Dark and composite rogue waves in the coupled Hirota equations
International Nuclear Information System (INIS)
Chen, Shihua
2014-01-01
The intriguing dark and composite rogue wave dynamics in a coupled Hirota system are unveiled, based on the exact explicit rational solutions obtained under the assumption of equal background height. It is found that a dark rogue wave state would occur as a result of the strong coupling between two field components with large wavenumber difference, and there would appear plenty of composite structures that are attributed to the specific wavenumber difference and the free choice of three independent structural parameters. The coexistence of different fundamental rogue waves in such a coupled system is also demonstrated. - Highlights: • Exact rational rogue wave solutions under different parameter conditions are presented for the coupled Hirota equations. • The basic rogue wave features and hence the intriguing dark structures are unveiled. • We attributed the diversity of composite rogue wave dynamics to the free choice of three independent structural parameters. • The remarkable coexisting rogue wave behaviors in such a coupled system are demonstrated
Directory of Open Access Journals (Sweden)
M. Arshad
Full Text Available In this manuscript, we constructed different form of new exact solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations by utilizing the modified extended direct algebraic method. New exact traveling wave solutions for both equations are obtained in the form of soliton, periodic, bright, and dark solitary wave solutions. There are many applications of the present traveling wave solutions in physics and furthermore, a wide class of coupled nonlinear evolution equations can be solved by this method. Keywords: Traveling wave solutions, Elliptic solutions, Generalized coupled Zakharov–Kuznetsov equation, Dispersive long wave equation, Modified extended direct algebraic method
Singular solitons and other solutions to a couple of nonlinear wave equations
International Nuclear Information System (INIS)
Inc Mustafa; Ulutaş Esma; Biswas Anjan
2013-01-01
This paper addresses the extended (G'/G)-expansion method and applies it to a couple of nonlinear wave equations. These equations are modified the Benjamin—Bona—Mahoney equation and the Boussinesq equation. This extended method reveals several solutions to these equations. Additionally, the singular soliton solutions are revealed, for these two equations, with the aid of the ansatz method
Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation
International Nuclear Information System (INIS)
Linares, Jesus; Nistal, Maria C.
2009-01-01
A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.
Combined solitary-wave solution for coupled higher-order nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Tian Jinping; Tian Huiping; Li Zhonghao; Zhou Guosheng
2004-01-01
Coupled nonlinear Schroedinger equations model several interesting physical phenomena. We used a trigonometric function transform method based on a homogeneous balance to solve the coupled higher-order nonlinear Schroedinger equations. We obtained four pairs of exact solitary-wave solutions including a dark and a bright-soliton pair, a bright- and a dark-soliton pair, a bright- and a bright-soliton pair, and the last pair, a combined bright-dark-soliton pair
Directory of Open Access Journals (Sweden)
Mostafa M.A. Khater
Full Text Available In this article and for the first time, we introduce and describe Khater method which is a new technique for solving nonlinear partial differential equations (PDEs.. We apply this method for each of the following models Bogoyavlenskii equation, couple Boiti-Leon-Pempinelli system and Time-fractional Cahn-Allen equation. Khater method is very powerful, Effective, felicitous and fabulous method to get exact and solitary wave solution of (PDEs.. Not only just like that but it considers too one of the general methods for solving that kind of equations since it involves some methods as we will see in our discuss of the results. We make a comparison between the results of this new method and another method. Keywords: Bogoyavlenskii equations system, Couple Boiti-Leon-Pempinelli equations system, Time-fractional Cahn-Allen equation, Khater method, Traveling wave solutions, Solitary wave solutions
Abundant families of new traveling wave solutions for the coupled Drinfel'd-Sokolov-Wilson equation
International Nuclear Information System (INIS)
Yao Yuqin
2005-01-01
The generalized Jacobi elliptic function method is further improved by introducing an elliptic function φ(ξ) as a new independent variable and it is easy to calculate the over-determined equations. Abundant new traveling wave solutions of the coupled Drinfel'd-Sokolov-Wilson equation are obtained. The solutions obtained include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions
International Nuclear Information System (INIS)
Werby, M.F.; Broadhead, M.K.; Strayer, M.R.; Bottcher, C.
1992-01-01
The Helmholtz-Poincarf Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWECs. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can be obtained in matrix form by expanding all relevant terms in partial wave expansions, including a bi-orthogonal expansion of the Green's function. However some freedom in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways so long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermitian operator. The methodology will be explained in detail and examples will be presented
Soliton on a cnoidal wave background in the coupled nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Shin, H J
2004-01-01
An application of the Darboux transformation on a cnoidal wave background in the coupled nonlinear Schroedinger equation gives a new solution which describes a soliton moving on a cnoidal wave. This is a generalized version of the previously known soliton solutions of dark-bright pair. Here a dark soliton resides on a cnoidal wave instead of on a constant background. It also exhibits a new type of soliton solution in a self-focusing medium, which describes a breakup of a generalized dark-bright pair into another generalized dark-bright pair and an 'oscillating' soliton. We calculate the shift of the crest of the cnoidal wave along a soliton and the moving direction of the soliton on a cnoidal wave
Wave equations on a de Sitter fiber bundle. [Semiclassical wave function, bundle space, L-S coupling
Energy Technology Data Exchange (ETDEWEB)
Drechsler, W [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)
1975-01-01
A gauge theory of strong interaction is developed based on fields defined on a fiber bundle. The structural group of the bundle is taken to be the Lsub(4,1) de Sitter group. An internal variable xi, varying in the fiber over a space-time point x, is introduced as a means to describe - with the help of a semiclassical wave function psi(x,xi) defined on the bundle space - the internal structure of extended hadrons in a framework using differential geometric techniques. Three basic nonlinear wave equations for psi(x,xi) are established which are of integro-differential type. The nonlinear coupling terms in these de Sitter gauge invariant equations represent physically a generalized spin orbit coupling or a generalized spin coupling for the motion taking place in the fiber. The motivation for using a bigger space for the definition of hadronic matter wave functions as well as the implications of this geometric approach to strong interaction physics is discussed in detail, in particular with respect to the problem of hadronic constituents. The proposed fiber bundle formalism allows a dynamical description of extended structures for hadrons without implying the necessity of introducing any constituents.
International Nuclear Information System (INIS)
Yang Zonghang
2007-01-01
We find new exact travelling wave solutions for two potential KdV equations which are presented by Foursov [Foursov MV. J Math Phys 2000;41:6173-85]. Compared with the extended tanh-function method, the algorithm used in our paper can obtain some new kinds of exact travelling wave solutions. With the aid of symbolic computation, some novel exact travelling wave solutions of the potential KdV equations are constructed
Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.
McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C
2016-09-07
We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.
Directory of Open Access Journals (Sweden)
Baojun Zhao
2018-01-01
Full Text Available Envelope gravity solitary waves are an important research hot spot in the field of solitary wave. And the weakly nonlinear model equations system is a part of the research of envelope gravity solitary waves. Because of the lack of technology and theory, previous studies tried hard to reduce the variable numbers and constructed the two-dimensional model in barotropic atmosphere and could only describe the propagation feature in a direction. But for the propagation of envelope gravity solitary waves in real ocean ridges and atmospheric mountains, the three-dimensional model is more appropriate. Meanwhile, the baroclinic problem of atmosphere is also an inevitable topic. In the paper, the three-dimensional coupled nonlinear Schrödinger (CNLS equations are presented to describe the evolution of envelope gravity solitary waves in baroclinic atmosphere, which are derived from the basic dynamic equations by employing perturbation and multiscale methods. The model overcomes two disadvantages: (1 baroclinic problem and (2 propagation path problem. Then, based on trial function method, we deduce the solution of the CNLS equations. Finally, modulational instability of wave trains is also discussed.
International Nuclear Information System (INIS)
Xu Guiqiong; Li Zhibin
2005-01-01
It is proven that generalized coupled higher-order nonlinear Schroedinger equations possess the Painleve property for two particular choices of parameters, using the Weiss-Tabor-Carnevale method and Kruskal's simplification. Abundant families of periodic wave solutions are obtained by using the Jacobi elliptic function expansion method with the assistance of symbolic manipulation system, Maple. It is also shown that these solutions exactly degenerate to bright soliton, dark soliton and mixed dark and bright soliton solutions with physical interests
International Nuclear Information System (INIS)
Lebedev, D.R.
1979-01-01
Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown
Dehghan, Mehdi; Nikpour, Ahmad
2013-09-01
In this research, we propose two different methods to solve the coupled Klein-Gordon-Zakharov (KGZ) equations: the Differential Quadrature (DQ) and Globally Radial Basis Functions (GRBFs) methods. In the DQ method, the derivative value of a function with respect to a point is directly approximated by a linear combination of all functional values in the global domain. The principal work in this method is the determination of weight coefficients. We use two ways for obtaining these coefficients: cosine expansion (CDQ) and radial basis functions (RBFs-DQ), the former is a mesh-based method and the latter categorizes in the set of meshless methods. Unlike the DQ method, the GRBF method directly substitutes the expression of the function approximation by RBFs into the partial differential equation. The main problem in the GRBFs method is ill-conditioning of the interpolation matrix. Avoiding this problem, we study the bases introduced in Pazouki and Schaback (2011) [44]. Some examples are presented to compare the accuracy and easy implementation of the proposed methods. In numerical examples, we concentrate on Inverse Multiquadric (IMQ) and second-order Thin Plate Spline (TPS) radial basis functions. The variable shape parameter (exponentially and random) strategies are applied in the IMQ function and the results are compared with the constant shape parameter.
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Modulational instability of coupled waves
International Nuclear Information System (INIS)
McKinstrie, C.J.; Bingham, R.
1989-01-01
The collinear propagation of an arbitrary number of finite-amplitude waves is modeled by a system of coupled nonlinear Schroedinger equations; one equation for each complex wave amplitude. In general, the waves are modulationally unstable with a maximal growth rate larger than the modulational growth rate of any wave alone. Moreover, waves that are modulationally stable by themselves can be driven unstable by the nonlinear coupling. The general theory is then applied to the relativistic modulational instability of two laser beams in a beat-wave accelerator. For parameters typical of a proposed beat-wave accelerator, this instability can seriously distort the incident laser pulse shapes on the particle-acceleration time scale, with detrimental consequences for particle acceleration
Directory of Open Access Journals (Sweden)
Rashida Hussain
2017-04-01
Full Text Available In this paper, Novel (Gʹ/G-expansion method is used to find new generalized exact travelling wave solutions of fractional order coupled Burger’s equations in terms of trigonometric functions, rational functions and hyperbolic functions with arbitrary parameters. For the conversion of the partial differential equation to the ordinary differential equation, complex transformation method is used. Novel (Gʹ/G-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear equations. Moreover, for the representation of these exact solutions we have plotted graphs for different values of parameters which were in travelling waveform.
Topological horseshoes in travelling waves of discretized nonlinear wave equations
International Nuclear Information System (INIS)
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-01-01
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Energy Technology Data Exchange (ETDEWEB)
Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
International Nuclear Information System (INIS)
Fox, D.J.
1983-10-01
Analytic derivatives of the potential energy for Self-Consistent-Field (SCF) wave functions have been developed in recent years and found to be useful tools. The first derivative for configuration interaction (CI) wave functions is also available. This work details the extension of analytic methods to energy second derivatives for CI wave functions. The principal extension required for second derivatives is evaluation of the first order change in the CI wave function with respect to a nuclear perturbation. The shape driven graphical unitary group approach (SDGUGA) direct CI program was adapted to evaluate this term via the coupled-perturbed CI equations. Several iterative schemes are compared for use in solving these equations. The pilot program makes no use of molecular symmetry but the timing results show that utilization of molecular symmetry is desirable. The principles for defining and solving a set of symmetry adapted equations are discussed. Evaluation of the second derivative also requires the solution of the second order coupled-perturbed Hartree-Fock equations to obtain the correction to the molecular orbitals due to the nuclear perturbation. This process takes a consistently higher percentage of the computation time than for the first order equations alone and a strategy for its reduction is discussed
Wave equations for pulse propagation
International Nuclear Information System (INIS)
Shore, B.W.
1987-01-01
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation
Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong
2017-07-01
The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.
Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru
2018-01-01
This paper addresses the coupled nonlinear Schrödinger equation (CNLSE) in monomode step-index in optical fibers which describes the nonlinear modulations of two monochromatic waves, whose group velocities are almost equal. A class of dark, bright, dark-bright and dark-singular optical solitary wave solutions of the model are constructed using the complex envelope function ansatz. Singular solitary waves are also retrieved as bye products of the in integration scheme. This naturally lead to some constraint conditions placed on the solitary wave parameters which must hold for the solitary waves to exist. The modulation instability (MI) analysis of the model is studied based on the standard linear-stability analysis. Numerical simulation and physical interpretations of the obtained results are demonstrated. It is hoped that the results reported in this paper can enrich the nonlinear dynamical behaviors of the CNLSE.
Solving Nonlinear Coupled Differential Equations
Mitchell, L.; David, J.
1986-01-01
Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.
Coupling Integrable Couplings of an Equation Hierarchy
International Nuclear Information System (INIS)
Wang Hui; Xia Tie-Cheng
2013-01-01
Based on a kind of Lie algebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy. (general)
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Wave-equation dispersion inversion
Li, Jing; Feng, Zongcai; Schuster, Gerard T.
2016-01-01
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained
The relativistic electron wave equation
International Nuclear Information System (INIS)
Dirac, P.A.M.
1977-08-01
The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)
Nonlinear coupled Alfven and gravitational waves
International Nuclear Information System (INIS)
Kaellberg, Andreas; Brodin, Gert; Bradley, Michael
2004-01-01
In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected
Radiation from nonlinear coupling of plasma waves
International Nuclear Information System (INIS)
Fung, S.F.
1986-01-01
The author examines the generation of electromagnetic radiation by nonlinear resonant interactions of plasma waves in a cold, uniformly magnetized plasma. In particular, he considers the up-conversion of two electrostatic wave packets colliding to produce high frequency electromagnetic radiation. Efficient conversion of electrostatic to electromagnetic wave energy occurs when the pump amplitudes approach and exceed the pump depletion threshold. Results from the inverse scattering transform analysis of the three-wave interaction equations are applied. When the wave packets are initially separated, the fully nonlinear set of coupling equations, which describe the evolution of the wave packets, can be reduced to three separate eigenvalue problems; each can be considered as a scattering problem, analogous to eh Schroedinger equation. In the scattering space, the wave packet profiles act as the scattering potentials. When the wavepacket areas approach (or exceed) π/2, the wave functions are localized (bound states) and the scattering potentials are said to contain solitons. Exchange of solitons occurs during the interaction. The transfer of solitons from the pump waves to the electromagnetic wave leads to pump depletion and the production of strong radiation. The emission of radio waves is considered by the coupling of two upper-hybrid branch wave packets, and an upper-hybrid and a lower hybrid branch wave packet
Wave Partial Differential Equation
Szöllös, Alexandr
2009-01-01
Práce se zabývá diferenciálními rovnicemi, jejich využitím při analýze vedení, experimenty s vedením a možnou akcelerací výpočtu v GPU s využitím prostředí nVidia CUDA. This work deals with diffrential equations, with the possibility of using them for analysis of the line and the possibility of accelerating the computations in GPU using nVidia CUDA. C
Wave equation of hydrogen atom
International Nuclear Information System (INIS)
Suwito.
1977-01-01
The calculation of the energy levels of the hydrogen atom using Bohr, Schroedinger and Dirac theories is reviewed. The result is compared with that obtained from infinite component wave equations theory which developed recently. The conclusion can be stated that the latter theory is better to describe the composit system than the former. (author)
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong; Liu, Yike; Schuster, Gerard T.
2015-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve
Analysis of wave equation in electromagnetic field by Proca equation
International Nuclear Information System (INIS)
Pamungkas, Oky Rio; Soeparmi; Cari
2017-01-01
This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)
Coupled wave sensor technology
International Nuclear Information System (INIS)
Maki, M.C.
1988-01-01
Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided
Wave equations in higher dimensions
Dong, Shi-Hai
2011-01-01
Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equations in higher dimensions at an advanced level so as to put all current mathematical and physical concepts and techniques at the reader’s disposal. A comprehensive description of quantum wave equations in higher dimensions and their broad range of applications in quantum mechanics is provided, which complements the traditional coverage found in the existing quantum mechanics textbooks and gives scientists a fresh outlook on quantum systems in all branches of physics. In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativisti...
International Nuclear Information System (INIS)
Zhang Huiqun
2009-01-01
By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.
Linear superposition solutions to nonlinear wave equations
International Nuclear Information System (INIS)
Liu Yu
2012-01-01
The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed
Separate P‐ and SV‐wave equations for VTI media
Pestana, Reynam C.; Ursin, Bjø rn; Stoffa, Paul L.
2011-01-01
In isotropic media we use the scalar acoustic wave equation to perform reverse time migration RTM of the recorded pressure wavefleld data. In anisotropic media P- and SV-waves are coupled and the elastic wave equation should be used for RTM. However, an acoustic anisotropic wave equation is often used instead. This results in significant shear wave energy in both modeling and RTM. To avoid this undesired SV-wave energy, we propose a different approach to separate P- and SV-wave components for vertical transversely isotropic VTI media. We derive independent pseudo-differential wave equations for each mode. The derived equations for P- and SV-waves are stable and reduce to the isotropic case. The equations presented here can be effectively used to model and migrate seismic data in VTI media where ε - δ is small. The SV-wave equation we develop is now well-posed and triplications in the SV wavefront are removed resulting in stable wave propagation. We show modeling and RTM results using the derived pure P-wave mode in complex VTI media and use the rapid expansion method REM to propagate the waveflelds in time. © 2011 Society of Exploration Geophysicists.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing; Schuster, Gerard T.
2016-01-01
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel
Dutta, Gaurav
2016-10-12
Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. The amplitude and the dispersion losses from attenuation are often compensated for during prestack depth migration. However, most attenuation compensation or Qcompensation migration algorithms require an estimate of the background Q model. We have developed a wave-equation gradient optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ∈, where ∈ is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early arrivals. The gradient is computed by migrating the observed traces weighted by the frequency shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests determined that an improved accuracy of the Q model by wave-equation Q tomography leads to a noticeable improvement in migration image quality. © 2016 Society of Exploration Geophysicists.
Dutta, Gaurav; Schuster, Gerard T.
2016-01-01
Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. The amplitude and the dispersion losses from attenuation are often compensated for during prestack depth migration. However, most attenuation compensation or Qcompensation migration algorithms require an estimate of the background Q model. We have developed a wave-equation gradient optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ∈, where ∈ is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early arrivals. The gradient is computed by migrating the observed traces weighted by the frequency shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests determined that an improved accuracy of the Q model by wave-equation Q tomography leads to a noticeable improvement in migration image quality. © 2016 Society of Exploration Geophysicists.
Exact solitary waves of the Fisher equation
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2005-01-01
New method is presented to search exact solutions of nonlinear differential equations. This approach is used to look for exact solutions of the Fisher equation. New exact solitary waves of the Fisher equation are given
EXACT TRAVELLING WAVE SOLUTIONS TO BBM EQUATION
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Abundant new travelling wave solutions to the BBM (Benjamin-Bona-Mahoni) equation are obtained by the generalized Jacobian elliptic function method. This method can be applied to other nonlinear evolution equations.
Scalar fields nonminimally coupled to pp waves
International Nuclear Information System (INIS)
Ayon-Beato, Eloy; Hassaiene, Mokhtar
2005-01-01
Here, we report pp waves configurations of three-dimensional gravity for which a scalar field nonminimally coupled to them acts as a source. In absence of self-interaction the solutions are gravitational plane waves with a profile fixed in terms of the scalar wave. In the self-interacting case, only power-law potentials parameterized by the nonminimal coupling constant are allowed by the field equations. In contrast with the free case the self-interacting scalar field does not behave like a wave since it depends only on the wave-front coordinate. We address the same problem when gravitation is governed by topologically massive gravity and the source is a free scalar field. From the pp waves derived in this case, we obtain at the zero topological mass limit, new pp waves solutions of conformal gravity for any arbitrary value of the nonminimal coupling parameter. Finally, we extend these solutions to the self-interacting case of conformal gravity
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
Flashing coupled density wave oscillation
International Nuclear Information System (INIS)
Jiang Shengyao; Wu Xinxin; Zhang Youjie
1997-07-01
The experiment was performed on the test loop (HRTL-5), which simulates the geometry and system design of the 5 MW reactor. The phenomenon and mechanism of different kinds of two-phase flow instabilities, namely geyser instability, flashing instability and flashing coupled density wave instability are described. The especially interpreted flashing coupled density wave instability has never been studied well, it is analyzed by using a one-dimensional non-thermo equilibrium two-phase flow drift model computer code. Calculations are in good agreement with the experiment results. (5 refs.,5 figs., 1 tab.)
Mode coupling of electron plasma waves
International Nuclear Information System (INIS)
Harte, J.A.
1975-01-01
The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta 2 /sub ko/k lambda/sub De/ less than 1 where eta 2 /sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at ω/sub ek/, the Bohn Gross frequency, and at Ω/sub k/, the ion acoustic frequency, subject to the damping rates ν/sub ek/ and ν/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, ω/sub pe/ the plasma frequency
Spatial evolution equation of wind wave growth
Institute of Scientific and Technical Information of China (English)
WANG; Wei; (王; 伟); SUN; Fu; (孙; 孚); DAI; Dejun; (戴德君)
2003-01-01
Based on the dynamic essence of air-sea interactions, a feedback type of spatial evolution equation is suggested to match reasonably the growing process of wind waves. This simple equation involving the dominant factors of wind wave growth is able to explain the transfer of energy from high to low frequencies without introducing the concept of nonlinear wave-wave interactions, and the results agree well with observations. The rate of wave height growth derived in this dissertation is applicable to both laboratory and open sea, which solidifies the physical basis of using laboratory experiments to investigate the generation of wind waves. Thus the proposed spatial evolution equation provides a new approach for the research on dynamic mechanism of air-sea interactions and wind wave prediction.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing
2016-09-06
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.
Electronic representation of wave equation
Energy Technology Data Exchange (ETDEWEB)
Veigend, Petr; Kunovský, Jiří, E-mail: kunovsky@fit.vutbr.cz; Kocina, Filip; Nečasová, Gabriela; Valenta, Václav [University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66 Brno (Czech Republic); Šátek, Václav [IT4Innovations, VŠB Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66 Brno (Czech Republic)
2016-06-08
The Taylor series method for solving differential equations represents a non-traditional way of a numerical solution. Even though this method is not much preferred in the literature, experimental calculations done at the Department of Intelligent Systems of the Faculty of Information Technology of TU Brno have verified that the accuracy and stability of the Taylor series method exceeds the currently used algorithms for numerically solving differential equations. This paper deals with solution of Telegraph equation using modelling of a series small pieces of the wire. Corresponding differential equations are solved by the Modern Taylor Series Method.
An acoustic wave equation for pure P wave in 2D TTI media
Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.
2011-01-01
In this paper, a pure P wave equation for an acoustic 2D TTI media is derived. Compared with conventional TTI coupled equations, the resulting equation is unconditionally stable due to the complete isolation of the SV wave mode. To avoid numerical dispersion and produce high quality images, the rapid expansion method REM is employed for numerical implementation. Synthetic results validate the proposed equation and show that it is a stable algorithm for modeling and reverse time migration RTM in a TTI media for any anisotropic parameter values. © 2011 Society of Exploration Geophysicists.
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
Nonlinear wave equation with intrinsic wave particle dualism
International Nuclear Information System (INIS)
Klein, J.J.
1976-01-01
A nonlinear wave equation derived from the sine-Gordon equation is shown to possess a variety of solutions, the most interesting of which is a solution that describes a wave packet travelling with velocity usub(e) modulating a carrier wave travelling with velocity usub(c). The envelop and carrier wave speeds agree precisely with the group and phase velocities found by de Broglie for matter waves. No spreading is exhibited by the soliton, so that it behaves exactly like a particle in classical mechanics. Moreover, the classically computed energy E of the disturbance turns out to be exactly equal to the frequency ω of the carrier wave, so that the Planck relation is automatically satisfied without postulating a particle-wave dualism. (author)
Diffusion phenomenon for linear dissipative wave equations
Said-Houari, Belkacem
2012-01-01
In this paper we prove the diffusion phenomenon for the linear wave equation. To derive the diffusion phenomenon, a new method is used. In fact, for initial data in some weighted spaces, we prove that for {equation presented} decays with the rate {equation presented} [0,1] faster than that of either u or v, where u is the solution of the linear wave equation with initial data {equation presented} [0,1], and v is the solution of the related heat equation with initial data v 0 = u 0 + u 1. This result improves the result in H. Yang and A. Milani [Bull. Sci. Math. 124 (2000), 415-433] in the sense that, under the above restriction on the initial data, the decay rate given in that paper can be improved by t -γ/2. © European Mathematical Society.
New exact travelling wave solutions of bidirectional wave equations
Indian Academy of Sciences (India)
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea. ∗ ... exact travelling wave solutions of system (1) using the modified tanh–coth function method ... The ordinary differential equation is then integrated.
Renormalization group equations with multiple coupling constants
International Nuclear Information System (INIS)
Ghika, G.; Visinescu, M.
1975-01-01
The main purpose of this paper is to study the renormalization group equations of a renormalizable field theory with multiple coupling constants. A method for the investigation of the asymptotic stability is presented. This method is applied to a gauge theory with Yukawa and self-quartic couplings of scalar mesons in order to find the domains of asymptotic freedom. An asymptotic expansion for the solutions which tend to the origin of the coupling constants is given
Transport equation and shock waves
International Nuclear Information System (INIS)
Besnard, D.
1981-04-01
A multi-group method is derived from a one dimensional transport equation for the slowing down and spatial transport of energetic positive ions in a plasma. This method is used to calculate the behaviour of energetic charged particles in non homogeneous and non stationary plasma, and the effect of energy deposition of the particles on the heating of the plasma. In that purpose, an equation for the density of fast ions is obtained from the Fokker-Planck equation, and a closure condition for the second moment of this equation is deduced from phenomenological considerations. This method leads to a numerical method, simple and very efficient, which doesn't require much computer storage. Two types of numerical results are obtained. First, results on the slowing down of 3.5 MeV alpha particles in a 50 keV plasma plublished by Corman and al and Moses are compared with the results obtained with both our method and a Monte Carlo type method. Good agreement was obtained, even for energy deposition on the ions of the plasma. Secondly, we have calculated propagation of alpha particles heating a cold plasma. These results are in very good agreement with those given by an accurate Monte Carlo method, for both the thermal velocity, and the energy deposition in the plasma
Some remarks on coherent nonlinear coupling of waves in plasmas
International Nuclear Information System (INIS)
Wilhelmsson, H.
1976-01-01
The analysis of nonlinear processes in plasma physics has given rise to a basic set of coupled equations. These equations describe the coherent nonlinear evolution of plasma waves. In this paper various possibilities of analysing these equations are discussed and inherent difficulties in the description of nonlinear interactions between different types of waves are pointed out. Specific examples of stimulated excitation of waves are considered. These are the parametric excitation of hybrid resonances in hot magnetized multi-ion component plasma and laser-plasma interactions. (B.D.)
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing
2017-02-08
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing
2017-08-17
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing; Dutta, Gaurav; Schuster, Gerard T.
2017-01-01
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Coupled Higgs field equation and Hamiltonian amplitude equation ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 79; Issue 1. Coupled Higgs ﬁeld equation and ... School of Mathematics and Computer Applications, Thapar University, Patiala 147 004, India; Department of Mathematics, Jaypee University of Information Technology, Waknaghat, Distt. Solan 173 234, India ...
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
International Nuclear Information System (INIS)
Raslan, K. R.; Ali, Khalid K.; EL-Danaf, Talaat S.
2017-01-01
In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation (CEWE) and the space-time fractional coupled modified equal width wave equation (CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels. (paper)
Gabor Wave Packet Method to Solve Plasma Wave Equations
International Nuclear Information System (INIS)
Pletzer, A.; Phillips, C.K.; Smithe, D.N.
2003-01-01
A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach
Relativistic wave equations and compton scattering
International Nuclear Information System (INIS)
Sutanto, S.H.; Robson, B.A.
1998-01-01
Full text: Recently an eight-component relativistic wave equation for spin-1/2 particles was proposed.This equation was obtained from a four-component spin-1/2 wave equation (the KG1/2 equation), which contains second-order derivatives in both space and time, by a procedure involving a linearisation of the time derivative analogous to that introduced by Feshbach and Villars for the Klein-Gordon equation. This new eight-component equation gives the same bound-state energy eigenvalue spectra for hydrogenic atoms as the Dirac equation but has been shown to predict different radiative transition probabilities for the fine structure of both the Balmer and Lyman a-lines. Since it has been shown that the new theory does not always give the same results as the Dirac theory, it is important to consider the validity of the new equation in the case of other physical problems. One of the early crucial tests of the Dirac theory was its application to the scattering of a photon by a free electron: the so-called Compton scattering problem. In this paper we apply the new theory to the calculation of Compton scattering to order e 2 . It will be shown that in spite of the considerable difference in the structure of the new theory and that of Dirac the cross section is given by the Klein-Nishina formula
Acoustic wave coupled magnetoelectric effect
International Nuclear Information System (INIS)
Gao, J.S.; Zhang, N.
2016-01-01
Magnetoelectric (ME) coupling by acoustic waveguide was developed. Longitudinal and transversal ME effects of larger than 44 and 6 (V cm −1 Oe −1 ) were obtained with the waveguide-coupled ME device, respectively. Several resonant points were observed in the range of frequency lower than 47 kHz. Analysis showed that the standing waves in the waveguide were responsible for those resonances. The frequency and size dependence of the ME effects were investigated. A resonant condition about the geometrical size of the waveguide was obtained. Theory and experiments showed the resonant frequencies were closely influenced by the diameter and length of the waveguide. A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially. - Highlights: • Magnetoelectric (ME) coupling by acoustic waveguide was developed. • The frequency and size dependence of the ME effects were investigated. • A resonant condition about the geometrical size of the waveguide was obtained. • A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially.
Wave Propagation of Coupled Modes in the DNA Double Helix
International Nuclear Information System (INIS)
Tabi, Conrad B.; Mohamadou, Alidou; Kofane, Timoleon C.
2010-06-01
The dynamics of waves propagating along the DNA molecule is described by the coupled nonlinear Schroedinger equations. We consider both the single and the coupled nonlinear excitation modes, and we discuss their biological implications. Furthermore, the characteristics of the coupled mode solution are discussed and we show that such a solution can describe the local opening observed within the transcription and the replication phenomena. (author)
Parallel Algorithm Solves Coupled Differential Equations
Hayashi, A.
1987-01-01
Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.
Skeletonized Least Squares Wave Equation Migration
Zhan, Ge; Schuster, Gerard T.
2010-01-01
of the wave equation. Only the early‐arrivals of these Green's functions are saved and skeletonized to form the migration Green's function (MGF) by convolution. Then the migration image is obtained by a dot product between the recorded shot gathers and the MGF
Some isometrical identities in the wave equation
Directory of Open Access Journals (Sweden)
Saburou Saitoh
1984-01-01
Full Text Available We consider the usual wave equation utt(x,t=c2uxx(x,t on the real line with some typical initial and boundary conditions. In each case, we establish a natural isometrical identity and inverse formula between the sourse function and the response function.
A polynomial expansion method and its application in the coupled Zakharov-Kuznetsov equations
International Nuclear Information System (INIS)
Huang Wenhua
2006-01-01
A polynomial expansion method is presented to solve nonlinear evolution equations. Applying this method, the coupled Zakharov-Kuznetsov equations in fluid system are studied and many exact travelling wave solutions are obtained. These solutions include solitary wave solutions, periodic solutions and rational type solutions
Partial Differential Equations and Solitary Waves Theory
Wazwaz, Abdul-Majid
2009-01-01
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...
Ultra Deep Wave Equation Imaging and Illumination
Energy Technology Data Exchange (ETDEWEB)
Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu
2006-09-30
In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).
Coupled seismic and electromagnetic wave propagation
Schakel, M.D.
2011-01-01
Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed,
True amplitude wave equation migration arising from true amplitude one-way wave equations
Zhang, Yu; Zhang, Guanquan; Bleistein, Norman
2003-10-01
One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition
Scattering of quantized solitary waves in the cubic Schrodinger equation
International Nuclear Information System (INIS)
Dolan, L.
1976-01-01
The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states
Skeletonized wave-equation inversion for Q
Dutta, Gaurav
2016-09-06
A wave-equation gradient optimization method is presented that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ε. Here, ε is the sum of the squared differences between the observed and the predicted peak/centroid frequency shifts of the early-arrivals. The gradient is computed by migrating the observed traces weighted by the frequency-shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests show that an improved accuracy of the inverted Q model by wave-equation Q tomography (WQ) leads to a noticeable improvement in the migration image quality.
Skeletonized wave-equation inversion for Q
Dutta, Gaurav; Schuster, Gerard T.
2016-01-01
A wave-equation gradient optimization method is presented that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ε. Here, ε is the sum of the squared differences between the observed and the predicted peak/centroid frequency shifts of the early-arrivals. The gradient is computed by migrating the observed traces weighted by the frequency-shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests show that an improved accuracy of the inverted Q model by wave-equation Q tomography (WQ) leads to a noticeable improvement in the migration image quality.
The damped wave equation with unbounded damping
Czech Academy of Sciences Publication Activity Database
Freitas, P.; Siegl, Petr; Tretter, C.
2018-01-01
Roč. 264, č. 12 (2018), s. 7023-7054 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : damped wave equation * unbounded damping * essential spectrum * quadratic operator funciton with unbounded coefficients * Schrodinger operators with complex potentials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.988, year: 2016
Coupling and reduction of the HAWC equations
DEFF Research Database (Denmark)
Nim, E.
2001-01-01
This report contains a description of a general method for coupling and reduction of the so-called HAWC equations, which constitute the basis equations of motion of the aeroelastic model HAWC used widely by research institutes and industrial companies formore than the ten years. The principal aim....... In addition, the method enables the reduction of the number of degrees of freedom of the structure in order to increase the calculation efficiency and improve thecondition of the system.......This report contains a description of a general method for coupling and reduction of the so-called HAWC equations, which constitute the basis equations of motion of the aeroelastic model HAWC used widely by research institutes and industrial companies formore than the ten years. The principal aim...... of the work has been to enable the modelling wind turbines with large displacements of the blades in order to predict phenomena caused by geometric non-linear effects. However, the method can also be applied tomodel the nacelle/shaft structure of a turbine more detailed than the present HAWC model...
Skeletonized Least Squares Wave Equation Migration
Zhan, Ge
2010-10-17
The theory for skeletonized least squares wave equation migration (LSM) is presented. The key idea is, for an assumed velocity model, the source‐side Green\\'s function and the geophone‐side Green\\'s function are computed by a numerical solution of the wave equation. Only the early‐arrivals of these Green\\'s functions are saved and skeletonized to form the migration Green\\'s function (MGF) by convolution. Then the migration image is obtained by a dot product between the recorded shot gathers and the MGF for every trial image point. The key to an efficient implementation of iterative LSM is that at each conjugate gradient iteration, the MGF is reused and no new finitedifference (FD) simulations are needed to get the updated migration image. It is believed that this procedure combined with phase‐encoded multi‐source technology will allow for the efficient computation of wave equation LSM images in less time than that of conventional reverse time migration (RTM).
Wave-equation reflection traveltime inversion
Zhang, Sanzong
2011-01-01
The main difficulty with iterative waveform inversion using a gradient optimization method is that it tends to get stuck in local minima associated within the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. No travel-time picking is needed and no high-frequency approximation is assumed. The mathematical derivation and the numerical examples are presented to partly demonstrate its efficiency and robustness. © 2011 Society of Exploration Geophysicists.
Blowing-up Semilinear Wave Equation with Exponential ...
Indian Academy of Sciences (India)
Blowing-up Semilinear Wave Equation with Exponential Nonlinearity in Two Space ... We investigate the initial value problem for some semi-linear wave equation in two space dimensions with exponential nonlinearity growth. ... Current Issue
Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations
International Nuclear Information System (INIS)
Xu Guiqiong; Li Zhibin
2005-01-01
In this paper, an interesting fact is found that the auxiliary equation method is also applicable to a coupled system of two different equations involving both even-order and odd-order partial derivative terms. Furthermore, singular travelling wave solutions can also be obtained by considering other types of exact solutions of auxiliary equation. The Whitham-Broer-Kaup and the (2 + 1)-dimensional Broer-Kaup-Kupershmidt equations are chosen as examples to illustrate the effectiveness of the auxiliary equation method
Relativistic wave equations without the Velo-Zwanziger pathology
International Nuclear Information System (INIS)
Khalil, M.A.K.
1976-06-01
For particles described by relativistic wave equations of the form: (-iGAMMA x delta + m) psi(x) = 0 interacting with an external field B(x) it is known that the ''noncausal'' propagation characteristics are not present when (1) GAMMA 0 is diagonalizable and (2) B(x) = -eGAMMA/sub mu/A/sup mu/(x) (Amar--Dozzio). The ''noncausality''difficulties arise for the Rarita--Schwinger spin 3 / 2 equation, with nondiagonalizable GAMMA 0 , in minimal coupling (i.e., B(x) = -eGAMMA x A(x)) and the PDK spin 1 equation, with diagonalizable GAMMA 0 , in a quadrupole coupling (Velo--Zwanziger) where either (1) or (2) of the Amar--Dozzio (sufficient) conditions are violated. Some sufficient conditions are derived and explored where the Velo--Zwanziger ''noncausality'' pathology can be avoided, even though one, or the other, or both of the conditions (1) and (2) are violated. Examples with both reducible and irreducible wave equations are included
Exact traveling wave solutions of the Boussinesq equation
International Nuclear Information System (INIS)
Ding Shuangshuang; Zhao Xiqiang
2006-01-01
The repeated homogeneous balance method is used to construct exact traveling wave solutions of the Boussinesq equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions of the Boussinesq equation are successfully obtained
Travelling Waves in Hyperbolic Chemotaxis Equations
Xue, Chuan; Hwang, Hyung Ju; Painter, Kevin J.; Erban, Radek
2010-01-01
Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235-248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically. © 2010 Society for Mathematical Biology.
Travelling Waves in Hyperbolic Chemotaxis Equations
Xue, Chuan
2010-10-16
Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235-248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically. © 2010 Society for Mathematical Biology.
Cnoidal waves governed by the Kudryashov–Sinelshchikov equation
International Nuclear Information System (INIS)
Randrüüt, Merle; Braun, Manfred
2013-01-01
The evolution equation for waves propagating in a mixture of liquid and gas bubbles as proposed by Kudryashov and Sinelshchikov allows, in a special case, the propagation of solitary waves of the sech 2 type. It is shown that these waves represent the solitary limit separating two families of periodic waves. One of them consists of the same cnoidal waves that are solutions of the Korteweg–de Vries equation, while the other one does not have a corresponding counterpart. It is pointed out how the ordinary differential equations governing traveling-wave solutions of the Kudryashov–Sinelshchikov and the Korteweg–de Vries equations are related to each other.
Cnoidal waves governed by the Kudryashov–Sinelshchikov equation
Energy Technology Data Exchange (ETDEWEB)
Randrüüt, Merle, E-mail: merler@cens.ioc.ee [Tallinn University of Technology, Faculty of Mechanical Engineering, Department of Mechatronics, Ehitajate tee 5, 19086 Tallinn (Estonia); Braun, Manfred [University of Duisburg–Essen, Chair of Mechanics and Robotics, Lotharstraße 1, 47057 Duisburg (Germany)
2013-10-30
The evolution equation for waves propagating in a mixture of liquid and gas bubbles as proposed by Kudryashov and Sinelshchikov allows, in a special case, the propagation of solitary waves of the sech{sup 2} type. It is shown that these waves represent the solitary limit separating two families of periodic waves. One of them consists of the same cnoidal waves that are solutions of the Korteweg–de Vries equation, while the other one does not have a corresponding counterpart. It is pointed out how the ordinary differential equations governing traveling-wave solutions of the Kudryashov–Sinelshchikov and the Korteweg–de Vries equations are related to each other.
International Nuclear Information System (INIS)
Liu Ping; Jia Man; Lou Senyue
2007-01-01
A modified Korteweg-de Vries (mKdV) lattice is also found to be a discrete Korteweg-de Vries (KdV) equation in this paper. The Lax pair for the discrete equation is found with the help of the Lax pair for a similar discrete equation. A Lax-integrable coupled extension of the lattice is posed, which is a common discrete version of both the coupled KdV and coupled mKdV systems. Some rational expansions of the Jacobian elliptic, trigonometric and hyperbolic functions are used to construct cnoidal waves, negaton and positon solutions of the discrete coupled system
Hydromagnetic wave coupling in the magnetosphere
International Nuclear Information System (INIS)
Lee, D.
1990-01-01
The hydromagnetic wave phenomena in the magnetosphere has been an area of space physics and plasma physics where theory has been successful in explaining many features in satellite experiments and ground-based observations. Magnetohydrodynamic (MHD) waves, which are composed of transverse Alven waves and compressional waves, are usually coupled in space due to an inhomogeneous plasma density and curved magnetic field lines. In addition to these effects, hot temperature plasmas invoke various ultra low frequency (ULF) wave phenomena via macroscopic wave instabilities or wave particle resonant interactions. These properties of the coupling between the two different MHD waves were analytically and numerically studied in a simplified model such as the box model with straight field lines. However, the real magnetosphere is rather close to a dipole field, even though the night side of the magnetosphere is significantly distorted from dipole geometry. The curvature of field lines plays an important role in understanding hydromagnetic wave coupling in the magnetosphere since the MHD wave propagation depends strongly on the curved magnetic fields. The study of the hydromagnetic wave properties on an inhomogeneous and curved magnetic field system by considering realistic geometry is emphasized. Most of the current theories are reviewed and a number of observations are introduced according to the wave excitation mechanism. Studies are also performed with the development of numerical models such as the two and three dimensional MHD dipole models. An attempt is made to understand and classify the hydromagnetic wave behavior in inhomogeneous and hot plasmas with respect to the energy sources and their frequency band in the magnetosphere. Therefore, various excitation mechanisms for hydromagnetic waves are examined to compare analytical and numerical results with the observations
The fractional coupled KdV equations: Exact solutions and white noise functional approach
International Nuclear Information System (INIS)
Ghany, Hossam A.; El Bab, A. S. Okb; Zabel, A. M.; Hyder, Abd-Allah
2013-01-01
Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types. (general)
Bifurcation of the spin-wave equations
International Nuclear Information System (INIS)
Cascon, A.; Koiller, J.; Rezende, S.M.
1990-01-01
We study the bifurcations of the spin-wave equations that describe the parametric pumping of collective modes in magnetic media. Mechanisms describing the following dynamical phenomena are proposed: (i) sequential excitation of modes via zero eigenvalue bifurcations; (ii) Hopf bifurcations followed (or not) by Feingenbaum cascades of period doubling; (iii) local and global homoclinic phenomena. Two new organizing center for routes to chaos are identified; in the classification given by Guckenheimer and Holmes [GH], one is a codimension-two local bifurcation, with one pair of imaginary eigenvalues and a zero eigenvalue, to which many dynamical consequences are known; secondly, global homoclinic bifurcations associated to splitting of separatrices, in the limit where the system can be considered a Hamiltonian subjected to weak dissipation and forcing. We outline what further numerical and algebraic work is necessary for the detailed study following this program. (author)
The damped wave equation with unbounded damping
Freitas, Pedro; Siegl, Petr; Tretter, Christiane
2018-06-01
We analyze new phenomena arising in linear damped wave equations on unbounded domains when the damping is allowed to become unbounded at infinity. We prove the generation of a contraction semigroup, study the relation between the spectra of the semigroup generator and the associated quadratic operator function, the convergence of non-real eigenvalues in the asymptotic regime of diverging damping on a subdomain, and we investigate the appearance of essential spectrum on the negative real axis. We further show that the presence of the latter prevents exponential estimates for the semigroup and turns out to be a robust effect that cannot be easily canceled by adding a positive potential. These analytic results are illustrated by examples.
Rogue periodic waves of the modified KdV equation
Chen, Jinbing; Pelinovsky, Dmitry E.
2018-05-01
Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.
Integrable coupling system of fractional soliton equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-10-05
In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.
Traveling wave behavior for a generalized fisher equation
International Nuclear Information System (INIS)
Feng Zhaosheng
2008-01-01
There is the widespread existence of wave phenomena in physics, chemistry and biology. This clearly necessitates a study of traveling waves in depth and of the modeling and analysis involved. In the present paper, we study a nonlinear reaction-diffusion equation, which can be regarded as a generalized Fisher equation. Applying the Cole-Hopf transformation and the first integral method, we obtain a class of traveling solitary wave solutions for this generalized Fisher equation
Nonlocal nonlinear coupling of kinetic sound waves
Directory of Open Access Journals (Sweden)
O. Lyubchyk
2014-11-01
Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.
Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus
2014-01-01
Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.
Approximate equations at breaking for nearshore wave transformation coefficients
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
Based on small amplitude wave theory approximate equations are evaluated for determining the coefficients of shoaling, refraction, bottom friction, bottom percolation and viscous dissipation at breaking. The results obtainEd. by these equations...
Temperature waves and the Boltzmann kinetic equation for phonons
International Nuclear Information System (INIS)
Urushev, D.; Borisov, M.; Vavrek, A.
1988-01-01
The ordinary parabolic equation for thermal conduction based on the Fourier empiric law as well as the generalized thermal conduction equation based on the Maxwell law have been derived from the Boltzmann equation for the phonons within the relaxation time approximation. The temperature waves of the so-called second sound in crystals at low temperatures are transformed into Fourier waves at low frequencies with respect to the characteristic frequency of the U-processes. These waves are transformed into temperature waves similar to the second sound waves in He II at frequences higher than the U-processes characteristic. 1 fig., 19 refs
Tokamak wave coupling and heating in the ICRF
International Nuclear Information System (INIS)
Romero, H.; Scharer, J.; Sund, R.
1983-01-01
The authors consider wave propagation in the vicinity of the Ion Cyclotron Range of Frequencies (ICRF) in general tokamak geometries. The problem of wave coupling by means of waveguides is addressed. In particular, the reflection coefficient for a simple TE 10 waveguide is obtained by taking into account both the z and y spectrum of the launcher. In order to take into account spatial gradients in the plasma medium, they use a one-dimensional slab model of the plasma. Good coupling and heating results are obtained for the first few harmonics for sufficiently weak edge density gradient and > about 1 keV core temperatures. To analyze the heating of the plasma interior in the presence of ICRF, a 2-D differential equation is being developed which takes into account spatial gradients and mode coupling
Nonlinear steady-state coupling of LH waves
International Nuclear Information System (INIS)
Ko, K.; Krapchev, V.B.
1981-02-01
The coupling of lower hybrid waves at the plasma edge by a two waveguide array with self-consistent density modulation is solved numerically. For a linear density profile, the governing nonlinear Klein-Gordon equation for the electric field can be written as a system of nonlinearly modified Airy equations in Fourier k/sub z/-space. Numerical solutions to the nonlinear system satisfying radiation condition are obtained. Spectra broadening and modifications to resonance cone trajectories are observed with increase of incident power
Variational iteration method for solving coupled-KdV equations
International Nuclear Information System (INIS)
Assas, Laila M.B.
2008-01-01
In this paper, the He's variational iteration method is applied to solve the non-linear coupled-KdV equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converge to the exact solution of the coupled-KdV equations. This procedure is a powerful tool for solving coupled-KdV equations
Solitary waves for a coupled nonlinear Schrodinger system with dispersion management
Directory of Open Access Journals (Sweden)
Panayotis Panayotaros
2010-08-01
Full Text Available We consider a system of coupled nonlinear Schrodinger equations with periodically varying dispersion coefficient that arises in the context of fiber-optics communication. We use Lions's Concentration Compactness principle to show the existence of standing waves with prescribed L^2 norm in an averaged equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the existence of standing waves with prescribed frequencies.
A new auxiliary equation and exact travelling wave solutions of nonlinear equations
International Nuclear Information System (INIS)
Sirendaoreji
2006-01-01
A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations
Analytical solutions of coupled-mode equations for microring ...
Indian Academy of Sciences (India)
equivalent to waveguide and single microring coupled system. The 3 × 3 coupled system is equivalent to waveguide and double microring coupled system. In this paper, we adopt a novel approach for obtaining coupled-mode equations for linearly distributed and circularly distributed multiwaveguide systems with different ...
Wave equations on anti self dual (ASD) manifolds
Bashingwa, Jean-Juste; Kara, A. H.
2017-11-01
In this paper, we study and perform analyses of the wave equation on some manifolds with non diagonal metric g_{ij} which are of neutral signatures. These include the invariance properties, variational symmetries and conservation laws. In the recent past, wave equations on the standard (space time) Lorentzian manifolds have been performed but not on the manifolds from metrics of neutral signatures.
The propagation of travelling waves for stochastic generalized KPP equations
International Nuclear Information System (INIS)
Elworthy, K.D.; Zhao, H.Z.
1993-09-01
We study the existence and propagation of approximate travelling waves of generalized KPP equations with seasonal multiplicative white noise perturbations of Ito type. Three regimes of perturbation are considered: weak, milk, and strong. We show that weak perturbations have little effect on the wave like solutions of the unperturbed equations while strong perturbations essentially destroy the wave and force the solutions to die down. For mild perturbations we show that there is a residual wave form but propagating at a different speed to that of the unperturbed equation. In the appendix J.G. Gaines illustrates these different regimes by computer simulations. (author). 27 refs, 13 figs
Terahertz wave generation in coupled quantum dots
International Nuclear Information System (INIS)
Ma Yu-Rong; Guo Shi-Fang; Duan Su-Qing
2012-01-01
Based on coupled quantum dots, we present an interesting optical effect in a four-level loop coupled system. Both the two upper levels and the two lower levels are designed to be almost degenerate, which induces a considerable dipole moment. The terahertz wave is obtained from the low-frequency component of the photon emission spectrum. The frequency of the terahertz wave can be controlled by tuning the energy levels via designing the nanostructure appropriately or tuning the driving laser field. A terahertz wave with adjustable frequency and considerable intensity (100 times higher than that of the Rayleigh line) can be obtained. It provides an effective scheme for a terahertz source. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
An approach to rogue waves through the cnoidal equation
Lechuga, Antonio
2014-05-01
Lately it has been realized the importance of rogue waves in some events happening in open seas. Extreme waves and extreme weather could explain some accidents, but not all of them. Every now and then inflicted damages on ships only can be reported to be caused by anomalous and elusive waves, such as rogue waves. That's one of the reason why they continue attracting considerable interest among researchers. In the frame of the Nonlinear Schrödinger equation(NLS), Witham(1974) and Dingemans and Otta (2001)gave asymptotic solutions in moving coordinates that transformed the NLS equation in a ordinary differential equation that is the Duffing or cnoidal wave equation. Applying the Zakharov equation, Stiassnie and Shemer(2004) and Shemer(2010)got also a similar equation. It's well known that this ordinary equation can be solved in elliptic functions. The main aim of this presentation is to sort out the domains of the solutions of this equation, that, of course, are linked to the corresponding solutions of the partial differential equations(PDEs). That being, Lechuga(2007),a simple way to look for anomalous waves as it's the case with some "chaotic" solutions of the Duffing equation.
Local energy decay for linear wave equations with variable coefficients
Ikehata, Ryo
2005-06-01
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].
Bifurcations of traveling wave solutions for an integrable equation
International Nuclear Information System (INIS)
Li Jibin; Qiao Zhijun
2010-01-01
This paper deals with the following equation m t =(1/2)(1/m k ) xxx -(1/2)(1/m k ) x , which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.
Exact solitary waves of the Korteveg - de Vries - Burgers equation
Kudryashov, N. A.
2004-01-01
New approach is presented to search exact solutions of nonlinear differential equations. This method is used to look for exact solutions of the Korteveg -- de Vries -- Burgers equation. New exact solitary waves of the Korteveg -- de Vries -- Burgers equation are found.
Novel method for solution of coupled radial Schrödinger equations
International Nuclear Information System (INIS)
Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.
2011-01-01
One of the major problems in numerical solution of coupled differential equations is the maintenance of linear independence for different sets of solution vectors. A novel method for solution of radial Schrödinger equations is suggested. It consists of rearrangement of coupled equations in a way that is appropriate to avoid usual numerical instabilities associated with components of the wave function in their classically forbidden regions. Applications of the new method for nuclear structure calculations within the hyperspherical harmonics approach are given.
On a functional equation related to the intermediate long wave equation
International Nuclear Information System (INIS)
Hone, A N W; Novikov, V S
2004-01-01
We resolve an open problem stated by Ablowitz et al (1982 J. Phys. A: Math. Gen. 15 781) concerning the integral operator appearing in the intermediate long wave equation. We explain how this is resolved using the perturbative symmetry approach introduced by one of us with Mikhailov. By solving a certain functional equation, we prove that the intermediate long wave equation and the Benjamin-Ono equation are the unique integrable cases within a particular class of integro-differential equations. Furthermore, we explain how the perturbative symmetry approach is naturally extended to treat equations on a periodic domain. (letter to the editor)
Coupled Higgs field equation and Hamiltonian amplitude equation ...
Indian Academy of Sciences (India)
the rational functions are obtained. Keywords. ... differential equations as is evident by the number of research papers, books and a new symbolic software .... Now using (2.11), (2.14) in (2.8) with C1 = 0 and integrating once we get. P. 2 = − β.
Directory of Open Access Journals (Sweden)
Pijush Pal Roy
1987-01-01
Full Text Available The propagation of edge waves in a thinly layered laminated medium with stress couples under initial stresses is examined. Based upon an approximate representation of a laminated medium by an equivalent anisotropic continuum with average initial and couple stresses, an explicit form of frequency equation is obtained to derive the phase velocity of edge waves. Edge waves exist under certain conditions. The inclusion of couple stresses increases the velocity of wave propagation. For a specific compression, the presence of couple stresses increases the velocity of wave propagation with the increase of wave number, whereas the reverse is the case when there is no couple stress. Numerical computation is performed with graphical representations. Several special cases are also examined.
Traveling waves of the regularized short pulse equation
International Nuclear Information System (INIS)
Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J
2014-01-01
The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)
Smooth, cusped, and discontinuous traveling waves in the periodic fluid resonance equation
Kruse, Matthew Thomas
The principal motivation for this dissertation is to extend the study of small amplitude high frequency wave propagation in solutions for hyperbolic conservation laws begun by A. Majda and R. Rosales in 1984. It was then that Majda and Rosales obtained equations governing the leading order wave amplitudes of resonantly interacting weakly nonlinear high frequency wave trains in the compressible Euler equations. The equations were obtained through systematic application of multiple scales and result in a pair of nonlinear acoustic wave equations coupled through a convolution operator. The extended solutions satisfy a pair of inviscid Burgers' equations coupled via a spatial convolution operator. Since then, many mathematicians have used this technique to extend the time validity of solutions to systems of equations other than the Euler equations and have arrived at similar nonlinear non-local systems. This work attempts to look at some of the basic features of the linear and nonlinear coupled and decoupled non- local equations, offering some analytic solutions and numerical insight into the phenomena associated with these equations. We do so by examining a single non-local linear equation, and then a single equation coupling a Burgers' nonlinearity with a linear convolution operator. The linear case is completely solvable. Analytic solutions are provided along with numerical results showing the fundamental properties of the linear non- local equations. In the nonlinear case some analytic solutions, including steady state profiles and traveling wave solutions, are provided along with a battery of numerical simulations. Evidence indicates the existence of attractors for solutions of the single equation with a single mode kernel. Provided resonant interaction takes place, the profile of the attractor is uniquely dependent on the kernel alone. Hamiltonian equations are obtained for both the linear and nonlinear equations with the condition that the resonant kernel must
Line Rogue Waves in the Mel'nikov Equation
Shi, Yongkang
2017-07-01
General line rogue waves in the Mel'nikov equation are derived via the Hirota bilinear method, which are given in terms of determinants whose matrix elements have plain algebraic expressions. It is shown that fundamental rogue waves are line rogue waves, which arise from the constant background with a line profile and then disappear into the constant background again. By means of the regulation of free parameters, two subclass of nonfundamental rogue waves are generated, which are called as multirogue waves and higher-order rogue waves. The multirogue waves consist of several fundamental line rogue waves, which arise from the constant background and then decay back to the constant background. The higher-order rogue waves start from a localised lump and retreat back to it. The dynamical behaviours of these line rogue waves are demonstrated by the density and the three-dimensional figures.
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing; Dutta, Gaurav; Schuster, Gerard T.
2017-01-01
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data
Capillary-gravity waves and the Navier-Stokes equation
International Nuclear Information System (INIS)
Behroozi, F.; Podolefsky, N.
2001-01-01
Water waves are a source of great fascination for undergraduates and thus provide an excellent context for introducing some important topics in fluid dynamics. In this paper we introduce the potential theory for incompressible and inviscid flow and derive the differential equation that governs the behaviour of the velocity potential. Next we obtain the harmonic solutions of the velocity potential by a very general argument. These solutions in turn yield the equations for the velocity and displacement of a water element under the action of a harmonic wave. Finally we obtain the dispersion relation for surface waves by requiring that the harmonic solutions satisfy the Navier-Stokes equation. (author)
Wave Chaos and Coupling to EM Structures
2006-07-01
Antonsen, E. Ott and S. Anlage, Aspects of the Scattering and Impedance Properties of Chaotic Microwave Cavities, Acta Physica Polonica A 109, 65...other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a ...currently valid OMB control number. 1. REPORT DATE JUL 2006 2. REPORT TYPE N/ A 3. DATES COVERED - 4. TITLE AND SUBTITLE Wave Chaos and Coupling
Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric
2010-01-01
A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well
Li, Jing; Schuster, Gerard T.; Zeng, Zhaofa
2017-01-01
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method
Reciprocal link for a coupled Camassa–Holm type equation
International Nuclear Information System (INIS)
Li, Nianhua; Zhang, Jinshun; Wu, Lihua
2016-01-01
Highlights: • We construct a reciprocal transformation for a coupled Camassa–Holm type equation proposed by Geng and Xue. • The transformed coupled Camassa–Holm type system is a reduction of the first negative flow in a modified Drinfeld–Sokolov III hierarchy. • The Lax pair and bi-Hamiltonian structure behaviors of the coupled Camassa–Holm type equation under the reciprocal transformation are analyzed. - Abstract: A coupled Camassa–Holm type equation is linked to the first negative flow in a modified Drinfeld–Sokolov III hierarchy by a transformation of reciprocal type. Meanwhile the Lax pair and bi-Hamiltonian structure behaviors of this coupled Camassa–Holm type equation under the reciprocal transformation are analyzed.
Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation
Karney, C. F. F.
1977-01-01
Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.
Relativistic covariant wave equations and acausality in external fields
International Nuclear Information System (INIS)
Pijlgroms, R.B.J.
1980-01-01
The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)
Orbital stability of solitary waves for Kundu equation
Zhang, Weiguo; Qin, Yinghao; Zhao, Yan; Guo, Boling
In this paper, we consider the Kundu equation which is not a standard Hamiltonian system. The abstract orbital stability theory proposed by Grillakis et al. (1987, 1990) cannot be applied directly to study orbital stability of solitary waves for this equation. Motivated by the idea of Guo and Wu (1995), we construct three invariants of motion and use detailed spectral analysis to obtain orbital stability of solitary waves for Kundu equation. Since Kundu equation is more complex than the derivative Schrödinger equation, we utilize some techniques to overcome some difficulties in this paper. It should be pointed out that the results obtained in this paper are more general than those obtained by Guo and Wu (1995). We present a sufficient condition under which solitary waves are orbitally stable for 2c+sυ1995) only considered the case 2c+sυ>0. We obtain the results on orbital stability of solitary waves for the derivative Schrödinger equation given by Colin and Ohta (2006) as a corollary in this paper. Furthermore, we obtain orbital stability of solitary waves for Chen-Lee-Lin equation and Gerdjikov-Ivanov equation, respectively.
Paraxial WKB solution of a scalar wave equation
International Nuclear Information System (INIS)
Pereverzev, G.V.
1993-04-01
An asymptotic method of solving a scalar wave equation in inhomogeneous media is developed. This method is an extension of the WKB method to the multidimensional case. It reduces a general wave equation to a set of ordinary differential equations similar to that of the eikonal approach and includes the latter as a particular case. However, the WKB method makes use of another kind of asymptotic expansion and, unlike the eikonal approach, describes the wave properties, i.e. diffraction and interference. At the same time, the three-dimensional WKB method is more simple for numerical treatment because the number of equations is less than in the eikonal approach. The method developed may be used for a calculation of wave fields in problems of RF heating, current drive and plasma diagnostics with microwave beams. (orig.)
Closed form solutions of two time fractional nonlinear wave equations
Directory of Open Access Journals (Sweden)
M. Ali Akbar
2018-06-01
Full Text Available In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G′/G-expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics. Keywords: Traveling wave solution, Soliton, Generalized (G′/G-expansion method, Time fractional Duffing equation, Time fractional Riccati equation
Relativistic transport equation for a discontinuity wave of multiplicity one
Energy Technology Data Exchange (ETDEWEB)
Giambo, S; Palumbo, A [Istituto di Matematica, Universita degli Studi, Messina (Italy)
1980-04-14
In the framework of the theory of the singular hypersurfaces, the transport equation for the amplitude of a discontinuity wave, corresponding to a simple characteristic of a quasi-linear hyperbolic system, is established in the context of special relativity.
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang; Schuster, Gerard T.
2016-01-01
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially
Exponential decay for solutions to semilinear damped wave equation
Gerbi, Sté phane; Said-Houari, Belkacem
2011-01-01
This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan; Radwan, Hany; Dalcin, Lisandro; Calo, Victor M.
2011-01-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang
2016-09-06
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.
Continuity relations and quantum wave equations
International Nuclear Information System (INIS)
Goedecke, G.H.; Davis, B.T.
2010-01-01
We investigate the mathematical synthesis of the Schroedinger, Klein-Gordon, Pauli-Schroedinger, and Dirac equations starting from probability continuity relations. We utilize methods similar to those employed by R. E. Collins (Lett. Nuovo Cimento, 18 (1977) 581) in his construction of the Schroedinger equation from the position probability continuity relation for a single particle. Our new results include the mathematical construction of the Pauli-Schroedinger and Dirac equations from the position probability continuity relations for a particle that can transition between two states or among four states, respectively.
A wave equation interpolating between classical and quantum mechanics
Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.
2015-10-01
We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.
New exact wave solutions for Hirota equation
Indian Academy of Sciences (India)
2Department of Engineering Sciences, Faculty of Technology and Engineering,. University ... of nonlinear partial differential equations (NPDEs) in mathematical physics. Keywords. ... This method has been successfully applied to obtain exact.
Drift of Spiral Waves in Complex Ginzburg-Landau Equation
International Nuclear Information System (INIS)
Yang Junzhong; Zhang Mei
2006-01-01
The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg-Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomenological theory to explain the observations.
Scattering for wave equations with dissipative terms in layered media
Directory of Open Access Journals (Sweden)
Mitsuteru Kadowaki
2011-05-01
Full Text Available In this article, we show the existence of scattering solutions to wave equations with dissipative terms in layered media. To analyze the wave propagation in layered media, it is necessary to handle singular points called thresholds in the spectrum. Our main tools are Kato's smooth perturbation theory and some approximate operators.
Soliton solutions of coupled nonlinear Klein-Gordon equations
International Nuclear Information System (INIS)
Alagesan, T.; Chung, Y.; Nakkeeran, K.
2004-01-01
The coupled nonlinear Klein-Gordon equations are analyzed for their integrability properties in a systematic manner through Painleve test. From the Painleve test, by truncating the Laurent series at the constant level term, the Hirota bilinear form is identified, from which one-soliton solutions are derived. Then, the results are generalized to the two, three and N-coupled Klein-Gordon equations
Integral Equation Methods for Electromagnetic and Elastic Waves
Chew, Weng; Hu, Bin
2008-01-01
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq
Dynamic equations for gauge-invariant wave functions
International Nuclear Information System (INIS)
Kapshaj, V.N.; Skachkov, N.B.; Solovtsov, I.L.
1984-01-01
The Bethe-Salpeter and quasipotential dynamic equations for wave functions of relative quark motion, have been derived. Wave functions are determined by the gauge invariant method. The V.A. Fock gauge condition is used in the construction. Despite the transl tional noninvariance of the gauge condition the standard separation of variables has been obtained and wave function doesn't contain gauge exponents
Quadratic algebras in the noncommutative integration method of wave equation
International Nuclear Information System (INIS)
Varaksin, O.L.
1995-01-01
The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras
Wave energy extraction by coupled resonant absorbers.
Evans, D V; Porter, R
2012-01-28
In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
Solitary Wave Solutions of the Boussinesq Equation and Its Improved Form
Directory of Open Access Journals (Sweden)
Reza Abazari
2013-01-01
Full Text Available This paper presents the general case study of previous works on generalized Boussinesq equations, (Abazari, 2011 and (Kılıcman and Abazari, 2012, that focuses on the application of G′/G-expansion method with the aid of Maple to construct more general exact solutions for the coupled Boussinesq equations. In this work, the mentioned method is applied to construct more general exact solutions of Boussinesq equation and improved Boussinesq equation, which the French scientist Joseph Valentin Boussinesq (1842–1929 described in the 1870s model equations for the propagation of long waves on the surface of water with small amplitude. Our work is motivated by the fact that the G′/G-expansion method provides not only more general forms of solutions but also periodic, solitary waves and rational solutions. The method appears to be easier and faster by means of a symbolic computation.
Wave Functions for Time-Dependent Dirac Equation under GUP
Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen
2018-04-01
In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009
On the Stochastic Wave Equation with Nonlinear Damping
International Nuclear Information System (INIS)
Kim, Jong Uhn
2008-01-01
We discuss an initial boundary value problem for the stochastic wave equation with nonlinear damping. We establish the existence and uniqueness of a solution. Our method for the existence of pathwise solutions consists of regularization of the equation and data, the Galerkin approximation and an elementary measure-theoretic argument. We also prove the existence of an invariant measure when the equation has pure nonlinear damping
Invariant measures for stochastic nonlinear beam and wave equations
Czech Academy of Sciences Publication Activity Database
Brzezniak, Z.; Ondreját, Martin; Seidler, Jan
2016-01-01
Roč. 260, č. 5 (2016), s. 4157-4179 ISSN 0022-0396 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : stochastic partial differential equation * stochastic beam equation * stochastic wave equation * invariant measure Subject RIV: BA - General Mathematics Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/ondrejat-0453412.pdf
New analytic solutions of stochastic coupled KdV equations
International Nuclear Information System (INIS)
Dai Chaoqing; Chen Junlang
2009-01-01
In this paper, firstly, we use the exp-function method to seek new exact solutions of the Riccati equation. Then, with the help of Hermit transformation, we employ the Riccati equation and its new exact solutions to find new analytic solutions of the stochastic coupled KdV equation in the white noise environment. As some special examples, some analytic solutions can degenerate into these solutions reported in open literatures.
Theory of Bernstein waves coupling with loop antennas
International Nuclear Information System (INIS)
Brambilla, M.
1987-04-01
We present a fully three-dimensional theory of antenna coupling to Ion Bernstein Waves near the first harmonic of the ion cyclotron resonance in tokamak plasmas. The boundary conditions in vacuum are solved analytically for arbitrary orientation of the antenna and Faraday screen conductors. The wave equations in the plasma, which include Finite Larmor Radius and finite electron inertia effects, cyclotron and harmonic damping by the ions, and Landau and collisional damping by the electrons, are solved numerically using a Finite Elements discretisation with cubic Hermite interpolating functions. Applications to Alcator C give reasonably good agreement between the calculated and measured radiation resistance in the range in which efficient heating is observed; outside this range the calculated resistance is lower than the experimental one. In general, the coupling efficiency is found to be very sensitive to the edge plasma density, good coupling requiring a low density plasma layer in the vicinity of the Faraday screen. Coupling also improves with increasing scrape-off ion temperature, and is appreciably better for antisymmetric than for symmetric toroidal current distributions in the antenna. (orig.)
Unified formulation of radiation conditions for the wave equation
DEFF Research Database (Denmark)
Krenk, Steen
2002-01-01
A family of radiation conditions for the wave equation is derived by truncating a rational function approxiamtion of the corresponding plane wave representation, and it is demonstrated how these boundary conditions can be formulated in terms of fictitious surface densities, governed by second......-order wave equations on the radiating surface. Several well-established radiation boundary conditions appear as special cases, corresponding to different choice of the coefficients in the rational approximation. The relation between these choices is established, and an explicit formulation in terms...
Directory of Open Access Journals (Sweden)
Pijush Pal Roy
1988-01-01
Full Text Available A study is made of the propagation of Rayleigh waves in a thinly layered laminated thermoelastic medium under deviatoric, hydrostatic, and couple stresses. The frequency equation of the Rayleigh waves is obtained. The phase velocity of the Rayleigh waves depends on the initial stress, deviatoric stress, and the couple stress. The laminated medium is first replaced by an equivalent anisotropic thermoelastic continuum. The corresponding thermoelastic coefficients (after deformation are derived in terms of initially isotropic thermoelastic coefficients (before deformation of individual layers. Several particular cases are discussed for the determination of the displacement fields with or without the effect of the couple stress.
A nonlinear wave equation in nonadiabatic flame propagation
International Nuclear Information System (INIS)
Booty, M.R.; Matalon, M.; Matkowsky, B.J.
1988-01-01
The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time
Travelling wave solutions to the Kuramoto-Sivashinsky equation
International Nuclear Information System (INIS)
Nickel, J.
2007-01-01
Combining the approaches given by Baldwin [Baldwin D et al. Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs. J Symbol Comput 2004;37:669-705], Peng [Peng YZ. A polynomial expansion method and new general solitary wave solutions to KS equation. Comm Theor Phys 2003;39:641-2] and by Schuermann [Schuermann HW, Serov VS. Weierstrass' solutions to certain nonlinear wave and evolution equations. Proc progress electromagnetics research symposium, 28-31 March 2004, Pisa. p. 651-4; Schuermann HW. Traveling-wave solutions to the cubic-quintic nonlinear Schroedinger equation. Phys Rev E 1996;54:4312-20] leads to a method for finding exact travelling wave solutions of nonlinear wave and evolution equations (NLWEE). The first idea is to generalize ansaetze given by Baldwin and Peng to find elliptic solutions of NLWEEs. Secondly, conditions used by Schuermann to find physical (real and bounded) solutions and to discriminate between periodic and solitary wave solutions are used. The method is shown in detail by evaluating new solutions of the Kuramoto-Sivashinsky equation
Stochastic wave-function unravelling of the generalized Lindblad equation using correlated states
International Nuclear Information System (INIS)
Moodley, Mervlyn; Nsio Nzundu, T; Paul, S
2012-01-01
We perform a stochastic wave-function unravelling of the generalized Lindblad master equation using correlated states, a combination of the system state vectors and the environment population. The time-convolutionless projection operator method using correlated projection superoperators is applied to a two-state system, a qubit, that is coupled to an environment consisting of two energy bands which are both populated. These results are compared to the data obtained from Monte Carlo wave-function simulations based on the unravelling of the master equation. We also show a typical quantum trajectory and the average time evolution of the state vector on the Bloch sphere. (paper)
Linear fractional diffusion-wave equation for scientists and engineers
Povstenko, Yuriy
2015-01-01
This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and ...
Acoustic wave propagation in fluids with coupled chemical reactions
International Nuclear Information System (INIS)
Margulies, T.S.; Schwarz, W.H.
1984-08-01
This investigation presents a hydroacoustic theory which accounts for sound absorption and dispersion in a multicomponent mixture of reacting fluids (assuming a set of first-order acoustic equations without diffusion) such that several coupled reactions can occur simultaneously. General results are obtained in the form of a biquadratic characteristic equation (called the Kirchhoff-Langevin equation) for the complex propagation variable chi = - (α + iω/c) in which α is the attenuation coefficient, c is the phase speed of the progressive wave and ω is the angular frequency. Computer simulations of sound absorption spectra have been made for three different chemical systems, each comprised of two-step chemical reactions using physico-chemical data available in the literature. The chemical systems studied include: (1) water-dioxane, (2) aqueous solutions of glycine and (3) cobalt polyphosphate mixtures. Explicit comparisons are made between the exact biquadratic characteristic solution and the approximate equation (sometimes referred to as a Debye equation) previously applied to interpret the experimental data for the chemical reaction contribution to the absorption versus frequency. The relative chemical reaction and classical viscothermal contributions to the sound absorption are also presented. Several discrepancies that can arise when estimating thermodynamic data (chemical reaction heats or volume changes) for multistep chemical reaction systems when making dilute solution or constant density assumptions are discussed
Travelling wave solutions for a surface wave equation in fluid mechanics
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available This paper considers a non-linear wave equation arising in fluid mechanics. The exact traveling wave solutions of this equation are given by using G'/G-expansion method. This process can be reduced to solve a system of determining equations, which is large and difficult. To reduce this process, we used Wu elimination method. Example shows that this method is effective.
Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method
International Nuclear Information System (INIS)
Fan Engui
2002-01-01
A new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system. Compared with most of the existing tanh methods, the Jacobi elliptic function method or other sophisticated methods, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the travelling wave solutions according to the values of some parameters. The solutions obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions, (b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. The efficiency of the method can be demonstrated on a large variety of nonlinear evolution equations such as those considered in this paper, KdV-MKdV, Ito's fifth MKdV, Hirota, Nizhnik-Novikov-Veselov, Broer-Kaup, generalized coupled Hirota-Satsuma, coupled Schroedinger-KdV, (2+1)-dimensional dispersive long wave, (2+1)-dimensional Davey-Stewartson equations. In addition, as an illustrative sample, the properties of the soliton solutions and Jacobi doubly periodic solutions for the Hirota equation are shown by some figures. The links among our proposed method, the tanh method, extended tanh method and the Jacobi elliptic function method are clarified generally. (author)
Persistence of travelling waves in a generalized Fisher equation
International Nuclear Information System (INIS)
Kyrychko, Yuliya N.; Blyuss, Konstantin B.
2009-01-01
Travelling waves of the Fisher equation with arbitrary power of nonlinearity are studied in the presence of long-range diffusion. Using analogy between travelling waves and heteroclinic solutions of corresponding ODEs, we employ the geometric singular perturbation theory to prove the persistence of these waves when the influence of long-range effects is small. When the long-range diffusion coefficient becomes larger, the behaviour of travelling waves can only be studied numerically. In this case we find that starting with some values, solutions of the model lose monotonicity and become oscillatory
Nonlinear wave equations, formation of singularities
John, Fritz
1990-01-01
This is the second volume in the University Lecture Series, designed to make more widely available some of the outstanding lectures presented in various institutions around the country. Each year at Lehigh University, a distinguished mathematical scientist presents the Pitcher Lectures in the Mathematical Sciences. This volume contains the Pitcher lectures presented by Fritz John in April 1989. The lectures deal with existence in the large of solutions of initial value problems for nonlinear hyperbolic partial differential equations. As is typical with nonlinear problems, there are many results and few general conclusions in this extensive subject, so the author restricts himself to a small portion of the field, in which it is possible to discern some general patterns. Presenting an exposition of recent research in this area, the author examines the way in which solutions can, even with small and very smooth initial data, "blow up" after a finite time. For various types of quasi-linear equations, this time de...
Positive Solutions for Coupled Nonlinear Fractional Differential Equations
Directory of Open Access Journals (Sweden)
Wenning Liu
2014-01-01
Full Text Available We consider the existence of positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary values. Assume the nonlinear term is superlinear in one equation and sublinear in the other equation. By constructing two cones K1, K2 and computing the fixed point index in product cone K1×K2, we obtain that the system has a pair of positive solutions. It is remarkable that it is established on the Cartesian product of two cones, in which the feature of two equations can be opposite.
Solutions of system of P1 equations without use of auxiliary differential equations coupled
International Nuclear Information System (INIS)
Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos
2000-01-01
The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)
Traveling waves and the renormalization group improvedBalitsky-Kovchegov equation
Energy Technology Data Exchange (ETDEWEB)
Enberg, Rikard
2006-12-01
I study the incorporation of renormalization group (RG)improved BFKL kernels in the Balitsky-Kovchegov (BK) equation whichdescribes parton saturation. The RG improvement takes into accountimportant parts of the next-to-leading and higher order logarithmiccorrections to the kernel. The traveling wave front method for analyzingthe BK equation is generalized to deal with RG-resummed kernels,restricting to the interesting case of fixed QCD coupling. The resultsshow that the higher order corrections suppress the rapid increase of thesaturation scale with increasing rapidity. I also perform a "diffusive"differential equation approximation, which illustrates that someimportant qualitative properties of the kernel change when including RGcorrections.
Analiticity in fourth-order wave equations
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1987-01-01
In this paper it is presented, through a familiar example (δ-function potential in one dimension), the analytic properties of Jost functions associated with fourth-order equations. It is shown how to construct the Jost functions and the two discontinuity matrices associated with the line of singularities. The latter divide the complex k-plane in eight regions of analiticity. One of these matrices is related to the asymptotic behaviour of the scattering state. The other is not. Both are necessary to solve the inverse problem. Besides the usual poles related to bound states there are also other poles associated with total reflexion
Analiticity in fourth order wave equations
International Nuclear Information System (INIS)
Bollini, C.G.
1987-01-01
Through a familiar example (δ-function potential in one dimension) the analytic properties of Jost functions associated with fourth order equations are presented. It is shown how to construct the Jost functions and the two discontinuities matrices associated to the line of singularities. The latter divide the complex k-plane in eight regions of analiticity. One of these matrices is related to the asymptotic behaviour of scattering state. The other is not. Both being necessary to solve the inverse problem. Besides the usual poles related to bound states there are also other poles associated with total reflexion. (Author) [pt
Numerical resolution of Navier-Stokes equations coupled to the heat equation
International Nuclear Information System (INIS)
Zenouda, Jean-Claude
1970-08-01
The author proves a uniqueness theorem for the time dependent Navier-Stokes equations coupled with heat flow in the two-dimensional case. He studies stability and convergence of several finite - difference schemes to solve these equations. Numerical experiments are done in the case of a square domain. (author) [fr
On the so called rogue waves in nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Y. Charles Li
2016-04-01
Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.
Relativistic n-body wave equations in scalar quantum field theory
International Nuclear Information System (INIS)
Emami-Razavi, Mohsen
2006-01-01
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields
Finite element and discontinuous Galerkin methods for transient wave equations
Cohen, Gary
2017-01-01
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...
Asymptotic solutions and spectral theory of linear wave equations
International Nuclear Information System (INIS)
Adam, J.A.
1982-01-01
This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)
N-body bound state relativistic wave equations
International Nuclear Information System (INIS)
Sazdjian, H.
1988-06-01
The manifestly covariant formalism with constraints is used for the construction of relativistic wave equations to describe the dynamics of N interacting spin 0 and/or spin 1/2 particles. The total and relative time evolutions of the system are completely determined by means of kinematic type wave equations. The internal dynamics of the system is 3 N-1 dimensional, besides the contribution of the spin degrees of freedom. It is governed by a single dynamical wave equation, that determines the eigenvalue of the total mass squared of the system. The interaction is introduced in a closed form by means of two-body potentials. The system satisfies an approximate form of separability
Shear Wave Generation by Decoupled and Partially Coupled Explosions
National Research Council Canada - National Science Library
Stevens, Jeffry L; Xu, Heming; Baker, G. E
2008-01-01
The objective of this project is to investigate the sources of shear wave generation by decoupled and partially coupled explosions, and the differences in shear wave generation between tamped and decoupled explosions...
FORSIM-6, Automatic Solution of Coupled Differential Equation System
International Nuclear Information System (INIS)
Carver, M.B.; Stewart, D.G.; Blair, J.M.; Selander, W.N.
1983-01-01
1 - Description of problem or function: The FORSIM program is a versatile package which automates the solution of coupled differential equation systems. The independent variables are time, and up to three space coordinates, and the equations may be any mixture of partial and/or ordinary differential equations. The philosophy of the program is to provide a tool which will solve a system of differential equations for a user who has basic but unspecialized knowledge of numerical analysis and FORTRAN. The equations to be solved, together with the initial conditions and any special instructions, may be specified by the user in a single FORTRAN subroutine, although he may write a number of routines if this is more suitable. These are then loaded with the control routines, which perform the solution and any requested input and output. 2 - Method of solution: Partial differential equations are automatically converted into sets of coupled ordinary differential equations by variable order discretization in the spatial dimensions. These and other ordinary differential equations are integrated continuously in time using efficient variable order, variable step, error-controlled algorithms
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
An Unconditionally Stable Method for Solving the Acoustic Wave Equation
Directory of Open Access Journals (Sweden)
Zhi-Kai Fu
2015-01-01
Full Text Available An unconditionally stable method for solving the time-domain acoustic wave equation using Associated Hermit orthogonal functions is proposed. The second-order time derivatives in acoustic wave equation are expanded by these orthogonal basis functions. By applying Galerkin temporal testing procedure, the time variable can be eliminated from the calculations. The restriction of Courant-Friedrichs-Levy (CFL condition in selecting time step for analyzing thin layer can be avoided. Numerical results show the accuracy and the efficiency of the proposed method.
Belkhatir, Zehor; Mechhoud, Sarra; Laleg-Kirati, Taous-Meriem
2016-01-01
This paper deals with joint parameters and input estimation for coupled PDE-ODE system. The system consists of a damped wave equation and an infinite dimensional ODE. This model describes the spatiotemporal hemodynamic response in the brain
Periodic solutions for one dimensional wave equation with bounded nonlinearity
Ji, Shuguan
2018-05-01
This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.
Minimally coupled N-particle scattering integral equations
International Nuclear Information System (INIS)
Kowalski, K.L.
1977-01-01
A concise formalism is developed which permits the efficient representation and generalization of several known techniques for deriving connected-kernel N-particle scattering integral equations. The methods of Kouri, Levin, and Tobocman and Bencze and Redish which lead to minimally coupled integral equations are of special interest. The introduction of channel coupling arrays is characterized in a general manner and the common base of this technique and that of the so-called channel coupling scheme is clarified. It is found that in the Bencze-Redish formalism a particular coupling array has a crucial function but one different from that of the arrays employed by Kouri, Levin, and Tobocman. The apparent dependence of the proof of the minimality of the Bencze-Redish integral equations upon the form of the inhomogeneous term in these equations is eliminated. This is achieved by an investigation of the full (nonminimal) Bencze-Redish kernel. It is shown that the second power of this operator is connected, a result which is needed for the full applicability of the Bencze-Redish formalism. This is used to establish the relationship between the existence of solutions to the homogeneous form of the minimal equations and eigenvalues of the full Bencze-Redish kernel
Resolution limits for wave equation imaging
Huang, Yunsong
2014-08-01
Formulas are derived for the resolution limits of migration-data kernels associated with diving waves, primary reflections, diffractions, and multiple reflections. They are applicable to images formed by reverse time migration (RTM), least squares migration (LSM), and full waveform inversion (FWI), and suggest a multiscale approach to iterative FWI based on multiscale physics. That is, at the early stages of the inversion, events that only generate low-wavenumber resolution should be emphasized relative to the high-wavenumber resolution events. As the iterations proceed, the higher-resolution events should be emphasized. The formulas also suggest that inverting multiples can provide some low- and intermediate-wavenumber components of the velocity model not available in the primaries. Finally, diffractions can provide twice or better the resolution than specular reflections for comparable depths of the reflector and diffractor. The width of the diffraction-transmission wavepath is approximately λ at the diffractor location for the diffraction-transmission wavepath. © 2014 Elsevier B.V.
Nonlinear spin wave coupling in adjacent magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2016-07-25
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Nonlinear spin wave coupling in adjacent magnonic crystals
International Nuclear Information System (INIS)
Sadovnikov, A. V.; Nikitov, S. A.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E.
2016-01-01
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Nonlinear evolution equations for waves in random media
International Nuclear Information System (INIS)
Pelinovsky, E.; Talipova, T.
1994-01-01
The scope of this paper is to highlight the main ideas of asymptotical methods applying in modern approaches of description of nonlinear wave propagation in random media. We start with the discussion of the classical conception of ''mean field''. Then an exactly solvable model describing nonlinear wave propagation in the medium with fluctuating parameters is considered in order to demonstrate that the ''mean field'' method is not correct. We develop new asymptotic procedures of obtaining the nonlinear evolution equations for the wave fields in random media. (author). 16 refs
Statistical approach to LHCD modeling using the wave kinetic equation
International Nuclear Information System (INIS)
Kupfer, K.; Moreau, D.; Litaudon, X.
1993-04-01
Recent work has shown that for parameter regimes typical of many present day current drive experiments, the orbits of the launched LH rays are chaotic (in the Hamiltonian sense), so that wave energy diffuses through the stochastic layer and fills the spectral gap. We have analyzed this problem using a statistical approach, by solving the wave kinetic equation for the coarse-grained spectral energy density. An interesting result is that the LH absorption profile is essentially independent of both the total injected power and the level of wave stochastic diffusion
Study of nonlinear waves described by the cubic Schroedinger equation
International Nuclear Information System (INIS)
Walstead, A.E.
1980-01-01
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables
Study of nonlinear waves described by the cubic Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Walstead, A.E.
1980-03-12
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.
The wave equation: From eikonal to anti-eikonal approximation
Directory of Open Access Journals (Sweden)
Luis Vázquez
2016-06-01
Full Text Available When the refractive index changes very slowly compared to the wave-length we may use the eikonal approximation to the wave equation. In the opposite case, when the refractive index highly variates over the distance of one wave-length, we have what can be termed as the anti-eikonal limit. This situation is addressed in this work. The anti-eikonal limit seems to be a relevant tool in the modelling and design of new optical media. Besides, it describes a basic universal behaviour, independent of the actual values of the refractive index and, thus, of the media, for the components of a wave with wave-length much greater than the characteristic scale of the refractive index.
Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers
Guo, Bowen; Schuster, Gerard T.
2017-01-01
Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images
Plane waves and spherical means applied to partial differential equations
John, Fritz
2004-01-01
Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con
New solutions of the generalized ellipsoidal wave equation
Directory of Open Access Journals (Sweden)
Harold Exton
1999-10-01
Full Text Available Certain aspects and a contribution to the theory of new forms of solutions of an algebraic form of the generalized ellipsoidal wave equation are deduced by considering the Laplace transform of a soluble system of linear differential equations. An ensuing system of non-linear algebraic equations is shown to be consistent and is numerically implemented by means of the computer algebra package MAPLE V. The main results are presented as series of hypergeometric type of there and four variables which readily lend themselves to numerical handling although this does not indicate all of the detailedanalytic properties of the solutions under consideration.
Solution of wave-like equation based on Haar wavelet
Directory of Open Access Journals (Sweden)
Naresh Berwal
2012-11-01
Full Text Available Wavelet transform and wavelet analysis are powerful mathematical tools for many problems. Wavelet also can be applied in numerical analysis. In this paper, we apply Haar wavelet method to solve wave-like equation with initial and boundary conditions known. The fundamental idea of Haar wavelet method is to convert the differential equations into a group of algebraic equations, which involves a finite number or variables. The results and graph show that the proposed way is quite reasonable when compared to exact solution.
The Appell transformation for the paraxial wave equation
International Nuclear Information System (INIS)
Torre, A
2011-01-01
Some issues related to the 1D heat equation are revisited and framed within the context of the free-space paraxial propagation, formally accounted for by the 2D paraxial wave equation. In particular, the Appell transformation, which is well known in the theory of the heat equation, is reformulated in optical terms, and accordingly interpreted in the light of the propagation of given source functions, which are in a definite relation with the source functions of the original wavefunctions. Basic to the discussion is the Lie-algebra-based approach, as developed in a series of seminal papers by Kalnins, Miller and Boyer, to evolutionary-type equations, ruled by Hamiltonian operators underlying a harmonic oscillator-like symmetry algebra. Indeed, both the heat equation and the paraxial wave equation are particular cases of this kind of equation. When interpreting such an approach in terms of the propagation of assigned 'source' functions, the transformations between wavefunctions may be traced back to definite relations between the respective source functions. Thus, the optical Appell transformation is seen to be a manifestation of the correspondence between wavefunctions generated by eigenstates of operators, which are linked through a Fourier-similarity transformation. As a mere consequence, one can introduce the fractional Appell transformation, thus displaying a family of symmetry transformations parameterized by a continuous parameter
Semilinear damped wave equation in locally uniform spaces
Czech Academy of Sciences Publication Activity Database
Michálek, Martin; Pražák, D.; Slavík, J.
2017-01-01
Roč. 16, č. 5 (2017), s. 1673-1695 ISSN 1534-0392 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : damped wave equations * nonlinear damping * unbounded domains Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.801, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14110
''Localized'' tachyonic wavelet-solutions of the wave equation
International Nuclear Information System (INIS)
Barut, A.O.; Chandola, H.C.
1993-05-01
Localized-nonspreading, wavelet-solutions of the wave equation □φ=0 with group velocity v>c and phase velocity u=c 2 /v< c are constructed explicitly by two different methods. Some recent experiments seem to find evidence for superluminal group velocities. (author). 7 refs, 2 figs
Invariant Solutions for a Class of Perturbed Nonlinear Wave Equations
Directory of Open Access Journals (Sweden)
Waheed A. Ahmed
2017-11-01
Full Text Available Approximate symmetries of a class of perturbed nonlinear wave equations are computed using two newly-developed methods. Invariant solutions associated with the approximate symmetries are constructed for both methods. Symmetries and solutions are compared through discussing the advantages and disadvantages of each method.
The scalar wave equation in a Schwarzschild spacetime
International Nuclear Information System (INIS)
Stewart, J.M.; Schmidt, B.G.
1978-09-01
This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild spacetime in a neighbourhood of spatial infinity, which includes parts of future and past null infinity. The behaviour of such fields is essentially different from that which accurs in a flat spacetime. (orig.) [de
The wave equation on a curved space-time
International Nuclear Information System (INIS)
Friedlander, F.G.
1975-01-01
It is stated that chapters on differential geometry, distribution theory, and characteristics and the propagation of discontinuities are preparatory. The main matter is in three chapters, entitled: fundamental solutions, representation theorems, and wave equations on n-dimensional space-times. These deal with general construction of fundamental solutions and their application to the Cauchy problem. (U.K.)
Exponential decay for solutions to semilinear damped wave equation
Gerbi, Stéphane
2011-10-01
This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...
Rarita-Schwinger field and multicomponent wave equation
International Nuclear Information System (INIS)
Kaloshin, A.E.; Lomov, V.P.
2011-01-01
We suggest a simple method to solve a wave equation for Rarita-Schwinger field without additional constraints. This method based on the use of off-shell projection operators allows one to diagonalize spin-1/2 sector of the field
Travelling wave solutions to the perturbed Π4 equation
International Nuclear Information System (INIS)
Geicke, J.
1985-01-01
Exact travelling wave solutions to the Π 4 equation, perturbed by a dissipative force and a constant external field η, are presented. For |η| 3 -λ 2 and λ 2 -λ 1 where λ 1 2 3 are the real roots of λ 3 -λ+η=O. The class with |v/ 3 -λ 1 . The stability of the solutions is discussed. (author) [pt
Transition behaviours in two coupled Josephson junction equations
International Nuclear Information System (INIS)
Wang Jiazeng; Zhang Xuejuan; You Gongqiang; Zhou Fengyan
2007-01-01
The dynamics of two coupled Josephson junction equations are investigated via mathematical reasoning and numerical simulations. We show that for a fixed coupling K, the whole parameter space can be comparted into three regions: a quenching region, a synchronized running periodic region and a region where these two states coexist. It is further shown that with the increase of the coupling K, the system may transit from a synchronizing state to a quenching state. The characteristic of the critical line K*(b) which separates these two states is mathematically analysed
On Coupled System of Navier-Stokes Equations and Temperature
African Journals Online (AJOL)
Dr. Anthony Peter
ABSTRACT. This paper deals with the coupled system of Navier-Stokes equations and temperature (Thermohydraulics) in a strip in the class of spatially non-decaying (infinite-energy) solutions belonging to the properly chosen uniformly local Sobolev spaces. The global well-posedness and dissipativity of the Navier- ...
Closed form solutions of two time fractional nonlinear wave equations
Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan
2018-06-01
In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.
International Nuclear Information System (INIS)
Pierantozzi, T.; Vazquez, L.
2005-01-01
Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case
Parsimonious wave-equation travel-time inversion for refraction waves
Fu, Lei; Hanafy, Sherif M.; Schuster, Gerard T.
2017-01-01
We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N
Improved coupling of the conduction and flow equations in TRAC
International Nuclear Information System (INIS)
Addessio, F.L.
1981-01-01
Recent nuclear-reactor-systems modeling efforts have been directed toward the development of computer codes capable of simulating transients in short computational times. For this reason, a stability enhancing two-stem method (SETS) has been applied to the two-phase flow equations in the Transient Reactor Analysis Code (TRAC) allowing the Courant limit to be violated. Unfortunately, the coupling between the wall conduction equation and the fluid-dynamics equations is performed semi-implicitly, that is, the wall-heat transfer term, is evaluated using old-time heat-transfer coefficients and wall temperatures and new-time coolant temperatures. This coupling may lead to numerical instabilities at large time steps because of large variations in the heat-transfer coefficient in certain regimes of the boiling curve. Consequently, simply using new-time wall temperatures is not sufficient. A technique that also incorporates new-time heat-transfer coefficients must be used
Finite-dimensional attractor for a composite system of wave/plate equations with localized damping
International Nuclear Information System (INIS)
Bucci, Francesca; Toundykov, Daniel
2010-01-01
The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping
Knezevic, David; Patera, Anthony T.; Huynh, Dinh Bao Phuong
2010-01-01
We present a certified reduced basis (RB) method for the heat equation and wave equation. The critical ingredients are certified RB approximation of the Laplace transform; the inverse Laplace transform to develop the time-domain RB output approximation and rigorous error bound; a (Butterworth) filter in time to effect the necessary “modal” truncation; RB eigenfunction decomposition and contour integration for Offline–Online decomposition. We present numerical results to demonstrate the accura...
Nonlinear transient waves in coupled phase oscillators with inertia.
Jörg, David J
2015-05-01
Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.
THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN
Jiang, H.; Liu, F.; Meerschaert, M. M.; McGough, R. J.
2013-01-01
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development.
Green function for three-wave coupling problems
International Nuclear Information System (INIS)
Molevich, N E
2001-01-01
The Green function is found for three-wave coupling problems. The function was used for analysis of parametric amplification in dissipative and active media. It is shown that the parametric increment in active media can become exponential. As an example, the nonstationary stimulated scattering of electromagnetic waves by sound and temperatures waves is considered. (nonlinear optical phenomena)
Inverse Schroedinger equation and the exact wave function
International Nuclear Information System (INIS)
Nakatsuji, Hiroshi
2002-01-01
Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem
Traveling-wave solutions in continuous chains of unidirectionally coupled oscillators
Glyzin, S. D.; Kolesov, A. Yu; Rozov, N. Kh
2017-12-01
Proposed is a mathematical model of a continuous annular chain of unidirectionally coupled generators given by certain nonlinear advection-type hyperbolic boundary value problem. Such problems are constructed by a limit transition from annular chains of unidirectionally coupled ordinary differential equations with an unbounded increase in the number of links. It is shown that any preassigned finite number of stable periodic motions of the traveling-wave type can coexist in the model.
Quaternion wave equations in curved space-time
Edmonds, J. D., Jr.
1974-01-01
The quaternion formulation of relativistic quantum theory is extended to include curvilinear coordinates and curved space-time in order to provide a framework for a unified quantum/gravity theory. Six basic quaternion fields are identified in curved space-time, the four-vector basis quaternions are identified, and the necessary covariant derivatives are obtained. Invariant field equations are derived, and a general invertable coordinate transformation is developed. The results yield a way of writing quaternion wave equations in curvilinear coordinates and curved space-time as well as a natural framework for solving the problem of second quantization for gravity.
Local control of globally competing patterns in coupled Swift-Hohenberg equations
Becker, Maximilian; Frenzel, Thomas; Niedermayer, Thomas; Reichelt, Sina; Mielke, Alexander; Bär, Markus
2018-04-01
We present analytical and numerical investigations of two anti-symmetrically coupled 1D Swift-Hohenberg equations (SHEs) with cubic nonlinearities. The SHE provides a generic formulation for pattern formation at a characteristic length scale. A linear stability analysis of the homogeneous state reveals a wave instability in addition to the usual Turing instability of uncoupled SHEs. We performed weakly nonlinear analysis in the vicinity of the codimension-two point of the Turing-wave instability, resulting in a set of coupled amplitude equations for the Turing pattern as well as left- and right-traveling waves. In particular, these complex Ginzburg-Landau-type equations predict two major things: there exists a parameter regime where multiple different patterns are stable with respect to each other and that the amplitudes of different patterns interact by local mutual suppression. In consequence, different patterns can coexist in distinct spatial regions, separated by localized interfaces. We identified specific mechanisms for controlling the position of these interfaces, which distinguish what kinds of patterns the interface connects and thus allow for global pattern selection. Extensive simulations of the original SHEs confirm our results.
Equation-of-motion coupled cluster perturbation theory revisited
DEFF Research Database (Denmark)
Eriksen, Janus Juul; Jørgensen, Poul; Olsen, Jeppe
2014-01-01
The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally con- verges towards the full configuration interaction energy limit. The series is based on a Møller-Ples......-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby rem- edying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873138]...
Dirac equation and optical wave propagation in one dimension
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Gabriel [Catedras CONACYT, Universidad Autonoma de San Luis Potosi (Mexico); Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Universidad Autonoma de San Luis Potosi (Mexico)
2018-02-15
We show that the propagation of transverse electric (TE) polarized waves in one-dimensional inhomogeneous settings can be written in the form of the Dirac equation in one space dimension with a Lorentz scalar potential, and consequently perform photonic simulations of the Dirac equation in optical structures. In particular, we propose how the zero energy state of the Jackiw-Rebbi model can be generated in an optical set-up by controlling the refractive index landscape, where TE-polarized waves mimic the Dirac particles and the soliton field can be tuned by adjusting the refractive index. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Hidden regularity for a strongly nonlinear wave equation
International Nuclear Information System (INIS)
Rivera, J.E.M.
1988-08-01
The nonlinear wave equation u''-Δu+f(u)=v in Q=Ωx]0,T[;u(0)=u 0 ,u'(0)=u 1 in Ω; u(x,t)=0 on Σ= Γx]0,T[ where f is a continuous function satisfying, lim |s| sup →+∞ f(s)/s>-∞, and Ω is a bounded domain of R n with smooth boundary Γ, is analysed. It is shown that there exist a solution for the presented nonlinear wave equation that satisfies the regularity condition: |∂u/∂ η|ε L 2 (Σ). Moreover, it is shown that there exist a constant C>0 such that, |∂u/∂ η|≤c{ E(0)+|v| 2 Q }. (author) [pt
Equation of state of strongly coupled plasma mixtures
International Nuclear Information System (INIS)
DeWitt, H.E.
1984-01-01
Thermodynamic properties of strongly coupled (high density) plasmas of mixtures of light elements have been obtained by Monte Carlo simulations. For an assumed uniform charge background the equation of state of ionic mixtures is a simple extension of the one-component plasma EOS. More realistic electron screening effects are treated in linear response theory and with an appropriate electron dielectric function. Results have been obtained for the ionic pair distribution functions, and for the electric microfield distribution
Existence of a coupled system of fractional differential equations
International Nuclear Information System (INIS)
Ibrahim, Rabha W.; Siri, Zailan
2015-01-01
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator
Existence of a coupled system of fractional differential equations
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, Rabha W. [Multimedia unit, Department of Computer System and Technology Faculty of Computer Science & IT, University of Malaya, 50603 Kuala Lumpur (Malaysia); Siri, Zailan [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-10-22
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.
Global Solutions to the Coupled Chemotaxis-Fluid Equations
Duan, Renjun
2010-08-10
In this paper, we are concerned with a model arising from biology, which is a coupled system of the chemotaxis equations and the viscous incompressible fluid equations through transport and external forcing. The global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the Chemotaxis-Navier-Stokes system over three space dimensions, we obtain global existence and rates of convergence on classical solutions near constant states. When the fluid motion is described by the simpler Stokes equations, we prove global existence of weak solutions in two space dimensions for cell density with finite mass, first-order spatial moment and entropy provided that the external forcing is weak or the substrate concentration is small. © Taylor & Francis Group, LLC.
CPDS3, Coupled 3-D Partial Differential Equation Solution
International Nuclear Information System (INIS)
Anderson, D.V.; Koniges, A.E.; Shumaker, D.E.
1992-01-01
1 - Description of program or function: CPDES3 solves the linear asymmetric matrix equations arising from coupled partial differential equations in three dimensions. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximation employed. CPDES3 allows each spatial operator to have 7, 15, 19, or 27 point stencils, permits general couplings between all of the component PDE's, and automatically generates the matrix structures needed to perform the algorithm. 2 - Method of solution: The resulting sparse matrix equation with a complicated sub-band structure and generally asymmetric is solved by either the preconditioned conjugate gradient (CG) method or the preconditioned bi-conjugate gradient (BCG) algorithm. BCG enjoys faster convergence in most cases but in rare instances diverges. Then, CG iterations must be used. 3 - Restrictions on the complexity of the problem: The discretization of the coupled three-dimensional PDE's and their boundary conditions must result in an operator stencil which fits in the Cray2 memory. In addition, the matrix must possess a reasonable amount of diagonal dominance for the preconditioning technique to be effective
CPDES2, Coupled 2-D Partial Differential Equation Solution
International Nuclear Information System (INIS)
Anderson, D.V.; Koniges, A.E.; Shumaker, D.E.
1992-01-01
1 - Description of program or function: CPDES2 solves the linear asymmetric equations arising from coupled partial differential equations in two dimensions. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximation employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils, permits general coupling between all of the component PDE's, and automatically generates the matrix structures needed to perform the algorithm. 2 - Method of solution: The resulting sparse matrix equation with a complicated sub-band structure and generally asymmetric is solved by either the preconditioned conjugate gradient (CG) method or the preconditioned bi-conjugate gradient (BCG) algorithm. BCG enjoys faster convergence in most cases but in rare instances diverges. Then, CG iterations must be used. 3 - Restrictions on the complexity of the problem: The discretization of the coupled two-dimensional PDE's and their boundary conditions must result in an operator stencil which fits in the Cray2 memory. In addition, the matrix must possess a reasonable amount of diagonal dominance for the preconditioning technique to be effective
Family of electrovac colliding wave solutions of Einstein's equations
International Nuclear Information System (INIS)
Li, W.; Ernst, F.J.
1989-01-01
Beginning with any colliding wave solution of the vacuum Einstein equations, a corresponding electrified colliding wave solution can be generated through the use of a transformation due to Harrison [J. Math. Phys. 9, 1744 (1968)]. The method, long employed in the context of stationary axisymmetric fields, is equally applicable to colliding wave solutions. Here it is applied to a large family of vacuum metrics derived by applying a generalized Ehlers transformation to solutions published recently by Ernst, Garcia, and Hauser (EGH) [J. Math. Phys. 28, 2155, 2951 (1987); 29, 681 (1988)]. Those EGH solutions were themselves a generalization of solutions first derived by Ferrari, Ibanez, and Bruni [Phys. Rev. D 36, 1053 (1987)]. Among the electrovac solutions that are obtained is a charged version of the Nutku--Halil [Phys. Rev. Lett. 39, 1379 (1977)] metric that possesses an arbitrary complex charge parameter
Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers
Guo, Bowen
2017-06-01
Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.
International Nuclear Information System (INIS)
Inan, Ibrahim E.; Kaya, Dogan
2006-01-01
In this Letter by considering an improved tanh function method, we found some exact solutions of the potential Kadomtsev-Petviashvili equation. Some exact solutions of the system of the shallow water wave equation were also found
A delay differential equation model of follicle waves in women.
Panza, Nicole M; Wright, Andrew A; Selgrade, James F
2016-01-01
This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.
Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors
Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping
2018-01-01
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes
On a class of nonlocal wave equations from applications
Beyer, Horst Reinhard; Aksoylu, Burak; Celiker, Fatih
2016-06-01
We study equations from the area of peridynamics, which is a nonlocal extension of elasticity. The governing equations form a system of nonlocal wave equations. We take a novel approach by applying operator theory methods in a systematic way. On the unbounded domain ℝn, we present three main results. As main result 1, we find that the governing operator is a bounded function of the governing operator of classical elasticity. As main result 2, a consequence of main result 1, we prove that the peridynamic solutions strongly converge to the classical solutions by utilizing, for the first time, strong resolvent convergence. In addition, main result 1 allows us to incorporate local boundary conditions, in particular, into peridynamics. This avenue of research is developed in companion papers, providing a remedy for boundary effects. As main result 3, employing spherical Bessel functions, we give a new practical series representation of the solution which allows straightforward numerical treatment with symbolic computation.
Directory of Open Access Journals (Sweden)
N. N. Romanova
1998-01-01
Full Text Available The dynamics of weakly nonlinear wave trains in unstable media is studied. This dynamics is investigated in the framework of a broad class of dynamical systems having a Hamiltonian structure. Two different types of instability are considered. The first one is the instability in a weakly supercritical media. The simplest example of instability of this type is the Kelvin-Helmholtz instability. The second one is the instability due to a weak linear coupling of modes of different nature. The simplest example of a geophysical system where the instability of this and only of this type takes place is the three-layer model of a stratified shear flow with a continuous velocity profile. For both types of instability we obtain nonlinear evolution equations describing the dynamics of wave trains having an unstable spectral interval of wavenumbers. The transformation to appropriate canonical variables turns out to be different for each case, and equations we obtained are different for the two types of instability we considered. Also obtained are evolution equations governing the dynamics of wave trains in weakly subcritical media and in media where modes are coupled in a stable way. Presented results do not depend on a specific physical nature of a medium and refer to a broad class of dynamical systems having the Hamiltonian structure of a special form.
Coupled latent differential equation with moderators: simulation and application.
Hu, Yueqin; Boker, Steve; Neale, Michael; Klump, Kelly L
2014-03-01
Latent differential equations (LDE) use differential equations to analyze time series data. Because of the recent development of this technique, some issues critical to running an LDE model remain. In this article, the authors provide solutions to some of these issues and recommend a step-by-step procedure demonstrated on a set of empirical data, which models the interaction between ovarian hormone cycles and emotional eating. Results indicated that emotional eating is self-regulated. For instance, when people do more emotional eating than normal, they will subsequently tend to decrease their emotional eating behavior. In addition, a sudden increase will produce a stronger tendency to decrease than will a slow increase. We also found that emotional eating is coupled with the cycle of the ovarian hormone estradiol, and the peak of emotional eating occurs after the peak of estradiol. The self-reported average level of negative affect moderates the frequency of eating regulation and the coupling strength between eating and estradiol. Thus, people with a higher average level of negative affect tend to fluctuate faster in emotional eating, and their eating behavior is more strongly coupled with the hormone estradiol. Permutation tests on these empirical data supported the reliability of using LDE models to detect self-regulation and a coupling effect between two regulatory behaviors. (c) 2014 APA, all rights reserved.
Limit cycle analysis of nuclear coupled density wave oscillations
International Nuclear Information System (INIS)
Ward, M.E.
1985-01-01
An investigation of limit cycle behavior for the nuclear-coupled density wave oscillation (NCDWO) in a boiling water reactor (BWR) was performed. A simplified nonlinear model of BWR core behavior was developed using a two-region flow channel representation, coupled with a form of the point-kinetics equation. This model has been used to investigate the behavior of large amplitude NCDWO's through conventional time-integration solutions and through application of a direct relaxation-oscillation limit cycle solution in phase space. The numerical solutions demonstrate the potential for severe global power and flow oscillations in a BWR core at off-normal conditions, such as might occur during Anticipated Transients without Scram. Because of the many simplifying assumptions used, it is felt that the results should not be interpreted as an absolute prediction of core behavior, but as an indication of the potential for large oscillations and a demonstration of the corresponding limit cycle mechanisms. The oscillations in channel density drive the core power variations, and are reinforced by heat flux variations due to the changing fuel temperature. A global temperature increase occurs as energy is accumulated in the fuel, and limits the magnitude of the oscillations because as the average channel density decreases, the amplitude and duration of positive void reactivity at a given oscillation amplitude is lessened
Parsimonious wave-equation travel-time inversion for refraction waves
Fu, Lei
2017-02-14
We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N geophones evenly deployed along the line. These two reciprocal shots contain approximately 2N refraction travel times, which can be spawned into O(N2) refraction travel times by an interferometric transformation. Then, these virtual refraction travel times are used with a source wavelet to create N virtual refraction shot gathers, which are the input data for wave-equation travel-time inversion. Numerical results show that the parsimonious wave-equation travel-time tomogram has about the same accuracy as the tomogram computed by standard wave-equation travel-time inversion. The most significant benefit is that a reciprocal survey is far less time consuming than the standard refraction survey where a source is excited at each geophone location.
Wang, T.
2017-05-26
Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive and linearly related to the low-wavenumber model perturbation. Therefore, building initial P and S wave velocity models for EFWI by using elastic wave-equation reflections traveltime inversion (WERTI) would be effective and robust, especially for the deeper part. In order to distinguish the reflection travletimes of P or S-waves in elastic media, we decompose the surface multicomponent data into vector P- and S-wave seismogram. We utilize the dynamic image warping to extract the reflected P- or S-wave traveltimes. The P-wave velocity are first inverted using P-wave traveltime followed by the S-wave velocity inversion with S-wave traveltime, during which the wave mode decomposition is applied to the gradients calculation. Synthetic example on the Sigbee2A model proves the validity of our method for recovering the long wavelength components of the model.
Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories
Ghodrati, Behnam; Yaghootian, Amin; Ghanbar Zadeh, Afshin; Mohammad-Sedighi, Hamid
2018-01-01
In this paper, Lamb wave propagation in a homogeneous and isotropic non-classical micro/nano-plates is investigated. To consider the effect of material microstructure on the wave propagation, three size-dependent models namely indeterminate-, modified- and consistent couple stress theories are used to extract the dispersion equations. In the mentioned theories, a parameter called 'characteristic length' is used to consider the size of material microstructure in the governing equations. To generalize the parametric studies and examine the effect of thickness, propagation wavelength, and characteristic length on the behavior of miniature plate structures, the governing equations are nondimensionalized by defining appropriate dimensionless parameters. Then the dispersion curves for phase and group velocities are plotted in terms of a wide frequency-thickness range to study the lamb waves propagation considering microstructure effects in very high frequencies. According to the illustrated results, it was observed that the couple stress theories in the Cosserat type material predict more rigidity than the classical theory; so that in a plate with constant thickness, by increasing the thickness to characteristic length ratio, the results approach to the classical theory, and by reducing this ratio, wave propagation speed in the plate is significantly increased. In addition, it is demonstrated that for high-frequency Lamb waves, it converges to dispersive Rayleigh wave velocity.
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia)
2015-07-15
Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.
International Nuclear Information System (INIS)
Andrews, P.L.; Perkins, F.W.
1983-01-01
The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field
International Nuclear Information System (INIS)
Fu Jing-Li; He Yu-Fang; Hong Fang-Yu; Song Duan; Fu Hao
2013-01-01
In this paper, we present a new method to obtain the Lie symmetries and conserved quantities of the discrete wave equation with the Ablowitz—Ladik—Lattice equations. Firstly, the wave equation is transformed into a simple difference equation with the Ablowitz—Ladik—Lattice method. Secondly, according to the invariance of the discrete wave equation and the Ablowitz—Ladik—Lattice equations under infinitesimal transformation of dependent and independent variables, we derive the discrete determining equation and the discrete restricted equations. Thirdly, a series of the discrete analogs of conserved quantities, the discrete analogs of Lie groups, and the characteristic equations are obtained for the wave equation. Finally, we study a model of a biological macromolecule chain of mechanical behaviors, the Lie symmetry theory of discrete wave equation with the Ablowitz—Ladik—Lattice method is verified. (general)
Characteristics of coupled acoustic wave propagation in metal pipe
International Nuclear Information System (INIS)
Kim, Ho Wuk; Kim, Min Soo; Lee, Sang Kwon
2008-01-01
The circular cylinder pipes are used in the many industrial areas. In this paper, the acoustic wave propagation in the pipe containing gas is researched. First of all, the theory for the coupled acoustic wave propagation in a pipe is investigated. Acoustic wave propagation in pipe can not be occurred independently between the wave of the fluid and the shell. It requires complicated analysis. However, as a special case, the coupled wave in a high density pipe containing a light density medium is corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-walled duct fluid waves. The coincidence frequencies of acoustic and shell modes contribute to the predominant energy transmission. The coincidence frequency means the frequency corresponding to the coincidence of the wavenumber in both acoustic and shell. In this paper, it is assumed that the internal medium is much lighter than the pipe shell. After the uncoupled acoustic wave in the internal medium and uncoupled shell wave are considered, the coincidence frequencies are found. The analysis is successfully confirmed by the verification of the experiment using the real long steel pipe. This work verifies that the coupled wave characteristic of the shell and the fluid is occurred as predominant energy transmission at the coincidence frequencies
Localized excitations in a nonlinearly coupled magnetic drift wave-zonal flow system
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P.K.
2010-01-01
We consider the amplitude modulation of the magnetic drift wave (MDW) by zonal flows (ZFs) in a nonuniform magnetoplasma. For this purpose, we use the two-fluid model to derive a nonlinear Schroedinger equation for the amplitude modulated MDWs in the presence of the ZF potential, and an evolution equation for the ZF potential which is reinforced by the nonlinear Lorentz force of the MDWs. Our nonlinearly coupled MDW-ZFs system of equations admits stationary solutions in the form of a localized MDW envelope and a shock-like ZF potential profile.
Ponderomotive force effects on slow-wave coupling
International Nuclear Information System (INIS)
Wilson, J.R.; Wong, K.L.
1982-01-01
Localized plasma density depressions are observed to form near a multi-ring slow-wave structure when the value of the nonlinearity parameter, s = ω 2 /sub p/eVertical BarE/sub z/Vertical Bar 2 /8πω 2 nkappaT, is of order unity. Consequent changes in the wave propagation and coupling efficiency are reported. For large enough values of s, the coupling efficiency may be reduced by 50% from the linear value
Coupling atmospheric and ocean wave models for storm simulation
DEFF Research Database (Denmark)
Du, Jianting
the atmosphere must, by conservation, result in the generation of the surface waves and currents. The physics-based methods are sensitive to the choice of wind-input source function (Sin), parameterization of high-frequency wave spectra tail, and numerical cut-off frequencies. Unfortunately, literature survey......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... shows that in most wind-wave coupling systems, either the Sin in the wave model is different from the one used for the momentum flux estimation in the atmospheric model, or the methods are too sensitive to the parameterization of high-frequency spectra tail and numerical cut-off frequencies. To confront...
Electromagnetic interactions in relativistic infinite component wave equations
International Nuclear Information System (INIS)
Gerry, C.C.
1979-01-01
The electromagnetic interactions of a composite system described by relativistic infinite-component wave equations are considered. The noncompact group SO(4,2) is taken as the dynamical group of the systems, and its unitary irreducible representations, which are infinite dimensional, are used to find the energy spectra and to specify the states of the systems. First the interaction mechanism is examined in the nonrelativistic SO(4,2) formulation of the hydrogen atom as a heuristic guide. A way of making a minimal relativistic generalization of the minimal ineractions in the nonrelativistic equation for the hydrogen atom is proposed. In order to calculate the effects of the relativistic minimal interactions, a covariant perturbation theory suitable for infinite-component wave equations, which is an algebraic and relativistic version of the Rayleigh-Schroedinger perturbation theory, is developed. The electric and magnetic polarizabilities for the ground state of the hydrogen atom are calculated. The results have the correct nonrelativistic limits. Next, the relativistic cross section of photon absorption by the atom is evaluated. A relativistic expression for the cross section of light scattering corresponding to the seagull diagram is derived. The Born amplitude is combusted and the role of spacelike solutions is discussed. Finally, internal electromagnetic interactions that give rise to the fine structure splittings, the Lamb shifts and the hyperfine splittings are considered. The spin effects are introduced by extending the dynamical group
TRAVELING WAVE SOLUTIONS OF SOME FRACTIONAL DIFFERENTIAL EQUATIONS
Directory of Open Access Journals (Sweden)
SERIFE MUGE EGE
2016-07-01
Full Text Available The modified Kudryashov method is powerful, efficient and can be used as an alternative to establish new solutions of different type of fractional differential equations applied in mathematical physics. In this article, we’ve constructed new traveling wave solutions including symmetrical Fibonacci function solutions, hyperbolic function solutions and rational solutions of the space-time fractional Cahn Hillihard equation D_t^α u − γD_x^α u − 6u(D_x^α u^2 − (3u^2 − 1D_x^α (D_x^α u + D_x^α(D_x^α(D_x^α(D_x^α u = 0 and the space-time fractional symmetric regularized long wave (SRLW equation D_t^α(D_t^α u + D_x^α(D_x^α u + uD_t^α(D_x^α u + D_x^α u D_t^α u + D_t^α(D_t^α(D_x^α(D_x^α u = 0 via modified Kudryashov method. In addition, some of the solutions are described in the figures with the help of Mathematica.
A new iterative solver for the time-harmonic wave equation
Riyanti, C.D.; Erlangga, Y.A.; Plessix, R.E.; Mulder, W.A.; Vuik, C.; Oosterlee, C.
2006-01-01
The time-harmonic wave equation, also known as the Helmholtz equation, is obtained if the constant-density acoustic wave equation is transformed from the time domain to the frequency domain. Its discretization results in a large, sparse, linear system of equations. In two dimensions, this system can
Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF
International Nuclear Information System (INIS)
Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.
1984-10-01
The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)
Bagci, Hakan
2010-08-01
A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.
International Nuclear Information System (INIS)
Malenfant, J.
1988-01-01
The Breit equation for two equal-mass spin-1/2 particles interacting through an attractive Coulomb potential is separated into its angular and radial parts, obtaining coupled sets of first-order differential equations for the radial wave functions. The radial equations for the 1 J/sub J/, 3 J/sub J/, and 3 P 0 states are further reduced to a single, one-dimensional Schroedinger equation with a relatively simple effective potential. No approximations, other than the initial one of an instantaneous Coulomb interaction, are made in deriving this equation; it accounts for all relativistic effects, as well as for mixing between different components of the wave function. Approximate solutions are derived for this Schroedinger equation, which gives the correct O(α 4 ) term for the 1 1 S 0 energy and for the n 1 J/sub J/ energies, for J>0. The radial equations for the 3 (J +- 1)/sub J/ states are reduced to two second-order coupled equations. At small r, the Breit Coulomb wave functions behave as r/sup ν//sup -1/, where ν is either √J(J+1)+1-α 2 /4 or √J(J+1)-α 2 /4 . The 1 S 0 and 3 P 0 wave functions therefore diverge at the origin as r/sup //sup √//sup 1-//sup α//sup <2//4 -1$. This divergence of the J = 0 states, however, does not occur when the spin-spin interaction, -(α/r)αxα, is added to the Coulomb potential
Exploring AdS waves via nonminimal coupling
International Nuclear Information System (INIS)
Ayon-Beato, Eloy; Hassaiene, Mokhtar
2006-01-01
We consider nonminimally coupled scalar fields to explore the Siklos spacetimes in three dimensions. Their interpretation as exact gravitational waves propagating on AdS space restrict the source to behave as a pure radiation field. We show that the related pure radiation constraints single out a unique self-interaction potential depending on one coupling constant. For a vanishing coupling constant, this potential reduces to a mass term with a mass fixed in terms of the nonminimal-coupling parameter. This mass dependence allows the existence of several free cases including massless and tachyonic sources. There even exists a particular value of the nonminimal-coupling parameter for which the corresponding mass exactly compensates the contribution generated by the negative scalar curvature, producing a genuinely massless field in this curved background. The self-interacting case is studied in detail for the conformal coupling. The resulting gravitational wave is formed by the superposition of the free and the self-interaction contributions, except for a critical value of the coupling constant where a nonperturbative effect relating the strong and weak regimes of the source appears. We establish a correspondence between the scalar source supporting an AdS wave and a pp wave by showing that their respective pure radiation constraints are conformally related, while their involved backgrounds are not. Finally, we consider the AdS waves for topologically massive gravity and its limit to conformal gravity
To the complete integrability of long-wave short-wave interaction equations
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Chanda, P.K.
1984-10-01
We show that the non-linear partial differential equations governing the interaction of long and short waves are completely integrable. The methodology we use is that of Ablowitz et al. though in the last section of our paper we have discussed the problem also in the light of the procedure due to Weiss et al. and have obtained a Baecklund transformation. (author)
Test of distorted wave kinematic coupling approximation calculations for knockout reactions
International Nuclear Information System (INIS)
Jain, A.K.
1990-01-01
A test has been devised to check the validity of conventional distorted-wave impulse approximation (DWIA) treatment of knockout reactions. The conventional DWIA formalism separates the three-body final state Schroedinger equation for a knockout reaction into two two-body Schroedinger equations by assuming an asymptotic constant value for the three-body coupling term commonly known as the kinematic coupling approximation (KCA). In the test case, which consists of an extreme asymmetric situation where one of the distorting optical potentials is assumed to vanish, the three-body final state Schroedinger equation can be solved exactly as a product of two two-body solutions using one particular set of relative coordinates. Large influence of the three-body coupling term is seen in the comparison of the exact and KCA results for (α,2α) and (p,pα) knockout reactions when the distorting optical potentials are weakly absorbing
Neural network error correction for solving coupled ordinary differential equations
Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.
1992-01-01
A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.
International Nuclear Information System (INIS)
Litaudon, X.
1990-06-01
The hybrid or slow electron plasma waves propagation and coupling are investigated in a toroidal magnetic confinement configuration such as found in Tokamaks. The main characteristics of the antenna, formed of several waveguides displaced in the toroidal direction, are studied. The equations of the hybrid waves linear propagation are solved for a plane geometrical configuration and in an inhomogeneous plasma. The optimization of the hybrid wave couplers of Tore Supra and Jet is carried out by means of the SWAN code. The results of the experiments performed on Tore Supra are analyzed. The investigation shows that the wave coupling depends on the edge plasma properties [fr
International Nuclear Information System (INIS)
Shang Yadong
2008-01-01
The extended hyperbolic functions method for nonlinear wave equations is presented. Based on this method, we obtain a multiple exact explicit solutions for the nonlinear evolution equations which describe the resonance interaction between the long wave and the short wave. The solutions obtained in this paper include (a) the solitary wave solutions of bell-type for S and L, (b) the solitary wave solutions of kink-type for S and bell-type for L, (c) the solitary wave solutions of a compound of the bell-type and the kink-type for S and L, (d) the singular travelling wave solutions, (e) periodic travelling wave solutions of triangle function types, and solitary wave solutions of rational function types. The variety of structure to the exact solutions of the long-short wave equation is illustrated. The methods presented here can also be used to obtain exact solutions of nonlinear wave equations in n dimensions
Soliton interaction in the coupled mixed derivative nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Zhang Haiqiang; Tian Bo; Lue Xing; Li He; Meng Xianghua
2009-01-01
The bright one- and two-soliton solutions of the coupled mixed derivative nonlinear Schroedinger equations in birefringent optical fibers are obtained by using the Hirota's bilinear method. The investigation on the collision dynamics of the bright vector solitons shows that there exists complete or partial energy switching in this coupled model. Such parametric energy exchanges can be effectively controlled and quantificationally measured by analyzing the collision dynamics of the bright vector solitons. The influence of two types of nonlinear coefficient parameters on the energy of each vector soliton, is also discussed. Based on the significant energy transfer between the two components of each vector soliton, it is feasible to exploit the future applications in the design of logical gates, fiber directional couplers and quantum information processors.
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
Zhan, Ge
2013-02-19
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. © 2013 Sinopec Geophysical Research Institute.
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
International Nuclear Information System (INIS)
Zhan, Ge; Pestana, Reynam C; Stoffa, Paul L
2013-01-01
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward–backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. (paper)
Explicit solution for a wave equation with nonlocal condition
Bazhlekova, Emilia; Dimovski, Ivan
2012-11-01
An initial-boundary value problem with a nonlocal boundary condition for one-dimensional wave equation is studied. Applying spectral projections, we find a series solution of the problem. The character of the solution found shows that the oscillation amplitude of the system described by this equation increases with time at any fixed x in absence of external forces. To find a representation of the solution more convenient for numerical calculation we develop a two-dimensional operational calculus for the problem. The solution is expressed as a sum of non-classical convolution products of particular solutions and the arbitrary initial functions. This result is an extension of the classical Duhamel principle for the space variable. The representation is used successfully for numerical computation and visualization of the solution. Numerical results obtained for specific test problems with known exact solutions indicate that the present technique provides accurate numerical solutions.
Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing
2015-12-01
The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.
The scalar wave equation in a Schwarzschild space-time
International Nuclear Information System (INIS)
Schmidt, B.G.; Stewart, J.M.
1979-01-01
This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild space-time in a neighbourhood of spatial infinity which includes parts of future and pass null infinity. The behaviour of such fields is essentially different from that which occurs in a flat space-time. In particular fields which have a Bondi-type expansion in powers of 'r(-1)' near past null infinity do not have such an expansion near future null infinity. Further solutions which have physically reasonable Cauchy data probably fail to have Bondi-type expansions near null infinity. (author)
Controllability for a Wave Equation with Moving Boundary
Directory of Open Access Journals (Sweden)
Lizhi Cui
2014-01-01
Full Text Available We investigate the controllability for a one-dimensional wave equation in domains with moving boundary. This model characterizes small vibrations of a stretched elastic string when one of the two endpoints varies. When the speed of the moving endpoint is less than 1-1/e, by Hilbert uniqueness method, sidewise energy estimates method, and multiplier method, we get partial Dirichlet boundary controllability. Moreover, we will give a sharper estimate on controllability time that only depends on the speed of the moving endpoint.
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan
2011-05-14
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.
Introducing time-dependent molecular fields: a new derivation of the wave equations
Baer, Michael
2018-02-01
This article is part of a series of articles trying to establish the concept molecular field. The theory that induced us to introduce this novel concept is based on the Born-Huang expansion as applied to the Schroedinger equation that describes the interaction of a molecular system with an external electric field. Assuming the molecular system is made up of two coupled adiabatic states the theory leads from a single spatial curl equation, two space-time curl equations and one single space-time divergent equation to a pair of decoupled wave equations usually encountered within the theory of fields. In the present study, just like in the previous study [see Baer et al., Mol. Phys. 114, 227 (2016)] the wave equations are derived for an electric field having two features: (a) its intensity is high enough; (b) its duration is short enough. Although not all the findings are new the derivation, in the present case, is new, straightforward, fluent and much friendlier as compared to the previous one and therefore should be presented again. For this situation the study reveals that the just described interaction creates two fields that coexist within a molecule: one is a novel vectorial field formed via the interaction of the electric field with the Born-Huang non-adiabatic coupling terms (NACTs) and the other is an ordinary, scalar, electric field essentially identical to the original electric field. Section 4 devoted to the visualization of the outcomes via two intersecting Jahn-Teller cones which contain NACTs that become singular at the intersection point of these cones. Finally, the fact that eventually we are facing a kind of a cosmic situation may bring us to speculate that singular NACTs are a result of cosmic phenomena. Thus, if indeed this singularity is somehow connected to reality then, like other singularities in physics, it is formed at (or immediately after) the Big Bang and consequently, guarantees the formation of molecules.
Coupled magnetoelastic waves in ferromagnetic shape-memory alloys
Bar'Yakhtar, V. G.; Danilevich, A. G.; L'Vov, V. A.
2011-10-01
The theory of the spectra of coupled magnetoelastic waves in ferromagnetic shape-memory alloys (FSMA) is developed. The possibility of an abnormally strong coupling of spin waves with the soft elastic mode at approaching the martensitic transformation (MT) temperature is disclosed. In particular the magnetoelastic waves in Ni-Mn-Ga single crystals are considered. A considerable (by an order of magnitude) reduction of the shear elastic modulus and an appropriate lowering of the transversal velocity of sound in the applied magnetic field are predicted. Optimum conditions for the experimental observation of the predicted effects are specified.
International Nuclear Information System (INIS)
Scully, M O
2008-01-01
The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation
Superstrong coupling of thin film magnetostatic waves with microwave cavity
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xufeng; Tang, Hong X., E-mail: hong.tang@yale.edu [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States); Zou, Changling [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States); Jiang, Liang [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)
2016-01-14
We experimentally demonstrated the strong coupling between a microwave cavity and standing magnetostatic magnon modes in a yttrium iron garnet film. Such strong coupling can be observed for various spin wave modes under different magnetic field bias configurations, with a coupling strength inversely proportional to the transverse mode number. A comb-like spectrum can be obtained from these high order modes. The collectively enhanced magnon-microwave photon coupling strength is comparable with the magnon free spectral range and therefore leads to the superstrong coupling regime. Our findings pave the road towards designing a new type of strongly hybridized magnon-photon system.
Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons
El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.
2018-02-01
The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.
Coulomb singularities in scattering wave functions of spin-orbit-coupled states
International Nuclear Information System (INIS)
Bogdanski, P.; Ouerdane, H.
2011-01-01
We report on our analysis of the Coulomb singularity problem in the frame of the coupled channel scattering theory including spin-orbit interaction. We assume that the coupling between the partial wave components involves orbital angular momenta such that Δl= 0, ±2. In these conditions, the two radial functions, components of a partial wave associated to two values of the angular momentum l, satisfy a system of two second-order ordinary differential equations. We examine the difficulties arising in the analysis of the behavior of the regular solutions near the origin because of this coupling. First, we demonstrate that for a singularity of the first kind in the potential, one of the solutions is not amenable to a power series expansion. The use of the Lippmann-Schwinger equations confirms this fact: a logarithmic divergence arises at the second iteration. To overcome this difficulty, we introduce two auxilliary functions which, together with the two radial functions, satisfy a system of four first-order differential equations. The reduction of the order of the differential system enables us to use a matrix-based approach, which generalizes the standard Frobenius method. We illustrate our analysis with numerical calculations of coupled scattering wave functions in a solid-state system.
New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
Seadawy, Aly R.; Manafian, Jalil
2018-03-01
This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.
International Nuclear Information System (INIS)
Carter, B.; McLenaghan, R.G.
1982-01-01
It is shown how previous general formulae for the separated radial and angular parts of the massive, charged scalar (Klein, Gordon) wave equation on one hand, and of the zero mass, neutral, but higher spin (neutrino, electromagnetic and gravitational) wave equations on the other hand may be combined in a more general formula which also covers the case of the full massive charged Dirac equation in a Kerr or Kerr-Newman background space. (Auth.)
Helicon wave coupling to a chiral-plasma column
International Nuclear Information System (INIS)
Torres-Silva, H.; Reggiani, N.; Sakanaka, P.H.
1995-01-01
Inductive helicon wave coupling to a chiro-plasma column is studied numerically. In our theoretical model, the RF current distribution of the chiro-plasma is taken into account using the constitutive relations of a chiral-plasma. Computational results based on the data of present-day helicon devices are show. In particular, we discuss the role of magnetic-field-aligned electron landau damping for the helicon wave absorption. In many a see, the numerical findings can be understood reasonably in terms of the wavenumber spectra of the helicon wave dispersion relation for slow and fast wave of a chiral-plasma. In general however, the full electromagnetic treatment is necessary in order to describe and to understand the inductive coupling in the helicon wave regime. (author). 9 refs., 1 fig
International Nuclear Information System (INIS)
Yomba, Emmanuel
2005-01-01
By using a modified extended Fan's sub-equation method, we have obtained new and more general solutions including a series of non-travelling wave and coefficient function solutions namely: soliton-like solutions, triangular-like solutions, single and combined non-degenerative Jacobi elliptic wave function-like solutions for the (2 + 1)-dimensional dispersive long wave equation. The most important achievement of this method lies on the fact that, we have succeeded in one move to give all the solutions which can be previously obtained by application of at least four methods (method using Riccati equation, or first kind elliptic equation, or auxiliary ordinary equation, or generalized Riccati equation as mapping equation)
Kittell, D. E.; Yarrington, C. D.; Lechman, J. B.; Baer, M. R.
2018-05-01
A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.
Coupled sandbar patterns and obliquely incident waves
Price, T.D.; Castelle, B.; Ranasinghe, R.; Ruessink, B.G.
2013-01-01
In double sandbar systems, the alongshore variability in the inner bar oftenresembles that of the outer bar, suggesting that the outer bar acts as a morphologicaltemplate for the inner bar. Earlier observations have indicated that this resemblance, alsotermed “coupling,” may take several forms. Here
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing
2017-08-17
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing; Schuster, Gerard T.; Lin, Fan-Chi; Alam, Amir
2017-01-01
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
International Nuclear Information System (INIS)
Xu, J.; Ren, Y.; Ting, C.S.
1995-01-01
The properties of a d x 2 -y 2 -wave superconductor in an external magnetic field are investigated on the basis of Gorkov's theory of weakly coupled superconductors. The Ginzburg-Landau (GL) equations, which govern the spatial variations of the order parameter and the supercurrent, are microscopically derived. The single vortex structure and surface problems in such a superconductor are studied using these equations. It is shown that the d-wave vortex structure is very different from the conventional s-wave vortex: the s-wave and d-wave components, with the opposite winding numbers, are found to coexist in the region near the vortex core. The supercurrent and local magnetic field around the vortex are calculated. Far away from the vortex core, both of them exhibit a fourfold symmetry, in contrast to an s-wave superconductor. The surface problem in a d-wave superconductor is also studied by solving the GL equations. The total order parameter near the surface is always a real combination of s- and d-wave components, which means that the proximity effect cannot induce a time-reversal symmetry-breaking state at the surface
Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian
2014-09-28
We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.
Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian
2014-09-01
We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.
International Nuclear Information System (INIS)
Adhikari, Sadhan K.
2005-01-01
We demonstrate the formation of bright solitons in coupled self-defocusing nonlinear Schroedinger (NLS) equation supported by attractive coupling. As an application we use a time-dependent dynamical mean-field model to study the formation of stable bright solitons in two-component repulsive Bose-Einstein condensates (BECs) supported by interspecies attraction in a quasi one-dimensional geometry. When all interactions are repulsive, there cannot be bright solitons. However, bright solitons can be formed in two-component repulsive BECs for a sufficiently attractive interspecies interaction, which induces an attractive effective interaction among bosons of same type
Stability of negative solitary waves for an integrable modified Camassa-Holm equation
International Nuclear Information System (INIS)
Yin Jiuli; Tian Lixin; Fan Xinghua
2010-01-01
In this paper, we prove that the modified Camassa-Holm equation is Painleve integrable. We also study the orbital stability problem of negative solitary waves for this integrable equation. It is shown that the negative solitary waves are stable for arbitrary wave speed of propagation.
Destrade, Michel; Goriely, Alain; Saccomandi, Giuseppe
2011-01-01
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent, and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation c...
On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes
Chandran, Pallath
2004-01-01
The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…
Collisional drift fluid equations and implications for drift waves
International Nuclear Information System (INIS)
Pfirsch, Dieter; Correa-Restrepo, Dario
1996-01-01
The usual theoretical description of drift-wave turbulence (considered to be one possible cause of anomalous transport in a plasma), e.g. the Hasegawa-Wakatani theory, makes use of various approximations, the effects of which are extremely difficult to assess. This concerns in particular the conservation laws for energy and momentum. The latter law is important in relation to charge separation and the resulting electric fields, which are possibly related to the L-H transition. Energy conservation is crucial to the stability behaviour, it will be discussed by means of an example. New collisional multi-species drift-fluid equations were derived by a new method which yields, in a transparent way, conservation of energy and total angular momentum and the law for energy dissipation. Both electrostatic and electromagnetic field variations are considered. The only restriction involved is the validity of the drift approximation; in particular, there are no assumptions restricting the geometry of the system. The method is based primarily on a Lagrangian for dissipationless fluids in the drift approximation with isotropic pressures. The dissipative terms are introduced by adding corresponding terms to the ideal equations of motion and of the pressures. The equations of motion, of course, no longer result from a Lagrangian via Hamilton's principle. However, their relation to the ideal equations also implies a relation to the ideal Lagrangian, which can be used to advantage. Instead of introducing heat conduction one can also assume isothermal behaviour, e.g. T v (x) = constant. Assumptions of this kind are often made in the literature. The new method of introducing dissipation is not restricted to the present kind of theory; it can equally well be applied to theories such as multi-fluid theories without using the drift approximation of the present paper. (author)
Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves
Grava, T.; Klein, C.; Pitton, G.
2018-02-01
A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.
Global analysis of ICRF wave coupling on Tore Supra
International Nuclear Information System (INIS)
Goniche, M.; Bremond, S.; Colas, L.
2003-01-01
The Tore Supra tokamak is equipped with a multi-megawatt ion cyclotron range of frequency (ICRF) system for heating and current drive. The coupling of the fast wave to the plasma, characterized by the distributed coupling resistance along the radiating straps, is a crucial issue in order to launch large RF powers. Many factors can have an effect on ICRF wave coupling. Quantitative prediction from theoretical modelling requires the knowledge of the local inhomogeneous plasma density profile in front of the antenna for running sophisticated antenna codes. In this work, we have rather followed a 'global' approach, based on Tore Supra experimental results, for the parametric study of the coupling resistance. From a large data base covering seven experimental campaigns (∼2250 shots), a scaling law of the coupling resistance including the main parameters of the plasma and of the antenna configuration is established. This approach is found to be reliable for the analysis of coupling in the different scenarios: He/D 2 gas filling, gas/pellets for plasma fuelling, plasma leaning on inner wall/low field side limiter, limiter/ergodic divertor configuration, minority heating/direct electron heating. From one scenario to another, a significant variation of the coefficients of the scaling law is found. The study of these variations allows to get some insight on the main physical mechanisms which influence the ICRF wave coupling in a tokamak operation, such as the wall conditioning and recycling conditions, RF sheaths or frequency. (author)
A range of formulations to couple mass and momentum equations
International Nuclear Information System (INIS)
Darbandi, M.; Schneider, G.E.
2002-01-01
Since the innovation of control-volume-based methods, the issue of pressure-velocity decoupling has prompted the researcher to develop and employ staggered grid arrangement. The difficulties and disadvantages of staggered-grid-based schemes have encouraged the workers to investigate more in alternative scheme, i.e., the collocated-grid-based scheme. The primitive idea in collocated scheme is to couple the mass and momentum equations with the help of two types of velocity definitions instead of two types of grid arrangements. Following the work of preceding workers, we introduce a general strategy which enables the workers to develop a wide range of velocity definitions which can be properly used in collocated formulations. The developed formulations are then tested in a domain with source and sink. The results of the extended formulations are eventually discussed. (author)
Numerical study of laser-induced blast wave coupled with unsteady ionization processes
International Nuclear Information System (INIS)
Ogino, Y; Ohnishi, N; Sawada, K
2008-01-01
We present the results of the numerical simulation of laser-induced blast wave coupled with rate equations to clarify the unsteady property of ionization processes during pulse heating. From comparison with quasi-steady computations, the plasma region expands more widely, which is sustained by the inverse-bremsstrahlung since an ionization equilibrium does not establish at the front of the plasma region. The delayed relaxation leads to the rapid expansion of the driving plasma and enhances the energy conversion efficiency from a pulse heating laser to the blast wave
Traveling Wave-Guide Channels of a New Coupled Integrable Dispersionless System
International Nuclear Information System (INIS)
Souleymanou, Abbagari; Kuetche, Victor K.; Bouetou, Thomas B.; Kofane, Timoleon C.
2012-01-01
In the wake of the recent investigation of new coupled integrable dispersionless equations by means of the Darboux transformation [Zhaqilao, et al., Chin. Phys. B 18 (2009) 1780], we carry out the initial value analysis of the previous system using the fourth-order Runge-Kutta's computational scheme. As a result, while depicting its phase portraits accordingly, we show that the above dispersionless system actually supports two kinds of solutions amongst which the localized traveling wave-guide channels. In addition, paying particular interests to such localized structures, we construct the bilinear transformation of the current system from which scattering amongst the above waves can be deeply studied. (general)
Zou, Li; Tian, Shou-Fu; Feng, Lian-Li
2017-12-01
In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.
Characteristics of phase-averaged equations for modulated wave groups
Klopman, G.; Petit, H.A.H.; Battjes, J.A.
2000-01-01
The project concerns the influence of long waves on coastal morphology. The modelling of the combined motion of the long waves and short waves in the horizontal plane is done by phase-averaging over the short wave motion and using intra-wave modelling for the long waves, see e.g. Roelvink (1993).
Chiral symmetry breaking and confinement - solutions of relativistic wave equations
International Nuclear Information System (INIS)
Murugesan, P.
1983-01-01
In this thesis, an attempt is made to explore the question whether confinement automatically leads to chiral symmetry breaking. While it should be accepted that chiral symmetry breaking manifests in nature in the absence of scalar partners of pseudoscalar mesons, it does not necessarily follow that confinement should lead to chiral symmetry breaking. If chiral conserving forces give rise to observed spectrum of hadrons, then the conjuncture that confinement is responsible for chiral symmetry breaking is not valid. The method employed to answer the question whether confinement leads to chiral symmetry breaking or not is to solve relativistic wave equations by introducing chiral conserving as well as chiral breaking confining potentials and compare the results with experimental observations. It is concluded that even though chiral symmetry is broken in nature, confinement of quarks need not be the cause of it
Time evolution of the wave equation using rapid expansion method
Pestana, Reynam C.; Stoffa, Paul L.
2010-01-01
Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.
Time evolution of the wave equation using rapid expansion method
Pestana, Reynam C.
2010-07-01
Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.
Lipschitz Metrics for a Class of Nonlinear Wave Equations
Bressan, Alberto; Chen, Geng
2017-12-01
The nonlinear wave equation {u_{tt}-c(u)(c(u)u_x)_x=0} determines a flow of conservative solutions taking values in the space {H^1(R)}. However, this flow is not continuous with respect to the natural H 1 distance. The aim of this paper is to construct a new metric which renders the flow uniformly Lipschitz continuous on bounded subsets of {H^1(R)}. For this purpose, H 1 is given the structure of a Finsler manifold, where the norm of tangent vectors is defined in terms of an optimal transportation problem. For paths of piecewise smooth solutions, one can carefully estimate how the weighted length grows in time. By the generic regularity result proved in [7], these piecewise regular paths are dense and can be used to construct a geodesic distance with the desired Lipschitz property.
New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
Directory of Open Access Journals (Sweden)
Aly R. Seadawy
2018-03-01
Full Text Available This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM in exactly solving a well-known nonlinear equation of partial differential equations (PDEs. In this respect, the longitudinal wave equation (LWE that arises in mathematical physics with dispersion caused by the transverse Poisson’s effect in a magneto-electro-elastic (MEE circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method. Keywords: Extended trial equation method, Longitudinal wave equation in a MEE circular rod, Dark solitons, Bright solitons, Solitary wave, Periodic solitary wave
Alfven wave coupling in large tokamaks
International Nuclear Information System (INIS)
Borg, G.G.; Knight, A.J.; Lister, J.B.; Appert, K.; Vaclavik, J.
1988-01-01
Supplementary plasma heating by Alfven waves (AWH) has been extensively studied both theoretically and experimentally for small, low temperature plasmas. However, only a few studies of AWH have been performed for fusion plasmas. In this paper the cylindrical kinetic code ISMENE is used to address problems af AWH in a large tokamak. The results of calculations are presented which show that the antenna loading scales with frequency and vessel dimensions according to ideal MHD theory. A sample scaling of the experimental antenna loading measured in TCA to the loading predicted for a fusion plasma is presented. We discuss whether this loading leads to a realistic antenna design. The choice of a suitable antenna configuration, mode number and operating frequency is presented for NET parameters with a typical operating scenario. (author) 6 figs., 8 refs
Vortices at the magnetic equator generated by hybrid Alfvén resonant waves
Hiraki, Yasutaka
2015-01-01
We performed three-dimensional magnetohydrodynamic simulations of shear Alfvén waves in a full field line system with magnetosphere-ionosphere coupling and plasma non-uniformities. Feedback instability of the Alfvén resonant modes showed various nonlinear features under the field line cavities: (i) a secondary flow shear instability occurs at the magnetic equator, (ii) trapping of the ionospheric Alfvén resonant modes facilitates deformation of field-aligned current structures, and (iii) hybrid Alfvén resonant modes grow to cause vortices and magnetic oscillations around the magnetic equator. Essential features in the initial brightening of auroral arc at substorm onsets could be explained by the dynamics of Alfvén resonant modes, which are the nature of the field line system responding to a background rapid change.
Limiting Behavior of Travelling Waves for the Modified Degasperis-Procesi Equation
Directory of Open Access Journals (Sweden)
Jiuli Yin
2014-01-01
Full Text Available Using an improved qualitative method which combines characteristics of several methods, we classify all travelling wave solutions of the modified Degasperis-Procesi equation in specified regions of the parametric space. Besides some popular exotic solutions including peaked waves, and looped and cusped waves, this equation also admits some very particular waves, such as fractal-like waves, double stumpons, double kinked waves, and butterfly-like waves. The last three types of solutions have not been reported in the literature. Furthermore, we give the limiting behavior of all periodic solutions as the parameters trend to some special values.
Energy Technology Data Exchange (ETDEWEB)
Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)
1997-05-27
Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.
Conformal coupling of gravitational wave field to curvature
International Nuclear Information System (INIS)
Grishchuk, L.P.; Yudin, V.
1980-01-01
Conformal properties of the equations for weak gravitational waves in a curved space--time are investigated. The basic equations are derived in the linear approximation from Einstein's equations. They represent, in fact, the equations for the second-rank tensor field h/sub alphabeta/, restricted by the auxiliary conditions h/sub α//sup β//sub ;/α =0, hequivalentγ/sub alphabeta/h/sup alphabeta/=0, and embedded into the background space--time with the metric tensor γ/sub alphabeta/. It is shown that the equations for h/sub alphabeta/ are not conformally invariant under the transformations gamma-circumflex/sub alphabeta/ =e/sup 2sigma/γ/sub alphabeta/ and h/sub alphabeta/ =e/sup sigma/h/sub alphabeta/, except for those metric rescalings which transform the Ricci scalar R of the original background space--time into e/sup -2sigma/R, where R is the Ricci scalar of the conformally related background space--time. The general form of the equations for h/sub alphabeta/ which are conformally invariant have been deduced. It is shown that these equations cannot be derived in the linear approximation from any tensor equations which generalize the Einstein equations
Dirac equation in 2-dimensional curved spacetime, particle creation, and coupled waveguide arrays
Energy Technology Data Exchange (ETDEWEB)
Koke, Christian, E-mail: christian.koke@stud.uni-heidelberg.de [Institut für theoretische Physik, Philosophenweg 16, D-69120 Heidelberg (Germany); Noh, Changsuk, E-mail: changsuk@kias.re.kr [Korea Institute for Advanced Study, 85 Hoegiro, Seoul 130-722 (Korea, Republic of); Angelakis, Dimitris G., E-mail: dimitris.angelakis@gmail.com [Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117542 (Singapore); School of Electronic and Computer Engineering, Technical University of Crete, Chania, Crete, 73100 (Greece)
2016-11-15
When quantum fields are coupled to gravitational fields, spontaneous particle creation may occur similarly to when they are coupled to external electromagnetic fields. A gravitational field can be incorporated as a background spacetime if the back-action of matter on the field can be neglected, resulting in modifications of the Dirac or Klein–Gordon equations for elementary fermions and bosons respectively. The semi-classical description predicts particle creation in many situations, including the expanding-universe scenario, near the event horizon of a black hole (the Hawking effect), and an accelerating observer in flat spacetime (the Unruh effect). In this work, we give a pedagogical introduction to the Dirac equation in a general 2D spacetime and show examples of spinor wave packet dynamics in flat and curved background spacetimes. In particular, we cover the phenomenon of particle creation in a time-dependent metric. Photonic analogs of these effects are then proposed, where classical light propagating in an array of coupled waveguides provides a visualisation of the Dirac spinor propagating in a curved 2D spacetime background. The extent to which such a single-particle description can be said to mimic particle creation is discussed.
Self-consistent calculation of the coupling constant in the Gross-Pitaevskii equation
International Nuclear Information System (INIS)
Cherny, A.Yu.; Brand, J.
2004-01-01
A method is proposed for a self-consistent evaluation of the coupling constant in the Gross-Pitaevskii equation without involving a pseudopotential replacement. A renormalization of the coupling constant occurs due to medium effects and the trapping potential, e.g., in quasi-1D or quasi-2D systems. It is shown that a simplified version of the Hartree-Fock-Bogoliubov approximation leads to a variational problem for both the condensate and a two-body wave function describing the behavior of a pair of bosons in the Bose-Einstein condensate. The resulting coupled equations are free of unphysical divergences. Particular cases of this scheme that admit analytical estimations are considered and compared to the literature. In addition to the well-known cases of low-dimensional trapping, crossover regimes can be studied. The values of the kinetic, interaction, external, and release energies in low dimensions are also evaluated and contributions due to short-range correlations are found to be substantial
A stochastic collocation method for the second order wave equation with a discontinuous random speed
Motamed, Mohammad; Nobile, Fabio; Tempone, Raul
2012-01-01
In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical
Energy Technology Data Exchange (ETDEWEB)
Wei, Hong-Xing [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Li, Yong-Dong, E-mail: LYDbeijing@163.com [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Xiong, Tao [Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Guan, Yong [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China)
2016-09-07
The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.
International Nuclear Information System (INIS)
Wei, Hong-Xing; Li, Yong-Dong; Xiong, Tao; Guan, Yong
2016-01-01
The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.
New traveling wave solutions to AKNS and SKdV equations
International Nuclear Information System (INIS)
Ozer, Teoman
2009-01-01
We analyze the traveling wave solutions of Ablowitz-Kaup-Newell-Segur (AKNS) and Schwarz-Korteweg-de Vries (SKdV) equations. As the solution method for differential equations we consider the improved tanh approach. This approach provides to transform the partial differential equation into the ordinary differential equation and then obtain the new families of exact solutions based on the solutions of the Riccati equation. The different values of the coefficients of the Riccati equation allow us to obtain new type of traveling wave solutions to AKNS and SKdV equations.
Energy Technology Data Exchange (ETDEWEB)
Epifanovsky, Evgeny [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588 (United States); Klein, Kerstin; Gauss, Jürgen [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany); Stopkowicz, Stella [Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo, N-0315 Oslo (Norway); Krylov, Anna I. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States)
2015-08-14
We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results.
Zhang, Zhendong; Schuster, Gerard T.; Liu, Yike; Hanafy, Sherif M.; Li, Jing
2016-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Wave-equation Q tomography and least-squares migration
Dutta, Gaurav
2016-03-01
This thesis designs new methods for Q tomography and Q-compensated prestack depth migration when the recorded seismic data suffer from strong attenuation. A motivation of this work is that the presence of gas clouds or mud channels in overburden structures leads to the distortion of amplitudes and phases in seismic waves propagating inside the earth. If the attenuation parameter Q is very strong, i.e., Q<30, ignoring the anelastic effects in imaging can lead to dimming of migration amplitudes and loss of resolution. This, in turn, adversely affects the ability to accurately predict reservoir properties below such layers. To mitigate this problem, I first develop an anelastic least-squares reverse time migration (Q-LSRTM) technique. I reformulate the conventional acoustic least-squares migration problem as a viscoacoustic linearized inversion problem. Using linearized viscoacoustic modeling and adjoint operators during the least-squares iterations, I show with numerical tests that Q-LSRTM can compensate for the amplitude loss and produce images with better balanced amplitudes than conventional migration. To estimate the background Q model that can be used for any Q-compensating migration algorithm, I then develop a wave-equation based optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ε. Here, ε is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early-arrivals. Through numerical tests on synthetic and field data, I show that noticeable improvements in the migration image quality can be obtained from Q models inverted using wave-equation Q tomography. A key feature of skeletonized inversion is that it is much less likely to get stuck in a local minimum than a standard waveform inversion method. Finally, I develop a preconditioning technique for least-squares migration using a directional Gabor-based preconditioning approach for isotropic
Gaussian solitary waves for the logarithmic-KdV and the logarithmic-KP equations
International Nuclear Information System (INIS)
Wazwaz, Abdul-Majid
2014-01-01
We investigate the logarithmic-KdV equation for more Gaussian solitary waves. We extend this work to derive the logarithmic-KP (Kadomtsev–Petviashvili) equation. We show that both logarithmic models are characterized by their Gaussian solitons. (paper)
Application of perturbation theory to a P-wave eikonal equation in orthorhombic media
Stovas, Alexey; Masmoudi, Nabil; Alkhalifah, Tariq Ali
2016-01-01
The P-wave eikonal equation for orthorhombic (ORT) anisotropic media is a highly nonlinear partial differential equation requiring the solution of a sixth-order polynomial to obtain traveltimes, resulting in complex and time-consuming numerical
International Nuclear Information System (INIS)
Zhang Yufeng; Fan Engui; Zhang Yongqing
2006-01-01
With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations
Exact solitary and periodic wave solutions for a generalized nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Sun Chengfeng; Gao Hongjun
2009-01-01
The generalized nonlinear Schroedinger equation (GNLS) iu t + u xx + β | u | 2 u + γ | u | 4 u + iα (| u | 2 u) x + iτ(| u | 2 ) x u = 0 is studied. Using the bifurcation of travelling waves of this equation, some exact solitary wave solutions were obtained in [Wang W, Sun J,Chen G, Bifurcation, Exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schroedinger equation. Int J Bifucat Chaos 2005:3295-305.]. In this paper, more explicit exact solitary wave solutions and some new smooth periodic wave solutions are obtained.
Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong
2016-06-01
According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.
Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion
International Nuclear Information System (INIS)
Borg, G.G.
1994-01-01
Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs
A Coupled Atmospheric and Wave Modeling System for Storm Simulations
DEFF Research Database (Denmark)
Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.
2015-01-01
to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than......This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... resolution ranging from 25km to 2km. Meanwhile, the atmospheric forcing data of dierent spatial resolution, with one about 100km (FNL) and the other about 38km (CFSR) are both used. In addition, bathymatry data of diferent resolutions (1arc-minute and 30arc-seconds) are used. We used three approaches...
Destrade, M.
2010-12-08
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
Destrade, M.; Goriely, A.; Saccomandi, G.
2010-01-01
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
International Nuclear Information System (INIS)
Wang, Xin; Chen, Yong; Cao, Jianli
2015-01-01
In this paper, we utilize generalized Darboux transformation to study higher-order rogue wave solutions of the three-wave resonant interaction equation, which describes the propagation and mixing of waves with different frequencies in weakly nonlinear dispersive media. A general Nth-order rogue wave solution with two characteristic velocities structural parameters and 3N independent parameters under a determined plane-wave background and a specific parameter condition is derived. As an application, we show that four fundamental rogue waves with fundamental, two kinds of line and quadrilateral patterns, or six fundamental rogue waves with fundamental, triangular, two kinds of quadrilateral and circular patterns can emerge in the second-order rogue waves. Moreover, several important wave characteristics including the maximum values, the corresponding coordinate positions of the humps, and the stability problem for some special higher-order rogue wave solutions such as the fundamental and quadrilateral cases are discussed. (paper)
The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations
International Nuclear Information System (INIS)
Chen Jinbing; Qiao Zhijun
2011-01-01
A system of (1+1)-dimensional coupled integrable equations is decomposed into a pair of new Neumann type systems that separate the spatial and temporal variables for this system over a symplectic submanifold. Then, the Neumann type flows associated with the coupled integrable equations are integrated on the complex tour of a Riemann surface. Finally, the algebro-geometric solutions expressed by Riemann theta functions of the system of coupled integrable equations are obtained by means of the Jacobi inversion.
Two-body Dirac equation and its wave function at the origin
International Nuclear Information System (INIS)
Ito, Hitoshi
1998-01-01
We propose a relativistic bound state equation for the Dirac particles interacting through an Abelian gauge field. It reduces to the (one body) Dirac equation in the infinite limit of one of the masses and is invariant under the PCT transformation. This invariance is a consequence of a modification of the Stueckelberg-Feynman boundary condition for propagation of the negative-energy two-body states, by which the some effect of the crossed diagram is taken in the lowest ladder equation. We can correct back the modification in perturbative calculations of the weak-coupling theory by adding a counter correction term in the interaction kernel. The equation can be used for the phenomenology of the heavy flavored mesons. We get good behavior of the wave function at the origin (WFO), with which the annihilation amplitude of the pseudoscalar meson becomes finite. Some comments are mentioned for the application in the heavy quark effective theory. The talk was based on a preprint
Constraints on hyperon couplings from neutron star equations of state
Miyazaki, K
2005-01-01
Based on the constituent quark picture of baryons and taking into account the contributions of isovector and strange mesons, we have developed the extended Zimanyi-Moszkowski model of dense baryon matter for studying neutron star (NS) equations of state (EOSs). Four sets of meson-hyperons coupling constants are investigated. The first is characterized by strong attractive N\\Sigma interaction while the others have repulsive N\\Sigma interactions. The second is characterized by strong attractive \\Lambda\\Lambda interaction. The third has weak \\Lambda\\Lambda but strong attractive \\Sigma\\Sigma interactions. The last one has much weaker \\Sigma\\Sigma interaction than the third one. By systematic analyses of the EOSs and mass sequences of NSs, it has been found that the strong attractive N\\Sigma, \\Lambda\\Lambda and \\Sigma\\Sigma interactions are ruled out. The result is consistent to the most recent information on hyperon interactions from the experimental and theoretical i! nvestigations of hypernuclei.
Li, Jing
2017-12-22
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method with synthetic seismograms and field data. The benefits of WD are that 1) there is no layered medium assumption, as there is in conventional inversion of dispersion curves, so that the 2D or 3D S-velocity model can be reliably obtained with seismic surveys over rugged topography, and 2) WD mostly avoids getting stuck in local minima. The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic media and the inversion of dispersion curves associated with Love wave. The liability is that is almost as expensive as FWI and only recovers the Vs distribution to a depth no deeper than about 1/2~1/3 wavelength.
Simple functional-differential equations for the bound-state wave-function components
International Nuclear Information System (INIS)
Kamuntavicius, G.P.
1986-01-01
The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)
International Nuclear Information System (INIS)
Zhang Weiguo; Dong Chunyan; Fan Engui
2006-01-01
In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.
Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres
Directory of Open Access Journals (Sweden)
J. F. McKenzie
2009-11-01
Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θc versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θc~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.
Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres
Directory of Open Access Journals (Sweden)
J. F. McKenzie
2009-11-01
Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θ_{c} versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θ_{c}~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.
Some Further Results on Traveling Wave Solutions for the ZK-BBM( Equations
Directory of Open Access Journals (Sweden)
Shaoyong Li
2013-01-01
Full Text Available We investigate the traveling wave solutions for the ZK-BBM( equations by using bifurcation method of dynamical systems. Firstly, for ZK-BBM(2, 2 equation, we obtain peakon wave, periodic peakon wave, and smooth periodic wave solutions and point out that the peakon wave is the limit form of the periodic peakon wave. Secondly, for ZK-BBM(3, 2 equation, we obtain some elliptic function solutions which include periodic blow-up and periodic wave. Furthermore, from the limit forms of the elliptic function solutions, we obtain some trigonometric and hyperbolic function solutions which include periodic blow-up, blow-up, and smooth solitary wave. We also show that our work extends some previous results.
Experimental measurements of Helicon wave coupling in KSTAR plasmas
Energy Technology Data Exchange (ETDEWEB)
Kim, H. J.; Wi, H. H.; Wang, S. J.; Park, S. Y.; Jeong, J. H.; Han, J. W.; Kwak, J. G.; Oh, Y. K. [National Fusion Research Institute, Daejeon (Korea, Republic of); Chun, M. H.; Yu, I. H. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)
2016-05-15
KSTAR tokamak can be a good platform to test this current drive concept because it has adequate machine parameters. Furthermore, KSTAR will have high electron beta plasmas in near future with additional ECH power. In 2015 KSTAR experiments, low-power traveling wave antenna has been designed, fabricated and installed for helicon wave coupling tests in KSTAT plasmas. In 2016 KSTAR campaign, 200 kW klystron power will be combined using three coaxial hybrid couplers and three dummy loads. High power RF will be fed into the traveling wave antenna with two coaxial feeders through two dual disk windows and 6 inch coaxial transmission line system. Current status and plan for high power helicon wave current drive system in KSTAR will be presented. Mock-up TWA antenna installed at the KSTAR reveals high couplings in both L- and H-mode plasmas. The coupling can be easily controlled by radial outer gap without degradation of plasma confinement or local gas puffing with slight decrease of plasma confinement.
On the wave equation with semilinear porous acoustic boundary conditions
Graber, Philip Jameson; Said-Houari, Belkacem
2012-01-01
The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.
Energy decay of a viscoelastic wave equation with supercritical nonlinearities
Guo, Yanqiu; Rammaha, Mohammad A.; Sakuntasathien, Sawanya
2018-06-01
This paper presents a study of the asymptotic behavior of the solutions for the history value problem of a viscoelastic wave equation which features a fading memory term as well as a supercritical source term and a frictional damping term: u_{tt}- k(0) Δ u - \\int \\limits _0^{&infty } k'(s) Δ u(t-s) ds +|u_t|^{m-1}u_t =|u|^{p-1}u, { in } Ω × (0,T), u(x,t)=u_0(x,t), \\quad { in } Ω × (-∞,0]), where Ω is a bounded domain in R^3 with a Dirichlét boundary condition and u_0 represents the history value. A suitable notion of a potential well is introduced for the system, and global existence of solutions is justified, provided that the history value u_0 is taken from a subset of the potential well. Also, uniform energy decay rate is obtained which depends on the relaxation kernel -k'(s) as well as the growth rate of the damping term. This manuscript complements our previous work (Guo et al. in J Differ Equ 257:3778-3812, 2014, J Differ Equ 262:1956-1979, 2017) where Hadamard well-posedness and the singularity formulation have been studied for the system. It is worth stressing the special features of the model, namely the source term here has a supercritical growth rate and the memory term accounts to the full past history that goes back to -∞.
On the wave equation with semilinear porous acoustic boundary conditions
Graber, Philip Jameson
2012-05-01
The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.
On the wave equations with memory in noncylindrical domains
Directory of Open Access Journals (Sweden)
Mauro de Lima Santos
2007-10-01
Full Text Available In this paper we prove the exponential and polynomial decays rates in the case $n > 2$, as time approaches infinity of regular solutions of the wave equations with memory $$ u_{tt}-Delta u+int^{t}_{0}g(t-sDelta u(sds=0 quad mbox{in } widehat{Q} $$ where $widehat{Q}$ is a non cylindrical domains of $mathbb{R}^{n+1}$, $(nge1$. We show that the dissipation produced by memory effect is strong enough to produce exponential decay of solution provided the relaxation function $g$ also decays exponentially. When the relaxation function decay polynomially, we show that the solution decays polynomially with the same rate. For this we introduced a new multiplier that makes an important role in the obtaining of the exponential and polynomial decays of the energy of the system. Existence, uniqueness and regularity of solutions for any $n ge 1$ are investigated. The obtained result extends known results from cylindrical to non-cylindrical domains.
Travelling Solitary Wave Solutions for Generalized Time-delayed Burgers-Fisher Equation
International Nuclear Information System (INIS)
Deng Xijun; Han Libo; Li Xi
2009-01-01
In this paper, travelling wave solutions for the generalized time-delayed Burgers-Fisher equation are studied. By using the first-integral method, which is based on the ring theory of commutative algebra, we obtain a class of travelling solitary wave solutions for the generalized time-delayed Burgers-Fisher equation. A minor error in the previous article is clarified. (general)
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.
Travelling wave solutions of the generalized Benjamin-Bona-Mahony equation
International Nuclear Information System (INIS)
Estevez, P.G.; Kuru, S.; Negro, J.; Nieto, L.M.
2009-01-01
A class of particular travelling wave solutions of the generalized Benjamin-Bona-Mahony equation is studied systematically using the factorization technique. Then, the general travelling wave solutions of Benjamin-Bona-Mahony equation, and of its modified version, are also recovered.
The periodic wave solutions for the (2 + 1)-dimensional Konopelchenko-Dubrovsky equations
International Nuclear Information System (INIS)
Sheng Zhang
2006-01-01
More periodic wave solutions expressed by Jacobi elliptic functions for the (2 + 1)-dimensional Konopelchenko-Dubrovsky equations are obtained by using the extended F-expansion method. In the limit cases, the solitary wave solutions and trigonometric function solutions for the equations are also obtained
Diffusion phenomenon for linear dissipative wave equations in an exterior domain
Ikehata, Ryo
Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.
Fifth-order amplitude equation for traveling waves in isothermal double diffusive convection
International Nuclear Information System (INIS)
Mendoza, S.; Becerril, R.
2009-01-01
Third-order amplitude equations for isothermal double diffusive convection are known to hold the tricritical condition all along the oscillatory branch, predicting that stable traveling waves exist Only at the onset of the instability. In order to properly describe stable traveling waves, we perform a fifth-order calculation and present explicitly the corresponding amplitude equation.
Mediterranea Forecasting System: a focus on wave-current coupling
Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina
2016-04-01
The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully
Energy Technology Data Exchange (ETDEWEB)
Yomba, Emmanuel, E-mail: emmanuel.yomba@csun.edu; Zakeri, Gholam-Ali, E-mail: ali.zakeri@csun.edu
2016-02-05
We investigate the existence of various solitary wave solutions in coupled Schrödinger equations with specific cubic and quintic nonlinearities. This system arises in wave propagation in fiber optics with focusing and defocusing with modulated nonlinearities. We obtain front–front, bright–bright, dark–dark, and dark–bright like solitons using a direct approach, and then, by reducing the system of equations to a single auxiliary equation of a Duffing-type ordinary differential equation, we provide a large class of Jacobi-elliptic solutions. These solutions are presented in the exact form and analyzed. We find a class of wide localized and snake-like (in both space and time) vector solitons. One of the novel aspects of this study is that we have shown that the qualitative behavior of the solutions is independent of the choice of similarity variables. Numerical results show that the solutions of the above system are stable with up to 10% white noises. - Highlights: • Dynamics of wide and snake-like pulses is analyzed for coupled Schrödinger equations. • Qualitative appearance of solutions is analyzed using various similarity variables. • Effect of change in parameter-values on dynamics of the solutions is investigated. • Vectors front–front, bright–bright, dark–dark and dark–bright solitons are obtained.
Coupling between a Langmuir wave and a ballistic perturbation
International Nuclear Information System (INIS)
Gervais, F.; Olivain, J.; Quemeneur, A.; Trocheris, M.
1980-01-01
The study of the mode-mode coupling usually neglects the ballistic contribution associated with parent waves. If this approximation is not made, a new mode, resulting from the interaction between the ballistic perturbation of pulsation ω 2 associated with one launched wave and the Landau component of pulsation ω 1 of the second one appears if ω 1 >ω 2 . The problem is solved theoretically and experimental evidence of this mode from measurements performed on a D.C. plasma column, confirms the results of this analysis
New exact travelling wave solutions for the Ostrovsky equation
International Nuclear Information System (INIS)
Kangalgil, Figen; Ayaz, Fatma
2008-01-01
In this Letter, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. In order to illustrate the validity and the advantages of the method we choose the Ostrovsky equation. As a result, many new and more general exact solutions have been obtained for the equation
Production of gravitational waves during preheating with nonminimal coupling
Fu, Chengjie; Wu, Puxun; Yu, Hongwei
2018-04-01
We study the preheating and the in-process production of gravitational waves (GWs) after inflation in which the inflaton is nonminimally coupled to the curvature in a self-interacting quartic potential with the method of lattice simulation. We find that the nonminimal coupling enhances the amplitude of the density spectrum of inflaton quanta, and as a result, the peak value of the GW spectrum generated during preheating is enhanced as well and might reach the limit of detection in future GW experiments. The peaks of the GW spectrum not only exhibit distinctive characteristics as compared to those of minimally coupled inflaton potentials but also imprint information on the nonminimal coupling and the parametric resonance, and thus the detection of these peaks in the future will provide us a new avenue to reveal the physics of the early universe.
Stumpons and fractal-like wave solutions to the Dullin-Gottwald-Holm equation
International Nuclear Information System (INIS)
Yin Jiuli; Tian Lixin
2009-01-01
The traveling wave solutions to the Dullin-Gottwald-Holm equation (called DGH equation) are classified by an improved qualitative analysis method. Meanwhile, the influence of the parameters on the traveling wave forms is specifically considered. The equation is shown to admit more traveling wave forms solutions, especially new solutions such as stumpons and fractal-like waves are first given. We also point out that the smooth solutions can converge to non-smooth ones under certain conditions. Furthermore, the new explicit forms of peakons with period are obtained.
Enhanced coupling of the fast wave to electrons through mode conversion to the ion hybrid wave
International Nuclear Information System (INIS)
Lashmore-Davies, C.N.; Fuchs, V.; Ram, A.K.; Bers, A.
1996-07-01
The mode conversion of the fast compressional Alfven wave to the ion hybrid wave is analyzed with particular reference to a plasma with two ion species present in approximately equal proportions. Two configurations are considered, the first referring to the usual resonance-cut-off case and the second to a cut-off-resonance-cut-off situation. The optimum conditions for maximising the mode converted energy are given. The second order fast wave equation is generalised to include the effect of the parallel electric field. Hence, all ion and electron loss mechanisms for the fast wave are incorporated, including mode conversion at the two-ion hybrid resonance. The significance of the approximate equality of the two ion species concentrations is that the mode converted ion hybrid wave is damped only by the electrons. The damping of the ion hybrid wave is described with the aid of the local dispersion relation and by means of a toroidal ray tracing code. In particular, the ray tracing calculation shows that the mode converted energy is totally absorbed by the electrons close to the two-ion hybrid resonance. The generalised fast wave equation is solved to determine how much energy is lost from the fast wave, incident from the low field side, before it encounters the two-ion hybrid resonance. For comparable concentrations of the two ion species, the mode converted power can be separated from the power directly absorbed by the ions and electrons from the fast wave. This allows the conditions to be ascertained under which strong electron heating through mode conversion dominates the direct dissipation of the fast wave. (UK)
International Nuclear Information System (INIS)
Abdou, M.A.
2008-01-01
The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics
The (′/-Expansion Method for Abundant Traveling Wave Solutions of Caudrey-Dodd-Gibbon Equation
Directory of Open Access Journals (Sweden)
Hasibun Naher
2011-01-01
Full Text Available We construct the traveling wave solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG equation by the (/-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, the trigonometric, and the rational functions. It is shown that the (/-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.
International Nuclear Information System (INIS)
de Jong, G.
1975-01-01
With the aid of a two-dimensional integral equation formulation, the ground wave propagation of electromagnetic waves transmitted by a vertical electric dipole over an inhomogeneous flat earth is investigated. For the configuration in which a ground wave is propagating across an ''island'' on a flat earth, the modulus and argument of the attenuation function have been computed. The results for the two-dimensional treatment are significantly more accurate in detail than the calculations using a one-dimensional integral equation
Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed
2015-02-01
The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.
On the solution of the equations for nonlinear interaction of three damped waves
International Nuclear Information System (INIS)
1976-01-01
Three-wave interactions are analyzed in a coherent wave description assuming different linear damping (or growth) of the individual waves. It is demonstrated that when two of the coefficients of dissipation are equal, the set of equations can be reduced to a single equivalent equation, which in the nonlinearly unstable case, where one wave is undamped, asymptotically takes the form of an equation defining the third Painleve transcendent. It is then possible to find an asymptotic expansion near the time of explosion. This solution is of principal interest since it indicates that the solution of the general three-wave system, where the waves undergo different individual dissipations, belongs to a higher class of functions, which reduces to Jacobian elliptic functions only in the case where all waves suffer the same damping [fr
Jacobian elliptic wave solutions for the Wadati-Segur-Ablowitz equation
International Nuclear Information System (INIS)
Teh, C.G.R.; Koo, W.K.; Lee, B.S.
1996-07-01
Jacobian elliptic travelling wave solutions for a new Hamiltonian amplitude equation determining some instabilities of modulated wave train are obtained. By a mere variation of the Jacobian elliptic parameter k 2 from zero to one, these solutions are transformed from a trivial one to the known solitary wave solutions. (author). 9 refs
Numerical study of traveling-wave solutions for the Camassa-Holm equation
International Nuclear Information System (INIS)
Kalisch, Henrik; Lenells, Jonatan
2005-01-01
We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied
Wave-Breaking Phenomena and Existence of Peakons for a Generalized Compressible Elastic-Rod Equation
Directory of Open Access Journals (Sweden)
Xiaolian Ai
2014-01-01
Full Text Available Consideration in this paper is the Cauchy problem of a generalized hyperelastic-rod wave equation. We first derive a wave-breaking mechanism for strong solutions, which occurs in finite time for certain initial profiles. In addition, we determine the existence of some new peaked solitary wave solutions.
Explicit Solutions and Bifurcations for a Class of Generalized Boussinesq Wave Equation
International Nuclear Information System (INIS)
Ma Zhi-Min; Sun Yu-Huai; Liu Fu-Sheng
2013-01-01
In this paper, the generalized Boussinesq wave equation u tt — u xx + a(u m ) xx + bu xxxx = 0 is investigated by using the bifurcation theory and the method of phase portraits analysis. Under the different parameter conditions, the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained. (general)
International Nuclear Information System (INIS)
Tian Lixin; Yin Jiuli
2004-01-01
In this paper, we introduce the fully nonlinear generalized Camassa-Holm equation C(m,n,p) and by using four direct ansatzs, we obtain abundant solutions: compactons (solutions with the absence of infinite wings), solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions and obtain kink compacton solutions and nonsymmetry compacton solutions. We also study other forms of fully nonlinear generalized Camassa-Holm equation, and their compacton solutions are governed by linear equations
Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping
Directory of Open Access Journals (Sweden)
Jieqiong Wu
2015-09-01
Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.
Classification of All Single Travelling Wave Solutions to Calogero-Degasperis-Focas Equation
International Nuclear Information System (INIS)
Liu Chengshi
2007-01-01
Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhomogeneous ODE. Furthermore, we apply the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation.
Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations
Bonnasse-Gahot, Marie; Calandra, Henri; Diaz, Julien; Lanteri, Stéphane
2018-04-01
Discontinuous Galerkin (DG) methods are nowadays actively studied and increasingly exploited for the simulation of large-scale time-domain (i.e. unsteady) seismic wave propagation problems. Although theoretically applicable to frequency-domain problems as well, their use in this context has been hampered by the potentially large number of coupled unknowns they incur, especially in the 3-D case, as compared to classical continuous finite element methods. In this paper, we address this issue in the framework of the so-called hybridizable discontinuous Galerkin (HDG) formulations. As a first step, we study an HDG method for the resolution of the frequency-domain elastic wave equations in the 2-D case. We describe the weak formulation of the method and provide some implementation details. The proposed HDG method is assessed numerically including a comparison with a classical upwind flux-based DG method, showing better overall computational efficiency as a result of the drastic reduction of the number of globally coupled unknowns in the resulting discrete HDG system.
Vorotnikov, K.; Starosvetsky, Y.
2018-01-01
The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.
THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.
Jiang, H; Liu, F; Meerschaert, M M; McGough, R J
2013-01-01
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.
Lower hybrid wave coupling in TORE SUPRA through multijunction launchers
International Nuclear Information System (INIS)
Litaudon, X.; Bibet, P.; Goniche, M.
1991-01-01
The TORE SUPRA Lower Hybrid Current Drive experiments (8MW/3.7GHz) use large phased waveguide arrays (4 rows of 32 waveguides for each of the two 'grills') to couple the waves to the plasma. These launchers are based on the 'Multijunction' principle which allows them to be quite compact but needs to be fully assessed for the design of efficient multi-megawatt antennas in NET/ITER. (author) 5 refs., 6 figs
Hossen, Md. Belal; Roshid, Harun-Or; Ali, M. Zulfikar
2018-05-01
Under inquisition in this paper is a (2 + 1)-dimensional Breaking Soliton equation, which can describe various nonlinear scenarios in fluid dynamics. Using the Bell polynomials, some proficient auxiliary functions are offered to apparently construct its bilinear form and corresponding soliton solutions which are different from the previous literatures. Moreover, a direct method is used to construct its rogue wave and solitary wave solutions using particular auxiliary function with the assist of bilinear formalism. Finally, the interactions between solitary waves and rogue waves are offered with a complete derivation. These results enhance the variety of the dynamics of higher dimensional nonlinear wave fields related to mathematical physics and engineering.
Coupling Atmosphere and Waves for Coastal Wind Turbine Design
DEFF Research Database (Denmark)
Bolanos, Rodolfo; Larsén, Xiaoli Guo; Petersen, Ole S.
2014-01-01
model (MIKE 21 SW) are implemented for the North Sea in order to consider wave effects on roughness. The objective is to see the reaction of an atmospheric model to the water surface description through offline coupling. A comparison with three simplified roughness formulations embedded in WRF showed......Offshore wind farms in coastal areas are considered by the Danish government to contribute to the goal of having 50% of the energy consumption from renewable sources by 2025. Therefore, new coastal developments will take place in Danish areas. The impact of waves on atmosphere is most often...... described by roughness length, which is typically determined by the Charnock formulation. This simplification in many atmospheric models has been shown to bring bias in the estimation of the extreme wind. Some wave-dependent formulations have been reported to overestimate the drag coefficient and roughness...
Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
Wu, Jiang Hao; Zhang, Yan Lai; Sun, Mao
2009-10-01
When an insect hovers, the centre of mass of its body oscillates around a point in the air and its body angle oscillates around a mean value, because of the periodically varying aerodynamic and inertial forces of the flapping wings. In the present paper, hover flight including body oscillations is simulated by coupling the equations of motion with the Navier-Stokes equations. The equations are solved numerically; periodical solutions representing the hover flight are obtained by the shooting method. Two model insects are considered, a dronefly and a hawkmoth; the former has relatively high wingbeat frequency (n) and small wing mass to body mass ratio, whilst the latter has relatively low wingbeat frequency and large wing mass to body mass ratio. The main results are as follows. (i) The body mainly has a horizontal oscillation; oscillation in the vertical direction is about 1/6 of that in the horizontal direction and oscillation in pitch angle is relatively small. (ii) For the hawkmoth, the peak-to-peak values of the horizontal velocity, displacement and pitch angle are 0.11 U (U is the mean velocity at the radius of gyration of the wing), 0.22 c=4 mm (c is the mean chord length) and 4 deg., respectively. For the dronefly, the corresponding values are 0.02 U, 0.05 c=0.15 mm and 0.3 deg., much smaller than those of the hawkmoth. (iii) The horizontal motion of the body decreases the relative velocity of the wings by a small amount. As a result, a larger angle of attack of the wing, and hence a larger drag to lift ratio or larger aerodynamic power, is required for hovering, compared with the case of neglecting body oscillations. For the hawkmoth, the angle of attack is about 3.5 deg. larger and the specific power about 9% larger than that in the case of neglecting the body oscillations; for the dronefly, the corresponding values are 0.7 deg. and 2%. (iv) The horizontal oscillation of the body consists of two parts; one (due to wing aerodynamic force) is proportional to
On the exact solutions of high order wave equations of KdV type (I)
Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet
2014-12-01
In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.
Generalized internal long wave equations: construction, hamiltonian structure and conservation laws
International Nuclear Information System (INIS)
Lebedev, D.R.
1982-01-01
Some aspects of the theory of the internal long-wave equations (ILW) are considered. A general class of the ILW type equations is constructed by means of the Zakharov-Shabat ''dressing'' method. Hamiltonian structure and infinite numbers of conservation laws are introduced. The considered equations are shown to be Hamiltonian in the so-called second Hamiltonian structu
Relating systems properties of the wave and the Schrödinger equation
Zwart, Heiko J.; Le Gorrec, Yann; Maschke, B.M.
In this article we show that systems properties of the systems governed by the second order differential equation d2wdt2=−A0w and the first order differential equation dzdt=iA0z are related. This can be used to show that, for instance, exact observability of the N-dimensional wave equation implies
Differential equation for Alfven ion cyclotron waves in finite-length plasma
International Nuclear Information System (INIS)
Watson, D.C.; Fateman, R.J.; Baldwin, D.E.
1977-01-01
One finds the fourth-order differential equation describing an Alfven-ion-cyclotron wave propagating along a magnetic field of varying intensity. The equation is self-adjoint and possesses non-trivial turning points. The final form of the equation is checked using MACSYMA, a system for performing algebra on a computer
Effective equations for matter-wave gap solitons in higher-order transversal states.
Mateo, A Muñoz; Delgado, V
2013-10-01
We demonstrate that an important class of nonlinear stationary solutions of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) exhibiting nontrivial transversal configurations can be found and characterized in terms of an effective one-dimensional (1D) model. Using a variational approach we derive effective equations of lower dimensionality for BECs in (m,n(r)) transversal states (states featuring a central vortex of charge m as well as n(r) concentric zero-density rings at every z plane) which provides us with a good approximate solution of the original 3D problem. Since the specifics of the transversal dynamics can be absorbed in the renormalization of a couple of parameters, the functional form of the equations obtained is universal. The model proposed finds its principal application in the study of the existence and classification of 3D gap solitons supported by 1D optical lattices, where in addition to providing a good estimate for the 3D wave functions it is able to make very good predictions for the μ(N) curves characterizing the different fundamental families. We have corroborated the validity of our model by comparing its predictions with those from the exact numerical solution of the full 3D GPE.
Travelling Wave Solutions to Stretched Beam's Equation: Phase Portraits Survey
International Nuclear Information System (INIS)
Betchewe, Gambo; Victor, Kuetche Kamgang; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2011-01-01
In this paper, following the phase portraits analysis, we investigate the integrability of a system which physically describes the transverse oscillation of an elastic beam under end-thrust. As a result, we find that this system actually comprises two families of travelling waves: the sub- and super-sonic periodic waves of positive- and negative-definite velocities, respectively, and the localized sub-sonic loop-shaped waves of positive-definite velocity. Expressing the energy-like of this system while depicting its phase portrait dynamics, we show that these multivalued localized travelling waves appear as the boundary solutions to which the periodic travelling waves tend asymptotically. (general)
Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma
International Nuclear Information System (INIS)
Ghosh, Samiran; Gupta, M.R.
2005-01-01
Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly
International Nuclear Information System (INIS)
Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong
2011-01-01
In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.
Zhang, Zhendong
2016-07-26
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional elastic wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can mitigate the local minimum problem in full waveform inversion with a reasonable computation cost for simple models. Results with synthetic and field data illustrate the benefits and limitations of this method. © 2016 Elsevier B.V.
Alternative integral equations and perturbation expansions for self-coupled scalar fields
International Nuclear Information System (INIS)
Ford, L.H.
1985-01-01
It is shown that the theory of a self-coupled scalar field may be expressed in terms of a class of integral equations which include the Yang-Feldman equation as a particular case. Other integral equations in this class could be used to generate alternative perturbation expansions which contain a nonanalytic dependence upon the coupling constant and are less ultraviolet divergent than the conventional perturbation expansion. (orig.)
Energy-flux characterization of conical and space-time coupled wave packets
International Nuclear Information System (INIS)
Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di
2010-01-01
We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.
Slot-coupled CW standing wave accelerating cavity
Energy Technology Data Exchange (ETDEWEB)
Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng
2017-05-16
A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.
Symmetries of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves
International Nuclear Information System (INIS)
Webb, G. M.; Brio, M.; Zank, G. P.
1996-01-01
A formulation of Hamiltonian and Lagrangian variational principles, Lie point symmetries and conservation laws for the triple degenerate DNLS equations describing the propagation of weakly nonlinear dispersive MHD waves along the ambient magnetic field, in β∼1 plasmas is given. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic point, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a g 2 =V A 2 where a g is the gas sound speed and V A is the Alfven speed. A discussion is given of the travelling wave similarity solutions of the equations, which include solitary wave and periodic traveling waves. Strongly compressible solutions indicate the necessity for the insertion of shocks in the flow, whereas weakly compressible, near Alfvenic solutions resemble similar, shock free travelling wave solutions of the DNLS equation
Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves
DEFF Research Database (Denmark)
Eldeberky, Y.; Madsen, Per A.
1999-01-01
and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement......This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary...... is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic...
Constructing New Discrete Integrable Coupling System for Soliton Equation by Kronecker Product
International Nuclear Information System (INIS)
Yu Fajun; Zhang Hongqing
2008-01-01
It is shown that the Kronecker product can be applied to constructing new discrete integrable coupling system of soliton equation hierarchy in this paper. A direct application to the fractional cubic Volterra lattice spectral problem leads to a novel integrable coupling system of soliton equation hierarchy. It is also indicated that the study of discrete integrable couplings by using the Kronecker product is an efficient and straightforward method. This method can be used generally
Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity
Kiladis, G. N.; Biello, J. A.; Straub, K. H.
2012-12-01
It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG
Song, Zhongchang; Zhang, Yu; Wei, Chong; Wang, Xianyan
2016-01-01
Through numerically solving the appropriate wave equations, propagation of biosonar signals in a Chinese river dolphin (baiji) was studied. The interfacial waves along the rostrum-tissue interfaces, including both compressional (longitudinal) and shear (transverse) waves in the solid rostrum through fluid-solid coupling were examined. The baiji's rostrum was found to effect acoustic beam formation not only as an interfacial wave generator but also as a sound reflector. The wave propagation patterns in the solid rostrum were found to significantly change the wave movement through the bone. Vibrations in the rostrum, expressed in solid displacement, initially increased but eventually decreased from posterior to anterior sides, indicating a complex physical process. Furthermore, the comparisons among seven cases, including the combination of (1) the rostrum, melon, and air sacs; (2) rostrum-air sacs; (3) rostrum-melon; (4) only rostrum; (5) air sacs-melon; (6) only air sacs; and (7) only melon revealed that the cases including the rostrum were better able to approach the complete system by inducing rostrum-tissue interfacial waves and reducing the differences in main beam angle and -3 dB beam width. The interfacial waves in the rostrum were considered complementary with reflection to determine the obbligato role of the rostrum in the baiji's biosonar emission. The far-field beams formed from complete fluid-solid models and non-fluid-solid models were compared to reveal the effects brought by the consideration of shear waves of the solid structures of the baiji. The results may provide useful information for further understanding the role of the rostrum in this odontocete species.
On the Generalized Maxwell Equations and Their Prediction of Electroscalar Wave
Directory of Open Access Journals (Sweden)
Arbab A. I.
2009-04-01
Full Text Available We have formulated the basic laws of electromagnetic theory in quaternion form. The formalism shows that Maxwell equations and Lorentz force are derivable from just one quaternion equation that only requires the Lorentz gauge. We proposed a quaternion form of the continuity equation from which we have derived the ordinary continuity equation. We introduce new transformations that produces a scalar wave and generalize the continuity equation to a set of three equations. These equations imply that both current and density are waves. Moreover, we have shown that the current can not cir- culate around a point emanating from it. Maxwell equations are invariant under these transformations. An electroscalar wave propagating with speed of light is derived upon requiring the invariance of the energy conservation equation under the new transforma- tions. The electroscalar wave function is found to be proportional to the electric field component along the charged particle motion. This scalar wave exists with or without considering the Lorentz gauge. We have shown that the electromagnetic fields travel with speed of light in the presence or absence of free charges.
International Nuclear Information System (INIS)
Kong Cuicui; Wang Dan; Song Lina; Zhang Hongqing
2009-01-01
In this paper, with the aid of symbolic computation and a general ansaetz, we presented a new extended rational expansion method to construct new rational formal exact solutions to nonlinear partial differential equations. In order to illustrate the effectiveness of this method, we apply it to the MKDV-Burgers equation and the (2 + 1)-dimensional dispersive long wave equation, then several new kinds of exact solutions are successfully obtained by using the new ansaetz. The method can also be applied to other nonlinear partial differential equations.
Directory of Open Access Journals (Sweden)
Letlhogonolo Daddy Moleleki
2014-01-01
Full Text Available We analyze the (3+1-dimensional Boussinesq equation, which has applications in fluid mechanics. We find exact solutions of the (3+1-dimensional Boussinesq equation by utilizing the Lie symmetry method along with the simplest equation method. The solutions obtained are traveling wave solutions. Moreover, we construct the conservation laws of the (3+1-dimensional Boussinesq equation using the new conservation theorem, which is due to Ibragimov.
Integrability of an extended (2+1)-dimensional shallow water wave equation with Bell polynomials
International Nuclear Information System (INIS)
Wang Yun-Hu; Chen Yong
2013-01-01
We investigate the extended (2+1)-dimensional shallow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Bäcklund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method. (general)
Witten, Matthew
1983-01-01
Hyperbolic Partial Differential Equations, Volume 1: Population, Reactors, Tides and Waves: Theory and Applications covers three general areas of hyperbolic partial differential equation applications. These areas include problems related to the McKendrick/Von Foerster population equations, other hyperbolic form equations, and the numerical solution.This text is composed of 15 chapters and begins with surveys of age specific population interactions, populations models of diffusion, nonlinear age dependent population growth with harvesting, local and global stability for the nonlinear renewal eq
Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.
2017-10-01
We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.
Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation
International Nuclear Information System (INIS)
Zhaqilao,
2013-01-01
A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed
Runge-Kutta Integration of the Equal Width Wave Equation Using the Method of Lines
Directory of Open Access Journals (Sweden)
M. A. Banaja
2015-01-01
Full Text Available The equal width (EW equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW equation is obtained by using the method of lines (MOL based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing the L2 and L∞ error norms. The results are found in good agreement with exact solution.
Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation
Energy Technology Data Exchange (ETDEWEB)
Zhaqilao,, E-mail: zhaqilao@imnu.edu.cn
2013-12-06
A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed.
Smooth and non-smooth travelling waves in a nonlinearly dispersive Boussinesq equation
International Nuclear Information System (INIS)
Shen Jianwei; Xu Wei; Lei Youming
2005-01-01
The dynamical behavior and special exact solutions of nonlinear dispersive Boussinesq equation (B(m,n) equation), u tt -u xx -a(u n ) xx +b(u m ) xxxx =0, is studied by using bifurcation theory of dynamical system. As a result, all possible phase portraits in the parametric space for the travelling wave system, solitary wave, kink and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are obtained. It can be shown that the existence of singular straight line in the travelling wave system is the reason why smooth waves converge to cusp waves, finally. When parameter are varied, under different parametric conditions, various sufficient conditions guarantee the existence of the above solutions are given
Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations
Novruzov, Emil
2017-11-01
This paper is concerned with blow-up phenomena for the nonlinear dispersive wave equation on the real line, ut -uxxt +[ f (u) ] x -[ f (u) ] xxx +[ g (u) + f″/(u) 2 ux2 ] x = 0 that includes the Camassa-Holm equation as well as the hyperelastic-rod wave equation (f (u) = ku2 / 2 and g (u) = (3 - k) u2 / 2) as special cases. We establish some a local-in-space blow-up criterion (i.e., a criterion involving only the properties of the data u0 in a neighborhood of a single point) simplifying and precising earlier blow-up criteria for this equation.
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...
A One-Dimensional Wave Equation with White Noise Boundary Condition
International Nuclear Information System (INIS)
Kim, Jong Uhn
2006-01-01
We discuss the Cauchy problem for a one-dimensional wave equation with white noise boundary condition. We also establish the existence of an invariant measure when the noise is additive. Similar problems for parabolic equations were discussed by several authors. To our knowledge, there is only one work which investigated the initial-boundary value problem for a wave equation with random noise at the boundary. We handle a more general case by a different method. Our result on the existence of an invariant measure relies on the author's recent work on a certain class of stochastic evolution equations
Directory of Open Access Journals (Sweden)
Victor M. García-Chocano
2011-12-01
Full Text Available Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.
Energy Technology Data Exchange (ETDEWEB)
Bal, G.
1995-07-01
To achieve whole core calculations of the neutron transport equation, we have to follow this 2 step method: space and energy homogenization of the assemblies; resolution of the homogenized equation on the whole core. However, this is no more valid when accidents occur (for instance depressurization causing locally strong heterogeneous media). One solution consists then in coupling two kinds of resolutions: a fine computation on the damaged cell (fine mesh, high number of energy groups) coupled with a coarse one everywhere else. We only deal here with steady state solutions (which already live in 6D spaces). We present here two such methods: The coupling by transmission of homogenized sections and the coupling by transmission of boundary conditions. To understand what this coupling is, we first restrict ourselves to 1D with respect to space in one energy group. The first two chapters deal with a recall of basic properties of the neutron transport equation. We give at chapter 3 some indications of the behaviour of the flux with respect to the cross sections. We present at chapter 4 some couplings and give some properties. Chapter 5 is devoted to a presentation of some numerical applications. (author). 9 refs., 7 figs.
Ding, Xiao-Li; Nieto, Juan J.
2017-11-01
In this paper, we consider the analytical solutions of coupling fractional partial differential equations (FPDEs) with Dirichlet boundary conditions on a finite domain. Firstly, the method of successive approximations is used to obtain the analytical solutions of coupling multi-term time fractional ordinary differential equations. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the coupling FPDEs to the coupling multi-term time fractional ordinary differential equations. By applying the obtained analytical solutions to the resulting multi-term time fractional ordinary differential equations, the desired analytical solutions of the coupling FPDEs are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.
Zhang, Jinggui
2018-06-01
In this paper, we investigate the dynamical behaviors of the modulation instability (MI) of copropagating optical beams in fractional coupled nonlinear Schrödinger equations (NLSE) with the aim of revealing some novel properties different from those in the conventional coupled NLSE. By applying the standard linear stability method, we first derive an expression for the gain resulting from the instability induced by cross-phase modulation (CPM) in the presence of the Lévy indexes related to fractional effects. It is found that the modulation instability of copropagating optical beams still occurs even in the fractional NLSE with self-defocusing nonlinearity. Then, the analysis of our results further reveals that such Lévy indexes increase the fastest growth frequency and the bandwidth of conventional instability not only for the self-focusing case but also for the self-defocusing case, but do not influence the corresponding maximum gain. Numerical simulations are performed to confirm theoretical predictions. These findings suggest that the novel fractional physical settings may open up new possibilities for the manipulation of MI and nonlinear waves.
Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting.
Xu, Liang; Jiang, Tao; Lin, Pei; Shao, Jia Jia; He, Chuan; Zhong, Wei; Chen, Xiang Yu; Wang, Zhong Lin
2018-02-27
Water wave energy is a promising clean energy source, which is abundant but hard to scavenge economically. Triboelectric nanogenerator (TENG) networks provide an effective approach toward massive harvesting of water wave energy in oceans. In this work, a coupling design in TENG networks for such purposes is reported. The charge output of the rationally linked units is over 10 times of that without linkage. TENG networks of three different connecting methods are fabricated and show better performance for the ones with flexible connections. The network is based on an optimized ball-shell structured TENG unit with high responsivity to small agitations. The dynamic behavior of single and multiple TENG units is also investigated comprehensively to fully understand their performance in water. The study shows that a rational design on the linkage among the units could be an effective strategy for TENG clusters to operate collaboratively for reaching a higher performance.
Speed ot travelling waves in reaction-diffusion equations
International Nuclear Information System (INIS)
Benguria, R.D.; Depassier, M.C.; Mendez, V.
2002-01-01
Reaction diffusion equations arise in several problems of population dynamics, flame propagation and others. In one dimensional cases the systems may evolve into travelling fronts. Here we concentrate on a reaction diffusion equation which arises as a simple model for chemotaxis and present results for the speed of the travelling fronts. (Author)
New solitary wave solutions to the modified Kawahara equation
International Nuclear Information System (INIS)
Wazwaz, Abdul-Majid
2007-01-01
In this work we use the sine-cosine method, the tanh method, the extended tanh method, and ansatze of hyperbolic functions for analytic treatment for the modified Kawahara equation. New solitons solutions and periodic solutions are formally derived. The change of the parameters, that will drastically change the characteristics of the equation, is examined. The employed approaches are reliable and manageable
Critical string wave equations and the QCD (U(N{sub c})) string. (Some comments)
Energy Technology Data Exchange (ETDEWEB)
Botelho, Luiz C.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Matematica. Dept. de Matematica Aplicada], e-mail: botelho.luiz@superig.com.br
2009-07-01
We present a simple proof that self-avoiding fermionic strings solutions solve formally (in a Quantum Mechanical Framework) the QCD(U(N{sub c})) loop wave equation written in terms of random loops. (author)
Numerical calculation of the cross section by the solution of the wave equation
International Nuclear Information System (INIS)
Drewko, J.
1982-01-01
A numerical method of solving of the wave equation is described for chosen vibrational eigenfunctions. A prepared program calculates the total cross sections for the resonant vibrational excitation for diatomic molecules on the basis of introduced molecular data. (author)
Analysis and computation of the elastic wave equation with random coefficients
Motamed, Mohammad; Nobile, Fabio; Tempone, Raul
2015-01-01
We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics
Jiang, Lijian; Efendiev, Yalchin; Ginting, Victor
2010-01-01
In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.
THE EXPONENTIAL STABILIZATION FOR A SEMILINEAR WAVE EQUATION WITH LOCALLY DISTRIBUTED FEEDBACK
Institute of Scientific and Technical Information of China (English)
JIA CHAOHUA; FENG DEXING
2005-01-01
This paper considers the exponential decay of the solution to a damped semilinear wave equation with variable coefficients in the principal part by Riemannian multiplier method. A differential geometric condition that ensures the exponential decay is obtained.
Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.
1988-01-01
A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak
Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion
Zhang, Sanzong; Schuster, Gerard T.; Luo, Yi
2012-01-01
way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity
Extended common-image-point gathers for anisotropic wave-equation migration
Sava, Paul C.; Alkhalifah, Tariq Ali
2010-01-01
In regions characterized by complex subsurface structure, wave-equation depth migration is a powerful tool for accurately imaging the earth’s interior. The quality of the final image greatly depends on the quality of the model which includes
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
Traveling Wave Solutions of ZK-BBM Equation Sine-Cosine Method
Directory of Open Access Journals (Sweden)
Sadaf Bibi
2014-03-01
Full Text Available Travelling wave solutions are obtained by using a relatively new technique which is called sine-cosine method for ZK-BBM equations. Solution procedure and obtained results re-confirm the efficiency of the proposed scheme.
Wave-packet revival for the Schroedinger equation with position-dependent mass
International Nuclear Information System (INIS)
Schmidt, Alexandre G.M.
2006-01-01
We study the temporal evolution of solutions of 1D Schroedinger equation with position-dependent mass inside an infinite well. Revival of wave-packet is shown to exist and partial revivals are different from the usual ones
Jiang, Lijian
2010-08-01
In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.
Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids
Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.
2014-12-01
Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.
Shock wave equation of state of powder material
Dijken, D.K.; Hosson, J.Th.M. De
1994-01-01
A model is proposed to predict the following quantities for powder materials compacted by shock waves: the pressure, the specific volume, the internal energy behind the shock wave, and the shock-wave velocity U-s. They are calculated as a function of flyerplate velocity u(p) and initial powder specific volume V-00. The model is tested on Cu, Al2024, and Fe. Calculated U-s vs u(p) curves agree well with experiments provided V-00 is smaller than about two times the solid specific volume. The mo...
Inaccuracy caused by the use of thermodynamic equation inside shock wave front
International Nuclear Information System (INIS)
Sano, Yukio; Abe, Akihisa; Tokushima, Koji; Arathoon, P.
1998-01-01
The aim of this study is to examine the difference between shock temperatures predicted by an equation for temperature inside a steady wave front and the Walsh-Christian equation. Calculations are for yttria-doped tetragonal zirconia, which shows an elastic-plastic and a phase transition: Thus the shock waves treated are multiple structure waves composed of one to three steady wave fronts. The evaluated temperature was 3350K at the minimum specific volume of 0.1175 cm 3 /g (or maximum Hugoniot shock pressure of 140GPa) considered in the present examination, while the temperature predicted by the Walsh-Christian equation under identical conditions was 2657K. The cause of the large temperature discrepancy is considered to be that the present model treats nonequilibrium states inside steady waves
Coupling to the lower hybrid waves with the multijunction grill
International Nuclear Information System (INIS)
Ohkubo, Kunizo; Matsumoto, Kazunori.
1992-05-01
Coupling characteristics of the multijunction grill have been studied theoretically and experimentally by using a multireflection method with the aid of scattering matrices not only at the junction plane but also at the grill mouth. The global reflection coefficients in the primary waveguide and secondary wave-guides can be estimated from the vector sum of reflecting components caused by each reflection between two scattering planes. The experimental results of scattering matrices and the global coupling agree well with calculated ones. It is shown that the multiple reflection in secondary waveguides of the four-junction grill for JIPPT-IIU tokamak is finished until three or four reflections. The length of the secondary waveguides is confirmed to be one of parameters determining the grill efficiency. (author)
SELF-EXCITED WAVE PROCESSES IN CHAINS OF UNIDIRECTIONALLY COUPLED IMPULSE NEURONS
Directory of Open Access Journals (Sweden)
S. D. Glyzin
2015-01-01
Full Text Available The article is devoted to the mathematical modeling of neural activity. We propose new classes of singularly perturbed differential-difference equations with delay of Volterra type. With these systems, the models as a single neuron or neural networks are described. We study attractors of ring systems of unidirectionally coupled impulse neurons in the case where the number of links in the system increases indefinitely. In order to study periodic solutions of travelling wave type of this system, some special tricks are used which reduce the existence and stability problems for cycles to the investigation of auxiliary system with impulse actions. Using this approach, we establish that the number of stable self-excited waves simultaneously existing in the chain increases unboundedly as the number of links of the chain increases, that is, the well-known buffer phenomenon occurs.
Continuous limits for an integrable coupling system of Toda equation hierarchy
International Nuclear Information System (INIS)
Li Li; Yu Fajun
2009-01-01
In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.
Continuous limits for an integrable coupling system of Toda equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-09-21
In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.
Said-Houari, Belkacem
2012-03-01
In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.
Exact traveling wave solutions of the bbm and kdv equations using (G'/G)-expansion method
International Nuclear Information System (INIS)
Saddique, I.; Nazar, K.
2009-01-01
In this paper, we construct the traveling wave solutions involving parameters of the Benjamin Bona-Mahony (BBM) and KdV equations in terms of the hyperbolic, trigonometric and rational functions by using the (G'/G)-expansion method, where G = G(zeta) satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the Solitary was are derived from the traveling waves. (author)
Said-Houari, Belkacem
2012-01-01
In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.
On the relativistic transport equation for a multiple discontinuity wave
International Nuclear Information System (INIS)
Giambo, Sebastiano
1980-01-01
The theory of singular hypersurfaces is combined with the ray theory to study propagation of weak discontinuities of solutions of quasi-linear hyperbolic system in the context of special relativity. The case of a multiple wave is considered [fr
Traveling waves in lattice differential equations with distributed maturation delay
Directory of Open Access Journals (Sweden)
Hui-Ling Niu
2013-07-01
Full Text Available In this paper we derive a lattice model with infinite distributed delay to describe the growth of a single-species population in a 2D patchy environment with infinite number of patches connected locally by diffusion and global interaction. We consider the existence of traveling wave solutions when the birth rate is large enough that each patch can sustain a positive equilibrium. When the birth function is monotone, we prove that there exists a traveling wave solution connecting two equilibria with wave speed $c>c^*(\\theta$ by using the monotone iterative method and super and subsolution technique, where $\\theta\\in [0,2\\pi]$ is any fixed direction of propagation. When the birth function is non-monotone, we prove the existence of non-trivial traveling wave solutions by constructing two auxiliary systems satisfying quasi-monotonicity.
Relativistic transport equation for a multiple discontinuity wave
Energy Technology Data Exchange (ETDEWEB)
Giambo, S [Istituto di Matematica, Universita degli Studi, Messina (Italy)
1980-09-29
The theory of singular hypersurfaces is combined with the ray theory to study propagation of weak discontinuities of solutions of a quasi-linear hyperbolic system in the context of special relativity. The case of a multiple wave is considered.
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
Lower hybrid wave coupling in Tore Supra through multijunction launchers
International Nuclear Information System (INIS)
Litaudon, X.; Bibet, P.; Goniche, M.; Bergerby, G.; Bizarro, J.P.; Capitain, J.J.; Hoang, G.T.; Magne, R.; Moreau, D.; Peysson, Y.; Rax, J.M.; Rey, G.; Tonon, G.
1991-01-01
The TORE SUPRA Lower Hybrid Current Drive experiments (8 MW/ 3.7GHz) use large phased waveguide arrays (4 rows of 32 waveguides for each of the two grills) to couple the waves to the plasma. These launchers are based on the Multijunction principle which allows them to be quite compact but needs to be fully assessed for the design of efficient multi-megawatt antennas in NET/ITER. Extensive coupling measurements have been performed to study the Radio-Frequency characteristics of the plasma loaded multijunction antennas. The experimental data have been related to the output of the linear coupling theory which, in its advanced stage, takes into account the specific features of the compact launchers. The measurements, scattering matrices and power reflection coefficients, are in perfect agreement with the theoretical simulations performed with the measured edge plasma density. Our analysis leads to the determination of the n parallel radiated spectra. We demonstrate that the n parallel flexibility is obtained in a large range of edge plasma densities (or antenna positions) while preserving an optimum behaviour of the antenna. Finally, the Multijunction launcher has proved to be able to transmit high RF powers since power densities up to 45MW/m 2 have been reached with good linear coupling characteristics and spectrum control
International Nuclear Information System (INIS)
Rao, N.N.
1998-01-01
A systematic analysis of the stationary propagation of nonlinearly coupled electromagnetic and ion-acoustic waves in an unmagnetized plasma via the ponderomotive force is carried out. For small but finite amplitudes, the governing equations have a Hamiltonian structure, but with a kinetic energy term that is not positive definite. The Hamiltonian is similar to the well-known Hacute enon endash Heiles Hamiltonian of nonlinear dynamics, and is completely integrable in three regimes of the allowed parameter space. The corresponding second invariants of motion are also explicitly obtained. The integrable parameter regimes correspond to supersonic values of the Mach number, which characterizes the propagation speed of the coupled waves. On the other hand, in the sub- as well as near-sonic regimes, the coupled mode equations admit different types of exact analytical solutions, which represent nonlinear localized eigenstates of the electromagnetic field trapped in the density cavity due to the ponderomotive potential. While the density cavity has always a single-dip structure, for larger amplitudes it can support higher-order modes having a larger number of nodes in the electromagnetic field. In particular, we show the existence of a new type of localized electromagnetic wave whose field intensity has a triple-hump structure. For typical parameter values, the triple-hump solitons propagate with larger Mach numbers that are closer to the sonic limit than the single- as well as the double-hump solitons, but carry a lesser amount of the electromagnetic field energy. A comparison between the different types of solutions is carried out. The possibility of the existence of trapped electromagnetic modes having a larger number of humps is also discussed. copyright 1998 American Institute of Physics
Classical and quantum modes of coupled Mathieu equations
DEFF Research Database (Denmark)
Landa, H.; Reznik, B.; Drewsen, M.
2012-01-01
is that of decoupled linear oscillators. We use this transformation to solve the Heisenberg equations of the corresponding quantum-mechanical problem, and find the quantum wavefunctions for stable oscillations, expressed in configuration space. The obtained transformation and quantum solutions can be applied to more...
Hamiltonian structures and integrability for a discrete coupled KdV-type equation hierarchy
International Nuclear Information System (INIS)
Zhao Haiqiong; Zhu Zuonong; Zhang Jingli
2011-01-01
Coupled Korteweg-de Vries (KdV) systems have many important physical applications. By considering a 4 × 4 spectral problem, we derive a discrete coupled KdV-type equation hierarchy. Our hierarchy includes the coupled Volterra system proposed by Lou et al. (e-print arXiv: 0711.0420) as the first member which is a discrete version of the coupled KdV equation. We also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy. (authors)
Relativistic wave equations for particles in electromagnetic fields
International Nuclear Information System (INIS)
Good, R.H. Jr.
1989-01-01
A new type of generalization of the Dirac equation of higher spin particles and antiparticles is given, in case only the terms proportional to the external fields need to be retained. copyright 1989 Academic Press, Inc
Physical dynamics of quasi-particles in nonlinear wave equations
Energy Technology Data Exchange (ETDEWEB)
Christov, Ivan [Department of Mathematics, Texas A and M University, College Station, TX 77843-3368 (United States)], E-mail: christov@alum.mit.edu; Christov, C.I. [Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010 (United States)], E-mail: christov@louisiana.edu
2008-02-04
By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field.
Physical dynamics of quasi-particles in nonlinear wave equations
International Nuclear Information System (INIS)
Christov, Ivan; Christov, C.I.
2008-01-01
By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field
Solitary wave solutions to nonlinear evolution equations in ...
Indian Academy of Sciences (India)
1Computer Engineering Technique Department, Al-Rafidain University College, Baghdad, ... applied to extract solutions are tan–cot method and functional variable approaches. ... Consider the nonlinear partial differential equation in the form.
DEFF Research Database (Denmark)
Kumari Ramachandran, Gireesh Kumar Vasanta; Bredmose, Henrik; Sørensen, Jens Nørkær
2014-01-01
, which is a consequence of the wave-induced rotor dynamics. Loads and coupled responses are predicted for a set of load cases with different wave headings. Further, an advanced aero-elastic code, Flex5, is extended for the TLP wind turbine configuration and the response comparison with the simpler model......A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11...... for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency-and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison's equation, the aerodynamic loads are modeled by means of unsteady blade-element-momentum (BEM) theory...
The two-wave X-ray field calculated by means of integral-equation methods
International Nuclear Information System (INIS)
Bremer, J.
1984-01-01
The problem of calculating the two-wave X-ray field on the basis of the Takagi-Taupin equations is discussed for the general case of curved lattice planes. A two-dimensional integral equation which incorporates the nature of the incoming radiation, the form of the crystal/vacuum boundary, and the curvature of the structure, is deduced. Analytical solutions for the symmetrical Laue case with incoming plane waves are obtained directly for perfect crystals by means of iteration. The same method permits a simple derivation of the narrow-wave Laue and Bragg cases. Modulated wave fronts are discussed, and it is shown that a cut-off in the width of an incoming plane wave leads to lateral oscillations which are superimposed on the Pendelloesung fringes. Bragg and Laue shadow fields are obtained. The influence of a non-zero kernel is discussed and a numerical procedure for calculating wave amplitudes in curved crystals is presented. (Auth.)
Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.
2016-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).
Asymptotic Behavior of Periodic Wave Solution to the Hirota—Satsuma Equation
International Nuclear Information System (INIS)
Wu Yong-Qi
2011-01-01
The one- and two-periodic wave solutions for the Hirota—Satsuma (HS) equation are presented by using the Hirota derivative and Riemann theta function. The rigorous proofs on asymptotic behaviors of these two solutions are given such that soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure. (general)
Bifurcations of Exact Traveling Wave Solutions for (2+1)-Dimensional HNLS Equation
International Nuclear Information System (INIS)
Xu Yuanfen
2012-01-01
For the (2+1)-Dimensional HNLS equation, what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems. Ten exact explicit parametric representations of the traveling wave solutions are given. (general)
Solitons and cnoidal waves of the Klein–Gordon–Zakharov equation ...
Indian Academy of Sciences (India)
In (3), κ represents the wave number of the soliton while ω represents ... integration constant to be zero, since the search is for soliton solutions only, gives ..... and also using relations (3)–(5) gives the following rational travelling wave ... In future, the plan is to study the numerical simulations for this equation along with.
A membrane wave equation for Q.C.D. (SU(infinity))
International Nuclear Information System (INIS)
Botelho, L.C.L.
1988-01-01
It is proposed a quantum membrane wave functional describing the interaction between a colored SU(N c ) membrane and a quantized Yang-Mills field. Additionally, its associated wave equation in the t'Hooft N c ->infinity limit is deduced. (A.C.A.S.) [pt
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation
International Nuclear Information System (INIS)
Yang Qin; Dai Chaoqing; Zhang Jiefang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.
Instability of traveling waves of the convective-diffusive Cahn-Hilliard equation
International Nuclear Information System (INIS)
Gao Hongjun; Liu Changchun
2004-01-01
In this paper we study the instability of the traveling waves of the convective-diffusive Cahn-Hilliard equation. We prove that it is nonlinearly unstable under H 2 perturbations, for some traveling wave solution that is asymptotic to a constant as x→∞
International Nuclear Information System (INIS)
Friedman, R.S.; Jamieson, M.J.; Preston, S.C.
1990-01-01
A method for solving coupled eigenvalue differential equations is given and its relation to an existing technique is shown. Use of the Gram-Schmidt process to overcome the severe instabilities arising in molecular problems is described in detail. (orig.)
Coupled-channel equations and off-shell transformations in many-body scattering
International Nuclear Information System (INIS)
Cattapan, G.; Vanzani, V.
1977-01-01
The general structure and the basic features of several many-body coupled-channel integral equations, obtained by means of the channel coupling array device, are studied in a systematic way. Particular attention is paid to the employment of symmetric transition operators. The connection between different formulations has been clarified and the role played by some off-shell transformations for many-body transition operators has been discussed. Specific choices of the coupling scheme are considered and the corresponding coupled equations are compared with similar equations previously derived. Several sets of linear relations between transition operators have also been presented and used in a three-body context to derive uncoupled integral equations with connected kernel
Energy Technology Data Exchange (ETDEWEB)
Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)
2001-02-01
In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.
Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2013-01-01
Full Text Available We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations within the local fractional derivatives.
Application of the Exp-function method to the equal-width wave equation
International Nuclear Information System (INIS)
Biazar, J; Ayati, Z
2008-01-01
In this paper, the Exp-function method is used to find an exact solution of the equal-width wave (EW) equation. The method is straightforward and concise, and its applications are promising. It is shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving the EW equation.
Boundary Observability and Stabilization for Westervelt Type Wave Equations without Interior Damping
International Nuclear Information System (INIS)
Kaltenbacher, Barbara
2010-01-01
In this paper we show boundary observability and boundary stabilizability by linear feedbacks for a class of nonlinear wave equations including the undamped Westervelt model used in nonlinear acoustics. We prove local existence for undamped generalized Westervelt equations with homogeneous Dirichlet boundary conditions as well as global existence and exponential decay with absorbing type boundary conditions.
Directory of Open Access Journals (Sweden)
Dandan Guo
2017-08-01
Full Text Available In this article we consider the boundary stabilization of a wave equation with variable coefficients. This equation has an acceleration term and a delayed velocity term on the boundary. Under suitable geometric conditions, we obtain the exponential decay for the solutions. Our proof relies on the geometric multiplier method and the Lyapunov approach.
Agalarov, Agalar; Zhulego, Vladimir; Gadzhimuradov, Telman
2015-04-01
The reduction procedure for the general coupled nonlinear Schrödinger (GCNLS) equations with four-wave mixing terms is proposed. It is shown that the GCNLS system is equivalent to the well known integrable families of the Manakov and Makhankov U(n,m)-vector models. This equivalence allows us to construct bright-bright and dark-dark solitons and a quasibreather-dark solution with unconventional dynamics: the density of the first component oscillates in space and time, whereas the density of the second component does not. The collision properties of solitons are also studied.
Suppression of lower hybrid wave coupling due to the ponderomotive force
International Nuclear Information System (INIS)
Wilson, J.R.; Wong, K.L.
1980-04-01
The coupling efficiency from a slow-wave structure to lower hybrid waves is investigated experimentally. At moderate electric field strengths large edge density changes are observed. Wave trajectory modifications and departure from linear coupling are observed consistent with these changes and in good agreement with a simple nonlinear theory that includes the ponderomotive force
The calculation of Feshbach resonances using coupled propagator equations
International Nuclear Information System (INIS)
Zhan, Hongbin; Zhang, Yinchun; Winkler, P.
1994-01-01
A coupled channel theory of resonances has been formulated within the propagator approach of man-body theory and applied to the 1s3s 2 resonance of e-helium scattering. This system has previously been studied both experimentally and theoretically. These results for the width of the resonance agree well with these earlier findings
Ullah, Hakeem; Islam, Saeed; Khan, Ilyas; Shafie, Sharidan; Fiza, Mehreen
2015-01-01
In this paper we applied a new analytic approximate technique Optimal Homotopy Asymptotic Method (OHAM) for treatment of coupled differential- difference equations (DDEs). To see the efficiency and reliability of the method, we consider Relativistic Toda coupled nonlinear differential-difference equation. It provides us a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier and explicit. PMID:25874457
Ullah, Hakeem; Islam, Saeed; Khan, Ilyas; Shafie, Sharidan; Fiza, Mehreen
2015-01-01
In this paper we applied a new analytic approximate technique Optimal Homotopy Asymptotic Method (OHAM) for treatment of coupled differential-difference equations (DDEs). To see the efficiency and reliability of the method, we consider Relativistic Toda coupled nonlinear differential-difference equation. It provides us a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier and explicit.
International Nuclear Information System (INIS)
Wilcox, Lucas C.; Stadler, Georg; Burstedde, Carsten; Ghattas, Omar
2010-01-01
We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A velocity-strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic-acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic-acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.
Global existence and decay of solutions of a nonlinear system of wave equations
Said-Houari, Belkacem
2012-01-01
This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.
Exact traveling wave solution of nonlinear variants of the RLW and the PHI-four equations
Energy Technology Data Exchange (ETDEWEB)
Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt); Department of Mathematics, Teacher' s College, Bisha, P.O. Box 551 (Saudi Arabia)], E-mail: asoliman_99@yahoo.com
2007-08-27
By means of the modified extended tanh-function (METF) method the multiple traveling wave solutions of some different kinds of nonlinear partial differential equations are presented and implemented in a computer algebraic system. The solutions for the nonlinear equations such as variants of the RLW and variant of the PHI-four equations are exactly obtained and so the efficiency of the method can be demonstrated.
Integrable discretizations for the short-wave model of the Camassa-Holm equation
International Nuclear Information System (INIS)
Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro
2010-01-01
The link between the short-wave model of the Camassa-Holm equation (SCHE) and bilinear equations of the two-dimensional Toda lattice equation is clarified. The parametric form of the N-cuspon solution of the SCHE in Casorati determinant is then given. Based on the above finding, integrable semi-discrete and full-discrete analogues of the SCHE are constructed. The determinant solutions of both semi-discrete and fully discrete analogues of the SCHE are also presented.
International Nuclear Information System (INIS)
Jun-Mao, Wang; Miao, Zhang; Wen-Liang, Zhang; Rui, Zhang; Jia-Hua, Han
2008-01-01
We present a new method to find the exact travelling wave solutions of nonlinear evolution equations, with the aid of the symbolic computation. Based on this method, we successfully solve the modified Benjamin–Bona–Mahoney equation, and obtain some new solutions which can be expressed by trigonometric functions and hyperbolic functions. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics. (general)
Conservation Laws and Traveling Wave Solutions of a Generalized Nonlinear ZK-BBM Equation
Directory of Open Access Journals (Sweden)
Khadijo Rashid Adem
2014-01-01
Full Text Available We study a generalized two-dimensional nonlinear Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM equation, which is in fact Benjamin-Bona-Mahony equation formulated in the ZK sense. Conservation laws for this equation are constructed by using the new conservation theorem due to Ibragimov and the multiplier method. Furthermore, traveling wave solutions are obtained by employing the (G'/G-expansion method.
Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models
Directory of Open Access Journals (Sweden)
Narcisa Apreutesei
2014-05-01
Full Text Available In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.
Global existence and decay of solutions of a nonlinear system of wave equations
Said-Houari, Belkacem
2012-03-01
This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.
Discrete coupled derivative nonlinear Schroedinger equations and their quasi-periodic solutions
International Nuclear Information System (INIS)
Geng Xianguo; Su Ting
2007-01-01
A hierarchy of nonlinear differential-difference equations associated with a discrete isospectral problem is proposed, in which a typical differential-difference equation is a discrete coupled derivative nonlinear Schroedinger equation. With the help of the nonlinearization of the Lax pairs, the hierarchy of nonlinear differential-difference equations is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems. Based on the theory of algebraic curve, the Abel-Jacobi coordinates are introduced to straighten out the corresponding flows, from which quasi-periodic solutions for these differential-difference equations are obtained resorting to the Riemann-theta functions. Moreover, a (2+1)-dimensional discrete coupled derivative nonlinear Schroedinger equation is proposed and its quasi-periodic solutions are derived
Dutta, Gaurav
2013-08-20
Attenuation leads to distortion of amplitude and phase of seismic waves propagating inside the earth. Conventional acoustic and least-squares reverse time migration do not account for this distortion which leads to defocusing of migration images in highly attenuative geological environments. To account for this distortion, we propose to use the visco-acoustic wave equation for least-squares reverse time migration. Numerical tests on synthetic data show that least-squares reverse time migration with the visco-acoustic wave equation corrects for this distortion and produces images with better balanced amplitudes compared to the conventional approach. © 2013 SEG.
Non-linear wave equations:Mathematical techniques
International Nuclear Information System (INIS)
1978-01-01
An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es
Coupled equations for Kähler metrics and Yang-Mills connections
DEFF Research Database (Denmark)
Garcia Fernandez, Mario; Alvarez-Consul, Luis; Garcia-Prada, Oscar
2012-01-01
We study equations on a principal bundle over a compact complex manifold coupling connections on the bundle with K¨ahler structures in the base. These equations generalize the conditions of constant scalar curvature for a K¨ahler metric and Hermite– Yang–Mills for a connection. We provide a moment...
Variable coefficient Korteweg-de Vries equations and travelling waves in an inhomogeneous medium
International Nuclear Information System (INIS)
Baby, B.V.
1987-04-01
The well-known Korteweg-de Vries equations with the coefficients as two arbitrary functions of the time variable, is studied in this paper. The Painleve property analysis provides the conditions on the two variable coefficients, in order to form the Lax pairs associated with this equation. The similarity analysis shows the non-existence of travelling wave solutions when the equation has variable coefficients. These results are used to show the non-existence of travelling waves in an inhomogeneous medium. (author). 33 refs
New binary travelling-wave periodic solutions for the modified KdV equation
International Nuclear Information System (INIS)
Yan Zhenya
2008-01-01
In this Letter, the modified Korteweg-de Vries (mKdV) equations with the focusing (+) and defocusing (-) branches are investigated, respectively. Many new types of binary travelling-wave periodic solutions are obtained for the mKdV equation in terms of Jacobi elliptic functions such as sn(ξ,m)cn(ξ,m)dn(ξ,m) and their extensions. Moreover, we analyze asymptotic properties of some solutions. In addition, with the aid of the Miura transformation, we also give the corresponding binary travelling-wave periodic solutions of KdV equation
Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet
2017-11-01
In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.
New Iterative Method for Fractional Gas Dynamics and Coupled Burger’s Equations
Directory of Open Access Journals (Sweden)
Mohamed S. Al-luhaibi
2015-01-01
Full Text Available This paper presents the approximate analytical solutions to solve the nonlinear gas dynamics and coupled Burger’s equations with fractional time derivative. By using initial values, the explicit solutions of the equations are solved by using a reliable algorithm. Numerical results show that the new iterative method is easy to implement and accurate when applied to time-fractional partial differential equations.
Nonlinear and linear wave equations for propagation in media with frequency power law losses
Szabo, Thomas L.
2003-10-01
The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.
Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets
Shimahara, Hiroshi
2018-04-01
We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.
The non-local Fisher–KPP equation: travelling waves and steady states
International Nuclear Information System (INIS)
Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya
2009-01-01
We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Periodic and solitary-wave solutions of the Degasperis-Procesi equation
International Nuclear Information System (INIS)
Vakhnenko, V.O.; Parkes, E.J.
2004-01-01
Travelling-wave solutions of the Degasperis-Procesi equation are investigated. The solutions are characterized by two parameters. For propagation in the positive x-direction, hump-like, inverted loop-like and coshoidal periodic-wave solutions are found; hump-like, inverted loop-like and peakon solitary-wave solutions are obtained as well. For propagation in the negative x-direction, there are solutions which are just the mirror image in the x-axis of the aforementioned solutions. A transformed version of the Degasperis-Procesi equation, which is a generalization of the Vakhnenko equation, is also considered. For propagation in the positive x-direction, hump-like, loop-like, inverted loop-like, bell-like and coshoidal periodic-wave solutions are found; loop-like, inverted loop-like and kink-like solitary-wave solutions are obtained as well. For propagation in the negative x-direction, well-like and inverted coshoidal periodic-wave solutions are found; well-like and inverted peakon solitary-wave solutions are obtained as well. In an appropriate limit, the previously known solutions of the Vakhnenko equation are recovered
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
On the coupling of systems of hyperbolic conservation laws with ordinary differential equations
International Nuclear Information System (INIS)
Borsche, Raul; Colombo, Rinaldo M; Garavello, Mauro
2010-01-01
Motivated by applications to the piston problem, to a manhole model, to blood flow and to supply chain dynamics, this paper deals with a system of conservation laws coupled with a system of ordinary differential equations. The former is defined on a domain with boundary and the coupling is provided by the boundary condition. For each of the examples considered, numerical integrations are provided
Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.
2016-10-01
This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.
''Free-space'' boundary conditions for the time-dependent wave equation
International Nuclear Information System (INIS)
Lindman, E.L.
1975-01-01
Boundary conditions for the discrete wave equation which act like an infinite region of free space in contact with the computational region can be constructed using projection operators. Propagating and evanescent waves coming from within the computational region generate no reflected waves as they cross the boundary. At the same time arbitrary waves may be launched into the computational region. Well known projection operators for one-dimensional waves may be used for this purpose in one dimension. Extensions of these operators to higher dimensions along with numerically efficient approximations to them are described for higher-dimensional problems. The separation of waves into ingoing and outgoing waves inherent in these boundary conditions greatly facilitates diagnostics
New exact solutions of coupled Boussinesq–Burgers equations by Exp-function method
Directory of Open Access Journals (Sweden)
L.K. Ravi
2017-03-01
Full Text Available In the present paper, we build the new analytical exact solutions of a nonlinear differential equation, specifically, coupled Boussinesq–Burgers equations by means of Exp-function method. Then, we analyze the results by plotting the three dimensional soliton graphs for each case, which exhibit the simplicity and effectiveness of the proposed method. The primary purpose of this paper is to employ a new approach, which allows us victorious and efficient derivation of the new analytical exact solutions for the coupled Boussinesq–Burgers equations.
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan); Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering
1996-10-01
The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.