WorldWideScience

Sample records for coupled superconducting qubits

  1. Superconducting qubits can be coupled and addressed as trapped ions

    Science.gov (United States)

    Liu, Y. X.; Wei, L. F.; Johansson, J. R.; Tsai, J. S.; Nori, F.

    2009-03-01

    Exploiting the intrinsic nonlinearity of superconducting Josephson junctions, we propose a scalable circuit with superconducting qubits (SCQs) which is very similar to the successful one now being used for trapped ions. The SCQs are coupled to the ``vibrational'' mode provided by a superconducting LC circuit or its equivalent (e.g., a superconducting quantum interference device). Both single-qubit rotations and qubit-LC-circuit couplings and/or decouplings can be controlled by the frequencies of the time-dependent magnetic fluxes. The circuit is scalable since the qubit-qubit interactions, mediated by the LC circuit, can be selectively performed, and the information transfer can be realized in a controllable way. [4pt] Y.X. Liu, L.F. Wei, J.R. Johansson, J.S. Tsai, F. Nori, Superconducting qubits can be coupled and addressed as trapped ions, Phys. Rev. B 76, 144518 (2007). URL: http://link.aps.org/abstract/PRB/v76/e144518

  2. Tunable coupling between fixed-frequency superconducting transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Filipp, Stefan [IBM Research Zurich, 8803 Rueschlikon (Switzerland); McKay, David C.; Magesan, Easwar; Mezzacapo, Antonio; Chow, Jerry M.; Gambetta, Jay M. [IBM TJ Watson Research Center, Yorktown Heights, NY (United States)

    2016-07-01

    The controlled realization of qubit-qubit interactions is essential for both the physical implementation of quantum error-correction codes and for reliable quantum simulations. Ideally, the fidelity and speed of corresponding two-qubit gate operations is comparable to those of single qubit operations. In particular, in a scalable superconducting qubit architecture coherence must not be compromised by the presence of additional coupling elements mediating the interaction between qubits. Here we present a coupling method between fixed-frequency transmon qubits based on the frequency modulation of an auxiliary circuit coupling to the individual transmons. Since the coupler remains in its ground state at all times, its coherence does not significantly influence the fidelity of consequent entangling operations. Moreover, with the possibility to create interactions along different directions, our method is suited to engineer Hamiltonians with adjustable coupling terms. This property can be utilized for quantum simulations of spins or fermions in transmon arrays, in which pairwise couplings between adjacent qubits can be activated on demand.

  3. Two Superconducting Charge Qubits Coupled by a Josephson Inductance

    Science.gov (United States)

    Watanabe, Michio; Yamamoto, Tsuyoshi; Pashkin, Yuri A.; Astafiev, Oleg; Nakamura, Yasunobu; Tsai, Jaw-Shen

    2007-03-01

    When the quantum oscillations [Pashkin et al., Nature 421, 823 (2003)] and the conditional gate operation [Yamamoto et al., Nature 425, 941 (2003)] were demonstrated using superconducting charge qubits, the charge qubits were coupled capacitively, where the coupling was always on and the coupling strength was not tunable. This fixed coupling, however, is not ideal because for example, it makes unconditional gate operations difficult. In this work, we aimed to tunably couple two charge qubits. We fabricated circuits based on the theoretical proposal by You, Tsai, and Nori [PRB 68, 024510 (2003)], where the inductance of a Josephson junction, which has a much larger junction area than the qubit junctions, couples the qubits and the coupling strength is controlled by the external magnetic flux. We confirmed by spectroscopy that the large Josephson junction was indeed coupled to the qubits and that the coupling was turned on and off by the external magnetic flux. In the talk, we will also discuss the quantum oscillations in the circuits.

  4. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore......, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light....

  5. Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity

    International Nuclear Information System (INIS)

    Lü Xinyou; Ashhab, S; Cui Wei; Wu Rebing; Nori, Franco

    2012-01-01

    We theoretically study the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable with or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schrödinger equation under the assumption of negligible decoherence, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of both direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the ‘safe’ parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems. (paper)

  6. Quantum memory for superconducting qubits

    International Nuclear Information System (INIS)

    Pritchett, Emily J.; Geller, Michael R.

    2005-01-01

    Many protocols for quantum computation require a memory element to store qubits. We discuss the speed and accuracy with which quantum states prepared in a superconducting qubit can be stored in and later retrieved from an attached high-Q resonator. The memory fidelity depends on both the qubit-resonator coupling strength and the location of the state on the Bloch sphere. Our results show that a quantum memory demonstration should be possible with existing superconducting qubit designs, which would be an important milestone in solid-state quantum information processing. Although we specifically focus on a large-area, current-biased Josesphson-junction phase qubit coupled to the dilatational mode of a piezoelectric nanoelectromechanical disk resonator, many of our results will apply to other qubit-oscillator models

  7. Bridging the Gap for High-Coherence, Strongly Coupled Superconducting Qubits

    Science.gov (United States)

    Yoder, Jonilyn; Kim, David; Baldo, Peter; Day, Alexandra; Fitch, George; Holihan, Eric; Hover, David; Samach, Gabriel; Weber, Steven; Oliver, William

    Crossovers can play a critical role in increasing superconducting qubit device performance, as long as device coherence can be maintained even with the increased fabrication and circuit complexity. Specifically, crossovers can (1) enable a fully-connected ground plane, which reduces spurious modes and crosstalk in the circuit, and (2) increase coupling strength between qubits by facilitating interwoven qubit loops with large mutual inductances. Here we will describe our work at MIT Lincoln Laboratory to integrate superconducting air bridge crossovers into the fabrication of high-coherence capacitively-shunted superconducting flux qubits. We will discuss our process flow for patterning air bridges by resist reflow, and we will describe implementation of air bridges within our circuits. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  8. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)

    2013-07-01

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  9. Hybrid quantum systems: Outsourcing superconducting qubits

    Science.gov (United States)

    Cleland, Andrew

    Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.

  10. QUANTUM INFORMATION. Coherent coupling between a ferromagnetic magnon and a superconducting qubit.

    Science.gov (United States)

    Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Usami, Koji; Nakamura, Yasunobu

    2015-07-24

    Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending to macroscopic dimensions. A magnon is a quantum of such collective excitation modes in ordered spin systems. Here, we demonstrate the coherent coupling between a single-magnon excitation in a millimeter-sized ferromagnetic sphere and a superconducting qubit, with the interaction mediated by the virtual photon excitation in a microwave cavity. We obtain the coupling strength far exceeding the damping rates, thus bringing the hybrid system into the strong coupling regime. Furthermore, we use a parametric drive to realize a tunable magnon-qubit coupling scheme. Our approach provides a versatile tool for quantum control and measurement of the magnon excitations and may lead to advances in quantum information processing. Copyright © 2015, American Association for the Advancement of Science.

  11. Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect

    Science.gov (United States)

    Li, Chang-Hao; Li, Peng-Bo

    2018-05-01

    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.

  12. Switchable coupling for superconducting qubits using double resonance in the presence of crosstalk

    International Nuclear Information System (INIS)

    Ashhab, S.; Nori, Franco

    2007-01-01

    Several methods have been proposed recently to achieve switchable coupling between superconducting qubits. We discuss some of the main considerations regarding the feasibility of implementing one of those proposals: The double-resonance method. We analyze mainly issues related to the achievable effective coupling strength and the effects of crosstalk on this coupling mechanism. We also find a crosstalk-assisted coupling channel that can be an attractive alternative when implementing the double-resonance coupling proposal

  13. Quantum acoustics with superconducting qubits

    Science.gov (United States)

    Chu, Yiwen

    2017-04-01

    The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.

  14. Dissipative dynamics of superconducting hybrid qubit systems

    International Nuclear Information System (INIS)

    Montes, Enrique; Calero, Jesus M; Reina, John H

    2009-01-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a σ x x σ z interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  15. Dissipative dynamics of superconducting hybrid qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  16. Coherence properties in superconducting flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Spilla, Samuele

    2015-02-16

    The research work discussed in this thesis deals with the study of superconducting Josephson qubits. Superconducting qubits are solid-state artificial atoms which are based on lithographically defined Josephson tunnel junctions properties. When sufficiently cooled, these superconducting devices exhibit quantized states of charge, flux or junction phase depending on their design parameters. This allows to observe coherent evolutions of their states. The results presented can be divided into two parts. In a first part we investigate operations of superconducting qubits based on the quantum coherence in superconducting quantum interference devices (SQUID). We explain experimental data which has been observed in a SQUID subjected to fast, large-amplitude modifications of its effective potential shape. The motivations for this work come from the fact that in the past few years there have been attempts to interpret the supposed quantum behavior of physical systems, such as Josephson devices, within a classical framework. Moreover, we analyze the possibility of generating GHZ states, namely maximally entangled states, in a quantum system made out of three Josephson qubits. In particular, we investigate the possible limitations of the GHZ state generation due to coupling to bosonic baths. In the second part of the thesis we address a particular cause of decoherence of flux qubits which has been disregarded until now: thermal gradients, which can arise due to accidental non equilibrium quasiparticle distributions. The reason for these detrimental effects is that heat currents flowing through Josephson tunnel junctions in response to a temperature gradient are periodic functions of the phase difference between the electrodes. The phase dependence of the heat current comes from Andreev reflection, namely an interplay between the quasiparticles which carry heat and the superconducting condensate which is sensitive to the superconducting phase difference. Generally speaking

  17. 3D integrated superconducting qubits

    Science.gov (United States)

    Rosenberg, D.; Kim, D.; Das, R.; Yost, D.; Gustavsson, S.; Hover, D.; Krantz, P.; Melville, A.; Racz, L.; Samach, G. O.; Weber, S. J.; Yan, F.; Yoder, J. L.; Kerman, A. J.; Oliver, W. D.

    2017-10-01

    As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.

  18. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  19. Entanglement and Quantum Error Correction with Superconducting Qubits

    Science.gov (United States)

    Reed, Matthew

    2015-03-01

    Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.

  20. Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation

    Science.gov (United States)

    George, R. E.; Senior, J.; Saira, O.-P.; Pekola, J. P.; de Graaf, S. E.; Lindström, T.; Pashkin, Yu A.

    2017-10-01

    We report on a device that integrates eight superconducting transmon qubits in λ /4 superconducting coplanar waveguide resonators fed from a common feedline. Using this multiplexing architecture, each resonator and qubit can be addressed individually, thus reducing the required hardware resources and allowing their individual characterisation by spectroscopic methods. The measured device parameters agree with the designed values, and the resonators and qubits exhibit excellent coherence properties and strong coupling, with the qubit relaxation rate dominated by the Purcell effect when brought in resonance with the resonator. Our analysis shows that the circuit is suitable for generation of single microwave photons on demand with an efficiency exceeding 80%.

  1. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    Science.gov (United States)

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  2. Bell-state generation on remote superconducting qubits with dark photons

    Science.gov (United States)

    Hua, Ming; Tao, Ming-Jie; Alsaedi, Ahmed; Hayat, Tasawar; Wei, Hai-Rui; Deng, Fu-Guo

    2018-06-01

    We present a scheme to generate the Bell state deterministically on remote transmon qubits coupled to different 1D superconducting resonators connected by a long superconducting transmission line. Using the coherent evolution of the entire system in the all-resonance regime, the transmission line need not to be populated with microwave photons which can robust against the long transmission line loss. This lets the scheme more applicable to the distributed quantum computing on superconducting quantum circuit. Besides, the influence from the small anharmonicity of the energy levels of the transmon qubits can be ignored safely.

  3. One-Step Generation of Multi-Qubit GHZ and W States in Superconducting Transmon Qubit System

    International Nuclear Information System (INIS)

    Gao Guilong; Huang Shousheng; Wang Mingfeng; Jiang Nianquan; Cai Genchang

    2012-01-01

    We propose a one-step method to prepare multi-qubit GHZ and W states with transmon qubits capacitively coupled to a superconducting transmission line resonator (TLR). Compared with the scheme firstly introduced by Wang et al. [Phys. Rev. B 81 (2010) 104524], our schemes have longer dephasing time and much shorter operation time because the transmon qubits we used are not only more robust to the decoherence and the unavoidable parameter variations, but also have much stronger coupling constant with TLR. Based on the favourable properties of transmons and TLR, our method is more feasible in experiment. (general)

  4. Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime

    Science.gov (United States)

    Yoshihara, F.; Fuse, T.; Ao, Z.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Aoki, T.; Koshino, K.; Semba, K.

    2018-05-01

    We report on experimentally measured light shifts of superconducting flux qubits deep-strongly coupled to L C oscillators, where the coupling constants are comparable to the qubit and oscillator resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and inversions of the qubits' ground and excited states when there are a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.

  5. Spectroscopy and coherent manipulation of single and coupled flux qubits

    International Nuclear Information System (INIS)

    Wu Yu-Lin; Deng Hui; Huang Ke-Qiang; Tian Ye; Yu Hai-Feng; Xue Guang-Ming; Jin Yi-Rong; Li Jie; Zhao Shi-Ping; Zheng Dong-Ning

    2013-01-01

    Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time T Rabi = 78 ns and energy relaxation time T 1 = 315 ns. We found that the value of T Rabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits. (general)

  6. Exploring the physics of superconducting qubits strongly coupled to microwave frequency photons

    Energy Technology Data Exchange (ETDEWEB)

    Wallraff, Andreas [ETH Zurich (Switzerland)

    2013-07-01

    Using modern micro and nano-fabrication techniques combined with superconducting materials we realize electronic circuits the properties of which are governed by the laws of quantum mechanics. In such circuits the strong interaction of photons with superconducting quantum two-level systems allows us to probe fundamental quantum properties of light and to develop components for applications in quantum information technology. Here, I present experiments in which we have created and probed entanglement between stationary qubits and microwave photons freely propagating down a transmission line. In these experiments we use superconducting parametric amplifiers realized in our lab to detect both qubit and photon states efficiently. Using similar techniques we aim at demonstrating a deterministic scheme for teleportation of quantum states in a macroscopic system based on superconducting circuits.

  7. Coupled qubits as a quantum heat switch

    Science.gov (United States)

    Karimi, B.; Pekola, J. P.; Campisi, M.; Fazio, R.

    2017-12-01

    We present a quantum heat switch based on coupled superconducting qubits, connected to two LC resonators that are terminated by resistors providing two heat baths. To describe the system, we use a standard second order master equation with respect to coupling to the baths. We find that this system can act as an efficient heat switch controlled by the applied magnetic flux. The flux influences the energy level separations of the system, and under some conditions, the finite coupling of the qubits enhances the transmitted power between the two baths, by an order of magnitude under realistic conditions. At the same time, the bandwidth at maximum power of the switch formed of the coupled qubits is narrowed.

  8. Rate of tunneling nonequilibrium quasiparticles in superconducting qubits

    International Nuclear Information System (INIS)

    Ansari, Mohammad H

    2015-01-01

    In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations. (paper)

  9. Generating stationary entangled states in superconducting qubits

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Li Chunwen; Tarn, T.-J.; Nori, Franco

    2009-01-01

    When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F max between the stationary entangled state, ρ ∞ , and the maximally entangled state, ρ m , can be about 2/3≅max(tr(ρ ∞ ρ m ))=F max , corresponding to a maximum stationary concurrence, C max , of about 1/3≅C(ρ ∞ )=C max . This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.

  10. Experimental system design for the integration of trapped-ion and superconducting qubit systems

    Science.gov (United States)

    De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.

    2016-12-01

    We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

  11. Coherent Coupled Qubits for Quantum Annealing

    Science.gov (United States)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  12. Qubit Coupled Mechanical Resonator in an Electromechanical System

    Science.gov (United States)

    Hao, Yu

    This thesis describes the development of a hybrid quantum electromechanical system. In this system the mechanical resonator is capacitively coupled to a superconducting transmon which is embedded in a superconducting coplanar waveguide (CPW) cavity. The difficulty of achieving high quality of superconducting qubit in a high-quality voltage-biased cavity is overcome by integrating a superconducting reflective T-filter to the cavity. Further spectroscopic and pulsed measurements of the hybrid system demonstrate interactions between the ultra-high frequency mechanical resonator and transmon qubit. The noise of mechanical resonator close to ground state is measured by looking at the spectroscopy of the transmon. At last, fabrication and tests of membrane resonators are discussed.

  13. Ruthenates: simple superconducting qubits

    International Nuclear Information System (INIS)

    Gulian, Armen M.; Wood, Kent S.

    2004-01-01

    We propose triplet superconductors, such as ruthenates, as a prospective material for qubit construction. The vectorial nature of the order parameter in triplet superconductors makes it conceptually very easy to imagine the performance of the qubits. The Cooper condensate of pairs in triplet superconductors has all the attributes of the Bose-Einstein condensates and should facilitate long decoherence times of these qubits versus other 'vectorial' schemes for qubits, such as small ferromagnets. There are other benefits, which the superconducting state provides for a requirement like entanglement between qubits via the proximity effect

  14. Characterizing Ensembles of Superconducting Qubits

    Science.gov (United States)

    Sears, Adam; Birenbaum, Jeff; Hover, David; Rosenberg, Danna; Weber, Steven; Yoder, Jonilyn L.; Kerman, Jamie; Gustavsson, Simon; Kamal, Archana; Yan, Fei; Oliver, William

    We investigate ensembles of up to 48 superconducting qubits embedded within a superconducting cavity. Such arrays of qubits have been proposed for the experimental study of Ising Hamiltonians, and efficient methods to characterize and calibrate these types of systems are still under development. Here we leverage high qubit coherence (> 70 μs) to characterize individual devices as well as qubit-qubit interactions, utilizing the common resonator mode for a joint readout. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  15. Tuning decoherence in superconducting transmon qubits by mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, Jan; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey; Lisenfeld, Juergen [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    Two-level tunneling systems (TLS) are formed by structural defects in disordered materials. They gained recent attention as an important decoherence source in superconducting qubits, where they appear on surface oxides and at film interfaces. Although the most advanced qubits do not show avoided level crossings arising from a strong coupling to individual TLS, they commonly display a pronounced frequency dependence of relaxation rates, with distinguishable peaks that may point towards weak resonant coupling to single TLS. Previously, we have shown that TLS are tunable via an applied mechanical strain. Here, we employ this method to test whether the characteristic decoherence spectrum of a transmon qubit sample responds to changes in the applied strain, as it can be expected when the decohering bath is formed of atomic TLS. In our experiment, we will employ a highly coherent X-mon qubit sample and tune the strain by bending the qubit chip via a piezo actuator. Our latest results will be presented.

  16. Quasiparticle-induced decoherence of microscopic two-level-systems in superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Bilmes, Alexander; Lisenfeld, Juergen; Zanker, Sebastian; Weiss, Georg; Ustinov, Alexey V. [PHI, KIT, Karlsruhe (Germany); Marthaler, Michael; Schoen, Gerd [TFP, KIT, Karlsruhe (Germany)

    2016-07-01

    Parasitic Two-Level-Systems (TLS) are one of the main sources of decoherence in superconducting nano-scale devices such as SQUIDs, resonators and quantum bits (qubits), although the TLS' microscopic nature remains unclear. We use a superconducting phase qubit to detect TLS contained within the tunnel barrier of the qubit's Al/AlOx/Al Josephson junction. If the TLS transition frequency lies within the 6-10 GHz range, we can coherently drive it by resonant microwave pulses and access its quantum state by utilizing the strong coupling to the qubit. Our previous measurements of TLS coherence in dependence of the temperature indicate that quasiparticles (QPs), which diffuse from the superconducting Al electrodes into the oxide layer, may give rise to TLS energy loss and dephasing. Here, we probe the TLS-QP interaction using a reliable method of in-situ QP injection via an on-chip dc-SQUID that is pulse-biased beyond its switching current. The QP density is calibrated by measuring associated characteristic changes to the qubit's energy relaxation rate. We will present experimental data which show the QP-induced TLS decoherence in good agreement to theoretical predictions.

  17. The top-transmon: a hybrid superconducting qubit for parity-protected quantum computation

    International Nuclear Information System (INIS)

    Hassler, F; Akhmerov, A R; Beenakker, C W J

    2011-01-01

    Qubits constructed from uncoupled Majorana fermions are protected from decoherence, but to perform a quantum computation this topological protection needs to be broken. Parity-protected quantum computation breaks the protection in a minimally invasive way, by coupling directly to the fermion parity of the system-irrespective of any quasiparticle excitations. Here, we propose to use a superconducting charge qubit in a transmission line resonator (the so-called transmon) to perform parity-protected rotations and read-out of a topological (top) qubit. The advantage over an earlier proposal using a flux qubit is that the coupling can be switched on and off with exponential accuracy, promising a reduced sensitivity to charge noise.

  18. 3D Integration for Superconducting Qubits

    Science.gov (United States)

    Rosenberg, Danna; Kim, David; Yost, Donna-Ruth; Mallek, Justin; Yoder, Jonilyn; Das, Rabindra; Racz, Livia; Hover, David; Weber, Steven; Kerman, Andrew; Oliver, William

    Superconducting qubits are a prime candidate for constructing a large-scale quantum processor due to their lithographic scalability, speed, and relatively long coherence times. Moving beyond the few qubit level, however, requires the use of a three-dimensional approach for routing control and readout lines. 3D integration techniques can be used to construct a structure where the sensitive qubits are shielded from a potentially-lossy readout and interconnect chip by an intermediate chip with through-substrate vias, with indium bump bonds providing structural support and electrical conductivity. We will discuss our work developing 3D-integrated coupled qubits, focusing on the characterization of 3D integration components and the effects on qubit performance and design. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  19. Nonlinearities in the quantum measurement process of superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Ioana

    2008-05-15

    The work described in this thesis focuses on the investigation of decoherence and measurement backaction, on the theoretical description of measurement schemes and their improvement. The study presented here is centered around quantum computing implementations using superconducting devices and most important, the Josephson effect. The measured system is invariantly a qubit, i. e. a two-level system. The objective is to study detectors with increasing nonlinearity, e. g. coupling of the qubit to the frequency a driven oscillator, or to the bifurcation amplifier, to determine the performance and backaction of the detector on the measured system and to investigate the importance of a strong qubit-detector coupling for the achievement of a quantum non-demolition type of detection. The first part gives a very basic introduction to quantum information, briefly reviews some of the most promising physical implementations of a quantum computer before focusing on the superconducting devices. The second part presents a series of studies of different qubit measurements, describing the backaction of the measurement onto the measured system and the internal dynamics of the detector. Methodology adapted from quantum optics and chemical physics (master equations, phase-space analysis etc.) combined with the representation of a complex environment yielded a tool capable of describing a nonlinear, non-Markovian environment, which couples arbitrarily strongly to the measured system. This is described in chapter 3. Chapter 4 focuses on the backaction on the qubit and presents novel insights into the qubit dephasing in the strong coupling regime. Chapter 5 uses basically the same system and technical tools to explore the potential of a fast, strong, indirect measurement, and determine how close such a detection would ideally come to the quantum non-demolition regime. Chapter 6 focuses on the internal dynamics of a strongly driven Josephson junction. The analytical results are based on

  20. Nonlinearities in the quantum measurement process of superconducting qubits

    International Nuclear Information System (INIS)

    Serban, Ioana

    2008-05-01

    The work described in this thesis focuses on the investigation of decoherence and measurement backaction, on the theoretical description of measurement schemes and their improvement. The study presented here is centered around quantum computing implementations using superconducting devices and most important, the Josephson effect. The measured system is invariantly a qubit, i. e. a two-level system. The objective is to study detectors with increasing nonlinearity, e. g. coupling of the qubit to the frequency a driven oscillator, or to the bifurcation amplifier, to determine the performance and backaction of the detector on the measured system and to investigate the importance of a strong qubit-detector coupling for the achievement of a quantum non-demolition type of detection. The first part gives a very basic introduction to quantum information, briefly reviews some of the most promising physical implementations of a quantum computer before focusing on the superconducting devices. The second part presents a series of studies of different qubit measurements, describing the backaction of the measurement onto the measured system and the internal dynamics of the detector. Methodology adapted from quantum optics and chemical physics (master equations, phase-space analysis etc.) combined with the representation of a complex environment yielded a tool capable of describing a nonlinear, non-Markovian environment, which couples arbitrarily strongly to the measured system. This is described in chapter 3. Chapter 4 focuses on the backaction on the qubit and presents novel insights into the qubit dephasing in the strong coupling regime. Chapter 5 uses basically the same system and technical tools to explore the potential of a fast, strong, indirect measurement, and determine how close such a detection would ideally come to the quantum non-demolition regime. Chapter 6 focuses on the internal dynamics of a strongly driven Josephson junction. The analytical results are based on

  1. Measurement and Quantum State Transfer in Superconducting Qubits

    Science.gov (United States)

    Mlinar, Eric

    The potential of superconducting qubits as the medium for a scalable quantum computer has motivated the pursuit of improved interactions within this system. Two challenges for the field of superconducting qubits are measurement fidelity, to accurately determine the state of the qubit, and the efficient transfer of quantum states. In measurement, the current state-of-the-art method employs dispersive readout, by coupling the qubit to a cavity and reading the resulting shift in cavity frequency to infer the qubit's state; however, this is vulnerable to Purcell relaxation, as well as being modeled off a simplified two-level abstraction of the qubit. In state transfer, the existing proposal for moving quantum states is mostly untested against non-idealities that will likely be present in an experiment. In this dissertation, we examine three problems within these two areas. We first describe a new scheme for fast and high-fidelity dispersive measurement specifically designed to circumvent the Purcell Effect. To do this, the qubit-resonator interaction is turned on only when the resonator is decoupled from the environment; then, after the resonator state has shifted enough to infer the qubit state, the qubit-resonator interaction is turned off before the resonator and environment are recoupled. We also show that the effectiveness of this "Catch-Disperse-Release'' procedure partly originates from quadrature squeezing of the resonator state induced by the Jaynes-Cummings nonlinearity. The Catch-Disperse-Release measurement scheme treats the qubit as a two-level system, which is a common simplification used in theoretical works. However, the most promising physical candidate for a superconducting qubit, the transmon, is a multi-level system. In the second work, we examine the effects of including the higher energy levels of the transmon. Specifically, we expand the eigenstate picture developed in the first work to encompass multiple qubit levels, and examine the resulting

  2. Entropy Squeezing in Coupled Field-Superconducting Charge Qubit with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    YAN Xue-Qun; SHAO Bin; ZOU Jian

    2007-01-01

    We investigate the entropy squeezing in the system of a superconducting charge qubit coupled to a single mode field. We find an exact solution of the Milburn equation for the system and discuss the influence of intrinsic decoherence on entropy squeezing. As a comparison, we also consider the variance squeezing. Our results show that in the absence of the intrinsic decoherence both entropy and variance squeezings have the same periodic properties of time,and occur at the same range of time. However, when the intrinsic decoherence is considered, we find that as the time going on the entropy squeezing disappears fast than the variance squeezing, there exists a range of time where entropy squeezing can occur but variance squeezing cannot.

  3. Weight-4 Parity Checks on a Surface Code Sublattice with Superconducting Qubits

    Science.gov (United States)

    Takita, Maika; Corcoles, Antonio; Magesan, Easwar; Bronn, Nicholas; Hertzberg, Jared; Gambetta, Jay; Steffen, Matthias; Chow, Jerry

    We present a superconducting qubit quantum processor design amenable to the surface code architecture. In such architecture, parity checks on the data qubits, performed by measuring their X- and Z- syndrome qubits, constitute a critical aspect. Here we show fidelities and outcomes of X- and Z-parity measurements done on a syndrome qubit in a full plaquette consisting of one syndrome qubit coupled via bus resonators to four code qubits. Parities are measured after four code qubits are prepared into sixteen initial states in each basis. Results show strong dependence on ZZ between qubits on the same bus resonators. This work is supported by IARPA under Contract W911NF-10-1-0324.

  4. Superconducting Qubits as Mechanical Quantum Engines.

    Science.gov (United States)

    Sachtleben, Kewin; Mazon, Kahio T; Rego, Luis G C

    2017-09-01

    We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.

  5. Charge qubit coupled to an intense microwave electromagnetic field in a superconducting Nb device: evidence for photon-assisted quasiparticle tunneling.

    Science.gov (United States)

    de Graaf, S E; Leppäkangas, J; Adamyan, A; Danilov, A V; Lindström, T; Fogelström, M; Bauch, T; Johansson, G; Kubatkin, S E

    2013-09-27

    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.

  6. Thermodynamic fingerprints of non-Markovianity in a system of coupled superconducting qubits

    Science.gov (United States)

    Hamedani Raja, Sina; Borrelli, Massimo; Schmidt, Rebecca; Pekola, Jukka P.; Maniscalco, Sabrina

    2018-03-01

    The exploitation and characterization of memory effects arising from the interaction between system and environment is a key prerequisite for quantum reservoir engineering beyond the standard Markovian limit. In this paper we investigate a prototype of non-Markovian dynamics experimentally implementable with superconducting qubits. We rigorously quantify non-Markovianity, highlighting the effects of the environmental temperature on the Markovian to non-Markovian crossover. We investigate how memory effects influence, and specifically suppress, the ability to perform work on the driven qubit. We show that the average work performed on the qubit can be used as a diagnostic tool to detect the presence or absence of memory effects.

  7. Creating nitrogen–vacancy ensembles in diamond for coupling with flux qubit

    International Nuclear Information System (INIS)

    Zheng Ya-Rui; Xing Jian; Chang Yan-Chun; Yan Zhi-Guang; Deng Hui; Wu Yu-Lin; Lü Li; Pan Xin-Yu; Zhu Xiao-Bo; Zheng Dong-Ning

    2017-01-01

    Hybrid quantum system of negatively charged nitrogen−vacancy (NV − ) centers in diamond and superconducting qubits provide the possibility to extend the performances of both systems. In this work, we numerically simulate the coupling strength between NV − ensembles and superconducting flux qubits and obtain a lower bound of 10 16 cm −3 for NV − concentration to achieve a sufficiently strong coupling of 10 MHz when the gap between NV-ensemble and flux qubit is 0. Moreover, we create NV − ensembles in different types of diamonds by 14 N + and 12 C + ion implantation, electron irradiation, and high temperature annealing. We obtain an NV − concentration of 1.05 × 10 16 cm −3 in the diamond with 1-ppm nitrogen impurity, which is expected to have a long coherence time for the low nitrogen impurity concentration. This shows a step toward performance improvement of flux qubit-NV − hybrid system. (paper)

  8. Designing Kerr interactions using multiple superconducting qubit types in a single circuit

    Science.gov (United States)

    Elliott, Matthew; Joo, Jaewoo; Ginossar, Eran

    2018-02-01

    The engineering of Kerr interactions is of great interest for processing quantum information in multipartite quantum systems and for investigating many-body physics in a complex cavity-qubit network. We study how coupling multiple different types of superconducting qubits to the same cavity modes can be used to modify the self- and cross-Kerr effects acting on the cavities and demonstrate that this type of architecture could be of significant benefit for quantum technologies. Using both analytical perturbation theory results and numerical simulations, we first show that coupling two superconducting qubits with opposite anharmonicities to a single cavity enables the effective self-Kerr interaction to be diminished, while retaining the number splitting effect that enables control and measurement of the cavity field. We demonstrate that this reduction of the self-Kerr effect can maintain the fidelity of coherent states and generalised Schrödinger cat states for much longer than typical coherence times in realistic devices. Next, we find that the cross-Kerr interaction between two cavities can be modified by coupling them both to the same pair of qubit devices. When one of the qubits is tunable in frequency, the strength of entangling interactions between the cavities can be varied on demand, forming the basis for logic operations on the two modes. Finally, we discuss the feasibility of producing an array of cavities and qubits where intermediary and on-site qubits can tune the strength of self- and cross-Kerr interactions across the whole system. This architecture could provide a way to engineer interesting many-body Hamiltonians and be a useful platform for quantum simulation in circuit quantum electrodynamics.

  9. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    Science.gov (United States)

    Blencowe, M. P.; Armour, A. D.

    2008-09-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  10. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    International Nuclear Information System (INIS)

    Blencowe, M P; Armour, A D

    2008-01-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  11. The Quantum Socket: Wiring for Superconducting Qubits - Part 3

    Science.gov (United States)

    Mariantoni, M.; Bejianin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    The implementation of a quantum computer requires quantum error correction codes, which allow to correct errors occurring on physical quantum bits (qubits). Ensemble of physical qubits will be grouped to form a logical qubit with a lower error rate. Reaching low error rates will necessitate a large number of physical qubits. Thus, a scalable qubit architecture must be developed. Superconducting qubits have been used to realize error correction. However, a truly scalable qubit architecture has yet to be demonstrated. A critical step towards scalability is the realization of a wiring method that allows to address qubits densely and accurately. A quantum socket that serves this purpose has been designed and tested at microwave frequencies. In this talk, we show results where the socket is used at millikelvin temperatures to measure an on-chip superconducting resonator. The control electronics is another fundamental element for scalability. We will present a proposal based on the quantum socket to interconnect a classical control hardware to a superconducting qubit hardware, where both are operated at millikelvin temperatures.

  12. Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants

    International Nuclear Information System (INIS)

    Yang Chuiping

    2011-01-01

    We propose a way for generating n-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states with a three-level qubit system and (n-1) four-level qubit systems in a cavity. This proposal does not require identical qubit-cavity coupling constants and thus is tolerant to qubit-system parameter nonuniformity and nonexact placement of qubits in a cavity. The proposal does not require adjustment of the qubit-system level spacings during the entire operation. Moreover, it is shown that entanglement can be deterministically generated using this method and the operation time is independent of the number of qubits. The present proposal is quite general, which can be applied to physical systems such as various types of superconducting devices coupled to a resonator or atoms trapped in a cavity.

  13. Probing the interaction of microscopic material defects with quasiparticles using a superconducting qubit

    Energy Technology Data Exchange (ETDEWEB)

    Bilmes, Alexander; Lisenfeld, Juergen; Weiss, Georg; Ustinov, Alexey V. [PI, Fakultaet fuer Physik, KIT, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe (Germany); Heimes, Andreas; Zanker, Sebastian; Schoen, Gerd [TFP, Fakultaet fuer Physik, KIT, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe (Germany)

    2015-07-01

    Two-Level-Systems (TLS) are one of the main sources of decoherence in superconducting nano-scale devices such as SQUIDs, photon detectors, resonators and quantum bits (qubits), although the TLS' microscopic nature remains unclear. We use a superconducting phase qubit to detect TLS contained within the tunnel barrier of the qubit's Josephson junction. We coherently operate individual TLS by resonant microwave pulses and access their quantum state by utilizing their strong coupling to the qubit. Our previous measurements of TLS coherence in dependence of the temperature indicate that quasiparticles may give rise to TLS energy loss and dephasing. Here, we probe the TLS-quasiparticle interaction using a reliable method of in-situ quasiparticle injection via an on-chip dc-SQUID that is pulse-biased beyond its critical current. The quasiparticle density is calibrated by measuring associated characteristic changes to the qubit's resonance frequency and energy relaxation rate. We will present experimental data that clearly show the influence of quasiparticles on TLS coherence.

  14. Multi-qubit controlled-NOT gates and Greenberger-Horne-Zeilinger state generation using one qubit simultaneously controlling n qubits

    Energy Technology Data Exchange (ETDEWEB)

    Song Kehui, E-mail: hhkhsong@vip.sina.com [Department of Physics Science and Information Engineering, Huaihua University, Huaihua, Hunan 418008 (China); Shi Zhengang; Xiang Shaohua; Chen Xiongwen [Department of Physics Science and Information Engineering, Huaihua University, Huaihua, Hunan 418008 (China)

    2012-09-01

    Based on superconducting flux qubits coupled to a superconducting resonator. We propose a scheme for implementing multi-qubit controlled-NOT (C-NOT) gates and Greenberger-Horne-Zeilinger (GHZ) state with one flux qubit simultaneously controlling on n qubits. It is shown that the resonator mode is initially in the vacuum state, a high fidelity for operation procedure can be obtained. In addition, the gate operation time is independent of the number of the qubits, and can be controlled by adjusting detuning and coupling strengths. We also analyze the experimental feasibility that the conditions of the large detuning can be achieved by adjusting frequencies of the resonator and pulses.

  15. Multi-qubit controlled-NOT gates and Greenberger-Horne-Zeilinger state generation using one qubit simultaneously controlling n qubits

    International Nuclear Information System (INIS)

    Song Kehui; Shi Zhengang; Xiang Shaohua; Chen Xiongwen

    2012-01-01

    Based on superconducting flux qubits coupled to a superconducting resonator. We propose a scheme for implementing multi-qubit controlled-NOT (C-NOT) gates and Greenberger-Horne-Zeilinger (GHZ) state with one flux qubit simultaneously controlling on n qubits. It is shown that the resonator mode is initially in the vacuum state, a high fidelity for operation procedure can be obtained. In addition, the gate operation time is independent of the number of the qubits, and can be controlled by adjusting detuning and coupling strengths. We also analyze the experimental feasibility that the conditions of the large detuning can be achieved by adjusting frequencies of the resonator and pulses.

  16. Dynamic behavior of superconducting flux qubit excited by a series of electromagnetic pulses

    International Nuclear Information System (INIS)

    Kiyko, A.S.; Omelyanchouk, A.N.; Shevchenko, S.N.

    2007-01-01

    We study theoretically the behavior of the superconducting flux qubit subjected to a series of electromagnetic pulses. The possibility of controlling system state via changing the parameters of the pulse is studied. We calculated the phase shift in a tank circuit weakly coupled to the qubit which can be measured by the impedance measurement technique. For the flux qubit we consider the possibility of estimating the relaxation rate from the impedance measurements by varying the delay time between the pulses

  17. Rapid characterization of microscopic two-level systems using Landau-Zener transitions in a superconducting qubit

    International Nuclear Information System (INIS)

    Tan, Xinsheng; Yu, Haifeng; Yu, Yang; Han, Siyuan

    2015-01-01

    We demonstrate a fast method to detect microscopic two-level systems in a superconducting phase qubit. By monitoring the population leak after sweeping the qubit bias flux, we are able to measure the two-level systems that are coupled with the qubit. Compared with the traditional method that detects two-level systems by energy spectroscopy, our method is faster and more sensitive. This method supplies a useful tool to investigate two-level systems in solid-state qubits

  18. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si

    Directory of Open Access Journals (Sweden)

    Guilherme Tosi

    2014-08-01

    Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  19. Quantum correlations of coupled superconducting two-qubit system in various cavity environments

    International Nuclear Information System (INIS)

    Yu, Yanxia; Fu, Guolan; Guo, L.P.; Pan, Hui; Wang, Z.S.

    2013-01-01

    Highlights: •We investigate dynamic evolutions of quantum and classical correlations for coupled superconducting system with various cavity environments. •We show that the quantum discord continues to reflect quantum information. •A transition of quantum discord is founded between classical loss and quantum increasing of correlations for a purely dephasing mode. •We show that the environment-dependent models can delay the loss of quantum discord. •We find that the results depend strongly on the initial angle. -- Abstract: Dynamic evolutions of quantum discord, concurrence, and classical correlation are investigated in coupled superconducting system with various cavity environments, focusing on the two-qubit system at an initially entangling X-state and Y-state. We find that for a smaller photon number, the quantum discord, concurrence and classical correlation show damped oscillations for all different decay modes. Differently from the sudden death or the dark and bright periods emerging in evolving processing of the concurrence and classical correlation, however, the quantum discord decreases gradually to zero. The results reveal that the quantum entanglement and classical correlation are lost, but the quantum discord continues to reflect quantum information in the same evolving period. For a larger photon number, the oscillations disappear. It is surprised that there exists a transition of quantum discord between classical loss and quantum increasing of correlations for a purely dephasing mode. For a larger photon number in the Y-state, the transition disappears. Moreover, we show that the environment-dependent models can delay the loss of quantum discord. The results depend strongly on the initial angle, which provide a clue to control the quantum gate of superconducting circuit

  20. Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, Muhammad; Irfan, Muhammad [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Qamar, Shahid, E-mail: shahid_qamar@pieas.edu.pk [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2012-07-15

    In this paper, we propose a scheme to realize three-qubit quantum phase gate of one qubit simultaneously controlling two target qubits using four-level superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. The two lowest levels Divides 0 Right-Pointing-Angle-Bracket and Divides 1 Right-Pointing-Angle-Bracket of each SQUID are used to represent logical states while the higher energy levels Divides 2 Right-Pointing-Angle-Bracket and Divides 3 Right-Pointing-Angle-Bracket are utilized for gate realization. Our scheme does not require adiabatic passage, second order detuning, and the adjustment of the level spacing during gate operation which reduce the gate time significantly. The scheme is generalized for an arbitrary n-qubit quantum phase gate. We also apply the scheme to implement three-qubit quantum Fourier transform.

  1. Fully connected network of superconducting qubits in a cavity

    International Nuclear Information System (INIS)

    Tsomokos, Dimitris I; Ashhab, Sahel; Nori, Franco

    2008-01-01

    A fully connected qubit network is considered, where every qubit interacts with every other one. When the interactions between the qubits are homogeneous, the system is a special case of the finite Lipkin-Meshkov-Glick (LMG) model. We propose a natural implementation of this model using superconducting qubits in state-of-the-art circuit QED. The ground state, the low-lying energy spectrum and the dynamical evolution are investigated. We find that, under realistic conditions, highly entangled states of Greenberger-Horne-Zeilinger (GHZ) and W types can be generated. We also comment on the influence of disorder on the system and discuss the possibility of simulating complex quantum systems, such as Sherrington-Kirkpatrick (SK) spin glasses, with superconducting qubit networks.

  2. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    Science.gov (United States)

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087

  3. Circuit QED with transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wulschner, Karl Friedrich; Puertas, Javier; Baust, Alexander; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Marx, Achim; Menzel, Edwin; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Weides, Martin [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2015-07-01

    Superconducting quantum bits are basic building blocks for circuit QED systems. Applications in the fields of quantum computation and quantum simulation require long coherence times. We have fabricated and characterized superconducting transmon qubits which are designed to operate at a high ratio of Josephson energy and charging energy. Due to their low sensitivity to charge noise transmon qubits show good coherence properties. We couple transmon qubits to coplanar waveguide resonators and coplanar slotline resonators and characterize the devices at mK-temperatures. From the experimental data we derive the qubit-resonator coupling strength, the qubit relaxation time and calibrate the photon number in the resonator via Stark shifts.

  4. Thermal microwave states acting on a superconducting qubit

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Mueting, Miriam; Haeberlein, Max; Wulschner, Friedrich; Fischer, Michael; Deppe, Frank; Fedorov, Kirill; Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Xie, Edwar; Eder, Peter; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstrasse 4, 80799 Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    We analyze the influence of broadband thermal states in the microwave regime on the coherence properties of a superconducting (transmon) qubit coupled to a transmission line resonator. We generate the thermal states inside the resonator by heating a 30 dB attenuator to emit blackbody radiation into a transmission line. In the absence of thermal fluctuations, the qubit coherence time is limited by relaxation. We find that the relaxation rate is almost unaffected by the presence of a thermal field inside the resonator. However, such states induce significant dephasing which increases quadratically with the number of thermal photons, whereas for a coherent population of the resonator, the increase shows a linear behavior. These results confirm the different photon statistics, being Poissonian for a coherent population and super-Poissonian for a thermal population of the resonator.

  5. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  6. Quantum routing of single optical photons with a superconducting flux qubit

    Science.gov (United States)

    Xia, Keyu; Jelezko, Fedor; Twamley, Jason

    2018-05-01

    Interconnecting optical photons with superconducting circuits is a challenging problem but essential for building long-range superconducting quantum networks. We propose a hybrid quantum interface between the microwave and optical domains where the propagation of a single-photon pulse along a nanowaveguide is controlled in a coherent way by tuning the electromagnetically induced transparency window with the quantum state of a flux qubit mediated by the spin in a nanodiamond. The qubit can route a single-photon pulse using the nanodiamond into a quantum superposition of paths without the aid of an optical cavity—simplifying the setup. By preparing the flux qubit in a superposition state our cavityless scheme creates a hybrid state-path entanglement between a flying single optical photon and a static superconducting qubit.

  7. High coherence plane breaking packaging for superconducting qubits

    Science.gov (United States)

    Bronn, Nicholas T.; Adiga, Vivekananda P.; Olivadese, Salvatore B.; Wu, Xian; Chow, Jerry M.; Pappas, David P.

    2018-04-01

    We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

  8. The Quantum Socket: Wiring for Superconducting Qubits - Part 2

    Science.gov (United States)

    Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.

  9. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  10. Superconducting flux qubits with π-junctions

    International Nuclear Information System (INIS)

    Shcherbakova, Anastasia

    2014-01-01

    In this thesis, we present a fabrication technology of Al/AlO x /Al Josephson junctions on Nb pads. The described technology gives the possibility of combining a variety of Nb-based superconducting circuits, like pi-junction phase-shifters with sub-micron Al/AlO x /Al junctions. Using this approach, we fabricated hybrid Nb/Al flux qubits with and without the SFS-junctions and studied dispersive magnetic field response of these qubits as well as their spectroscopy characteristics.

  11. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    Science.gov (United States)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  12. Normal-metal quasiparticle traps for superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Amin [Peter Grunberg Institute (PGI-2), Forschungszentrum Julich, D-52425 Julich (Germany); JARA-Institute for Quantum Information, RWTH Aachen University, D-52056 Aachen (Germany)

    2016-07-01

    Superconducting qubits are promising candidates to implement quantum computation, and have been a subject of intensive research in the past decade. Excitations of a superconductor, known as quasiparticles, can reduce the qubit performance by causing relaxation; the relaxation rate is proportional to the density of quasiparticles tunneling through Josephson junction. Here, we consider engineering quasiparticle traps by covering parts of a superconducting device with normal-metal islands. We utilize a phenomenological quasiparticle diffusion model to study both the decay rate of excess quasiparticles and the steady-state profile of the quasiparticle density in the device. We apply the model to various realistic configurations to explore the role of geometry and location of the traps.

  13. Fault-tolerant architectures for superconducting qubits

    International Nuclear Information System (INIS)

    DiVincenzo, David P

    2009-01-01

    In this short review, I draw attention to new developments in the theory of fault tolerance in quantum computation that may give concrete direction to future work in the development of superconducting qubit systems. The basics of quantum error-correction codes, which I will briefly review, have not significantly changed since their introduction 15 years ago. But an interesting picture has emerged of an efficient use of these codes that may put fault-tolerant operation within reach. It is now understood that two-dimensional surface codes, close relatives of the original toric code of Kitaev, can be adapted as shown by Raussendorf and Harrington to effectively perform logical gate operations in a very simple planar architecture, with error thresholds for fault-tolerant operation simulated to be 0.75%. This architecture uses topological ideas in its functioning, but it is not 'topological quantum computation'-there are no non-abelian anyons in sight. I offer some speculations on the crucial pieces of superconducting hardware that could be demonstrated in the next couple of years that would be clear stepping stones towards this surface-code architecture.

  14. Broadband sample holder for microwave spectroscopy of superconducting qubits

    International Nuclear Information System (INIS)

    Averkin, A. S.; Karpov, A.; Glushkov, E.; Abramov, N.; Shulga, K.; Huebner, U.; Il'ichev, E.; Ustinov, A. V.

    2014-01-01

    We present a practical design and implementation of a broadband sample holder suitable for microwave experiments with superconducting integrated circuits at millikelvin temperatures. Proposed design can be easily integrated in standard dilution cryostats, has flat pass band response in a frequency range from 0 to 32 GHz, allowing the RF testing of the samples with substrate size up to 4 × 4 mm 2 . The parasitic higher modes interference in the holder structure is analyzed and prevented via design considerations. The developed setup can be used for characterization of superconducting parametric amplifiers, bolometers, and qubits. We tested the designed sample holder by characterizing of a superconducting flux qubit at 20 mK temperature

  15. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  16. Measurement and control of quasiparticle dynamics in a superconducting qubit.

    Science.gov (United States)

    Wang, C; Gao, Y Y; Pop, I M; Vool, U; Axline, C; Brecht, T; Heeres, R W; Frunzio, L; Devoret, M H; Catelani, G; Glazman, L I; Schoelkopf, R J

    2014-12-18

    Superconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always been taken to completely shield these circuits from external magnetic fields to protect the integrity of the superconductivity. Here we show vortices can improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we quantitatively distinguish between recombination and trapping mechanisms in controlling the dynamics of residual quasiparticle, and show quantized changes in quasiparticle trapping rate because of individual vortices. These results highlight the prominent role of quasiparticle trapping in future development of superconducting qubits, and provide a powerful characterization tool along the way.

  17. Coupled Qubits for Next Generation Quantum Annealing: Improving Coherence

    Science.gov (United States)

    Weber, Steven; Samach, Gabriel; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David K.; Kerman, Andrew; Oliver, William D.

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents. Here, we examine an alternative approach, using flux qubits with smaller persistent currents and longer coherence times. We demonstrate tunable coupling, a basic building-block for quantum annealing, between two such qubits. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  18. Maintaining Qubit Coherence in the face of Increased Superconducting Circuit Complexity

    Science.gov (United States)

    Hover, David; Weber, Steve; Rosenberg, Danna; Samach, Gabriel; Sears, Adam; Birenbaum, Jeffrey; Woods, Wayne; Yoder, Jonilyn; Racz, Livia; Kerman, Jamie; Oliver, William D.

    Maintaining qubit coherence in the face of increased superconducting circuit complexity is a challenge when designing an extensible quantum computing architecture. We consider this challenge in the context of inductively coupled, long-lived, capacitively-shunted flux qubits. Specifically, we discuss our efforts to mitigate the effects of radiation loss, parasitic chip-modes, cross-coupling, and Purcell decay. Our approach employs numerical modeling of the ideal Hamiltonian and electromagnetic analysis of the circuit, both of which are independently shown to be consistent with experimental results. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  19. rf SQUID system as tunable flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, B. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)]. E-mail: b.ruggiero@cib.na.cnr.it; Granata, C. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Vettoliere, A. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Rombetto, S. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, R. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, M. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Corato, V. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Silvestrini, P. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)

    2006-08-21

    We present a fully integrated rf SQUID-based system as flux qubit with a high control of the flux transfer function of the superconducting transformer modulating the coupling between the flux qubit and the readout system. The control of the system is possible by including into the superconducting flux transformer a vertical two-Josephson-junctions interferometer (VJI) in which the Josephson current is precisely modulated from a maximum to zero by a transversal magnetic field parallel to the flux transformer plane. The proposed system can be also used in a more general configuration to control the off-diagonal terms in the Hamiltonian of the flux qubit and to turn on and off the coupling between two or more qubits.

  20. Collapse and revival of entanglement between qubits coupled to a spin coherent state

    Science.gov (United States)

    Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis

    We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.

  1. Efficient one- and two-qubit pulsed gates for an oscillator-stabilized Josephson qubit

    International Nuclear Information System (INIS)

    Brito, Frederico; DiVincenzo, David P; Koch, Roger H; Steffen, Matthias

    2008-01-01

    We present theoretical schemes for performing high-fidelity one- and two-qubit pulsed gates for a superconducting flux qubit. The 'IBM qubit' consists of three Josephson junctions, three loops and a superconducting transmission line. Assuming a fixed inductive qubit-qubit coupling, we show that the effective qubit-qubit interaction is tunable by changing the applied fluxes, and can be made negligible, allowing one to perform high-fidelity single qubit gates. Our schemes are tailored to alleviate errors due to 1/f noise; we find gates with only 1% loss of fidelity due to this source, for pulse times in the range of 20-30 ns for one-qubit gates (Z rotations, Hadamard) and 60 ns for a two-qubit gate (controlled-Z). Our relaxation and dephasing time estimates indicate a comparable loss of fidelity from this source. The control of leakage plays an important role in the design of our shaped pulses, preventing shorter pulse times. However, we have found that imprecision in the control of the quantum phase plays a major role in the limitation of the fidelity of our gates

  2. Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon

    Science.gov (United States)

    2015-01-01

    776 (2008). 14. M. Pioro-Ladriere, Y. Tokura, T. Obata, T. Kubo , S. Tarucha, Micromagnets for coherent control of spin-charge qubit in lateral...slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006). 16. Y. Kubo et al., Strong coupling of a spin ensemble to a superconducting resonator. Phys

  3. Flux qubit to a transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlein, Max; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Xie, Edwar; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    Within the last decade, superconducting qubits coupled to microwave resonators have been extensively studied within the framework of quantum electrodynamics. Ultimately, quantum computing seems within reach in such architectures. However, error correction schemes are necessary to achieve the required fidelity in multi-qubit operations, drastically increasing the number of qubits involved. In this work, we couple a flux qubit to a transmission line where it interacts with itinerant microwave photons granting access to all-optical quantum computing. In this approach, travelling photons generate entanglement between two waveguides, containing the qubit information. In this presentation, we show experimental data on flux qubits coupled to transmission lines. Furthermore, we will discuss entanglement generation between two separate paths.

  4. Coupled Qubits for Next Generation Quantum Annealing: Novel Interactions

    Science.gov (United States)

    Samach, Gabriel; Weber, Steven; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David; Oliver, William D.; Kerman, Andrew J.

    While the first generation of quantum annealers based on Josephson junction technology have been successfully engineered to represent arrays of spins in the quantum transverse-field Ising model, no circuit architecture to date has succeeded in emulating the more complicated non-stoquastic Hamiltonians of interest for next generation quantum annealing. Here, we present our recent results for tunable ZZ- and XX-coupling between high coherence superconducting flux qubits. We discuss the larger architectures these coupled two-qubit building blocks will enable, as well as comment on the limitations of such architectures. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  5. 10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit

    Science.gov (United States)

    Song, Chao; Xu, Kai; Liu, Wuxin; Yang, Chui-ping; Zheng, Shi-Biao; Deng, Hui; Xie, Qiwei; Huang, Keqiang; Guo, Qiujiang; Zhang, Libo; Zhang, Pengfei; Xu, Da; Zheng, Dongning; Zhu, Xiaobo; Wang, H.; Chen, Y.-A.; Lu, C.-Y.; Han, Siyuan; Pan, Jian-Wei

    2017-11-01

    Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668 ±0.025 . Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.

  6. Building logical qubits in a superconducting quantum computing system

    Science.gov (United States)

    Gambetta, Jay M.; Chow, Jerry M.; Steffen, Matthias

    2017-01-01

    The technological world is in the midst of a quantum computing and quantum information revolution. Since Richard Feynman's famous `plenty of room at the bottom' lecture (Feynman, Engineering and Science23, 22 (1960)), hinting at the notion of novel devices employing quantum mechanics, the quantum information community has taken gigantic strides in understanding the potential applications of a quantum computer and laid the foundational requirements for building one. We believe that the next significant step will be to demonstrate a quantum memory, in which a system of interacting qubits stores an encoded logical qubit state longer than the incorporated parts. Here, we describe the important route towards a logical memory with superconducting qubits, employing a rotated version of the surface code. The current status of technology with regards to interconnected superconducting-qubit networks will be described and near-term areas of focus to improve devices will be identified. Overall, the progress in this exciting field has been astounding, but we are at an important turning point, where it will be critical to incorporate engineering solutions with quantum architectural considerations, laying the foundation towards scalable fault-tolerant quantum computers in the near future.

  7. Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits

    International Nuclear Information System (INIS)

    Galiautdinov, Andrei

    2007-01-01

    Building on the previous results of the Weyl chamber steering method, we demonstrate how to generate high-fidelity controlled-NOT (CNOT) gates by direct application of certain physically relevant Hamiltonians with fixed coupling constants containing Rabi terms. Such Hamiltonians are often used to describe two superconducting qubits driven by local rf pulses. It is found that in order to achieve 100% fidelity in a system with capacitive coupling of strength g, one Rabi term suffices. We give the exact values of the physical parameters needed to implement such CNOT gates. The gate time and all possible Rabi frequencies are found to be t=π/(2g) and Ω 1 /g=√(64n 2 -1),n=1,2,3,.... Generation of a perfect CNOT gate in a system with inductive coupling, characterized by additional constant k, requires the presence of both Rabi terms. The gate time is again t=π/(2g), but now there is an infinite number of solutions, each of which is valid in a certain range of k and is characterized by a pair of integers (n,m), (Ω 1,2 /g)=√(16n 2 -((k-1/2)) 2 )±√(16m 2 -((k+1/2)) 2 ). We distinguish two cases, depending on the sign of the coupling constant: (i) the antiferromagnetic case (k≥0) with n≥m=0,1,2,... and (ii) the ferromagnetic case (k≤0) with n>m=0,1,2,.... We conclude with consideration of fidelity degradation by switching to resonance. Simulation of time evolution based on the fourth-order Magnus expansion reveals characteristics of the gate similar to those found in the exact case, with slightly shorter gate time and shifted values of the Rabi frequencies

  8. Berry phase in superconducting charge qubits interacting with a cavity field

    International Nuclear Information System (INIS)

    Abdel-Aty, Mahmoud

    2009-01-01

    We propose a method for analyzing Berry phase for a multi-qubit system of superconducting charge qubits interacting with a microwave field. By suitably choosing the system parameters and precisely controlling the dynamics, novel connection found between the Berry phase and entanglement creations.

  9. Effect of the time-dependent coupling on a superconducting qubit-field system under decoherence: Entanglement and Wehrl entropy

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk [Mathematics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Berrada, K. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Physics, Riyadh (Saudi Arabia); Eleuch, H. [Department of Physics, McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Department of Physics, Université de Montréal, 2900 boul. douard-Montpetit, Montreal, QC, H3T 1J4 (Canada)

    2015-10-15

    The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount of SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.

  10. Electromagnetically induced interference in a superconducting flux qubit

    International Nuclear Information System (INIS)

    Du lingjie; Yu Yang; Lan Dong

    2013-01-01

    Interaction between quantum two-level systems (qubits) and electromagnetic fields can provide additional coupling channels to qubit states. In particular, the interwell relaxation or Rabi oscillations, resulting, respectively, from the multi- or single-mode interaction, can produce effective crossovers, leading to electromagnetically induced interference in microwave driven qubits. The environment is modeled by a multimode thermal bath, generating the interwell relaxation. Relaxation induced interference, independent of the tunnel coupling, provides deeper understanding to the interaction between the qubits and their environment. It also supplies a useful tool to characterize the relaxation strength as well as the characteristic frequency of the bath. In addition, we demonstrate the relaxation can generate population inversion in a strongly driving two-level system. On the other hand, different from Rabi oscillations, Rabi-oscillation-induced interference involves more complicated and modulated photon exchange thus offers an alternative means to manipulate the qubit, with more controllable parameters including the strength and position of the tunnel coupling. It also provides a testing ground for exploring nonlinear quantum phenomena and quantum state manipulation in qubits either with or without crossover structure.

  11. Qubit dephasing due to quasiparticle tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Zanker, Sebastian; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany)

    2015-07-01

    We study dephasing of a superconducting qubit due to quasiparticle tunneling through a Josephson junction. While qubit decay due to tunneling processes is well understood within a golden rule approximation, pure dephasing due to BCS quasiparticles gives rise to a divergent golden rule rate. We calculate qubit dephasing due to quasiparticle tunneling beyond lowest order approximation in coupling between qubit and quasiparticles. Summing up a certain class of diagrams we show that qubit dephasing due to purely longitudinal coupling to quasiparticles leads to dephasing ∝ exp(-x(t)) where x(t) ∝ t{sup 3/2} for short time scales and x(t) ∝ tlog(t) for long time scales.

  12. Toward nano-fabrication of superconducting ruthenate qubits

    International Nuclear Information System (INIS)

    Wood, Kent S.; Horwitz, James S.; Wu, H.-D.; Bounnak, Sommy S.; Yaguchi, Hiroshi; Maeno, Yoshiteru; Gulian, Armen M.

    2004-01-01

    The lack of thin films is one of the major obstacles in exploring the intriguing quantum properties specific to triplet superconductors. To have a single-domain chiral structure the sample should be made out of thin film, but crystalline imperfections until now have not allowed anybody to succeed in deposition of superconducting thin films of ruthenates. This stops not only general progress in investigating their properties, but in particular forbids practical realization of triplet superconductor qubits. Using the material properties of ruthenates, we have elaborated a method to overcome this problem. This report contains experimental aspects of our recent progress towards triplet superconductor qubits

  13. A blueprint for demonstrating quantum supremacy with superconducting qubits

    Science.gov (United States)

    Neill, C.; Roushan, P.; Kechedzhi, K.; Boixo, S.; Isakov, S. V.; Smelyanskiy, V.; Megrant, A.; Chiaro, B.; Dunsworth, A.; Arya, K.; Barends, R.; Burkett, B.; Chen, Y.; Chen, Z.; Fowler, A.; Foxen, B.; Giustina, M.; Graff, R.; Jeffrey, E.; Huang, T.; Kelly, J.; Klimov, P.; Lucero, E.; Mutus, J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, J. M.

    2018-04-01

    A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.

  14. Designing quantum-information-processing superconducting qubit circuits that exhibit lasing and other atomic-physics-like phenomena on a chip

    Science.gov (United States)

    Nori, Franco

    2008-03-01

    Superconducting (SC) circuits can behave like atoms making transitions between a few energy levels. Such circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics experiments on a silicon chip. This talk overviews a few of our theoretical studies on SC circuits and quantum information processing (QIP) including: SC qubits for single photon generation and for lasing; controllable couplings among qubits; how to increase the coherence time of qubits using a capacitor in parallel to one of the qubit junctions; hybrid circuits involving both charge and flux qubits; testing Bell's inequality in SC circuits; generation of GHZ states; quantum tomography in SC circuits; preparation of macroscopic quantum superposition states of a cavity field via coupling to a SC qubit; generation of nonclassical photon states using a SC qubit in a microcavity; scalable quantum computing with SC qubits; and information processing with SC qubits in a microwave field. Controllable couplings between qubits can be achieved either directly or indirectly. This can be done with and without coupler circuits, and with and without data-buses like EM fields in cavities (e.g., we will describe both the variable-frequency magnetic flux approach and also a generalized double-resonance approach that we introduced). It is also possible to ``turn a quantum bug into a feature'' by using microscopic defects as qubits, and the macroscopic junction as a controller of it. We have also studied ways to implement radically different approaches to QIP by using ``cluster states'' in SC circuits. For a general overview of this field, see, J.Q. You and F. Nori, Phys. Today 58 (11), 42 (2005)

  15. Suppressing relaxation in superconducting qubits by quasiparticle pumping.

    Science.gov (United States)

    Gustavsson, Simon; Yan, Fei; Catelani, Gianluigi; Bylander, Jonas; Kamal, Archana; Birenbaum, Jeffrey; Hover, David; Rosenberg, Danna; Samach, Gabriel; Sears, Adam P; Weber, Steven J; Yoder, Jonilyn L; Clarke, John; Kerman, Andrew J; Yoshihara, Fumiki; Nakamura, Yasunobu; Orlando, Terry P; Oliver, William D

    2016-12-23

    Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability. Copyright © 2016, American Association for the Advancement of Science.

  16. The two-qubit quantum Rabi model: inhomogeneous coupling

    International Nuclear Information System (INIS)

    Mao, Lijun; Huai, Sainan; Zhang, Yunbo

    2015-01-01

    We revisit the analytic solution of the two-qubit quantum Rabi model with inhomogeneous coupling and transition frequencies using a displaced oscillator basis. This approach enables us to apply the same truncation rules and techniques adopted in the Rabi model to the two qubits system. The derived analytical spectra match perfectly with the numerical solutions in the parameter regime where the qubits’ transition frequencies are far off-resonance with the field frequency and the interaction strengths reach the ultrastrong coupling regime. We further explore the dynamical behavior of the two qubits as well as the evolution of entanglement. The analytical methods provide unexpectedly accurate results in describing the dynamics of the two qubits in the present experimentally accessible coupling regime. The time evolutions of the probability for the qubits show that the collapse-revival phenomena emerge, survive and finally disappear when one coupling strength increases from weak to strong coupling regimes and the other coupling strength is well into the ultrastrong coupling regime. The inhomogeneous coupling system exhibits new dynamics, which are different from the homogeneous coupling case. (paper)

  17. Controllable conditional quantum oscillations and quantum gate operations in superconducting flux qubits

    International Nuclear Information System (INIS)

    Chen Aimin; Cho Samyoung

    2011-01-01

    Conditional quantum oscillations are investigated for quantum gate operations in superconducting flux qubits. We present an effective Hamiltonian which describes a conditional quantum oscillation in two-qubit systems. Rabi-type quantum oscillations are discussed in implementing conditional quantum oscillations to quantum gate operations. Two conditional quantum oscillations depending on the states of control qubit can be synchronized to perform controlled-gate operations by varying system parameters. It is shown that the conditional quantum oscillations with their frequency synchronization make it possible to operate the controlled-NOT and -U gates with a very accurate gate performance rate in interacting qubit systems. Further, this scheme can be applicable to realize a controlled multi-qubit operation in various solid-state qubit systems. (author)

  18. A Blueprint for Demonstrating Quantum Supremacy with Superconducting Qubits

    Science.gov (United States)

    Kechedzhi, Kostyantyn

    2018-01-01

    Long coherence times and high fidelity control recently achieved in scalable superconducting circuits paved the way for the growing number of experimental studies of many-qubit quantum coherent phenomena in these devices. Albeit full implementation of quantum error correction and fault tolerant quantum computation remains a challenge the near term pre-error correction devices could allow new fundamental experiments despite inevitable accumulation of errors. One such open question foundational for quantum computing is achieving the so called quantum supremacy, an experimental demonstration of a computational task that takes polynomial time on the quantum computer whereas the best classical algorithm would require exponential time and/or resources. It is possible to formulate such a task for a quantum computer consisting of less than a 100 qubits. The computational task we consider is to provide approximate samples from a non-trivial quantum distribution. This is a generalization for the case of superconducting circuits of ideas behind boson sampling protocol for quantum optics introduced by Arkhipov and Aaronson. In this presentation we discuss a proof-of-principle demonstration of such a sampling task on a 9-qubit chain of superconducting gmon qubits developed by Google. We discuss theoretical analysis of the driven evolution of the device resulting in output approximating samples from a uniform distribution in the Hilbert space, a quantum chaotic state. We analyze quantum chaotic characteristics of the output of the circuit and the time required to generate a sufficiently complex quantum distribution. We demonstrate that the classical simulation of the sampling output requires exponential resources by connecting the task of calculating the output amplitudes to the sign problem of the Quantum Monte Carlo method. We also discuss the detailed theoretical modeling required to achieve high fidelity control and calibration of the multi-qubit unitary evolution in the

  19. Emulating the 1-dimensional Fermi-Hubbard model with superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, Jan-Michael; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-07-01

    A chain of qubits with both ZZ and XX couplings is described by a Hamiltonian which coincides with the Fermi-Hubbard model in one dimension. The qubit system can thus be used to study the quantum properties of this model. We investigate the specific implementation of such an analog quantum simulator by a chain of tunable Transmon qubits, where the ZZ interaction arises due to an inductive coupling and the XX interaction due to a capacitive coupling.

  20. Generation of three-qubit Greenberger-Horne-Zeilinger states of superconducting qubits by using dressed states

    Science.gov (United States)

    Zhang, Xu; Chen, Ye-Hong; Shi, Zhi-Cheng; Shan, Wu-Jiang; Song, Jie; Xia, Yan

    2017-12-01

    Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger-Horne-Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.

  1. A blueprint for demonstrating quantum supremacy with superconducting qubits.

    Science.gov (United States)

    Neill, C; Roushan, P; Kechedzhi, K; Boixo, S; Isakov, S V; Smelyanskiy, V; Megrant, A; Chiaro, B; Dunsworth, A; Arya, K; Barends, R; Burkett, B; Chen, Y; Chen, Z; Fowler, A; Foxen, B; Giustina, M; Graff, R; Jeffrey, E; Huang, T; Kelly, J; Klimov, P; Lucero, E; Mutus, J; Neeley, M; Quintana, C; Sank, D; Vainsencher, A; Wenner, J; White, T C; Neven, H; Martinis, J M

    2018-04-13

    A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    Science.gov (United States)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  3. Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect

    International Nuclear Information System (INIS)

    Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng

    2016-01-01

    Highlights: • We find that the Pancharatnam phases include the information of quantum correlations. • We show that the sudden died and alive phenomena of quantum entanglement is original in the transition of Pancharatnam phase. • We find that the faster the Pancharatnam phases change, the slower the quantum correlations decay. • We find that a subspace of quantum entanglement can exist in the Y-state. • Our results provide a useful approach experimentally to implement the time-dependent geometric quantum computation. - Abstract: We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.

  4. Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system

    Science.gov (United States)

    Motzoi, F.; Mølmer, K.

    2018-05-01

    We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.

  5. Decoherence dynamics of a charge qubit coupled to the noise bath

    International Nuclear Information System (INIS)

    Yang Qin-Ying; Liang Bao-Long; Wang Ji-Suo

    2013-01-01

    By virtue of the canonical quantization method, we present a quantization scheme for a charge qubit based on the superconducting quantum interference device (SQUID), taking the self-inductance of the loop into account. Under reasonable short-time approximation, we study the effect of decoherence in the ohmic case by employing the response function and the norm. It is confirmed that the decoherence time, which depends on the parameters of the circuit components, the coupling strength, and the temperature, can be as low as several picoseconds, so there is enough time to record the information

  6. Observing pure effects of counter-rotating terms without ultrastrong coupling: A single photon can simultaneously excite two qubits

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2017-12-01

    The coherent process that a single photon simultaneously excites two qubits has recently been theoretically predicted by Garziano et al. [L. Garziano, V. Macrì, R. Stassi, O. Di Stefano, F. Nori, and S. Savasta, One Photon Can Simultaneously Excite two or More Atoms, Phys. Rev. Lett. 117, 043601 (2016), 10.1103/PhysRevLett.117.043601]. We propose a different approach to observe a similar dynamical process based on a superconducting quantum circuit, where two coupled flux qubits longitudinally interact with the same resonator. We show that this simultaneous excitation of two qubits (assuming that the sum of their transition frequencies is close to the cavity frequency) is related to the counter-rotating terms in the dipole-dipole coupling between two qubits, and the standard rotating-wave approximation is not valid here. By numerically simulating the adiabatic Landau-Zener transition and Rabi-oscillation effects, we clearly verify that the energy of a single photon can excite two qubits via higher-order transitions induced by the longitudinal couplings and the counter-rotating terms. Compared with previous studies, the coherent dynamics in our system only involves one intermediate state and, thus, exhibits a much faster rate. We also find transition paths which can interfere. Finally, by discussing how to control the two longitudinal-coupling strengths, we find a method to observe both constructive and destructive interference phenomena in our system.

  7. Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

    Science.gov (United States)

    Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid

    2015-06-01

    We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

  8. Preparation of Schrödinger cat states of a cavity field via coupling to a superconducting charge qubit

    Science.gov (United States)

    Freitas, Dagoberto S.; Nemes, M. C.

    2014-05-01

    We extend the approach in Ref. 5 [Y.-X. Liu, L. F. Wei and F. Nori, Phys. Rev. A 71 (2005) 063820] for preparing superposition states of a cavity field interacting with a superconducting charge qubit. We study effects of the nonlinearity on the creation of such states. We show that the main contribution of nonlinear effects is to shorten the time necessary to build the superposition.

  9. Electrically protected resonant exchange qubits in triple quantum dots.

    Science.gov (United States)

    Taylor, J M; Srinivasa, V; Medford, J

    2013-08-02

    We present a modulated microwave approach for quantum computing with qubits comprising three spins in a triple quantum dot. This approach includes single- and two-qubit gates that are protected against low-frequency electrical noise, due to an operating point with a narrowband response to high frequency electric fields. Furthermore, existing double quantum dot advances, including robust preparation and measurement via spin-to-charge conversion, are immediately applicable to the new qubit. Finally, the electric dipole terms implicit in the high frequency coupling enable strong coupling with superconducting microwave resonators, leading to more robust two-qubit gates.

  10. Quantum Gate Operations in Decoherence-Free Subspace with Superconducting Charge Qubits inside a Cavity

    International Nuclear Information System (INIS)

    Yi-Min, Wang; Yan-Li, Zhou; Lin-Mei, Liang; Cheng-Zu, Li

    2009-01-01

    We propose a feasible scheme to achieve universal quantum gate operations in decoherence-free subspace with superconducting charge qubits placed in a microwave cavity. Single-logic-qubit gates can be realized with cavity assisted interaction, which possesses the advantages of unconventional geometric gate operation. The two-logic-qubit controlled-phase gate between subsystems can be constructed with the help of a variable electrostatic transformer. The collective decoherence can be successfully avoided in our well-designed system. Moreover, GHZ state for logical qubits can also be easily produced in this system

  11. Gatemon Benchmarking and Two-Qubit Operation

    Science.gov (United States)

    Casparis, Lucas; Larsen, Thorvald; Olsen, Michael; Petersson, Karl; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Marcus, Charles

    Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability singular to semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors of ~0.5 % for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent SWAP operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of ~91 %, demonstrating the potential of gatemon qubits for building scalable quantum processors. We acknowledge financial support from Microsoft Project Q and the Danish National Research Foundation.

  12. Coherence properties of the 0-π qubit

    Science.gov (United States)

    Groszkowski, Peter; Di Paolo, A.; Grimsmo, A. L.; Blais, A.; Schuster, D. I.; Houck, A. A.; Koch, Jens

    2018-04-01

    Superconducting circuits rank among some of the most interesting architectures for the implementation of quantum information processing devices. The recently proposed 0-π qubit (Brooks et al 2013 Phys. Rev. A 87 52306) promises increased protection from spontaneous relaxation and dephasing. In this paper we present a detailed theoretical study of the coherence properties of the 0-π device, investigate relevant decoherence channels, and show estimates for achievable coherence times in multiple parameter regimes. In our analysis, we include disorder in circuit parameters, which results in the coupling of the qubit to a low-energy, spurious harmonic mode. We analyze the effects of such coupling on decoherence, in particular dephasing due to photon shot noise, and outline how such a noise channel can be mitigated by appropriate parameter choices. In the end we find that the 0-π qubit performs well and may become an attractive candidate for the implementation of the next-generation superconducting devices for uses in quantum computing and information.

  13. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons

  14. The Quantum Socket: Wiring for Superconducting Qubits - Part 1

    Science.gov (United States)

    McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.

  15. Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator

    International Nuclear Information System (INIS)

    Zhen-Gang, Shi; Xiong-Wen, Chen; Xi-Xiang, Zhu; Ke-Hui, Song

    2009-01-01

    This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line. (general)

  16. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    Science.gov (United States)

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  17. Model for an irreversible bias current in the superconducting qubit measurement process

    International Nuclear Information System (INIS)

    Hutchinson, G. D.; Williams, D. A.; Holmes, C. A.; Stace, T. M.; Spiller, T. P.; Barrett, S. D.; Milburn, G. J.; Hasko, D. G.

    2006-01-01

    The superconducting charge-phase ''quantronium'' qubit is considered in order to develop a model for the measurement process used in the experiment of Vion et al. [Science 296, 886 (2002)]. For this model we propose a method for including the bias current in the readout process in a fundamentally irreversible way, which to first order is approximated by the Josephson junction tilted-washboard potential phenomenology. The decohering bias current is introduced in the form of a Lindblad operator and the Wigner function for the current-biased readout Josephson junction is derived and analyzed. During the readout current pulse used in the quantronium experiment we find that the coherence of the qubit initially prepared in a symmetric superposition state is lost at a time of 0.2 ns after the bias current pulse has been applied, a time scale that is much shorter than the experimental readout time. Additionally we look at the effect of Johnson-Nyquist noise with zero mean from the current source during the qubit manipulation and show that the decoherence due to the irreversible bias current description is an order of magnitude smaller than that found through adding noise to the reversible tilted-washboard potential model. Our irreversible bias current model is also applicable to persistent-current-based qubits where the state is measured according to its flux via a small-inductance direct-current superconducting quantum interference device

  18. Robust Concurrent Remote Entanglement Between Two Superconducting Qubits

    Directory of Open Access Journals (Sweden)

    A. Narla

    2016-09-01

    Full Text Available Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.

  19. Quantum information storage using tunable flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Matthias; Brito, Frederico; DiVincenzo, David; Farinelli, Matthew; Keefe, George; Ketchen, Mark; Kumar, Shwetank; Milliken, Frank; Rothwell, Mary Beth; Rozen, Jim; Koch, Roger H, E-mail: msteffe@us.ibm.co [IBM Watson Research Center, Yorktown Heights, NY 10598 (United States)

    2010-02-10

    We present details and results for a superconducting quantum bit (qubit) design in which a tunable flux qubit is coupled strongly to a transmission line. Quantum information storage in the transmission line is demonstrated with a dephasing time of T{sub 2}approx2.5 mus. However, energy lifetimes of the qubit are found to be short (approx10 ns) and not consistent with predictions. Several design and material changes do not affect qubit coherence times. In order to determine the cause of these short coherence times, we fabricated standard flux qubits based on a design which was previously successfully used by others. Initial results show significantly improved coherence times, possibly implicating losses associated with the large size of our qubit. (topical review)

  20. Entangled Coherent States Generation in two Superconducting LC Circuits

    International Nuclear Information System (INIS)

    Chen Meiyu; Zhang Weimin

    2008-01-01

    We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.

  1. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    Science.gov (United States)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  2. Superconducting Qubit with Integrated Single Flux Quantum Controller Part I: Theory and Fabrication

    Science.gov (United States)

    Beck, Matthew; Leonard, Edward, Jr.; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert

    As the size of quantum processors grow, so do the classical control requirements. The single flux quantum (SFQ) Josephson digital logic family offers an attractive route to proximal classical control of multi-qubit processors. Here we describe coherent control of qubits via trains of SFQ pulses. We discuss the fabrication of an SFQ-based pulse generator and a superconducting transmon qubit on a single chip. Sources of excess microwave loss stemming from the complex multilayer fabrication of the SFQ circuit are discussed. We show how to mitigate this loss through judicious choice of process workflow and appropriate use of sacrificial protection layers. Present address: IBM T.J. Watson Research Center.

  3. Qubit absorption refrigerator at strong coupling

    Science.gov (United States)

    Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira

    2017-12-01

    We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.

  4. Towards long lived tunable transmon qubit in microstrip geometry

    Energy Technology Data Exchange (ETDEWEB)

    Braumueller, Jochen; Radtke, Lucas; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V. [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany)

    2013-07-01

    Qubits constitute the main building blocks of a prospective quantum computer. One main challenge is given by short decoherence times. In this work we investigate a transmon qubit based on a superconducting charge qubit with reduced sensitivity to charge noise. This is achieved by operating the qubit at a Josephson to charging energy ratio of about 100. At the same time, a sufficiently large anharmonicity of the energy levels is preserved. The qubit is realized in a 2D geometry based on large capacitor pads being connected by two Josephson junctions in parallel. This split Josephson junction allows the qubit to be tunable in Josephson energy and therefore in resonance frequency. The large area capacitor pads mainly coupled through the substrate and a backside metalization reduce the surface loss contribution. Manipulation and readout of the qubit is mediated by a microstrip resonator coupled to a feedline. We present resonator and qubit designs together with respective microwave simulations. Preliminary results on circuit fabrication and low temperature measurements are also discussed.

  5. Generation of three-qubit Greenberger-Horne-Zeilinger state of superconducting qubits via transitionless quantum driving

    Science.gov (United States)

    Zhang, Xu; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Song, Jie; Xia, Yan

    2017-01-01

    We present an efficient scheme to quickly generate three-qubit Greenberger-Horne-Zeilinger (GHZ) states by using three superconducting qubits (SQs) separated by two coplanar waveguide resonators (CPWRs) capacitively. The scheme is based on quantum Zeno dynamics and the approach of transitionless quantum driving to construct shortcuts to adiabatic passage. In order to highlight the advantages, we compare the present scheme with the traditional one with adiabatic passage. The comparison result shows the shortcut scheme is closely related to the adiabatic scheme but is better than it. Moreover, we discuss the influence of various decoherences with numerical simulation. The result proves that the present scheme is less sensitive to the energy relaxation, the decay of CPWRs and the deviations of the experimental parameters the same as the adiabatic passage. However, the shortcut scheme is effective and robust against the dephasing of SQs in comparison with the adiabatic scheme.

  6. Decoherence of Flux Qubits Coupled to Electronic Circuits

    NARCIS (Netherlands)

    Wilhelm, F.K.; Storcz, M.J.; van der Wal, C.H.; Harmans, C.J.P.M.; Mooij, J.E.

    2003-01-01

    On the way to solid-state quantum computing, overcoming decoherence is the central issue. In this contribution, we discuss the modeling of decoherence of a superonducting flux qubit coupled to dissipative electronic circuitry. We discuss its impact on single qubit decoherence rates and on the

  7. Entangling distant resonant exchange qubits via circuit quantum electrodynamics

    Science.gov (United States)

    Srinivasa, V.; Taylor, J. M.; Tahan, Charles

    2016-11-01

    We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

  8. Superconducting Qubit with Integrated Single Flux Quantum Controller Part II: Experimental Characterization

    Science.gov (United States)

    Leonard, Edward, Jr.; Beck, Matthew; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert

    We describe the characterization of a single flux quantum (SFQ) pulse generator cofabricated with a superconducting quantum circuit on a single chip. Resonant trains of SFQ pulses are used to induce coherent qubit rotations on the Bloch sphere. We describe the SFQ drive characteristics of the qubit at the fundamental transition frequency and at subharmonics (ω01 / n , n = 2 , 3 , 4 , ⋯). We address the issue of quasiparticle poisoning due to the proximal SFQ pulse generator, and we characterize the fidelity of SFQ-based rotations using randomized benchmarking. Present address: IBM T.J. Watson Research Center.

  9. Microscopic Sources of Paramagnetic Noise on α-Al2O3 Substrates for Superconducting Qubits

    Science.gov (United States)

    Dubois, Jonathan; Lee, Donghwa; Lordi, Vince

    2014-03-01

    Superconducting qubits (SQs) represent a promising route to achieving a scalable quantum computer. However, the coupling between electro-dynamic qubits and (as yet largely unidentified) ambient parasitic noise sources has so far limited the functionality of current SQs by limiting coherence times of the quantum states below a practical threshold for measurement and manipulation. Further improvement can be enabled by a detailed understanding of the various noise sources afflicting SQs. In this work, first principles density functional theory (DFT) calculations are employed to identify the microscopic origins of magnetic noise sources in SQs on an α-Al2O3 substrate. The results indicate that it is unlikely that the existence of intrinsic point defects and defect complexes in the substrate are responsible for low frequency noise in these systems. Rather, a comprehensive analysis of extrinsic defects shows that surface aluminum ions interacting with ambient molecules will form a bath of magnetic moments that can couple to the SQ paramagnetically. The microscopic origin of this magnetic noise source is discussed and strategies for ameliorating the effects of these magnetic defects are proposed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Silicon Hard-Stop Mesas for 3D Integration of Superconducting Qubits

    Science.gov (United States)

    Kim, David; Rosenberg, Danna; Osadchy, Brenda; Calusine, Greg; Das, Rabindra; Melville, Alexander; Yoder, Jonilyn; Yost, Donna-Ruth; Racz, Livia; Oliver, William

    As quantum computing with superconducting qubits advances past the few-qubit stage, implementing 3D packaging/integration to route readout/control lines will become increasingly important. One approach is to bond chips that perform different functions using indium bump bonds. Because indium is malleable, however, achieving the desired spacing and tilt between two chips can be challenging. We present an approach based on etching several microns into the silicon substrate to produce hard stop silicon posts. Since this process involves etching into a pristine substrate, it is essential to evaluate its impact on qubit performance. We report the etched surface's effect on the resonator quality factor and qubit coherence time, as well as the improvement in planarity and tilt. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  11. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    Science.gov (United States)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  12. Bulk and surface loss in superconducting transmon qubits

    International Nuclear Information System (INIS)

    Dial, Oliver; McClure, Douglas T; Poletto, Stefano; Keefe, G A; Rothwell, Mary Beth; Gambetta, Jay M; Abraham, David W; Chow, Jerry M; Steffen, Matthias

    2016-01-01

    Decoherence of superconducting transmon qubits is purported to be consistent with surface loss from two-level systems on the substrate surface. Here, we present a study of surface loss in transmon devices, explicitly designed to have varying sensitivities to different surface loss contributors. Our experiments also encompass two particular different sapphire substrates, which reveal the onset of a yet unknown additional loss mechanism outside of surface loss for one of the substrates. Tests across different wafers and devices demonstrate substantial variation, and we emphasize the importance of testing large numbers of devices for disentangling different sources of decoherence. (paper)

  13. Progress toward coupled flux qubits with high connectivity and long coherence times

    Science.gov (United States)

    Weber, Steven; Hover, David; Rosenberg, Danna; Samach, Gabriel; Yoder, Jonilyn; Kerman, Andrew; Oliver, William

    The ability to engineer interactions between qubits is essential to all areas of quantum information science. The capability to tune qubit-qubit couplings in situ is desirable for gate-based quantum computing and analog quantum simulation and necessary for quantum annealing. Consequently, tunable coupling has been the subject of several experimental efforts using both transmon qubits and flux qubits. Recently, our group has demonstrated robust and long-lived capacitively shunted (C-shunt) flux qubits. Here, we discuss our efforts to develop architectures for tunably coupling these qubits. In particular, we focus on optimizing the RF SQUID coupler to achieve high connectivity. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  14. Realization of deterministic quantum teleportation with solid state qubits

    International Nuclear Information System (INIS)

    Andreas Wallfraff

    2014-01-01

    Using modern micro and nano-fabrication techniques combined with superconducting materials we realize electronic circuits the dynamics of which are governed by the laws of quantum mechanics. Making use of the strong interaction of photons with superconducting quantum two-level systems realized in these circuits we investigate both fundamental quantum effects of light and applications in quantum information processing. In this talk I will discuss the deterministic teleportation of a quantum state in a macroscopic quantum system. Teleportation may be used for distributing entanglement between distant qubits in a quantum network and for realizing universal and fault-tolerant quantum computation. Previously, we have demonstrated the implementation of a teleportation protocol, up to the single-shot measurement step, with three superconducting qubits coupled to a single microwave resonator. Using full quantum state tomography and calculating the projection of the measured density matrix onto the basis of two qubits has allowed us to reconstruct the teleported state with an average output state fidelity of 86%. Now we have realized a new device in which four qubits are coupled pair-wise to three resonators. Making use of parametric amplifiers coupled to the output of two of the resonators we are able to perform high-fidelity single-shot read-out. This has allowed us to demonstrate teleportation by individually post-selecting on any Bell-state and by deterministically distinguishing between all four Bell states measured by the sender. In addition, we have recently implemented fast feed-forward to complete the teleportation process. In all instances, we demonstrate that the fidelity of the teleported states are above the threshold imposed by classical physics. The presented experiments are expected to contribute towards realizing quantum communication with microwave photons in the foreseeable future. (author)

  15. The interplay of superconducting quantum circuits and propagating microwave states

    International Nuclear Information System (INIS)

    Goetz, Jan

    2017-01-01

    Superconducting circuit quantum electrodynamics (QED) has developed into a powerful platform for studying the interaction between matter and different states of light. In this context, superconducting quantum bits (qubits) act as artificial atoms interacting with quantized modes of the electromagnetic field. The field can be trapped in superconducting microwave resonators or propagating in transmission lines. In this thesis, we particularly study circuit QED systems where microwave fields are coupled with superconducting flux and transmon qubits. We optimize the coherence properties of the resonators, by analyzing loss mechanisms at excitation powers of approximately one photon on average. We find that two-level fluctuators associated with oxide layers at substrate and metal surfaces and metal-metal interfaces represent the predominant loss channel. Furthermore, we show how broadband thermal photon fields influence the relaxation and dephasing properties of a superconducting transmon qubit. To this end, we study several second-order loss channels of the transmon qubit and find that the broadband fields introduce a larger decay rate than expected from the Purcell filter defined by the resonator. Additionally, we show that qubit dephasing at the flux-insensitive point as well as low-frequency parameter fluctuations can be enhanced by thermal fields. Finally, we study how artificial atoms react to changes in inherent properties of the light fields. We perform a detailed analysis of the photon statistics of thermal fields using their relation to the qubits coherence properties. We quantitatively recover the expected n 2 + n-law for the photon number variance and confirm this result by direct correlation measurements. We then show a novel technique for the in-situ conversion of the interaction parity in light-matter interaction. To this end, we couple spatially controlled microwave fields to a flux qubit with two degrees of freedom.

  16. The interplay of superconducting quantum circuits and propagating microwave states

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan

    2017-06-26

    Superconducting circuit quantum electrodynamics (QED) has developed into a powerful platform for studying the interaction between matter and different states of light. In this context, superconducting quantum bits (qubits) act as artificial atoms interacting with quantized modes of the electromagnetic field. The field can be trapped in superconducting microwave resonators or propagating in transmission lines. In this thesis, we particularly study circuit QED systems where microwave fields are coupled with superconducting flux and transmon qubits. We optimize the coherence properties of the resonators, by analyzing loss mechanisms at excitation powers of approximately one photon on average. We find that two-level fluctuators associated with oxide layers at substrate and metal surfaces and metal-metal interfaces represent the predominant loss channel. Furthermore, we show how broadband thermal photon fields influence the relaxation and dephasing properties of a superconducting transmon qubit. To this end, we study several second-order loss channels of the transmon qubit and find that the broadband fields introduce a larger decay rate than expected from the Purcell filter defined by the resonator. Additionally, we show that qubit dephasing at the flux-insensitive point as well as low-frequency parameter fluctuations can be enhanced by thermal fields. Finally, we study how artificial atoms react to changes in inherent properties of the light fields. We perform a detailed analysis of the photon statistics of thermal fields using their relation to the qubits coherence properties. We quantitatively recover the expected n{sup 2} + n-law for the photon number variance and confirm this result by direct correlation measurements. We then show a novel technique for the in-situ conversion of the interaction parity in light-matter interaction. To this end, we couple spatially controlled microwave fields to a flux qubit with two degrees of freedom.

  17. Overlap junctions for high coherence superconducting qubits

    Science.gov (United States)

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  18. Circuit electromechanics with single photon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  19. Experimental demonstration of conflicting interest nonlocal games using superconducting qubits

    Science.gov (United States)

    Situ, Haozhen; Li, Lvzhou; Huang, Zhiming; He, Zhimin; Zhang, Cai

    2018-06-01

    Conflicting interest nonlocal games are special Bayesian games played by noncooperative players without communication. In recent years, some conflicting interest nonlocal games have been proposed where quantum advice can help players to obtain higher payoffs. In this work we perform an experiment of six conflicting interest nonlocal games using the IBM quantum computer made up of five superconducting qubits. The experimental results demonstrate quantum advantage in four of these games, whereas the other two games fail to showcase quantum advantage in the experiment.

  20. Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch

    International Nuclear Information System (INIS)

    Hoffmann, Elisabeth Christiane Maria

    2013-01-01

    The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work presents the theoretical background, the fabrication techniques and

  1. Multi-qubit parity measurement in circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    DiVincenzo, David P; Solgun, Firat

    2013-01-01

    We present a concept for performing direct parity measurements on three or more qubits in microwave structures with superconducting resonators coupled to Josephson-junction qubits. We write the quantum-eraser conditions that must be fulfilled for the parity measurements as requirements for the scattering phase shift of our microwave structure. We show that these conditions can be fulfilled with present-day devices. We present one particular scheme, implemented with two-dimensional cavity techniques, in which each qubit should be coupled equally to two different microwave cavities. The magnitudes of the couplings that are needed are in the range that has been achieved in current experiments. A quantum calculation indicates that the measurement is optimal if the scattering signal can be measured with near single-photon sensitivity. A comparison with an extension of a related proposal from cavity optics is presented. We present a second scheme, for which a scalable implementation of the four-qubit parities of the surface quantum error correction code can be envisioned. It uses three-dimensional cavity structures, using cavity symmetries to achieve the necessary multiple resonant modes within a single resonant structure. (paper)

  2. Rotation gate for a three-level superconducting quantum interference device qubit with resonant interaction

    International Nuclear Information System (INIS)

    Yang, C.-P.; Han Siyuan

    2006-01-01

    We show a way to realize an arbitrary rotation gate in a three-level superconducting quantum interference device (SQUID) qubit using resonant interaction. In this approach, the two logical states of the qubit are represented by the two lowest levels of the SQUID and a higher-energy intermediate level is utilized for the gate manipulation. By considering spontaneous decay from the intermediate level during the gate operation, we present a formula for calculating average fidelity over all possible initial states. Finally, based on realistic system parameters, we show that an arbitrary rotation gate can be achieved with a high fidelity in a SQUID

  3. Tunable superconducting resonators with integrated trap structures for coupling with ultracold atomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, Benedikt; Wiedmaier, Dominik; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Bothner, Daniel [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)

    2016-07-01

    We intend to investigate a hybrid quantum system where ultracold atomic gases play the role of a long-living quantum memory, coupled to a superconducting qubit via a coplanar waveguide transmission line resonator. As a first step we developed a resonator chip containing a Z-shaped trapping wire for the atom trap. In order to suppress parasitic resonances due to stray capacitances, and to achieve good ground connection we use hybrid superconductor - normal conductor chips. As an additional degree of freedom we add a ferroelectric capacitor making the resonators voltage-tunable. We furthermore show theoretical results on the expected coupling strength between resonator and atomic cloud.

  4. Tunable coupling and ultrastrong interaction in circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Baust, Alexander Theodor

    2015-01-01

    For future quantum information and quantum simulation architectures with superconducting circuits, a profound understanding of the coupling mechanisms between the individual building blocks is essential. In our work, we investigate galvanically coupled qubit-resonator systems, demonstrate the phenomenon of ultrastrong coupling and realize qubit mediated tunable and switchable coupling between two frequency-degenerate coplanar microwave resonators.

  5. Demonstration of Protection of a Superconducting Qubit from Energy Decay

    Science.gov (United States)

    Lin, Yen-Hsiang; Nguyen, Long B.; Grabon, Nicholas; San Miguel, Jonathan; Pankratova, Natalia; Manucharyan, Vladimir E.

    2018-04-01

    Long-lived transitions occur naturally in atomic systems due to the abundance of selection rules inhibiting spontaneous emission. By contrast, transitions of superconducting artificial atoms typically have large dipoles, and hence their lifetimes are determined by the dissipative environment of a macroscopic electrical circuit. We designed a multilevel fluxonium artificial atom such that the qubit's transition dipole can be exponentially suppressed by flux tuning, while it continues to dispersively interact with a cavity mode by virtual transitions to the noncomputational states. Remarkably, energy decay time T1 grew by 2 orders of magnitude, proportionally to the inverse square of the transition dipole, and exceeded the benchmark value of T1>2 ms (quality factor Q1>4 ×107) without showing signs of saturation. The dephasing time was limited by the first-order coupling to flux noise to about 4 μ s . Our circuit validated the general principle of hardware-level protection against bit-flip errors and can be upgraded to the 0 -π circuit [P. Brooks, A. Kitaev, and J. Preskill, Phys. Rev. A 87, 052306 (2013), 10.1103/PhysRevA.87.052306], adding protection against dephasing and certain gate errors.

  6. Weak coupling polaron and Landau-Zener scenario: Qubits modeling

    Science.gov (United States)

    Jipdi, M. N.; Tchoffo, M.; Fokou, I. F.; Fai, L. C.; Ateuafack, M. E.

    2017-06-01

    The paper presents a weak coupling polaron in a spherical dot with magnetic impurities and investigates conditions for which the system mimics a qubit. Particularly, the work focuses on the Landau-Zener (LZ) scenario undergone by the polaron and derives transition coefficients (transition probabilities) as well as selection rules for polaron's transitions. It is proven that, the magnetic impurities drive the polaron to a two-state superposition leading to a qubit structure. We also showed that the symmetry deficiency induced by the magnetic impurities (strong magnetic field) yields to the banishment of transition coefficients with non-stacking states. However, the transition coefficients revived for large confinement frequency (or weak magnetic field) with the orbital quantum numbers escorting transitions. The polaron is then shown to map a qubit independently of the number of relevant states with the transition coefficients lifted as LZ probabilities and given as a function of the electron-phonon coupling constant (Fröhlich constant).

  7. Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Elisabeth Christiane Maria

    2013-05-29

    The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work

  8. Genuine three-qubit entanglement from coupling to a heat bath

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Christopher [Institut fuer Theoretische Physik, Regensburg Univ. (Germany); Braun, Daniel [Universite de Toulouse, Laboratoire de Physique Theorique (IRSAMC), Toulouse (France); CNRS, LPT (IRSAMC), Toulouse (France); Siewert, Jens [Departamento de Quimica Fisica, Universidad del Pais Vasco UPV/EHU, Bilbao (Spain); Ikerbasque, Basque Foundation for Science, Bilbao (Spain)

    2013-07-01

    Initially unentangled qubits which do not interact which each other can become entangled by interacting with a common heat bath. But with more than two qubits, there exist several inequivalent types of entanglement. Therefore it is an important question which types of entanglement can be generated. While exactly determining and quantifying the entanglement for mixed states of more than two qubits is an unsolved problem, recent advancements based on the Greenberger-Horne-Zeilinger symmetry allow to determine a good lower bound for the entanglement. By using those methods we show that for three qubits coupled to the same heat bath indeed all types of entanglement can be generated for almost all separable initial states.

  9. Weak Measurement and Quantum Smoothing of a Superconducting Qubit

    Science.gov (United States)

    Tan, Dian

    In quantum mechanics, the measurement outcome of an observable in a quantum system is intrinsically random, yielding a probability distribution. The state of the quantum system can be described by a density matrix rho(t), which depends on the information accumulated until time t, and represents our knowledge about the system. The density matrix rho(t) gives probabilities for the outcomes of measurements at time t. Further probing of the quantum system allows us to refine our prediction in hindsight. In this thesis, we experimentally examine a quantum smoothing theory in a superconducting qubit by introducing an auxiliary matrix E(t) which is conditioned on information obtained from time t to a final time T. With the complete information before and after time t, the pair of matrices [rho(t), E(t)] can be used to make smoothed predictions for the measurement outcome at time t. We apply the quantum smoothing theory in the case of continuous weak measurement unveiling the retrodicted quantum trajectories and weak values. In the case of strong projective measurement, while the density matrix rho(t) with only diagonal elements in a given basis |n〉 may be treated as a classical mixture, we demonstrate a failure of this classical mixture description in determining the smoothed probabilities for the measurement outcome at time t with both diagonal rho(t) and diagonal E(t). We study the correlations between quantum states and weak measurement signals and examine aspects of the time symmetry of continuous quantum measurement. We also extend our study of quantum smoothing theory to the case of resonance fluorescence of a superconducting qubit with homodyne measurement and observe some interesting effects such as the modification of the excited state probabilities, weak values, and evolution of the predicted and retrodicted trajectories.

  10. An opto-magneto-mechanical quantum interface between distant superconducting qubits.

    Science.gov (United States)

    Xia, Keyu; Vanner, Michael R; Twamley, Jason

    2014-07-04

    A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to achieve coherent optical quantum interconnection between distant superconducting devices is a vital, but highly challenging, goal. We describe a concrete opto-magneto-mechanical system that can interconvert microwave-to-optical quantum information with high fidelity. In one such node we utilise the magnetic fields generated by the supercurrent of a flux qubit to coherently modulate a mechanical oscillator that is part of a high-Q optical cavity to achieve high fidelity microwave-to-optical quantum information exchange. We analyze the transfer between two spatially distant nodes connected by an optical fibre and using currently accessible parameters we predict that the fidelity of transfer could be as high as ~80%, even with significant loss.

  11. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems

    Science.gov (United States)

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-01-01

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654

  12. Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2017-10-01

    An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.

  13. Single-nitrogen-vacancy-center quantum memory for a superconducting flux qubit mediated by a ferromagnet

    Science.gov (United States)

    Lai, Yen-Yu; Lin, Guin-Dar; Twamley, Jason; Goan, Hsi-Sheng

    2018-05-01

    We propose a quantum memory scheme to transfer and store the quantum state of a superconducting flux qubit (FQ) into the electron spin of a single nitrogen-vacancy (NV) center in diamond via yttrium iron garnet (YIG), a ferromagnet. Unlike an ensemble of NV centers, the YIG moderator can enhance the effective FQ-NV-center coupling strength without introducing additional appreciable decoherence. We derive the effective interaction between the FQ and the NV center by tracing out the degrees of freedom of the collective mode of the YIG spins. We demonstrate the transfer, storage, and retrieval procedures, taking into account the effects of spontaneous decay and pure dephasing. Using realistic experimental parameters for the FQ, NV center and YIG, we find that a combined transfer, storage, and retrieval fidelity higher than 0.9, with a long storage time of 10 ms, can be achieved. This hybrid system not only acts as a promising quantum memory, but also provides an example of enhanced coupling between various systems through collective degrees of freedom.

  14. Fast and high-fidelity entangling gate through parametrically modulated longitudinal coupling

    Directory of Open Access Journals (Sweden)

    Baptiste Royer

    2017-05-01

    Full Text Available We investigate an approach to universal quantum computation based on the modulation of longitudinal qubit-oscillator coupling. We show how to realize a controlled-phase gate by simultaneously modulating the longitudinal coupling of two qubits to a common oscillator mode. In contrast to the more familiar transversal qubit-oscillator coupling, the magnitude of the effective qubit-qubit interaction does not rely on a small perturbative parameter. As a result, this effective interaction strength can be made large, leading to short gate times and high gate fidelities. We moreover show how the gate infidelity can be exponentially suppressed with squeezing and how the entangling gate can be generalized to qubits coupled to separate oscillators. Our proposal can be realized in multiple physical platforms for quantum computing, including superconducting and spin qubits.

  15. Quantum logic gates generated by SC-charge qubits coupled to a resonator

    International Nuclear Information System (INIS)

    Obada, A-S F; Hessian, H A; Mohamed, A-B A; Homid, Ali H

    2012-01-01

    We propose some quantum logic gates by using SC-charge qubits coupled to a resonator to study two types of quantum operation. By applying a classical magnetic field with the flux, a simple rotation on the target qubit is generated. Single and two-qubit gates of quantum logic gates are realized. Two-qubit joint operations are firstly generated by applying a classical magnetic field with the flux, and secondly by applying a classical magnetic field with the flux when qubits are placed a quarter of the distance along the resonator. A short discussion of fidelity is given to prove the success of the operations in implementing these gates. (paper)

  16. Low-frequency Landau-Zener-Stuckelberg interference in dissipative superconducting qubits

    International Nuclear Information System (INIS)

    Du-lingjie; Lan- Dong; Yu-Yang

    2013-01-01

    Landau-Zener-Stuckelberg (LZS) interference of continuously driven superconducting qubits is studied. Going beyond the second order perturbation expansion, we find a time dependent stationary population evolution as well as unsymmetrical microwave driven Landau-Zener transitions, resulting from the nonresonant terms which are neglected in rotating-wave approximation. For the low-frequency driving, the qubit population at equilibrium is a periodical function of time, owing to the contribution of the nonresonant terms. In order to obtain the average population, it is found that the average approximation based on the perturbation approach can be applied to the low-frequency region. For the extremely low frequency which is much smaller than the decoherence rate, we develop noncoherence approximation by dividing the evolution into discrete time steps during which the coherence is lost totally. These approximations present comprehensive analytical descriptions of LZS interference in most of parameter space of frequency and decoherence rate, agreeing well with those of the numerical simulations and providing a simple but integrated understanding to system dynamics. The application of our models to microwave cooling can obtain the minimal frequency to realize effective microwave cooling.

  17. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Braumueller, Jochen; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Sandberg, Martin; Vissers, Michael R.; Pappas, David P. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Ustinov, Alexey V. [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); National University of Science and Technology MISIS, Moscow 119049 (Russian Federation); Weides, Martin [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Johannes Gutenberg University, Mainz, 55128 Mainz (Germany)

    2016-07-01

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  18. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

    Science.gov (United States)

    Braumüller, Jochen; Sandberg, Martin; Vissers, Michael R.; Schneider, Andre; Schlör, Steffen; Grünhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey V.; Weides, Martin; Pappas, David P.

    2016-01-01

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μ s . We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z ̂ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  19. A SiGe Quadrature Pulse Modulator for Superconducting Qubit State Manipulation

    Science.gov (United States)

    Kwende, Randy; Bardin, Joseph

    Manipulation of the quantum states of microwave superconducting qubits typically requires the generation of coherent modulated microwave pulses. While many off-the-shelf instruments are capable of generating such pulses, a more integrated approach is likely required if fault-tolerant quantum computing architectures are to be implemented. In this work, we present progress towards a pulse generator specifically designed to drive superconducing qubits. The device is implemented in a commercial silicon process and has been designed with energy-efficiency and scalability in mind. Pulse generation is carried out using a unique approach in which modulation is applied directly to the in-phase and quadrature components of a carrier signal in the 1-10 GHz frequency range through a unique digital-analog conversion process designed specifically for this application. The prototype pulse generator can be digitally programmed and supports sequencing of pulses with independent amplitude and phase waveforms. These amplitude and phase waveforms can be digitally programmed through a serial programming interface. Detailed performance of the pulse generator at room temperature and 4 K will be presented.

  20. Generation of an N-qubit phase gate via atom—cavity nonidentical coupling

    International Nuclear Information System (INIS)

    Ying-Qiao, Zhang; Shou, Zhang

    2009-01-01

    A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but quantum information does not transfer between the atoms and cavity field, and thus the cavity decay is negligible. The gate time does not rise with an increase in the number of qubits. With the choice of a smaller odd number l (related to atom–cavity coupling constants), the phase gate can be generated with a higher fidelity and a higher success probability in a shorter time (the gate time is much shorter than the atomic radiative lifetime and photon lifetime). When the number of qubits N exceeds certain small values, the fidelity and success probability rise slowly with an increase in the number of qubits N. When N → ∞, the fidelity and success probability infinitely approach 1, but never exceed 1. (general)

  1. A model of magnetic impurities within the Josephson junction of a phase qubit

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R P; Pappas, D P [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2010-02-15

    We consider a superconducting phase qubit consisting of a monocrystalline sapphire Josephson junction with its symmetry axis perpendicular to the junction interfaces. Via the London gauge, we present a theoretical model of Fe{sup 3+} magnetic impurities within the junction that describes the effect of a low concentration of such impurities on the operation of the qubit. Specifically, we derive an interaction Hamiltonian expressed in terms of angular momentum states of magnetic impurities and low-lying oscillator states of a current-biased phase qubit. We discuss the coupling between the qubit and impurities within the model near resonance. When the junction is biased at an optimal point for acting as a phase qubit, with a phase difference of {pi}/2 and impurity concentration no greater than 0.05%, we find only a slight decrease in the Q factor of less than 0.01%.

  2. Interacting two-level defects as sources of fluctuating high-frequency noise in superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Clemens [ARC Centre of Excellence for Engineered Quantum Systems, The University of Queensland, Brisbane (Australia); Lisenfeld, Juergen [Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe (Germany); Shnirman, Alexander [Institut fuer Theory der Kondensierten Materie, Karlsruhe Institute of Technology, Karlsruhe (Germany); LD Landau Institute for Theoretical Physics, Moscow (Russian Federation); Poletto, Stefano [IBM TJ Watson Research Centre, Yorktown Heights (United States)

    2016-07-01

    Since the very first experiments, superconducting circuits have suffered from strong coupling to environmental noise, destroying quantum coherence and degrading performance. In state-of-the-art experiments, it is found that the relaxation time of superconducting qubits fluctuates as a function of time. We present measurements of such fluctuations in a 3D-transmon circuit and develop a qualitative model based on interactions within a bath of background two-level systems (TLS) which emerge from defects in the device material. In our model, the time-dependent noise density acting on the qubit emerges from its near-resonant coupling to high-frequency TLS which experience energy fluctuations due to their interaction with thermally fluctuating TLS at low frequencies. We support the model by providing experimental evidence of such energy fluctuations observed in a single TLS in a phase qubit circuit.

  3. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-15

    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  4. Quantum correlations dynamics of three-qubit states coupled to an XY spin chain: Role of coupling strengths

    International Nuclear Information System (INIS)

    Yin Shao-Ying; Song Jie; Xu Xue-Xin; Zhou Ke-Ya; Liu Shu-Tian; Liu Qing-Xin

    2017-01-01

    We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit’s coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings. (paper)

  5. Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system.

    Science.gov (United States)

    Geng, Qi; Zhu, Ka-Di

    2016-07-10

    We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.

  6. Resonant coupling applied to superconducting accelerator structures

    International Nuclear Information System (INIS)

    Potter, James M.; Krawczyk, Frank L.

    2013-01-01

    The concept of resonant coupling and the benefits that accrue from its application is well known in the world of room temperature coupled cavity linacs. Design studies show that it can be applied successfully between sections of conventional elliptical superconducting coupled cavity accelerator structures and internally to structures with spoked cavity resonators. The coupling mechanisms can be designed without creating problems with high field regions or multipactoring. The application of resonant coupling to superconducting accelerators eliminates the need for complex cryogenic mechanical tuners and reduces the time needed to bring a superconducting accelerator into operation.

  7. Optimization of Transmon Qubit Fabrication

    Science.gov (United States)

    Chang, Josephine; Rothwell, Mary; Keefe, George; IBM Quantum Computing Group Team

    2013-03-01

    Rapid advances in the field of superconducting transmon qubits have refined our understanding of the role that substrate and interfaces play in qubit decoherence. Here, we review strategies for enhancing coherence times in both 2D and 3D transmon qubits through substrate design, structural improvements, and process optimization. Results correlating processing techniques to decoherence times are presented, and some novel structures are proposed for further consideration. We acknowledge support from IARPA under contract W911NF-10-1-0324

  8. Decoherence dynamics of two charge qubits in vertically coupled quantum dots

    International Nuclear Information System (INIS)

    Ben Chouikha, W.; Bennaceur, R.; Jaziri, S.

    2007-01-01

    The decoherence dynamics of two charge qubits in a double quantum dot is investigated theoretically. We consider the quantum dynamics of two interacting electrons in a vertically coupled quantum dot driven by an external electric field. We derive the equations of motion for the density matrix, in which the presence of an electron confined in the double dot represents one qubit. A Markovian approach to the dynamical evolution of the reduced density matrix is adopted. We evaluate the concurrence of two qubits in order to study the effect of acoustic phonons on the entanglement. We also show that the disentanglement effect depends on the double dot parameters and increases with the temperature

  9. Silicon quantum processor with robust long-distance qubit couplings

    Energy Technology Data Exchange (ETDEWEB)

    Tosi, Guilherme; Mohiyaddin, Fahd A.; Schmitt, Vivien; Tenberg, Stefanie; Rahman, Rajib; Klimeck, Gerhard; Morello, Andrea

    2017-09-06

    Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.

  10. Micromachined integrated quantum circuit containing a superconducting qubit

    Science.gov (United States)

    Brecht, Teresa; Chu, Yiwen; Axline, Christopher; Pfaff, Wolfgang; Blumoff, Jacob; Chou, Kevin; Krayzman, Lev; Frunzio, Luigi; Schoelkopf, Robert

    We demonstrate a functional multilayer microwave integrated quantum circuit (MMIQC). This novel hardware architecture combines the high coherence and isolation of three-dimensional structures with the advantages of integrated circuits made with lithographic techniques. We present fabrication and measurement of a two-cavity/one-qubit prototype, including a transmon coupled to a three-dimensional microwave cavity micromachined in a silicon wafer. It comprises a simple MMIQC with competitive lifetimes and the ability to perform circuit QED operations in the strong dispersive regime. Furthermore, the design and fabrication techniques that we have developed are extensible to more complex quantum information processing devices.

  11. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part II - Applications

    Science.gov (United States)

    AsséMat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    In part I, we presented the theoretic foundations of the GOAT algorithm for the optimal control of quantum systems. Here in part II, we focus on several applications of GOAT to superconducting qubits architecture. First, we consider a control-Z gate on Xmons qubits with an Erf parametrization of the optimal pulse. We show that a fast and accurate gate can be obtained with only 16 parameters, as compared to hundreds of parameters required in other algorithms. We present numerical evidences that such parametrization should allow an efficient in-situ calibration of the pulse. Next, we consider the flux-tunable coupler by IBM. We show optimization can be carried out in a more realistic model of the system than was employed in the original study, which is expected to further simplify the calibration process. Moreover, GOAT reduced the complexity of the optimal pulse to only 6 Fourier components, composed with analytic wrappers.

  12. Note on the quantum correlations of two qubits coupled to photon baths

    International Nuclear Information System (INIS)

    Quintana, Claudia; Rosas-Ortiz, Oscar

    2015-01-01

    The time-evolution of the quantum correlations between two qubits that are coupled to a pair of photon baths is studied. We show that conditioned transitions occurring in the entire system have influence on the time-evolution of the subsystems. Then, we show that the study of the population inversion of each of the qubits is a measure of the correlations between them that is in agreement with the notion of concurrence. (paper)

  13. Preparation of Greenberger-Horne-Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED

    International Nuclear Information System (INIS)

    Yang Chuiping; Han Siyuan

    2004-01-01

    A scheme is proposed for generating Greenberger-Horne-Zeilinger (GHZ) entangled states of multiple superconducting quantum-interference device (SQUID) qubits by the use of a microwave cavity. The scheme operates essentially by creating a single photon through an auxiliary SQUID built in the cavity and performing a joint multiqubit phase shift with assistance of the cavity photon. It is shown that entanglement can be generated using this method, deterministic and independent of the number of SQUID qubits. In addition, we show that the present method can be applied to preparing many atoms in a GHZ entangled state, with tolerance to energy relaxation during the operation

  14. PREFACE: Nobel Symposium 141: Qubits for Future Quantum Information Nobel Symposium 141: Qubits for Future Quantum Information

    Science.gov (United States)

    Claeson, Tord; Delsing, Per; Wendin, Göran

    2009-12-01

    correction, have yet to be solved. It has been predicted that quantum computers will be able to perform certain complicated computations or simulations in minutes or hours instead of years as with present computers. So far there exist very few useful quantum algorithms; however there is hope that the development of these will be stimulated once there is a breakthrough in hardware. Remarkable progress has been made in quantum engineering and quantum measurements, but a large scale quantum computer is still far off. Quantum communication and cryptography are much closer to the market than a quantum computer. The development of quantum information has meant a large push in the field of quantum physics, that previously could only be studied in the microscopic world. Artificial atoms, realized by circuit technology and mimicking the properties of 'natural' atoms, are one example of the new possibilities opened up by quantum engineering. Several different types of qubits have been suggested. Some are based upon microscopic entities, like atoms and ions in traps, or nuclear spins in molecules. They can have long coherence times (i.e. a long period allowing many operations, of the order of 10 000, to be performed before the state needs to be refreshed) but they are difficult to integrate into large systems. Other qubits are based upon solid state components that facilitate integration and coupling between qubits, but they suffer from interactions with the environment and their coherent states have a limited lifetime. Advanced experiments have been performed with superconducting Josephson junctions and many breakthroughs have been reported in the last few years. They have an advantage in the inherent coherence of superconducting Cooper pairs over macroscopic distances. We chose to focus the Nobel Symposium on Qubits for Future Quantum Information on superconducting qubits to allow for depth in discussions, but at the same time to allow comparison with other types of qubits that may

  15. Temperature dependence of coherence in transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Schloer, Steffen; Braumueller, Jochen; Lukashenko, Oleksandr; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V. [Physikalisches Institut, KIT, Karlsruhe (Germany); Sandberg, Martin; Vissers, Michael R.; Pappas, David P. [NIST, Boulder, CO (United States)

    2015-07-01

    Superconducting qubits are a promising field of research, not only with respect to quantum computing but also as highly sensitive detectors and due to the possibility of using them to study fundamental implications of quantum mechanics. The requirements for qubits that can be used as building blocks in a potential quantum computer are challenging. Modern superconducting qubits like the transmon are strong candidates for achieving these goals. The main challenge here is to increase the coherence of prepared quantum states. Here, we experimentally investigate the influence of temperature variation on relaxation and dephasing of a transmon qubit. Our goal is to understand decoherence mechanisms in material optimized circuits. Aiming at longer coherence, in this case peaking over 50 μs for T{sub 1} and T{sub 2}, our samples are fabricated at NIST using two different materials. Low-loss TiN was used for the shunt capacitance as well as the resonator, combined with shadow evaporated ultra-small Al-AlO{sub x}-Al Josephson junctions. We will present temperature-dependent data on qubit relaxation and dephasing times as well as power spectra. Our data will be compared to previously obtained temperature dependent data for other types of qubits.

  16. Characterizing a four-qubit planar lattice for arbitrary error detection

    Science.gov (United States)

    Chow, Jerry M.; Srinivasan, Srikanth J.; Magesan, Easwar; Córcoles, A. D.; Abraham, David W.; Gambetta, Jay M.; Steffen, Matthias

    2015-05-01

    Quantum error correction will be a necessary component towards realizing scalable quantum computers with physical qubits. Theoretically, it is possible to perform arbitrarily long computations if the error rate is below a threshold value. The two-dimensional surface code permits relatively high fault-tolerant thresholds at the ~1% level, and only requires a latticed network of qubits with nearest-neighbor interactions. Superconducting qubits have continued to steadily improve in coherence, gate, and readout fidelities, to become a leading candidate for implementation into larger quantum networks. Here we describe characterization experiments and calibration of a system of four superconducting qubits arranged in a planar lattice, amenable to the surface code. Insights into the particular qubit design and comparison between simulated parameters and experimentally determined parameters are given. Single- and two-qubit gate tune-up procedures are described and results for simultaneously benchmarking pairs of two-qubit gates are given. All controls are eventually used for an arbitrary error detection protocol described in separate work [Corcoles et al., Nature Communications, 6, 2015].

  17. Design of a gap tunable flux qubit with FastHenry

    Science.gov (United States)

    Akhtar, Naheed; Zheng, Yarui; Nazir, Mudassar; Wu, Yulin; Deng, Hui; Zheng, Dongning; Zhu, Xiaobo

    2016-12-01

    In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit coherence properties. One of the most important circuit parameters, which needs to be carefully designed, is the mutual inductance among different parts of a superconducting circuit. In this paper we demonstrate how to design a gap-tunable flux qubit by layout design and inductance extraction using a fast field solver FastHenry. The energy spectrum of the gap-tunable flux qubit shows that the measured parameters are close to the design values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374344, 11404386, and 91321208), the National Basic Research Program of China (Grant No. 2014CB921401), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).

  18. Invariants-based shortcuts for fast generating Greenberger–Horne–Zeilinger state among three superconducting qubits

    International Nuclear Information System (INIS)

    Xu Jing; Yu Lin; Wu Jin-Lei; Ji Xin

    2017-01-01

    As one of the most promising candidates for implementing quantum computers, superconducting qubits (SQs) are adopted for fast generating the Greenberger–Horne–Zeilinger (GHZ) state by using invariants-based shortcuts. Three SQs are separated and connected by two coplanar waveguide resonators (CPWRs) capacitively. The complicated system is skillfully simplified to a three-state system, and a GHZ state among three SQs is fast generated with a very high fidelity and simple driving pulses. Numerical simulations indicate the scheme is insensitive to parameter deviations. Besides, the robustness of the scheme against decoherence is discussed in detail. (paper)

  19. LTS junction technology for RSFQ and qubit circuit applications

    International Nuclear Information System (INIS)

    Buchholz, F.-Im.; Balashov, D.V.; Dolata, R.; Hagedorn, D.; Khabipov, M.I.; Kohlmann, J.; Zorin, A.B.; Niemeyer, J.

    2006-01-01

    The potentials of LTS junction technology and electronics offer innovative solutions for the processing of quantum information in RSFQ and qubit circuits. We discuss forthcoming approaches based on standard SIS technology and addressed to the development of new superconducting device concepts. The challenging problem of reducing back action noise of the RSFQ circuits deteriorating coherent properties of the qubit is currently solved by implementing Josephson junctions with non-linear shunts based on LTS SIS-SIN technology. Upgraded NbAlO x trilayer technology enables the fabrication of high-quality mesoscopic Josephson junction transistors down to the nanometer range suitable for a qubit-operation regime. As applications, circuit concepts are presented which combine superconducting devices of different nature

  20. The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiufeng, E-mail: xfcao@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Ai, Qing; Sun, Chang-Pu [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2012-01-09

    We propose a strategy to demonstrate the transition from the quantum Zeno effect (QZE) to the anti-Zeno effect (AZE) using a superconducting qubit coupled to a transmission line cavity, by varying the central frequency of the cavity mode. Our results are obtained without the rotating wave approximation (RWA), and the initial state (a dressed state) is easy to prepare. Moreover, we find that in the presence of both qubit's intrinsic bath and the cavity bath, the emergence of the QZE and the AZE behaviors relies not only on the match between the qubit energy-level-spacing and the central frequency of the cavity mode, but also on the coupling strength between the qubit and the cavity mode. -- Highlights: ► We propose how to demonstrate the transition from Zeno effect to anti-Zeno effect. ► Our results are beyond the RWA, and the initial state is easy to prepare. ► The case of both qubit's intrinsic bath and cavity bath coexist is also studied.

  1. Two-axis control of a coupled quantum dot - donor qubit in Si-MOS

    Science.gov (United States)

    Rudolph, Martin; Harvey-Collard, Patrick; Jacobson, Tobias; Wendt, Joel; Pluym, Tammy; Dominguez, Jason; Ten-Eyck, Greg; Lilly, Mike; Carroll, Malcolm

    Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  2. Analysis and synthesis of multi-qubit, multi-mode quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Solgun, Firat

    2015-03-27

    In this thesis we propose new methods in multi-qubit multi-mode circuit quantum electrodynamics (circuit-QED) architectures. First we describe a direct parity measurement method for three qubits, which can be realized in 2D circuit-QED with a possible extension to four qubits in a 3D circuit-QED setup for the implementation of the surface code. In Chapter 3 we show how to derive Hamiltonians and compute relaxation rates of the multi-mode superconducting microwave circuits consisting of single Josephson junctions using an exact impedance synthesis technique (the Brune synthesis) and applying previous formalisms for lumped element circuit quantization. In the rest of the thesis we extend our method to multi-junction (multi-qubit) multi-mode circuits through the use of state-space descriptions which allows us to quantize any multiport microwave superconducting circuit with a reciprocal lossy impedance response.

  3. Three-electron spin qubits

    Science.gov (United States)

    Russ, Maximilian; Burkard, Guido

    2017-10-01

    -only qubits which can be divided into short-ranged and long-ranged interactions. Both of these interaction types are expected to be necessary in a large-scale quantum computer. The short-ranged interactions use the exchange coupling by placing qubits next to each other and applying exchange-pulses (DiVincenzo et al 2000 Nature 408 339, Fong and Wandzura 2011 Quantum Inf. Comput. 11 1003, Setiawan et al 2014 Phys. Rev. B 89 085314, Zeuch et al 2014 Phys. Rev. B 90 045306, Doherty and Wardrop 2013 Phys. Rev. Lett. 111 050503, Shim and Tahan 2016 Phys. Rev. B 93 121410), while the long-ranged interactions use the photons of a superconducting microwave cavity as a mediator in order to couple two qubits over long distances (Russ and Burkard 2015 Phys. Rev. B 92 205412, Srinivasa et al 2016 Phys. Rev. B 94 205421). The nature of the three-electron qubit states each having the same total spin and total spin in z-direction (same Zeeman energy) provides a natural protection against several sources of noise (DiVincenzo et al 2000 Nature 408 339, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Kempe et al 2001 Phys. Rev. A 63 042307, Russ and Burkard 2015 Phys. Rev. B 91 235411). The price to pay for this advantage is an increase in gate complexity. We also take into account the decoherence of the qubit through the influence of magnetic noise (Ladd 2012 Phys. Rev. B 86 125408, Mehl and DiVincenzo 2013 Phys. Rev. B 87 195309, Hung et al 2014 Phys. Rev. B 90 045308), in particular dephasing due to the presence of nuclear spins, as well as dephasing due to charge noise (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434), fluctuations of the energy levels on each dot due to noisy gate voltages or the environment. Several techniques are discussed which partly decouple the qubit from magnetic noise (Setiawan et al 2014 Phys

  4. Characterization of superconducting transmission line resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.

  5. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is bas...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  6. Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states

    Science.gov (United States)

    Nori, Franco; Ashhab, Sahel

    2011-03-01

    We consider a system composed of a two-level system (i.e. a qubit) and a harmonic oscillator in the ultrastrong-coupling regime, where the coupling strength is comparable to the qubit and oscillator energy scales. We explore the possibility of preparing nonclassical states in this system, especially in the ground state of the combined system. The nonclassical states that we consider include squeezed states, Schrodinger-cat states and entangled states. We also analyze the nature of the change in the ground state as the coupling strength is increased, going from a separable ground state in the absence of coupling to a highly entangled ground state in the case of very strong coupling. Reference: S. Ashhab and F. Nori, Phys. Rev. A 81, 042311 (2010). We thank support from DARPA, AFOSR, NSA, LPS, ARO, NSF, MEXT, JSPS, FIRST, and JST.

  7. Single flux pulses affecting the ensemble of superconducting qubits

    Science.gov (United States)

    Denisenko, M. V.; Klenov, N. V.; Satanin, A. M.

    2018-02-01

    The present study is devoted to development of a technique for numerical simulation of the wave function dynamics the single Josephson qubits and arrays of noninteracting qubits controlled by ultra-short pulses. We wish to demonstrate the feasibility of a new principle of basic logical operations on the picosecond timescale. The influence of the unipolar pulse ("fluxon") form on the evolution of the state during the execution of the quantum one-qubit operations - "NOT", "READ" and " √{N O T } " - is investigated in the presence of decoherence. In the array of non interacting qubits, the question of the influence of the spread of their energy parameters (tunnel constants) is studied. It is shown that a single unipolar pulse can control a huge array of artificial atoms with 10% spread of geometric parameters in the array.

  8. Memory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chain

    International Nuclear Information System (INIS)

    Apollaro, Tony J. G.; Di Franco, Carlo; Plastina, Francesco; Paternostro, Mauro

    2011-01-01

    Using recently proposed measures for non-Markovianity [H.-P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)], we study the dynamics of a qubit coupled to a spin environment via an energy-exchange mechanism. We show the existence of a point, in the parameter space of the system, where the qubit dynamics is effectively Markovian and that such a point separates two regions with completely different dynamical behaviors. Indeed, our study demonstrates that the qubit evolution can in principle be tuned from a perfectly forgetful one to a deep non-Markovian regime where the qubit is strongly affected by the dynamical backaction of the environmental spins. By means of a theoretical quantum process tomography analysis, we provide a complete and intuitive characterization of the qubit channel.

  9. Ultracoherent operation of spin qubits with superexchange coupling

    Science.gov (United States)

    Rančić, Marko J.; Burkard, Guido

    2017-11-01

    With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.

  10. Decoherence of coupled Josephson charge qubits due to partially correlated low-frequency noise

    International Nuclear Information System (INIS)

    Hu, Yong; Zhou, Zheng-Wei; Cai, Jian-Ming; Guo, Guang-Can

    2007-01-01

    Josephson charge qubits are promising candidates for scalable quantum computing. However, their performances are strongly degraded by decoherence due to low-frequency background noise, typically with a 1/f spectrum. In this paper, we investigate the decoherence process of two Cooper pair boxes (CPBs) coupled via a capacitor. Going beyond the common and uncorrelated noise models and the Bloch-Redfield formalism of previous works, we study the coupled system's quadratic dephasing under the condition of partially correlated noise sources. Based on reported experiments and generally accepted noise mechanisms, we introduce a reasonable assumption for the noise correlation, with which the calculation of multiqubit decoherence can be simplified to a problem on the single-qubit level. For the conventional Gaussian 1/f noise case, our results demonstrate that the quadratic dephasing rates are not very sensitive to the spatial correlation of the noises. Furthermore, we discuss the feasibility and efficiency of dynamical decoupling in the coupled CPBs

  11. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    Science.gov (United States)

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

  12. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  13. Semiconductor-inspired design principles for superconducting quantum computing.

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  14. Quantum discord for a central two-qubit system coupled to an XY-spin-chain environment

    International Nuclear Information System (INIS)

    Liu Benqiong; Shao Bin; Zou Jian

    2010-01-01

    We investigate the dynamic behaviors of quantum discord for a central two-qubit system coupled to an XY-spin-chain environment. In the weak-coupling regime, we show that the quantum discord for the two central qubits can become minimized rapidly close to the critical point of a quantum phase transition. By considering the two qubits that are initially prepared in the Werner state, we study the evolution of the quantum discord and that of entanglement under the same conditions. Our results imply that entanglement can disappear completely after a finite time, while the quantum discord decreases and tends to be a stable value according to the initial-state parameter for a very-long-time interval. In this sense, the quantum discord is more robust than entanglement for the quantum system exposed to the environment. The relation between the quantum correlations and the classical correlation is also shown for two particular cases.

  15. Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)

    Science.gov (United States)

    Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato

    2008-10-01

    Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of

  16. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    parts on optical signals and any quasiparticle loss caused by optical photons on microwave signals. Using a superconducting 3D cavity as the microwave...plasmonic and quasiparticle losses. 3. The electro-optic material should be easily integrable with superconducting circuits. A fully integrated

  17. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach

    International Nuclear Information System (INIS)

    Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting

    2011-01-01

    Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.

  18. Flying spin-qubit gates implemented through Dresselhaus and Rashba spin-orbit couplings

    International Nuclear Information System (INIS)

    Gong, S.J.; Yang, Z.Q.

    2007-01-01

    A theoretical scheme is proposed to implement flying spin-qubit gates based on two semiconductor wires with Dresselhaus and Rashba spin-orbit couplings (SOCs), respectively. It is found that under the manipulation of the Dresselhaus/Rashba SOC, spin rotates around x/y axis in the three-dimensional spin space. By combining the two kinds of manipulations, i.e. connecting the two kinds of semiconductor wires in series, we obtain a universal set of losses flying single-qubit gates including Hadamard, phase, and π/8 gates. A ballistic switching effect of electronic flow is also found in the investigation. Our results may be useful in future spin or nanoscale electronics

  19. Trapped Ion Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm

    2017-04-01

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].

  20. Superconductivity in multilayer perovskite. Weak coupling analysis

    International Nuclear Information System (INIS)

    Koikegami, Shigeru; Yanagisawa, Takashi

    2006-01-01

    We investigate the superconductivity of a three-dimensional d-p model with a multilayer perovskite structure on the basis of the second-order perturbation theory within the weak coupling framework. Our model has been designed with multilayer high-T c superconducting cuprates in mind. In our model, multiple Fermi surfaces appear, and the component of a superconducting gap function develops on each band. We have found that the multilayer structure can stabilize the superconductivity in a wide doping range. (author)

  1. Noise suppression and long-range exchange coupling for gallium arsenide spin qubits

    DEFF Research Database (Denmark)

    Malinowski, Filip

    This thesis presents the results of the experimental study performed on spin qubits realized in gate-defined gallium arsenide quantum dots, with the focus on noise suppression and long-distance coupling. First, we show that the susceptibility to charge noise can be reduced by reducing the gradien...

  2. The two Josephson junction flux qubit with large tunneling amplitude

    International Nuclear Information System (INIS)

    Shnurkov, V.I.; Soroka, A.A.; Mel'nik, S.I.

    2008-01-01

    In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be increased substantially by engineering of the qubit circuit if the tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with present-day technology. To overcome this difficulty we consider here a flux qubit with high energy-level separation between the 'ground' and 'excited' states, consisting of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1 K. Analytical results for the tunneling amplitude obtained within the semiclassical approximation by the instanton technique show good correlation with a numerical solution

  3. Superconducting InSb nanowire devices

    NARCIS (Netherlands)

    Szombati, D.B.

    2017-01-01

    Josephson junctions form a two-level system which is used as a building block for many types of superconducting qubits. Junctions fabricated from semiconducting nanowires are gate-tunable and offer electrostatically adjustable Josephson energy, highly desirable in qubit architecture. Studying

  4. Feedback Control of a Solid-State Qubit Using High-Fidelity Projective Measurement

    NARCIS (Netherlands)

    Riste, D.; Bultink, C.C.; Lehnert, K.W.; DiCarlo, L.

    2012-01-01

    We demonstrate feedback control of a superconducting transmon qubit using discrete, projective measurement and conditional coherent driving. Feedback realizes a fast and deterministic qubit reset to a target state with 2.4% error averaged over input superposition states, and allows concatenating

  5. Scalable quantum computation via local control of only two qubits

    International Nuclear Information System (INIS)

    Burgarth, Daniel; Maruyama, Koji; Murphy, Michael; Montangero, Simone; Calarco, Tommaso; Nori, Franco; Plenio, Martin B.

    2010-01-01

    We apply quantum control techniques to a long spin chain by acting only on two qubits at one of its ends, thereby implementing universal quantum computation by a combination of quantum gates on these qubits and indirect swap operations across the chain. It is shown that the control sequences can be computed and implemented efficiently. We discuss the application of these ideas to physical systems such as superconducting qubits in which full control of long chains is challenging.

  6. Reduced phase error through optimized control of a superconducting qubit

    International Nuclear Information System (INIS)

    Lucero, Erik; Kelly, Julian; Bialczak, Radoslaw C.; Lenander, Mike; Mariantoni, Matteo; Neeley, Matthew; O'Connell, A. D.; Sank, Daniel; Wang, H.; Weides, Martin; Wenner, James; Cleland, A. N.; Martinis, John M.; Yamamoto, Tsuyoshi

    2010-01-01

    Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors, in particular, we have developed an experimental metrology - amplified phase error (APE) pulses - that amplifies and helps identify phase errors in general multilevel qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement 'half derivative', an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to ∼1.6 deg. per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit |2> state, is also reduced to ∼10 -4 for 20% faster gates.

  7. Vertical Josephson Interferometer for Tunable Flux Qubit

    Energy Technology Data Exchange (ETDEWEB)

    Granata, C [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Vettoliere, A [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Lisitskiy, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Rombetto, S [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Ruggiero, B [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Corato, V [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Russo, R [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy)

    2006-06-01

    We present a niobium-based Josephson device as prototype for quantum computation with flux qubits. The most interesting feature of this device is the use of a Josephson vertical interferometer to tune the flux qubit allowing the control of the off-diagonal Hamiltonian terms of the system. In the vertical interferometer, the Josephson current is precisely modulated from a maximum to zero with fine control by a small transversal magnetic field parallel to the rf superconducting loop plane.

  8. Precise measurement of coupling strength and high temperature quantum effect in a nonlinearly coupled qubit-oscillator system

    Science.gov (United States)

    Ge, Li; Zhao, Nan

    2018-04-01

    We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.

  9. Efficient gate set tomography on a multi-qubit superconducting processor

    Science.gov (United States)

    Nielsen, Erik; Rudinger, Kenneth; Blume-Kohout, Robin; Bestwick, Andrew; Bloom, Benjamin; Block, Maxwell; Caldwell, Shane; Curtis, Michael; Hudson, Alex; Orgiazzi, Jean-Luc; Papageorge, Alexander; Polloreno, Anthony; Reagor, Matt; Rubin, Nicholas; Scheer, Michael; Selvanayagam, Michael; Sete, Eyob; Sinclair, Rodney; Smith, Robert; Vahidpour, Mehrnoosh; Villiers, Marius; Zeng, William; Rigetti, Chad

    Quantum information processors with five or more qubits are becoming common. Complete, predictive characterization of such devices e.g. via any form of tomography, including gate set tomography appears impossible because the parameter space is intractably large. Randomized benchmarking scales well, but cannot predict device behavior or diagnose failure modes. We introduce a new type of gate set tomography that uses an efficient ansatz to model physically plausible errors, but scales polynomially with the number of qubits. We will describe the theory behind this multi-qubit tomography and present experimental results from using it to characterize a multi-qubit processor made by Rigetti Quantum Computing. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidary of Lockheed Martin Corporation, for the US Department of Energy's NNSA under contract DE-AC04-94AL85000.

  10. Dynamics of Entanglement in Jaynes–Cummings Nodes with Nonidentical Qubit-Field Coupling Strengths

    Directory of Open Access Journals (Sweden)

    Li-Tuo Shen

    2017-07-01

    Full Text Available How to analytically deal with the general entanglement dynamics of separate Jaynes–Cummings nodes with continuous-variable fields is still an open question, and few analytical approaches can be used to solve their general entanglement dynamics. Entanglement dynamics between two separate Jaynes–Cummings nodes are examined in this article. Both vacuum state and coherent state in the initial fields are considered through the numerical and analytical methods. The gap between two nonidentical qubit-field coupling strengths shifts the revival period and changes the revival amplitude of two-qubit entanglement. For vacuum-state fields, the maximal entanglement is fully revived after a gap-dependence period, within which the entanglement nonsmoothly decreases to zero and partly recovers without exhibiting sudden death phenomenon. For strong coherent-state fields, the two-qubit entanglement decays exponentially as the evolution time increases, exhibiting sudden death phenomenon, and the increasing gap accelerates the revival period and amplitude decay of the entanglement, where the numerical and analytical results have an excellent coincidence.

  11. Characterization of double-loop four-Josephson-junction flux qubit

    International Nuclear Information System (INIS)

    Shimazu, Y.; Saito, Y.; Wada, Z.

    2009-01-01

    An advantage of a double-loop four-Josephson-junction (4-JJ) flux qubit is the tunability of the energy gap at a symmetry point, i.e., the point at which the double-well potential of the qubit is symmetric. The energy gap is controlled via the magnetic flux in a DC superconducting quantum interference device (DC-SQUID) loop incorporated in a 4-JJ qubit. We investigate the locus of the symmetry point in the plane of two control fluxes of the qubit, taking into account the asymmetry in the DC-SQUID, which is inevitable in practical cases. The observed positions of the qubit steps are in reasonable agreement with the calculated locus of the symmetry point. We estimate the asymmetry parameter of the DC-SQUID from this analysis.

  12. A strict experimental test of macroscopic realism in a superconducting flux qubit.

    Science.gov (United States)

    Knee, George C; Kakuyanagi, Kosuke; Yeh, Mao-Chuang; Matsuzaki, Yuichiro; Toida, Hiraku; Yamaguchi, Hiroshi; Saito, Shiro; Leggett, Anthony J; Munro, William J

    2016-11-04

    Macroscopic realism is the name for a class of modifications to quantum theory that allow macroscopic objects to be described in a measurement-independent manner, while largely preserving a fully quantum mechanical description of the microscopic world. Objective collapse theories are examples which aim to solve the quantum measurement problem through modified dynamical laws. Whether such theories describe nature, however, is not known. Here we describe and implement an experimental protocol capable of constraining theories of this class, that is more noise tolerant and conceptually transparent than the original Leggett-Garg test. We implement the protocol in a superconducting flux qubit, and rule out (by ∼84 s.d.) those theories which would deny coherent superpositions of 170 nA currents over a ∼10 ns timescale. Further, we address the 'clumsiness loophole' by determining classical disturbance with control experiments. Our results constitute strong evidence for the superposition of states of nontrivial macroscopic distinctness.

  13. Controllable quantum information network with a superconducting system

    International Nuclear Information System (INIS)

    Zhang, Feng-yang; Liu, Bao; Chen, Zi-hong; Wu, Song-lin; Song, He-shan

    2014-01-01

    We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system. -- Highlights: •An architecture for quantum information processing is proposed. •The quantum information transfer between any two selected SQs is implemented. •This proposal is robust against the decoherence of the system. •This architecture can be fabricated on a chip down to the micrometer scale

  14. Scalable quantum memory in the ultrastrong coupling regime.

    Science.gov (United States)

    Kyaw, T H; Felicetti, S; Romero, G; Solano, E; Kwek, L-C

    2015-03-02

    Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z2 parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.

  15. High Fidelity, Numerical Investigation of Cross Talk in a Multi-Qubit Xmon Processor

    Science.gov (United States)

    Najafi-Yazdi, Alireza; Kelly, Julian; Martinis, John

    Unwanted electromagnetic interference between qubits, transmission lines, flux lines and other elements of a superconducting quantum processor poses a challenge in engineering such devices. This problem is exacerbated with scaling up the number of qubits. High fidelity, massively parallel computational toolkits, which can simulate the 3D electromagnetic environment and all features of the device, are instrumental in addressing this challenge. In this work, we numerically investigated the crosstalk between various elements of a multi-qubit quantum processor designed and tested by the Google team. The processor consists of 6 superconducting Xmon qubits with flux lines and gatelines. The device also consists of a Purcell filter for readout. The simulations are carried out with a high fidelity, massively parallel EM solver. We will present our findings regarding the sources of crosstalk in the device, as well as numerical model setup, and a comparison with available experimental data.

  16. Strong spin-photon coupling in silicon

    Science.gov (United States)

    Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.

    2018-03-01

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.

  17. Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories

    Science.gov (United States)

    Wang, Tenghui; Zhang, Zhenxing; Xiang, Liang; Gong, Zhihao; Wu, Jianlan; Yin, Yi

    2018-04-01

    The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the "shortcut to adiabaticity" (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.

  18. Gradiometric tunable-gap flux qubits in a circuit QED architecture

    International Nuclear Information System (INIS)

    Schwarz, Manuel Johannes

    2015-01-01

    In circuit quantum electrodynamics or quantum simulation experiments, superconducting quantum bits with long coherence time, high in situ tunability and usually large anharmonicity are required. In contrast to the popular transmon, the gradiometric tunable-gap flux qubit meets all these requirements. We fabricate and characterize such a qubit and demonstrate its first implementation into a transmission line resonator. We show spectroscopy and first time domain results.

  19. Controlled Quantum Operations of a Semiconductor Three-Qubit System

    Science.gov (United States)

    Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2018-02-01

    In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.

  20. Josephson phase qubit circuit for the evaluation of advanced tunnel barrier materials

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Jeffrey S; Oh, Seongshik; Pappas, David P [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Wang Haohua; Martinis, John M [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)], E-mail: klinej@nist.gov

    2009-01-15

    We have found that crystalline Josephson junctions have problems with the control of critical current density that decrease the circuit yield. We present a superconducting quantum bit circuit designed to accommodate a factor of five variation in critical current density from one fabrication run to the next. The new design enables the evaluation of advanced tunnel barrier materials for superconducting quantum bits. Using this circuit design, we compare the performance of Josephson phase qubits fabricated with MgO and Al{sub 2}O{sub 3} advanced crystalline tunnel barriers to AlO{sub x} amorphous tunnel barrier qubits.

  1. (1) Majorana fermions in pinned vortices; (2) Manipulating and probing Majorana fermions using superconducting circuits; and (3) Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance

    Science.gov (United States)

    Nori, Franco

    2014-03-01

    We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  2. Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations.

    Science.gov (United States)

    Vool, U; Pop, I M; Sliwa, K; Abdo, B; Wang, C; Brecht, T; Gao, Y Y; Shankar, S; Hatridge, M; Catelani, G; Mirrahimi, M; Frunzio, L; Schoelkopf, R J; Glazman, L I; Devoret, M H

    2014-12-12

    As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T₁, using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.

  3. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.

    Science.gov (United States)

    Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V

    2017-10-03

    The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.

  4. Strong-coupling theory of superconductivity

    International Nuclear Information System (INIS)

    Rainer, D.; Sauls, J.A.

    1995-01-01

    The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)

  5. Excess energy and decoherence factor of a qubit coupled to a one-dimensional periodically driven spin chain

    Science.gov (United States)

    Nag, Tanay

    2016-06-01

    We take a central spin model (CSM), consisting of a one-dimensional environmental Ising spin chain and a single qubit connected globally to all the spins of the environment, to study the excess energy (EE) of the environment and the logarithm of decoherence factor namely, generalized fidelity susceptibility per site (GFSS), associated with the qubit under a periodic driving of the transverse field term of environment across its critical point using the Floquet theory. The coupling to the qubit, prepared in a pure state, with the transverse field of the spin chain yields two sets of EE corresponding to the two species of Floquet operators. In the limit of weak coupling, we derive an approximated expression of GFSS after an infinite number of driving period which can successfully estimate the low- and intermediate-frequency behavior of GFSS obtained numerically with a large number of time periods. Our main focus is to analytically investigate the effect of system-environment coupling strength on the EEs and GFSS and relate the behavior of GFSS to EEs as a function of frequency by plausible analytical arguments. We explicitly show that the low-frequency beatinglike pattern of GFSS is an outcome of two frequencies, causing the oscillations in the two branches of EEs, that are dependent on the coupling strength. In the intermediate frequency regime, dip structure observed in GFSS can be justified by the resonance peaks of EEs at those coupling parameter-dependent frequencies; high-frequency saturation behavior of EEs and GFSS are controlled by the same static Hamiltonian and the associated saturation values are related to the coupling strength.

  6. The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Zhao, Jingxiang; Yan, Xu; Gu, Qiang

    2017-10-01

    The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.

  7. Quantum information processing with superconducting circuits: a review

    Science.gov (United States)

    Wendin, G.

    2017-10-01

    During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.

  8. Disentanglement of two qubits coupled to an XY spin chain: Role of quantum phase transition

    International Nuclear Information System (INIS)

    Yuan Zigang; Li Shushen; Zhang Ping

    2007-01-01

    We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed

  9. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    Science.gov (United States)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  10. Fungible dynamics: There are only two types of entangling multiple-qubit interactions

    International Nuclear Information System (INIS)

    Bremner, Michael J.; Dodd, Jennifer L.; Nielsen, Michael A.; Bacon, Dave

    2004-01-01

    What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? It has been shown that all two-body Hamiltonian evolutions can be simulated using any fixed two-body entangling n-qubit Hamiltonian and fast local unitaries. By entangling we mean that every qubit is coupled to every other qubit, if not directly, then indirectly via intermediate qubits. We extend this study to the case where interactions may involve more than two qubits at a time. We find necessary and sufficient conditions for an arbitrary n-qubit Hamiltonian to be dynamically universal, that is, able to simulate any other Hamiltonian acting on n qubits, possibly in an inefficient manner. We prove that an entangling Hamiltonian is dynamically universal if and only if it contains at least one coupling term involving an even number of interacting qubits. For odd entangling Hamiltonians, i.e., Hamiltonians with couplings that involve only an odd number of qubits, we prove that dynamic universality is possible on an encoded set of n-1 logical qubits. We further prove that an odd entangling Hamiltonian can simulate any other odd Hamiltonian and classify the algebras that such Hamiltonians generate. Thus, our results show that up to local unitary operations, there are only two fundamentally different types of entangling Hamiltonian on n qubits. We also demonstrate that, provided the number of qubits directly coupled by the Hamiltonian is bounded above by a constant, our techniques can be made efficient

  11. Decoherence patterns of topological qubits from Majorana modes

    International Nuclear Information System (INIS)

    Ho, Shih-Hao; Chao, Sung-Po; Chou, Chung-Hsien; Lin, Feng-Li

    2014-01-01

    We investigate the decoherence patterns of topological qubits in contact with the environment using a novel way of deriving the open system dynamics, rather than using the Feynman–Vernon approach. Each topological qubit is made up of two Majorana modes of a 1D Kitaev chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of topological qubits which are weakly coupled to fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the case for non-topological qubits—which always decohere completely in all Ohmic-like environments—topological qubits decohere completely in Ohmic and sub-Ohmic environments but not in super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits, though they cannot prevent the qubit states from exhibiting decoherence in sub-Ohmic environments, can prevent thermalization turning the state into a Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments, and the time dependence of concurrence for two topological qubits. (paper)

  12. Greenberger-Horne-Zeilinger state protocols for fully connected qubit networks

    International Nuclear Information System (INIS)

    Galiautdinov, Andrei; Coffey, Mark W.; Deiotte, Ron

    2009-01-01

    We generalize the recently proposed Greenberger-Horne-Zeilinger tripartite protocol [A. Galiautdinov and J. M. Martinis, Phys. Rev. A 78, 010305(R) (2008)] to fully connected networks of weakly coupled qubits interacting by way of anisotropic Heisenberg exchange g(XX+YY)+g-tildeZZ. Our model differs from the more familiar Ising-Heisenberg chain in that here every qubit interacts with every other qubit in the circuit. The assumption of identical couplings on all qubit pairs allows an elegant proof of the protocol for arbitrary N. In order to further make contact with experiment, we study fidelity degradation due to coupling imperfections by numerically simulating the N=3 and 4 cases. Our simulations indicate that the best fidelity at unequal couplings is achieved when (a) the system is initially prepared in the uniform superposition state (similarly to how it is done in the ideal case) and (b) the entangling time and the final rotations on each of the qubits are appropriately adjusted.

  13. The Rashba spin-orbit coupling for superconductivity in oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan; Orth, Peter P.; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2014-07-01

    We investigate the role of the Rashba spin-orbit coupling on the superconducting order parameter and the phase stiffness at the interface of LaAlO{sub 3} and SrTiO{sub 3}. In particular, we analyze the gate controlled crossover between BCS superconductivity and Bose-Einstein condensation of Cooper pairs, amplified by the Rashba coupling and the possibility of a phase fluctuation induced quantum critical point.

  14. Al transmon qubits on silicon-on-insulator for quantum device integration

    Science.gov (United States)

    Keller, Andrew J.; Dieterle, Paul B.; Fang, Michael; Berger, Brett; Fink, Johannes M.; Painter, Oskar

    2017-07-01

    We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T2* = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon.

  15. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system.

    Science.gov (United States)

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-02-22

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.

  16. Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field

    Science.gov (United States)

    Metwally, N.

    2018-06-01

    In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.

  17. Long-Distance Entanglement of Spin Qubits via Ferromagnet

    Directory of Open Access Journals (Sweden)

    Luka Trifunovic

    2013-12-01

    Full Text Available We propose a mechanism of coherent coupling between distant spin qubits interacting dipolarly with a ferromagnet. We derive an effective two-spin interaction Hamiltonian and find a regime where the dynamics is coherent. Finally, we present a sequence for the implementation of the entangling controlled-not gate and estimate the corresponding operation time to be a few tens of nanoseconds. A particularly promising application of our proposal is to atomistic spin qubits such as silicon-based qubits and nitrogen-vacancy centers in diamond to which existing coupling schemes do not apply.

  18. Generation of cluster states with Josephson charge qubits

    International Nuclear Information System (INIS)

    Zheng, Xiao-Hu; Dong, Ping; Xue, Zheng-Yuan; Cao, Zhuo-Liang

    2007-01-01

    A scheme for the generation of the cluster states based on the Josephson charge qubits is proposed. The two-qubit generation case is introduced first, and then generalized to multi-qubit case. The successful probability and fidelity of current multi-qubit cluster state are both 1.0. The scheme is simple and can be easily manipulated, because any two charge qubits can be selectively and effectively coupled by a common inductance. More manipulations can be realized before decoherence sets in. All the devices in the scheme are well within the current technology

  19. Inverse Landau-Zener-Stuckelberg interferometry for the measurement of a resonator's state using a qubit

    Science.gov (United States)

    Shevchenko, Sergey; Ashhab, Sahel; Nori, Franco

    2013-03-01

    We consider theoretically a superconducting qubit - nanomechanical resonator system, which was realized recently by LaHaye et al. [Nature 459, 960 (2009)]. We formulate and solve the inverse Landau-Zener-Stuckelberg problem, where we assume the driven qubit's state to be known (i.e. measured by some other device) and aim to find the parameters of the qubit's Hamiltonian. In particular, for our system the qubit's bias is defined by the nanomechanical resonator's displacement. This may provide a tool for monitoring the nanomechanical resonator 's position. [S. N. Shevchenko, S. Ashhab, and F. Nori, Phys. Rev. B 85, 094502 (2012).

  20. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits

    Science.gov (United States)

    Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.

    2018-04-01

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.

  1. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  2. Detecting the multi-spin interaction of an XY spin chain by the geometric phase of a coupled qubit

    International Nuclear Information System (INIS)

    Zhang, Xiu-xing; Zhang, Ai-ping; Li, Fu-li

    2012-01-01

    We investigate geometric phase (GP) of a qubit symmetrically coupled to a XY spin chain with three-spin interaction in a transverse magnetic field. An analytical expression for the GP is found in the weak coupling limit. It is shown that the GP displays a sharp peak or dip around the quantum phase transition point of the spin chain. Without the three-spin interaction, the GP has a peak or dip around the critical point λ=1. If the three-spin interaction exists, the peak or dip position is obviously shifted away from the original position. This result reveals that the GP may be taken as an observable to detect both the existence and strength of multi-spin interaction in a spin chain. -- Highlights: ► Analytical expression for geometric phase (GP) of a qubit coupled to a spin chain is obtained. ► Relation between GP and multi-spin interaction is investigated. ► Detection of multi-spin interaction by means of GP is proposed.

  3. Realizing a Circuit Analog of an Optomechanical System with Longitudinally Coupled Superconducting Resonators

    OpenAIRE

    Eichler, C.; Petta, J. R.

    2017-01-01

    We realize a superconducting circuit analog of the generic cavity-optomechanical Hamiltonian by longitudinally coupling two superconducting resonators, which are an order of magnitude different in frequency. We achieve longitudinal coupling by embedding a superconducting quantum interference device (SQUID) into a high frequency resonator, making its resonance frequency depend on the zero point current fluctuations of a nearby low frequency LC-resonator. By employing sideband drive fields we e...

  4. Quantum Devices Bonded Beneath a Superconducting Shield: Part 2

    Science.gov (United States)

    McRae, Corey Rae; Abdallah, Adel; Bejanin, Jeremy; Earnest, Carolyn; McConkey, Thomas; Pagel, Zachary; Mariantoni, Matteo

    The next-generation quantum computer will rely on physical quantum bits (qubits) organized into arrays to form error-robust logical qubits. In the superconducting quantum circuit implementation, this architecture will require the use of larger and larger chip sizes. In order for on-chip superconducting quantum computers to be scalable, various issues found in large chips must be addressed, including the suppression of box modes (due to the sample holder) and the suppression of slot modes (due to fractured ground planes). By bonding a metallized shield layer over a superconducting circuit using thin-film indium as a bonding agent, we have demonstrated proof of concept of an extensible circuit architecture that holds the key to the suppression of spurious modes. Microwave characterization of shielded transmission lines and measurement of superconducting resonators were compared to identical unshielded devices. The elimination of box modes was investigated, as well as bond characteristics including bond homogeneity and the presence of a superconducting connection.

  5. Superconductivity induced by interfacial coupling to magnons

    Science.gov (United States)

    Rohling, Niklas; Fjærbu, Eirik Løhaugen; Brataas, Arne

    2018-03-01

    We consider a thin normal metal sandwiched between two ferromagnetic insulators. At the interfaces, the exchange coupling causes electrons within the metal to interact with magnons in the insulators. This electron-magnon interaction induces electron-electron interactions, which in turn can result in p -wave superconductivity. We solve the gap equation numerically and estimate the critical temperature. In yttrium iron garnet (YIG)-Au-YIG trilayers, superconductivity sets in at temperatures somewhere in the interval between 1 and 10 K. EuO-Au-EuO trilayers require a lower temperature, in the range from 0.01 to 1 K.

  6. Adiabatic approximation in the ultrastrong-coupling regime of an oscillator and two qubits

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Zou, Ping [Laboratory of Nanophotonic Functional Materials and Devices, SIPSE and LQIT, South China Normal University, Guangzhou 510006 (China); Zhang, Zhi-Ming, E-mail: zmzhang@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, SIPSE and LQIT, South China Normal University, Guangzhou 510006 (China)

    2012-10-01

    We present a system composed of two flux qubits and a transmission-line resonator. Instead of using the rotating wave approximation (RWA), we analyze the system by the adiabatic approximation methods under two opposite extreme conditions. Basic properties of the system are calculated and compared under these two different conditions. Relative energy-level spectrum of the system in the adiabatic displaced oscillator basis is shown, and the theoretical result is compared with the numerical solution. -- Highlights: ► Our work shows that the adiabatic approximations may work also in the ultrastrong coupling limit. ► Both of the approximation methods are valid in a large range of coupling strength, including the ultrastrong coupling regime. ► The results of the approximate formula meet well the exact numerical solution.

  7. Classical-processing and quantum-processing signal separation methods for qubit uncoupling

    Science.gov (United States)

    Deville, Yannick; Deville, Alain

    2012-12-01

    The Blind Source Separation problem consists in estimating a set of unknown source signals from their measured combinations. It was only investigated in a non-quantum framework up to now. We propose its first quantum extensions. We thus introduce the Quantum Source Separation field, investigating both its blind and non-blind configurations. More precisely, we show how to retrieve individual quantum bits (qubits) only from the global state resulting from their undesired coupling. We consider cylindrical-symmetry Heisenberg coupling, which e.g. occurs when two electron spins interact through exchange. We first propose several qubit uncoupling methods which typically measure repeatedly the coupled quantum states resulting from individual qubits preparations, and which then statistically process the classical data provided by these measurements. Numerical tests prove the effectiveness of these methods. We then derive a combination of quantum gates for performing qubit uncoupling, thus avoiding repeated qubit preparations and irreversible measurements.

  8. Quantum dynamics of a two-atom-qubit system

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Nguyen Bich Ha; Le Thi Ha Linh

    2009-01-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  9. Dissipation and entanglement dynamics for two interacting qubits coupled to independent reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Scala, M [Departamento de Optica, Facultad de Fisica, Universidad Complutense de Madrid, 28040 (Spain); Migliore, R [CNR-INFM, CNISM and Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, via Archirafi 36, I-90123 Palermo (Italy); Messina, A [MIUR and Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, via Archirafi 36, I-90123 Palermo (Italy)], E-mail: matteo.scala@fisica.unipa.it, E-mail: rosanna@fisica.unipa.it, E-mail: messina@fisica.unipa.it

    2008-10-31

    We derive the master equation of a system of two coupled qubits by taking into account their interaction with two independent bosonic baths. Important features of the dynamics are brought to light, such as the structure of the stationary state at general temperatures and the behaviour of the entanglement at zero temperature, showing the phenomena of sudden death and sudden birth as well as the presence of stationary entanglement for long times. The model presented here is quite versatile and can be of interest in the study of both Josephson junction architectures and cavity-QED.

  10. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit.

    Science.gov (United States)

    Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H

    2017-10-20

    Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

  11. Computing prime factors with a Josephson phase qubit quantum processor

    Science.gov (United States)

    Lucero, Erik; Barends, R.; Chen, Y.; Kelly, J.; Mariantoni, M.; Megrant, A.; O'Malley, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Yin, Y.; Cleland, A. N.; Martinis, John M.

    2012-10-01

    A quantum processor can be used to exploit quantum mechanics to find the prime factors of composite numbers. Compiled versions of Shor's algorithm and Gauss sum factorizations have been demonstrated on ensemble quantum systems, photonic systems and trapped ions. Although proposed, these algorithms have yet to be shown using solid-state quantum bits. Using a number of recent qubit control and hardware advances, here we demonstrate a nine-quantum-element solid-state quantum processor and show three experiments to highlight its capabilities. We begin by characterizing the device with spectroscopy. Next, we produce coherent interactions between five qubits and verify bi- and tripartite entanglement through quantum state tomography. In the final experiment, we run a three-qubit compiled version of Shor's algorithm to factor the number 15, and successfully find the prime factors 48% of the time. Improvements in the superconducting qubit coherence times and more complex circuits should provide the resources necessary to factor larger composite numbers and run more intricate quantum algorithms.

  12. Ultrafast optical control of individual quantum dot spin qubits.

    Science.gov (United States)

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  13. Computing prime factors using a Josephson phase-qubit architecture: 15 = 3 x 5

    Science.gov (United States)

    Lucero, Erik Anthony

    Josephson phase-quantum-bits, (“qubits”), together with superconducting resonators, comprise the essential quantum elements in a state-of-the-art quantum processor (QuP). A QuP can be used to exploit quantum mechanics to find the prime factors of composite numbers by running Shor's algorithm[57]. In this thesis, I describe the first solid-state demonstration of a compiled version of Shor's algorithm. To meet this challenge, I designed a QuP so that I could map the problem of factoring the number N = 15 onto a quantum circuit that is compatible with our technological capabilities. The QuP is composed of nine quantum elements: four phase qubits and five superconducting coplanar waveguide (CPW) resonators. Using this device, I ran a three-qubit complied version of Shor's algorithm and successfully found the prime factors 48% of the time (compared to the ideal success rate of 50 %). In addition, the QuP produced coherent interactions between five quantum elements, and bi- and tripartite entanglement, which was verified via quantum state tomography (QST). Scaling up to nine quantum elements and performing these experiments represent key milestones to realizing a quantum computer. Continued improvements in the superconducting qubit coherence times and more complex circuits should provide the resources necessary to factor larger composite numbers and run more intricate quantum algorithms in the near future.

  14. Filament bundle location influence on coupling losses in superconducting composites

    International Nuclear Information System (INIS)

    Ito, Daisuke; Koizumi, Misao; Hamajima, Takataro; Nakane, Fumoto.

    1983-01-01

    The ac losses in multifilamentary superconducting composites with different superconducting filament bundle positions have been measured using the magnetization method in order to reveal the relation between filament bundle position and coupling losses. Loss components depending on dB/dt in a mixed matrix superconducting composite, whose filament bundle is located in a central region surrounded by an outer stabilizing copper sheath, has been compared with another superconducting composite whose stabilizing copper is located in a central region surrounded by an outer filament bundle. In both conductors, key parameters, such as filament twistpitch, wire diameter and amount of copper stabilizer, were almost the same. Applied magnetic field is 2 Tesla with 0.05-2 Tesla/sec field change rate. Experimental results indicate that coupling losses between filaments in the composite with the filament bundle located in the central region is smaller than the composite with the filament bundle located in the outer region. A similar conclusion was reached theoretically by B. Truck. Coupling loss values obtained by the experiment show good agreement with calculated values with the equations proposed by B. Truck. It is also pointed out that a copper stabilizer, divided by the CuNi barrier into small regions, like a honeycomb, causes anomalous increasing in the copper resistivity due to Ni diffusion during heat treatment. (author)

  15. Geometric quantum discord and Berry phase between two charge qubits coupled by a quantum transmission line

    International Nuclear Information System (INIS)

    Zhu Han-Jie; Zhang Guo-Feng

    2014-01-01

    Geometric quantum discord (GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the system. We also calculate the energy and the Berry phase and compare them with GQD, finding that there are close connections between them. (general)

  16. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    Directory of Open Access Journals (Sweden)

    T. Egami

    2010-01-01

    Full Text Available We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for the onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.

  17. How to implement a quantum algorithm on a large number of qubits by controlling one central qubit

    Science.gov (United States)

    Zagoskin, Alexander; Ashhab, Sahel; Johansson, J. R.; Nori, Franco

    2010-03-01

    It is desirable to minimize the number of control parameters needed to perform a quantum algorithm. We show that, under certain conditions, an entire quantum algorithm can be efficiently implemented by controlling a single central qubit in a quantum computer. We also show that the different system parameters do not need to be designed accurately during fabrication. They can be determined through the response of the central qubit to external driving. Our proposal is well suited for hybrid architectures that combine microscopic and macroscopic qubits. More details can be found in: A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Quantum two-level systems in Josephson junctions as naturally formed qubits, Phys. Rev. Lett. 97, 077001 (2006); and S. Ashhab, J.R. Johansson, F. Nori, Rabi oscillations in a qubit coupled to a quantum two-level system, New J. Phys. 8, 103 (2006).

  18. On-Demand Microwave Generator of Shaped Single Photons

    Science.gov (United States)

    Forn-Díaz, P.; Warren, C. W.; Chang, C. W. S.; Vadiraj, A. M.; Wilson, C. M.

    2017-11-01

    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.

  19. Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity

    International Nuclear Information System (INIS)

    Nozieres, P.; Schmitt-Rink, S.

    1985-01-01

    We consider a gas of fermions interacting via an attractive potential. We study the ground state of that system and calculate the critical temperature for the onset of superconductivity as a function of the coupling strength. We compare the behavior of continuum and lattice models and show that the evolution from weak to strong coupling superconductivity is smooth

  20. Efficient controlled-phase gate for single-spin qubits in quantum dots

    NARCIS (Netherlands)

    Meunier, T.; Calado, V.E.; Vandersypen, L.M.K.

    2011-01-01

    Two-qubit interactions are at the heart of quantum information processing. For single-spin qubits in semiconductor quantum dots, the exchange gate has always been considered the natural two-qubit gate. The recent integration of a magnetic field or g-factor gradients in coupled quantum dot systems

  1. On the mechanism of high-temperature superconductivity in hydrogen sulfide at 200 GPa: Transition into superconducting anti-adiabatic state in coupling to H-vibrations

    Directory of Open Access Journals (Sweden)

    Pavol Baňacký

    Full Text Available It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized anti-adiabatic multi-gap superconducting state at a temperature that can reach 203 K. Keywords: Superconductivity of sulfur hydride, Electron–phonon coupling in superconductors, Anti-adiabatic theory of superconductivity

  2. Superconducting fluctuations in systems with Rashba-spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Orth, Peter P.; Scheurer, Mathias; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We investigate the BEC-BCS crossover in a two-dimensional system with Rashba-spin-orbit coupling. To include the effects of phase and amplitude fluctuations of the superconducting order parameter we perform a loop expansion of the effective field theory. We analyze in particular the probability of a low density superconducting quantum phase transition. The theory is relevant to LaAlO{sub 3}/SrTiO{sub 3} interfaces and two-dimensional cold atom systems with synthetic gauge fields.

  3. Origin and Reduction of 1 /f Magnetic Flux Noise in Superconducting Devices

    Science.gov (United States)

    Kumar, P.; Sendelbach, S.; Beck, M. A.; Freeland, J. W.; Wang, Zhe; Wang, Hui; Yu, Clare C.; Wu, R. Q.; Pappas, D. P.; McDermott, R.

    2016-10-01

    Magnetic flux noise is a dominant source of dephasing and energy relaxation in superconducting qubits. The noise power spectral density varies with frequency as 1 /fα, with α ≲1 , and spans 13 orders of magnitude. Recent work indicates that the noise is from unpaired magnetic defects on the surfaces of the superconducting devices. Here, we demonstrate that adsorbed molecular O2 is the dominant contributor to magnetism in superconducting thin films. We show that this magnetism can be reduced by appropriate surface treatment or improvement in the sample vacuum environment. We observe a suppression of static spin susceptibility by more than an order of magnitude and a suppression of 1 /f magnetic flux noise power spectral density of up to a factor of 5. These advances open the door to the realization of superconducting qubits with improved quantum coherence.

  4. Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements

    NARCIS (Netherlands)

    Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Reiger, E.; Dorenbos, S.; Zwiller, V.; Milostnaya, I.; Minaeva, O.

    2007-01-01

    We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured (~100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast

  5. Superconducting Nanowires as Nonlinear Inductive Elements for Qubits

    OpenAIRE

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2010-01-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators (SFPR), having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonl...

  6. Pulse sequences for suppressing leakage in single-qubit gate operations

    Science.gov (United States)

    Ghosh, Joydip; Coppersmith, S. N.; Friesen, Mark

    2017-06-01

    Many realizations of solid-state qubits involve couplings to leakage states lying outside the computational subspace, posing a threat to high-fidelity quantum gate operations. Mitigating leakage errors is especially challenging when the coupling strength is unknown, e.g., when it is caused by noise. Here we show that simple pulse sequences can be used to strongly suppress leakage errors for a qubit embedded in a three-level system. As an example, we apply our scheme to the recently proposed charge quadrupole (CQ) qubit for quantum dots. These results provide a solution to a key challenge for fault-tolerant quantum computing with solid-state elements.

  7. BCS superconductivity for weakly coupled clusters

    International Nuclear Information System (INIS)

    Friedel, J.

    1992-01-01

    BCS superconductivity is expected to have fairly high critical temperatures when clusters of moderate sizes are weakly coupled to form a crystal. This remark extends to quasi zerodimensional cases, a remark initially made by Labbe for quasi one-dimensional ones and by Hirsch, Bok and Labbe for quasi twodimensional ones. Possible applications are envisaged for twodimensional clusters (fullerene) or threedimensional ones (metal clusters, Chevrel phases). Conditions for optimal applicability of the scheme are somewhat restricted. (orig.)

  8. Coupled superconducting resonant cavities for a heavy ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W [Argonne National Lab., IL (United States); Roy, A [Nuclear Science Center, New Delhi (India)

    1992-11-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs.

  9. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.

    1992-01-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  10. Silicon based quantum dot hybrid qubits

    Science.gov (United States)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories

  11. Feedback control of superconducting quantum circuits

    NARCIS (Netherlands)

    Ristè, D.

    2014-01-01

    Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback

  12. Macroscopic Magnetic Coupling Effect: The Physical Origination of a High-Temperature Superconducting Flux Pump

    Science.gov (United States)

    Wang, Wei; Coombs, Tim

    2018-04-01

    We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.

  13. Negative inductance SQUID qubit operating in a quantum regime

    Science.gov (United States)

    Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.

    2018-04-01

    Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.

  14. Storage and on-demand release of microwaves using superconducting resonators with tunable coupling

    International Nuclear Information System (INIS)

    Pierre, Mathieu; Svensson, Ida-Maria; Raman Sathyamoorthy, Sankar; Johansson, Göran; Delsing, Per

    2014-01-01

    We present a system which allows to tune the coupling between a superconducting resonator and a transmission line. This storage resonator is addressed through a second, coupling resonator, which is frequency-tunable and controlled by a magnetic flux applied to a superconducting quantum interference device. We experimentally demonstrate that the lifetime of the storage resonator can be tuned by more than three orders of magnitude. A field can be stored for 18 μs when the coupling resonator is tuned off resonance and it can be released in 14 ns when the coupling resonator is tuned on resonance. The device allows capture, storage, and on-demand release of microwaves at a tunable rate.

  15. Towards an acoustical platform for many-body spin emulation: Transmon qubits patterned on a piezoelectric material

    Science.gov (United States)

    Moores, Brad A.; Sletten, Lucas R.; Viennot, Jeremie; Lehnert, K. W.

    Man-made systems of interacting qubits are a promising and powerful way of exploring many-body spin physics beyond classical computation. Although transmon qubits are perhaps the most advanced quantum computing technology, building a system of such qubits designed to emulate a system of many interacting spins is hindered by the mismatch of scales between the transmons and the electromagnetic modes that couple them. We propose a strategy to overcome this mismatch by using surface acoustic waves, which couple to qubits piezoelectrically and have micron wavelengths at GHz frequencies. In this talk, we will present characterizations of transmon qubits fabricated on a piezoelectric material, and show that their coherence properties are sufficient to explore acoustically mediated qubit interactions.

  16. Select problems of the electrodynamics of superconducting weak-coupled systems

    International Nuclear Information System (INIS)

    Belenov, E.M.; Vedeneev, S.I.; Uskov, A.V.

    1988-01-01

    The interaction of currents in superconducting Josephson elements irradiated by electromagnetic fields in a cavity and a waveguide is considered theoretically. The possibility of using weak-coupled systems to implement stimulated emission oscillators tunable over a broad range from 10 10 to 10 13 Hz is investigated. The properties of a superconducting point contact for use as a nonlinear element in a reference frequency circuit from the microwave to the optical ranges are investigated theoretically. The possibility of frequency synthesis by means of a single nonlinear element from the microwave range to the optical range is demonstrated together with the capacity for precision laser frequency measurements. The noise aspects of using superconducting elements for laser frequency measurements are investigated

  17. Qubit-qubit entanglement dynamics control via external classical pumping and Kerr nonlinearity mediated by a single detuned cavity field powered by two-photon processes

    Science.gov (United States)

    Ateto, M. S.

    2017-11-01

    The nonlinear time-dependent two-photon Hamiltonian of a couple of classically pumped independent qubits is analytically solved, and the corresponding time evolution unitary operator, in an exact form, is derived. Using the concurrence, entanglement dynamics between the qubits under the influence of a wide range of effective parameters are examined and, in detail, analyzed. Observations analysis is documented with aid of the field phase-space distribution Wigner function. A couple of initial qubit states is considered, namely similar excited states and a Bell-like pure state. It is demonstrated that an initial Bell-like pure state is as well typical initial qubits setting for robust, regular and a high degree of entanglement. Moreover, it is established that high-constant Kerr media represent an effective tool for generating periodical entanglement at fixed time cycles of maxima reach unity forever when qubits are initially in a Bell-like pure state. Further, it is showed that the medium strength of the classical pumping stimulates efficiently qubits entanglement, specially, when the interaction occurs off resonantly. However, the high-intensity pumping thermalizes the coherent distribution of photons, thus, the least photons number is used and, hence, the least minimum degree of qubits entanglement could be created. Furthermore, when the cavity field and external pumping are detuned, the external pumping acts like an auxiliary effective frequency for the cavity, as a result, the field Gaussian distribution acquires linear chirps, and consequently, more entanglement revivals appear in the same cycle during timescale.

  18. Preservation of Quantum Fisher Information and Geometric Phase of a Single Qubit System in a Dissipative Reservoir Through the Addition of Qubits

    Science.gov (United States)

    Guo, Y. N.; Tian, Q. L.; Mo, Y. F.; Zhang, G. L.; Zeng, K.

    2018-04-01

    In this paper, we have investigated the preservation of quantum Fisher information (QFI) of a single-qubit system coupled to a common zero temperature reservoir through the addition of noninteracting qubits. The results show that, the QFI is completely protected in both Markovian and non-Markovian regimes by increasing the number of additional qubits. Besides, the phenomena of QFI display monotonic decay or non-monotonic with revival oscillations depending on the number of additional qubits N - 1 in a common dissipative reservoir. If N revival oscillations. Moreover, we extend this model to investigate the effect of additional qubits and the initial conditions of the system on the geometric phase (GP). It is found that, the robustness of GP against the dissipative reservoir has been demonstrated by increasing gradually the number of additional qubits N - 1. Besides, the GP is sensitive to the initial parameter 𝜃, and possesses symmetric in a range regime [0,2 π].

  19. Thermal coupling effect on the vortex dynamics of superconducting thin films: time-dependent Ginzburg–Landau simulations

    Science.gov (United States)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2018-05-01

    In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.

  20. Implementation of a two-qubit controlled-rotation gate based on unconventional geometric phase with a constant gating time

    International Nuclear Information System (INIS)

    Yabu-uti, B.F.C.; Roversi, J.A.

    2011-01-01

    We propose an alternative scheme to implement a two-qubit controlled-R (rotation) gate in the hybrid atom-CCA (coupled cavities array) system. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation. -- Highlights: → We propose an alternative two-qubit controlled-rotation gate implementation. → Our gate is realized in a constant gating time for any rotation. → A particular rotation on the target qubit can be specified by an adjustable qubit-bus coupling. → Our proposal may open promising perspectives for implementing distributed and scalable quantum computation.

  1. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  2. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  3. Measurement of kinetic inductance of superconducting wires and application for measuring flux state of Josephson-junction loops

    Energy Technology Data Exchange (ETDEWEB)

    Shimazu, Y.; Yokoyama, T

    2004-10-01

    In order to realize strong coupling in a system of multiple flux qubits with a DC-SQUID, the use of kinetic inductance is advantageous because it can be much larger than geometrical inductance for narrow superconducting wires. We measured the inductance associated with narrow Al wires, and estimated the contributions of kinetic and geometrical inductances. The London penetration depth which determines the kinetic inductance is evaluated. We fabricated samples of two Josephson-junction loops and a DC-SQUID which are all coupled with kinetic inductances. The observed magnetic flux due to the loops is in good agreement with the result of numerical simulation based on the estimated inductances.

  4. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  5. Adaptive homodyne phase discrimination and qubit measurement

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Whaley, K. Birgitta

    2007-01-01

    Fast and accurate measurement is a highly desirable, if not vital, feature of quantum computing architectures. In this work we investigate the usefulness of adaptive measurements in improving the speed and accuracy of qubit measurement. We examine a particular class of quantum computing architectures, ones based on qubits coupled to well-controlled harmonic oscillator modes (reminiscent of cavity QED), where adaptive schemes for measurement are particularly appropriate. In such architectures, qubit measurement is equivalent to phase discrimination for a mode of the electromagnetic field, and we examine adaptive techniques for doing this. In the final section we present a concrete example of applying adaptive measurement to the particularly well-developed circuit-QED architecture

  6. Coherent defects in superconducting circuits

    International Nuclear Information System (INIS)

    Mueller, Clemens

    2011-01-01

    The interaction of superconducting circuits with additional quantum systems is a topic that has found extensive study in the recent past. In the limit where the added system are incoherent, this is the standard field of decoherence and the system dynamics can be described by a simple master equation. In the other limit however, when the additional parts are coherent, the resulting time-evolution can become more complicated. In this thesis we have investigated the interaction of superconducting circuits with coherent and incoherent two-level defects. We have shown theoretical calculations characterizing this interaction for all relevant parameter regimes. In the weak coupling limit, the interaction can be described in an effective bath picture, where the TLS act as parts of a large, decohering environment. For strong coupling, however, the coherent dynamics of the full coupled system has to be considered. We show the calculations of the coupled time-evolution and again characterize the interaction by an effective decoherence rate. We also used experimental data to characterize the microscopic origin of the defects and the details of their interaction with the circuits. The results obtained by analyzing spectroscopic data allow us to place strong constraint on several microscopic models for the observed TLS. However, these calculations are not yet fully conclusive as to the physical nature of the TLS. We propose additional experiments to fully characterize the interaction part of the Hamiltonian, thus providing the answer to the question of the physical origin of the coupling. Additionally we have developed a method to directly drive individual defect states via virtual excitation of the qubit. This method allows one to directly probe the properties of single TLS and possibly make use of their superior coherence times for quantum information purposes. The last part of this thesis provided a way for a possible implementation of geometric quantum computation in

  7. Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions

    Science.gov (United States)

    Balaneskovic, Nenad; Mendler, Marc

    2016-09-01

    We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.

  8. Optical switching of nuclear spin-spin couplings in semiconductors.

    Science.gov (United States)

    Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi

    2011-07-05

    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear-spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings.

  9. Optical switching of nuclear spin–spin couplings in semiconductors

    Science.gov (United States)

    Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi

    2011-01-01

    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear–spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings. PMID:21730962

  10. High-fidelity gates in quantum dot spin qubits.

    Science.gov (United States)

    Koh, Teck Seng; Coppersmith, S N; Friesen, Mark

    2013-12-03

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.

  11. Characterization of classical static noise via qubit as probe

    Science.gov (United States)

    Javed, Muhammad; Khan, Salman; Ullah, Sayed Arif

    2018-03-01

    The dynamics of quantum Fisher information (QFI) of a single qubit coupled to classical static noise is investigated. The analytical relation for QFI fixes the optimal initial state of the qubit that maximizes it. An approximate limit for the time of coupling that leads to physically useful results is identified. Moreover, using the approach of quantum estimation theory and the analytical relation for QFI, the qubit is used as a probe to precisely estimate the disordered parameter of the environment. Relation for optimal interaction time with the environment is obtained, and condition for the optimal measurement of the noise parameter of the environment is given. It is shown that all values, in the mentioned range, of the noise parameter are estimable with equal precision. A comparison of our results with the previous studies in different classical environments is made.

  12. Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mazhar

    2009-07-13

    This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference

  13. Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems

    International Nuclear Information System (INIS)

    Ali, Mazhar

    2009-01-01

    This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference

  14. Spinor Slow Light and Two-Color Qubits

    Science.gov (United States)

    Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.

    2015-05-01

    We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw

  15. Additional Quantum Properties of Entangled Bipartite Qubit Systems Coupled to Photon Baths

    International Nuclear Information System (INIS)

    Quintana, C

    2016-01-01

    The time evolution of an entangled bi-partite qubit interacting with two independent photon baths in isolated cavities is not unitary. It is shown that the bi-partite qubit oscillates between pure and mixed states, and that the initial entanglement is lost and recovered in time by time as a consequence of its interaction with the baths. (paper)

  16. Scheme for implementing N-qubit controlled phase gate of photons assisted by quantum-dot-microcavity coupled system: optimal probability of success

    International Nuclear Information System (INIS)

    Cui, Wen-Xue; Hu, Shi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-01-01

    The direct implementation of multiqubit controlled phase gate of photons is appealing and important for reducing the complexity of the physical realization of linear-optics-based practical quantum computer and quantum algorithms. In this letter we propose a nondestructive scheme for implementing an N-qubit controlled phase gate of photons with a high success probability. The gate can be directly implemented with the self-designed quantum encoder circuits, which are probabilistic optical quantum entangler devices and can be achieved using linear optical elements, single-photon superposition state, and quantum dot coupled to optical microcavity. The calculated results indicate that both the success probabilities of the quantum encoder circuit and the N-qubit controlled phase gate in our scheme are higher than those in the previous schemes. We also consider the effects of the side leakage and cavity loss on the success probability and the fidelity of the quantum encoder circuit for a realistic quantum-dot-microcavity coupled system. (letter)

  17. Implementation of the Grover search algorithm with Josephson charge qubits

    International Nuclear Information System (INIS)

    Zheng Xiaohu; Dong Ping; Xue Zhengyuan; Cao Zhuoliang

    2007-01-01

    A scheme of implementing the Grover search algorithm based on Josephson charge qubits has been proposed, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quantum computer via Josephson charge qubits. The present scheme is simple but fairly efficient, and easily manipulated because any two-charge-qubit can be selectively and effectively coupled by a common inductance. More manipulations can be carried out before decoherence sets in. Our scheme can be realized within the current technology

  18. Two-qubit logical operations in three quantum dots system.

    Science.gov (United States)

    Łuczak, Jakub; Bułka, Bogdan R

    2018-06-06

    We consider a model of two interacting always-on, exchange-only qubits for which controlled phase (CPHASE), controlled NOT (CNOT), quantum Fourier transform (QFT) and SWAP operations can be implemented only in a few electrical pulses in a nanosecond time scale. Each qubit is built of three quantum dots (TQD) in a triangular geometry with three electron spins which are always kept coupled by exchange interactions only. The qubit states are encoded in a doublet subspace and are fully electrically controlled by a voltage applied to gate electrodes. The two qubit quantum gates are realized by short electrical pulses which change the triangular symmetry of TQD and switch on exchange interaction between the qubits. We found an optimal configuration to implement the CPHASE gate by a single pulse of the order 2.3 ns. Using this gate, in combination with single qubit operations, we searched for optimal conditions to perform the other gates: CNOT, QFT and SWAP. Our studies take into account environment effects and leakage processes as well. The results suggest that the system can be implemented for fault tolerant quantum computations.

  19. Fault-tolerant computing with biased-noise superconducting qubits: a case study

    International Nuclear Information System (INIS)

    Aliferis, P; Brito, F; DiVincenzo, D P; Steffen, M; Terhal, B M; Preskill, J

    2009-01-01

    We present a universal scheme of pulsed operations suitable for the IBM oscillator-stabilized flux qubit comprising the controlled-σ z (cphase) gate, single-qubit preparations and measurements. Based on numerical simulations, we argue that the error rates for these operations can be as low as about 0.5% and that noise is highly biased, with phase errors being stronger than all other types of errors by a factor of nearly 10 3 . In contrast, the design of a controlled-σ x (cnot) gate for this system with an error rate of less than about 1.2% seems extremely challenging. We propose a special encoding that exploits the noise bias allowing us to implement a logicalcnot gate where phase errors and all other types of errors have nearly balanced rates of about 0.4%. Our results illustrate how the design of an encoding scheme can be adjusted and optimized according to the available physical operations and the particular noise characteristics of experimental devices.

  20. Arrays of Cooper pair boxes coupled to a superconducting reservoir: 'superradiance' and 'revival'

    International Nuclear Information System (INIS)

    Rodrigues, D A; Gyoerffy, B L; Spiller, T P

    2004-01-01

    We consider an array of l b Cooper pair boxes, each of which is coupled to a superconducting reservoir by a capacitive tunnel junction. We discuss two effects that probe not just the quantum nature of the islands, but also of the superconducting reservoir coupled to them. These are analogues to the well-known quantum optical effects 'superradiance' and 'revival'. When revival is extended to multiple systems, we find that 'entanglement revival' can also be observed. In order to study the above effects, we utilize a highly simplified model for these systems in which all the single-electron energy eigenvalues are set to be the same (the strong coupling limit), as are the charging energies of the Cooper pair boxes, allowing the whole system to be represented by two coupled quantum spins, one finite, which represents the array of boxes, and one representing the reservoir, which we consider in the limit of infinite size. Although this simplification is drastic, the model retains the main features necessary to capture the phenomena of interest. Given the progress in superconducting box experiments over recent years, it is possible that experiments to investigate both of these interesting quantum coherent phenomena could be performed in the foreseeable future

  1. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths.

    Science.gov (United States)

    You, Lixing; Wu, Junjie; Xu, Yingxin; Hou, Xintong; Fang, Wei; Li, Hao; Zhang, Weijun; Zhang, Lu; Liu, Xiaoyu; Tong, Limin; Wang, Zhen; Xie, Xiaoming

    2017-12-11

    High-performance superconducting nanowire single-photon detectors (SNSPDs) have facilitated numerous experiments and applications, particularly in the fields of modern quantum optics and quantum communication. Two kinds of optical coupling methods have thus far been developed for SNSPDs: one produces standard fiber-coupled SNSPDs in which the fibers vertically illuminate the meandered nanowires; the other produces waveguide-coupled SNSPDs in which nanowires are fabricated on the surface of a waveguide that guides photons, and the fibers are coupled to the waveguide. In this paper, we report on first experimental demonstration of a new type of SNSPD that is coupled with a microfiber (MF). Photons are guided by the MF and are evanescently absorbed by the nanowires of the SNSPD when the MF is placed on top of superconducting NbN nanowires. Room-temperature optical experiments indicated that this device has a coupling efficiency of up to 90% when a 1.3 μm-diameter MF is used for light with wavelength of 1550 nm. We were also able to demonstrate that our MF-coupled detector achieved system detection efficiencies of 50% and 20% at incident wavelengths of 1064 and 1550 nm, respectively, for a 2 μm-diameter MF at 2.2K. We expect that MF-coupled SNSPDs may show both high efficiency and broadband characteristics upon optimization and will be used for various novel applications, such as micro/nano-fiber optics.

  2. Entanglement and Metrology with Singlet-Triplet Qubits

    Science.gov (United States)

    Shulman, Michael Dean

    Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the

  3. Electron Heating and Quasiparticle Tunnelling in Superconducting Charge Qubits

    Science.gov (United States)

    Shaw, M. D.; Bueno, J.; Delsing, P.; Echternach, P. M.

    2008-01-01

    We have directly measured non-equilibrium quasiparticle tunnelling in the time domain as a function of temperature and RF carrier power for a pair of charge qubits based on the single Cooper-pair box, where the readout is performed with a multiplexed quantum capacitance technique. We have extracted an effective electron temperature for each applied RF power, using the data taken at the lowest power as a reference curve. This data has been fit to a standard T? electron heating model, with a reasonable correspondence with established material parameters.

  4. Unconventional superconductivity in a two-dimensional repulsive gas of fermions with spin-orbit coupling

    Science.gov (United States)

    Wang, Luyang; Vafek, Oskar

    2014-02-01

    We investigate the superconducting instability of a two-dimensional repulsive Fermi gas with Rashba spin-orbit coupling αR. Using renormalization group approach, we find the superconducting transition temperature as a function of the dimensionless ratio Θ=1}/{2}mαR2/EF where EF = 0 when the smaller Fermi surface shrinks to a (Dirac) point. The general trend is that superconductivity is enhanced as Θ increases, but in an intermediate regime Θ ∼ 0.1, a dome-like behavior appears. At a very small value of Θ, the angular momentum channel jz in which superconductivity occurs is quite high. With increasing Θ, jz decreases with a step of 2 down to jz = 6, after which we find the sequence jz = 6, 4, 6, 2, the last value of which continues to Θ → ∞. In an extended range of Θ, the superconducting gap predominantly resides on the large Fermi surface, while Josephson coupling induces a much smaller gap on the small Fermi surface. Below the superconducting transition temperature, we apply mean field theory to derive the self-consistent equations and find the condensation energies. The state with the lowest condensation energy is an unconventional superconducting state which breaks time-reversal symmetry, and in which singlet and triplet pairings are mixed. In general, these states are topologically nontrivial, and the Chern number of the state with total angular momentum jz is C = 2jz.

  5. Circuit QED lattices: Towards quantum simulation with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sebastian [Institute for Theoretical Physics, ETH Zurich, 8093, Zurich (Switzerland); Koch, Jens [Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208 (United States)

    2013-06-15

    The Jaynes-Cummings model describes the coupling between photons and a single two-level atom in a simplified representation of light-matter interactions. In circuit QED, this model is implemented by combining microwave resonators and superconducting qubits on a microchip with unprecedented experimental control. Arranging qubits and resonators in the form of a lattice realizes a new kind of Hubbard model, the Jaynes-Cummings-Hubbard model, in which the elementary excitations are polariton quasi-particles. Due to the genuine openness of photonic systems, circuit QED lattices offer the possibility to study the intricate interplay of collective behavior, strong correlations and non-equilibrium physics. Thus, turning circuit QED into an architecture for quantum simulation, i.e., using a well-controlled system to mimic the intricate quantum behavior of another system too daunting for a theorist to tackle head-on, is an exciting idea which has served as theorists' playground for a while and is now also starting to catch on in experiments. This review gives a summary of the most recent theoretical proposals and experimental efforts. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Large impedances and Majorana bound states in superconducting circuits

    International Nuclear Information System (INIS)

    Ulrich, Jascha

    2017-01-01

    Superconducting circuits offer the opportunity to study quantum mechanics on mesoscopic scales unimpeded by dissipation. This fact and the nonlinearity of the Josephson inductance make it possible to use superconducting circuits as artificial atoms whose long-lived states can be selectively addressed and studied. A pronounced nonlinearity of the energy spectrum, however, requires quantum fluctuations of the flux across the Josephson junction which are large on the scale of the superconducting flux quantum Φ Q =h/2e. This implies charge fluctuations below the single Cooper-pair limit via flux-charge duality. The localization of charge leads to a strong susceptibility to interactions with charges in the environment which has motivated the search for schemes to decouple charges from their environment. This thesis is concerned with theoretical challenges arising from two complementary approaches to this problem: the realization of large impedances and the fractionalization of electrons by means of Majorana bound states. In recent years, the decoupling of charges from the environment through reactive large impedances, so-called ''superinductances'' L, has attracted much interest. These inductances feature small parasitic capacitance C such that the characteristic impedance √(L/C) is much larger than the superconducting resistance quantum R Q =h/4e 2 . Superinductances have various applications ranging from qubit designs such as the 0-π qubit or the fluxonium to impedance matching, Bloch oscillations and the stabilization of phase slips in superconducting nanowires. Although there exists a well-established formalism for the quantization of superconducting circuits in terms of node fluxes, this formalism is ill-suited for the description of fast flux transport with localized charges in large-impedance environments. In particular, the nonlinear capacitive behavior of phase slip junctions cannot be modeled in a straightforward way using node fluxes

  7. Evidence for phonon-mediated coupling in superconducting Ba0.6K0.4BiO3

    International Nuclear Information System (INIS)

    Hinks, D.G.; Dabrowski, B.; Richards, D.R.; Jorgensen, J.D.; Pei, S.; Zasadzinski, J.F.

    1989-01-01

    Superconducting Ba 0.6 K 0.4 BiO 3 , with a T c of 30 K, shows a large 18 O isotope effect which indicates that phonons are involved in the pairing mechanism. Infrared reflectivity measurements indicate a value for the superconducting gap consistent with moderate coupling (2Δ/k T c = 3.5 ± 0.5). A mediating energy for pairing of about 40 meV would be required to obtain a T c of 30 K. Strong coupling of electrons by optical phonons (which are present in this material with energies up to 80 meV) could account for the observed transition temperature. Recent tunneling spectroscopy shows the presence of strongly coupled optical phonons in the 40 to 70 meV region, indicating that superconductivity in this material may be phonon mediated

  8. Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling

    International Nuclear Information System (INIS)

    Michielis, M De; Ferraro, E; Fanciulli, M; Prati, E

    2015-01-01

    We present a universal set of quantum gate operations based on exchange-only spin qubits in a double quantum dot, where each qubit is obtained by three electrons in the (2,1) filling. Gate operations are addressed by modulating electrostatically the tunneling barrier and the energy offset between the two dots, singly and doubly occupied respectively. We propose explicit gate sequences of single qubit operations for arbitrary rotations, and the two-qubit controlled NOT gate, to complete the universal set. The unswitchable interaction between the two electrons of the doubly occupied quantum dot is taken into account. Short gate times are obtained by employing spin density functional theory simulations. (paper)

  9. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yujie; Dai, Yue [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Shi, Yu [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Fudan University, Collaborative Innovation Center of Advanced Microstructures, Shanghai (China)

    2017-09-15

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  10. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    International Nuclear Information System (INIS)

    Li, Yujie; Dai, Yue; Shi, Yu

    2017-01-01

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  11. Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state

    Science.gov (United States)

    Sisodia, Mitali; Shukla, Abhishek; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    An explicit scheme (quantum circuit) is designed for the teleportation of an n-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources have been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general n-qubit state considered here. A trade-off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof-of-principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. The experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional controlled state teleportation.

  12. Theory of control of the dynamics of the interface between stationary and flying qubits

    International Nuclear Information System (INIS)

    Yao Wang; Liu Renbao; Sham, L J

    2005-01-01

    We present a scheme of control for the arbitrary interplay between a stationary qubit and a flying qubit (carried by a single-photon wavepacket) at a quantum interface composed of a three-level system coupled to a continuum through a cavity. It can be used for generation or reception of an arbitrarily shaped single-photon wavepacket. The generation process can also be controlled to create entanglement between the stationary qubit and flying qubit. The generation and reception operation can be combined to perform quantum network operations such as transfer, swap and entanglement creation for qubits at distant nodes

  13. Optical generation of matter qubit graph states

    International Nuclear Information System (INIS)

    Benjamin, S C; Eisert, J; Stace, T M

    2005-01-01

    We present a scheme for rapidly entangling matter qubits in order to create graph states for one-way quantum computing. The qubits can be simple three-level systems in separate cavities. Coupling involves only local fields and a static (unswitched) linear optics network. Fusion of graph-state sections occurs with, in principle, zero probability of damaging the nascent graph state. We avoid the finite thresholds of other schemes by operating on two entangled pairs, so that each generates exactly one photon. We do not require the relatively slow single qubit local flips to be applied during the growth phase: growth of the graph state can then become a purely optical process. The scheme naturally generates graph states with vertices of high degree and so is easily able to construct minimal graph states, with consequent resource savings. The most efficient approach will be to create new graph-state edges even as qubits elsewhere are measured, in a 'just in time' approach. An error analysis indicates that the scheme is relatively robust against imperfections in the apparatus

  14. Qubit state tomography in a superconducting circuit via weak measurements

    Science.gov (United States)

    Qin, Lupei; Xu, Luting; Feng, Wei; Li, Xin-Qi

    2017-03-01

    In this work we present a study on a new scheme for measuring the qubit state in a circuit quantum electrodynamics (QED) system, based on weak measurement and the concept of weak value. To be applicable under generic parameter conditions, our formulation and analysis are carried out for finite-strength weak measurement, and in particular beyond the bad-cavity and weak-response limits. The proposed study is accessible to present state-of-the-art circuit QED experiments.

  15. Logical Qubit in a Linear Array of Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Cody Jones

    2018-06-01

    Full Text Available We design a logical qubit consisting of a linear array of quantum dots, we analyze error correction for this linear architecture, and we propose a sequence of experiments to demonstrate components of the logical qubit on near-term devices. To avoid the difficulty of fully controlling a two-dimensional array of dots, we adapt spin control and error correction to a one-dimensional line of silicon quantum dots. Control speed and efficiency are maintained via a scheme in which electron spin states are controlled globally using broadband microwave pulses for magnetic resonance, while two-qubit gates are provided by local electrical control of the exchange interaction between neighboring dots. Error correction with two-, three-, and four-qubit codes is adapted to a linear chain of qubits with nearest-neighbor gates. We estimate an error correction threshold of 10^{-4}. Furthermore, we describe a sequence of experiments to validate the methods on near-term devices starting from four coupled dots.

  16. The study of thermal tunable coupling between a Superconducting photonic crystal waveguide and semi-circular photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Oskooi, Somayeh; Barvestani, Jamal, E-mail: barvestani@tabrizu.ac.ir

    2016-08-15

    Highlights: • The light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal has been studied. • We utilized the finite difference time domain and plane wave expansion methods in the calculations. • The effect of the size of the nearest neighbor rods of waveguide on the coupling efficiency has been investigated. • The coupling efficiencies are reported versus the temperature of the superconducting waveguide. - Abstract: Through the present study, we investigated the light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal. By using the finite difference time domain method, we evaluated the coupling efficiency between the mentioned structures at the various temperatures for different waveguide sizes. Calculation demonstrated that the coupling efficiency strongly depended on the temperature of the superconductor. The peak value of the coupling efficiency was influenced by the size of the nearest neighbor rods of waveguide. The results have shown that it is possible to obtain high efficiency at the desired temperature with proper selection of physical parameters in far-infrared frequency region. This structure has great potential in the optical integration and other areas.

  17. Micropatterned superconducting film circuitry for operation in hybrid quantum devices

    International Nuclear Information System (INIS)

    Bothner, Daniel

    2013-01-01

    This thesis discusses three aspects of the arduous way towards hybrid quantum systems consisting of superconducting circuits and ensembles of ultracold paramagnetic atoms. In the first part of the thesis, superconducting coplanar microwave resonators as used for quantum information processing with superconducting qubits are investigated in magnetic fields. In the second part of the thesis integrated atom chips are designed and fabricated, which offer the possibility to trap an ensemble of ultracold atoms close to a superconducting coplanar resonator on that chip. In the third and last part of the thesis, unconventional disordered and quasiperiodic arrangements of microfabricated holes (antidots) in superconducting films are patterned and investigated with respect to the impact of the arrangement on the superconductor transport properties in magnetic fields.

  18. Topological networks for quantum communication between distant qubits

    Science.gov (United States)

    Lang, Nicolai; Büchler, Hans Peter

    2017-11-01

    Efficient communication between qubits relies on robust networks, which allow for fast and coherent transfer of quantum information. It seems natural to harvest the remarkable properties of systems characterized by topological invariants to perform this task. Here, we show that a linear network of coupled bosonic degrees of freedom, characterized by topological bands, can be employed for the efficient exchange of quantum information over large distances. Important features of our setup are that it is robust against quenched disorder, all relevant operations can be performed by global variations of parameters, and the time required for communication between distant qubits approaches linear scaling with their distance. We demonstrate that our concept can be extended to an ensemble of qubits embedded in a two-dimensional network to allow for communication between all of them.

  19. Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    International Nuclear Information System (INIS)

    Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V; Touzard, Steven; Schoelkopf, Robert J; Jiang, Liang; Devoret, Michel H

    2014-01-01

    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner

  20. Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    Science.gov (United States)

    Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V.; Touzard, Steven; Schoelkopf, Robert J.; Jiang, Liang; Devoret, Michel H.

    2014-04-01

    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.

  1. CLIQ – Coupling-Loss Induced Quench System for Protecting Superconducting Magnets

    CERN Multimedia

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Upon quench detection, CLIQ is triggered to generate an oscillating current in the magnet coil by means of a capacitive discharge. This in turn introduces a high coupling loss in the superconductor which provokes a quick transition to the normal state of the coil windings. The system is now implemented for the protection of a two meter long superconducting quadrupole magnet and characterized in the CERN magnet test facility. Various CLIQ configurations with different current injection points are tested and the results compared to similar transients lately measured with a not optimized configuration. Test results convincingly show that the newly tested design allows for a more global quench initiation and thus a faster discharge of the magnet energy. Moreover, the performance of CLIQ for reduc...

  2. Insufficiency of avoided crossings for witnessing large-scale quantum coherence in flux qubits

    Science.gov (United States)

    Fröwis, Florian; Yadin, Benjamin; Gisin, Nicolas

    2018-04-01

    Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schrödinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting (to flux qubits) the framework of large-scale quantum coherence, which was already successfully applied to spin ensembles and photonic systems. We show that contemporary experiments might show quantum coherence more than 100 times larger than experiments in the classical regime. However, we argue that the often-used demonstration of an avoided crossing in the energy spectrum is not sufficient to make a conclusion about the presence of large-scale quantum coherence. Alternative, rigorous witnesses are proposed.

  3. Weak measurements with a qubit meter

    DEFF Research Database (Denmark)

    Wu, Shengjun; Mølmer, Klaus

    2009-01-01

    We derive schemes to measure the so-called weak values of quantum system observables by coupling of the system to a qubit meter system. We highlight, in particular, the meaning of the imaginary part of the weak values, and show how it can be measured directly on equal footing with the real part...

  4. Analytical solutions by squeezing to the anisotropic Rabi model in the nonperturbative deep-strong-coupling regime

    Science.gov (United States)

    Zhang, Yu-Yu; Chen, Xiang-You

    2017-12-01

    An unexplored nonperturbative deep strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation. Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones in a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which are omitted in previous displaced states. The atom population dynamics confirms the validity of our approach for the npDSC strength. Our approach offers the possibility to explore interesting phenomena analytically in the npDSC regime in qubit-oscillator experiments.

  5. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  6. Permanent spin currents in cavity-qubit systems

    Science.gov (United States)

    Kulkarni, Manas; Hein, Sven M.; Kapit, Eliot; Aron, Camille

    2018-02-01

    In a recent experiment [P. Roushan et al., Nat. Phys. 13, 146 (2017), 10.1038/nphys3930], a spin current in an architecture of three superconducting qubits was produced during a few microseconds by creating synthetic magnetic fields. The lifetime of the current was set by the typical dissipative mechanisms that occur in those systems. We propose a scheme for the generation of permanent currents, even in the presence of such imperfections, and scalable to larger system sizes. It relies on striking a subtle balance between multiple nonequilibrium drives and the dissipation mechanisms, in order to engineer and stimulate chiral excited states which can carry current.

  7. Majorana box qubits

    International Nuclear Information System (INIS)

    Plugge, Stephan; Rasmussen, Asbjørn; Flensberg, Karsten; Egger, Reinhold

    2017-01-01

    Quantum information protected by the topology of the storage medium is expected to exhibit long coherence times. Another feature is topologically protected gates generated through braiding of Majorana bound states (MBSs). However, braiding requires structures with branched topological segments which have inherent difficulties in the semiconductor–superconductor heterostructures now believed to host MBSs. In this paper, we construct quantum bits taking advantage of the topological protection and non-local properties of MBSs in a network of parallel wires, but without relying on braiding for quantum gates. The elementary unit is made from three topological wires, two wires coupled by a trivial superconductor and the third acting as an interference arm. Coulomb blockade of the combined wires spawns a fractionalized spin, non-locally addressable by quantum dots used for single-qubit readout, initialization, and manipulation. We describe how the same tools allow for measurement-based implementation of the Clifford gates, in total making the architecture universal. Proof-of-principle demonstration of topologically protected qubits using existing techniques is therefore within reach. (fast track communication)

  8. Using qubits to reveal quantum signatures of an oscillator

    Science.gov (United States)

    Agarwal, Shantanu

    In this thesis, we seek to study the qubit-oscillator system with the aim to identify and quantify inherent quantum features of the oscillator. We show that the quantum signatures of the oscillator get imprinted on the dynamics of the joint system. The two key features which we explore are the quantized energy spectrum of the oscillator and the non-classicality of the oscillator's wave function. To investigate the consequences of the oscillator's discrete energy spectrum, we consider the qubit to be coupled to the oscillator through the Rabi Hamiltonian. Recent developments in fabrication technology have opened up the possibility to explore parameter regimes which were conventionally inaccessible. Motivated by these advancements, we investigate in this thesis a parameter space where the qubit frequency is much smaller than the oscillator frequency and the Rabi frequency is allowed to be an appreciable fraction of the bare frequency of the oscillator. We use the adiabatic approximation to understand the dynamics in this quasi-degenerate qubit regime. By deriving a dressed master equation, we systematically investigate the effects of the environment on the system dynamics. We develop a spectroscopic technique, using which one can probe the steady state response of the driven and damped system. The spectroscopic signal clearly reveals the quantized nature of the oscillator's energy spectrum. We extend the adiabatic approximation, earlier developed only for the single qubit case, to a scenario where multiple qubits interact with the oscillator. Using the extended adiabatic approximation, we study the collapse and revival of multi-qubit observables. We develop analytic expressions for the revival signals which are in good agreement with the numerically evaluated results. Within the quantum restriction imposed by Heisenberg's uncertainty principle, the uncertainty in the position and momentum of an oscillator is minimum and shared equally when the oscillator is prepared

  9. Superconducting nanowires as nonlinear inductive elements for qubits

    Science.gov (United States)

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2011-03-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators, having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship of the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The low-quality factor sample exhibits a ``crater'' at the resonance peak at higher driving power, which is due to dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. NSF DMR-1005645, DOE DO-FG02-07ER46453.

  10. Quantum heat engine with coupled superconducting resonators

    Science.gov (United States)

    Hardal, Ali Ü. C.; Aslan, Nur; Wilson, C. M.; Müstecaplıoǧlu, Özgür E.

    2017-12-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.

  11. Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach

    International Nuclear Information System (INIS)

    Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.

    2007-01-01

    We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Fabrication of Circuit QED Quantum Processors, Part 1: Extensible Footprint for a Superconducting Surface Code

    Science.gov (United States)

    Bruno, A.; Michalak, D. J.; Poletto, S.; Clarke, J. S.; Dicarlo, L.

    Large-scale quantum computation hinges on the ability to preserve and process quantum information with higher fidelity by increasing redundancy in a quantum error correction code. We present the realization of a scalable footprint for superconducting surface code based on planar circuit QED. We developed a tileable unit cell for surface code with all I/O routed vertically by means of superconducting through-silicon vias (TSVs). We address some of the challenges encountered during the fabrication and assembly of these chips, such as the quality of etch of the TSV, the uniformity of the ALD TiN coating conformal to the TSV, and the reliability of superconducting indium contact between the chips and PCB. We compare measured performance to a detailed list of specifications required for the realization of quantum fault tolerance. Our demonstration using centimeter-scale chips can accommodate the 50 qubits needed to target the experimental demonstration of small-distance logical qubits. Research funded by Intel Corporation and IARPA.

  13. Demonstration of analyzers for multimode photonic time-bin qubits

    Science.gov (United States)

    Jin, Jeongwan; Agne, Sascha; Bourgoin, Jean-Philippe; Zhang, Yanbao; Lütkenhaus, Norbert; Jennewein, Thomas

    2018-04-01

    We demonstrate two approaches for unbalanced interferometers as time-bin qubit analyzers for quantum communication, robust against mode distortions and polarization effects as expected from free-space quantum communication systems including wavefront deformations, path fluctuations, pointing errors, and optical elements. Despite strong spatial and temporal distortions of the optical mode of a time-bin qubit, entangled with a separate polarization qubit, we verify entanglement using the Negative Partial Transpose, with the measured visibility of up to 0.85 ±0.01 . The robustness of the analyzers is further demonstrated for various angles of incidence up to 0 .2∘ . The output of the interferometers is coupled into multimode fiber yielding a high system throughput of 0.74. Therefore, these analyzers are suitable and efficient for quantum communication over multimode optical channels.

  14. Coupling ultracold atoms to a superconducting coplanar waveguide resonator

    OpenAIRE

    Hattermann, H.; Bothner, D.; Ley, L. Y.; Ferdinand, B.; Wiedmaier, D.; Sárkány, L.; Kleiner, R.; Koelle, D.; Fortágh, J.

    2017-01-01

    We demonstrate coupling of magnetically trapped ultracold $^87$Rb ground state atoms to a coherently driven superconducting coplanar resonator on an integrated atom chip. We measure the microwave field strength in the cavity through observation of the AC shift of the hyperfine transition frequency when the cavity is driven off-resonance from the atomic transition. The measured shifts are used to reconstruct the field in the resonator, in close agreement with transmission measurements of the c...

  15. Compact 3D quantum memory

    Science.gov (United States)

    Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf

    2018-05-01

    Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.

  16. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2016-12-01

    Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  17. Reduction of multipartite qubit density matrixes to bipartite qubit density matrixes and criteria of partial separability of multipartite qubit density matrixes

    OpenAIRE

    Zhong, Zai-Zhe

    2004-01-01

    The partial separability of multipartite qubit density matrixes is strictly defined. We give a reduction way from N-partite qubit density matrixes to bipartite qubit density matrixes, and prove a necessary condition that a N-partite qubit density matrix to be partially separable is its reduced density matrix to satisfy PPT condition.

  18. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  19. Kinetics-Driven Superconducting Gap in Underdoped Cuprate Superconductors Within the Strong-Coupling Limit

    Directory of Open Access Journals (Sweden)

    Yucel Yildirim

    2011-09-01

    Full Text Available A generic theory of the quasiparticle superconducting gap in underdoped cuprates is derived in the strong-coupling limit, and found to describe the experimental “second gap” in absolute scale. In drastic contrast to the standard pairing gap associated with Bogoliubov quasiparticle excitations, the quasiparticle gap is shown to originate from anomalous kinetic (scattering processes, with a size unrelated to the pairing strength. Consequently, the k dependence of the gap deviates significantly from the pure d_{x^{2}-y^{2}} wave of the order parameter. Our study reveals a new paradigm for the nature of the superconducting gap, and is expected to reconcile numerous apparent contradictions among existing experiments and point toward a more coherent understanding of high-temperature superconductivity.

  20. Multi-qubit compensation sequences

    International Nuclear Information System (INIS)

    Tomita, Y; Merrill, J T; Brown, K R

    2010-01-01

    The Hamiltonian control of n qubits requires precision control of both the strength and timing of interactions. Compensation pulses relax the precision requirements by reducing unknown but systematic errors. Using composite pulse techniques designed for single qubits, we show that systematic errors for n-qubit systems can be corrected to arbitrary accuracy given either two non-commuting control Hamiltonians with identical systematic errors or one error-free control Hamiltonian. We also examine composite pulses in the context of quantum computers controlled by two-qubit interactions. For quantum computers based on the XY interaction, single-qubit composite pulse sequences naturally correct systematic errors. For quantum computers based on the Heisenberg or exchange interaction, the composite pulse sequences reduce the logical single-qubit gate errors but increase the errors for logical two-qubit gates.

  1. Imaging the electron-boson coupling in superconducting FeSe films using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Li, Zhi; Wang, Lili; He, Ke; Chen, Xi; Hoffman, Jennifer E; Ma, Xu-Cun; Xue, Qi-Kun

    2014-02-07

    Scanning tunneling spectroscopy has been used to reveal signatures of a bosonic mode in the local quasiparticle density of states of superconducting FeSe films. The mode appears below Tc as a "dip-hump" feature at energy Ω∼4.7kBTc beyond the superconducting gap Δ. Spectra on strained regions of the FeSe films reveal simultaneous decreases in Δ and Ω. This contrasts with all previous reports on other high-Tc superconductors, where Δ locally anticorrelates with Ω. A local strong coupling model is found to reconcile the discrepancy well, and to provide a unified picture of the electron-boson coupling in unconventional superconductors.

  2. Coherent Operations and Screening in Multielectron Spin Qubits

    DEFF Research Database (Denmark)

    Higginbotham, Andrew Patrick; Kuemmeth, Ferdinand; Hanson, M.P.

    2014-01-01

    Multielectron spin qubits are demonstrated, and performance examined by comparing coherent exchange oscillations in coupled single-electron and multielectron quantum dots, measured in the same device. Fast (>1 GHz) exchange oscillations with a quality factor Q ∼ 15 are found for the multielectron...

  3. Effect of coupling currents on the dynamic inductance during fast transient in superconducting magnets

    Directory of Open Access Journals (Sweden)

    V. Marinozzi

    2015-03-01

    Full Text Available We present electromagnetic models aiming to calculate the variation of the inductance in a magnet due to dynamic effects such as the variation of magnetization or the coupling with eddy currents. The models are studied with special regard to the calculation of the inductance in superconducting magnets which are affected by interfilament coupling currents. The developed models have been compared with experimental data coming from tests of prototype Nb_{3}Sn magnets designed for the new generation of accelerators. This work is relevant for the quench protection study of superconducting magnets: quench is an unwanted event, when part of the magnet becomes resistive; in these cases, the current should be discharged as fast as possible, in order to maintain the resistive zone temperature under a safe limit. The magnet inductance is therefore a relevant term for the description of the current discharge, especially for the high-field new generation superconducting magnets for accelerators, and this work shows how to calculate the correct value during rapid current changes, providing a mean for simulations of the reached temperature.

  4. Bayesian view of single-qubit clocks, and an energy versus accuracy tradeoff

    Science.gov (United States)

    Gopalkrishnan, Manoj; Kandula, Varshith; Sriram, Praveen; Deshpande, Abhishek; Muralidharan, Bhaskaran

    2017-09-01

    We bring a Bayesian approach to the analysis of clocks. Using exponential distributions as priors for clocks, we analyze how well one can keep time with a single qubit freely precessing under a magnetic field. We find that, at least with a single qubit, quantum mechanics does not allow exact timekeeping, in contrast to classical mechanics, which does. We find the design of the single-qubit clock that leads to maximum accuracy. Further, we find an energy versus accuracy tradeoff—the energy cost is at least kBT times the improvement in accuracy as measured by the entropy reduction in going from the prior distribution to the posterior distribution. We propose a physical realization of the single-qubit clock using charge transport across a capacitively coupled quantum dot.

  5. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

    Science.gov (United States)

    Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo

    2018-02-01

    The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

  6. Influence of external fields and environment on the dynamics of a phase-qubit-resonator system

    International Nuclear Information System (INIS)

    Berman, G. P.; Chumak, A. A.

    2011-01-01

    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, accounting for the resonator-drive, -bath, and -qubit interaction. The renormalization of the resonator frequency caused by the qubit-resonator interaction is accounted for. Using solutions for the resonator field, we derive the equation describing qubit dynamics. The influence of the qubit evolution during measurement time on the fidelity of a single-shot measurement is studied. The relation between fidelity and measurement time is shown explicitly. Also, an expression describing relaxation of the superposition qubit state toward its stationary value is derived. The possibility of controlling this state by varying the amplitude and frequency of drive is shown.

  7. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal......We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  8. Static stress analysis of coupling superconducting solenoid coil assembly for muon ionization cooling experiment

    International Nuclear Information System (INIS)

    Pan Heng; Wang Li; Wu Hong; Guo Xinglong; Xu Fengyu

    2010-01-01

    The stresses in the coupling superconducting solenoid coil assembly, which is applied in the Muon Ionization Cooling Experiment (MICE), are critical for the structure design and mechanical stability because of a large diameter and relative high magnetic field. This paper presents an analytical stress solution for the MICE coupling coil assembly. The stress due to winding tension is calculated by assuming the coil package as a set of combined cylinders. The thermal and electromechanical stresses are obtained by solving the partial differential equations of displacement based on the power series expansion method. The analytical stress solution is proved to be feasible by calculating stresses in a tested superconducting solenoid with 2.58 m bore at room temperature. The analytical result of the MICE coupling coil is in good agreement with that of the finite element which shows that the transverse shear stress induced by Lorentz force is principally dominant to magnet instability. (authors)

  9. Phenomena in coupled superconducting weak links

    International Nuclear Information System (INIS)

    Neumann, L.G.

    1982-01-01

    Interactions between two independently biasable coupled superconducting microbridges were studied. Some bridges were fabricated within 2 mu m of each other. Quasiparticles from one bridge affect the other. In a second type of sample, the microbridges were separated by 10 mu m and coupled via a resistive shunt. The interaction results from the current flowing through the shunt. Similar effects are seen in both types of samples. In opposed biased bridges, the effective critical current is decreased because of the interaction. For series biased bridges, the effective critical current of one bridge is decreased or increased, depending on the voltage across the other bridge. These interactions lead to voltage steps in the I-V curves where, for opposed biased bridges, both voltages increase; for series bias, one voltage increases, the other decreases. Experimental results are in reasonable agreement with a second-order perturbation calculation and with an analog simulation. Voltage locking is found for both biasing configurations in both types of samples. Locking can occur simultaneously with a voltage step, resulting in nascent voltage locking which can also occur in conjunction with hysteresis. The effect of a voltage in the pad between the two proximity coupled bridges is to vary the voltage at which locking occurs, which in turn alters the shape of the locking curve. Locking range is calculated in two models for comparison with the two types of samples. The first explicitly considers the time delay for propagation of the charge-imbalance wave from one bridge to the other. The second model considers the current flowing in the resistive/inductive coupling shunt

  10. A method for building low loss multi-layer wiring for superconducting microwave devices

    Science.gov (United States)

    Dunsworth, A.; Barends, R.; Chen, Yu; Chen, Zijun; Chiaro, B.; Fowler, A.; Foxen, B.; Jeffrey, E.; Kelly, J.; Klimov, P. V.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, John M.; Megrant, A.

    2018-02-01

    Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here, we describe a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We use a deposited inter-layer dielectric throughout fabrication and then etch it away post-fabrication. This technique is compatible with foundry level processing and can be generalized to make many different forms of low-loss wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency λ/4 coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of ˜3.9 × 10-8 per bridge, which is 100 times lower than that of dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fluxmon qubits. We measure qubit characteristic lifetimes (T1s) in excess of 30 μs in gmon devices.

  11. Flipping qubits

    International Nuclear Information System (INIS)

    Martini De, F.; Sciarrino, F.; Sias, C.; Buzek, V.

    2003-01-01

    On a classical level the information can be represented by bits, each of which can be either 0 or 1. Quantum information, on the other hand, consists of qubits which can be represented as two-level quantum systems with one level labeled |0> and the other |1>. Unlike bits, qubits cannot only be in one of the two levels, but in any superposition of them as well. This superposition principle makes quantum information fundamentally different from its classical counterpart. One of the most striking difference between the classical and quantum information is as follows: it is not a problem to flip a classical bit, i.e., to change the value of a bit, a 0 to a 1 and vice versa. This is accomplished by a NOT gate. Flipping a qubit, however, is another matter: there exists the fundamental bound which prohibits to flip a qubit prepared in an arbitrary state |Ψ>=α|0> and to obtain the state |Ψ T >=β*|0>-α*|1> which is orthogonal to it, i.e., T |Ψ>=0. We experimentally realize the best possible approximation of the qubit flipping that achieves bounds imposed by complete positivity of quantum mechanics

  12. Influence of an anisotropic parabolic potential on the quantum dot qubit

    International Nuclear Information System (INIS)

    Zhao Cuilan; Cai Chunyu; Xiao Jingling

    2013-01-01

    To study the influence of an anisotropic parabolic potential (APP) on the properties of a quantum dot (QD) qubit, we obtain the eigenenergies and eigenfunctions of the ground and first excited state of an electron, which is strongly coupled to the bulk longitudinal optical (LO) phonons, in a QD under the influence of an APP by the celebrated Lee—Low—Pines (LLP) unitary transformation and the Pekar type variational (PTV) methods. Then, this kind of two-level quantum system can be excogitated to constitute a single qubit. When the electron locates at the superposition state of its related eigenfunctions, we get the time evolution of the electron's probability density. Finally, the influence of an APP on the QD qubit is investigated. The numerical calculations indicate that the probability density will oscillate periodically and it is a decreasing function of the effective confinement lengths of the APP in different directions. Whereas its oscillatory period is an increasing one and will diminish with enhancing the electron—phonon (EP) coupling strength. (semiconductor physics)

  13. Coupling single-molecule magnets to quantum circuits

    International Nuclear Information System (INIS)

    Jenkins, Mark; Martínez-Pérez, María José; Zueco, David; Luis, Fernando; Hümmer, Thomas; García-Ripoll, Juanjo

    2013-01-01

    In this work we study theoretically the coupling of single-molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main result of this study is that it is possible to achieve strong and ultrastrong coupling regimes between SMM crystals and the superconducting circuit, with strong hints that such a coupling could also be reached for individual molecules close to constrictions. Building on the resulting coupling strengths and the typical coherence times of these molecules (∼ μs), we conclude that SMMs can be used for coherent storage and manipulation of quantum information, either in the context of quantum computing or in quantum simulations. Throughout the work we also discuss in detail the family of molecules that are most suitable for such operations, based not only on the coupling strength, but also on the typical energy gaps and the simplicity with which they can be tuned and oriented. Finally, we also discuss practical advantages of SMMs, such as the possibility to fabricate the SMMs ensembles on the chip through the deposition of small droplets. (paper)

  14. Spin Qubits in GaAs Heterostructures and Gating of InAs Nanowires for Lowtemperature Measurements

    DEFF Research Database (Denmark)

    Nissen, Peter Dahl

    of the contenders in the race to build a large-scale quantum computer, is such a component, and research aiming to build, manipulate and couple spin qubits is looking at many materials systems to nd one where the requirements for fast control and long coherence time can be combined with ecient coupling between...... distant qubits. This thesis presents electric measurement on two of the materials systems currently at the forefront of the spin qubit race, namely InAs nanowires and GaAs/AlGaAs heterostructures. For the InAs nanowires we investigate dierent gating geometries towards the goal of dening stable quantum...... electrodes induces tunable barriers of up to 0:25 eV. From the temperature dependence of the conductance, the barrier height is extracted and mapped as a function of gate voltage. Top and bottom gates are similar to each other in terms of electrostatic couplings (lever arms 0:10:2 eV=V) and threshold...

  15. Coupling between magnetic and superconducting order parameters and evidence for the spin excitation gap in the superconducting state of a heavy fermion superconductor UPd2Al3

    International Nuclear Information System (INIS)

    Metoki, Naoto; Haga, Yoshinori; Koike, Yoshihiro; Aso, Naofumi; Onuki, Yoshichika

    1997-01-01

    Neutron scattering experiments have been carried out in order to study the interplay between magnetism and superconductivity in a heavy fermion superconductor, UPd 2 Al 3 . We have observed 1% suppression of the (0 0 0.5) magnetic peak intensity below the superconducting transition temperature T c . This is direct evidence for the coupling of the magnetic order parameter with the superconducting one. Furthermore, we have observed a spin excitation gap associated with superconductivity. The gap energy ΔE g increases continuously from ΔE g =0 to 0.4 meV with decreasing temperature from T c to 0.4 K. This gap energy corresponds to 2k B T c , which is smaller than the superconducting gap expected from the BCS theory (3.5k B T c ). These results are indicative of the strong interplay between magnetism and superconductivity. (author)

  16. Encoding qubits into oscillators with atomic ensembles and squeezed light

    Science.gov (United States)

    Motes, Keith R.; Baragiola, Ben Q.; Gilchrist, Alexei; Menicucci, Nicolas C.

    2017-05-01

    The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator provides a number of advantages when used in a fault-tolerant architecture for quantum computing, most notably that Gaussian operations suffice to implement all single- and two-qubit Clifford gates. The main drawback of the encoding is that the logical states themselves are challenging to produce. Here we present a method for generating optical GKP-encoded qubits by coupling an atomic ensemble to a squeezed state of light. Particular outcomes of a subsequent spin measurement of the ensemble herald successful generation of the resource state in the optical mode. We analyze the method in terms of the resources required (total spin and amount of squeezing) and the probability of success. We propose a physical implementation using a Faraday-based quantum nondemolition interaction.

  17. Feedback control of persistent-current oscillation based on the atomic-clock technique

    Science.gov (United States)

    Yu, Deshui; Dumke, Rainer

    2018-05-01

    We propose a scheme of stabilizing the persistent-current Rabi oscillation based on the flux qubit-resonator-atom hybrid structure. The low-Q L C resonator weakly interacts with the flux qubit and maps the persistent-current Rabi oscillation of the flux qubit onto the intraresonator electric field. This oscillating electric field is further coupled to a Rydberg-Rydberg transition of the 87Rb atoms. The Rabi-frequency fluctuation of the flux qubit is deduced from measuring the atomic population via the fluorescence detection and stabilized by feedback controlling the external flux bias. Our numerical simulation indicates that the feedback-control method can efficiently suppress the background fluctuations in the flux qubit, especially in the low-frequency limit. This technique may be extensively applicable to different types of superconducting circuits, paving a way to long-term-coherence superconducting quantum information processing.

  18. Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium

    Science.gov (United States)

    Sigillito, Anthony James

    Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a

  19. Quantum chemistry on a superconducting quantum processor

    Energy Technology Data Exchange (ETDEWEB)

    Kaicher, Michael P.; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2016-07-01

    Quantum chemistry is the most promising civilian application for quantum processors to date. We study its adaptation to superconducting (sc) quantum systems, computing the ground state energy of LiH through a variational hybrid quantum classical algorithm. We demonstrate how interactions native to sc qubits further reduce the amount of quantum resources needed, pushing sc architectures as a near-term candidate for simulations of more complex atoms/molecules.

  20. Adiabatic quantum computing with spin qubits hosted by molecules.

    Science.gov (United States)

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  1. Multi-qubit circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Viehmann, Oliver

    2013-01-01

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  2. Multi-qubit circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Oliver

    2013-09-03

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  3. Structural change of cooper pairs in color superconductivity. Crossover from weak coupling to strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Abuki, Hiroaki; Hatsuda, Tetsuo [Tokyo Univ., Dept. of Physics, Tokyo (Japan); Itakura, Kazunori [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)

    2002-09-01

    The two-flavor color superconductivity is studied over a wide range of baryon density with a single model. We pay a special attention to the spatial-momentum dependence of the gap and to the spatial-structure of Cooper pairs. At extremely high baryon density ({approx}O(10{sup 10} {rho}{sub 0}) with {rho}{sub 0} being the normal nuclear matter density), our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities ({approx}O(10{sup 10} {rho}{sub 0})) due to strong color magnetic and electric interactions. To study the structural change of Cooper pairs from high density to lower density, quark correlation in the color superconductor is studied both in the momentum space and in the coordinate space. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities. Also, effects of the momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS superconductivity in metals. (author)

  4. Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise

    Science.gov (United States)

    Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fouokeng, Georges Collince; Fai, Lukong Cornelius

    2018-04-01

    The effects of 1/f^{α } (α =1,2) noise stemming from one or a collection of random bistable fluctuators (RBFs), on the evolution of entanglement, of three non-interacting qubits are investigated. Three different initial configurations of the qubits are analyzed in detail: the Greenberger-Horne-Zeilinger (GHZ)-type states, W-type states and mixed states composed of a GHZ state and a W state (GHZ-W). For each initial configuration, the evolution of entanglement is investigated for three different qubit-environment (Q-E) coupling setups, namely independent environments, mixed environments and common environment coupling. With the help of tripartite negativity and suitable entanglement witnesses, we show that the evolution of entanglement is extremely influenced not only by the initial configuration of the qubits, the spectrum of the environment and the Q-E coupling setup considered, but also by the number of RBF modeling the environment. Indeed, we find that the decay of entanglement is accelerated when the number of fluctuators modeling the environment is increased. Furthermore, we find that entanglement can survive indefinitely to the detrimental effects of noise even for increasingly larger numbers of RBFs. On the other hand, we find that the proficiency of the tripartite entanglement witnesses to detect entanglement is weaker than that of the tripartite negativity and that the symmetry of the initial states is broken when the qubits are coupled to the noise in mixed environments. Finally, we find that the 1 / f noise is more harmful to the survival of entanglement than the 1/f2 noise and that the mixed GHZ-W states followed by the GHZ-type states preserve better entanglement than the W-type ones.

  5. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  6. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  7. Mesure et retroaction sur un qubit multi-niveaux en electrodynamique quantique en circuit non lineair

    Science.gov (United States)

    Boissonneault, Maxime

    L'electrodynamique quantique en circuit est une architecture prometteuse pour le calcul quantique ainsi que pour etudier l'optique quantique. Dans cette architecture, on couple un ou plusieurs qubits supraconducteurs jouant le role d'atomes a un ou plusieurs resonateurs jouant le role de cavites optiques. Dans cette these, j'etudie l'interaction entre un seul qubit supraconducteur et un seul resonateur, en permettant cependant au qubit d'avoir plus de deux niveaux et au resonateur d'avoir une non-linearite Kerr. Je m'interesse particulierement a la lecture de l'etat du qubit et a son amelioration, a la retroaction du processus de mesure sur le qubit de meme qu'a l'etude des proprietes quantiques du resonateur a l'aide du qubit. J'utilise pour ce faire un modele analytique reduit que je developpe a partir de la description complete du systeme en utilisant principalement des transfprmations unitaires et une elimination adiabatique. J'utilise aussi une librairie de calcul numerique maison permettant de simuler efficacement l'evolution du systeme complet. Je compare les predictions du modele analytique reduit et les resultats de simulations numeriques a des resultats experimentaux obtenus par l'equipe de quantronique du CEASaclay. Ces resultats sont ceux d'une spectroscopie d'un qubit supraconducteur couple a un resonateur non lineaire excite. Dans un regime de faible puissance de spectroscopie le modele reduit predit correctement la position et la largeur de la raie. La position de la raie subit les decalages de Lamb et de Stark, et sa largeur est dominee par un dephasage induit par le processus de mesure. Je montre que, pour les parametres typiques de l'electrodynamique quantique en circuit, un accord quantitatif requiert un modele en reponse non lineaire du champ intra-resonateur, tel que celui developpe. Dans un regime de forte puissance de spectroscopie, des bandes laterales apparaissent et sont causees par les fluctuations quantiques du champ electromagnetique

  8. Dynamical decoupling sequences for multi-qubit dephasing suppression and long-time quantum memory

    International Nuclear Information System (INIS)

    Paz-Silva, Gerardo A; Lee, Seung-Woo; Green, Todd J; Viola, Lorenza

    2016-01-01

    We consider a class of multi-qubit dephasing models that combine classical noise sources and linear coupling to a bosonic environment, and are controlled by arbitrary sequences of dynamical decoupling pulses. Building on a general transfer filter-function framework for open-loop control, we provide an exact representation of the controlled dynamics for arbitrary stationary non-Gaussian classical and quantum noise statistics, with analytical expressions emerging when all dephasing sources are Gaussian. This exact characterization is used to establish two main results. First, we construct multi-qubit sequences that ensure maximum high-order error suppression in both the time and frequency domain and that can be exponentially more efficient than existing ones in terms of total pulse number. Next, we show how long-time multi-qubit storage may be achieved by meeting appropriate conditions for the emergence of a fidelity plateau under sequence repetition, thereby generalizing recent results for single-qubit memory under Gaussian dephasing. In both scenarios, the key step is to endow multi-qubit sequences with a suitable displacement anti-symmetry property, which is of independent interest for applications ranging from environment-assisted entanglement generation to multi-qubit noise spectroscopy protocols. (paper)

  9. Origin and Reduction of 1/f Magnetic Flux Noise in Superconducting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.; Sendelbach, S.; Beck, M. A.; Freeland, J. W.; Wang, Zhe; Wang, Hui; Yu, Clare C.; Wu, R. Q.; Pappas, D. P.; McDermott, R.

    2016-10-01

    Magnetic flux noise is a dominant source of dephasing and energy relaxation in superconducting qubits. The noise power spectral density varies with frequency as 1=fα, with α ≲ 1, and spans 13 orders of magnitude. Recent work indicates that the noise is from unpaired magnetic defects on the surfaces of the superconducting devices. Here, we demonstrate that adsorbed molecular O2 is the dominant contributor to magnetism in superconducting thin films. We show that this magnetism can be reduced by appropriate surface treatment or improvement in the sample vacuum environment. We observe a suppression of static spin susceptibility by more than an order of magnitude and a suppression of 1=f magnetic flux noise power spectral density of up to a factor of 5. These advances open the door to the realization of superconducting qubits with improved quantum coherence.

  10. Generation of concurrence between two qubits locally coupled to a one-dimensional spin chain

    Science.gov (United States)

    Nag, Tanay; Dutta, Amit

    2016-08-01

    We consider a generalized central spin model, consisting of two central qubits and an environmental spin chain (with periodic boundary condition) to which these central qubits are locally and weakly connected either at the same site or at two different sites separated by a distance d . Our purpose is to study the subsequent temporal generation of entanglement, quantified by concurrence, when initially the qubits are in an unentangled state. In the equilibrium situation, we show that the concurrence survives for a larger value of d when the environmental spin chain is critical. Importantly, a common feature observed both in the equilibrium and the nonequilibrium situations while the latter is created by a sudden but global change of the environmental transverse field is that the two qubits become maximally entangled for the critical quenching. Following a nonequilibrium evolution of the spin chain, our study for d ≠0 indicates that there exists a threshold time above which concurrence attains a finite value. Additionally, we show that the number of independent decohering channels (DCs) is determined by d as well as the local difference of the transverse field of the two underlying Hamiltonians governing the time evolution; the concurrence can be enhanced by a higher number of independent channels. The qualitatively similar behavior displayed by the concurrence for critical and off-critical quenches, as reported here, is characterized by analyzing the nonequilibrium evolution of these channels. The concurrence is maximum when the decoherence factor or the echo associated with the most rapidly DC decays to zero; on the contrary, the condition when the concurrence vanishes is determined nontrivially by the associated decay of one of the intermediate DCs. Analyzing the reduced density of a single qubit, we also explain the observation that the dephasing rate is always slower than the unentanglement rate. We further establish that the maximally and minimally decohering

  11. A wideband superconducting filter at Ku-band based on interdigital coupling

    Science.gov (United States)

    Jiang, Ying; Wei, Bin; Cao, Bisong; Li, Qirong; Guo, Xubo; Jiang, Linan; Song, Xiaoke; Wang, Xiang

    2018-04-01

    In this paper, an interdigital-type resonator with strong electric coupling is proposed for the wideband high-frequency (>10 GHz) filter design. The proposed microstrip resonator consists of an H-shaped main line part with its both ends installed with interdigital finger parts. Strong electric coupling is achieved between adjacent resonators. A six-pole high-temperature superconducting filter at Ku-band using this resonator is designed and fabricated. The filter has a center frequency of 15.11 GHz with a fractional bandwidth of 30%. The insertion loss of the passband is less than 0.3 dB, and the return loss is greater than 14 dB without any tuning.

  12. Electrical Manipulation of Spin Qubits in Li-doped Si

    Science.gov (United States)

    Petukhov, Andre; Pendo, Luke; Handberg, Erin; Smelyanskiy, Vadim

    2011-03-01

    We propose a complete quantum computing scheme based on Li donors in Si under external biaxial stress. The qubits are encoded on the ground state Zeeman doublets and coupled via long-range spin-spin interaction mediated by acoustic phonons. This interaction is unique for Li donors in Si due to their inverted electronic structure. Our scheme takes advantage of the fact that the energy level spacing in 1 s Li-donor manifold is comparable with the magnitude of the spin-orbit interaction. As a result the Li spin qubits can be placed 100 nm apart and manipulated by a combination of external electric field and microwave field impulses. We present a specially-designed sequence of the electric field impulses which allows for a typical time of a two-qubit gate ~ ~1~ μ s and a quality factor ~10-6 . These estimates are derived from detailed microscopic calculations of the quadratic Stark effect and electron-phonon decoherence times.

  13. Utilizing photon number parity measurements to demonstrate quantum computation with cat-states in a cavity

    Science.gov (United States)

    Petrenko, A.; Ofek, N.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-03-01

    Realizing a working quantum computer requires overcoming the many challenges that come with coupling large numbers of qubits to perform logical operations. These include improving coherence times, achieving high gate fidelities, and correcting for the inevitable errors that will occur throughout the duration of an algorithm. While impressive progress has been made in all of these areas, the difficulty of combining these ingredients to demonstrate an error-protected logical qubit, comprised of many physical qubits, still remains formidable. With its large Hilbert space, superior coherence properties, and single dominant error channel (single photon loss), a superconducting 3D resonator acting as a resource for a quantum memory offers a hardware-efficient alternative to multi-qubit codes [Leghtas et.al. PRL 2013]. Here we build upon recent work on cat-state encoding [Vlastakis et.al. Science 2013] and photon-parity jumps [Sun et.al. 2014] by exploring the effects of sequential measurements on a cavity state. Employing a transmon qubit dispersively coupled to two superconducting resonators in a cQED architecture, we explore further the application of parity measurements to characterizing such a hybrid qubit/cat state architecture. In so doing, we demonstrate the promise of integrating cat states as central constituents of future quantum codes.

  14. Single-Shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator

    Science.gov (United States)

    2016-01-11

    system and ap- ply a strong drive tone, such that the resonator enters a bistable regime, hence enhancing the detection con- trast [10–14]. In this paper ...fidelity of 98.7 ± 1.2%, taking into account known and reparable errors due to qubit initial- isation and decoherence (17.2 ± 1.2 %). A realistically...ωr ≈ ωp/2, which is a practical advantage since it makes the resonator’s entire instantaneous bandwidth available for amplification with no need to

  15. Majorana transport in superconducting nanowire with Rashba and Dresselhaus spin-orbit couplings.

    Science.gov (United States)

    You, Jia-Bin; Shao, Xiao-Qiang; Tong, Qing-Jun; Chan, A H; Oh, C H; Vedral, Vlatko

    2015-06-10

    The tunneling experiment is a key technique for detecting Majorana fermion (MF) in solid state systems. We use Keldysh non-equilibrium Green function method to study two-lead tunneling in superconducting nanowire with Rashba and Dresselhaus spin-orbit couplings. A zero-bias dc conductance peak appears in our setup which signifies the existence of MF and is in accordance with previous experimental results on InSb nanowire. Interestingly, due to the exotic property of MF, there exists a hole transmission channel which makes the currents asymmetric at the left and right leads. The ac current response mediated by MF is also studied here. To discuss the impacts of Coulomb interaction and disorder on the transport property of Majorana nanowire, we use the renormalization group method to study the phase diagram of the wire. It is found that there is a topological phase transition under the interplay of superconductivity and disorder. We find that the Majorana transport is preserved in the superconducting-dominated topological phase and destroyed in the disorder-dominated non-topological insulator phase.

  16. Majorana transport in superconducting nanowire with Rashba and Dresselhaus spin–orbit couplings

    International Nuclear Information System (INIS)

    You, Jia-Bin; Shao, Xiao-Qiang; Tong, Qing-Jun; Oh, C H; Vedral, Vlatko; Chan, A H

    2015-01-01

    The tunneling experiment is a key technique for detecting Majorana fermion (MF) in solid state systems. We use Keldysh non-equilibrium Green function method to study two-lead tunneling in superconducting nanowire with Rashba and Dresselhaus spin–orbit couplings. A zero-bias dc conductance peak appears in our setup which signifies the existence of MF and is in accordance with previous experimental results on InSb nanowire. Interestingly, due to the exotic property of MF, there exists a hole transmission channel which makes the currents asymmetric at the left and right leads. The ac current response mediated by MF is also studied here. To discuss the impacts of Coulomb interaction and disorder on the transport property of Majorana nanowire, we use the renormalization group method to study the phase diagram of the wire. It is found that there is a topological phase transition under the interplay of superconductivity and disorder. We find that the Majorana transport is preserved in the superconducting-dominated topological phase and destroyed in the disorder-dominated non-topological insulator phase. (paper)

  17. Superconducting on-chip microwave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Edwin P.; Fischer, Michael; Schneider, Christian; Baust, Alexander; Eder, Peter; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    In the realm of all-microwave quantum computation, information is encoded in itinerant microwave photons propagating along transmission lines. In such a system unitary operations are implemented by linear elements such as beam splitters or interferometers. However, for two-qubit operations non-linear gates, e.g., c-phase gates are required. In this work, we investigate superconducting interferometers as a building block of a c-phase gate. We experimentally characterize their scattering properties and compare them to simulation results. Finally, we discuss our progress towards the realization of a c-phase gate.

  18. Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model

    International Nuclear Information System (INIS)

    Toschi, A; Barone, P; Capone, M; Castellani, C

    2005-01-01

    The finite-temperature phase diagram of the attractive Hubbard model is studied by means of the dynamical mean-field theory. We first consider the normal phase of the model by explicitly frustrating the superconducting ordering. In this case, we obtain a first-order pairing transition between a metallic phase and a paired phase formed by strongly coupled incoherent pairs. The transition line ends in a finite temperature critical point, but a crossover between two qualitatively different solutions still occurs at higher temperature. Comparing the superconducting- and the normal-phase solutions, we find that the superconducting instability always occurs before the pairing transition in the normal phase, i.e. T c > T pairing . Nevertheless, the high-temperature phase diagram at T > T c is still characterized by a crossover from a metallic phase to a preformed pair phase. We characterize this crossover by computing different observables that can be used to identify the pseudogap region, like the spin susceptibility, the specific heat and the single-particle spectral function

  19. Phase-controlled coherent population trapping in superconducting quantum circuits

    International Nuclear Information System (INIS)

    Cheng Guang-Ling; Wang Yi-Ping; Chen Ai-Xi

    2015-01-01

    We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. (paper)

  20. Inhomogeneous superconductivity in a ferromagnet

    International Nuclear Information System (INIS)

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  1. Coherencia y entrelazamiento en dinámica no Markoviana de qubits

    Directory of Open Access Journals (Sweden)

    Cristian Edwin Susa Quintero

    2013-06-01

    Full Text Available We provide a thorough analysis of the entanglement dynamics of an interacting two-qubit systemin the non-Markovian regime. In such a regime, the time scale on which the reservoir degrees offreedom evolve is either of the same order of magnitude or less than that on which the systemevolves.We used an exact numerical method; the Quasi-Adiabatic Path Integral (QUAPI technique,to describe the corresponding qubit dissipative dynamics in such a non-Markovian regime. Wecomputed the time evolution of the density operator for the quibits, from which we quantified thecoherences and population dynamics, as well as the qubit-bath coupling effects. Using negativityas a metric, we calculated the dynamics of non-local quantum correlations (entanglement, andindentified a non-Markovian quantum phenomena in terms of early stage disentanglement, and thecollapse and revival of entanglement.

  2. Quantum dynamics of spin qubits in optically active quantum dots

    International Nuclear Information System (INIS)

    Bechtold, Alexander

    2017-01-01

    The control of solid-state qubits for quantum information processing requires a detailed understanding of the mechanisms responsible for decoherence. During the past decade a considerable progress has been achieved for describing the qubit dynamics in relatively strong external magnetic fields. However, until now it has been impossible to experimentally test many theoretical predictions at very low magnetic fields and uncover mechanisms associated with reduced coherence times of spin qubits in solids. In particular, the role of the quadrupolar coupling of nuclear spins in this process is to date poorly understood. In the framework of this thesis, a spin memory device is utilized to optically prepare individual electron spin qubits in a single InGaAs quantum dot. After storages over timescales extending into the microsecond range the qubit��s state is read out to monitor the impact of the environment on it the spin dynamics. By performing such pump-probe experiments, the dominant electron spin decoherence mechanisms are identified in a wide range of external magnetic fields (0-5 T) and lattice temperatures of ∝10 K. The results presented in this thesis show that, without application of external magnetic fields the initially orientated electron spin rapidly loses its polarization due to precession around the fluctuating Overhauser field with a dispersion of 10.5 mT. The inhomogeneous dephasing time associated with these hyperfine mediated dynamics is of the order of T * 2 =2 ns. Over longer timescales, an unexpected stage of central spin relaxation is observed, namely the appearance of a second feature in the relaxation curve around T Q =750 ns. By comparison with theoretical simulations, this additional decoherence channel is shown to arise from coherent dynamics in the nuclear spin bath itself. Such coherent dynamics are induced by a quadrupolar coupling of the nuclear spins to the strain induced electric field gradients in the quantum dot. These processes

  3. Resistive transition in two-dimensional array of proximity-coupled superconducting weak links

    International Nuclear Information System (INIS)

    Gao Peng; Yu Zheng; Wei Wang; Yao Xi-xian

    1988-01-01

    The Kosterlitz Thouless transition in two-dimensional arrays of proximity-coupled superconducting weak links has been studied in this paper. The samples were prepared by application of the vacuum-evaporation/photoengraving/chemical-etching technique. The experimental results of measurements on some samples of array film showed the existence of the K-T transition in these samples and were consistent with the theory of Lobb, Abraham, and Tinkham

  4. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb

    Science.gov (United States)

    Brown, Natalie C.; Brown, Kenneth R.

    2018-05-01

    Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .

  5. Loschmidt echo of a two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field

    International Nuclear Information System (INIS)

    Zhong Ming; Tong Peiqing

    2011-01-01

    The Loschmidt echo (LE) of a central two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field is studied. A general formula for LE is derived, which we use to discuss the influence of the criticality of the environment on LE. It is found that for the periodic XY chain the behaviors of LE in the vicinity of the critical points are similar to those of the uniform case. It is different for the disordered transverse Ising chains. For the aperiodic chains, if the surrounding systems are bounded chains, the behaviors of LE are similar to those of the uniform case, while if the surrounding systems are unbounded chains, they are similar to those of the disordered case.

  6. Filter-design perspective applied to dynamical decoupling of a multi-qubit system

    International Nuclear Information System (INIS)

    Su Zhikun; Jiang Shaoji

    2012-01-01

    We employ the filter-design perspective and derive the filter functions according to nested Uhrig dynamical decoupling (NUDD) and symmetric dynamical decoupling (SDD) in the pure-dephasing spin-boson model with N qubits. The performances of NUDD and SDD are discussed in detail for a two-qubit system. The analysis shows that (i) SDD outperforms NUDD for the bath with a soft cutoff while NUDD approaches SDD as the cutoff becomes harder; (ii) if the qubits are coupled to a common reservoir, SDD helps to protect the decoherence-free subspace while NUDD destroys it; (iii) when the imperfect control pulses with finite width are considered, NUDD is affected in both the high-fidelity regime and coherence time regime while SDD is affected in the coherence time regime only. (paper)

  7. 3D microwave cavity with magnetic flux control and enhanced quality factor

    Energy Technology Data Exchange (ETDEWEB)

    Reshitnyk, Yarema [The University of Queensland, School of Mathematics and Physics, St Lucia (Australia); Jerger, Markus [The University of Queensland, ARC Centre of Excellence for Engineered Quantum Systems, 4072 (Australia); Fedorov, Arkady [The University of Queensland, School of Mathematics and Physics, St Lucia (Australia); The University of Queensland, ARC Centre of Excellence for Engineered Quantum Systems, 4072 (Australia)

    2016-12-15

    Three-dimensional (3D) microwave cavities have been extensively used for coupling and interacting with superconducting quantum bits (qubits), providing a versatile platform for quantum control experiments and for realizing hybrid quantum systems. While having high quality factors (>10{sup 6}) superconducting cavities do not permit magnetic field control of qubits. In contrast, cavities made of normal metals are transparent to magnetic fields, but experience lower quality factors (∝10{sup 4}). We have created a hybrid cavity which is primarily composed of aluminium but also contains a small copper insert reaching the internal quality factor of ≅10{sup 5}, an order of magnitude improvement over all previously tested normal metal cavities. In order to demonstrate precise magnetic control, we performed spectroscopy of three superconducting qubits, where individual control of each qubit's frequency was exerted with small external wire coils. An improvement in quality factor and magnetic field control makes this 3D hybrid cavity an attractive new element for circuit quantum electrodynamics experiments. (orig.)

  8. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    Science.gov (United States)

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.

    2015-02-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.

  9. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)

    2015-08-15

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.

  10. Study on interstrand coupling losses in Rutherford-type superconducting cables

    International Nuclear Information System (INIS)

    Lei, Y.Z.; Shintomi, T.; Terashima, A.; Hirabayashi, H.

    1993-02-01

    Two sets of experimental apparatus for measuring the AC losses in superconducting strands and Rutherford-type cable conductors have been constructed. A few strand samples and a number of compacted cable samples with and without a CuMn matrix have been measured. The hysteresis loss, loss from coupling within strands and loss from coupling between strands in cables have been distinguished from each other. The results show that, even for Rutherford cables without any soldering and coating, their AC losses may be quite different from each other due to the variation of the interstrand coupling loss. For cables without a CuMn matrix, interstrand coupling loss increases nearly according to a geometrical series with an increase of curing temperature simulating coil fabrication. However, cables with the CuMn matrix show a relatively small curing temperature dependence. For most of the samples, losses do not show any evident dependence on the mechanical pressure. Interstrand resistances in one of these cables have also been measured; the results indicate that the tendency for a decrease in the interstrand resistances is consistent with the results of AC loss measurements. (author)

  11. Development of a broadband reflective T-filter for voltage biasing high-Q superconducting microwave cavities

    International Nuclear Information System (INIS)

    Hao, Yu; Rouxinol, Francisco; LaHaye, M. D.

    2014-01-01

    We present the design of a reflective stop-band filter based on quasi-lumped elements that can be utilized to introduce large dc and low-frequency voltage biases into a low-loss superconducting coplanar waveguide (CPW) cavity. Transmission measurements of the filter are seen to be in good agreement with simulations and demonstrate insertion losses greater than 20 dB in the range of 3–10 GHz. Moreover, transmission measurements of the CPW's fundamental mode demonstrate that loaded quality factors exceeding 10 5 can be achieved with this design for dc voltages as large as 20 V and for the cavity operated in the single-photon regime. This makes the design suitable for use in a number of applications including qubit-coupled mechanical systems and circuit QED

  12. Teleportation of M-Qubit Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.

  13. Circuit quantum acoustodynamics with surface acoustic waves.

    Science.gov (United States)

    Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J

    2017-10-17

    The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.

  14. Endo-Fullerene and Doped Diamond Nanocrystallite Based Models of Qubits for Solid-State Quantum Computers

    Science.gov (United States)

    Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.

  15. Sudden transitions and scaling behavior of geometric quantum correlation for two qubits in quantum critical environments at finite temperature

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2014-01-01

    We investigate the phenomenon of sudden transitions in geometric quantum correlation of two qubits in spin chain environments at finite temperature. It is shown that when only one qubit is coupled to the spin environment, the geometric discord exhibits a double sudden transition behavior, which is closely related to the quantum criticality of the spin chain environment. When two qubits are uniformly coupled to a common spin chain environment, the geometric discord is found to display a sudden transition behavior whereby the system transits from pure classical decoherence to pure quantum decoherence. Moreover, an interesting scaling behavior is revealed for the frozen time, and we also present a scheme to prolong the time during which the discord remains constant by applying bang–bang pulses. (paper)

  16. A CMOS silicon spin qubit

    Science.gov (United States)

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; de Franceschi, S.

    2016-11-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  17. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  18. Synthetic Elucidation of Design Principles for Molecular Qubits

    Science.gov (United States)

    Graham, Michael James

    Quantum information processing (QIP) is an emerging computational paradigm with the potential to enable a vast increase in computational power, fundamentally transforming fields from structural biology to finance. QIP employs qubits, or quantum bits, as its fundamental units of information, which can exist in not just the classical states of 0 or 1, but in a superposition of the two. In order to successfully perform QIP, this superposition state must be sufficiently long-lived. One promising paradigm for the implementation of QIP involves employing unpaired electrons in coordination complexes as qubits. This architecture is highly tunable and scalable, however coordination complexes frequently suffer from short superposition lifetimes, or T2. In order to capitalize on the promise of molecular qubits, it is necessary to develop a set of design principles that allow the rational synthesis of complexes with sufficiently long values of T2. In this dissertation, I report efforts to use the synthesis of series of complexes to elucidate design principles for molecular qubits. Chapter 1 details previous work by our group and others in the field. Chapter 2 details the first efforts of our group to determine the impact of varying spin and spin-orbit coupling on T2. Chapter 3 examines the effect of removing nuclear spins on coherence time, and reports a series of vanadyl bis(dithiolene) complexes which exhibit extremely long coherence lifetimes, in excess of the 100 mus threshold for qubit viability. Chapters 4 and 5 form two complimentary halves of a study to determine the exact relationship between electronic spin-nuclear spin distance and the effect of the nuclear spins on T2. Finally, chapter 6 suggests next directions for the field as a whole, including the potential for work in this field to impact the development of other technologies as diverse as quantum sensors and magnetic resonance imaging contrast agents.

  19. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  20. Genuine Four Tangle for Four Qubit States

    OpenAIRE

    Sharma, S. Shelly; Sharma, N. K.

    2013-01-01

    We report a four qubit polynomial invariant that quantifies genuine four-body correlations. The four qubit invariants are obtained from transformation properties of three qubit invariants under a local unitary on the fourth qubit.

  1. Amplitude damping for single-qubit system with single-qubit mixed-state environment

    International Nuclear Information System (INIS)

    Jung, Eylee; Hwang, Mi-Ra; Ju, You Hwan; Park, D K; Kim, Hungsoo; Kim, Min-Soo; Son, Jin-Woo

    2008-01-01

    We study a generalized amplitude damping channel when environment is initially in the single-qubit mixed state. Representing the affine transformation of the generalized amplitude damping by a three-dimensional volume, we plot explicitly the volume occupied by the channels simulatable by a single-qubit mixed-state environment. As expected, this volume is embedded in the total volume by the channels which is simulated by a two-qubit enviroment. The volume ratio is approximately 0.08 which is much smaller than 3/8, the volume ratio for generalized depolarizing channels

  2. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bronn, Nicholas T., E-mail: ntbronn@us.ibm.com; Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M. [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Liu, Yanbing; Houck, Andrew A. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-26

    The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.

  3. On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier

    Science.gov (United States)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.

    Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.

  4. Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state

    Energy Technology Data Exchange (ETDEWEB)

    Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)

    2015-04-27

    Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.

  5. Nonlocality and entanglement in qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Batle, J [Departament de Fisica, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain); Casas, M, E-mail: vdfsjbv4@uib.es [Departament de Fisica and IFISC-CSIC, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain)

    2011-11-04

    Nonlocality and quantum entanglement constitute two special aspects of the quantum correlations existing in quantum systems, which are of paramount importance in quantum-information theory. Traditionally, they have been regarded as identical (equivalent, in fact, for pure two qubit states, that is, Gisin's Theorem), yet they constitute different resources. Describing nonlocality by means of the violation of several Bell inequalities, we obtain by direct optimization those states of two qubits that maximally violate a Bell inequality, in terms of their degree of mixture as measured by either their participation ratio R = 1/Tr({rho}{sup 2}) or their maximum eigenvalue {lambda}{sub max}. This optimum value is obtained as well, which coincides with previous results. Comparison with entanglement is performed too. An example of an application is given in the XY model. In this novel approximation, we also concentrate on the nonlocality for linear combinations of pure states of two qubits, providing a closed form for their maximal nonlocality measure. The case of Bell diagonal mixed states of two qubits is also extensively studied. Special attention concerning the connection between nonlocality and entanglement for mixed states of two qubits is paid to the so-called maximally entangled mixed states. Additional aspects for the case of two qubits are also described in detail. Since we deal with qubit systems, we will perform an analogous study for three qubits, employing similar tools. Relation between distillability and nonlocality is explored quantitatively for the whole space of states of three qubits. We finally extend our analysis to four-qubit systems, where nonlocality for generalized Greenberger-Horne-Zeilinger states of arbitrary number of parties is computed. (paper)

  6. Thermodynamics of a periodically driven qubit

    Science.gov (United States)

    Donvil, Brecht

    2018-04-01

    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.

  7. Broken symmetry in a two-qubit quantum control landscape

    Science.gov (United States)

    Bukov, Marin; Day, Alexandre G. R.; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj; Sels, Dries

    2018-05-01

    We analyze the physics of optimal protocols to prepare a target state with high fidelity in a symmetrically coupled two-qubit system. By varying the protocol duration, we find a discontinuous phase transition, which is characterized by a spontaneous breaking of a Z2 symmetry in the functional form of the optimal protocol, and occurs below the quantum speed limit. We study in detail this phase and demonstrate that even though high-fidelity protocols come degenerate with respect to their fidelity, they lead to final states of different entanglement entropy shared between the qubits. Consequently, while globally both optimal protocols are equally far away from the target state, one is locally closer than the other. An approximate variational mean-field theory which captures the physics of the different phases is developed.

  8. Searching for highly entangled multi-qubit states

    International Nuclear Information System (INIS)

    Brown, Iain D K; Stepney, Susan; Sudbery, Anthony; Braunstein, Samuel L

    2005-01-01

    We present a simple numerical optimization procedure to search for highly entangled states of 2, 3, 4 and 5 qubits. We develop a computationally tractable entanglement measure based on the negative partial transpose criterion, which can be applied to quantum systems of an arbitrary number of qubits. The search algorithm attempts to optimize this entanglement cost function to find the maximal entanglement in a quantum system. We present highly entangled 4-qubit and 5-qubit states discovered by this search. We show that the 4-qubit state is not quite as entangled, according to two separate measures, as the conjectured maximally entangled Higuchi-Sudbery state. Using this measure, these states are more highly entangled than the 4-qubit and 5-qubit GHZ states. We also present a conjecture about the NPT measure, inspired by some of our numerical results, that the single-qubit reduced states of maximally entangled states are all totally mixed

  9. Superconducting coil and method of stress management in a superconducting coil

    Science.gov (United States)

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  10. A magnetically coupled quench detector for superconducting magnets

    International Nuclear Information System (INIS)

    Jaskierny, W.; Kristalinski, A.; Visser, A.T.

    1993-12-01

    This note describes a low voltage signal detector that is useful for detecting quenches or excessive lead voltages at superconducting magnets. It can also be used for other applications where it is needed to detect low level signals present on high voltage installations. The application of isolated operational amplifiers is often not practical for high voltage applications because of their limited input voltage rating, common mode rejection and sensitivity. The described detector can withstand 7.5 kV input to ground voltage. It has a typical common mode rejection of -150 dB at 60 Hz and an input sensitivity better than 1 mV. The magnetically coupled quench detector assembly is very sensitive to extremely small (order of 1 μAmp) current changes in the sense windings. The detector assembly can therefore also be referred to as a micro current detector

  11. Dynamics of a driven spin coupled to an antiferromagnetic spin bath

    International Nuclear Information System (INIS)

    Yuan Xiaozhong; Goan, Hsi-Sheng; Zhu, Ka-Di

    2011-01-01

    We study the behavior of the Rabi oscillations of a driven central spin (qubit) coupled to an antiferromagnetic spin bath (environment). It is found that the decoherence behavior of the central spin depends on the detuning, driving strength, qubit-bath coupling and an important factor Ω, associated with the number of coupled atoms, the detailed lattice structure and the temperature of the environment. If detuning exists, Rabi oscillations may show the behavior of collapses and revivals; however, if detuning is absent, such a behavior will not appear. We investigate the weighted frequency distribution of the time evolution of the central spin inversion and give a reasonable explanation of this phenomenon of collapses and revivals. We also discuss the decoherence and pointer states of the qubit from the perspective of von Neumann entropy. We found that the eigenstates of the qubit self-Hamiltonian emerge as pointer states in the weak system-environment coupling limit.

  12. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.

  13. Develop of a quantum electromechanical hybrid system

    Science.gov (United States)

    Hao, Yu; Rouxinol, Francisco; Brito, Frederico; Caldeira, Amir; Irish, Elinor; Lahaye, Matthew

    In this poster, we will show our results from measurements of a hybrid quantum system composed of a superconducting transmon qubit-coupled and ultra-high frequency nano-mechanical resonator, embedded in a superconducting cavity. The transmon is capacitively coupled to a 3.4GHz nanoresonator and a T-filter-biased high-Q transmission line cavity. Single-tone and two-tone transmission spectroscopy measurements are used to probe the interactions between the cavity, qubit and mechanical resonator. These measurements are in good agreement with numerical simulations based upon a master equation for the tripartite system including dissipation. The results indicate that this system may be developed to serve as a platform for more advanced measurements with nanoresonators, including quantum state measurement, the exploration of nanoresonator quantum noise, and reservoir engineering.

  14. Superconductivity in MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, Takahiro; Akimitsu, Jun [Aoyama Gakuin Univ., Kanagawa (Japan). Dept. of Physics and Mathematics

    2011-07-01

    We review superconductivity in MgB{sub 2} in terms of crystal and electronic structure, electron-phonon coupling, two-gap superconductivity and application. Finally, we introduce the development of new superconducting materials in related compounds. (orig.)

  15. Nonclassical correlations in superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Migliore, Rosanna [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); CNR-INFM, UdR CNISM di Palermo, Palermo (Italy); Scala, Matteo [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); Departamento de Optica, Facultad de Fisica, Universidad Complutense, Madrid (Spain); Guccione, Marina; Sanchez-Soto, Luis L. [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); Messina, Antonino [Departamento de Optica, Facultad de Fisica, Universidad Complutense, Madrid (Spain)

    2009-05-15

    A key step on the road map to solid-state quantum information processing (and to a deeper understanding of many counterintuitive aspects of quantum mechanics) is the generation and manipulation of nonclassical correlations between different quantum systems. Within this framework, we analyze the possibility of generating maximally entangled states in a system of two superconducting flux qubits, as well as the effectof their own environments on the entanglement dynamics. The analysis reported here confirms that the phenomena of sudden birth and sudden death of the entanglement do not depend on the particular measure of the entanglement adopted (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

    Science.gov (United States)

    Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius

    2018-06-01

    We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

  17. Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states

    Science.gov (United States)

    Kocia, Lucas; Love, Peter

    2017-12-01

    We show that qubit stabilizer states can be represented by non-negative quasiprobability distributions associated with a Wigner-Weyl-Moyal formalism where Clifford gates are positive state-independent maps. This is accomplished by generalizing the Wigner-Weyl-Moyal formalism to three generators instead of two—producing an exterior, or Grassmann, algebra—which results in Clifford group gates for qubits that act as a permutation on the finite Weyl phase space points naturally associated with stabilizer states. As a result, a non-negative probability distribution can be associated with each stabilizer state's three-generator Wigner function, and these distributions evolve deterministically to one another under Clifford gates. This corresponds to a hidden variable theory that is noncontextual and local for qubit Clifford gates while Clifford (Pauli) measurements have a context-dependent representation. Equivalently, we show that qubit Clifford gates can be expressed as propagators within the three-generator Wigner-Weyl-Moyal formalism whose semiclassical expansion is truncated at order ℏ0 with a finite number of terms. The T gate, which extends the Clifford gate set to one capable of universal quantum computation, requires a semiclassical expansion of the propagator to order ℏ1. We compare this approach to previous quasiprobability descriptions of qubits that relied on the two-generator Wigner-Weyl-Moyal formalism and find that the two-generator Weyl symbols of stabilizer states result in a description of evolution under Clifford gates that is state-dependent, in contrast to the three-generator formalism. We have thus extended Wigner non-negative quasiprobability distributions from the odd d -dimensional case to d =2 qubits, which describe the noncontextuality of Clifford gates and contextuality of Pauli measurements on qubit stabilizer states.

  18. Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit

    Directory of Open Access Journals (Sweden)

    Ge Yang

    2016-03-01

    Full Text Available The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts that are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be ≈1  MHz per electron, indicating the feasibility of achieving single electron strong coupling.

  19. Superconducting Super Collider Laboratory coupled-cavity linac mechanical design

    International Nuclear Information System (INIS)

    Starling, W.J.; Cain, T.

    1992-01-01

    A collaboration between the Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) for the engineering and mechanical design of the SSCL Coupled-Cavity Linac (CCL) has yielded an innovative example of the well known side coupled-cavity type of linear accelerator. The SSCL CCL accelerates an H - beam from 70 MeV to 600 MeV with an rf cavity structure consisting of eight tanks in each of nine modules for a total length of about 112 meters. Magnetically-coupled bridge couplers transfer power from tank to tank within a module. A single rf power input is located at the center bridge coupler of each module. The bridge couplers permit placement along the beam line of combined function focusing/steering electromagnets and diagnostic pods for beam instrumentation. Each tank and bridge coupler is rf frequency stabilized, nominally to 1,283 MHz, by water pumped through integral water passages. Air isolation grooves surround the water passages at each braze joint so that water-to-vacuum interfaces are avoided. Each tank is supported by adjustable spherical bearing rod end struts to permit alignment and accommodate thermal expansion and contraction of the rf structure. Tank struts, electromagnet/diagnostic pod support frames, vacuum manifolds and utilities are all mounted to a girder-and-leg support stand running the full length of the CCL. (Author) tab., fig

  20. Implementation of quantum partial search with superconducting quantum interference device qudits in cavity QED

    International Nuclear Information System (INIS)

    Li Hong-Yi; Wu Chun-Wang; Chen Yu-Bo; Lin Yuan-Gen; Chen Ping-Xing; Li Cheng-Zu

    2013-01-01

    We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity—SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology

  1. Submicron superconducting structures

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.

    1986-01-01

    An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field

  2. Superconductivity in three-dimensional spin-orbit coupled semimetals

    Science.gov (United States)

    Savary, Lucile; Ruhman, Jonathan; Venderbos, Jörn W. F.; Fu, Liang; Lee, Patrick A.

    2017-12-01

    Motivated by the experimental detection of superconductivity in the low-carrier density half-Heusler compound YPtBi, we study the pairing instabilities of three-dimensional strongly spin-orbit coupled semimetals with a quadratic band touching point. In these semimetals the electronic structure at the Fermi energy is described by spin j =3/2 quasiparticles, which are fundamentally different from those in ordinary metals with spin j =1/2 . For both local and nonlocal pairing channels in j =3/2 materials we develop a general approach to analyzing pairing instabilities, thereby providing the computational tools needed to investigate the physics of these systems beyond phenomenological considerations. Furthermore, applying our method to a generic density-density interaction, we establish that: (i) The pairing strengths in the different symmetry channels uniquely encode the j =3/2 nature of the Fermi surface band structure—a manifestation of the fundamental difference with ordinary metals. (ii) The leading odd-parity pairing instabilities are different for electron doping and hole doping. Finally, we argue that polar phonons, i.e., Coulomb interactions mediated by the long-ranged electric polarization of the optical phonon modes, provide a coupling strength large enough to account for a Kelvin-range transition temperature in the s -wave channel, and are likely to play an important role in the overall attraction in non-s -wave channels. Moreover, the explicit calculation of the coupling strengths allows us to conclude that the two largest non-s -wave contributions occur in nonlocal channels, in contrast with what has been commonly assumed.

  3. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  4. Analysis of Electrical Coupling Parameters in Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2003-01-01

    The analysis of current distribution and redistribution in superconducting cables requires the knowledge of the electric coupling among strands, and in particular the interstrand resistance and inductance values. In practice both parameters can have wide variations in cables commonly used such as Rutherford cables for accelerators or Cable-in-Conduits for fusion and SMES magnets. In this paper we describe a model of a multi-stage twisted cable with arbitrary geometry that can be used to study the range of interstrand resistances and inductances that is associated with variations of geometry. These variations can be due to cabling or compaction effects. To describe the variations from the nominal geometry we have adopted a cable model that resembles to the physical process of cabling and compaction. The inductance calculation part of the model is validated by comparison to semi-analytical results, showing excellent accuracy and execution speed.

  5. Spin-orbit qubit in a semiconductor nanowire.

    Science.gov (United States)

    Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P

    2010-12-23

    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

  6. Volume of the space of qubit-qubit channels and state transformations under random quantum channels

    OpenAIRE

    Lovas, Attila; Andai, Attila

    2017-01-01

    The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...

  7. Implementing a strand of a scalable fault-tolerant quantum computing fabric.

    Science.gov (United States)

    Chow, Jerry M; Gambetta, Jay M; Magesan, Easwar; Abraham, David W; Cross, Andrew W; Johnson, B R; Masluk, Nicholas A; Ryan, Colm A; Smolin, John A; Srinivasan, Srikanth J; Steffen, M

    2014-06-24

    With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.

  8. Thin film metrology and microwave loss characterization of indium and aluminum/indium superconducting planar resonators

    Science.gov (United States)

    McRae, C. R. H.; Béjanin, J. H.; Earnest, C. T.; McConkey, T. G.; Rinehart, J. R.; Deimert, C.; Thomas, J. P.; Wasilewski, Z. R.; Mariantoni, M.

    2018-05-01

    Scalable architectures characterized by quantum bits (qubits) with low error rates are essential to the development of a practical quantum computer. In the superconducting quantum computing implementation, understanding and minimizing material losses are crucial to the improvement of qubit performance. A new material that has recently received particular attention is indium, a low-temperature superconductor that can be used to bond pairs of chips containing standard aluminum-based qubit circuitry. In this work, we characterize microwave loss in indium and aluminum/indium thin films on silicon substrates by measuring superconducting coplanar waveguide resonators and estimating the main loss parameters at powers down to the sub-photon regime and at temperatures between 10 and 450 mK. We compare films deposited by thermal evaporation, sputtering, and molecular beam epitaxy. We study the effects of heating in a vacuum and ambient atmospheric pressure as well as the effects of pre-deposition wafer cleaning using hydrofluoric acid. The microwave measurements are supported by thin film metrology including secondary-ion mass spectrometry. For thermally evaporated and sputtered films, we find that two-level state are the dominant loss mechanism at low photon number and temperature, with a loss tangent due to native indium oxide of ˜ 5 × 10 - 5 . The molecular beam epitaxial films show evidence of the formation of a substantial indium-silicon eutectic layer, which leads to a drastic degradation in resonator performance.

  9. Framework for Flux Qubit Design

    Science.gov (United States)

    Yan, Fei; Kamal, Archana; Krantz, Philip; Campbell, Daniel; Kim, David; Yoder, Jonilyn; Orlando, Terry; Gustavsson, Simon; Oliver, William; Engineering Quantum Systems Team

    A qubit design for higher performance relies on the understanding of how various qubit properties are related to design parameters. We construct a framework for understanding the qubit design in the flux regime. We explore different parameter regimes, looking for features desirable for certain purpose in the context of quantum computing. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002.

  10. Alternative power supply and dump resistor connections for similar, mutually coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains ''coupling'' resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  11. Alternative power supply and dump resistor connections for similar, mutally coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  12. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    Science.gov (United States)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  13. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    Banerjee, D.; Bandyopadhyay, P.

    2005-11-01

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has the spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them results the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states. (author)

  14. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    Banerjee, Dipti; Bandyopadhyay, Pratul

    2006-01-01

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has a spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them allows the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states

  15. Coupled electromagnetic and structural finite element analysis of a superconducting dipole model

    International Nuclear Information System (INIS)

    Hirtenfelder, F.

    1996-01-01

    Many devices contain parts that undergo motion due to electromagnetic forces. The motion causes the electromagnetic fields to change. Thus the electromagnetic fields must be computed along with the structural motion. In many cases the motion produced by electromagnetic forces is desired motion. However, in many devices, some undesired motion can occur due to electromagnetic forces. The motion creases motion-induced eddy currents which in turn affect the electromagnetic fields and forces. A finite element technique is described that fully couples structural and electromagnetic analysis in the time domain. The code is applied to a superconducting dipole model in order to study deformations and stresses during ramp and quench. The results of this coupled analysis enables the designer to visualize deformations, vibrations, displacements and all electromagnetic field quantities of the device and to try different solutions to enhance its performance

  16. Controlling bi-partite entanglement in multi-qubit systems

    International Nuclear Information System (INIS)

    Plesch, Martin; Novotny, Jaroslav; Dzurakova, Zuzana; Buzek, VladimIr

    2004-01-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N 2 ) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits

  17. Controlling bi-partite entanglement in multi-qubit systems

    Science.gov (United States)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  18. Performance comparison of dynamical decoupling sequences for a qubit in a rapidly fluctuating spin bath

    International Nuclear Information System (INIS)

    Alvarez, Gonzalo A.; Suter, Dieter; Ajoy, Ashok; Peng Xinhua

    2010-01-01

    Avoiding the loss of coherence of quantum mechanical states is an important prerequisite for quantum information processing. Dynamical decoupling (DD) is one of the most effective experimental methods for maintaining coherence, especially when one can access only the qubit system and not its environment (bath). It involves the application of pulses to the system whose net effect is a reversal of the system-environment interaction. In any real system, however, the environment is not static, and therefore the reversal of the system-environment interaction becomes imperfect if the spacing between refocusing pulses becomes comparable to or longer than the correlation time of the environment. The efficiency of the refocusing improves therefore if the spacing between the pulses is reduced. Here, we quantify the efficiency of different DD sequences in preserving different quantum states. We use 13 C nuclear spins as qubits and an environment of 1 H nuclear spins as the environment, which couples to the qubit via magnetic dipole-dipole couplings. Strong dipole-dipole couplings between the proton spins result in a rapidly fluctuating environment with a correlation time of the order of 100 μs. Our experimental results show that short delays between the pulses yield better performance if they are compared with the bath correlation time. However, as the pulse spacing becomes shorter than the bath correlation time, an optimum is reached. For even shorter delays, the pulse imperfections dominate over the decoherence losses and cause the quantum state to decay.

  19. Fast generation of three-qubit Greenberger-Horne-Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities.

    Science.gov (United States)

    Huang, Xiao-Bin; Chen, Ye-Hong; Wang, Zhe

    2016-05-24

    In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the "Lewis-Riesenfeld (LR) invariants" in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-resistant quantum information processing for multi-qubit systems.

  20. Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-01-13

    We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

  1. Unexpected nonlinear effects and critical coupling in NbN superconducting microwave resonators

    International Nuclear Information System (INIS)

    Abdo, B.; Buks, E.

    2004-01-01

    Full Text:In this work, we have designed and fabricated several NbN superconducting stripline microwave resonators sputtered on sapphire substrates. The low temperature response exhibits strong and unexpected nonlinear effects, including sharp jumps as the frequency or poser are varied, frequency hysteresis loops changing direction as the input power is varied, and others. Contrary to some other superconducting resonators, a simple model of a one-dimensional Duffing resonator cannot account for the experimental results. Whereas the physical origin of the unusual nonlinear response of our samples remains an open question, our intensive experimental study of these effects under varying conditions provides some important insight. We consider a hypothesis according to which Josephson junctions forming weak links between the grains of the NbN are responsible for the observed behavior. We show that most of the experimental results are qualitatively consistent with such hypothesis. While revealing the underlying physics remains an outstanding challenge for future research, the utilization of the unusual nonlinear response for some novel applications is already demonstrated in the present work. In particular an operate the resonator as an inter modulation amplifier and find that the gain can be as high as 15 dB. To the best of our knowledge, inter modulation gain greater than unity has not been reported before in the scientific literature. In another application we demonstrate for the first time that the coupling between the resonator and its feed line can be made amplitude dependent. This novel mechanism allows us to tune the resonator into critical coupling conditions

  2. Nonlinear optics quantum computing with circuit QED.

    Science.gov (United States)

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  3. Multiple transparency windows and Fano interferences induced by dipole-dipole couplings

    Science.gov (United States)

    Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.

    2018-04-01

    We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.

  4. A programmable two-qubit quantum processor in silicon.

    Science.gov (United States)

    Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2018-03-29

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  5. A programmable two-qubit quantum processor in silicon

    Science.gov (United States)

    Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2018-03-01

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  6. Changes of superconducting interaction in interfaces

    International Nuclear Information System (INIS)

    Halbritter, J.

    1976-01-01

    The leakage of conduction electrons from metals into dielectric or semiconducting coatings yields changes in electron phonon coupling and hybridization with localized states in the coating. The changed electron-phonon coupling explains the observed strengthened superconducting interaction with some monolayer thick coating. The hybridization with localized states, i.e. resonance scattering, yields pair weakening and hence a monotonic depression of superconductivity with coating thickness in agreement with experiments. The latter effect explains quantitatively the Tsub(c) and Δ depression (Δ/kTsub(c) approximately equal to const) and a decrease in the Maki-Thompson-fluctuation term observed with thin superconducting films. (author)

  7. Superconducting power distribution structure for integrated circuits

    International Nuclear Information System (INIS)

    Ruby, R.C.

    1991-01-01

    This patent describes a superconducting power distribution structure for an integrated circuit. It comprises a first superconducting capacitor plate; a second superconducting capacitor plate provided with electrical isolation means within the second capacitor plate; dielectric means separating the first capacitor plate from the second capacitor plate; first via means coupled at a first end to the first capacitor plate and extending through the dielectric and the electrical isolation means of the second capacitor plate; first contact means coupled to a second end of the first via means; and second contact means coupled to the second capacitor plate such that the first contact means and the second contact means are accessible from the same side of the second capacitor plate

  8. Collective modes in superconducting rhombohedral graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kauppila, Ville [O.V. Lounasmaa Laboratory, Aalto University (Finland); Hyart, Timo; Heikkilae, Tero [University of Jyvaeskylae (Finland)

    2015-07-01

    Recently it was realized that coupling particles with a Dirac dispersion (such as electrons in graphene) can lead to a topologically protected state with flat band dispersion. Such a state could support superconductivity with unusually high critical temperatures. Perhaps the most promising way to realize such coupling in real materials is in the surface of rhombohedrally stacked graphite. We consider collective excitations (i.e. the Higgs modes) in surface superconducting rhombohedral graphite. We find two amplitude and two phase modes corresponding to the two surfaces of the graphite where the superconductivity lives. We calculate the dispersion of these modes. We also derive the Ginzburg-Landau theory for this material. We show that in superconducting rhombohedral graphite, the collective modes, unlike in conventional BCS superconductors, give a large contribution to thermodynamic properties of the material.

  9. Normal-state conductance used to probe superconducting tunnel junctions for quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, Carlos; Bavier, Richard; Kim, Yong-Seung; Kim, Eunyoung; Oh, Seongshik [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kline, Jeffrey S; Pappas, David P, E-mail: carlosch@physics.rutgers.ed, E-mail: ohsean@physics.rutgers.ed [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2010-04-15

    Here we report normal-state conductance measurements of three different types of superconducting tunnel junctions that are being used or proposed for quantum computing applications: p-Al/a-AlO/p-Al, e-Re/e-AlO/p-Al, and e-V/e-MgO/p-V, where p stands for polycrystalline, e for epitaxial, and a for amorphous. All three junctions exhibited significant deviations from the parabolic behavior predicted by the WKB approximation models. In the p-Al/a-AlO/p-Al junction, we observed enhancement of tunneling conductances at voltages matching harmonics of Al-O stretching modes. On the other hand, such Al-O vibration modes were missing in the epitaxial e-Re/e-AlO/p-Al junction. This suggests that absence or existence of the Al-O stretching mode might be related to the crystallinity of the AlO tunnel barrier and the interface between the electrode and the barrier. In the e-V/e-MgO/p-V junction, which is one of the candidate systems for future superconducting qubits, we observed suppression of the density of states at zero bias. This implies that the interface is electronically disordered, presumably due to oxidation of the vanadium surface underneath the MgO barrier, even if the interface was structurally well ordered, suggesting that the e-V/e-MgO/p-V junction will not be suitable for qubit applications in its present form. This also demonstrates that the normal-state conductance measurement can be effectively used to screen out low quality samples in the search for better superconducting tunnel junctions.

  10. Decoherence in qubits due to low-frequency noise

    International Nuclear Information System (INIS)

    Bergli, J; Galperin, Y M; Altshuler, B L

    2009-01-01

    The efficiency of the future devices for quantum information processing will be limited mostly by the finite decoherence rates of the qubits. Recently, substantial progress was achieved in enhancing the time within which a solid-state qubit demonstrates coherent dynamics. This progress is based mostly on a successful isolation of the qubits from external decoherence sources. Under these conditions, the material-inherent sources of noise start to play a crucial role. In most cases, the noise that the quantum device demonstrates has a 1/f spectrum. This suggests that the environment that destroys the phase coherence of the qubit can be thought of as a system of two-state fluctuators, which experience random hops between their states. In this short review, the current state of the theory of the decoherence due to the qubit interaction with the fluctuators is discussed. The effect of such an environment on two different protocols of the qubit manipulations, free induction and echo signal, is described. It turns out that in many important cases the noise produced by the fluctuators is non-Gaussian. Consequently, the results of the interaction of the qubit with the fluctuators are not determined by the pair correlation function alone. We describe the effect of the fluctuators using the so-called spin-fluctuator model. Being quite realistic, this model allows one to exactly evaluate the qubit dynamics in the presence of one fluctuator. This solution is found, and its features, including non-Gaussian effects, are analyzed in detail. We extend this consideration to systems of large numbers of fluctuators, which interact with the qubit and lead to the 1/f noise. We discuss existing experiments on the Josephson qubit manipulation and try to identify non-Gaussian behavior.

  11. Entanglement polygon inequality in qubit systems

    Science.gov (United States)

    Qian, Xiao-Feng; Alonso, Miguel A.; Eberly, J. H.

    2018-06-01

    We prove a set of tight entanglement inequalities for arbitrary N-qubit pure states. By focusing on all bi-partite marginal entanglements between each single qubit and its remaining partners, we show that the inequalities provide an upper bound for each marginal entanglement, while the known monogamy relation establishes the lower bound. The restrictions and sharing properties associated with the inequalities are further analyzed with a geometric polytope approach, and examples of three-qubit GHZ-class and W-class entangled states are presented to illustrate the results.

  12. Coherence in a transmon qubit with epitaxial tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, Martin [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Karlsruhe Institute of Technology (Germany); Kline, Jeffrey; Vissers, Michael; Sandberg, Martin; Pappas, David [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Wisbey, David [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Saint Louis University, St. Louis, Missouri 63103 (United States); Johnson, Blake; Ohki, Thomas [Raytheon BBN Technologies, Cambridge, Massachusetts 02138 (United States)

    2012-07-01

    Transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors were developed. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T{sub 1} is.72-.86 {mu} sec and the ensemble dephasing time T{sub 2}{sup *} is slightly larger than T{sub 1}. The dephasing time T{sub 2} (1.36 {mu} sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements.

  13. Entanglement Evolution of Three-Qubit States under Local Decoherence

    International Nuclear Information System (INIS)

    Ma Xiaosan; Liu Gaosheng; Wang Anmin

    2010-01-01

    By using negativity as entanglement measure, we have investigated the effect of local decoherence from a non-Markovian environment on the time evolution of entanglement of three-qubit states including the GHZ state, the W state, and the Werner state. From the results, we find that the entanglement dynamics depends not only on the coupling strengths but also on the specific states of concern. Specifically, the entanglement takes different behaviors under weak or strong coupling and it varies with the quantum states under study. The entanglement of the GHZ state and the Werner state can be destroyed completely by the local decoherence, while the entanglement of the W state can survive through the local decoherence partially. (general)

  14. Repetition code of 15 qubits

    Science.gov (United States)

    Wootton, James R.; Loss, Daniel

    2018-05-01

    The repetition code is an important primitive for the techniques of quantum error correction. Here we implement repetition codes of at most 15 qubits on the 16 qubit ibmqx3 device. Each experiment is run for a single round of syndrome measurements, achieved using the standard quantum technique of using ancilla qubits and controlled operations. The size of the final syndrome is small enough to allow for lookup table decoding using experimentally obtained data. The results show strong evidence that the logical error rate decays exponentially with code distance, as is expected and required for the development of fault-tolerant quantum computers. The results also give insight into the nature of noise in the device.

  15. Feedback-tuned, noise resilient gates for encoded spin qubits

    Science.gov (United States)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  16. Magnetic qubits as hardware for quantum computers

    International Nuclear Information System (INIS)

    Tejada, J.; Chudnovsky, E.; Barco, E. del

    2000-01-01

    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states vertical bar-0> and vertical bar-1> are the ground and first excited spin states S z = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, vertical bar-0>, and antisymmetric, vertical bar-1>, combinations of the two-fold degenerate ground state S z = ± S. In each case the temperature of operation must be low compared to the energy gap, Δ, between the states vertical bar-0> and vertical bar-1>. The gap Δ in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware. (author)

  17. Magnetic qubits as hardware for quantum computers

    Energy Technology Data Exchange (ETDEWEB)

    Tejada, J.; Chudnovsky, E.; Barco, E. del [and others

    2000-07-01

    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states vertical bar-0> and vertical bar-1> are the ground and first excited spin states S{sub z} = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, vertical bar-0>, and antisymmetric, vertical bar-1>, combinations of the two-fold degenerate ground state S{sub z} = {+-} S. In each case the temperature of operation must be low compared to the energy gap, {delta}, between the states vertical bar-0> and vertical bar-1>. The gap {delta} in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware. (author)

  18. Large enhancement of thermoelectric effects in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead

    Science.gov (United States)

    Yao, Hui; Zhang, Chao; Li, Zhi-Jian; Nie, Yi-Hang; Niu, Peng-bin

    2018-05-01

    We theoretically investigate the thermoelectric properties in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead. The role of the intrinsic and extrinsic parameters in improving thermoelectric properties is discussed. The peak value of figure of merit near gap edges increases with the asymmetry parameter decreasing, particularly, when asymmetry parameter is less than 0.5, the figure of merit near gap edges rapidly rises. When the interdot coupling strengh is less than the superconducting gap the thermopower spectrum presents a single-platform structure. While when the interdot coupling strengh is larger than the gap, a double-platform structure appears in thermopower spectrum. Outside the gap the peak values of figure of merit might reach the order of 102. On the basis of optimizing internal parameters the thermoelectric conversion efficiency of the device can be further improved by appropriately matching the total magnetic flux and the flux difference between two subrings.

  19. A superconducting test cavity for DORIS

    International Nuclear Information System (INIS)

    Bauer, W.; Brandelik, A.; Lekmann, W.; Szecsi, L.

    1978-03-01

    A summary of experimental goals, technical requirements and possible solutions for the construction of a superconducting accelerating cavity to be tested at DORIS is given. The aim of the experiment is to prove the applicability of superconducting cavities in storage rings and to study the problems typical for this application. The paper collects design considerations about cavity geometry and fabrication, input coupling, output coupling for higher modes, tuner, cryostat and controls. (orig.) [de

  20. Interqubit coupling mediated by a high-excitation-energy quantum object

    NARCIS (Netherlands)

    Ashhab, S.; Niskanen, A.O.; Harrabi, K.; Nakamura, Y.; Picot, T.; De Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E.; Nori, F.

    2008-01-01

    We consider a system composed of two qubits and a high excitation energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well known

  1. Superconductivity and antiferromagnetism in heavy-electron systems

    International Nuclear Information System (INIS)

    Konno, R.; Ueda, K.

    1989-01-01

    Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a general point of view. First we classify superconducting states in a simple cubic lattice, a body-centered tetragonal lattice, and a hexagonal close-packed lattice, having URu 2 Si 2 and UPt 3 in mind. For that purpose we take an approach to treat the effective couplings in real space. The approach is convenient to discuss the relation between the nature of fluctuations in the system and the superconducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experiments are dominant, the most promising are some of the anisotropic singlet states and there remains the possibility for some triplet states too. Then we discuss the coupling between the two order parameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term. It is pointed out that the coupling constant can be large in heavy-electron systems. The general trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is shown that the anisotropic states are generally more favorable to the coexistence than the conventional isotropic singlet. Experimental data of URu 2 Si 2 and UPt 3 are analyzed by the Ginzburg-Landau theory. According to the analysis URu 2 Si 2 has a small coupling constant and a large condensation energy of the antiferromagnetism. On the other hand, UPt 3 has a large coupling constant and a small condensation energy. It means that the specific-heat anomaly at T N should be small in UPt 3 and its superconductivity is easily destroyed when a large moment is formed

  2. Deterministic Assisted Clone of an Arbitrary Two- and Three-qubit States via Multi-qubit Brown State

    Science.gov (United States)

    Hou, Kui; Zhu, Cheng-Jie; Yang, Ya-Ping

    2017-08-01

    We present two schemes for deterministic assisted clone(DAC) of an unknown two- and three-qubit entangled states with assistance via muti-qubit Brown state. In the schemes, the sender wish to teleport an unknown original entangled state which from the state preparer, and then create a perfect copy of the unknown state at her place. The DAC schemes include two stages. The first stage requires teleportation with Bell-state measurements via a five-qubit Brown state(or seven-qubit Brown state) as the quantum channel. In the second stage, to help the sender realize the quantum cloning, the state preparer performs projective measurements on their own particles which from the sender, then the sender can acquire a perfect copy of the unknown state by means of some appropriate unitary operations. Furthermore, the total success probability for assisted cloning a perfect copy of the unknown state can reach 1 in our schemes.

  3. Black holes, qubits and octonions

    International Nuclear Information System (INIS)

    Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.

    2009-01-01

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems

  4. The role of local repulsion in superconductivity in the Hubbard–Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chungwei, E-mail: clin@merl.com; Wang, Bingnan; Teo, Koon Hoo

    2017-01-15

    Highlights: • There exists an optimal Boson energy for superconductivity in Hubbard–Holstein model. • The electron-Boson coupling is essential for superconductivity, but the same coupling can lead to polaron insulator, which is against superconductivity. • The local Coulomb repulsion can sometimes enhance superconductivity. - Abstract: We examine the superconducting solution in the Hubbard–Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard–Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizes the S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  5. Investigations of a voltage-biased microwave cavity for quantum measurements of nanomechanical resonators

    Science.gov (United States)

    Rouxinol, Francisco; Hao, Hugo; Lahaye, Matt

    2015-03-01

    Quantum electromechanical systems incorporating superconducting qubits have received extensive interest in recent years due to their promising prospects for studying fundamental topics of quantum mechanics such as quantum measurement, entanglement and decoherence in new macroscopic limits, also for their potential as elements in technological applications in quantum information network and weak force detector, to name a few. In this presentation we will discuss ours efforts toward to devise an electromechanical circuit to strongly couple a nanomechanical resonator to a superconductor qubit, where a high voltage dc-bias is required, to study quantum behavior of a mechanical resonator. Preliminary results of our latest generation of devices integrating a superconductor qubit into a high-Q voltage biased microwave cavities are presented. Developments in the circuit design to couple a mechanical resonator to a qubit in the high-Q voltage bias CPW cavity is discussed as well prospects of achieving single-phonon measurement resolution. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  6. Subspace confinement: how good is your qubit?

    International Nuclear Information System (INIS)

    Devitt, Simon J; Schirmer, Sonia G; Oi, Daniel K L; Cole, Jared H; Hollenberg, Lloyd C L

    2007-01-01

    The basic operating element of standard quantum computation is the qubit, an isolated two-level system that can be accurately controlled, initialized and measured. However, the majority of proposed physical architectures for quantum computation are built from systems that contain much more complicated Hilbert space structures. Hence, defining a qubit requires the identification of an appropriate controllable two-dimensional sub-system. This prompts the obvious question of how well a qubit, thus defined, is confined to this subspace, and whether we can experimentally quantify the potential leakage into states outside the qubit subspace. We demonstrate how subspace leakage can be characterized using minimal theoretical assumptions by examining the Fourier spectrum of the oscillation experiment

  7. Restless Tuneup of High-Fidelity Qubit Gates

    Science.gov (United States)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L.

    2017-04-01

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate-set tomography. The adjustable sensitivity of the cost function allows the detection of fractional changes in the gate error with a nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

  8. Complete quantum control of exciton qubits bound to isoelectronic centres.

    Science.gov (United States)

    Éthier-Majcher, G; St-Jean, P; Boso, G; Tosi, A; Klem, J F; Francoeur, S

    2014-05-30

    In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing.

  9. Multiqubit nonlocality in families of 3- and 4-qubit entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, S; Debnath, S; Sinclair, N; Kabra, A [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Stock, R, E-mail: sghose@wlu.c [Department of Physics, University of Toronto, Ontario M5S 1A7 (Canada)

    2010-11-07

    We investigate genuine multiqubit nonlocality in families of entangled 3- and 4-qubit pure states by analyzing a Bell-type inequality that is violated only if all qubits are nonlocally correlated. We present detailed numerical studies of the relationship between entanglement and violation of the Svetlichny Bell-type inequality in an experimentally accessible set of 3-qubit pure states, and identify the special nonlocality property of the maximal slice states in the space of all 3-qubit pure states. We also analyze nonlocal correlations in 3-qubit generalized Greenberger-Horne-Zeilinger (GHZ) states and extend our analysis to the case of 4-qubit generalized GHZ states. We show that like the 3-qubit case, some 4-qubit generalized GHZ states do not violate a Bell inequality that tests for genuine 4-qubit nonlocality. Furthermore, the location of the boundary between the states that do violate the inequality and those that do not is the same for the 3- and 4-qubit generalized GHZ states.

  10. Electromagnetic-field dependence of the internal excited state of the polaron and the qubit in quantum dot with thickness

    Science.gov (United States)

    Bai, Xu-Fang; Xin, Wei; Yin, Hong-Wu; Eerdunchaolu

    2017-06-01

    The electromagnetic-field dependence of the ground and the first excited-state (GFES) energy eigenvalues and eigenfunctions of the strong-coupling polaron in a quantum dot (QD) was studied for various QD thicknesses by using the variational method of the Pekar type (VMPT). On this basis, we construct a qubit in the quantum dot (QQD) by taking a two-level structure of the polaron as the carrier. The results of numerical calculations indicate that the oscillation period of the qubit, {itT}{in0}, increases with increasing the thickness of the quantum dot (TQD) {itL}, but decreases with increasing the cyclotron frequency of the magnetic field (CFMF) ω{in{itc}}, electric-field strength {itF}, and electron-phonon coupling strength (EPCS) α. The probability density of the qubit |Ψ({itρ}, {itz}, {itt})|{su2} presents a normal distribution of the electronic transverse coordinate ρ, significantly influenced by the TQD and effective radius of the quantum dot (ERQD) {itR}{in0}, and shows a periodic oscillation with variations in the electronic longitudinal coordinate {itz}, polar angle φ and time {itt}. The decoherence time τ and the quality factor {itQ} of the free rotation increase with increasing the CFMF ω{in{itc}}, dispersion coefficient η, and EPCS α, but decrease with increasing the electric-field strength {itF}, TQD {itL}, and ERQD {itR}{in0}. The TQD is an important parameter of the qubit. Theoretically, the target, which is to regulate the oscillation period, decoherence time and quality factor of the free rotation of the qubit, can be achieved by designing different TQDs and regulating the strength of the electromagnetic field.

  11. Implementing quantum optics with parametrically driven superconducting circuits

    Science.gov (United States)

    Aumentado, Jose

    Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.

  12. Single-photon three-qubit quantum logic using spatial light modulators.

    Science.gov (United States)

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  13. Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wenner, J; Neeley, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; O' Connell, A D; Sank, D; Wang, H; Weides, M; Cleland, A N; Martinis, John M, E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2011-06-15

    We analyze the performance of a microwave chip mount that uses wirebonds to connect the chip and mount grounds. A simple impedance ladder model predicts that transmission crosstalk between two feedlines falls off exponentially with distance at low frequencies, but rises to near unity above a resonance frequency set by the chip to ground capacitance. Using SPICE simulations and experimental measurements of a scale model, the basic predictions of the ladder model were verified. In particular, by decreasing the capacitance between the chip and box grounds, the resonance frequency increased and transmission decreased. This model then influenced the design of a new mount that improved the isolation to - 65 dB at 6 GHz, even though the chip dimensions were increased to 1 cm x 1 cm, three times as large as our previous devices. We measured a coplanar resonator in this mount as preparation for larger qubit chips, and were able to identify cavity, slotline, and resonator modes.

  14. Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits

    International Nuclear Information System (INIS)

    Wenner, J; Neeley, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; O'Connell, A D; Sank, D; Wang, H; Weides, M; Cleland, A N; Martinis, John M

    2011-01-01

    We analyze the performance of a microwave chip mount that uses wirebonds to connect the chip and mount grounds. A simple impedance ladder model predicts that transmission crosstalk between two feedlines falls off exponentially with distance at low frequencies, but rises to near unity above a resonance frequency set by the chip to ground capacitance. Using SPICE simulations and experimental measurements of a scale model, the basic predictions of the ladder model were verified. In particular, by decreasing the capacitance between the chip and box grounds, the resonance frequency increased and transmission decreased. This model then influenced the design of a new mount that improved the isolation to - 65 dB at 6 GHz, even though the chip dimensions were increased to 1 cm x 1 cm, three times as large as our previous devices. We measured a coplanar resonator in this mount as preparation for larger qubit chips, and were able to identify cavity, slotline, and resonator modes.

  15. First-principles approach for superconducting slabs and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Csire, Gabor [Wigner Research Centre for Physics, Budapest (Hungary)

    2016-07-01

    We present a fully ab-initio method to calculate the transition temperature for superconducting slabs and heterostructures. In the case of thin superconductor layers the electron-phonon interaction may change significantly. Therefore we calculate the layer dependent phonon spectrum to determine the layer dependence of the electron-phonon coupling for such systems. The phonon spectrum is than coupled to the Kohn-Sham-Bogoliubov-de Gennes equation via the McMillan-Hopfield parameter, and it is solved self-consistently. The theory is applied to niobium slabs and niobium-gold heterostructures. Based on these calculations we investigate both the dependence of the superconducting transition temperature on the thickness of superconducting slabs and the inverse proximity effect observed in thin superconducting heterostructures.

  16. Observation of quantum Zeno effect in a superconducting flux qubit

    International Nuclear Information System (INIS)

    Kakuyanagi, K; Baba, T; Matsuzaki, Y; Nakano, H; Saito, S; Semba, K

    2015-01-01

    When a quantum state is subjected to frequent measurements, the time evolution of the quantum state is frozen. This is called the quantum Zeno effect. Here, we observe such an effect by performing frequent discrete measurements in a macroscopic quantum system, a superconducting quantum bit. The quantum Zeno effect induced by discrete measurements is similar to the original idea of the quantum Zeno effect. By using a Josephson bifurcation amplifier pulse readout, we have experimentally suppressed the time evolution of Rabi oscillation using projective measurements, and also observed the enhancement of the quantum state holding time by shortening the measurement period time. This is a crucial step to realize quantum information processing using the quantum Zeno effect. (papers)

  17. Quantum state transfer with untunable couplings

    International Nuclear Information System (INIS)

    Gagnebin, P. K.; Skinner, S. R.; Behrman, E. C.; Steck, J. E.

    2007-01-01

    We present a general scheme for implementing bidirectional quantum state transfer in a quantum swapping channel. Unlike many other schemes for quantum computation and communication, our method does not require qubit couplings to be switched on and off. The only control variable is the bias acting on individual qubits. We show how to derive the parameters of the system (fixed and variable) such that perfect state transfer can be achieved. Since these parameters vary linearly with the pulse width, our scheme allows flexibility in the time scales under which qubits evolve. Unlike quantum spin networks, our scheme allows the transmission of several quantum states at a time, requiring only a two qubit separation between quantum states. By pulsing the biases of several qubits at the same time, we show that only eight bias control lines are required to achieve state transfer along a channel of arbitrary length. Furthermore, when the information to be transferred is purely classical in nature, only three bias control lines are required, greatly simplifying the circuit complexity

  18. Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xiu, Xiao-Ming, E-mail: xiuxiaomingdl@126.com [Dalian University of Technology, School of Physics and Optoelectronic Technology (China); Ren, Yuan-Peng [Bohai University, Higher Professional Technical Institute (China); Gao, Ya-Jun [Bohai University, College of Mathematics and Physics (China); Yi, X. X. [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)

    2013-01-15

    We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.

  19. Entanglement-based linear-optical qubit amplifier

    Czech Academy of Sciences Publication Activity Database

    Meyer-Scott, E.; Bula, M.; Bartkiewicz, K.; Černoch, Antonín; Soubusta, Jan; Jennewein, T.; Lemr, Karel

    2013-01-01

    Roč. 87, č. 1 (2013), "012327-1"-"012327-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : quantum physics * photonics qubits * qubit amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013

  20. Geneva University - Superconducting flux quantum bits: fabricated quantum objects

    CERN Multimedia

    2007-01-01

    Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Lundi 29 janvier 2007 COLLOQUE DE LA SECTION DE PHYSIQUE 17 heures - Auditoire Stueckelberg Superconducting flux quantum bits: fabricated quantum objects Prof. Hans Mooij / Kavli Institute of Nanoscience, Delft University of Technology The quantum conjugate variables of a superconductor are the charge or number of Cooper pairs, and the phase of the order parameter. In circuits that contain small Josephson junctions, these quantum properties can be brought forward. In Delft we study so-called flux qubits, superconducting rings that contain three small Josephson junctions. When a magnetic flux of half a flux quantum is applied to the loop, there are two states with opposite circulating current. For suitable junction parameters, a quantum superposition of those macroscopic states is possible. Transitions can be driven with resonant microwaves. These quantum ...

  1. Superconducting system for adiabatic quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Corato, V [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy); Roscilde, T [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (Canada); Ruggiero, B [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Granata, C [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy)

    2006-06-01

    We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results.

  2. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sakai, S

    1998-01-01

    We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...

  3. Theory of the Quantum Dot Hybrid Qubit

    Science.gov (United States)

    Friesen, Mark

    2015-03-01

    The quantum dot hybrid qubit, formed from three electrons in two quantum dots, combines the desirable features of charge qubits (fast manipulation) and spin qubits (long coherence times). The hybridized spin and charge states yield a unique energy spectrum with several useful properties, including two different operating regimes that are relatively immune to charge noise due to the presence of optimal working points or ``sweet spots.'' In this talk, I will describe dc and ac-driven gate operations of the quantum dot hybrid qubit. I will analyze improvements in the dephasing that are enabled by the sweet spots, and I will discuss the outlook for quantum hybrid qubits in terms of scalability. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), the USDOD, and the Intelligence Community Postdoctoral Research Fellowship Program. The views and conclusions contained in this presentation are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of the US government.

  4. Stopping single photons in one-dimensional circuit quantum electrodynamics systems

    International Nuclear Information System (INIS)

    Shen, J.-T.; Povinelli, M. L.; Sandhu, Sunil; Fan Shanhui

    2007-01-01

    We propose a mechanism to stop and time reverse single photons in one-dimensional circuit quantum electrodynamics systems. As a concrete example, we exploit the large tunability of the superconducting charge quantum bit (charge qubit) to predict one-photon transport properties in multiple-qubit systems with dynamically controlled transition frequencies. In particular, two qubits coupled to a waveguide give rise to a single-photon transmission line shape that is analogous to electromagnetically induced transparency in atomic systems. Furthermore, by cascading double-qubit structures to form an array and dynamically controlling the qubit transition frequencies, a single photon can be stopped, stored, and time reversed. With a properly designed array, two photons can be stopped and stored in the system at the same time. Moreover, the unit cell of the array can be designed to be of deep subwavelength scale, miniaturizing the circuit

  5. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    Science.gov (United States)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  6. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Eder, Peter; Fischer, Michael; Goetz, Jan; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Muenchen (Germany); Haeberlein, Max; Wulschner, Karl Friedrich [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Fedorov, Kirill; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    In typical circuit QED systems, on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present studies on transmon qubits capacitively coupled to 3D cavities. The internal quality factors of our 3D cavities, machined out of high purity aluminum, are above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. For characterization of the sample, we perform dispersive shift measurements up to the third energy level of the qubit. We show simulations and data describing the effect of the transmon geometry on it's capacitive properties. In addition, we present progress towards an integrated quantum memory application.

  7. High-fidelity adiabatic inversion of a {sup 31}P electron spin qubit in natural silicon

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne, E-mail: a.laucht@unsw.edu.au; Kalra, Rachpon; Muhonen, Juha T.; Dehollain, Juan P.; Mohiyaddin, Fahd A.; Hudson, Fay; Dzurak, Andrew S.; Morello, Andrea [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052 (Australia); McCallum, Jeffrey C.; Jamieson, David N. [Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia)

    2014-03-03

    The main limitation to the high-fidelity quantum control of spins in semiconductors is the presence of strongly fluctuating fields arising from the nuclear spin bath of the host material. We demonstrate here a substantial improvement in single-qubit inversion fidelities for an electron spin qubit bound to a {sup 31}P atom in natural silicon, by applying adiabatic sweeps instead of narrow-band pulses. We achieve an inversion fidelity of 97%, and we observe signatures in the spin resonance spectra and the spin coherence time that are consistent with the presence of an additional exchange-coupled donor. This work highlights the effectiveness of simple adiabatic inversion techniques for spin control in fluctuating environments.

  8. On a formulation of qubits in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Jacques, E-mail: calmet@ira.uka.de [Karlsruhe Institute of Technology (KIT), Institute for Cryptography and Security, Am Fasanengarten 5, 76131 Karlsruhe (Germany); Calmet, Xavier, E-mail: x.calmet@sussex.ac.uk [Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom)

    2012-01-30

    Qubits have been designed in the framework of quantum mechanics. Attempts to formulate the problem in the language of quantum field theory have been proposed already. In this short Letter we refine the meaning of qubits within the framework of quantum field theory. We show that the notion of gauge invariance naturally leads to a generalization of qubits to QFTbits which are then the fundamental carriers of information from the quantum field theoretical point of view. The goal of this Letter is to stress the availability of such a generalized concept of QFTbits. -- Highlights: ► Gauge invariant qubits are proposed. ► Non-linear QFT effects are discussed. ► Entanglement of qubits in QFT.

  9. Strong-coupling electron-phonon superconductivity in H{sub 3}S

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, Warren E. [University of California, Davis, CA (United States); Quan, Yundi [Beijing Normal University, Beijing (China)

    2016-07-01

    The superconducting phase of hydrogen sulfide at T{sub c} = 200 K observed by Eremets' group at pressures around 200 GPa is simple bcc Im-3m H{sub 3}S. Remarkably, this record high temperature superconductor was predicted beforehand by Duan et al., so the theory would seem to be in place. Here we will discuss why this is not true. Several extremes are involved: extreme pressure, meaning reduction of volume;extremely high H phonon energy scale around 1400 K; unusually narrow peak in the density of states at the Fermi level; extremely high temperature for a superconductor. Analysis of the H3S electronic structure and two important van Hove singularities (vHs) reveal the effect of sulfur. The implications for the strong coupling Migdal-Eliashberg theory will be discussed. Followed by comments on ways of increasing T{sub c} in H{sub 3}S-like materials.

  10. Superconductivity mediated by anharmonic phonons: application to β-pyrochlore oxides

    Science.gov (United States)

    Hattori, Kazumasa; Tsunetsugu, Hirokazu

    2010-03-01

    We investigate three dimensional anharmonic phonons under tetrahedral symmetry and superconductivity mediated by these phonons. Three dimensional anharmonic phonon spectra are calculated directly by solving Schr"odinger equation and the superconducting transition temperature is determined by using the theory of strong coupling superconductivity assuming an isotropic gap function. With increasing the third order anharmonicity b of the tetrahedral potential, we find a crossover in the energy spectrum to a quantum tunneling regime. We obtain strongly enhanced transition temperatures around the crossover point. The first order transition observed in KOs2O6 is discussed in terms of the first excited state energy δ, and the coupling constant λ in the strong coupling theory of superconductivity. Our results suggest that the decrease of λ and increase of δ below the first order transition temperature. We point out that the change in the oscillation amplitude and characterizes this isomorphic transition. The chemical trends of the superconducting transition temperature, λ, and δ in the β-pyrochlore compounds are also discussed.

  11. Dynamics of Entanglement in Qubit-Qutrit with x-Component of DM Interaction

    International Nuclear Information System (INIS)

    Sharma, Kapil K.; Pandey, S.N.

    2016-01-01

    In this present paper, we study the entanglement dynamics in qubit A-qutrit B pair under x component of Dzyaloshinshkii–Moriya interaction (D x ) by taking an auxiliary qubit C. Here, we consider an entangled qubit-qutrit pair initially prepared in two parameter qubit-qutrit states and one auxiliary qubit prepared in pure state interacts with the qutrit of the pair through DM interaction. We trace away the auxiliary qubit and calculate the reduced dynamics in qubit A-qutrit B pair to study the influence of the state of auxiliary qubit C and D x on entanglement. We find that the state (probability amplitude) of auxiliary qubit does not influence the entanglement, only D x influences the same. The phenomenon of entanglement sudden death (ESD) induced by D x has also been observed. We also present the affected and unaffected two parameter qubit-qutrit states by D x . (paper)

  12. Entanglement of flux qubits through a joint detection of photons

    International Nuclear Information System (INIS)

    Kurpas, Marcin; Zipper, Elzbieta

    2009-01-01

    We study the entanglement creation between two flux qubits interacting with electromagnetic field modes. No direct interaction between the qubits exists. Entanglement is reached using the entanglement swapping method by an interference measurement performed on photons. We discuss the influence of off-resonance and multi-photon initial states on the qubit-qubit entanglement. The presented scheme is able to drive an initially separable state of two qubits into an highly entangled state suitable for quantum information processing (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Detection of quantum critical points by a probe qubit.

    Science.gov (United States)

    Zhang, Jingfu; Peng, Xinhua; Rajendran, Nageswaran; Suter, Dieter

    2008-03-14

    Quantum phase transitions occur when the ground state of a quantum system undergoes a qualitative change when an external control parameter reaches a critical value. Here, we demonstrate a technique for studying quantum systems undergoing a phase transition by coupling the system to a probe qubit. It uses directly the increased sensibility of the quantum system to perturbations when it is close to a critical point. Using an NMR quantum simulator, we demonstrate this measurement technique for two different types of quantum phase transitions in an Ising spin chain.

  14. Mode-mode coupling theory of itinerant electron antiferromagnetism in superconducting state

    International Nuclear Information System (INIS)

    Fujimoto, Yukinobu; Miyake, Kazumasa

    2012-01-01

    It has been considered since the first discovery of a high-T c cuprate that an antiferromagnetic (AF) state and a superconducting (SC) state are separated in it. However, it is very intriguing that the coexistence of the AF and SC states has recently been observed in HgBa 2 Ca 4 Cu 5 O 12+ (Hg-1245). Moreover, it is very novel that this coexistence of these two states appears if the SC-transition temperature T c is higher than the AF-transition temperature T N . The mode-mode coupling theory can provide a clear elucidation of this novel phenomenon. A key point of this theory is that the AF susceptibility consists of the random-phase-approximation (RPA) term and the mode-mode coupling one. The RPA term works to make a positive contribution to the emergence of the antiferromagnetic critical point (AF-CP). In contrast, the mode-mode coupling term works to make a negative contribution to the emergence of the AF-CP. However, the growth of the SC-gap function in the d x 2 -y 2 -wave SC state works to suppress the negative contribution of the mode-mode coupling term to the emergence of the AF-CP. Moreover, the effect of SC fluctuations near the SC-transition temperature T c suppresses the mode-mode coupling term of the AF susceptibility that works to hinder the AF ordering. For these two reasons, there is a possibility that the d x 2 -y 2 -wave SC state is likely to promote the emergence of the AF-CP. Namely, the appearance of the above-mentioned novel coexistence of the AF and SC states observed in Hg-1245 can be explained qualitatively on the basis of this idea.

  15. State tomography for two qubits using reduced densities

    International Nuclear Information System (INIS)

    Petz, D; Hangos, K M; Szanto, A; Szoellosi, F

    2006-01-01

    The optimal state determination (or tomography) is studied for a composite system of two qubits when measurements can be performed on one of the qubits and interactions of the two qubits can be implemented. The goal is to minimize the number of interactions to be implemented. The algebraic method used in the paper leads to an extension of the concept of mutually unbiased measurements

  16. Superconducting coil system and methods of assembling the same

    Science.gov (United States)

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.

    2016-01-19

    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  17. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  18. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    International Nuclear Information System (INIS)

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng; Gong, Jiangbin

    2010-01-01

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression can be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.

  19. Controllable manipulation of superconductivity using magnetic vortices

    International Nuclear Information System (INIS)

    Villegas, J E; Schuller, Ivan K

    2011-01-01

    The magneto-transport of a superconducting/ferromagnetic hybrid structure, consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called 'magnetic vortex state', exhibits interesting properties. For certain magnetic states, the stray magnetic field from the vortex array is intense enough to drive the superconducting film into the normal state. In this fashion, the normal-to-superconducting phase transition can be controlled by the magnetic history. The strong coupling between superconducting and magnetic subsystems allows characteristically ferromagnetic properties, such as hysteresis and remanence, to be dramatically transferred into the transport properties of the superconductor.

  20. Effect of transients on the beam in the Superconducting Supercollider Coupled-Cavity Linac

    International Nuclear Information System (INIS)

    Young, L.M.; Nath, S.

    1992-01-01

    Each module of the Superconducting Super Collider (SSC) Coupled-Cavity Linac (CCL) consists of eight tanks (10 accelerating cells each) coupled with bridge couplers. The radio frequency (rf) power drive is in the center of the module at the bridge coupler between the fourth and fifth tanks. In this simulation of the beam dynamics, the rf power is turned on 10 μs before the beam is turned on. This time lapse allows the fields to build up and stabilize before they are required by the beam. When the beam is turned on, the beam loading causes the fields to change. This transient state of the fields together with their effect on the beam is presented. A model has been developed to calculate field distribution throughout the module as a function of time. Beam dynamics simulations were run with the results of this model at several times during the beam pulse. An estimate of the effect of the transients is given by the results of these simulations