; Ponti, Cristina; Schettini, Giuseppe
2016-04-01
Comparison of the beam-shaping effect of a field radiated by a line source, when an ideal infinite structure constituted by two photonic crystals and an actual finite one are considered, has been carried out by means of two different methods. The lattice sums technique combined with the generalized reflection matrix method is used to rigorously investigate the radiation from the infinite photonic crystals, whereas radiation from crystals composed of a finite number of rods along the layers is analyzed using the cylindrical-wave approach. A directive radiation is observed with the line source embedded in the structure. With an increased separation distance between the crystals, a significant edge diffraction appears that provides the main radiation mechanism in the finite layout. Suitable absorbers are implemented to reduce the above-mentioned diffraction and the reflections at the boundaries, thus obtaining good agreement between radiation patterns of a localized line source coupled to finite and infinite photonic crystals, when the number of periods of the finite structure is properly chosen.
Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi
2018-05-01
We investigate a two-orbital Hubbard model on a honeycomb structure, with a special focus on the antisymmetric spin-orbit coupling (ASOC) induced by symmetry breaking in the electronic degrees of freedom. By investigating the ground-state phase diagram by the mean-field approximation in addition to the analysis in the strong correlation limit, we obtain a variety of symmetry-broken phases that induce different types of effective ASOCs by breaking of spatial inversion symmetry. We find several unusual properties emergent from the ASOCs, such as a linear magnetoelectric effect in a spin-orbital ordered phase at 1/4 filling and a spin splitting in the band structure in charge ordered phases at 1/4 and 1/2 fillings. We also show that a staggered potential on the honeycomb structure leads to another type of ASOC, which gives rise to a valley splitting in the band structure at 1/2 filling. We discuss the experimental relevance of our results to candidate materials including transition metal dichalcogenides and trichalcogenides.
Alfonso, Victor I.; Bejarano, Cecilia; Beltrán Jiménez, Jose; Olmo, Gonzalo J.; Orazi, Emanuele
2017-12-01
We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion), and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature, including the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible, and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.
Anres, Philippe; Delaunay, Nathalie; Vial, Jérôme; Thormann, Wolfgang; Gareil, Pierre
2013-02-01
The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Ranville, J.F.; Shanks, F.; Morrison, R.J.S.; Harris, T.; Doss, F.; Beckett, R.; Chittleborough, D.J.
1999-01-01
A relatively new hyphenated technique for the simultaneous size separation and elemental analysis of colloids has been further developed and applied to the characterization of soil colloids. Sedimentation field-flow fractionation (SdFFF) was directly interfaced to an inductively coupled plasma-mass spectrometer (ICP-MS) to provide high-resolution sizing and elemental analysis of colloids in the range 0.05-1.0 μm. For this work our existing SdFFF instrument was modified by addition of an upgraded motor and software for centrifuge speed control and data collection. Analytical techniques were developed for the calibration and drift correction of the ICP-MS data collected during on-line SdFFF-ICP-MS analyses. Software was developed to allow off-line computation of drift-corrected, elemental concentrations across the colloid size range. SdFFF-ICP-MS examination of two colloid samples isolated from surface soil horizons showed significant enrichment in iron-containing phases in both the smaller and larger colloids relative to intermediate particle sizes (∼0.3 0.3 μm). These results demonstrate the utility of SdFFF-ICP-MS for examination of soil chemistry and mineralogy and suggests the technique will have application to other environmental and geochemical studies. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Diaz, Ernesto; Sarkis, Jorge E Souza; Viebig, Sônia; Saldiva, Paulo
2012-01-10
The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the São Paulo Criminalistics Institute (I.C.-S.P.), São Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM(2.5) fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 μg/m(3); barium (Ba): 6.9 μg/m(3); antimony (Sb): 7.3 μg/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 μg/m(3); Ba: 2.2 μg/m(3); Sb: 1.5 μg/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
International Nuclear Information System (INIS)
Hasegawa, Hideo
2004-01-01
By extending a dynamical mean-field approximation previously proposed by the author [H. Hasegawa, Phys. Rev. E 67, 041903 (2003)], we have developed a semianalytical theory which takes into account a wide range of couplings in a small-world network. Our network consists of noisy N-unit FitzHugh-Nagumo neurons with couplings whose average coordination number Z may change from local (Z<< N) to global couplings (Z=N-1) and/or whose concentration of random couplings p is allowed to vary from regular (p=0) to completely random (p=1). We have taken into account three kinds of spatial correlations: the on-site correlation, the correlation for a coupled pair, and that for a pair without direct couplings. The original 2N-dimensional stochastic differential equations are transformed to 13-dimensional deterministic differential equations expressed in terms of means, variances, and covariances of state variables. The synchronization ratio and the firing-time precision for an applied single spike have been discussed as functions of Z and p. Our calculations have shown that with increasing p, the synchronization is worse because of increased heterogeneous couplings, although the average network distance becomes shorter. Results calculated by our theory are in good agreement with those by direct simulations
The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...
Helsper, Hans; Peters, Ruud J.B.; Bemmel, van Greet; Herrera Rivera, Zahira; Wagner, Stephan; Kammer, von der Frank; Tromp, Peter C.; Hofmann, Thilo; Weigel, Stefan
2016-01-01
Seven commercial titanium dioxide pigments and two other well-defined TiO_{2} materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass
Helsper, J.P.F.G.; Peters, R.J.B.; Bemmel, M.E.M. van; Rivera, Z.E.H.; Wagner, S.; Kammer, F. von der; Tromp, P.C.; Hofmann, T.; Weigel, S.
2016-01-01
Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry
Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao
2017-06-01
High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.
Dou, Haiyang; Li, Yueqiu; Choi, Jaeyeong; Huo, Shuying; Ding, Liang; Shen, Shigang; Lee, Seungho
2016-09-23
The capability of asymmetrical flow field-flow fractionation (AF4) coupled with UV/VIS, multiangle light scattering (MALS) and quasi-elastic light scattering (QELS) (AF4-UV-MALS-QELS) for separation and characterization of egg yolk plasma was evaluated. The accuracy of hydrodynamic radius (Rh) obtained from QELS and AF4 theory (using both simplified and full expression of AF4 retention equations) was discussed. The conformation of low density lipoprotein (LDL) and its aggregates in egg yolk plasma was discussed based on the ratio of radius of gyration (Rg) to Rh together with the results from bio-transmission electron microscopy (Bio-TEM). The results indicate that the full retention equation is more relevant than simplified version for the Rh determination at high cross flow rate. The Rh from online QELS is reliable only at a specific range of sample concentration. The effect of programmed cross flow rate (linear and exponential decay) on the analysis of egg yolk plasma was also investigated. It was found that the use of an exponentially decaying cross flow rate not only reduces the AF4 analysis time of the egg yolk plasma, but also provides better resolution than the use of either a constant or linearly decaying cross flow rate. A combination of an exponentially decaying cross flow AF4-UV-MALS-QELS and the utilization of full retention equation was proved to be a useful method for the separation and characterization of egg yolk plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
On wormholes and black holes solutions of Einstein gravity coupled to a K-massless scalar field
International Nuclear Information System (INIS)
Estevez-Delgado, J; Zannias, T
2007-01-01
We investigate the nature of black holes and wormholes admitted by a K-essence model involving a massless scalar field φ, minimally coupled to gravity. Via Weyl's formalism, we show that any axial wormhole of the theory can be generated by a unique pair of harmonic functions: U(λ) = π/2 C + C arctan(λ/λ 0 ), φ(λ) = π/2 D + D arctan(λ/λ 0 ) where λ is one of the oblate coordinate, λ 0 > 0 and (C, D) real parameters. The properties of the wormholes depends crucially upon the values of the parameters (C, D). Whenever (C, D) are chosen so that 2C 2 - kD 2 = -2 the wormhole is spherical, while for the case where 2C 2 - kD 2 = -4 or 2C 2 - kD 2 = -6 the wormhole throat possesses toroidal topology. Those two families of wormholes exhaust all regular static and axisymmetric wormholes admitted by this theory. For completeness we add that whenever (C, D) satisfy 2C 2 - kD 2 = -2l with l ≥ 3/2 one still generates a spacetime possessing two asymptotically flat but the throat connecting the two ends contains a string like singularity. For the refined case where 2C 2 - kD 2 = -2l with l = 4,5, ... the resulting spacetime represents a multi-sheeted configuration which even though free of curvature singularities nevertheless the spacetime topology is distinct to so far accepted wormhole topology. Spacetimes generated by the pair (U(λ), φ(λ)) and parameters (C, D) subject to 2C 2 - kD 2 = -2l with l 2 bifurcating, regular Killing horizon necessary possesses a constant exterior scalar field. Under the assumption that the event horizon of any static black hole of this theory is a Killing horizon, the results show that the only static black hole admitted by this K-essence model, is the Schwarzschild black hole
Buividovich, P. V.; Davody, A.
2017-12-01
We develop numerical tools for diagrammatic Monte Carlo simulations of non-Abelian lattice field theories in the t'Hooft large-N limit based on the weak-coupling expansion. First, we note that the path integral measure of such theories contributes a bare mass term in the effective action which is proportional to the bare coupling constant. This mass term renders the perturbative expansion infrared-finite and allows us to study it directly in the large-N and infinite-volume limits using the diagrammatic Monte Carlo approach. On the exactly solvable example of a large-N O (N ) sigma model in D =2 dimensions we show that this infrared-finite weak-coupling expansion contains, in addition to powers of bare coupling, also powers of its logarithm, reminiscent of resummed perturbation theory in thermal field theory and resurgent trans-series without exponential terms. We numerically demonstrate the convergence of these double series to the manifestly nonperturbative dynamical mass gap. We then develop a diagrammatic Monte Carlo algorithm for sampling planar diagrams in the large-N matrix field theory, and apply it to study this infrared-finite weak-coupling expansion for large-N U (N ) ×U (N ) nonlinear sigma model (principal chiral model) in D =2 . We sample up to 12 leading orders of the weak-coupling expansion, which is the practical limit set by the increasingly strong sign problem at high orders. Comparing diagrammatic Monte Carlo with conventional Monte Carlo simulations extrapolated to infinite N , we find a good agreement for the energy density as well as for the critical temperature of the "deconfinement" transition. Finally, we comment on the applicability of our approach to planar QCD at zero and finite density.
2016-05-01
AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled...CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field 5a...Shukla, K., “Thermo-fluid dynamics of Loop Heat Pipe Operation,” International Communications in Heat and Mass Transfer , Vol. 35, No. 8, 2008, pp
Liu, Guo-Chin; Lee, Seokcheon; Ng, Kin-Wang
2006-10-20
We present the full set of power spectra of cosmic microwave background (CMB) temperature and polarization anisotropies due to the coupling between quintessence and pseudoscalar of electromagnetism. This coupling induces a rotation of the polarization plane of the CMB, thus resulting in a nonvanishing B mode and parity-violating TB and EB modes. Using the BOOMERANG data from the flight of 2003, we derive the most stringent constraint on the coupling strength. We find that in some cases the rotation-induced B mode can confuse the hunting for the gravitational lensing-induced B mode.
Gauge-invariant master field in U(∞) LGT: A pathway from the strong to weak coupling phases
International Nuclear Information System (INIS)
Kazakov, V.A.; Migdal, A.A.
1987-01-01
We propose and test a new computational method for SU(∞) lattice gauge and spin theories. It is based on calculation of the effective action depending only on N (rather than N 2 ) gauge invariant degrees of freedom, by means of some modification of the strong coupling expansion. We show using the example of a one-plaquette model that the stationary point equation for this action describes the weak coupling phase as well as the strong coupling phase. It is argued that such an equation predicts a phase transition for D-dimensional gauge theory, in accordance with Monte Carlo data. (orig.)
Gayler, S.; Wöhling, T.; Priesack, E.; Wizemann, H.-D.; Wulfmeyer, V.; Ingwersen, J.; Streck, T.
2012-04-01
The soil moisture, the energy balance at the land surface and the state of the lower atmosphere are closely linked by complex feedback processes. The vegetation acts as the interface between soil and atmosphere and plays an important role in this coupled system. Consequently, a consistent description of the fluxes of water, energy and carbon is a prerequisite for analyzing many problems in soil-, plant- and atmospheric research. To better understand the complex interplay of the involved processes, many numerical and physics-based soil-plant-atmosphere simulation models were developed during the last decades. As these models have been developed for different purposes, the degree of complexity in describing individual feedback processes can vary considerably. In models designed to predict soil moisture, for example, plants are often sufficiently represented by a simple sink term. If these models are calibrated, sometimes only one state variable and the corresponding calibration data type is used, e.g. soil water contents or pressure heads. In this case, vegetation properties and feedbacks between soil moisture, plant growth and stomatal conductivity are neglected to a large extent. Some crop models, in turn, pay little attention to modeling soil water transport. In a coupled soil-vegetation-atmosphere model, however, the interface between soil and atmosphere has to be consistent in all directions. As different data types such as soil moisture, leaf area development and evapotranspiration may contain contrasting information about the system under consideration, the fitting of such a model to a single data type may result in a poor agreement to another data type. The trade-off between the fittings to different data types can thereby be caused by structural inadequacies in the model or by errors in input and calibration data. In our study, we compare the Community Land Model CLM (version 3.5, offline mode) with different agricultural crop models to analyze the adequacy
National Oceanic and Atmospheric Administration, Department of Commerce — To estimate the carbon chemistry conditions experienced by free-living organisms, we will conduct coupled biological/carbon chemistry sampling for key zooplankton...
Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.
2018-05-01
We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.
Iinuma, Takeshi
2018-04-01
A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997-2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi
Directory of Open Access Journals (Sweden)
Gregor M Hoerzer
2010-05-01
Full Text Available Processing and storage of sensory information is based on the interaction between different neural populations rather than the isolated activity of single neurons. In order to characterize the dynamic interaction and transient cooperation of sub-circuits within a neural network, multivariate autoregressive (MVAR models have proven to be an important analysis tool. In this study, we apply directed functional coupling based on MVAR models and describe the temporal and spatial changes of functional coupling between simultaneously recorded local field potentials (LFP in extrastriate area V4 during visual memory. Specifically, we compare the strength and directional relations of coupling based on Generalized Partial Directed Coherence (GDPC measures while two rhesus monkeys perform a visual short-term memory task. In both monkeys we find increases in theta power during the memory period that are accompanied by changes in directed coupling. These interactions are most prominent in the low frequency range encompassing the theta band (3-12~Hz and, more importantly, are asymmetric between pairs of recording sites. Furthermore, we find that the degree of interaction decreases as a function of distance between electrode positions, suggesting that these interactions are a predominantly local phenomenon. Taken together, our results show that directed coupling measures based on MVAR models are able to provide important insights into the spatial and temporal formation of local functionally coupled ensembles during visual memory in V4. Moreover, our findings suggest that visual memory is accompanied not only by a temporary increase of oscillatory activity in the theta band, but by a direction-dependent change in theta coupling, which ultimately represents a change in functional connectivity within the neural circuit.
Alrasheed, Salma
2017-09-05
We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.
International Nuclear Information System (INIS)
Tangarife, E.; Duque, C.A.
2010-01-01
This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a nonlinear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum well wires.
Directory of Open Access Journals (Sweden)
J. D. Nichols
2005-03-01
Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.
International Nuclear Information System (INIS)
Tavassoly, M.K.; Hekmatara, H.
2015-01-01
In this paper, we consider the interaction between two two-level atoms and a two-mode binomial field with a general intensity-dependent coupling regime. The outlined dynamical problem has explicit analytical solution, by which we can evaluate a few of its physical features of interest. To achieve the purpose of the paper, after choosing a particular nonlinearity function, we investigate the quantum statistics, atomic population inversion and at last the linear entropy of the atom-field system which is a good measure for the degree of entanglement. In detail, the effects of binomial field parameters, in addition to different initial atomic states on the temporal behavior of the mentioned quantities have been analyzed. The results show that, the values of binomial field parameters and the initial state of the two atoms influence on the nonclassical effects in the obtained states through which one can tune the nonclassicality criteria appropriately. Setting intensity-dependent coupling function equal to 1 reduces the results to the constant coupling case. By comparing the latter case with the nonlinear regime, we will observe that the nonlinearity disappears the pattern of collapse-revival phenomenon in the evolution of Mandel parameter and population inversion (which can be seen in the linear case with constant coupling), however, more typical collapse-revivals will be appeared for the cross-correlation function in the nonlinear case. Finally, in both linear and nonlinear regime, the entropy remains less than (but close to) 0.5. In other words the particular chosen nonlinearity does not critically affect on the entropy of the system. (paper)
Poszwa, A.
2018-05-01
We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.
International Nuclear Information System (INIS)
Dahmen, B.
1994-12-01
A recently proposed method for a strong coupling analysis of scattering phenomena in hamiltonian lattice field theories is applied to the SU(2) Yang-Mills model in (2 + 1) dimensions. The calculation is performed up to second order in the hopping parameter. All relevant quantities that characterize the collision between the lightest glueballs in the elastic region - cross section, phase shifts, resonance parameters - are determined. (orig.)
International Nuclear Information System (INIS)
Shankar, B.M.; Rudraiah, N.
2013-01-01
The effective functioning of microfluidic devices in chemical, electrical and mechanical engineering involving fluidics particularly those having vibrations and petroleum products containing organic, inorganic and other microfluidics require understanding and control of stability of poorly conducting parallel fluid flows. The electrical conductivity, σ, of a poorly conducting fluidics, increases with the temperature and the concentration of freely suspended particles like RBC, WBC and so on in the blood, the hylauronic acid (HA) and nutrients of synovial fluid in synovial joints will spin producing microrotation, forming micropolar fluid of Eringen. The presence of Deuterium - Tritium (DT) in inertial fusion target (IFT) may also be modeled using micropolar fluid theory of Eringen. A particular case of micropolar fluid theory when microrotation balances with the natural vorticity of a poorly conducting fluidics in the presence of an electric field is called ‘electrohydrodynamic couple stress fluid’ (EHDCF). These EHDCFs exhibit a variation of electrical conductivity, ∇ σ, increasing with temperature and concentration of freely suspended particles, releases the charges from the nuclei forming distribution of charge density, ρ e . These charges induce an electric field, 1 E i . If need be, we can apply an electric field, 1 E a , by embedding electrodes of different potentials at the boundaries. The total electric field, 1 E = 1 E i + 1 E a , produces a current density, 1 J = ρ σ 1 E, according to Ohm’s law and also produces an electric force, 1 F σ = σ 1 E. This current 1 J acts as sensing and the force, 1 F σ acts as actuation. These two properties make the poorly conducting couple stress fluid to act as a smart material. The objective of this paper is to show that EHDCV in presence of coriolis force plays a significant role in controlling the stability of parallel flows which is essential for an effective functioning of machineries that occur in
International Nuclear Information System (INIS)
Shimizu, Hiroyuki; Fujita, Tomoo; Nakama, Shigeo; Koyama, Tomofumi; Chijimatsu, Masakazu
2011-01-01
This paper reports on the results of the numerical simulations for the analysis of coupled thermal-mechanical processes in the near field of a HLW repository using Finite Element Method (FEM) and Distinct Element Method (DEM). The FEM approach provides quantitative information of the change of stress during excavation and heating process. On the other hand, the DEM approach shows the crack propagation process at the borehole surface, and this result agrees qualitatively well with the experimental observation. By comparing these results obtained from both approaches, quantitative and qualitative insights into various aspects of the processes occurred in the near field can be obtained. (author)
Othman, Anas; Yevick, David
2018-01-01
The interaction of a N-type four-level atom with a single field in the presence of an intensity-dependent coupling in a nonlinear Kerr medium is investigated. The exact analytic solution is obtained in the case that the atom and electromagnetic field are initially in a higher excited state and a coherent state, respectively. It is then demonstrated that effects such as nonclassical light generation, degree of entanglement stabilization, Kerr medium nonclassical control, and squeezed light are can be more efficiently implemented within this four-level framework than in many competing procedures. Additionally, inversion, linear entropy, Mandel Q-parameter and normal squeezing dynamics are examined.
International Nuclear Information System (INIS)
Crisanti, Andrea; Leuzzi, Luca
2013-01-01
We report some results on the quenched disordered Spherical multi-p-Spin Model in presence of ferromagnetic couplings. In particular, we present the phase diagrams of some representative cases that schematically describe, in the mean-field approximation, the behavior of most known transitions in glassy materials, including dynamic arrest in super-cooled liquids, amorphous–amorphous transitions and spin–glass transitions. A simplified notation is introduced in order to compute systems properties in terms of an effective, self-induced, field encoding the whole ferromagnetic information
Zamani, A.; Azargoshasb, T.; Niknam, E.; Mohammadhosseini, E.
2017-06-01
In this work, effects of external electric and magnetic fields in the presence of both Rashba and Dresselhaus spin-orbit couplings on the second and third harmonic generations (SHG and THG) of a lens-shaped GaAs quantum dot are studied. Energy eigenvalues and eigenvectors are calculated numerically and optical properties are obtained using the compact density matrix approach. Our results reveal that, an increase in the magnetic field, leads to both red and blue shifts in resonant peaks of both SHG and THG. On the other hand, augmentation of electric field leads to blue shift in all resonant peaks except the first peak related to lowest transition. Also the dipole moment matrix elements increase by enhancing both electric and magnetic fields. Finally the effect of dot size is studied and results illustrate that increment in size reduces the transition energies except the lowest one and thus leads to red shift in resonant peaks while the first peak remains constant.
International Nuclear Information System (INIS)
Xu Hongliang; Wang Lin; Sun Baogen; Li Weimin; Liu Jinying; He Duohui
2003-01-01
The phase II upgrading project of Hefei 800 MeV electron storage ring is being done, and the important component of the project, the RF cavity, will be finished soon. The old RF cavity with many disadvantages will be replaced by the new one. To estimate the effect of RF cavity coupling impedance to storing bunch intensity fully, the wake potential and the broad band couple impedance of RF cavity were calculated with MAFIA program. And the calculation results were compared between new and old cavity, it is found that the impedance of the new is bigger than that of the old
Energy Technology Data Exchange (ETDEWEB)
Chen, Tao [State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074 (China); Hu, Zhaochu, E-mail: zchu@vip.sina.com [State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074 (China); Liu, Shenghua [Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061 (China); Liu, Yongsheng; Gao, Shan; Li, Ming; Zong, Keqing; Chen, Haihong; Hu, Shenghong [State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074 (China)
2015-04-01
To improve the accuracy and precision of trace element analysis, higher analytical sensitivity and lower interference are required. In this study, we investigated the effects of the addition of ethanol in combination with a shielded torch on the signal intensities of elements from {sup 7}Li to {sup 238}U, oxide yields, doubly charged ion yields, isobaric interferences and ion distributions in inductively coupled plasma–sector field mass spectrometry (ICP–SFMS). For the 39 investigated elements in this study, using the shielded torch increases the sensitivity by a factor of 17–58. The well-known drawback of using a shielded torch is that it will increase the oxide yield. In this study, the CeO{sup +}/Ce{sup +} ratio is increased by a factor of 3.3 in the GE-on mode compared to that in the GE-off mode at normal conditions (without ethanol). In the GE-on mode, the addition of 4% ethanol in ICP–SFMS is found not only to decrease the CeO{sup +}/Ce{sup +} ratio by a factor of 4 but also to suppress the Ce{sup 2+}/Ce{sup +} ratio by a factor of 4.2. In large contrast, the effect of 2–6% ethanol on the oxide yield and doubly charged ratio is minimal in the GE-off mode. Except for As, Se, Sb, Te and Au, for which the signal intensities are increased by a factor of 1.4–3.7 in the presence of 2–6% ethanol, an increased concentration of ethanol suppresses intensities of other elements. In the GE-off mode, the suppression of the analyte signal due to increased ethanol concentration is more significant than that in the GE-on mode. Compared to the spatial profiles of the ion distributions in the normal mode (without ethanol), the addition of 2–4% ethanol leads to significantly wider axial and radial profiles. The significantly wider axial and radial ion distribution had a dilution effect on the ion densities, which subsequently reduced the ion signal intensities. The addition of 4% ethanol was also found to suppress the interferences of Xe by a factor of 2.8 and
Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles
2016-01-01
We describe a generalization of the coupled wake boundary layer (CWBL) model for wind farms that can be used to evaluate the performance of wind farms under arbitrary wind inflow directions, whereas the original CWBL model (Stevens et al., J. Renewable and Sustainable Energy 7, 023115 (2015))
Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T; Costa-Fernandez, Jose M; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo
2014-08-11
Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches. Copyright © 2014. Published by Elsevier B.V.
International Nuclear Information System (INIS)
Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T.; Costa-Fernandez, Jose M.; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo
2014-01-01
Highlights: • The hyphenated system allows unequivocal identification of nanoparticle populations. • AF4 separation permitted detection of unexpected nanosized species in a sample. • ICP-QQQ provides elemental ratios with adequate accuracy in every nanoparticle. • Purity and chemical composition of different quantum dot samples were assessed. - Abstract: Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches
Wu, Tao; Li, Hua
2017-08-09
In this study, a model was multiphysically developed for the simulation of the phase transition of physical hydrogels between liquid solution and solid gel states, subject to an electro-chemo-mechanically coupled field, with the effect of the mobile ionic species in the solution. The present model consists of the governing equations for the equilibrium of forces and the conservation of mass, Maxwell's equations, and an evolution equation for the interface. Based on the second law of thermodynamics, the constitutive equations are formulated from the energy viewpoint, including a novel formulation of free energy with the effect of crosslink density. The present model may be reduced to Suo's non-equilibrium thermodynamic theory if the interface is ignored when only a single phase exists. It may also be reduced to Dolbow's model for gel-gel phase transition when the electric field is ignored. Therefore, the present model becomes more generalized since it is able to represent both the bulk phase and the interface behaviors, and the mechanical field is simultaneously coupled with both the electric and chemical fields. In the first case study, the system at equilibrium state was numerically investigated for analysis of the influences of the electrical and chemical potentials as well as the mechanical pressure externally imposed on the boundary of the system domain. The second case study presents a spherically symmetrical solution-gel phase transition at non-equilibrium states, with the emphasis on the evolution of both the interface and electrochemical potentials.
Abe, M.; Prasannaa, V. S.; Das, B. P.
2018-03-01
Heavy polar diatomic molecules are currently among the most promising probes of fundamental physics. Constraining the electric dipole moment of the electron (e EDM ), in order to explore physics beyond the standard model, requires a synergy of molecular experiment and theory. Recent advances in experiment in this field have motivated us to implement a finite-field coupled-cluster (FFCC) approach. This work has distinct advantages over the theoretical methods that we had used earlier in the analysis of e EDM searches. We used relativistic FFCC to calculate molecular properties of interest to e EDM experiments, that is, the effective electric field (Eeff) and the permanent electric dipole moment (PDM). We theoretically determine these quantities for the alkaline-earth monofluorides (AEMs), the mercury monohalides (Hg X ), and PbF. The latter two systems, as well as BaF from the AEMs, are of interest to e EDM searches. We also report the calculation of the properties using a relativistic finite-field coupled-cluster approach with single, double, and partial triples' excitations, which is considered to be the gold standard of electronic structure calculations. We also present a detailed error estimate, including errors that stem from our choice of basis sets, and higher-order correlation effects.
Energy Technology Data Exchange (ETDEWEB)
Falge, Mirjam
2012-07-01
This work aimed at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. In the first part of this thesis, the isotope effect and influence of vibrational excitation on high harmonic generation were investigated for the isotope pairs H{sub 2}O/D{sub 2}O and H{sub 2}/D{sub 2}. It was shown that on the one hand high harmonic intensities strongly depend on the vibrational quantum number of the initial state of the water molecule and on the other hand the spectra of H{sub 2}O and D{sub 2}O exhibit a clear isotope effect for certain vibrationally excited states. Also it was shown that high harmonics of vibrationally excited states show an even more pronounced isotope effect than the ground state. The second and third part of this work treats the influence of coupled electron and nuclear dynamics on photoelectron spectra. In order to facilitate a numerically exact description of this dynamics, a simple one-dimensional model system (Shin-Metiu model) was used. It consists of only a single electronic and nuclear degree-of-freedom and allows for a switching between adiabatic and strongly non-adiabatic dynamics by its parameterization. This model served for the analysis of the dynamics of three different cases ranging from weak over intermediate to strong electron-nuclear coupling. To investigate the influence of non-adiabatic effects on photoelectron spectra, time-resolved photoelectron spectra were calculated applying two methods: a numerically exact treatment and an adiabatic approach neglecting the electron-nuclear coupling. Subsequently, the dependence of the efficiency of a non-adiabatic transition on the nuclear mass was analysed. To this end, the population dynamics and photoelectron spectra were calculated numerically exactly for a strong electron and nuclear coupling. Thereafter the asymmetry in forward and backward direction of time
Energy Technology Data Exchange (ETDEWEB)
Mendes, Albert C.R., E-mail: albert@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Takakura, Flavio I., E-mail: takakura@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Abreu, Everton M.C., E-mail: evertonabreu@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro, 23890-971, Seropédica - RJ (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Neto, Jorge Ananias, E-mail: jorge@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil)
2017-05-15
In this work we have obtained a higher-derivative Lagrangian for a charged fluid coupled with the electromagnetic fluid and the Dirac’s constraints analysis was discussed. A set of first-class constraints fixed by noncovariant gauge condition were obtained. The path integral formalism was used to obtain the partition function for the corresponding higher-derivative Hamiltonian and the Faddeev–Popov ansatz was used to construct an effective Lagrangian. Through the partition function, a Stefan–Boltzmann type law was obtained. - Highlights: • Higher-derivative Lagrangian for a charged fluid. • Electromagnetic coupling and Dirac’s constraint analysis. • Partition function through path integral formalism. • Stefan–Boltzmann-kind law through the partition function.
Gary Achtemeier
2012-01-01
A cellular automata fire model represents âelementsâ of fire by autonomous agents. A few simple algebraic expressions substituted for complex physical and meteorological processes and solved iteratively yield simulations for âsuper-diffusiveâ fire spread and coupled surface-layer (2-m) fireâatmosphere processes. Pressure anomalies, which are integrals of the thermal...
Usman, Muhammad
2015-10-21
Strongly-coupled quantum dot molecules (QDMs) are widely employed in the design of a variety of optoelectronic, photovoltaic, and quantum information devices. An efficient and optimized performance of these devices demands engineering of the electronic and optical properties of the underlying QDMs. The application of electric fields offers a way to realise such a control over the QDM characteristics for a desired device operation. We performed multi-million-atom atomistic tight-binding calculations to study the influence of electric fields on the electron and hole wave function confinements and symmetries, the ground-state transition energies, the band-gap wavelengths, and the optical transition modes. Electrical fields parallel (Ep) and anti-parallel (Ea) to the growth direction were investigated to provide a comprehensive guide for understanding the electric field effects. The strain-induced asymmetry of the hybridized electron states is found to be weak and can be balanced by applying a small Ea electric field, of the order of 1 kV cm(-1). The strong interdot couplings completely break down at large electric fields, leading to single QD states confined at the opposite edges of the QDM. This mimics a transformation from a type-I band structure to a type-II band structure for the QDMs, which is a critical requirement for the design of intermediate-band solar cells (IBSCs). The analysis of the field-dependent ground-state transition energies reveals that the QDM can be operated both as a high dipole moment device by applying large electric fields and as a high polarizability device under the application of small electric field magnitudes. The quantum confined Stark effect (QCSE) red shifts the band-gap wavelength to 1.3 μm at the 15 kV cm(-1) electric field; however the reduced electron-hole wave function overlaps lead to a decrease in the interband optical transition strengths by roughly three orders of magnitude. The study of the polarisation-resolved optical
International Nuclear Information System (INIS)
Moog, H.C.; Keesmann, S.M.
2007-02-01
This paper reports on the project ''Coupling transport models with thermodynamic equilibrium calculations'' - short title EQLINK, promotion code number 02 E 9723 - in the which the scope for coupling thermodynamic equilibrium model calculations with EMOS was expanded and improved. The first step was to inquire into the current state of research on radiolytic processes. It transpired that there is currently no conclusive description of radiolytic processes. The existing descriptions are too complex and too narrowly geared to specific scenarios to allow a general view on radiolytic processes, which would be a prerequisite for creating suitable long-term geochemical safety analysis modules. It appears that the approximation calculations implemented in EMOS tend to overestimate rather than underestimate radiolytic gas formation. The thermodynamic database which is used at GRS (Society for Plant and Reactor Safety) as a basis for coupled transport calculations has been updated. For this purpose the radionuclide database of the Institut fuer Nukleare Entsorgung (INE = Institute for Nuclear Disposal) was converted to an in-house format which permits creating parameter files for specific requirements. The data of the INE comprise thermodynamic parameters such as equilibrium constants, Gibbs free enthalpies of formation, enthalpies and entropies of formation and Pitzer parameters, which are required for model calculations on high-saline solutions. The database for low-saline solutions which had been developed by PSI/NAGRA for calculations with CLAYPOS was also adopted. Both parameter sets were subjected to test calculations to detect any errors that might have occurred during the data transfer. It is thus now possible to perform coupled transport calculations with the EMOS modules LOPOS and CLAYPOS according to the state of the art of geochemical research. The EQLINK interface which had been developed in an earlier project, titled ''Development of a model for describing the
International Nuclear Information System (INIS)
Edery, D.; Pellat, R.; Soule, J.L.
1981-01-01
The resistive MHD equations have been handled in toroidal geometry following the tokamak ordering, in order to obtain a simplified set of non-linear equations. This system of equations is compact, closed, consistent and exact to the first two orders in the expansion in the inverse aspect ratio. Studies of the non-linear evolution of tearing modes in the real geometry of tokamak discharges are now in progress, and quite significant results have been obtained from the numerical code REVE of Fontenay based on our above model. From the analytical results, strong linear coupling between neighbouring modes is expected as is demonstrated by the numerical results in the linear, and non-linear regimes. Moreover, coupling exhibits a stochastic structure of the magnetic field lines, the threshold of which is seen to be easily computed by a simple analytical criterion. (orig.)
Institute of Scientific and Technical Information of China (English)
QIN Meng
2013-01-01
We examine entanglement teleportation,characterized by average fidelity,of two-qubit XY Z spin chain under different nonuniform magnetic field.The entanglement teleportation and the fidelity of entanglement teleportation are investigated separately.We show explicitly that the fidelity of entanglement teleportation can be enhanced by changing the direction of the magnetic field.This means that we can always get optimal fidelity by choosing the directions of magnetic field in the process of quantum teleportation.Moreover,the results show that in some cases the ferromagnetic chain aiso is a quaiified candidate in the process of teleportation protocol.
Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo
2015-10-09
We report observation of a 'non-volatile' converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in 'non-volatility'. In isolated nanomagnets, the magnetization rotates by <90° upon application of the electric field, but in a dipole-coupled pair consisting of one 'hard' and one 'soft' nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet's magnetization rotates by [Formula: see text] upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.
International Nuclear Information System (INIS)
Tsakadze, E.L.; Ostrikov, K.; Tsakadze, Z.L.; Vladimirov, S.V.; Xu, S.
2004-01-01
Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz) inductively coupled plasma source with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z , H r , and H φ ) and two electric (E φ and E r ) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic (E) and electromagnetic (H) discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral ('pancake') antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data
Energy Technology Data Exchange (ETDEWEB)
Kim, Eungsoo [Univ. of Texas, Austin, TX (United States); Manuel, Lance [Univ. of Texas, Austin, TX (United States); Curcic, Milan [Univ. of Miami, Coral Gables, FL (United States); Chen, Shuyi S. [Univ. of Miami, Coral Gables, FL (United States); Phillips, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Veers, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-06-01
In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of the changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces
Czech Academy of Sciences Publication Activity Database
Doležel, Ivo; Kropík, P.; Ulrych, B.
2013-01-01
Roč. 219, č. 13 (2013), s. 7159-7169 ISSN 0096-3003 R&D Projects: GA ČR GA102/09/1305 Grant - others:GA MŠk(CZ) MEB051041 Institutional support: RVO:61388998 Keywords : induction heating * electric field * temperature field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.600, year: 2013 http://www.sciencedirect.com/science/article/pii/S0096300311010824
International Nuclear Information System (INIS)
Heiser, J.H.
1997-09-01
The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained
Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.
2010-01-01
We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.
$P-V$ criticality of a specific black hole in $f(R)$ gravity coupled with Yang-Mills field arXiv
Övgün, Ali
In this paper, we study the $P-v$ criticality of a specific charged AdS type black hole (SBH) in $f(R)$ gravity coupled with Yang-Mills field. In the extended phase space, we treat the cosmological constant as a thermodynamic pressure. After we study the various thermodynamical quantities, we show that the thermodynamic properties of the SBH behave as a Van der Waals liquid-gas system at the critical points and there is a first order phase transition between small-large SBH.
DEFF Research Database (Denmark)
Correia, Manuel; Löschner, Katrin
2018-01-01
We tested the suitability of asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) for detection of nanoplastics in fish. A homogenized fish sample was spiked with 100 nm polystyrene nanoparticles (PSNPs) (1.3 mg/g fish). Two sample preparation strategies...... were tested: acid digestion and enzymatic digestion with proteinase K. Both procedures were found suitable for degradation of the organic matrix. However, acid digestion resulted in large PSNPs aggregates/agglomerates (> 1 Î¼m). The presence of large particulates was not observed after enzymatic...
DEFF Research Database (Denmark)
Tsakadze, Erekle; Ostrikov, K.N.; Tsakadze, Z.L.
2004-01-01
) discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral ("pancake") antennas. Relatively deeper rf power deposition...... in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental...
International Nuclear Information System (INIS)
Condron, Eoin; Nolan, Brien C
2014-01-01
We investigate self-similar scalar field solutions to the Einstein equations in whole cylinder symmetry. Imposing self-similarity on the spacetime gives rise to a set of single variable functions describing the metric. Furthermore, it is shown that the scalar field is dependent on a single unknown function of the same variable and that the scalar field potential has exponential form. The Einstein equations then take the form of a set of ODEs. Self-similarity also gives rise to a singularity at the scaling origin. We extend the work of Condron and Nolan (2014 Class. Quantum Grav. 31 015015), which determined the global structure of all solutions with a regular axis in the causal past of the singularity. We identified a class of solutions that evolves through the past null cone of the singularity. We give the global structure of these solutions and show that the singularity is censored in all cases. (paper)
Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong
2018-04-01
We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.